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A B S T R A C T

This work presents a face-centred finite volume (FCFV) paradigm for the simulation of compressible flows. The
FCFV method defines the unknowns at the face barycentre and uses a hybridisation procedure to eliminate
all the degrees of freedom inside the cells. In addition, Riemann solvers are defined implicitly within the
expressions of the numerical fluxes. The resulting methodology provides first-order accurate approximations
of the conservative quantities, i.e. density, momentum and energy, as well as of the viscous stress tensor and
of the heat flux, without the need of any gradient reconstruction procedure. Hence, the FCFV solver preserves
the accuracy of the approximation in presence of distorted and highly stretched cells, providing a solver
insensitive to mesh quality. In addition, FCFV is capable of constructing non-oscillatory approximations of sharp
discontinuities without resorting to shock capturing or limiting techniques. For flows at low Mach number,
the method is robust and is capable of computing accurate solutions in the incompressible limit without the
need of introducing specific pressure correction strategies. A set of 2D and 3D benchmarks of external flows
is presented to validate the methodology in different flow regimes, from inviscid to viscous laminar flows,
from transonic to subsonic incompressible flows, demonstrating its potential to handle compressible flows in
realistic scenarios.
1. Introduction

Finite volume (FV) solvers are the most widespread technology
within the aerospace community for the simulation of steady-state
compressible flows [1,2]. The success of such methodologies is mainly
due to their capability of providing results for large-scale flow problems
involving complex geometries by means of overnight simulations. For
this reason, FV implementations are accessible in many computational
fluid dynamics (CFD) platforms, from open-source to commercial and
industrial software [3–11]. Nonetheless, these methods require delicate
mesh generation procedures, limiting unstructured regions and dis-
torted cells [12,13], in order to construct high-quality meshes suitable
for computation.

Traditional FV solvers, see e.g. [2,14–16], rely on two paradigms,
the so-called cell-centred finite volume (CCFV) method [17] and the
vertex-centred finite volume (VCFV) method [18]. The former defines
the unknown solution at the centroid of the cells, whereas the latter
at the mesh nodes. Recently, the face-centred finite volume (FCFV)
paradigm was proposed for a series of linear elliptic partial differen-
tial equations (PDEs) [19–22]. The FCFV method utilises a mixed FV

∗ Corresponding author at: Laboratori de Càlcul Numèric (LaCàN), ETS de Ingenieros de Caminos, Canales y Puertos, Universitat Politècnica de Catalunya,
Barcelona, Spain.

E-mail address: matteo.giacomini@upc.edu (M. Giacomini).

formulation and eliminates the degrees of freedom within each cell via
a hybridisation step, leading to a problem defined in terms of the un-
knowns at the face barycentres only. Finally, the variables inside each
cell are retrieved via a computationally inexpensive postprocessing step
performed independently cell-by-cell.

The present work discusses the first FCFV formulation for nonlinear
hyperbolic PDEs modelling steady-state compressible flows, spanning
from viscous compressible Navier–Stokes to inviscid Euler equations.
The proposed approach introduces the flow variables, i.e. density, mo-
mentum and energy, the deviatoric strain rate tensor and the gradient
of temperature as unknowns inside each cell, whereas the conservative
quantities on the cell faces define the so-called hybrid unknowns.
The resulting method yields first-order accuracy for all above men-
tioned variables. Contrary to traditional first-order CCFV and VCFV
paradigms, the FCFV method provides first-order convergence of the
deviatoric strain rate tensor and of the gradient of temperature. In
addition, this is achieved without resorting to any flux reconstruc-
tion strategy required by traditional second-order CCFV and VCFV
approaches. This is especially important as it allows the FCFV method
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to preserve optimal accuracy in the computation of the stress tensor and
the heat flux even in the presence of distorted and stretched cells [19–
22], where traditional second-order CCFV and VCFV approaches are
known to suffer from a loss of accuracy [12,13,23]. In addition, the
FCFV method showed its versatility in devising approximations based
on meshes of different cell types and on hybrid meshes [19,21], proving
to be a robust methodology insensitive to element type and mesh
quality. Although the FCFV method is known to introduce a larger
number of unknowns than CCFV and VCFV approaches [19], the sim-
plified procedure required to generate meshes suitable for computation
and its capability to avoid gradient reconstruction make the FCFV
scheme a competitive alternative to traditional FV solvers from the
computational viewpoint.

In the approximation of conservation laws, a critical aspect is rep-
resented by the strategy employed to handle the nonlinear convective
fluxes. In this context, Riemann solvers have been extensively stud-
ied [24–27]. The present work revisits the traditional Lax–Friedrichs,
Roe, HLL and HLLEM Riemann solvers in the context of the FCFV
method. An extensive set of numerical examples is employed to val-
idate and compare these approaches. Special attention is devoted to
positivity-preserving approximations, in order to develop a robust
methodology able to compute physically-admissible solutions across a
wide range of flow regimes. More precisely, numerical experiments
are reported to showcase the capability of the FCFV method to con-
struct non-oscillatory approximations of shock waves and sharp fronts,
without the need of shock capturing techniques based on artificial
viscosity [28–31] or flux limiters [32–35].

It is worth mentioning that FV methods have been reinterpreted in
recent years as particular cases of finite element discretisations [14]:
the CCFV method can be seen as a discontinuous Galerkin (DG) ap-
proach with piecewise constant approximations in each cell [16,36],
whereas a VCFV discretisation on a simplicial mesh is equivalent to
a continuous Galerkin finite element method with piecewise linear
approximations [37,38]. Concerning the FCFV paradigm, it can be in-
terpreted as the lowest-order version of the hybridisable discontinuous
Galerkin (HDG) method [39–41], in which constant approximations
are selected for all the variables. More precisely, the FCFV formulation
presented in this work is inspired by the high-order HDG discretisa-
tions for compressible flows discussed in [42,43]. The proposed FCFV
method thus inherits its properties from HDG, including its stability in
the incompressible limit [19–22], circumventing the Ladyzhenskaya–
Babuška–Brezzi (LBB) condition [29,44]. Hence, the FCFV method
provides accurate approximations of incompressible flows without the
need of introducing specific pressure corrections like the well-known
SIMPLE algorithm [45] implemented by commercial and open-source
software, see e.g. [3,9].

The remainder of this paper is organised as follows. In Section 2,
the compressible Navier–Stokes equations are recalled. Section 3 in-
troduces the corresponding FCFV discretisation and the integration of
the different Riemann solvers in the definitions of the numerical fluxes.
A set of convergence tests to validate the optimal accuracy properties
of the method for inviscid and viscous laminar flows is presented in
Section 4, with special emphasis on the robustness to cell stretching
and distortion. Two- and three-dimensional benchmarks of external
flows of aerodynamic interest are reported in Section 5 to demonstrate
the capabilities of the method in different flow regimes, from inviscid
to viscous laminar flows, from transonic to subsonic incompressible
flows. Finally, Section 6 reviews the main results of this work and three
appendices provide technical details on the definition of the boundary
conditions (Appendix A), on the construction of the mixed variable
(Appendix B) and on the hybridisation procedure (Appendix C) in the
2

FCFV solver.
2. Governing equations for compressible flows

Consider the compressible Navier–Stokes equations, written in non-
dimensional conservative form as
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝑼
𝜕𝑡

+ 𝛁⋅ (𝑭 (𝑼 ) −𝑮(𝑼 ,𝛁𝑼 )) = 𝟎 in 𝛺 × (0,T𝚎𝚗𝚍],

𝑼 = 𝑼 0 in 𝛺 × {0},

𝑩(𝑼 ,𝛁𝑼 ) = 𝟎 on 𝜕𝛺 × (0,T𝚎𝚗𝚍],

(1)

where 𝛺 ⊂ R𝚗𝚜𝚍 denotes an 𝚗𝚜𝚍-dimensional open bounded domain with
boundary 𝜕𝛺, T𝚎𝚗𝚍 > 0 is the final time of interest, 𝑼 0 represents the
initial state and 𝑩 is an operator imposing inlet, outlet or wall boundary
conditions as detailed in Appendix A.

Remark 1 (Pseudo-time in steady-state flows). The present work focuses
on the development of a novel FV spatial discretisation for steady-state
compressible flows. In this context, 𝑡 represents an artificial pseudo-
time and time-marching algorithms are introduced to speed-up the
convergence of the nonlinear solver, as detailed in Section 3.5.

The system (1) is written in terms of the vector of conserved
quantities 𝑼 ∈ R𝚗𝚜𝚍+2 and the advection, 𝑭 , and diffusion, 𝑮, flux
tensors, namely

𝑼 =

⎧

⎪

⎨

⎪

⎩

𝜌
𝜌𝒗
𝜌𝐸

⎫

⎪

⎬

⎪

⎭

, 𝑭 (𝑼 ) =
⎡

⎢

⎢

⎣

𝜌𝒗𝑇
𝜌𝒗⊗ 𝒗 + 𝑝𝐈𝚗𝚜𝚍
(𝜌𝐸 + 𝑝)𝒗𝑇

⎤

⎥

⎥

⎦

, 𝑮(𝑼 ,𝛁𝑼 ) =
⎡

⎢

⎢

⎣

𝟎
𝝈𝑑

(𝝈𝑑𝒗 + 𝒒)𝑇

⎤

⎥

⎥

⎦

, (2)

here 𝜌 is the density, 𝒗 the velocity vector, 𝐸 the total specific energy
nd 𝑝 denotes the pressure field. The viscous stress tensor 𝝈𝑑 and the
eat flux vector 𝒒 are given by

𝑑 =
𝜇
𝑅𝑒

(

2𝛁𝚂𝒗 − 2
3
(𝛁⋅ 𝒗)𝐈𝚗𝚜𝚍

)

, 𝒒 =
𝜇

𝑃 𝑟𝑅𝑒
𝛁𝑇 , (3)

where 𝛁𝚂 ∶= (𝛁+𝛁𝑇 )∕2 is the symmetric part of the gradient operator
and 𝑇 denotes the temperature. The non-dimensional dynamic viscosity
is defined according to the Sutherland’s law, i.e. 𝜇 =

(

𝑇 ∕𝑇∞
)3∕2 (𝑇∞ +

)∕(𝑇 +𝑆), 𝑇∞ = 1∕
(

(𝛾 − 1)𝑀2
∞
)

and 𝑆 = 𝑆0∕
(

(𝛾 − 1)𝑇𝚛𝚎𝚏𝑀2
∞
)

being the
on-dimensional free-stream temperature and the Sutherland constant,
espectively, with 𝑆0 = 110 K and 𝑇𝚛𝚎𝚏 = 273 K.

In addition, following the assumption of a calorically perfect gas,
he pressure is given by 𝑝 = (𝛾 − 1)𝜌

(

𝐸 − ‖𝒗‖2∕2
)

, where 𝛾 = 𝑐𝑝∕𝑐𝑣
equal to 1.4 for air) is the ratio of specific heats at constant pressure,
𝑝, and constant volume, 𝑐𝑣. Finally, from the ideal gas law it follows

that 𝛾𝑝 = (𝛾 − 1)𝜌𝑇 .

Remark 2 (Non-dimensional quantities). The problem is described in
terms of the Mach, Reynolds and Prandtl numbers, defined respectively
as

𝑀∞ =
𝑣∞
𝑐∞

, 𝑅𝑒 =
𝜌∞𝑣∞𝐿
𝜇∞

, 𝑃 𝑟 =
𝑐𝑝𝜇∞
𝜅

(= 0.71 for air), (4)

𝑐 =
√

𝛾𝑝∕𝜌 being the speed of sound, 𝐿 a characteristic length and 𝜅
the thermal conductivity. The subscript ∞ denotes free-stream reference
values.

3. FCFV formulation for compressible flows

The domain 𝛺 is partitioned in a set of 𝚗𝚎𝚕 disjoint cells 𝛺𝑒 satisfying
𝛺 =

⋃𝚗𝚎𝚕
𝑒=1 𝛺𝑒. In addition, the boundary of the cell 𝛺𝑒, denoted by 𝜕𝛺𝑒,

is obtained as the union of its faces, namely

𝜕𝛺𝑒 ∶=
𝚗𝑒
𝚏𝚊
⋃

𝑗=1
𝛤𝑒,𝑗 , (5)

where 𝚗𝑒
𝚏𝚊

is the total number of faces of the cell 𝛺𝑒. Finally, the internal
interface 𝛤 is defined as

𝛤 ∶=

[

𝚗𝚎𝚕
⋃

𝜕𝛺𝑒

]

⧵ 𝜕𝛺. (6)

𝑒=1
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3.1. Introducing a set of mixed variables

Following the HDG [39,42,44] and FCFV [19,20] rationales, the
second-order problem (1) is written as a system of first-order PDEs
via the introduction of a set of so-called mixed variables. In the context
of compressible flows, the most common approach, see [42,43,46,47],
relies on defining the mixed variable as the gradient of the so-called
primal variable 𝑼 , namely 𝜳 = 𝛁𝑼 . Nonetheless, this choice leads
to the introduction of a mixed variable, associated with the gradient
of density, which is redundant since the mass conservation equation
is a first-order PDE. In addition, several nonlinearities appear in the
resulting expressions to compute the viscous stress and the heat flux
starting from 𝑼 and 𝜳 . Following [48], in this work only two mixed
variables are considered, namely the deviatoric strain rate tensor 𝜺𝑑 and
he gradient of temperature 𝝓, given by

𝑑 = 2𝛁𝚂𝒗 − 2
3
(𝛁⋅ 𝒗)𝐈𝚗𝚜𝚍 , 𝝓 = 𝛁𝑇 . (7)

emark 3 (Deviatoric strain rate). It is worth noticing that the deviatoric
train rate tensor can be expressed as a function of the gradient of
elocity as 𝜺𝑑 = 𝛁𝚂𝒗, where the linear operator  is defined as

𝑾 =
(

𝑾 +𝑾 𝑇 ) − 2
3
tr(𝑾 )𝐈. (8)

Interested readers are referred to Appendix B for the details concerning
the construction of the operator  and its implementation.

Besides reducing the number of mixed variables involved, from (7)
it also follows that the viscous stress tensor and the heat flux vector
in Eq. (3) can be obtained using the linear expressions

𝝈𝑑 =
𝜇
𝑅𝑒

𝜺𝑑 , 𝒒 =
𝜇

𝑅𝑒𝑃 𝑟
𝝓. (9)

3.2. A mixed hybrid finite volume framework

The FCFV method solves the compressible Navier–Stokes equations
in two stages. First, an independent hybrid variable 𝑼̂ , representing the
ector of conservative variables on the mesh faces 𝛤∪𝜕𝛺, is introduced.
q. (1) is thus rewritten in each cell 𝛺𝑒, 𝑒 = 1,… , 𝚗𝚎𝚕 as

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜺𝑑 −𝛁𝚂𝒗 = 𝟎 in 𝛺𝑒 × (0,T𝚎𝚗𝚍],

𝝓 − 𝛁𝑇 = 𝟎 in 𝛺𝑒 × (0,T𝚎𝚗𝚍],
𝜕𝑼
𝜕𝑡

+ 𝛁⋅
(

𝑭 (𝑼 ) −𝑮(𝑼 , 𝜺𝑑 ,𝝓)
)

= 𝟎 in 𝛺𝑒 × (0,T𝚎𝚗𝚍],

𝑼 = 𝑼 0 in 𝛺𝑒 × {0},

𝑼 = 𝑼̂ on 𝜕𝛺𝑒 × (0,T𝚎𝚗𝚍].

(10)

Eq. (10) represents the 𝚗𝚎𝚕 FCFV local problems. They define the vector
of conservative variables and the mixed variables (𝑼 , 𝜺𝑑 ,𝝓) in each cell
as functions of the hybrid vector 𝑼̂ on the cell faces, in order to reduce
the global number of unknowns of the problem.

Second, the vector 𝑼̂ of conservative variables on the faces is
computed by solving the FCFV global problem, which prescribes the
continuity of the conservative variables and of the normal fluxes on 𝛤
and the boundary conditions on 𝜕𝛺, namely

⎧

⎪

⎨

⎪

⎩

[[𝑼 ⊗ 𝒏]] = 𝟎 on 𝛤 × (0,T𝚎𝚗𝚍],

[[
(

𝑭 (𝑼 ) −𝑮(𝑼 , 𝜺𝑑 ,𝝓)
)

𝒏]] = 𝟎 on 𝛤 × (0,T𝚎𝚗𝚍],

𝑩̂(𝑼 , 𝑼̂ , 𝜺𝑑 ,𝝓) = 𝟎, on 𝜕𝛺 × (0,T𝚎𝚗𝚍],

(11)

where 𝒏 stands for the outward normal vector to the cell face and
[[⊚]] = ⊚+ +⊚− denotes the jump operator defined on an internal face
s the sum of the values in the neighbouring elements 𝛺+ and 𝛺−,

respectively [49]. The trace boundary operator 𝑩̂(𝑼 , 𝑼̂ , 𝜺𝑑 ,𝝓) imposes
the boundary conditions on 𝜕𝛺 exploiting the hybrid variable, as
detailed in Appendix A.

It is worth noticing that the first condition in Eq. (11) is automati-
cally satisfied due to the Dirichlet boundary conditions imposed in the
local problems (10) and because of the unique definition of the hybrid
variable 𝑼̂ on each face.
3

3.3. Integral form of the FCFV local and global problems

For each cell 𝛺𝑒, 𝑒 = 1,… , 𝚗𝚎𝚕, the integral form of the FCFV local
problem is obtained by applying the divergence theorem to Eq. (10).
Given 𝑼 = 𝑼 0 at time 𝑡 = 0, it holds that

∫𝛺𝑒

𝜺𝑑 𝑑𝛺 − ∫𝜕𝛺𝑒

𝒗̂⊗ 𝒏 𝑑𝛤 = 𝟎, (12a)

∫𝛺𝑒

𝝓 𝑑𝛺 − ∫𝜕𝛺𝑒

𝑇𝒏 𝑑𝛤 = 𝟎, (12b)

∫𝛺𝑒

𝜕𝑼
𝜕𝑡

𝑑𝛺 + ∫𝜕𝛺𝑒

(

𝑭 (𝑼 )𝒏
⋀

−𝑮(𝑼 , 𝜺𝑑 ,𝝓)𝒏
⋀

)

𝑑𝛤 = 𝟎, (12c)

where 𝒗̂ and 𝑇 denote the velocity and temperature fields on the
cell faces 𝜕𝛺𝑒, respectively, and they are defined using the hybrid
vector 𝑼̂ of conservative variables. This problem corresponds to the
hybridisation step of the FCFV method: the goal is to eliminate the
unknowns (𝑼 , 𝜺𝑑 ,𝝓) within each cell by expressing them in terms of
the hybrid variable 𝑼̂ .

The unknown 𝑼̂ is thus computed by means of the global prob-
lem (11) whose integral form is
𝚗𝚎𝚕
∑

𝑒=1

{

∫𝜕𝛺𝑒⧵𝜕𝛺

(

𝑭 (𝑼 )𝒏
⋀

−𝑮(𝑼 , 𝜺𝑑 ,𝝓)𝒏
⋀

)

𝑑𝛤

+∫𝜕𝛺𝑒∩𝜕𝛺
𝑩̂(𝑼 , 𝑼̂ , 𝜺𝑑 ,𝝓) 𝑑𝛤

}

= 𝟎.
(13)

The terms 𝑭 (𝑼 )𝒏
⋀

and 𝑮(𝑼 , 𝜺𝑑 ,𝝓)𝒏
⋀

appearing in Eqs. (12c) and
(13) stand for the convection and diffusion numerical fluxes of the
conservation equations, respectively. It is worth recalling that the ap-
proximation of the numerical fluxes in the FCFV method plays a crucial
role in the accuracy and stability of the computed solution, see [19–22].
Following the rationale discussed for high-order HDG discretisations
in [42,43,47,48,50], the traces of the numerical fluxes on the cell faces
are defined as

𝑭 (𝑼 )𝒏
⋀

= 𝑭 (𝑼̂ )𝒏 + 𝝉𝑎(𝑼̂ ) (𝑼 − 𝑼̂ ), (14a)

(𝑼 , 𝜺𝑑 ,𝝓)𝒏 = 𝑮(𝑼̂ , 𝜺𝑑 ,𝝓)𝒏 − 𝝉𝑑 (𝑼 − 𝑼̂ ). (14b)

n the one hand, the stabilisation tensor 𝝉𝑎 is associated with convec-
ion phenomena. Different expressions of 𝝉𝑎 are derived from the theory
f Riemann solvers for nonlinear hyperbolic PDEs, as described in
ection 3.4. On the other hand, the term 𝝉𝑑 stands for the stabilisation
ensor related to viscous effects and is defined by means of the diagonal
atrix

𝑑 = 1
𝑅𝑒

diag
(

0, 𝟏𝚗𝚜𝚍 ,
1

(𝛾 − 1)𝑀2
∞𝑃𝑟

)

, (15)

𝟏𝚗𝚜𝚍 being an 𝚗𝚜𝚍-dimensional vector of ones.

emark 4 (FCFV method for inviscid Euler equations). The inviscid Euler
quations are obtained as the limit of the compressible Navier–Stokes
quations when 𝑅𝑒 → ∞. Setting 𝑮 = 𝟎, Eq. (1) thus reduces to the

well-known system of first-order hyperbolic PDEs modelling inviscid
compressible flows. For each cell 𝛺𝑒, 𝑒 = 1,… , 𝚗𝚎𝚕, the corresponding
FCFV local problem for the Euler equations is obtained from Eq. (12)
by neglecting the mixed variables and the viscous term, namely

∫𝛺𝑒

𝜕𝑼
𝜕𝑡

𝑑𝛺 + ∫𝜕𝛺𝑒

𝑭 (𝑼 )𝒏
⋀

𝑑𝛤 = 𝟎. (16)

Similarly, the global problem follows from the simplification
of Eq. (13) as
𝚗𝚎𝚕
∑

{

∫ 𝑭 (𝑼 )𝒏
⋀

𝑑𝛤 + ∫ 𝑩̂(𝑼 , 𝑼̂ ) 𝑑𝛤

}

= 𝟎. (17)

𝑒=1 𝜕𝛺𝑒⧵𝜕𝛺 𝜕𝛺𝑒∩𝜕𝛺
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3.4. Riemann Solvers for the FCFV method

In the context of the FCFV method, Riemann solvers are defined
implicitly within the convection fluxes, see Eq. (14a), by means of
appropriate expressions of the stabilisation term 𝝉𝑎. In this section,
he stabilisation terms leading to the formulation of the Lax–Friedrichs,
oe, HLL and HLLEM numerical fluxes are presented.

Let 𝑨𝑛(𝑼̂ ) ∶= [𝜕𝑭 (𝑼̂ )∕𝜕𝑼̂ ]⋅𝒏 be the Jacobian of the convective fluxes
long the normal direction to a cell face. Moreover, denote by 𝜆𝚖𝚊𝚡 ∶=
𝒗̂⋅𝒏|+𝑐 the maximum eigenvalue in absolute value of the matrix 𝑨𝑛(𝑼̂ ),

and 𝑐 being the velocity and the speed of sound evaluated from 𝑼̂ ,
espectively. Following the unified formulation in [48], the Riemann
olvers for the FCFV method are detailed below.

.4.1. Lax–Friedrichs Riemann solver
The FCFV stabilisation tensor inspired by the Lax–Friedrichs Rie-

ann solver, see [24], is defined as

𝑎 = 𝜆𝚖𝚊𝚡𝐈𝚗𝚜𝚍+2. (18a)

.4.2. Roe Riemann solver
Consider the spectral decomposition 𝑨𝑛(𝑼̂ ) = 𝐑Λ𝐑−1, where Λ

s a diagonal matrix containing the eigenvalues 𝜆𝑖, 𝑖 = 1,… , 𝚗𝚜𝚍 + 2
f 𝑨𝑛(𝑼̂ ) and 𝐑 is the corresponding matrix of right eigenvectors. In
ddition, the diagonal matrix Φ is given by Φ = diag

(

𝜑1,… , 𝜑𝚗𝚜𝚍+2

)

here 𝜑𝑖 = max(|𝜆𝑖|, 𝛿), 𝛿 ≥ 0 being a user-defined parameter. The Roe
iemann solver with Harten–Hyman entropy fix [51] is obtained for the
CFV method by setting

𝑎 = 𝐑Φ𝐑−1. (18b)

The parameter 𝛿 represents the threshold value of the aforemen-
ioned Harten–Hyman entropy fix. Such a correction aims to remedy
he failure of entropy conditions of the Roe solver, which may produce
onphysical solutions in transonic and supersonic cases. It is worth
oticing that for 𝛿 = 0, Φ = |Λ| and the traditional Roe Riemann solver
s retrieved, namely 𝝉𝑎 = |𝑨𝑛(𝑼̂ )|.

.4.3. HLL Riemann solver
The HLL Riemann solver is devised to recover the Rankine–

ugoniot condition, for a simplified scenario in which contact discon-
inuities are neglected, without the need of any user-defined param-
ter [52]. The resulting positivity-preserving Riemann solver for the
CFV method is given by

𝑎 = 𝑠+𝐈𝚗𝚜𝚍+2, (18c)

here 𝑠+ ∶= max(0, 𝒗̂ ⋅ 𝒏+ 𝑐) is an estimate of the largest wave speed of
he Riemann problem.

.4.4. HLLEM Riemann solver
In order to exploit both the positivity-preserving property of the HLL

iemann solver and the capability of Roe’s method to capture shear
ayers, the HLLEM Riemann solver [53,54] is employed to construct
he stabilisation tensor

𝑎 = 𝑠+𝜽(𝑼̂ ), (18d)

here 𝑠+ is the HLL wave speed estimate and 𝜽(𝑼̂ ) = 𝐑𝜣𝐑−1 re-
laces the identity 𝐈𝚗𝚜𝚍+2 in Eq. (18c). Note that the definition of
(𝑼̂ ) exploits the matrix of right eigenvectors arising from the spectral
ecomposition of 𝑨𝑛(𝑼̂ ), whereas the diagonal matrix 𝜣 is given by
= diag

(

1, 𝜃𝟏 , 1
)

, with 𝜃 = |𝒗̂ ⋅ 𝒏|∕𝜆 [55].
4

𝚗𝚜𝚍 𝚖𝚊𝚡
.5. FCFV discrete problem

The discrete form of the FCFV method is obtained by introducing
he definition (14) of the numerical fluxes into the local, Eq. (12),
nd global, Eq. (13), problems. In addition, the vector of conservative
ariables 𝑼 and the mixed variables 𝜺𝑑 and 𝝓 are discretised using
constant value at the centroid of each cell, whereas a constant

pproximation at the barycentre of the faces is employed for the hybrid
ector 𝑼̂ . Finally, a quadrature rule based on a single integration point
s utilised to evaluate the integral quantities on cells and faces.

For each cell 𝛺𝑒, the sets of all, 𝑒, internal, 𝑒, and boundary, 𝑒,
aces are introduced

𝑒 ∶= {1,… , 𝚗𝑒
𝚏𝚊
}, 𝑒 ∶= {𝑗 ∈ 𝑒 ∣ 𝛤𝑒,𝑗 ∩ 𝛤 ≠ ∅}, 𝑒 ∶= 𝑒 ⧵ 𝑒.

(19)

oreover, 𝜒𝑒 and 𝜒𝑒 are defined to represent the indicator functions
ssociated with the sets 𝑒 and 𝑒, respectively.

The semi-discrete form of the FCFV local problem (12) is: for 𝑒 =
,… , 𝚗𝚎𝚕, given the initial state 𝑼𝑒 = 𝑼 0

𝑒 at 𝑡 = 0 and the hybrid vector
̂𝑗 on the faces 𝛤𝑒,𝑗 , 𝑗 = 1,… , 𝚗𝑒

𝚏𝚊
, compute (𝑼𝑒, 𝜺𝑑𝑒 ,𝝓𝑒) that satisfy

𝛺𝑒|𝜺𝑑𝑒 −
∑

𝑗∈𝑒

|𝛤𝑒,𝑗 |𝒗̂𝑗 ⊗ 𝒏𝑗 = 𝟎, (20a)

𝛺𝑒|𝝓𝑒 −
∑

𝑗∈𝑒

|𝛤𝑒,𝑗 |𝑇𝑗𝒏𝑗 = 𝟎, (20b)

𝛺𝑒

𝜕𝑼𝑒
𝜕𝑡

𝑑𝛺 +
∑

𝑗∈𝑒

|𝛤𝑒,𝑗 |
{

𝑭 (𝑼̂𝑗 )𝒏𝑗 −𝑮(𝑼̂𝑗 , 𝜺𝑑𝑒 ,𝝓𝑒)𝒏𝑗

+
(

𝝉𝑎(𝑼̂𝑗 ) + 𝝉𝑑
)

(𝑼𝑒 − 𝑼̂𝑗 )
}

= 𝟎.
(20c)

emark 5 (Symmetry of the mixed variable). The mixed variable 𝜺𝑑

s a second-order symmetric tensor commonly represented using a
atrix of dimension 𝚗𝚜𝚍 × 𝚗𝚜𝚍. In order to exploit the symmetry prop-

rty in its discretisation, Voigt notation is employed to store only
ts 𝚖𝚜𝚍 = 𝚗𝚜𝚍(𝚗𝚜𝚍 + 1)∕2 non-redundant components. This approach,
etailed in Appendix B, was first proposed in the context of hybrid
iscretisation methods for high-order HDG formulations, see [56–60],
nd later exploited also for FCFV approaches in [20]. For the simulation
f compressible and weakly-compressible flows, this approximation of
he deviatoric strain rate tensor was employed in [48,61] in the context
f high-order HDG methods.

emark 6 (Time integration scheme). In order to obtain the fully-discrete
orm of the local problem (20), an appropriate time integration scheme
eeds to be introduced. As previously mentioned, the present work
roposes a novel FV spatial discretisations and the numerical examples
n Sections 4 and 5 focus on steady-state flows, whence this term
s neglected. Nonetheless, it is worth mentioning that time marching
ased on an artificial time is a common relaxation approach to speed-up
he convergence of a nonlinear solver. In this context, time derivative
ay be discretised using a backward Euler scheme, that is

∫𝛺𝑒

𝜕𝑼𝑒
𝜕𝑡

𝑑𝛺 ≃
|𝛺𝑒|

𝛥𝑡
(

𝑼 𝑛+1
𝑒 − 𝑼 𝑛

𝑒
)

, (21)

where 𝛥𝑡 is the artificial time step. Note that similar FCFV discrete
problems are obtained using other implicit time integration schemes,
e.g. higher-order backward difference formulae (BDF) [42,62,63], pro-
viding additional accuracy in the simulation of transient phenom-
ena. Of course, in the case of transient simulations, Newton–Raphson
iterations are performed at each time step to solve the nonlinear
problem.
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In a similar fashion, the discrete form of the FCFV global prob-
lem (13) is: compute the hybrid vector 𝑼̂ such that
𝚗𝚎𝚕

𝑒=1
|𝛤𝑒,𝑖|

{[

𝑭 (𝑼̂𝑖)𝒏𝑖 −𝑮(𝑼̂𝑖, 𝜺𝑑𝑒 ,𝝓𝑒)𝒏𝑖

+
(

𝝉𝑎(𝑼̂𝑖) + 𝝉𝑑
)

(𝑼𝑒 − 𝑼̂𝑖)
]

𝜒𝑒 (𝑖)

+ 𝑩̂(𝑼 , 𝑼̂ , 𝜺𝑑 ,𝝓)𝜒𝑒 (𝑖)
}

= 𝟎,

(22)

for all 𝑖 ∈ 𝑒.
It is worth noticing that both the local (20) and global (22) problems

are nonlinear. More precisely, let 𝑸𝑒 = (𝜺𝑑𝑒 ,𝝓𝑒) be the set of mixed
variables introduced by the FCFV formulation in the cell 𝛺𝑒. The
resulting system of algebraic–differential equations arising from the
local problem (20) is

𝐐𝑒 = 𝐐𝑒(𝐔̂), (23a)

|𝛺𝑒|
𝑑𝐔𝑒
𝑑𝑡

+ 𝐑𝑒(𝐔𝑒,𝐐𝑒, 𝐔̂) = 𝟎, (23b)

here 𝐔𝑒 and 𝐐𝑒 are the vectors containing the values of the local and
ixed variables, respectively, at the centroid of the cell, whereas the

ector 𝐔̂ collects the values of the hybrid variable at the barycentres
f its faces. On the one hand, Eqs. (20a) and (20b) provide analytical
xpressions of the mixed variables in terms of the hybrid unknown,
ee Eq. (23a). On the other hand, Eq. (20c) is nonlinear and the residual
ector obtained from its spatial discretisation is denoted by 𝐑𝑒. Upon
inearisation of Eq. (23b) via a Newton–Raphson procedure, the 𝚗𝚎𝚕
ocal problems allow to express 𝐔𝑒 and 𝐐𝑒 in each cell 𝛺𝑒, 𝑒 = 1,… , 𝚗𝚎𝚕

in terms of the unknown 𝐔̂ on its faces. The resulting expressions are
plugged into Eq. (22) and all the degrees of freedom inside the cells are
eliminated from the global problem, leading to
𝚗𝚎𝚕
∑

𝑒=1
𝐑̂𝑒(𝐔̂) = 𝟎, (24)

where 𝐑̂𝑒 is the nonlinear residual vector related to the unknowns 𝐔̂
associated with cell 𝛺𝑒. The global problem (24), whose structure is
detailed in Appendix C, is thus solved by means of a Newton–Raphson
linearisation.

4. Numerical convergence studies

In this section, the optimal convergence of the FCFV method is
examined for different compressible flows, namely inviscid and viscous
laminar flows. The accuracy of the method is evaluated using different
types of meshes, employing both triangular and quadrilateral elements,
with special attention to the robustness of the methodology to cell
distortion and stretching.

4.1. Inviscid Ringleb flow

The convergence properties of the FCFV method in the inviscid
limit are examined through the Ringleb flow problem [42,63]. This
2D example describes a smooth transonic flow, for which an analyt-
ical expression of the solution can be computed via the hodograph
method [64]. At a given point (𝑥, 𝑦), the solution is obtained as result
of the nonlinear implicit equation
(

𝑥 + 𝐽
2

)2
+ 𝑦2 = 1

4𝜌2𝑉 4
, (25)

here 𝑐 is the speed of sound, whereas density 𝜌, velocity magnitude
, pressure 𝑝 and 𝐽 are determined as

= 𝑐2∕(𝛾−1), 𝑉 =

√

2(1 − 𝑐2)
𝛾 − 1

,

𝑝 = 1 𝑐2𝛾∕(𝛾−1), 𝐽 = 1 + 1 + 1 − 1 log
( 1 + 𝑐 ) .

(26)
5

𝛾 𝑐 3𝑐3 5𝑐5 2 1 − 𝑐 s
inally, the velocity vectorfield is given by

=
{

−sgn (𝑦)𝑉 sin 𝜃
𝑉 cos 𝜃

}

, (27)

gn (⋅) being the sign operator and sin(2𝜃) = 2𝜌𝑉 2𝑦.
The computational domain is defined as 𝛺 = [0, 1]2 and far-field

oundary conditions are imposed on 𝜕𝛺. Fig. 1 displays two levels
f refinement of the domain using uniform meshes of triangular and
uadrilateral cells.

The corresponding approximation of the Mach number distribution
n these meshes is reported in Fig. 2.

The relative error of the numerical approximation, measured in
he 2(𝛺) norm as function of the characteristic mesh size ℎ, is ex-
mined for the four Riemann solvers discussed in Section 3.4. The
-convergence study is performed using the sets of meshes introduced
bove and the results are displayed in Fig. 3.

Optimal convergence of order 1 is obtained for the approximation
f the conservative variables regardless of the Riemann solver utilised,
howing the robustness of the FCFV approach in the inviscid case. The
ethod displays optimal convergence properties using both triangular

nd quadrilateral cells. Errors of the order of 10−3 are achieved, in-
ependently of the type of cells, by Roe, HLL and HLLEM Riemann
olvers in the approximation of density and energy. Concerning the
omentum, similar levels of accuracy are obtained using the three
iemann solvers on triangular meshes, whereas the errors are slightly
igher using quadrilateral cells. The Lax–Friedrichs (LF) numerical flux
isplays the worst performance among the analysed Riemann solvers,
howing errors almost half an order of magnitude and almost one
rder of magnitude higher using triangular and quadrilateral meshes,
espectively.

.2. Viscous laminar Couette flow

A Couette flow with source term [42,65] is defined in the domain
= [0, 1]2 to examine the convergence properties of the FCFV method

n the viscous laminar regime. The analytical expressions of velocity,
ressure and temperature, are

𝒗 =
{

𝑦 log(1 + 𝑦)
0

}

, 𝑝 = 1
𝛾𝑀2

∞

𝑇 = 1
(𝛾 − 1)𝑀2

∞

[

𝛼𝑐 + 𝑦(𝛽𝑐 − 𝛼𝑐 ) +
(𝛾 − 1)𝑀2

∞𝑃𝑟
2

𝑦(1 − 𝑦)

]

,
(28)

where 𝛼𝑐 = 0.8, 𝛽𝑐 = 0.85 and the free-stream Mach number is set to
𝑀∞ = 0.15. Assuming constant viscosity, the source term is determined
from the exact solution and is given by

𝑺 = − 1
𝑅𝑒

{0,
2 + 𝑦

(1 + 𝑦)2
, 0,

log2(1 + 𝑦) +
𝑦log(1 + 𝑦)

1 + 𝑦
+

𝑦(3 + 2𝑦)log(1 + 𝑦) − 2𝑦 − 1
(1 + 𝑦)2

}𝑇 .

(29)

inally, the boundary conditions are prescribed on 𝜕𝛺 employing the
xpression of the analytical solution.

The ℎ-convergence study is performed using the meshes of trian-
ular cells in Fig. 1. Fig. 4 reports the results using different Riemann
olvers and for Reynolds number 𝑅𝑒 = 1 and 𝑅𝑒 = 100.

The approximation of the conservative variables displays optimal
onvergence regardless of the Reynolds number and of the employed
iemann solver. The proposed method is thus able to provide optimal
ccuracy in the conservative quantities also in case viscous phenomena
re considered, with errors between 10−3 and 10−5. Regarding the
iscous stress tensor and the heat flux, optimal accuracy is achieved
sing HLLEM and Roe Riemann solvers independently of the Reynolds
umber, whereas the Lax–Friedrichs and HLL fluxes appear to be more
ensitive to increasing values of the Reynolds number.
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Fig. 1. Uniform (a–b) quadrilateral and (c–d) triangular meshes of 𝛺 = [0, 1]2.
Fig. 2. Ringleb flow - Mach number distribution using the (a–b) quadrilateral and (c–d) triangular meshes in Fig. 1 employing the HLL Riemann solver.
Fig. 3. Ringleb flow - ℎ-convergence of the error of (a) density, (b) momentum and (c) energy in the 2(𝛺) norm, using Lax–Friedrichs (LF), Roe, HLL and HLLEM Riemann
solvers on uniform meshes of triangles and quadrilaterals.
Finally, it is worth mentioning that the test case under analysis
features an incompressible flow (∇ ⋅ 𝒗 = 0, 𝑀∞ = 0.15). Despite
this additional difficulty, the FCFV method is capable of computing
an accurate approximation without the need of introducing specific
pressure corrections like the well-known SIMPLE algorithm [45]. Thus,
an important advantage of the proposed methodology is its robustness
in the incompressible limit as further detailed in Section 5.3.

4.3. Influence of cell distortion and stretching

In this section, the sensitivity of the FCFV method to cell distortion
and stretching is investigated. For the sake of brevity, this study focuses
on the viscous case in order to analyse the effect of mesh regularity on
both conservative and mixed variables. To this end, two sets of meshes
are generated for the domain 𝛺 = [0, 1]2 by modifying the regular ones
employed in the previous examples.

First, a set of highly distorted meshes is generated by introducing
a perturbation on the position of the interior nodes of the regular
meshes illustrated in Fig. 1. In particular, for a given node 𝑖, its
new position is defined as 𝒙𝑖 = 𝒙𝑖 + 𝒓𝑖, 𝒓𝑖 being an 𝚗𝚜𝚍-dimensional
vector whose components are randomly generated within the interval
6

[−𝓁min∕3,𝓁min∕3], where 𝓁min denotes the minimum edge length of the
regular mesh. The third and fifth levels of refinement of the meshes
featuring distorted quadrilateral and triangular cells are illustrated in
Fig. 5.

The previously introduced Couette flow example for Reynolds num-
ber 𝑅𝑒 = 100 is also employed for the current sensitivity study.
More precisely, Fig. 6 shows the approximation of the Mach number
distribution on the meshes of distorted cells in Fig. 5 employing the
HLLEM Riemann solver.

Second, a set of meshes with stretching near the bottom boundary is
produced. For its construction in 2D, the vertical coordinate of the first
mesh layer is fixed at the desired stretching factor 𝑠. Then, the vertical
coordinate of the subsequent layers is defined as

𝑦𝑘 = 𝑦𝑘−1 +
ℎ
𝑠
𝛽𝑘−1, for 𝑘 = 2,… , 𝑁𝑦 + 1 (30)

where ℎ is the maximum edge length of the corresponding regular
mesh, 𝑁𝑦 is the number of cells in the vertical direction and the growth
rate factor 𝛽 is computed by imposing that the vertical coordinate of the
last layer is one, that is, by finding the roots of
ℎ𝛽𝑁𝑦 − 𝛽 + 1 − ℎ = 0. (31)

𝑠 𝑠
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Fig. 4. Couette flow - ℎ-convergence of the error of (a) density, (b) momentum (c) energy, (d) viscous stress tensor and (e) heat flux in the 2(𝛺) norm, using Lax–Friedrichs
(LF), Roe, HLL and HLLEM Riemann solvers and Reynolds number 𝑅𝑒 = 1 and 𝑅𝑒 = 100.

Fig. 5. Distorted meshes of 𝛺 = [0, 1]2 featuring (a–b) quadrilateral and (c–d) triangular cells.

Fig. 6. Couette flow - Mach number distribution using the distorted (a–b) quadrilateral and (c–d) triangular meshes in Fig. 5 employing the HLLEM Riemann solver.
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Fig. 7. Second level of refinement of the stretched meshes of 𝛺 = [0, 1]2 for different values of the stretching factor 𝑠.
Fig. 8. Couette flow - ℎ-convergence of the error in the 2(𝛺) norm of density, momentum, energy, viscous stress tensor and heat flux in (a) distorted and (b) stretched meshes,
using the HLLEM Riemann solver and for Reynolds number 𝑅𝑒 = 100.
Fig. 7 reports the second level of refinement of a set of triangular
meshes for different levels of stretching 𝑠.

A quantitative evaluation of the influence of cell distortion and
stretching on the accuracy of the FCFV approximation is performed
via an ℎ-convergence study of the error, measured in the 2(𝛺) norm,
using the HLLEM Riemann solver. The results, reported in Figs. 8a
and 8b, respectively, show that optimal convergence of order 1 is
achieved for all the variables, independently of the distortion or of the
stretching factor of its cells. In addition, the precision of the numerical
approximation also results unaffected by the loss of orthogonality and
loss of isotropy of the mesh. Indeed, by comparing the results of Fig. 8
with the ones in Fig. 4, almost identical levels of accuracy are obtained
in the 2(𝛺) error of the approximate solutions using meshes with
uniform, distorted or stretched cells.

5. Numerical benchmarks

In this section, a set of numerical examples is presented to show
the capabilities of the proposed FCFV method to simulate inviscid and
viscous compressible flows at different regimes.

5.1. Inviscid transonic flow over a NACA 0012 profile

The first test case considers the inviscid transonic flow over a NACA
0012 aerofoil at free-stream Mach number 𝑀∞ = 0.8 and angle of
attack 𝛼 = 1.25◦. This classical benchmark for inviscid compressible
flows [66,67] is proposed to evaluate the ability of the FCFV solver
to capture flow solutions involving shock waves. More precisely, this
benchmark is used to demonstrate the importance of the choice of the
8

Riemann solver in the accuracy and stability of the FCFV approximate
solution.

Unstructured meshes of triangular cells with non-uniform refine-
ments on the surface of the aerofoil and at the leading and trailing
edges are used for the simulation. Fig. 9 reports the details of a
coarse and a fine mesh featuring 89,250 and 712,164 triangular cells,
respectively. The far-field boundary is located 15 chord units away
from the profile and the aerofoil surface is defined as an inviscid wall.

The Mach number and pressure distributions computed on the fine
mesh using the HLL Riemann solver are displayed in Fig. 10. Both the
strong shock wave on the upper surface and the weaker shock in the
lower part of the aerofoil are accurately represented.

It is worth noticing that the FCFV method provides non-oscillatory
solutions in the presence of abrupt variations, without the need of any
shock capturing or limiting mechanism. This property follows from
the result on the monotonicity of first-order schemes in Godunov’s
theorem [68]. Hence, the FCFV method with the HLL numerical flux
ensures the positivity property of the approximate solution. In addition,
the choice of the Riemann solver also controls the amount of numerical
diffusion introduced by the FCFV method, influencing the overall accu-
racy of the computed solution. A qualitative comparison of the different
Riemann solvers is performed in Fig. 11 by illustrating the pressure
distribution in the fine mesh at different sections along the vertical
body axis. The results display that the Lax–Friedrichs numerical flux
provides non-oscillatory solutions. Nonetheless, it introduces excessive
numerical dissipation leading to a smeared representation of the shock
wave. The Roe Riemann solver is equipped with a Harten–Hyman
entropy fix: without this correction, the method fails to converge
and nonphysical solutions with localised overshoots appear. On the
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Fig. 9. Mesh refinement for the inviscid transonic flow over a NACA 0012 profile.
Fig. 10. Inviscid transonic flow over a NACA 0012 profile - (a) Mach number and (b) pressure distributions around the aerofoil computed on the fine mesh using the HLL Riemann
solver.
one hand, using an entropy fix with threshold parameter 𝛿 = 0.1,
the Roe solver shows insufficient numerical dissipation producing an
approximation with oscillations in the vicinity of the shock wave. On
the other hand, a threshold value 𝛿 = 0.15 for the Roe solver leads
to a physically-admissible and accurate solution. It is worth noticing
that the parameter 𝛿, which is problem-dependent, needs to be appro-
priately tuned a priori by the user. Finally, HLL-type Riemann solvers
exhibit their ability to produce positivity-preserving and accurate so-
lutions in the presence of shocks without the need of any user-defined
parameter, thus remedying the aforementioned issue of the Roe solver.

To further analyse the accuracy of the Riemann solvers for the FCFV
method, the numerical computation of the pressure coefficient over the
aerofoil surface is compared with experimental data [69]. Fig. 12 con-
firms the overdissipative nature of the Lax–Friedrichs solution which
shows a smeared representation of the shock wave. The HLL, HLLEM
and the Roe solvers (the latter with an entropy fix parameter 𝛿 = 0.15)
produce nearly identical solutions with a sharp representation of the
shock wave showing excellent agreement with the experimental data.

Finally, a quantitative comparison is performed by computing the
lift and drag coefficients, reported in Table 1. According to experimen-
tal data [70], acceptable values lie within the range [0.342, 0.352] for
the lift and [0.0217, 0.0227] for the drag coefficient, accounting for a
tolerance of 5 lift and drag counts. The reported values for the drag
9

Table 1
Inviscid transonic flow over a NACA 0012 aerofoil - Lift, 𝐶𝑙 , and drag, 𝐶𝑑 , coefficients
computed on the fine mesh using different Riemann solvers.

Lax–Friedrichs Roe (𝛿 = 0.15) HLL HLLEM

𝐶𝑙 0.274 0.312 0.314 0.313
𝐶𝑑 0.0279 0.0222 0.0236 0.0223

coefficient employing the Roe and HLLEM Riemann solvers lie within
the specified reference intervals, whereas the value obtained with the
HLL solution is at 9 drag counts. Regarding the lift coefficient, the
obtained results show an underestimation of this quantity, regardless of
the employed Riemann solver. It is worth noticing that the proximity
of the far-field boundary has a strong influence on the precision of
the computed quantities, as reported in [71,72]. Indeed, the presented
results are in quantitative agreement with references employing a
similar domain, see e.g. [66] where the far-field boundary is located at
20 chord units from the aerofoil. In [66], the value of the lift coefficient
computed using a first-order stabilised finite element approximation is
0.308, differing between 4 and 6 lift counts from the FCFV solution
provided by Roe, HLL and HLLEM Riemann solvers.
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Fig. 12. Inviscid transonic flow over a NACA 0012 profile - Pressure coefficient around
he aerofoil surface computed on the fine mesh using Lax–Friedrichs (LF), Roe, HLL
nd HLLEM Riemann solvers.

.2. Viscous laminar transonic flow over a NACA 0012 aerofoil

The next example consists of the viscous laminar transonic flow
ver a NACA 0012 profile at free-stream Mach number 𝑀∞ = 0.8 and

angle of attack 𝛼 = 10◦. The Reynolds number, based on the chord
length of the aerofoil, is 𝑅𝑒 = 500. This benchmark is presented to
establish the capability of the FCFV method to concurrently capture
abrupt variations due to shock waves and viscous effects in boundary
layers [66,73,74].

As for the meshes utilised in the previous section, a non-uniform re-
finement is performed near the aerofoil surface. In addition, exploiting
the information on the angle of attack of the free-stream, a priori mesh
refinement is introduced in a region surrounding the aerofoil, tilted 10◦

from its mean chord line, in order to accurately capture the viscous
effects of the flow in the wake of the profile. An unstructured mesh of
1,005,199 triangular cells is displayed in Fig. 13a and a detail of its
refinement on the surface of the aerofoil is reported in Fig. 13b. The
far-field boundary is located at 15 chord units from the profile and the
aerofoil surface is considered adiabatic.

The flowfield computed with the HLLEM Riemann solver is depicted
in Fig. 14. The Mach number distribution illustrates the capacity of
10
Table 2
Viscous laminar transonic flow over a NACA 0012 profile - Lift, 𝐶𝑙 , and drag, 𝐶𝑑 ,
coefficients computed using different Riemann solvers.

Lax–Friedrichs Roe (𝛿 = 0.1) HLL HLLEM

𝐶𝑙 0.528 0.468 0.518 0.466
𝐶𝑑 0.3215 0.2845 0.3135 0.2832

the method to accurately describe the detached sonic region near the
leading edge as well as the appearance of a wake behind the profile.

The different Riemann solvers for the FCFV method are compared
for this viscous test case in Fig. 15. The results display the pressure and
the skin friction coefficients, computed on the aerofoil surface, as well
as the numerical results obtained by Kordulla in [73]. Similarly to the
results observed in the inviscid simulation, the Lax–Friedrichs Riemann
solver displays discrepancies with respect to the reference curves for
both the pressure and the skin friction coefficient. The Lax–Friedrichs
results are matched by the ones provided by the HLL Riemann solver
which shows an excessive numerical dissipation in the viscous bound-
ary layer. The overdiffusive nature of the HLL numerical flux, not
observed in the inviscid case, is attributed to its misrepresentation
of contact and shear waves [53,54]. Concerning Roe numerical flux,
this Riemann solver strongly depends upon the choice of the value of
the entropy fix also in the viscous case. Without entropy fix (𝛿 = 0),
umerical oscillations of the solution near the leading edge appear
nd larger values of the threshold parameter 𝛿 are required to remedy
his issue. For sufficiently large values of the entropy fix, the solution
omputed using the Roe Riemann solver is in good agreement with the
eference one. Such an accurate approximation is also achieved by the
CFV method using the HLLEM numerical flux, without the need of
uning any parameter.

Table 2 reports the values of the lift and drag coefficients, computed
sing different Riemann solvers. Reference data from several numerical
tudies based on various computational methods were collected in [73],
eporting values of the lift coefficient in the range [0.415, 0.483] and
f the drag coefficient in the interval [0.2430, 0.2868]. The excessive
umerical dissipation introduced by the Lax–Friedrichs and HLL numer-
cal fluxes leads to estimate of the lift and drag coefficients with errors
eyond the acceptable accuracy. On the contrary, the FCFV method
quipped with the HLLEM and the Roe (with appropriate entropy fix)
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Fig. 13. Mesh for the viscous laminar transonic flow over a NACA 0012 profile.
Fig. 14. Viscous laminar transonic flow over a NACA 0012 profile - (a) Mach number and (b) pressure distributions around the aerofoil computed using the HLLEM Riemann
solver.
Fig. 15. Viscous laminar transonic flow over a NACA 0012 profile - (a) Pressure and (b) skin friction coefficient on the aerofoil surface computed using Lax–Friedrichs (LF), Roe,
HLL and HLLEM Riemann solvers.
Riemann solvers provides lift and drag coefficients lying within the
ranges of published values for this benchmark, showing acceptable
levels of accuracy also for the simulation of viscous laminar flows.

5.3. Low Mach number flow over a cylinder

In this section, an incompressible flow over a 2D cylinder at angle
of attack 𝛼 = 0◦ is considered, both in the inviscid and viscous
laminar case. The objective is to show the robustness of the proposed
FCFV solver for compressible flows when low Mach number flows are
considered [66,75].
11
Unstructured meshes of triangular cells are considered for both the
inviscid and the viscous simulations. On the one hand, for the inviscid
case, the mesh is isotropically refined in the vicinity of the cylinder, for
a total of 359,242 cells, as displayed in Fig. 16a. The far-field boundary
is located at 50 chord units from the cylinder where inviscid wall
boundary conditions are imposed. On the other hand, the refinement
of the boundary layer and of the wake of the cylinder in the viscous
simulation leads to a mesh of 654,194 triangular cells, reported in
Fig. 16b. In this case, the far-field boundary is placed at 20 chord
lengths from the obstacle and the surface of the cylinder is considered
adiabatic.
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Fig. 16. Meshes for the low Mach number flows over a cylinder in the inviscid and viscous case.
Fig. 17. Inviscid subsonic flow over a cylinder - Mach number distribution computed using the HLLEM Riemann solver for different values of the far-field condition.
The isolines of the Mach number distribution computed with the
HLLEM Riemann solver for the inviscid flow are reported in Fig. 17
for different values of the far-field condition. The results display the
robustness of the FCFV solver for low Mach number simulations, high-
lighting the capability of the method to devise non-oscillatory solutions
even in the incompressible limit. More precisely, the computed solution
is not deteriorated by the decrease of the Mach number, even when it
approaches zero. Note that the loss of symmetry of the solution is due to
the geometric error introduced by the piecewise linear approximation
of the surface of the cylinder. This well-known problem, see [76],
is related to the production of nonphysical entropy by the low-order
discretisation of the curved boundary. It is worth recalling that the
objective of this test is to show the robustness of the proposed method
in the incompressible limit. In order to remedy the above mentioned
issue, several approaches proposed in the literature can be employed
within the FCFV paradigm. These include high-order approximation of
the geometry [76], appropriate modification of the wall boundary con-
dition [77] or exact treatment of the geometry via the NURBS-enhanced
finite element method [78].

The robustness of the FCFV solver in the incompressible limit of
the compressible Navier–Stokes equations is studied through a steady-
state flow at 𝑅𝑒 = 30. Fig. 18 displays the isolines of the Mach number
distribution for far-field conditions at 𝑀∞ = 0.1 and 𝑀∞ = 0.01. In this
case, the FCFV solver is able to precisely approximate the flow in the
wake of the cylinder, with no loss of accuracy when approaching the
incompressible limit. It is worth noticing that in both Figs. 17 and 18,
the variation of the far-field boundary condition only affects the scale
of the computed Mach number and not its distribution.
12
Finally, the values of the pressure and skin friction coefficients com-
puted using the HLLEM Riemann solver are compared with the results
reported in [66] of a stabilised finite element simulation performed
with polynomial approximation of degree 𝑘 = 3. Good agreement
is displayed in Fig. 19 for both the pressure and the skin friction
coefficients, confirming the capability the proposed methodology of
accurately simulating viscous laminar flows also in the incompressible
limit. In particular, it is worth noticing that the FCFV results computed
using the two values of the far-field condition are almost identical
and they are not affected by the value of the Mach number going to
zero. Hence, the FCFV method equipped with the HLLEM numerical
flux provides a robust solver for steady-state compressible flows able
to seamlessly handle both inviscid and viscous flows, at high and low
Mach numbers.

5.4. Inviscid transonic flow over an ONERA M6 wing

The last example involves the 3D simulation of a steady inviscid
transonic flow over an ONERA M6 wing at free-stream Mach number
𝑀∞ = 0.84 and angle of attack 𝛼 = 3.06◦. This benchmark constitutes
a classic CFD validation example for external flows due to its com-
plex flow physics and the availability of experimental results at high
Reynolds number [79].

A non-uniform mesh refinement is adopted in the vicinity of the
wing surface and towards the leading and trailing edges. Fig. 20
details two levels of refinement with meshes consisting of 236,682
and 5,061,252 tetrahedral cells, respectively. The far-field boundary
is located at approximately 12 chord lengths from the wing and the
aerofoil surface is defined as an inviscid wall.
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Fig. 18. Viscous laminar subsonic flow over a cylinder at 𝑅𝑒 = 30 - Mach number distribution computed using the HLLEM Riemann solver for different values of the far-field
condition.
Fig. 19. Viscous laminar subsonic flow over a cylinder at 𝑅𝑒 = 30 - (a) Pressure and (b) skin friction coefficient on the object surface computed using the HLLEM Riemann.
Fig. 20. Mesh refinement for the inviscid transonic flow over an ONERA M6 wing.
The FCFV simulation is performed using the HLL Riemann solver,
based on its capability of producing positivity-conserving solutions
and on its robustness in inviscid supersonic cases. The linear system
of equations arising from the FCFV discretisation is solved using a
GMRES solver with restarting parameter 10 and no preconditioner. A
detail of the flow computation obtained on the fine mesh is reported
in Fig. 21. The Mach number and pressure distributions clearly show
that the FCFV method is able to accurately capture the characteristic
lambda-shock arising in this test benchmark.

The performance of the FCFV method is evaluated by examining the
pressure coefficient, computed on the fine mesh, at different sections
along the wing span, see Fig. 22. The obtained results are compared
13
both to experimental data [79] and to computational simulations per-
formed using second-order CCFV and VCFV solvers on the same mesh.
More precisely, the commercial CFD software Ansys Fluent [3] is
employed as CCFV solver, whereas the VCFV results are obtained using
the CFD solver FLITE [7,8]. An upwind scheme is utilised for the
treatment of the numerical fluxes in Fluent, whereas a Roe Riemann
solver is selected for the FLITE simulation. The numerical results ob-
tained with the FCFV method show excellent agreement both with the
experimental data and with the remaining FV schemes. It is worth
noticing that both second-order FV schemes produce a small oscillation
in the representation of the shock-wave located at the upper mid-chord.
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Fig. 21. Inviscid transonic flow over an ONERA M6 wing - (a) Mach number and (b) pressure distributions on the wing surface computed on the fine mesh using the HLL Riemann
solver.
Fig. 22. Inviscid transonic flow over an ONERA M6 wing - Comparison of the pressure coefficient distribution at different sections along the wing span using different FV solvers.
On the contrary, the first-order FCFV method based on the positivity-
preserving HLL Riemann solver is capable of computing non-oscillatory
solutions, establishing a robust framework for the simulation of 3D
problems involving complex flow features.

6. Concluding remarks

The face-centred finite volume paradigm was proposed for the first
time for the approximation of nonlinear hyperbolic PDEs modelling
compressible flows. The method is based on a mixed formulation
and defines the unknowns, that is, the hybrid vector of conservative
variables, at the barycentre of the faces. The unknowns in each cell,
i.e. density, momentum, energy, deviatoric strain rate tensor and gra-
dient of temperature, are eliminated via a hybridisation procedure to
reduce the global number of degrees of freedom of the problem. In
addition, traditional Riemann solvers, i.e. Lax–Friedrichs, Roe, HLL
and HLLEM, are devised in the context of FCFV discretisations via
appropriate definitions of the numerical fluxes.

The presented methodology provides first-order accuracy of the
conservative quantities, as well as of the stress tensor and of the heat
flux. More precisely, the first-order convergence of the stress tensor and
14
the heat flux is achieved without the need to perform a reconstruction
of the gradients as required by traditional second-order CCFV and VCFV
strategies. The FCFV paradigm is thus robust on unstructured meshes
and retains optimal accuracy even with highly stretched or distorted
cells, avoiding well-known issues of traditional FV schemes.

In addition, the FCFV method is able to construct non-oscillatory
solutions of sharp fronts without the need of any shock capturing or
limiting technique. The accurate treatment of shocks, expansion fans
and shear waves is naturally handled by the Riemann solvers implicitly
embedded in the FCFV numerical fluxes.

Finally, the method is robust in the incompressible limit, allowing
to seamlessly simulate flows at low Mach number, without the need of
introducing specific pressure corrections like the well-known SIMPLE
algorithm.

A comprehensive set of two- and three-dimensional numerical ex-
amples is employed to demonstrate the optimal convergence properties
of the method and its capabilities to solve complex flow problems of
aerodynamic interest across various regimes, from inviscid to viscous
laminar flows, from transonic to subsonic incompressible flows. More-
over, a detailed comparison of the accuracy and robustness of different
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Riemann solvers is presented. The FCFV method equipped with HLL-
type Riemann solvers thus provides a solution strategy suitable for
all flow regimes, which outperforms the traditional Lax–Friedrichs
numerical flux in terms of accuracy and the Roe solver in terms of
robustness.

An extension of the proposed first-order FCFV approach to achieve
second-order accuracy in the primal variable will be investigated in
future works starting from the recent results obtained for the second-
order FCFV method in the context of second-order elliptic PDEs [21,
22]. This approach relies on two ingredients. On the one hand, a
piecewise linear approximation is employed for the solution in the
cells, while its gradient in the cell and the hybrid solution on the faces
are maintained piecewise constant. On the other hand, a projection
operator is introduced to propose a new definition of the numerical
fluxes. In this context, the number of globally-coupled degrees of
freedom of the second-order FCFV method is the same as the original
FCFV method. On the contrary, to achieve second-order convergence
of the primal variable, a standard HDG method [43,47,48] employs
polynomial functions of degree one for all the variables, including the
hybrid one, substantially increasing the number of unknowns and the
size of the resulting system of equations.
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ppendix A. Boundary conditions for the FCFV formulation

In this appendix, the definitions of the boundary conditions for com-
ressible flow problems are briefly recalled in the context of hybrid dis-
retisation methods [42,43,47,48,80]. Following the HDG framework,
he implementation of boundary conditions in the FCFV formulation of
ompressible flows rely on the exploitation of the hybrid vector 𝑼̂ .

Let the boundary 𝜕𝛺 be partitioned as 𝜕𝛺 = 𝛤∞∪𝛤out∪𝛤ad∪𝛤iso∪𝛤inv,
here the introduced portions are disjoint by pairs. From the modelling
iewpoint, 𝛤∞ refers to a far-field boundary, 𝛤out is a subsonic outlet
ith imposed pressure, 𝛤ad and 𝛤iso denote adiabatic and isothermal
alls, respectively, whereas 𝛤inv represents a symmetry boundary or
15

n inviscid wall with slip conditions. w
able A.3
efinition of the boundary conditions for compressible flows in FCFV discretisations.
𝛤∞ Far-field, subsonic inlet, supersonic inlet/outlet

𝑩̂ = 𝑨+
𝑛 (𝑼̂ )(𝑼 − 𝑼̂ ) +𝑨−

𝑛 (𝑼̂ )(𝑼∞ − 𝑼̂ )

𝛤out Subsonic outlet (pressure outlet)

𝑩̂ =
{

𝜌 − 𝜌,
[

𝜌𝒗 − 𝜌𝒗
] 𝑇 ,

𝑝out
𝛾 − 1

+
𝜌‖𝒗‖2

2
− 𝜌𝐸

}

𝑇

𝛤ad Adiabatic wall
𝑩̂ =

{

𝜌 − 𝜌, 𝜌𝒗𝑇 , 𝜇
𝑅𝑒𝑃 𝑟

𝝓𝒏 − 𝜏𝑑𝜌𝐸 (𝜌𝐸 − 𝜌𝐸)
}

𝑇

𝛤iso Isothermal wall

𝑩̂ =
{

𝜌 − 𝜌, 𝜌𝒗𝑇 ,
𝜌𝑇w
𝛾

− 𝜌𝐸
}

𝑇

𝛤inv Symmetry surface or inviscid wall
𝑩̂ = {𝜌 − 𝜌,

[

(𝐈𝚗𝚜𝚍 − 𝒏⊗ 𝒏)𝜌𝒗 − 𝜌𝒗
] 𝑇 , 𝜌𝐸 − 𝜌𝐸}𝑇

The expressions of the trace boundary operator 𝑩̂(𝑼 , 𝑼̂ , 𝜺𝑑 ,𝝓) cor-
esponding to the above mentioned cases are reported in Table A.3.
s classic in the context of compressible flows, inlet and outlet bound-
ries are identified through a 1D characteristics analysis in the direc-
ion of the outward normal to the boundary. More precisely, 𝑨±

𝑛 ∶=
𝑨𝑛 ± |𝑨𝑛|)∕2 denote the positive and negative parts of the matrix
𝑛(𝑼̂ ) and they are defined exploiting the spectral decomposition

ntroduced in Section 3.4. Moreover, in Table A.3, 𝑼∞ denotes the free-
tream values of the conservative variables at the far-field, whereas 𝑝out
nd 𝑇w are the prescribed values of the outlet pressure and the wall
emperature, respectively. Finally, the stabilisation coefficient 𝜏𝑑𝜌𝐸 =
∕
[

𝑅𝑒(𝛾 − 1)𝑀2
∞𝑃𝑟

]

is obtained extracting the component associated
ith the energy equation from the diffusive stabilisation tensor (15).

ppendix B. Enforcing the symmetry of the mixed variable

In Section 3.1, the deviatoric strain rate tensor 𝜺𝑑 was introduced
s mixed variable in the FCFV formulation. In this appendix, the
mplementation details to construct this symmetric mixed variable are
rovided.

First, it is worth recalling that the symmetric second-order tensor
𝑑 is commonly represented using a matrix of dimension 𝚗𝚜𝚍 × 𝚗𝚜𝚍.
onetheless, only 𝚖𝚜𝚍 = 𝚗𝚜𝚍(𝚗𝚜𝚍 + 1)∕2 components of this tensor are
on-redundant. In order to exploit such symmetry in the discretisation,
oigt notation [81] is employed. Its discrete counterpart 𝜺𝑑

𝚅
can thus

e expressed as an 𝚖𝚜𝚍-dimensional vector after a rearrangement of its
on-redundant components, namely

𝑑
𝚅
∶=

{

[

𝜀𝑑11, 𝜀
𝑑
22, 𝜀

𝑑
12
]𝑇 in 2D,

[

𝜀𝑑11, 𝜀
𝑑
22, 𝜀

𝑑
33, 𝜀

𝑑
12, 𝜀

𝑑
13, 𝜀

𝑑
23
]𝑇 in 3D.

(B.1)

Following Remark 3, the discrete strain rate tensor is defined as 𝜺𝑑
𝚅
=

𝚅𝛁𝚂𝒗. Here, the matrices 𝐃𝚅 and 𝛁𝚂 stand for the Voigt counterparts
f the operator  and of the symmetric part of the gradient 𝛁𝚂,
espectively, and are given by

𝚅 ∶=

[

2𝐈𝚗𝚜𝚍 −
2
3
𝐉𝚗𝚜𝚍 𝟎𝚗𝚜𝚍×𝚗𝚛𝚛

𝟎𝚗𝚛𝚛×𝚗𝚜𝚍 𝐈𝚗𝚛𝚛

]

(B.2a)

and

𝚂 ∶=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

[

𝜕∕𝜕𝑥1 0 𝜕∕𝜕𝑥2
0 𝜕∕𝜕𝑥2 𝜕∕𝜕𝑥1

]𝑇

in 2D,

⎡

⎢

⎢

⎢

⎣

𝜕∕𝜕𝑥1 0 0 𝜕∕𝜕𝑥2 𝜕∕𝜕𝑥3 0
0 𝜕∕𝜕𝑥2 0 𝜕∕𝜕𝑥1 0 𝜕∕𝜕𝑥3
0 0 𝜕∕𝜕𝑥3 0 𝜕∕𝜕𝑥1 𝜕∕𝜕𝑥2

⎤

⎥

⎥

⎥

⎦

𝑇

in 3D.

(B.2b)

here 𝐈𝑚 and 𝐉𝓁 denote the 𝑚×𝑚 identity matrix and the 𝓁 × 𝓁 matrix

ith all components equal to 1, respectively, and 𝚗𝚛𝚛 = 𝚗𝚜𝚍(𝚗𝚜𝚍 − 1)∕2
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stands for the number of rigid body rotations, that is, 𝚗𝚛𝚛 = 1 in 2D and
𝚗𝚛𝚛 = 3 in 3D.

By employing Voigt notation and exploiting the definitions in (B.1),
the second term of Eq. (20a) in the FCFV local problem is implemented
as
(

𝒗̂⊗ 𝒏
)

𝚅
= 𝐃𝚅𝐍𝚅𝒗̂, (B.3)

the matrix 𝐍𝚅, accounting for the normal to a surface, being defined as

𝐍𝚅 ∶=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

[

𝑛1 0 𝑛2
0 𝑛2 𝑛1

]𝑇

in 2D,

⎡

⎢

⎢

⎢

⎣

𝑛1 0 0 𝑛2 𝑛3 0
0 𝑛2 0 𝑛1 0 𝑛3
0 0 𝑛3 0 𝑛1 𝑛2

⎤

⎥

⎥

⎥

⎦

𝑇

in 3D,

(B.4)

where 𝑛𝑘 denotes the 𝑘th component of the unit normal vector 𝒏.

Appendix C. Hybridisation of the FCFV solver

This appendix describes the implementation details for the hybridi-
sation procedure and the final system obtained for the hybrid vector
𝐔̂.

It is worth recalling that the FCFV method features two stages, see
Section 3.3. First, the 𝚗𝚎𝚕 local problems (20) are devised, in order to
eliminate the unknowns (𝑼𝑒, 𝜺𝑑𝑒 ,𝝓𝑒) within each cell by expressing them
as functions of the hybrid vector 𝑼̂ . Stemming from Eq. (23), the FCFV
local problem for 𝛺𝑒, 𝑒 = 1,… , 𝚗𝚎𝚕 is given by

𝐀𝑒
𝑄𝑄𝐐𝑒 = 𝐀𝑒

𝑄𝑈
𝐔̂ + 𝐅𝑒

𝑄, (C.1a)

𝑒
𝑈𝑈𝐔𝑒 + 𝐀𝑒

𝑈𝑄𝐐𝑒 = 𝐀𝑒
𝑈𝑈

𝐔̂ + 𝐅𝑒
𝑈 , (C.1b)

here the matrices and vectors above arise from the Newton–Raphson
inearisation of nonlinear system of Eqs. (20).

Following from the constant degree of approximation utilised to
pproximate 𝐔𝑒 and 𝐐𝑒 at the centroid of each cell and 𝐔̂ at the
arycentre of each face and from the quadrature rule employing a
ingle integration point on cell and faces, the primal, 𝐔𝑒, and mixed,
𝑒, variables are expressed as functions of the hybrid unknown 𝑼̂ in a
ecoupled manner, namely

𝑒 =
[

𝐀𝑒
𝑄𝑄

]−1
𝐀𝑒
𝑄𝑈

𝐔̂ +
[

𝐀𝑒
𝑄𝑄

]−1
𝐅𝑒
𝑄, (C.2a)

𝐔𝑒 =
[

𝐀𝑒
𝑈𝑈

]−1
(

𝐀𝑒
𝑈𝑈

− 𝐀𝑒
𝑈𝑄

[

𝐀𝑒
𝑄𝑄

]−1
𝐀𝑒
𝑄𝑈

)

𝐔̂

+
[

𝐀𝑒
𝑈𝑈

]−1
(

𝐅𝑒
𝑈 − 𝐀𝑒

𝑈𝑄

[

𝐀𝑒
𝑄𝑄

]−1
𝐅𝑒
𝑄

)

. (C.2b)

t is worth noticing that the computations in Eq. (C.2) are independent
ell-by-cell and only involve the inverses of matrices 𝐀𝑒

𝑈𝑈 and 𝐀𝑒
𝑄𝑄.

he former is a matrix of dimension (𝚗𝚜𝚍 + 2) × (𝚗𝚜𝚍 + 2), that is, 4 × 4
n 2D and 5 × 5 in 3D. The latter is the identity matrix of dimension
𝚖𝚜𝚍 + 𝚗𝚜𝚍) × (𝚖𝚜𝚍 + 𝚗𝚜𝚍) (i.e., 5 × 5 in 2D and 9 × 9 in 3D) scaled
y the volume of the cell 𝛺𝑒. Hence, this step requires a reduced
omputational effort and can be easily performed in parallel.

Similarly, upon linearisation via the Newton–Raphson method, the
lobal problem (22) is expressed as
𝚗𝚎𝚕
∑

𝑒=1

{

𝐀𝑒
𝑈𝑈

𝐔̂ +
[

𝐀𝑒
𝑈𝑈

𝐀𝑒
𝑈𝑄

]

{

𝐔𝑒
𝐐𝑒

}

− 𝐅𝑒
𝑈

}

= 𝟎. (C.3)

By plugging the expressions obtained from Eq. (C.2) into Eq. (C.3), the
number of unknowns is reduced by eliminating the local unknowns
𝐔𝑒 and 𝐐𝑒 from the global problem. Hence, at each Newton–Raphson
iteration, the linear system

̂

16

𝐊𝛥𝐔 = 𝐅, (C.4)
is solved, where the matrix 𝐊 and the vector 𝐅 are obtained from the
assembly of the contributions from each cell, namely

𝐊𝑒 = 𝐀𝑒
𝑈𝑈

+
[

𝐀𝑒
𝑈𝑈

𝐀𝑒
𝑈𝑄

]

⎡

⎢

⎢

⎢

⎣

[

𝐀𝑒
𝑈𝑈

]−1
(

𝐀𝑒
𝑈𝑈

− 𝐀𝑒
𝑈𝑄

[

𝐀𝑒
𝑄𝑄

]−1
𝐀𝑒
𝑄𝑈

)

[

𝐀𝑒
𝑄𝑄

]−1
𝐀𝑒
𝑄𝑈

⎤

⎥

⎥

⎥

⎦

,

(C.5a)

𝐅𝑒 = 𝐅𝑒
𝑈
−
[

𝐀𝑒
𝑈𝑈

𝐀𝑒
𝑈𝑄

]

⎧

⎪

⎨

⎪

⎩

[

𝐀𝑒
𝑈𝑈

]−1
(

𝐅𝑒
𝑈 − 𝐀𝑒

𝑈𝑄

[

𝐀𝑒
𝑄𝑄

]−1
𝐅𝑒
𝑄

)

[

𝐀𝑒
𝑄𝑄

]−1
𝐅𝑒
𝑄

⎫

⎪

⎬

⎪

⎭

. (C.5b)
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