
Design and testing of a position adaptation

system for KUKA robots using photoelectric

sensors

A dissertation submitted to the University of Swansea, for the degree of

MSc by Research in Mechanical Engineering

by

Adam James Morgan

College of Engineering

Swansea University

Bay Campus

Swansea

SA1 8EN

2020

Copyright: The author Adam J. Morgan, 2021.

A.A.ZASHEVA
New Stamp

ii

ABSTRACT

This thesis presents the development and analysis of a position monitoring and

adaptation system to be used in conjunction with a KUKA KR16-2 articulated robot

using components readily available in most manufacturing settings. This system could

be beneficial in the manufacturing sector in areas such as polymer welding and spray

painting. In the former it could be used to maintain an effective distance between a

welding end effector laying molten plastic and the surface area of the parts being

welded, or in the case of the latter the system would be useful in painting objects of

unknown shape or objects with unknown variations in the surface level. In the case of

spray painting if you spray to close to an object you will get an inconsistent amount of

paint applied to an area. This system would maintain the programmed distance between

the robot system and target object. Typically, systems that achieve this level of control

rely on expensive sensors such as force torque sensors. This research proposes to take

the first step in trying to address the technical problems by introducing a novel way of

adapting to a target surface deformation using comparably low cost photoelectric

diffuse sensors.

The key outcomes of this thesis can be found in the form of a software package to

interface the photo-electric sensors to the KUKA robot system. This system is operated

by a custom-built algorithm which is capable of dynamically calculating robot

movements based off the sensor input. Additionally, an optimum system setup is

developed with different configurations of sensor mounting and speeds of robot

operation discussed and tested. The viability of the photo-electric diffuses sensors used

in this application is also considered with further works suggested. Finally, a secondary

application is developed for recording and analysing KUKA robot movements for use

in other research activities.

iii

ACKNOWLEDGMENTS

I cannot express enough thanks to my primary supervisor Dr Christian Griffiths for his

patience, commitment and support throughout writing this thesis. My completion of

this project could not have been accomplished without his support and encouragement.

I would also like to thank my secondary supervisor Dr Ashraf Fahmy for the inspiration

and support that inspired me to start this journey of enlightenment.

 I would like to express my sincere gratitude to Professor Johann Sienz and

ASTUTE2020 for providing me with this extraordinary opportunity to study and to

improve myself at Swansea University. I want to thank all the ASTUTE staff for their

support and encouragement along the way.

 Finally, I would like to thank my family and my partner Michelle Osborne in

particular, if it wasn’t for her I would not have started or finished this MSc. Her constant

encouragement and support have been a light through the darker and more difficult

times over the last two years and for that I will always be thankful.

iv

DECLARATION

This work has not previously been accepted in substance for any degree and is not

concurrently submitted in candidature for any degree

Signed… ndidate)

Date ……………………

Statement 1

This thesis is the result of my own investigation, exception where otherwise stated.

Other sources are acknowledged by footnotes giving explicit references. A

bibliography is appended.

Signed… Candidate)

Date ……………………

Statement 2

I hereby give consent for my thesis, if accepted, to be available for photocopying and

for inter-library loan, and for the title and summary to be made available to outside

organisatio

Signed… (Candidate)

Date ……………………..

02/03/2021

02/03/2021

02/03/2021

v

CONTENTS

ABSTRACT ... ii

ACKNOWLEDGMENTS ..iii

DECLARATION .. iv

CONTENTS ... v

LIST OF FIGURES ..viii

LIST OF TABLES ... x

LIST OF EQUATIONS .. xi

NOTATION ... xii

 INTRODUCTION ... 14

1.1 RESEARCH OBJECTIVES ... 16

1.2 THESIS ORGANISATION .. 17

 LITERATURE REVIEW .. 18

2.1 Introduction ... 18

2.2 History of robotics ... 18

2.3 Automation .. 21

2.4 Types of automation robots ... 22

2.4.1 Welding Robots ... 22

2.4.2 Painting Robots .. 25

2.4.3 Pick and Place Robots .. 26

2.4.4 Assembly Robots ... 27

2.5 Future trends in robots ... 28

2.5.1 Human Robot Interaction ... 28

2.5.2 Underwater robots .. 29

2.5.3 Multi-robot Coordination ... 29

2.5.4 Legged Mobility ... 29

2.6 Trends in Automation .. 30

2.6.1 Machine learning ... 30

2.6.2 Smart Factories .. 31

2.6.3 Virtual Reality .. 32

2.6.4 Flexible Manufacturing .. 32

2.7 Automation and Robot Sensors ... 33

2.7.1 Photo-electric Sensors .. 34

2.8 KUKA Robotics .. 35

2.8.1 Tool Centre Point ... 36

vi

2.8.2 Type of KUKA robot movement ... 37

2.8.3 KUKA Hardware Interfacing ... 39

2.8.4 Adaptive control ... 40

2.9 Robot Data Acquisition ... 41

2.10 Summary .. 41

 EXPERIMENTAL SETUP .. 43

3.1 Introduction ... 43

3.2 Workspace configuration .. 43

3.3 KUKA KR16-2 ... 44

3.3.1 The KR16 Controller and Smart Pad Teach pendant 46

3.3.2 KUKA Robot Language .. 48

3.4 Robot configuration ... 49

3.4.1 End effector .. 49

3.4.2 Sensor mounts .. 49

3.5 Ethernet Communication ... 51

3.5.1 Controller Configuration .. 51

3.5.2 Client Configuration .. 51

3.6 Robot Communication .. 53

3.6.1 Robot Sensor Interface ... 53

3.7 RSI Configuration ... 59

3.7.1 Network Configuration .. 59

3.7.2 Send & Receive values .. 60

3.7.3 RSI Signal Flow ... 62

3.8 Sensor Configuration ... 64

3.8.1 Photoelectric diffuse sensors .. 64

3.8.2 Data Acquisition Device .. 65

3.9 Investigatory Experiments ... 66

3.9.1 Experimental design ... 66

3.9.2 Results .. 68

3.10 Summary .. 68

 APPLICATION DEVELOPMENT ... 69

4.1 Introduction ... 69

4.2 Initial Concept ... 69

4.3 Main application structure ... 69

4.4 User Interface .. 71

4.5 Unexpected problems .. 73

vii

4.5.1 KUKA Documentation .. 73

4.5.2 Singularities ... 73

4.5.3 Network timeouts ... 73

4.5.4 Multiple program threads ... 74

4.5.5 Erratic movement ... 74

4.5.6 Velocity errors ... 75

4.6 Final System .. 75

4.7 Summary ... 76

 ROBOT DATA LOGGER ... 77

5.1 Introduction ... 77

5.2 Development ... 77

5.3 Standalone application .. 83

5.4 Summary ... 83

 OPTIMISATION EXPERIMENTS ... 84

6.1 Introduction ... 84

6.2 Experimental design .. 84

6.3 Results ... 88

6.4 Summary ... 102

 CONCLUSIONS .. 104

 BILBIOGRAPHY .. 107

 APPENDIX A – Results Tables ... 114

viii

LIST OF FIGURES

FIGURE 2-1 AN EXAMPLE OF A HOT GAS SPEED WELDING APPARATUS . 24

FIGURE 2-2 HOT GAS WELDING END EFFECTOR ... 25

FIGURE 2-3 CNC & WELDING END EFFECTOR DUAL CONFIGURATION [20]

 .. 25

FIGURE 2-4 TCP EXAMPLE ... 37

FIGURE 2-5 PTP MOVEMENT ... 38

FIGURE 2-6 LIN MOVEMENT ... 38

FIGURE 2-7 CIRC MOVEMENT .. 39

FIGURE 3-1 ROBOT CELL ... 43

FIGURE 3-2 A KUKA KR 16-2 ROBOT ... 44

FIGURE 3-3 KR16-2 WORK ENVELOPE VISUALISED [102, P. 4] 45

FIGURE 3-4 ZIMMER GRIPPER .. 46

FIGURE 3-5 KUKA C4 ROBOT CONTROLLER ... 47

FIGURE 3-6 KUKA TEACH PENDANT FRONT VIEW ... 47

FIGURE 3-7 EXAMPLE KRL PROGRAM ... 49

FIGURE 3-8 PROPOSED SENSOR CONFIGURATION 1 50

FIGURE 3-9 PROPOSED SENSOR CONFIGURATION 2 50

FIGURE 3-10 PROPOSED SENSOR CONFIGURATION 3 50

FIGURE 3-11 RSI NETWORK CONFIGURATION ... 51

FIGURE 3-12 KUKA C4 CABINET X66 PORT LOCATION 52

FIGURE 3-13 ROBOT SENSOR INTERFACE - SERVER APPLICATION 52

FIGURE 3-14 KUKA RSI VISUAL SOFTWARE PACKAGE 53

FIGURE 3-15 STRUCTURE OF RSI OBJECT ... 54

FIGURE 3-16 STRUCTURE OF AN RSI CONTEXT ... 55

FIGURE 3-17 RELATION BETWEEN KRL PROGRAM AND RSI CONTEXT. .. 55

FIGURE 3-18 DATA EXCHANGE VIA I/O SYSTEM. ... 56

FIGURE 3-19 EXAMPLE OF DATA EXCHANGE VIA ETHERNET 57

FIGURE 3-20 DATA FLOW OVER ETHERNET ... 57

FIGURE 3-21 SENSOR-GUIDED MOTION BASED ON RELATIVE VALUES ... 58

FIGURE 3-22 SENSOR-GUIDED MOTION BASED ON ABSOLUTE VALUES . 58

FIGURE 3-23 WORKVISUAL DEVELOPMENT ENVIRONMENT

PROGRAMMING AND DIAGNOSIS PANEL ... 59

FIGURE 3-24 RSI NETWORK CONFIGURATION EXAMPLE 60

FIGURE 3-25 RSI SEND XML EXAMPLE .. 61

FIGURE 3-26 EXAMPLE OF RSI XML SEND MESSAGE..................................... 61

FIGURE 3-27 EXAMPLE RECEIVE XML SETTINGS ... 62

FIGURE 3-28 EXAMPLE XML SEND BY KUKA RSI SOFTWARE 62

FIGURE 3-29 RSI SIGNAL FLOW EXAMPLE .. 63

FIGURE 3-30 RSI MONITOR EXAMPLE .. 64

FIGURE 3-31 SENSOR TRIGGER DISTANCE CONFIGURATION 65

FIGURE 3-32 EXAMPLE SENSOR MOUNTS ... 65

FIGURE 3-33 USB-1608G DAQ .. 66

FIGURE 4-1 PYTHON APPLICATION COMMUNICATION PROCESS 70

FIGURE 4-2 INITIAL UI CONCEPT ... 71

FIGURE 4-3 UPDATED UI DESIGN .. 72

FIGURE 4-4 FINAL UI DESIGN ... 72

FIGURE 4-5 OVERVIEW OF CONTROL SYSTEM .. 75

FIGURE 4-6 SENSOR SYSTEM LOGIC FLOW .. 76

ix

FIGURE 5-1 EXAMPLE RSI DATA .. 79

FIGURE 5-2 RSI DATALOGGER POINT DATA .. 80

FIGURE 5-3 RSI LOGGER ACTUAL MOVEMENTS ... 81

FIGURE 5-4 RSI LOGGER AXIS POSITION COMPARISON 82

FIGURE 5-5 KUKA LOGGER UI .. 83

FIGURE 6-1 EXAMPLE OBSTACLE OBJECTS; (A) OBJECT 1 (B) OBJECT 2 (C)

OBJECT 3 .. 85

FIGURE 6-2 SENSOR MOUNT DESIGNS (A) ADJACENT SENSORS (B)

PARALLEL SENSOR MOUNT (C) PARALLEL OFFSET SENSOR MOUNT

 .. 87

FIGURE 6-3 LINEAR EXPERIMENT ... 87

FIGURE 6-4 BASELINE LIN RESULTS .. 88

FIGURE 6-5 EXAMPLE TRAJECTORY COMPARISON 89

FIGURE 6-6 INVALID DATA EXAMPLE ... 90

FIGURE 6-7 EXAMPLE RESULTS OF ALL OBJECTS USING 0.01MM

CORRECTIONS .. 92

FIGURE 6-8 EXAMPLE OF OBJECT 1 AND 2 - 0.1 CORRECTIONS 93

FIGURE 6-9 MOUNT 1 - OBJECT 2 SPEED COMPARISONS 95

FIGURE 6-10 MOUNT 1, 2 AND 3 COMPARED .. 96

FIGURE 6-11 SMART ALGORITHM RESULTS COMPARED 98

FIGURE 6-12 FURTHER SMART DELAY EXPERIMENT RESULTS USING

MOUNT 3 [CYCLES] ... 98

FIGURE 6-13 DELAY VALUES COMPARED .. 100

FIGURE 6-14 INCREMENT VALUES COMPARED .. 101

FIGURE 6-15 TRAJECTORY GAP ... 103

x

LIST OF TABLES

TABLE 3-1 KUKA KR16-2 MAIN SPECIFICATION .. 45

TABLE 3-2 WORK ENVELOPE FIGURES .. 45

TABLE 3-3 KUKA SMARTPAD DESCRIPTIONS [87] .. 47

TABLE 3-4 INITIAL EXPERIMENT PLAN ... 67

TABLE 5-1 RSI DATALOGGER COLUMN HEADINGS 77

TABLE 6-1 MOUNT COMPARISON RESULTS ... 97

TABLE 6-2 INCREMENT VALUES RESULTS ... 99

TABLE 10-1 OPTIMISATION EXPERIMENT PLAN ... 114

TABLE 10-2 SMART ALGORITHM RESULTS .. 115

TABLE 10-3 FURTHER SMART DELAY EXPERIMENT RESULTS USING

MOUNT 3 .. 116

TABLE 10-4 SIMPLE ALGORITHM RESULTS .. 116

xi

LIST OF EQUATIONS

EQUATION 1 OBJECT 1 EQUATION .. 85

EQUATION 2 OBJECT 2 EQUATION .. 86

EQUATION 3 OBJECT 3 EQUATION .. 86

EQUATION 4 ACCURACY SCORE EQUATION ... 89

xii

NOTATION

TCP Tool Centre Point

RSI Robot Sensor Interface

UDP User Datagram Protocol

RUR Rossum’s Universal Robots

ASEA Allmänna Svenska Elektriska Aktiebolaget

ABB ASEA Brown Boveri

TIG Tungsten Inert Gas

MIG Metal Inert Gas

UAV Unmanned Aerial Vehicle

APC Amazon Picking Challenge

Cobots Collaborative Robots

HRI Human Robot Interface

AUV Autonomous Underwater Vehicle

SPURV Self-propelled Underwater Research Vehicle

IoT Internet of Things

AGV Automatic Guided Vehicle

VR Virtual Reality

AR Augmented Reality

FMS Flexible Manufacturing Systems

RGB Red, Green, Blue

RGB-D Red, Green, Blue, Depth

PC Personal Computer

PTP Point to Point movement

LIN Linear movement

CIRC Circular movement

SPTP Spline PTP Movement

SLIN Spline LIN Movement

SCIRC Spline CIRC Movement

PROFIBUS Process Field Bus

BMBF German Department of Education and Research

ZVEI German Central Association for the Electrical Industry

PROFIBUS DP PROFIBUS Decentralised Periphery

xiii

KRL KUKA Robot Language

XML Extensible Mark-up Language

MRAC Model Reference Adaptive Control

PID Proportional Integral Derivative

PLC Programmable Logic Controller

I/O Input/output

IP Internet Protocol

USB Universal Serial Bus

UI User Interface

DAQ Data Acquisition Device

CSV Comma-Separated Values

IPOC Movement Timestamp

RIst Setpoint position of robot TCP

RSol Actual position of robot TCP

AIPos Setpoint position of robot axis

ASPos Actual position of robot axis

PCB Printed Circuit Board

 14

 INTRODUCTION

This thesis is a culmination of study and development towards the goal of creating a

robot end effector position varying system that is capable of maintaining a specified

distance between the robot tool centre point (TCP) and a target work surface. The

system needs to be able to adapt to an unknown geometry or surface that has

inconsistent surface levels. This project was inspired by research on a plastic welding

system capable of adapting to deformations of target polymers in a live environment

using a force torque sensor. This thesis takes the step of generalising such a system so

it may be applied to various other manufacturing processes such as spray painting.

With the ever-increasing applications of robot systems in manufacturing,

businesses deploying such systems are always looking to increase their return on

investment. With this in mind, one of the first objective for this research was to develop

an application that could be easily introduced into manufacturing environments

utilising existing technology. Using a KUKA KR16-2 a six-axis articulated robot as an

example system, a return on investment could be achieved by utilising Python

programming to develop an application that would interface two photoelectric diffuse

sensors and the robot’s KUKA C4 controller via a computer utilising the KUKA Robot

Sensor Interface (RSI) software. To test the viability of this system, a series of

experiments were conducted using a KUKA KR16-2 robot paired with a KUKA C4

controller.

First, a study of existing methods of interfacing with a KUKA robot was

undertaken to establish what software is available on the market or through existing

research. Additional focus was spent investigating existing polymer welding methods,

and current applications in robotics. Finally, a study in to the manual methods of

polymer welding was undertaken to establish an understanding of the required robotic

control needed for an automated application. Initially an interface was designed to allow

communications between a PC and the KUKA C4 using the KUKA Robot Sensor

Interface. A User Datagram Protocol (UDP) point-to-point network was utilised with

Python programming to build the underlying communication method. Once satisfactory

communication was achieved, a study and trial on how to control the KUKA KR16-2

robots’ motion entirely from the PC rather than the KUKA pendant device was

conducted. Different combinations of RSI configuration were tested to suit the

requirements of the project and to establish better understanding of the software’s

 15

capabilities. Through this testing an additional benefit of this research was achieved

where a method of recording data from a KUKA robot was created for robots utilising

the RSI package. Information such as Cartesian coordinates, angle position, torque and

voltage values are recorded from the robot while a KUKA program is in motion,

allowing for analysis and testing of robot programs/motions. Details of this research are

also contained in this thesis.

When the movements of the robot were satisfactorily established, an

understanding of how to perform concurrent communication and calculations

simultaneously was needed to allow parallel communication with the robot and

calculation or robot movements based off user input. This resulted in using parallel

processing functions to create processes that were assigned to separate computing

threads to avoid conflict and to allow this functionality to run without conflict.

Additionally, an understanding of how to connect and control sensory devices via a PC

is required. Research into software and hardware requirements was completed with an

overview of different types of sensors applicable to this research. Finally, all these steps

were then tied together in the final application presented in this thesis and the testing

surrounding its suitability is presented.

 16

 RESEARCH OBJECTIVES

The aim of this research is to develop a way for an industrial robot to adapt to

deformations in a surface material to maintain a specific distance between a robot end

effector and said surface using photoelectric diffuse sensors. Analysis of robot

movements using calculated geometry as obstacles to influence robot movement is

conducted. The effectiveness of the motion control in the desired task is measured by

extracting data from the robot and comparing the position to predicted movements. To

assist analysing experimental data, a system needs to be investigated to record the robot

operations and to be able to visual this data in a useful manner.

To summarise, the objects of this research are:

• Develop a communication interface with a KUKA KR16 robot.

• Develop a robot and sensor interface for positional accuracy.

• Develop a system to adapt to sensory input.

• Design and implement a novel system to extract robot data for post experiment

analysis.

• Create a process for analysis of the data extracted.

 17

 THESIS ORGANISATION

This thesis is structured in a rather linear fashion where the reader is guided through the

process of designing an application for robot position adaptation from its inception to a

working prototype. The first chapter lays out the objectives of the thesis (detailed in the

previous section). Chapter 2 is an overview of all the literature reviewed before

undertaking this project. This involves applications in industry where the position

adaptation system could potentially be beneficial such as plastic welding and painting.

This chapter 3 contains a detailed examination of the KUKA KR16 industrial robot and

associated user interfaces. The focus being on the equipment and configuration of the

work area of the robot and the software configurations for interfacing with the robot

controller. Next, a review of the sensors being utilised in the project along with the

equipment needed to operate them is presented, finalising in a set of investigatory

experiments used to confirm a sufficient understanding of the robot and systems has

been established. Chapter 4 presents the development of the application with a focus on

the program development. Chapter 5 introduces the KUKA logging software developed

to aid with robot analysis during this project. In chapter 6 a series of experiments is

conducted and where the program developed is optimised further. Finally, in chapter 7

a review the project as a whole is completed where the merits are discussed as well as

its drawbacks and future prospects of the proposed automation system.

 18

 LITERATURE REVIEW

 Introduction

This chapter sets out the groundwork required for this project. The intention is to lay

out for the reader a comprehensive history of robotics to build a better understanding

of where robotics came from and where it is going. The following sections will take the

reader from the earliest origins of the word robot up until modern day manufacturing

examples, addressing all the major steps along the way. This literature review then

becomes more focussed and address relevant literature in areas such as robotic welding

which links directly to this project and highlights some key knowledge gaps that present

an opportunity for producing some novel research.

 History of robotics

Human obsession with robotics can be traced back to the eighteenth century. One of the

earliest inventions that had fascinated Europeans was the Canard Digérateur or by its

more common name the digestion duck [1], later known as the Vaucanson’s duck, a

mechanical device that had the appearance of being able to eat and digest corn and grain

and to later excrete the processed food that operated on a clockwork system of gears

and pipes that could mimic the movement of a duck. While it was later found to not

actually process the food but rather excrete stored waste, it was described by Vaucanson

as a machine or automaton. It was not a very complex device but this was one of many

important first steps by man towards todays robotics and led to Vaucanson becoming

an Associated Mechanician in the Paris Academy of Sciences. [2, p. 601]. Vaucanson

moved into investigating the mechanisation of silk weaving after the success of his

automated duck. Work he completed in this field was later built upon by Joseph Marie

Jacquard which led to one of the first examples of a programmable robot that came in

1804 in the form of the Jacquard loom [3, p. 30]. A machine that could be instructed

which patterns were to be woven by using a chain of holed punch cards. The Jacquard

loom is an interesting invention because not only was it a hallmark of early robotics by

being able to perform a physical task and be programmable [4, p. 1] but it also provided

one of the very first examples of a programmed computer system or computer assisted

robotics.

Whilst these were early interpretations of robots, the term robot did not actually

appear until 1920. From a Czech science fiction play write known as Karel Čapek in

 19

his play Rossumovi Univerzální Roboti or by its English subtitle “Rossum’s Universal

Robots” (RUR), the term robot was coined by his brother Josef, in the Czech language

means serf labour but colloquially meant hard work or drudgery, an appropriate term

considering how robots would be used in times to come. In the play RUR the robots

were artificial people or androids who later rebelled against the human race. This play

later turned out to be well before its time, where androids is now the official

terminology used for describing human looking robots, at the time this was seen as pure

fiction.

One of the most impactful science fiction authors to influence the field of robotics

is Isaac Asimov. Asimov was born in the early 1920’s in Russia and later emigrated to

America at a young age. He became a professor of biochemistry at the University of

Boston whilst becoming an accomplished author. Asimov’s contribution to robotics

largely came from his literary work, he is attributed to coining the term “robotics” in

his short story called “Liar!” in 1941. Through the multitudes of books and short stories

authored by Asimov, the field of robotics was expanded greatly as he offered through

literary means a view point of the ethics and social issues that would arise through the

developments of robot systems. Asimov is probably most famous for creating the three

laws or robotics. In his short story “Runaround” written in 1942 the 3 laws were created;

1. A robot may not injure a human being or, through inaction, allow a human being

to come to harm.

2. A robot must obey the orders given it by human beings except where such orders

would conflict with the First Law.

3. A robot must protect its own existence as long as such protection does not

conflict with the First or Second Laws.

These were seen as an important step for man as it would protect us from any harm by

way of the robot. Even though these laws are still not needed today due to the level of

independence robots have, they remain an important reminder or the caution that is

needed as robots develop. These laws would later be adapted to include a fourth law.

Although taking multiple revisions, the final version was adapted in Asimov’s

“Foundation and Earth”. Considered the zeroth law it precedes all other laws and states;

 20

0. A robot may not injure humanity, or, by inaction, allow humanity to come to

harm.

These laws were widely popularised through the motion picture adaptation of

Asimov’s’ story “I Robot” and would go on to influence the field for years to come.

Asimov was a widely regarded as a visionary in the field. His work has led on to

influence later science fiction. One such influence came where he coined the term

positronic brains, this would become a famous example where the character Data, a

cybertronic android created in Star Trek: The Next Generation, a show that would go

on to inspire many thousands of children to work in the sciences. Asimov’s work has

arguably shaped perceptions of what robots are for generations of people.

Whilst Vaucanson, Jacquard, Čhapek and Asimov had important impacts in

shaping the perceptions of robotics, the first patent filed to be considered a robot by

modern standards would be for a mechanical arm with a gripper that was attached to a

track. Created by George C. Devol, the patent was issues in 1961 [5]. This device’s

motions were controlled by patterns encoded on a magnetic drum and represented the

first real robot that could be used for multiple tasks by way of different programmed

sequences. Devol went and founded Unimation with Joseph Engelberger in 1956, this

was the first company to offer robot systems as their product. Their first industrial robot

was installed in 1961 at a General Motors factory in America. In 1968 Unimation Inc

licensed the first robot to Kawasaki Heavy Industries which in turn produced the first

Japanese industrial robot. Despite Japan already having a long running fascination with

robots, all previous incarnations took the form of automata, similar to the Vaucanson’s

duck [6]. Devol and Engelberger’s vision was to have millions of robots working in

industrial settings. By looking at modern manufacturing you can clearly say that this

vision has been realised, and today robots are used for such tasks as welding, painting,

loading and unloading, electronic assembly [4, p. 2]. Unimation went through many

changes in following years mainly by being bought out by multiple companies as they

expanded. The technology and people from this company went on to be extremely

influential in the field of robotics.

In 1969 Victor Scheinman at Stanford University invented the Stanford arm. This

would be a defining point for robotics as it was the first all-electric 6 degree of freedom

articulated robot arm that was controlled entirely by computer control [7]. Whilst not

 21

truly anthropomorphic - as it contained five revolute joints and one prismatic, this arm

is what popularised arm-type robots by proving its mobility and flexibility made it

superior to other types of robot. This design was later sold to Unimation where it was

further developed and deployed into manufacturing settings. At about the same time, in

1975 a Swiss company named Allmänna Svenska Elektriska Aktiebolaget (ASEA)

developed the ASEA IRB, another fully electrically driven robot. It was a first in

robotics because it had a microprocessor-controller built in that relied on Intel’s first

chipset. In 1988 ASEA went on to merge with another Swiss company, Brown, Boveri

& Cie to form the ABB Group (ASEA Brown Boveri). ABB went on to establish

themselves as a key player in the robotics arena and has been a Fortune 500 company

for 24 years. In 1973 KUKA, another company involved in industrial automation

unveiled the FAMULUS industrial robot [8]. A 6-axis revolute robot arm that would

go on to revolutionise the automotive industry and to be the first example of one of the

most popular robot types for years to come.

 Automation

Robots from the 60s onwards have continued to play a major part in shaping

manufacturing and pushing what is possible in terms of automation. Automation being

the technology which takes a process or procedure and creates a method of reproducing

a task with minimal human intervention. The international Society of Automation

defines automation as "the creation and application of technology to monitor and

control the production and delivery of products and services” [9]. There are many areas

where automation can be useful such as banking, laboratories, space, medical and at

home which mean a vast array of technologies converge under this one topic. In

manufacturing terms, the main purpose of automation is to increase productivity. With

the start of the industrial revolution many jobs were replaced or assisted by new tools

designed with the sole task of replacing a repetitive task. Jacques de Vaucanson’s

automated loom was a prime example of this. In modern times robotics and automation

almost, fit hand in hand, particularly when it comes to industrial automation. Industry

4.0, representing the fourth industrial revolution has spurred a number of innovations

since its conception. The Robotic Industries Association expects most advances in

automation to be related to connectivity and communication, software architectures and

security as increased internet connectivity permeates manufacturing [10]. The

 22

International Federation of Robotics released a press release in 2020 discussing the

explosion of robotics in industry, expecting two million new robots to enter the

manufacturing arena between 2020-2022, the advances in Industry 4.0 mean robots are

getting smarter and more connected [11]. With the increase of connectivity, the use of

sensors is greatly increasing. By reducing computation time of the robot by linking it

to more powerful systems, more advances sensors can be used in conjunction with the

robot. Finally, versatility is a huge challenge for the industry, current limitations from

a cost standpoint come with paying for an expensive robot that is suited to a singular

task. Through the use of multi end-effector setups and creative programming, robots

are being adapted to fit into different manufacturing scenarios.

Within industrial automation lays three distinct fields of automation, fixed,

programmable and flexible. Fixed automation, also known as hard automation is when

a production line is fixed in the sense that the automation is completed by machines

that use cams, gears and hard-wired machinery that cannot be easily changed from

making one product to another. They tend to have high initial investment costs and

high production volume. Programmable automation operates in the sense of being able

to manufacture multiple batches of different products but only manufacturing one type

at a time. This can range from a dozen to several thousand products. At the end of the

production run the equipment is reprogrammed for a new product. This means the

production run is followed by a period of non-productive time, followed by a new batch.

This sort of automation comes with a generally lower production rate when compared

to fixed automation. Finally, flexible automation comes as an extension of

programmable automation, however with flexible automation the factory setup is

limited to a smaller set of products so the change over time is smaller than

programmable due to the defined nature of each product [12], [13].

 Types of automation robots

2.4.1 Welding Robots

Robot welding has become almost ubiquitous in manufacturing. Offering greater

precision than human counterparts, having superior repeatability enabling increased

production throughput as well as being unable to tire, robot welding was partly

responsible for the increased uptake in automation during the 1980s. Some of the most

common types of welding consist of Arc, Resistance, Spot, TIG, MIG, Laser and

 23

Plasma welding [14]. Whilst welding is a long-established manufacturing method of

assembly, the development of robot welding has been focused mainly on optimisation

of the existing process. An example of this optimisation is by pushing an automated

welding system more into the category of autonomous welding. Where most welding

systems are created through a teach and playback method, where an operator runs

through a weld manually whilst recording all the steps so the robot can re-play the

process, it would be a more efficient system if the robot was able to detect the seam that

needed welding and to weld it automatically without any human intervention. An

example of modern development in this field, Yuan Li et all presented a defect detection

system for weld beads [15] where they designed a new sensor capable of detecting

defects that is attached to the robot. By increasing the robot’s capability to see they

have taken it another step towards being truly autonomous. Another example of

increasing the vision of a welding robot can be seen in work by Kitti

Suwanratchatamanee et al [16], tactile sensors were developed to give robots the ability

to visualise 3D objects, specifically in the case of welding, giving the robot the ability

to detect the edges of objects requiring welding. Utilising these new types of sensors

and combining with Artificial Intelligence, Yunhe Feng discussed a method of

processing multiple optical sensors using various neural networks [17].

In the following sub-section, hot gas welding is discussed specifically. As this

topic is a relatively new application of robot automation it means there is a lack of

existing literature so what is available should be noted.

2.4.1.1 Hot Gas Welding

Hot gas welding is a manual plastic welding process that is being used in current

manufacturing processes in the manufacturing of industrial sized plastic piping.

Developed in the mid-20th century, the process involves using a hot-gas torch to direct

high temperature welding gas (usually air) towards a plastic weld rod that is inserted

between another thermoplastic object and the target surface. Heating the materials to a

temperature until they reach their softening temperature. The pressure of the weld rod

creates a bonding effect between the two materials [18].

There are two types of hot-gas welding, both hand welding and speed welding

are common in the industry. Whereas hand welding is a technique where the weld rod

is applied directly to the weld joint and the pressure that is applied is controlled by hand.

 24

Speed welding on the other hand has a nozzle specific design that combines the hot gas

torch and welding rod apparatus together into a single unit. The benefits to this design

are it allows the user a more controlled application of pressure. An example of this tool

is shown in Figure 2-1. There are different designs of welder which include different

shape weld rods, these come as round or triangular. Whereas hand welding is better

suited to constrained areas or designs which contain complex geometry due to the

design of the weld gun, speed welding is the opposite, it is better suited for simple joint

design due to orientating the welder of that size. There are four parameters that are

important to consider when hot gas welding, gas temperature and flow rate, pressure,

travel speed and orientation of the tool.

Literature appears to be sparse on the subject of robotic hot gas welding

however a few interesting points of note have been found. Valk Welding, a company

based out of the Netherlands has developed their own hot gas welding end effector for

the purpose of welding plastic tanks shown in Figure 2-2 [19]. Similarly, Eugen

Riexinger GmbH & Co. KG have demonstrated a dual end effector setup utilising

KUKA robots where the milling process and welding process are combined (Figure 2-

3) using tools switching stations.

Figure 2-1 An example of a hot gas speed welding apparatus

 25

Figure 2-2 Hot gas welding end effector

Figure 2-3 CNC & Welding end effector dual configuration [20]

2.4.2 Painting Robots

Industrial painting robots largely came to existence due to the automotive industry.

Originally being very large an expensive, recent developments in low cost robotics has

resulted in rather unique applications being developed that are not constrained the

manufacturing domain as it largely was during the 80s and 90s. Painting applicators

have now moved away from being a role suited best by articulated robot arms and

become more available for other systems such as UAVs [21]. Within manufacturing

robotic painting has its advantages due to increased quality and efficiency of the sprayer

as well as a wider range of operation all whilst removing a human operator from

working with hazardous chemicals. Despite being used within industry for many years

 26

there is still the challenges to overcome when painting very large objects. Meng Z et all

proposes a positioning system to overcome working with extremely large surfaces

where a robot is incapable of maintaining position and location within the ship painting

industry [22] while Chen et all discuss the problems of compensating for distortions

when working with large scale structures [23]. Another area of research is on how to

achieve different types of paint effects. The paper presented by Helou et al discusses

using deep learning to generate appropriate spray commands to create textured painted

surfaces [24]. Within manufacturing, development has mainly focused around

optimisation, From et al who discusses optimal paint gun orientations to maintain

constant velocities during the paint process [25] and Yu proposes an algorithm to

efficiently control the overlaps on a painting task [26].

2.4.3 Pick and Place Robots

Pick and place robots are a staple of the manufacturing sector. They utilise a variety of

grippers to pick and place material. Some examples are bag grippers used to work with

soft materials such as sand, soils and absorbent materials, magnetic grippers used to

work with heavier steel products, suction grippers which utilise vacuums and cups

typically used to manipulate hard and flat products such as boxes and claw grippers

which use two of more fingers to grasp objects and move them, typically used for

moving boxes and packing materials. Whilst these grippers are usually used with

articulated robots, the use of delta robots is also prolific within the industry because of

their ability to pick, place and sort at extremely high speeds. These are particularly

useful for small objects such as medication and food. Companies such as Ocado have

pushed the usage of pick and place robots and have expanded their usage into the

grocery sector [27]. Advances in pick and place robots in recent years has come from

reduced motor size while maintaining or increasing payload capacity, as well as

improvements in motion control software and hardware. An example of improved

hardware can be seen where Ngadimin et al proposes a new design of pick and place

robot to overcome issues rating to the size of components on surface mounted

technology [28] and Zhang et al proposes a design of high speed sorting using vision

systems [29]. Whereas He at al discusses optimisation of existing pick and place by

optimising picking points by adjusting robot joint rotations and conveyor speed [30].

The company Amazon has been particularly keen in the pick and place sector. For

 27

several years they run the Amazon Picking Challenge (APC) to promote development

in the field and to obviously benefit their business. In 2017, what seems to have been

the final year of the competition, an Australian team led by Peter Corke a renowned

robotics expert, won the challenge by creating the Cartman robot, a Cartesian based

robot that outperformed several other types of robot [31]. Despite the competition

ending, work created through the project has gone on to influence further development.

Zeng et al [32, p.] competed in APC in 2016, whilst they placed third and fourth in the

competition, they developed a framework to estimate 6D poses which has gone on to

be referenced by over 50 other papers. On top of this they have provided a high-quality

dataset of images and scenes for future development.

2.4.4 Assembly Robots

Assembly robots are a staple type of robot in manufacturing. These robots position, fit,

mates and assembles components or parts and are one of the most repetitive reducing

devices in manufacturing. They increase productivity and quality while having a high

return on investment. Despite assembly robots being so common they are among the

most complicated type of robots to develop due to the extremely high accuracy required

when positioning parts and the force of the parts being connected also needs to be

considered. Recent trends show assembly robots moving more towards the

collaborative robots rather than industrial robots. While industrial robots require a

caged cell for safety, they offer greater payload weights and with the dual arm robots

on the rise and stronger motors being utilised collaborative robots (Cobots) are making

an ever-increasing contribution to the sector. Cobots have the advantage of not

requiring a safety cell, in part because they do not have the payload compacity of their

industrial counterparts but also because of the various force sensors built in which halt

robot activity when a collision is detected. Developments have continued in this area to

try and increase the safety of these cobots. Hakozaki et all proposed a robotic skin in

1999 by producing a sensor chip that detects electrical current, removing the need for

wires which are embedded within a flexible skin like material [33]. Development

continued and Yamada et al in 2005 discussed the development of a robot skin capable

of accurately sensing the location of objects in area contact with the skins surface [34].

Due to the higher levels of safety, cobots often lower costs by not requiring the

expensive cells which are typically required when operating articulated robots. The

 28

removal of this cell means they can be used on assembly lines working side by side

with humans and removing undesirable tasks such as screw fastening or box packing

[35]–[37]

 Future trends in robots

There are a myriad of developments happening in robots at an extremely fast pace. Just

like modern televisions or mobile phones new models are being manufactured and

marketed frequently. With such a large field that is continuously expanding there are a

few emerging technologies that will be particularly impactful:

• Human Robot Interaction

• Underwater robots

• Multi-robot Coordination

• Legged Mobility

Each of these sections is elaborated on further in the proceeding sections.

2.5.1 Human Robot Interaction

Human Robot Interaction (HRI) is a field or robotics dedicated to the design, evaluation

and understanding of interactions between a human and a robot. Generally, this study

is split into two field, remote and proximate interactions. The former is where the robot

and human are separated spatially or even temporally and the latter where the robot and

human are co-located [38]. Examples of HRI have been mentioned in previous

sections. Cobotics takes aim at the proximate interactions with humans, the task of

making a robot operate in a safe manner that does not risk harming the human operator.

As robotics appear into everyday life the ability to interact with these devices is

paramount. Whilst society is not quite at the time when the four laws of robotics are

required, the ability to work safely around robots is becoming ever more paramount. It

is not only the safety of the operator that needs to be considered. Lamy et al discuss in

their paper [39] a novel concept that has not been widely considered, this being how to

control the amplified forces that a robot is capable of performing compared to a human.

This being useful because whilst development towards cobotics is moving rapidly,

humans are still much better equipped to evaluate and adapt to new unstructured

condition. This work goes towards enabling operators to control robots that exert much

greater force to specific tasks.

 29

2.5.2 Underwater robots

Robots that do not often get much publicity are underwater robots or autonomous

underwater vehicles (AUV). Over 363 square kilometres or 72% of the Earth’s surface

is covered by ocean. In 2017 nearly 2.4 billion people lived with 100 km of the ocean

representing around 40 percent of the world’s population [40]. Due climate change,

rising sea levels and concern over the ecosystem of the oceans, AUVs have become an

increasing interest due to their ability to withstand higher pressures that submarines and

to be able to go where no one has explored before. The first AUV was developed by

the Applied Physics Laboratory at the University of Washington known as the SPURV

or Self-propelled underwater research vehicle. The SPURV was capable of diving over

10,000 feet and had an operation of time of about four hours [41]. In 2000, Yuh

conducted a survey and found that at the time there was over 46 types of AUVs

available for such purposes [42]. In recent years with the developments in autonomous

navigation and sensor development AUVs have been used for mapping sea floors in 3D

[43]–[45], monitoring sea ice [46] and monitoring sea life [47], [48].

2.5.3 Multi-robot Coordination

Multi-robot coordination or swarm robotics is a field of robotics that focuses on

coordinating robot movements/actions to achieve joint goals or to enable individual

tasks without collisions with other robots. This is a growing field in robotics because

of the realisation that multiple robots can achieve a goal better than an individual robot.

In addition to this there is a need to coordinate multiple robots working together.

Examples of multi robot coordination can been seen in modern warehouses at

companies such as Amazon and Ocado [49], [50]. These companies have leveraged the

technology to stream line product picking and transportation to increase productivity.

This sort of technology is by no means limited to warehouses, and is increasingly being

looked at in the search and rescue fields [51], [52], mapping [53], [54] and construction

[55], [56].

2.5.4 Legged Mobility

Whilst robots are replacing many tasks constrained to humans, humans still tend to have

the advantage in many areas due to our flexibility and mobility. Robot arms have been

 30

with us for many years but its usefulness is limited to its ability to reach its target. That

is why a huge amount of effort has gone into developing biped and quadruped robots

and in recent years a huge advancement has been made. When thinking of quadruped

robots one cannot help but think of Boston Dynamics SPOT [57], a 4 legged robot

“dog” that is capable of navigating an environment autonomously. There are many

other actors coming to market that offer similar capabilities. Oxford University has been

testing a quadruped robot for remote inspection of industrial sites [58]. Whilst a lot of

progress has gone towards these types of robots, future developments are needed to

develop their ability to navigate unstructured environments with rough terrain.

 Trends in Automation

With Industry 4.0 being considered as the next industrial revolution, there are many

areas of industrial automation that are going to see huge advancements in coming years.

Some areas of particular interest are Machine learning/Artificial intelligence, smart

factories, virtual/augmented reality, flexible manufacturing and cloud computing.

2.6.1 Machine learning

Machine learning is the study of computer algorithms that have the ability to improve

itself based on experience it has gained whilst running. It in itself is a subset of artificial

intelligence. Machine learning uses neural networks that takes training data and then

tries to make predictions or decisions without being explicitly programmed to do so.

Giving points to correct decisions a machine learning algorithm can be left to teach

itself how to do a job better than previously. An example of machine learning can be

found in email filtering, the algorithm will learn from user input how to identify spam

emails, and then adapts itself to filter this content. Google has been using machine

learning through bot identification verification to teach its AI how to identify common

day to day objects in images, such as traffic lights, crossings, buildings. This training

data has then gone into improving their self-driving cars, giving cars the ability to

identify these common objects through the various array of sensors. Google have also

been using robots to create their data sets. The TossingBot has been developed to create

datasets on how to toss unknown objects in an unstructured environment outside of the

robots kinematic range [59], by using multiple robots, repeating the same process over

and over, the robots are able to improve their understanding of throwing objects and

 31

gradually improve their accuracy over time. Another example is where Tan et al use

machine learning to train quadruped robots to walk using reward signals in a simulation

which can then be transferred to real applications [60].

2.6.2 Smart Factories

Smart factories are a response to ever changing demand and increased pressure on

manufacturing to operate at lower costs and to be more flexible in their offerings. The

term smart factory means a highly digitised and connected environment, consisting of

modular machinery and equipment that is able to improve itself through the process of

automation and self-optimisation. These modules or parts of production can be

connected via Internet of Things (IoT) devices or other types of integrated circuits

which enable sensing, measurement, control and communication of everything that is

happening through the manufacturing process. These smart factories can include

everything from production, information and communication technologies and includes

the potential to integrate across entire supply chains [61]. With this integration and

monitoring of everything happening within a factory, huge amounts of data can be

generated meaning the information networks need to be capable of keeping up with a

high rate of transmission. Migration from traditional factories to smart does however

pose a problem for many businesses given the large scale and systematic changes

required. Sjӧdin et al has tried to address these issues by gathering data from five in-

depth studies of factories already making this transition to identify key steps needed

during implementation, and from this have offered a preliminary model for future smart

factories to work from. This model revolves around three key principles, the digitisation

of people, introducing agile processes and configuring modular technologies [62]. Part

of this trend is to take on the big challenge of data transfer and energy usage. Luo et al

takes a look at these issues and proposed a mobile and hierarchical data transmission

architecture to integrate wired/wireless field bus networks and wireless networks by

taking advantages already present in existing mobile intelligence such as automatic

guided vehicles (AGVs) in smart factories and by doing so propose a novel data and

materials delivery scheme to overcome these issues [63]. With the virtual becoming

every closer to the real, IoT within smart factories have played a large part in paving

the way towards the full realisation of Industry 4.0. Needing to be highly flexible with

volume and customisation proposes its own problems. Shrouf proposes an architecture

 32

for IoT based smart factories which defines the main characteristics of these factories

with a focus on sustainability [64].

2.6.3 Virtual Reality

In the last 5 years Virtual Reality (VR) and Augmented Reality (AR) have penetrated

[65] various sectors other than computer games and this includes manufacturing and

robotics. Augmented reality in particular has become widespread because the

technology works perfectly in tandem with modern mobile phones which are

omnipresent [66]. VR on the other hand has been a bit more limited in its impact partly

due to the technological requirements. In particular the processing and graphical power

required to operate more complicated VR applications as held it back. Companies such

as Oculus have worked to try and bridge the gap between AR and VR with their more

mobile VR headsets where as companies such as Valve have double down on higher

specification hardware. AR has become particularly useful in industry. Areas such as

remote maintenance [67] and quality assurance are prime examples [68].

2.6.4 Flexible Manufacturing

Flexible Manufacturing Systems (FMS) is another area where automation is seeing

increased focus in recent years. FMS is a method of production that is designed to be

easily adaptable in what it manufactures and at what quantities. Compared to typical

manufacturing where mass production of a single item sees a lower production cost,

FMS is set up to manufacture a range of products as demand sees fit. Having this level

of flexibility has a cost so FMS typically has a higher upfront cost due to having to

purchase and install specialised equipment but can return a lower production cost over

time. FMS is a part of the make-to-order strategy that allows a level of customisation

for customers. FMS was developed by Jerome H. Lemelson who was an American

industrial engineer and inventor. Lemelson had patented the concept in 1954 [69] of a

robot-based system that could weld, rivet, convey and inspect manufactured goods. By

the 1970s systems based from Lemelson’s design started hitting factory floors in the

US and in Europe [70]. Flexible manufacturing systems have their advantages and

disadvantages. The advantages come in the form of reduced manufacturing cost, lower

cost per unit, greater labour productivity and improved quality among others, whereas

the disadvantages are the initial cost for systems and planning, requiring skilled labour

 33

to operate the systems and they can be complicated to run and maintain [71]. Whilst

FMS systems are not new, the renewed attention is down to quickly changing markets

and world events. With advances in technology and artificial intelligence and with

technology associated to smart factories, FMS are growing ever more intelligent [72].

 Automation and Robot Sensors

Within industry, automation sensors have a very important role to play. They allow

systems to detect, analyse, measure and process changes in measurements such as

position, height, length, appearance or displacement. There are many types of sensors

within automation such as vision, ultrasonic, position, proximity, photoelectric and

temperature sensors. Robotic sensors are used to evaluate the robot’s environment and

condition. They connect to the robot controller which is then responsible for processing

the information generated and to enable an appropriate behaviour of the robot. Sensors

in robots are typically considered to be akin to human sensory organs as they perform

the same sorts of functions. Robots require extensive information about their

environment to operate effectively and sensors supply this. Robots also typically have

internal sensors responsible for monitoring the robots state. They are used to measure

current position, velocity and acceleration of the robot’s joints and end effector. These

sensors consist of position and velocity sensors. Position sensors include an encoder

which is a digital optical device that converts the joints movements into digital pulses,

a potentiometer which provides a variable resistance in terms of voltage of linear or

angular displacements, synchros which transforms angular position into an electric

signal [73] and resolvers which are rotatory transformer used to measure degrees of

rotation which provide position and speed feedback [74]. Finally, velocity sensors

measure position over time by taking measurements at known intervals and then

computing the change in position values.

Sensors are analogues to human senses but they also extend further to sense

things that humans are incapable of. There are typically four main classifications of

sensors followed by two sub classes of each. There are simple and complex touch

sensors, the former sensing an objects presence or absence while the latter sensing size,

shape or hardness. Simple and complex force sensors, simply measuring forces along a

single axis while complex sensing over multiple. In a similar fashion there are simple

and complex vision sensors. Again, the former sensing edges, holes and corners and the

 34

latter being capable of recognising objects. Last there are proximity sensors - in a class

of its own which is a non-contact sensor simply capable of detecting objects in front of

it. These sensors can measure many different properties, for example object proximity

such as presence, bearing, colour or physical orientation and object’s coordinates in

space. There are also sensors capable of detecting the presence or concentration of

chemicals and ones capable of detecting sound attributers such as frequency or intensity

[75] among others.

Without sensors like these, advanced automation would not exist. It is these

sensors which replicate or extend human capabilities further that enable tasks to be

automated. More so it is sensors like these that enable robot capabilities to extend

further and further and the development of newer more advanced sensors that is going

to push the development of robotics and automation further. When Microsoft released

the Xbox Kinect in 2010 [76] and new wave of vision sensing technology emerged as

a result. The ability to detect RGB colours as well as depth (RGB-D sensors) allowed

many advancements in robotic vision systems. Lai et al presented in 2011 a large dataset

of classified images for researchers to develop better object recognition, manipulation,

navigation and interaction capabilities [77]. Lai et al’s work went on to contribute

towards many further development in the field such as Boubou et al developing an

adaptive filter for creating improved 3D data captured using the Kinect [78].

In the following section a more detailed review is undertaken of photo-electric

sensors. Due to their uniqueness of their application in the system being developed, a

dedicated sub-section is a provided detailing basic mechanics and application.

2.7.1 Photo-electric Sensors

A photoelectric sensor works by emitting a light beam which can be visible or infrared

from a light-emitting element and a reflective-type photoelectric sensor is used in

conjunction to detect the light being emitted. These can be used to discover the distance,

absence or presence of an object [79] by using the transmitted light. Commonly used in

industrial manufacturing there are three different types available. Opposed or through-

beam, retro-reflective and proximity-sensing or defused. Both through-beam and retro-

reflective work as partner sensors where one sensor emits the light and the other as the

reflector which detects the light. Diffuse on the other hand is a single unit with both the

emitter and reflector combined which then relies on the emitted light being reflected off

 35

the target surface. There are advantages and disadvantages to each type of sensor, these

being; Through-beam sensors are the most accurate of this type of sensor with the

longest range and are considered very reliable, however the must be installed at two

points on the system, one side being the emitter and the other being the receiver.

Reflective offer slightly less accuracy compared to through-beam however, their range

extends further than diffuse sensors. They too are also considered very reliable. The

disadvantages come in a similar fashion as through-beam, they must be installed at two

points, they are of a higher cost than diffuse and their range is lesser than through-beam.

Diffuse sensors are slightly different to the former two sensors, they install at one point

by combining the emitter and reflector in to a single unit and they also come at much

lower costs. The disadvantage is that they are less accurate and require more time to

setup as they require calibration to the target surface [80]. Photoelectric sensors are

used in varying manufacturing environments, from the automotive industry to material

handling to food and beverage, these sorts of sensors are used for object detection of

parts or containers. When considering a type of sensor for a robot position adaption

system, typically photo-electric diffuse sensors would not be considered because it is

not their typical area of application. Currently there is no literature covering their use

in the position adaption application which presents an opportunity to produce

something novel. This thesis will go some way in answering whether these sensors are

viable in this configuration.

 KUKA Robotics

KUKA is a German manufacturer owned by the Chinese company Midea Group who

are one of the world’s leading suppliers of intelligent automation solutions. KUKA

Systems GMbH is a division of KUKA whom are an international supplier of automated

manufacturing solutions who have systems and equipment being used by many

companies such as BMW, GM, Ford, Airbus, Siemens and many others [81]. KUKA

Robotics offer a very broad range of different types of robots. Ranging from 3 kg to

1000 kg payloads and industrial robots to medical cobots. Their systems are based on

an open architecture PC-based controller and as a result KUKA are the number one PC-

controller robot manufacturer in the world. KUKA controllers are suitable for major

customisation meaning they can integrate custom components or integrate with existing

automation systems. Not limited to hardware they also offer various software systems

 36

such as KUKA SIM which allows for virtual design and testing of complete robot

systems. In addition KUKA offer a Systems Partner program giving availability of

experts in key industries which mean they can offer technologies that can transform a

generic KUKA robot into an application specific solution [82]. While predominantly in

the automotive industry [83], KUKA operate in many other areas such as the medical

field [84], manufacturing [85], construction and food and beverage industries [81].

KUKA also play a huge roll within the research and science fields assisting researchers

and developing educational tools. The KUKA youBot is an example this [86],

developed as an opensource educational tool that meets the requirements of industrial

requirements as well as educational and research but most of all comes at an affordable

price point.

2.8.1 Tool Centre Point

Within manufacturing there are many areas where manual labour outperforms robot

systems, this is usually due to a human’s exceptional ability to adapt to a change in

circumstances. With a focus on specific tasks such as plastic welding industrial pipes,

this research considers sensor aided positioning of a TCP. A robot’s TCP is vital to any

operation being completed by a robot. It provides information to the robot controller

about where the tip of the tool attached to the end of a robot is located. As this part of

the robot typically interacts with an object or surface, it is vital for the robot to know

where it is in relation to the flange of the robot’s arm. Figure 2-4 shows an example of

a TCP, in this case the robot is configured with a gripper holding a pencil, and the tip

of the pencil is configured as the TCP. Using this information, the position of the TCP

is translated into rotary motions of the robot individual axis so the tip of the tool stays

on the defined path specified in the robot program. Whilst this is the goal of the

research, the following sections reviews literature where TCP control in manufacturing

is critical.

 37

Figure 2-4 TCP Example

2.8.2 Type of KUKA robot movement

When programming an articulated robot there are a set of three different movement

types available to the user as a base, Point-to-point (PTP), linear (LIN) and circular

(CIRC). Point-to-point moves the tool centre point of the end effector from point A to

point B by the shortest path possible (Figure 2-5). This does not mean the path is a

straight line as it may be quicker for the robot to move between points by taking a more

indirect route. The reason for this is because when moving between the two points, all

6 joints of the robot need to move as well, a PTP movement takes this in to consideration

and tries to move each joint as little as possible by achieving the desired motion. A

linear movement on the other hand is a straight-line movement between point A and

point B (Figure 2-6). This movement takes longer because each joint needs to move

further. Then there is the circular movement, this movement as described moves the

TCP in an arc movement allowing a circular path to be drawn. A CIRC movement

requires 3 points to be completed, a start and end point and an auxiliary point (Figure

2-7). The auxiliary point determines the size of the circular arc between the start and

end points. Building off these movements there is the addition of spline movements.

These movements are particularly useful for complex movements such as curved paths.

Whilst curved paths can be completed using typical PTP, LIN and CIRC movements,

TCP

 38

splines have their advantages. When generating the path with PTP, LIN and CIRC

commands points are approximated, meaning not all defined points on the desired path

are met. Spline movements do not have this issue, they follow generated points along

the entire path and can work at a maintained velocity better than other movement types.

The path always remains the same and is irrespective of any over settings used. When

spline movements are generated, the robot controller takes the physical limits of the

robot into considering and the robot moves as fast as possible within the constrains

programmed by the operator. With the other basic movements, the physical limits are

the robot are not considered until the movement is in motion which may result in the

robot ceasing motion due to these limits breaching. In more recent iterations of KUKA

robots they have introduced another set of commands to compliment spline movements,

SPTP, SLIN and SCIRC commands. These commands work on the same principle as

spline in the sense that they are more accurate and calculated ahead of time [87, pp.

159–160].

Figure 2-5 PTP Movement

Figure 2-6 LIN Movement

Point A

Point B

Trajectory

Point A

Point B

Trajectory

 39

Figure 2-7 CIRC Movement

Even though robot movement types have been well established for many years,

optimisation of these paths is very important to reduce cycle times in the industrial

process. Even the smallest of time savings accumulate over time and can make a huge

impact of production costs. Sven Severin and Juergen Rossmann discuss this

optimisation in an environment where collisions are possible. When a robot needs to

avoid an obstacle, intermediate points are needed, however when this is the case the

robot will lose momentum moving between point A as it gets to point B and onward to

point C. In their paper they compare three different metaheuristics to find where points

B position should be located to reduce time lost and to maintain momentum [88].

Further examples of optimisation can be found in an in an article by Cooper et al. In

their paper six degree of freedom robots have been considered from surface mount

assembly of electronic components where these types of robot are not typically used

[89]. The approach used here was using a genetic algorithm to optimise component

placement ordering to decrease cycle times. In their paper they compare the various

different movement types not just PTP movements. This shows that whilst the

movement of the robot itself can be optimised, so can the positioning of objects the

robot is interacting with.

2.8.3 KUKA Hardware Interfacing

Hardware interfaces involve connecting other systems or technologies to a robot

system. For example, connecting a personal computer to a robot controller to expand

control over the connecting robot. To do this KUKA offer a variety of different methods

for interfacing such as Process Field Bus (PROFIBUS) and Ethernet. PROFIBUS is a

standard for fieldbus communication for automation technology that was promoted by

the German Department of Education and Research (BMBF) in 1989 [90]. It was from

the combined work of the German government, twenty-one businesses and industry

Point A Point B

Trajectory

Auxiliary Pint

 40

leaders at the time which became the Central Association for the Electrical Industry

(ZVEI) that created what still stands as leading solution for hardware interfacing

particularly between European customers. It was only in 1993 that PROFIBUS was

considered completed, it was when PROFIBUS DP (Decentralised Periphery) standard

was introduced that allowed easier configuration and faster messaging [91]. The

Ethernet interface on the other hand is a simpler interface in the sense that it is a standard

communication interface used on the majority of computers all over the world. This

software comes in different versions such as KUKA Ethernet KRL [92], KUKA

Ethernet RSI XML [93] and KUKA Robot Sensor Interface [94]. Each of these software

packages is an extension on the previous and represent the evolution of Ethernet control

for KUKA robots. They work on the principle of exchange XML messages that can be

configured on the controller via configuration files. The Ethernet interface of KUKA

robots has allowed a variety of different research to be conducted using their devices,

adding KUKA’s commitment to development in the field of robotics.

2.8.4 Adaptive control

Adaptive control is a method where by a controller has the ability to adapt a controlled

system with parameters that can very or ones that can be uncertain [95]. Adaptive

control has for a long time been seen as an effective system for robot manipulator

controller design due to its ability to deal with unknown certainties of robot dynamics

models. The design of the controller for a serial manipulator contains two parts, an end

effector path or trajectory that is first specified which generates a set of joint angles to

achieve a desired path and then a second part to calculate the required torque that each

joint needs to apply to achieve the required motion. The torque can be calculated based

on inverse dynamic equations. Due to robot systems being extremely nonlinear,

controlling the manipulator can be complex. When a robot mechanism is in motion the

variables controlling each joint change and this is what makes the dynamic equations

alter throughout the robot movement. This is why robots use Model Reference Adaptive

Control (MRAC) as it has the ability to take these changes in to account. Traditional

controller techniques generally are not used for robotics due to their poor performance

at high speed, PID control systems may not provide stability or optimal control for the

system either [96], this is why MRAC is one of the most prevalent methodologies used

today [97]. KUKA robot controllers handle this adaptive control internally but expose

 41

various options to build upon it. The KUKA RSI and Ethernet XML software packages

expose certain parameters of the robot and allow manipulation to be extended from this.

 Robot Data Acquisition

An important part of working with robots particularly as the world moves into Industry

4.0 is the ability to learn from experience. This can be in the form of neural networks

and machine learning but also in the form of old fashion research. This means the ability

to acquire data from robot and robot sensors in paramount. There are no real standards

when it comes to this partly due to the sheer breadth of robot and sensor systems

available. There has been some attempts to develop frameworks to achieve this [98].

There are two types of data acquisition that is typical seen, real time and offline. Real

time usually relates to reading live sensory data as its generated such as GPS data and

offline is where data is recorded on to a device and then analysed post completion of

the desired task. A simple example of data acquisition can be found in Lego Mindstorms

products [99] which is used when teaching data acquisition for a low cost. Other

examples can be found from various research papers on the topic. Zhou discusses using

C++ programming language to access sensory data of a mobile autonomous robot [100],

Bryant and Gandhi discuss a real time data acquisition using LabVIEW software and

Sarma and Bezboruah discuss using low cost Arduino UNO to interface with analogue

sensors for data acquisition. Essentially data acquisition relies on the systems being

used and their capability to be extended.

 Summary

This literature review covers a wide range of topics with the purpose of giving the

reader a complete introduction to robotics. Starting with its history the evolution of the

robotics is discussed from the Vaucanson’s duck to the modern articulated robot. Then

the history of automation is reviewed culminating in an overview of Industry 4.0 – the

latest industrial revolution. Once a firm foundation is built, a more specific

investigation into industrial robotic automation is completed. An overview of four

different types of robot systems prevalent in the manufacturing sector is discussed.

These types of robots being welding pick and place, painting and assembly. A particular

emphasis has been placed on hot gas welding in this section to highlight a lack of

literature in the field. Next future trends are reviewed to understand where future robot

 42

and automation development is heading to see if any topics intersects with research

undertaken in this thesis.

The final three sections of the literature review focus on understanding the

requirements of the hardware and software used in this project. A general overview of

different types of sensors used within the manufacturing industry is presented with a

dedicated sub-section for discussing the photo-electric sensors used in this project. The

reason for having a dedicated sub-section is to communicate the uniqueness of the

application of these sensors in this project. Where photo-electric sensors are typically

used with pick and place robots, to use them as sensors for position adaption is novel

and currently has no scientific research available addressing their use in the context of

this thesis. Next an understanding of the KUKA robot systems is presented focusing on

the KUKA KR16 used for experimentation. Certain aspects important to the project are

discussed such us the movements types the robot is capable of completing and the

hardware interfaces available. Finally, robot data acquisition is reviewed. The ability to

accurately measure and analyse the robot movements during experimentation is

important to the success of the research. Whilst there are many ways to record robot

data, there is no standardised set of tools available and bespoke approaches are the

typical norm. This presented an opportunity for development, specifically when

working with KUKA robots. The next chapter takes the information garnered from this

literature review and applies it to develop the experimental setup for this thesis.

 43

 EXPERIMENTAL SETUP

 Introduction

This chapter discusses the lab setup, robot configuration and resources used during the

formulation of this thesis. Initially the laboratory and workspace available is

investigated, followed by and introduction to the robot being used along with its

configuration. Then the Ethernet interface and robot communication are discussed

detailing the configuration steps required. Next the Robot Sensor Interface software is

detailed along with the RSI configuration used initially during experimentation. Finally,

the sensor setup and communication is discussed along with the hardware components

used to give the reader a complete guide for replicating the experiments discussed in

later chapters.

 Workspace configuration

During this research a robot cell equipped with a KUKA KR16-2 has been used. The

cell is 3 x 3m in size and the robot is configured with software limits that are set just

short of the surrounding cell walls (Figure 3-1). Multiple safety stops are located around

the cell, two inside the cell, one external of the cell and one located directly on the tech

pendent.

Figure 3-1 Robot Cell

 44

 KUKA KR16-2

The KUKA KR16-2 shown in Figure 3-2 is a versatile robot and well suited for the

purposes of this thesis. An articulated robot with six axes, the KR16-2 has a payload of

16 kg which has been designed and manufactured by KUKA Robotics. Flexible with

strength, the KR16 is constructed with light-weight alloys and designed to be space

saving and cost effective. The KR16-2 is commonly found in the automotive

components industry and various manufacturing sectors. The robot has a repeatability

factor of ±0.05 mm making it well suited for position-oriented tasks. In Table 3-1 the

main specification for the robot can be found followed by the range of motion available

for each axis and each axis top motion speed. The robot has an affective reach of 2.412

meters making it ideal for the range of testing envisaged through this project. In Figure

3-3 the full working area of the robot is visualised, followed by the set of measurements

for each position in Table 3-2. The KUKA KR16-2 is equipped with a gripper.

Specifically, a two jaw parallel gripper manufactured by Zimmer [101] shown in Figure

3-4. The gripper is a useful tool, typically used for picking and placing but in the scope

of this project it allows quick changes between sensor mounts and assemblies.

Figure 3-2 A KUKA KR 16-2 Robot

 45

Table 3-1 KUKA KR16-2 Main specification

Maximum Robot Load 16 kg

Number of axis 6

Maximum horizontal reach 1611 mm

Repeatability ±0.05 mm

Controller KR C4

Axis information Range of

motion

Robot motion speed in º/s

(16 kg Payload)

Axis 1 ± 185° 156°

Axis 2 +35° / -155° 156°

Axis 3 +154° / -130° 156°

Axis 4 ± 350° 330°

Axis 5 ± 130° 330°

Axis 6 ± 350° 615°

Figure 3-3 KR16-2 Work Envelope Visualised [102, p. 4]

Table 3-2 Work envelope figures

Work Envelope KR16-2

A 2026 mm

B 2412 mm

C 1611 mm

D 1081 mm

 46

E 530 mm

F 1027 mm

G 670 mm

Volume 14.5 m3

Figure 3-4 Zimmer Gripper

3.3.1 The KR16 Controller and Smart Pad Teach pendant

The KUKA C4 controller show in Figure 3-5 was a pioneering controller developed by

KUKA robotics. Combining robot control, PLC control, motion control and safety

control into a single unit means it is a common controller used within manufacturing

where KUKA robots have been deployed. It has fast response times and options for

expandability, coupled with the prolific use of KUKA robots in industry, mean it is the

ideal candidate to be used in development of robot sensor systems [103]. The KUKA

smartPAD Teach Pendant is a hand-held interface that gives the user complete control

over the robot system. This pendant is used for the manual programming and adjustment

of the KUKA robot. Its onscreen interface allows individual control over each axis

along with the ability to switch between different coordinate frames. Coupled with a

3D mouse it gives a high level of control over the robot to the user. The smartPAD is

quite intuitive by design and consists of an array of buttons and a touch screen display.

Each of these buttons is described in Table 3-3 and the smartPAD itself can be seen in

Figure 3-6.

 47

Figure 3-5 KUKA C4 Robot Controller

Figure 3-6 KUKA Teach Pendant Front

View

Table 3-3 KUKA smartPAD descriptions [87]

Item Description

1 Button for disconnecting the smartPAD

2 Key switch for calling the connection manager. The switch can only be

turned if the key is inserted. The operating mode can be changed by using

the connection manager.

3 EMERGENCY STOP button. Stops the robot in hazardous situations.

The EMERGENCY STOP button locks itself in place when it is pressed.

4 Space Mouse: For moving the robot manually.

5 Jog keys: For moving the robot manually.

6 Key for setting the program override

7 Key for setting the jog override

8 Main menu key: Shows the menu items on the smartHMI

9 Status keys. The status keys are used primarily for setting parameters

in technology packages. Their exact function depends on the

technology packages installed.

10 Start key: The Start key is used to start a program.

11 Start backwards key: The Start backwards key is used to start a

program backwards. The program is executed step by step.

12 STOP key: The STOP key is used to stop a program that is running.

 48

13 Keyboard key Displays the keyboard. It is generally not necessary to press

this key to display the keyboard, as the smartHMI detects when keyboard

input is required and displays the keyboard automatically.

3.3.2 KUKA Robot Language

The KUKA Robot Language (KRL) is a proprietary language developed for non-

collaborative KUKA systems to enable easier programming of their robots via the

KUKA pendant. The language exposes various degrees of complexity to suit different

skill levels when programming, from simple inline forms used through the teach

pendant to fully typed sections of code via its development environment. A typical KRL

program is shown in Figure 3-7 and is structured with a leading DEF statement and the

name of the KRL program, followed by INI which contains any internal variables or

parameters that are initialised at the start of the program. Next the main content of the

program is contained, in this instance a home position is specified followed by two LIN

commands ending with the home position again. Finalising the program is the END

statement, terminating execution of the code.

The language exposes seven movement types for use with a KUKA robot, PTP,

LIN, CIRC, SPTP, SLIN, SCIRC and Spline blocks. The three formers are legacy

movements whereas the latter are Spline movements which are newer motions designed

to be more accurate and efficient. The PTP and SPTP movement moves the TCP along

the fastest route possible to reach its endpoint. The fastest path not necessarily being

the shortest. LIN and SLIN movements produce a straight-line path that the TCP

follows at a desired velocity to reach its endpoint. CIRC and SCIRC movements

produce circular paths that the TCP follows. This movement is made up of three

parameters, a start points, auxiliary point and end point. A Spline block is simply a

grouping of spline motions which is calculated and executed by the robot controller as

a single motion.

 49

Figure 3-7 Example KRL program

 Robot configuration

3.4.1 End effector

The robot is equipped with a Zimmer GPP5010 gripper shown in Figure 3-4[101]. The

decision to work with a gripper rather than a dedicated end effector mount was

influenced by the intended use of the final design. To this end the mount design was a

secondary issue, but the sensor positioning was in the important part. This means

working with a gripper would be quicker in terms of designing new mounts and

manufacturing them through 3D printing.

3.4.2 Sensor mounts

During development various sensor positions were considered. The initial design of the

mounts for these sensors worked on the principle of two sensors of opposite sides

angled to trigger at the same position. As this system is intended to work by integrating

into existing systems, with tools already on the market such as the hot gas welding

device in Figure 2-2 different mounting positions needed to be analysed to factor into

any further research. Figure 3-8 shows the initial concept idea, as a comparison the

setup in Figure 3-9 was considered, finally Figure 3-10 shows a hybrid of the previous

two designs creating a more compact design. In Figure 3-9, the second sensor setup has

target areas parallel to each other. The reason for this is to test whether overlapping

targets points creates confusion between the two sensors as to which is being triggered

at a given time.

 50

Figure 3-8 Proposed sensor configuration 1

Figure 3-9 Proposed sensor configuration 2

Figure 3-10 Proposed sensor configuration 3

G
ri

p
p

er

Target Surface

Sensor Mount

G
ri

p
p

er

Target Surface

Sensor Mount

S
en

so
r

2

S
en

so
r

1

G
ri

p
p

er

Target Surface

Sensor Mount

 51

 Ethernet Communication

3.5.1 Controller Configuration

The RSI software relies on the User Datagram Protocol (UDP) over IP (Internet

Protocol) communication to work. First the configuration of the RSI interface needs to

be completed. An IP of 10.10.10.1 is assigned to this interface specifically to avoid any

confusion with other interfaces on the robot as they maintain the 192.168 IP range.

Warnings to this is present on the configuration screen. To configure this, the network

settings of the device are accessed through the teach pendant. From here a new network

interface is added, dedicated to RSI as shown in Figure 3-11.

Figure 3-11 RSI network configuration

3.5.2 Client Configuration

Once the cabinet network interface has been configured, the client interface can be

created. An CAT6 Ethernet cable is used to connect the laptop directly into the

controller’s X66 port shown in Figure 3-12, then a static IP address of “10.10.10.10” is

assigned to the Ethernet interface of the laptop. A ping test is then used to test whether

 52

communication has been established successfully. The RSI software’s Ethernet objects

works on the basis of sending a message and waiting for a reply. If a reply is not

received within a specified timeframe the robot program will timeout resulting in the

immediate stop of robot operation. If no change is expected in the robot then a reply of

0 values is returned by default. To test this configuration the RSI software comes with

a test server interface shown in Figure 3-13. The server application has basic

functionality, it allows configuration of the clients’ network interface, allows the user

to read incoming and outgoing XML messages and gives basic movements commands

in the form of jogging the different robot axes.

Figure 3-12 KUKA C4 cabinet X66 port location

Figure 3-13 Robot Sensor Interface - Server Application

X66 Port

 53

 Robot Communication

One challenge to overcome is deciding on how to connect to the robot to influence its

control. The following sections cover various products and research already completed

into this field.

3.6.1 Robot Sensor Interface

KUKA Robot Sensor Interface (RSI) is a proprietary software package that expands the

capabilities of a KUKA KR C4 Robot Controller giving it the ability to complete data

exchange between a robot and sensor system via Ethernet or the Input/output system of

the robot controller external factors to influence the motion of the robot or program

execution. Configuration of the signal flow or RSI Context is done through the RSI

Visual software package (Figure 3-14). RSI Visual provides access to a library of RSI

Objects which are used to configure the signal flow.

Figure 3-14 KUKA RSI Visual Software Package

3.6.1.1 Data communication

There are two options available for communicating with a robot controller adapted with

KUKA RSI are via the I/O system or via Ethernet. Using the I/O system is a more direct

method but working over Ethernet gives us much greater flexibility. Using a real-time

capable network connection, data is transmitted via UDP/IP where no fixed data frame

is specified. This must be configured in an XML file on the robot controller. Cyclical

data transmissions from the robot controller to sensor system is run in parallel to the

 54

robot program execution. For example, operating mode, position data and axis angles

can be sent to the sensor system. The sensor system then again via cyclical data

transmissions send information in parallel to program execution. UDP is a

connectionless network protocol and is not reliable or secure. As it cannot be guaranteed

that the packets sent arrive in a reliable manner it is up to the programmer to implement

sufficient error correction measures to ensure proper operation. This could be checking

that all packets have arrived correctly and re-requesting any that have failed.

3.6.1.2 Signal Processing

Signals are processed using RSI objects. An RSI object is essentially a function that has

inputs and outputs like any other program (Figure 3-15). As talked about previously,

RSI Visual provides a user with an extensive range of RSI objects via its library. A

signal flow is constructed by stringing multiple RSI objects together via their inputs

and outputs as demonstrated in Figure 3-16. Combined together these objects are known

as the RSI context. Once an RSI context has been constructed using RSI Visual, the

RSI context can be loaded in a KRL program and triggered to run in parallel. This

allows the signals processed from sensory input and the KRL program to run

concurrently and gives the user the ability to activate and deactivate as they see fit. The

processing is calculated at the sensor cycle rate which depends of the selected mode.

Either a rate of 12ms or 4ms where the former operates sensor mode #IPO and the latter

operates sensor mode #IPO_FAST. This is shown in Figure 3-17.

Figure 3-15 Structure of RSI object

Function()

Input 1

Input n

Output 1

Output n

…

…

…

…

…

…

 55

Figure 3-16 Structure of an RSI context

Figure 3-17 Relation between KRL program and RSI context.

3.6.1.3 Principle of data exchange via the I/O system

All data and sensor signals are read and written via the I/O system of the robot controller

($IN representing digital input and $ANIN representing analogue input). The signals

are processed by the RSI context and then returned to the sensor system again via the

I/O system ($OUT representing digital output and $ANOUT representing analogue

outputs). These signals are read and written at the rate that the sensors cycle has been

set to. In Figure 3-18, an RSI context is taking signals from a digital and analogue input

of the I/O system, processed by the RSI context and written back to the I/O system via

Object

1

Object

2

Object

3

Object

4

Object

5

Object 1 Object 1 Object 1

RSI Context

Sensor Cycle Rate

 56

the MAP2DIGOUT and MAP2ANOUT methods.

Figure 3-18 Data exchange via I/O system.

3.6.1.4 Principle of data exchange via the Ethernet system

Data exchange via the Ethernet system works in a similar fashion to the I/O system,

however all communication to sensors is managed through an RSI object called

ETHERNET within the RSI context. Shown in Figure 3-19, there are up to 64 inputs

and outputs available for the ETHERNET RSI object where the signals at the inputs are

sent to the sensor system and signals of the outputs are received by the robot controller.

When signal processing is activated from within the KRL program a channel is prepared

for sending data to the sensor system via the UDP protocol. The robot controller is

responsible for initiating the data exchange. Once established it sends data packets to

the sensor system at the sensor cycle rate specified previously. The sensor system is

then responsible for responding to the data packets sent by the robot controller with

data of its own. Data transmitted between the two systems is defined using a data set

contained within an XML formatted file. This data set is transmitted at the sensor cycle

rate. The XML file name is specified when created the ETHERNET RSI object. Figure

3-20 demonstrates the sequence of events when data is exchanged via Ethernet.

I/
O

 S
Y

S
T

E
M

 I/O
 S

Y
S

T
E

M

F()

DIGIN

ANIN

MAP2DIG
OUT

MAP2AN
OUT

RSI Context

 57

Figure 3-19 Example of data exchange via Ethernet

Figure 3-20 Data flow over Ethernet

3.6.1.5 Sensor based correction

The Robot Sensor Interface allows the user to exert continual influence over the motion

of the robot by means of sensor data. There are two types of sensor correction available,

either Cartesian or axis-specific. Cartesian creates a Correction Coordinate System in

the TCP where the BASE, ROBROOT, TOOL, WORLD or Tool-based technologies

system can be used a reference coordinate system. Axis specific corrections can

influence axis A1-A6 or external axis E1-E6. There is however a limitation where

E
T

H
E

R
N

E
T

Object
1

Object
2

Object
3

Object
4

In 1

In 2
 1

In 63

In 64
 1

Out 1

Out 2
 1

Out 63

Out 64
 1

Out 1

Out 1

In 1

In 1

Out 2
 1

Out 2
 1

In 2
 1

In 2
 1

KRL
Program

Laptop

RSI
ETHERNET

Object

 58

sensor correction cannot be used for asynchronous axes. There are also two correction

modes, relative and absolute. Where relative correction values are added together and

the new position results from the offset of the starting position by the previous

correction and the current correction value combined, absolute correction results in an

offset from the starting position by the correction value. Figure 3-21 and Figure 3-22

demonstrate these movements respectively. Finally, there are two sets of correction

methods available; superposed sensors correction and sensor-guided motion. In the

former, corrections are applied to existing programmed movement contained in a KRL

program and merely adjusts pre-existing motions and the latter controls the entire

movement of the robot system where no previous programmed trajectory has been

configured.

Figure 3-21 Sensor-guided motion based on relative values

Figure 3-22 Sensor-guided motion based on absolute values

3.6.1.6 KUKA WorkVisual

KUKA WorkVisual (Figure 3-23) is a tool used for configuring and servicing KUKA

Robot Controllers. A project within WorkVisual is a set of saved configurations for

P0

P0

 59

each robot being configured. Whilst it is not intended to service the robot during this

project, WorkVisual has the added benefit of having a KRL editor built into the package

with the ability of transferring KRL programs to and from the robot controller. This can

be a useful tool to have as it is faster and easier to construct KRL programs via a PC

than on the teach pendant directly and also allows for offline editing of the robot

programs. Within the editor there is validation to verify whether the program written

has any errors in the code.

Figure 3-23 WorkVisual Development Environment Programming and Diagnosis

Panel

 RSI Configuration

Once the network configurations have been established, configuration of the RSI

package is needed. The software itself relies on three configuration files and a single

network configuration file. Different network configurations can be used with different

sets on RSI configurations so project independent packages can be developed that do

not require manual reconfiguration of the robot. Before the RSI Signal Flow can be

created, a network configuration file is needed.

3.7.1 Network Configuration

The RSI network configuration file is an XML document with the following structure.

Consisting of four main parameters shown in Figure 3-24 are what dictate how the

 60

Ethernet interface of the robot will act. Here the IP address and port of the laptop is set.

This is to reduce cross talk between multisensory systems. The <SENTYPE> element

is a keyword that must be present in all replies from the laptop. This ensures the correct

signal flow is replying to the right message. Finally, the <ONLYSEND> element tells

the RSI interface whether to expect a reply. This is useful in situations where the Robot

Sensor Interface is used for monitoring robot activity and not for influencing it.

Figure 3-24 RSI Network Configuration example

3.7.2 Send & Receive values

The secondary parameters relate to the configuration of the RSI signal flow and depends

on what objects are used during the signal flow configuration. Within the RSI package

are a set of system variables that allow basic information to be transmitted. In this

instance the “RIst”, “RSol”, “AIPos”, “ASPos”, “Delay” provides Cartesian

coordinates, axis positions setpoint positions, Cartesian and joint target positions and

any delay acceptability (in milliseconds) respectively. System variables which are

values provided by the controller are marked as “INTERNAL” in the INDX attribute.

The remaining rows names and user dependant. They can be named anything as long

as the INDX attribute reflects the output of the Ethernet object within the RSI Signal

Flow. Any “.” Notation used with in a tag specifies a single RSI Attribute and in respect

outputs an XML message such as <POSCor X=0 Y0 Z0 Z=0 A=0 B=0 C=0>. Any

example of a complete Send section is shown in Figure 3-25. All XML values are

processed by the RSI Ethernet object and messages and formed using the information

provided by the configuration file. The above configuration will then translate to what

can be seen in Figure 3-26. This information is converted into binary and is transmitted

by the C4 controller to the client IP address that was configured.

 In the same respect as the send values, the receive values configure the

parameters the RSI Ethernet object expects to receive. Each INDX value is matched to

<CONFIG>

<IP_NUMBER>10.10.10.10</IP_NUMBER>

<PORT>1337</PORT>

<SENTYPE>RSIMastersThesis</SENTYPE>

<ONLYSEND>FALSE</ONLYSEND>

</CONFIG>

 61

a corresponding output of the Ethernet Object in the RSI Signal flow. Any “.” Tags

translate to multi value elements and in this instance the RKorr values are

communicating XYZABC Cartesian correction values back to the respective axis. The

tag “EStr” gives the program an opportunity to send messages back to the KUKA Teach

Pendant for any human operative using the system to see. Finally, in Figure 3-27 is an

example of the expected configuration of the received XML message. Figure 3-28 then

showing how the message actually looks when converted by the RSI Ethernet object.

<SEND>

 <ELEMENTS>

 <ELEMENT TAG="DEF_RIst" TYPE="DOUBLE" INDX="INTERNAL" />

 <ELEMENT TAG="DEF_RSol" TYPE="DOUBLE" INDX="INTERNAL" />

 <ELEMENT TAG="DEF_AIPos" TYPE="DOUBLE" INDX="INTERNAL" />

 <ELEMENT TAG="DEF_ASPos" TYPE="DOUBLE" INDX="INTERNAL" />

 <ELEMENT TAG="DEF_Delay" TYPE="LONG" INDX="INTERNAL" />

 <ELEMENT TAG="PosCorr.X" TYPE="DOUBLE" INDX="1" />

 <ELEMENT TAG="PosCorr.Y" TYPE="DOUBLE" INDX="2" />

 <ELEMENT TAG="PosCorr.Z" TYPE="DOUBLE" INDX="3" />

 <ELEMENT TAG="PosCorr.A" TYPE="DOUBLE" INDX="4" />

 <ELEMENT TAG="PosCorr.B" TYPE="DOUBLE" INDX="5" />

 <ELEMENT TAG="PosCorr.C" TYPE="DOUBLE" INDX="6" />

 </ELEMENTS>

 </SEND>

Figure 3-25 RSI Send XML example

<Rob Type="KUKA">

 <RIst X="1376.3" Y="0.9" Z="882.6" A="-180.0" B="45.0" C="-180.0"/>

 <RSol X="1376.3" Y="0.9" Z="882.6" A="-180.0" B="45.0" C="-180.0"/>

 <AIPos A1="0.0" A2="-90.0" A3="90.0" A4="0.0" A5="45.0" A6="0.0"/>

 <ASPos A1="0.0" A2="-90.0" A3="90.0" A4="0.0" A5="45.0" A6="0.0"/>

 <Delay D="0"/>

 <PosCorr X="0.0" Y="0.0" Z="0.0" A="0.0" B="0.0" C="0.0"/>

 <IPOC>2273640</IPOC>

</Rob>

Figure 3-26 Example of RSI XML Send Message

 62

<RECEIVE>

 <ELEMENTS>

 <ELEMENT TAG="DEF_EStr" TYPE="STRING" INDX="INTERNAL" />

 <ELEMENT TAG="RKorr.X" TYPE="DOUBLE" INDX="1" HOLDON="1" />

 <ELEMENT TAG="RKorr.Y" TYPE="DOUBLE" INDX="2" HOLDON="1" />

 <ELEMENT TAG="RKorr.Z" TYPE="DOUBLE" INDX="3" HOLDON="1" />

 <ELEMENT TAG="RKorr.A" TYPE="DOUBLE" INDX="4" HOLDON="1" />

 <ELEMENT TAG="RKorr.B" TYPE="DOUBLE" INDX="5" HOLDON="1" />

 <ELEMENT TAG="RKorr.C" TYPE="DOUBLE" INDX="6" HOLDON="1" />

 </ELEMENTS>

</RECEIVE>

Figure 3-27 Example receive XML settings

<Sen Type='RSIMastersThesis'>

 <EStr>"RSI Connected "</EStr>

 <RKorr X="0" Y="0" Z="0" A="0" B="0" C="0"/>

 <IPOC>1212</IPOC>

</Sen>

Figure 3-28 Example XML send by KUKA RSI Software

3.7.3 RSI Signal Flow

Once the configuration file name is known, the RSI Signal flow is configured which

will form the basis of communication to and from the robot. Shown in Figure 3-29, the

signal flow is constructed of one or many RSI objects which are interlinked together.

This project uses the following objects:

• POSCORRMON: Returns Cartesian values of the robot’s current position,

connected the inputs of the ETHERNET object.

• AXISCORRMON: Returns axis position values of the robot’s current position,

again connected to the inputs of the ETHERNET object.

• POSCORR: Receives correction values from the ETHERNET object’s outputs,

sets the upper and lower limits of corrections allowed. The outputs of this object

are connected to the MONITOR object.

• MONITOR: This object creates an RSI Monitor instance which visualises the

 63

changes made to the corresponding axes. The RSI Monitor interface is shown

in Figure 3-30.

• ETHERNET: The Ethernet object as discussed in other chapters controls the

information flow via the Ethernet interface of the device.

Once the signal flow is complete and saved, two files are created with the extensions

“.rsi” and “.rsi.xml”. This in conjunction with the network configuration file created in

previous sections are then transferred via a USB device to the C4 controller into the

“C:\KRC\ROBOTER\Config\User\Common\SensorInterface” directory.

Figure 3-29 RSI signal flow example

 64

Figure 3-30 RSI Monitor example

 Sensor Configuration

3.8.1 Photoelectric diffuse sensors

Photoelectric sensors were chosen as they are relatively low-cost sensors that have not

been used in this context before. The principal idea is to run two sensors in parallel with

offset trigger distances. Sensor 1 is responsible for ensuring the target surface is within

distance. This sensor is active by default, and if this value changes, it alerts the robot to

move towards the target surface in the appropriate axis. Sensor 2 has its trigger distance

reduced and is inactive by default. If the target surface fluctuates and raises higher than

expected, sensor 2 triggers and informs the robot to move away from the target surface.

When the TCP moves a sufficient distance from the target, sensor 2 deactivates,

returning the application into its normal state. This is visualised in Figure 3-31.

As discussed in chapter 3.4.2, different sensor positions were tested. To

accommodate these configurations Figure 3-32 shows the sensor mounts that are

designed in SolidWorks 2020 and 3D printed using PLA plastic. The thought process

behind these designs is to test whether the positioning of the sensors around the TCP of

the robot effected the accuracy of the system. For example, initial experiments showed

a lag in when between sensor activation and robot movement, so an additional sensor

mount was developed to test whether this delay could be compensated for in the design

of the sensor mount. Various designs were considered during the conceptualising stage

but 3 designs were chosen to experiment with. These are shown in Figure 6-2.

 65

Figure 3-31 Sensor trigger distance configuration

Figure 3-32 Example sensor mounts

3.8.2 Data Acquisition Device

These sensors are connected via a USB-1608G Data Acquisition device (DAQ) [104]

manufactured by Measurement Computing (Figure 3-33). The USB-1608G DAQ was

chosen because it is low cost and has digital inputs that the sensors which are to be used

in this project are compatible with. The DAQ connects to a laptop via USB. By

connecting the data terminal of sensor 1 to DIO1 terminal on the DAQ and sensor 2 to

terminal DIO2. Negative terminal grounded and positive terminal to the 5v. Testing

using MCC’s company’s software called DAQami confirms operation of the sensors.

Utilising the Python libraries provided by MCC, sensor input is then incorporated into

the main application. The two sensors are set up adjacent to the end effectors tool centre

G
ri

p
p

er

Target Surface

Sensor Mount

S
en

so
r

2

S
en

so
r

1

Sensor 1

Trigger Point
Sensor 2

Trigger Point

 66

point directed at a single location at the tip of the TCP.

Figure 3-33 USB-1608G DAQ

 Investigatory Experiments

Initially a better understanding on how to use the RSI software was required. The

following sets of experiments were designed to test basic movements of the robot and

different settings of the RSI software. The results of these experiments were fed back

into the design of the application and the final design was tested in chapter 6. Before

moving on to more complex movements initial control over the robot needed to be

proven. The following series of motions were tested to verify whether a sufficient

understanding over the communication with the robot and the RSI package employing

control over the robot was held. Each test was developed to incrementally more

complex than the previous, culminating in a fully developed concept that can be taken

forward to more advanced movements.

3.9.1 Experimental design

The first set of tests is to establish communication with the robot. Starting by

establishing a connection whilst maintaining stability. Following successful

communication, a set of tests were designed (Table 3-4) to establish how to move the

robot successfully, and is aimed at testing the limits of the basic controls of the robot.

Moving the robot in incrementally larger steps to ascertain the velocity and movement

sizes allowed by the RSI system. The purpose of these sets of experiments is to establish

the greatest movement allowed in a single correction. For movements under 1 mm in a

single motion, the movement was smooth and without issue, however when moving 1

mm, the robot movements included a lot of vibration, and any greater movements

resulted in a violent jerk or velocity errors from the system. Whilst almost identical to

the previous set of experiments, the purpose of set 2 is to establish the difference in

 67

relative and absolute movements within the RSI package to determine the more

appropriate method of control for the application. As discussed in chapter 3.6.1.5 the

difference between these movements types is how the robot received correction data.

Whereas relative movements receive each correction individually, e.g. three correction

values of 0.1, resulting in a total movement of 0.3 mm, absolute movements receive a

total movement amount, e.g. three corrections of “0.1, 0.2, 0.3” for a total movement

of 0.3 mm. This means that any movement larger than 1 mm requires additional

calculation to send the correct correction value to the system. Experiments 3-1 and 3-2

were used to test larger movements of the robot. Experiment 3-1 was an addition to the

previous tasks as the application is required to calculate the appropriate correction

values at a speed the robot can handle. Whilst initially this resulted in jerky movements,

lowering the correction value resulted in smoother movements. Moving to a particular

coordinate was a more challenging task to test the robot’s movement in more than one

axis. The fifth set of tests is related to influencing motion of an existing KRL

application. First to test how modifying the movement of the robot moving in a LIN

movement and secondly testing the influence to the robot moving in a CIRC movement.

As expected both movements worked correctly and the only difference between free

movement and correctional movement are the RSI the values in the KRL program.

Table 3-4 Initial experiment plan

Test Description

0-1 Establish connection with robot controller

0-2 Receive information from controller

0-3 Send information to controller

1-1 Move robot +0.1 mm in X axis using Relative movements

1-2 Move robot +0.2 mm in X axis using Relative movements

1-3 Move robot +1 mm in X axis using Relative movements

1-4 Move robot +2 mm in X axis using Relative movements

1-5 Move robot +5 mm in X axis using Relative movements

2-1 Move robot +0.1 mm in X axis using Absolute movements

2-2 Move robot +0.2 mm in X axis using Absolute movements

2-3 Move robot +1 mm in X axis using Absolute movements

2-4 Move robot +2 mm in X axis using Absolute movements

2-5 Move robot +5 mm in X axis using Absolute movements

 68

3-1 Move robot +100 mm in X axis

3-2 Move robot to X Y Z Cartesian coordinates

4-1 Influence control over existing KRL program on a plane

4-2 Influence control over existing KRL program on an arc

3.9.2 Results

These sets of experiments, whilst do not look overly useful, they are critical in

influencing the design of the Python application as they represent the fundamental

motions required in this task and the limits of these motions. These results also give

insights into further work needed to understand how the robot is moving versus what it

is expected. A limitation encountered when analysing results was that working with

such small movements and especially corrections to existing programs, it is often

difficult to actually see the corrections being made when the corrections are of such a

small value. The next chapter discusses a way of addressing this using the RSI software.

Another application is developed for the express purpose of data analysis to overcome

these issues going forward.

 Summary

Chapter 3 starts by detailing the workspace used in all experiments, including the

KUKA KR16 robot and its associated hardware. Included is all the configuration

information along with a detailed overview of the KUKA Robot Sensor Interface

software culminating in a set of pre-experiments to confirm appropriate understanding

has been achieved. The next section discusses the application that is developed to

utilise the KUKA hardware and software discussed in this chapter and the problems

encountered when doing so.

 69

 APPLICATION DEVELOPMENT

 Introduction

In the previous chapter the KUKA robot and its associated systems were set up and

tested to confirm a sufficient understanding of the underlying systems had been

achieved. This chapter takes the knowledge gathered and is applied to create a system

that interlinks all the components discussed in chapter 3. First the initial concept of the

software is discussed, followed by a breakdown of the main applications structure and

how it intends to operate. The user interface is then presented along with all the

unexpected problems encountered during development. Finalising in a summary of the

final system that is used in all future experiments.

 Initial Concept

KUKA’s RSI software exposes access to exert control over the robot, so a

communication interface and control system needed to be developed to interface with

this system. Reviewing previous literature there were two options available for

interfacing with the RSI software. The first being a Python interface designed for

previous versions of RSI and the other being the Robot Operating System. The decision

was made to write a custom piece of software to keep the software footprint low as ROS

required large amounts of libraries to be installed on a system. Additionally, the RSI

module for ROS is currently written in Python 2.7 whereas the libraries required for

communication with the sensors requires Python 3, this means the supporting ROS

libraries to interface with the RSI software would need to be re-written to support

Python 3. Three Python threads are created when running this program, the first

controlling the networking. The second running the user interface and the third

controlling the sensor logic. Multiple threads are used to reduce processor delay, to stop

the user interface from freezing and to allow the network communication run in the

background while calculations are being calculated to avoid network timeouts.

 Main application structure

The communication of the application operates in a closed loop where a UDP socket is

polled at 4ms intervals looking for data sent by the robot system. Any information

received is converted from binary into XML and the relevant variables are extracted

 70

and stored. This reply may contain a default set of zero values or positive or negative

correction values. The structure of the messages received is discussed in chapter 3.7.2.

 Figure 4-1 shows the operating loop of the communication function. The

process is broken down in to five steps. The program polls the network card and waits

for data to be received. If no data appears, the network connection times out, resets and

waits again. If information is detected the values is stored into a variable and step 2

continues.

• Process Message: The message received will be in binary format, this is

converted to a string to form an XML message, from here values are extracted

and validated for data integrity.

• Check Sensors: Any sensors attached to the system are probed for information.

The resulting values stored in variables.

• Update Status: The UI is updated and all new joint positions and message

values are refreshed.

• Formulate Reply: Values polled from the sensor system and from message

received and then used to perform the calculations need to produce correction

values to be sent to the robot.

• Send Reply: These values are then converted into binary and sent to the IP

address identified from the message previously received.

Figure 4-1 Python application communication process

Poll Network
Interface

Process
message

Check
Sensors

Update status

Formulate
Reply

Send
Message

 71

 User Interface

The initial user interface was designed using Python TK as a framework. Whilst bloated

and over saturated with numbers it proved rather useful in the initial debugging of the

application as well as testing of the RSI software. In Figure 4-2 the initial design of the

UI is shown before a more advanced version was completed for the final experiments.

The UI was heavily influenced by the RSI test server application. Through testing

discussed in chapter 3.9, the UI was modified to include buttons to trigger and labels to

view robot movements that were used when learning how to use RSI and influence the

robot (Figure 4-3). This allowed for quicker testing and debugging, along with exposing

sent and received information in a more presentable manner. The final interface shown

in Figure 4-4 is far removed from its predecessors. More focussed and to task, the UI

presents the basic information needed for operating the application by stripping out all

unnecessary information. The IP address is presented to ensure correct connectivity,

and then the Cartesian and axis values of the current robot position. Following this there

are two visual indicators representing each sensor state and the centre value displays

the current total correction value currently being used. Finally, a status box to display

current application state, with a “Run” and “Stop” button to initialise and stop program

operation.

Figure 4-2 Initial UI Concept

 72

Figure 4-3 Updated UI Design

Figure 4-4 Final UI Design

 73

 Unexpected problems

4.5.1 KUKA Documentation

Documentation relating the RSI technology is rather sparse. The main Robot Sensor

Interface manual [94] contained enough information for installation and configuration

along with several example applications to learn from but the manual lacked critical

information about the system variables that are available to be used when programming.

This was not shipped with the product. System variables were eventually found in

KUKA System Variables manual [105], whilst XML variables for the RSI network

configuration was found in a previous KUKA product named KUKA Ethernet KRL

[92], a previous product by KUKA and as a result they share a lot of the same system

variables.

4.5.2 Singularities

One of the initial problems encountered during development was a singularity found in

the robots starting position. A singularity was discovered when the robot axes were in

the following position: A1 0°, A2 -90°, A3 90°, A4 0°, A5 0°, A6 0°. This resulted in

errors on several axis, terminating the robots’ movement. A singularity in terms or

robotics is when multiple robot joints align in the same direction, the robot’s end

effector is unable to adopt certain poses. With the KUKA KR16-2, this results in the

errors mentioned above rather than risking damage to the robot by moving in an

unknown situation.

In the instance of this project, the problem was quickly overcome by moving

the start position of the robot to another position, thus avoiding this singularity in

particular. Whilst unlikely that the robot would hit this particular position during

running of its main application, the error must be documented as a robot in an existing

manufacturing environment would need to adjust its home position if this system is

implemented.

4.5.3 Network timeouts

When initially testing the RSI software a constant network connection with the robot

was difficult to maintain. This was because the program was not responding to the

messages sent by the robot correctly. Due to a lack of documentation, excessive

troubleshooting was required to determine why this was happening. Ultimately, it was

 74

found to be caused by interpreting the values received by the robot controller incorrectly

which resulted in incorrect values being sent back. The RSI system would catch this

information and terminate the program due to the error. These problems were overcome

when the modified user interface was used to display more information about what was

being sent and received, allowing the error to be identified and from this a resolution to

be created.

4.5.4 Multiple program threads

During initial development of the user interface a lock up in the user interface when

trying to influence the robot was encountered. The problem occurred due to the way the

program logic looped. During idle operating the program iterated through the user

interface code and the logic code without issue but when influencing the robot, a

secondary loop was created which did not allow any further user interface code to

execute. The solution to this was running multiple threads with the user interface code

and the program logic code separated into its own threads. A third thread was

introduced to run any code influencing the robot system, allowing all other threads to

run unimpeded. This had the additional benefit of speeding up execution, where the

communication thread would reply with the correct values to the robot even if the logic

thread had not completed processing. As long as the delay configured in the RSI

configuration had not been breached, it allowed the system to process information with

a built-in tolerance for a delay.

4.5.5 Erratic movement

During the first set of tests the robot experienced very sudden movements which

resulted in velocity errors from the robot controller. These errors were the result of poor

understanding and interpretation of the example RSI programs. For the robot to move

smoothly, the flow of correction values had to be consistent. For example, to move in

the X axis by a distance of 15 mm, a correction value of 0.1 needed to be sent to the

robot continuously until the distance of 15 mm was met. However due to poor

understanding, the resulting messages appeared: “0.1, 0.1, 0, 0, 0.1, 0” where as they

should have looked like “0.1, 0.1, 0.1, 0.1, 0.1, 0.1”. This was fixed within the source

code to smooth out the movement action.

 75

4.5.6 Velocity errors

Other than the issues discussed in the previous sections, a high number of velocity

errors were encounter, this time due to trying to move the robot quicker than it was

possible to do so. After running through a set of experiments discussed in the following

chapter more appropriate correction values were determined to use in further

experiments.

 Final System

Once all testing has completed, the final application operates as described in Figure 4-5.

The control system operates on a PC or Laptop, connected via Ethernet to the KUKA

C4 controller, the C4 controller then influences the robot. The sensors are connected to

the DAQ which is then connected via USB to the laptop. The system uses two variables,

to control the logic; the axis to move and a value called “data rate”. The data rate is the

value that is sent as a “correction” to the robot. This value represents the distance to

move the axis chosen in millimetres. When the sensors are triggered, a Boolean value

is used to represent its state. Two Boolean values represent each sensor and when these

values are received, the system communicates the data rate to the robot controller based

on the logic detailed in Figure 4-6. This set of logic is referred to as the “simple

algorithm”. A “smart algorithm” is introduced in chapter 6.2.

Figure 4-5 Overview of Control System

Kuka C4

Robot

Controller

Kuka

KR16-2

Robot

Control

System

(Laptop)

Photoelectric

Diffuse

Sensor

DAQ

 76

Figure 4-6 Sensor system logic flow

 Summary

This chapter takes the reader through the development of the position adaption system.

The concept, structure and interface of the application is discussed giving the reasoning

behind all design choices and all of the problems encountered throughout is detailed,

finalising in an overview of the final system. The next chapter takes a look at an

application developed as an offshoot of the position adaption system that has been

created for the sole purpose of gathering and analysing KUKA robot movement data.

Start

Sensor 1:

True

Sensor 2:

False

Sensor 2:

False

Set movement value:

data rate

Set movement value:

0

Set movement value:

data rate * -1

True

True

False

True

False

 77

 ROBOT DATA LOGGER

 Introduction

As discussed in chapter 3.9 a method for visualising robot movements was required for

more accurate analysis of robot movements. The following chapter discusses how this

was accomplished and how this method was further developed into a standalone

application which can be used to analyse in post full KUKA KRL programs. The

following chapter discusses the process of developing this tool and examples of what

information can be produced.

 Development

Whilst developing this system proposed in this thesis, it became apparent the

information passed between the robot controller and the laptop can actually be quite

useful for post analysis. Modifying the existing program to expose more values through

the RSI Software, a subroutine was added for recording said data to a comma-separated

value file (CSV). Later being moved into its own independent program, the system has

the ability to add the relevant RSI code to existing KRL files to enable this functionality

and then runs as on a third-party device connected to the controller via Ethernet. Whilst

the main KRL program is operated, the system records all data being sent by the

controller. When running with larger KRL programs a problem became apparent when

the network connection would time out. Debugging the code to resolve the issue led to

discovering that the process of writing to the CSV file become increasingly more time

consuming as the file grew in size. This would delay the communication loop of the

main program causing the timeout. Moving the CSV writing process to separate thread

resolved the issue as the two processes now run concurrently without one process

delaying another. The resulting CSV file contains 25 columns of data which can then

be interpreted in programs such as Microsoft Excel or Matlab. The headings listed in

Table 5-1 summarise each column, each RIst, RSol, AIPos and ASPos have 6 columns

each representing either the XYZABC coordinates of axis 1-6 and Figure 5-1 shows an

example of a typical log file created after a KRL program has been run.

Table 5-1 RSI Datalogger Column Headings

Column Header Description

IPOC Timestamp of movement

 78

RIst Setpoint position of robot TCP

RSol Actual position of robot TCP

AIPos Setpoint position of robot axis

ASPos Actual position of robot axis

The Figure 5-2 to Figure 5-4 show information collected when using this RSI data

logger in conjunction with a KRL program used to place components on a PCB. Using

this data, individual target points that the robot is moving to can be visualised. In Figure

5-2 Matlab was used to plot the coordinates to visualise the positions of a KRL program.

Each position would represent a component to be placed on the PCB. Each point

represents either the start location, part feeders, or target component locations and is

useful for analysing theoretical vs actual and for validating a KRL program is correctly

programmed. Additionally, the robot TCP trajectory can be plotted. This is useful when

optimising robot movements because when watching a robot in operation it is difficult

pinpointing a singular movement when there are multiple rapid movements in

succession. Figure 5-3 gives an example of how this can be visualised. Not only can the

robot movement in a three-dimensional space be visualised but it can also be viewed in

a two-dimensional context. In Figure 5-4, joint 1 to 6 of the robot over the total time

period of the application running is compared. This is useful to view how each of the 6

joints is moving during the total operation of the program and to test to see if there is

any correlation between their movements.

 79

Figure 5-1 Example RSI data

 80

Figure 5-2 RSI Datalogger Point Data

 81

Figure 5-3 RSI Logger Actual Movements

 82

Figure 5-4 RSI Logger Axis Position Comparison

 83

 Standalone application

A standalone package was developed with the aim of being easy to use. A user interface

was constructed shown in Figure 5-5. In this UI, two sets of options are presented, the

primary being to initiate the data logging process and the second being a method to

modify the existing KRL code to include the required RSI configurations files needed

for the logging software to work. The output of this file is a duplicate of the original

KRL program with the appendage “_rsi”. This appendage was to not overwrite the

original application and allow for additional analysis rather than a replacement. Once

the RSI code if added to a file, that program will no longer operate on the KUKA robot

without the RSI logger software active. Accompanying RSI configuration files and

instructions are packaged with the program. For the remainder of this project the

functions presented in this chapter are built in to the final application for testing and

verification purposes.

Figure 5-5 KUKA Logger UI

 Summary

This chapter demonstrates the KUKA data logger application which has been developed

in response to requiring a more accurate way of analysing the experimental data within

this thesis. The next section goes back to focusing on the position adaption system and

outlines the optimisation phase of development which in part utilises methods discussed

in this chapter.

 84

 OPTIMISATION EXPERIMENTS

 Introduction

Previous chapters have covered the conception, testing and development of the position

adaption system created in this thesis. This chapter takes the application and runs it

through a series of experiments to investigate whether further optimisation is possible.

A set of different parameters such as speed and sensor position are tested and an

algorithm derived to improve system accuracy is introduced. The results are then

collated and analysed to introduce further improvements.

 Experimental design

Any adaptations to robot movement needed to be visually analysed because simply

observing these changes while the robot was moving proved difficult. From the

previous experiments the need to improve upon the data analysis of the experiments

was identified. Whilst having the ability to record this data is beneficial, it required a

means to visualise it. The initial concept for these optimisation experiments was to use

folded paper shapes to act as obstacles for the robot to avoid. However, it proved

difficult to visualise these shapes on a graph, the paper would flex and fold under the

its own weight and if the robot TCP collided it would result in an obstacle being

permanently disfigured. This meant any experiments undertaken with this type of

obstacle would yield inaccurate results. To resolve this a series of shapes was developed

where their geometric data is structured by an equation or set of graph coordinates

which can then be overlaid onto a plot along with the robot data recorded to analyse the

effectiveness of the overall system and to identify improvements.

Each object would be 150 mm long and have varying degrees of change in the

shape presented. The first object shown in Figure 6-1a is 150 mm long section with a

small inclination at the centre. This a simple object to test basic functionality of the

program to adapt to a small variation. The second object demonstrated in Figure 6-1b

has a large inclination at the centre to test the upper limits of its ability to adapt. The

third object (Figure 6-1c) is a sine wave with a smaller amplitude repeated to test the

applications ability to adapt to repeated variations in surface materials over a short

distance. These objects were derived from mimicking the types of deformation likely

to be encountered during the process of polymer welding industrial pipes. In this sort

of application, you would encounter gradual change in surface shape rather than

 85

encountering a random shaped object. To test both minor change in surface and large

changes object 1 and 2 was developed. Object 3 was an extension of this thinking and

designed to replicate a large number of variations rather than a singular change.

Figure 6-1a to c are created with equations 1-3 respectively. Creating the objects

in this manner allows for easy calculation of the expected trajectory of the robot. The

base KRL program used for these experiments is a simple LIN motion between two

points, the XYZ coordinates generated from this movement is used as inputs for three

equations to plot the expected trajectory of the robots TCP when the sensor system is

used in conjunction with each object. In chapter 6.3 the expected trajectory is compared

with actual to visualise how the robot is moving against what is expected.

a b

c

Figure 6-1 Example obstacle objects; (a) Object 1 (b) Object 2 (c) Object 3

Equation 1 Object 1 equation

𝑦 = 10 ∗ sin (
𝑥 − 37

24.3
) + 11

 86

Equation 2 Object 2 equation

𝑦 = 30 ∗ sin (
𝑥 − 37

24.3
) + 31

Equation 3 Object 3 equation

𝑦 = 10 ∗ sin (𝑥 −
12.7

7.95
) − 12

Additional to experimenting with different obstacles, a set of three different sensor

mounts was tested to analyse the effectiveness of photoelectric diffuse sensors

positioned in different orientations to see whether the position of the sensor affects the

response of the system. The first mount shown in Figure 6-2a positions the sensors next

to each other angled at 10 degrees so the target locations converge at the same point.

This is then mounted to the robot using the gripper and orientated at a 27-degree angle

to focus the sensors at the TCP. Figure 6-2b shows a mount where the sensors are

positioned either side of the end effector, angled at 32 degrees to converge on the TCP.

These two designs represent possible mounting points of these sensors onto existing

equipment. When considering robot plastic welding for example, the TCP is going to

be subject to very high temperatures, which means keeping the sensors away from this

point was important. The mount shown in Figure 6-2c is similar to Figure 6-2b but the

sensor positions are offset by 5.7 mm to target ahead of the robot TCP. The purpose of

this was to test to see whether sensing changes in the target surface ahead of time is

adequate as the cycle time of the KUKA RSI software may not be quick enough to

compensate for changes at high speed. Each of these sensor mounts were designed and

3D printed so that quick replacements with optimised modifications if needed.

In Appendix A, Table 9-1 details the list of parameters used for each experiment

conducted. The purpose of these tests was to analyse how the application developed in

chapter 4 responds against different obstacles using different data rate values, robot

speeds and sensor mounts. In addition to testing these parameters, two more parameters

of a more advanced algorithm were tested. This “smart algorithm” was developed to

control the data rate value being sent to the robot unlike the simple algorithm which

used a fixed data rate value. This “smart algorithm” has two parameters which need to

be optimised. The “smart delay” which represents the number iterations the algorithm

logic loops through before incrementing the data rate with the “smart increment” value.

 87

The number of loops is referred to as “cycles” through the rest of this thesis. The smart

increment is the value actually added to the data rate. Each experiment was conducted

in the YZ frame. A total of 240 tests were completed. Figure 6-3 illustrates the expected

outcome when the robot is operated with the sensor system active and Figure 6-4 shows

the KRL program trajectory that is used in our experiments.

a b

c

Figure 6-2 Sensor mount designs (a) Adjacent Sensors (b) Parallel sensor mount (c)

Parallel offset sensor mount

Figure 6-3 Linear Experiment

Gripper

TCP

Obstacle

Planned Path

Expected motion

 88

Figure 6-4 Baseline LIN results

 Results

In the following section the results from the experiments conducted are discussed. The

aim of these experiments is to establish how capable the system is in maintaining a

fixed distance from the target surface when an obstacle of unknown geometry is

encountered in the robot TCPs path. Additionally, to identify optimum values for the

smart algorithms’ parameters. First, a comparison of the different objects is used to test

the system using the simple algorithm. Then how different robot speeds and data rates

affect the responsiveness of the sensor system. This is then followed by testing different

sensor mounts and validating them. Next the same tests are repeated but now using the

smart algorithm. The results are evaluated and compared to the simple algorithm to

establish whether the smart algorithm performs any differently to the simple. Next a set

of experiments to test different parameters of the smart algorithm is performed to see if

any optimisation can be made. Finally, the optimum values are selected from these

results and a last set of tests is performed. Tests were conducted using speeds of 1%,

3%, 5%, 10% and 30% of 2 m/s.

To help evaluate these results a scoring system was devised to analyse the

effectiveness of each experimental run. To calculate the score the actual trajectory of

 89

the robot is compared to the position of the obstacle. Each obstacle was designed to be

150 mm in length which means equation 4 below can be used to calculate a value where

x1 represents the X coordinate of the obstacle and x2 represents the X coordinate of the

actual robot trajectory. The sum of x2 value deducted from x1 value at each millimetre

point on the X axis is divided by 100 to give a score. This demonstrated in Figure 6-5,

the yellow line represents the object, the orange line represents the KRL programmed

path and the blue line represents the actual trajectory. If the program results in a run

that is largely under the object line the score becomes positive, if the robot is completely

avoiding the obstacle the score becomes negative, the closer to zero the value gets the

more accurate the system is.

Equation 4 Accuracy Score Equation

Figure 6-5 Example trajectory comparison

 𝑥 − 𝑥

100

 90

Figure 6-6 Invalid Data Example

The first set of experiments completed highlighted a few inaccuracies in the

experimental design. The first being a slope in the Z axis between the start and end

points of the LIN movement found in the KRL program which was used as a base to

these experiments. Whilst a minor issue, it made visualising the experiments difficult

because it did not accurately represent the surface of the podium used. Next a problem

with the data logger was found, information from previous runs was carrying over to

the next which contaminated the results. An example of this is highlighted in Figure

6-6a. Figure 6-6b also shows there was a problem with the calibration of the sensors.

Too large of a gap between the sensor 1 and 2 triggering height resulted in the robot

positioning itself too close to the surface at the initial run of the experiment and then

too far away at the end of the movement. To resolve this problem, the start and finish

positions of the run were adjusted to be closer to the centre of the table and performing

dry runs of the experiment without any objects in between when calibrating the sensors

to ensure they trigger where expected.

As discussed in chapter 6.2, three objects were designed for these experiments.

Figure 6-5a shows a subset of results displaying the typical response from each obstacle.

While these varied slightly through other parameters discussed later on they are largely

representative of all results relating to the objects used as seen in Figure 6-7. Each

experiment run resulted in the robot TCP being unable to maintain its fixed distance

from the object. Despite this result in Figure 6-8, object 1 and 2 have movements

A

B

 91

resembling the objects being tested even though they did not manage to fully avoid the

obstacle. Object 3 on the other hand did not respond well, Figure 6-7c shows an

example of a completed run. All remaining results are very similar which suggests that

the system is incapable of repeat variations in a defined space or that the photoelectric

sensors are simply not capable of responding in time. When analysing the results in

Table 6-1, object one - the smallest object, scored the lowest, whereas these scores

jumped significantly when testing the larger object 2, and then reduced for object 3.

This suggests there is an upper limit to the size of corrections capable of being made by

the adaptive system developed. Object 3 on the other hand produced low scores because

the system tends to cut through the middle of the object. This shows that whilst these

scores are useful in analysing each configuration used, without a visual understanding

of the movements the scoring would produce inaccurate results.

 92

Figure 6-7 Example results of all objects using 0.01mm corrections

 93

Figure 6-8 Example of object 1 and 2 - 0.1 corrections

 94

The first observation made when comparing the various speeds tested is a trend between

the speed of the robot and smoothness of the correction. At the lowest speed of 1% the

robot produces a large number of fluctuations between the two sensors trying to correct

its position. However, when increasing the speed of the robot these jagged lines smooth

out but as a consequence the system is unable to move the robot TCP the same distances

as it can at slower speeds. Figure 6-9 shows a comparison of using mount 1 with object

2 with a data rate of 0.01 mm, 0.05 mm and 0.1 mm. 8-9b and c both show that the

system is reacting to the change in surface and does go some way into reacting

effectively however there is still a gap of 10 mm between where the object is and where

the TCP should be. When reviewing the scores of the experiments derived from

equation 4 shown in Appendix A Table 9-4, overall 1% speed scored highest in 9 out

of 15 groups of tests followed by 3% which scored highest in 3 out of the 15 tests.

In all experiments a data rate of 0.01mm provided too little of a change and does

not allow the robot to compensate at a speed that matches the speed of the KRL program

but provides a smoother trajectory. 0.05mm changes produced much better results as

seen in Figure 8-9, however the higher speeds result in the trajectory curved flattening

off. The 0.1 mm corrections provided the more accurate movements, however this in

turn introduces a lot of instability in the movement at lower speeds. In particular, it was

observed that movements become sharp and overcompensation is common.

 95

Figure 6-9 Mount 1 - Object 2 Speed Comparisons

 96

Figure 6-10 Mount 1, 2 and 3 compared

 97

When comparing the three mounts, mount 3 seems to perform the best when observed

visually but also when comparing the accuracy scores. In Figure 6-10c looking at line

A, mount 3 responds before mounts 1 and 2. Again at line B you can see the sensors

moving and the robot reacting to objects and finally at line C the motion taking place

where as mounts 1 and 2 shown in Figure 6-10a and b respond at a later point. The draw

back here is at line D the sensors stop responding sooner than the other two mounts.

Overall, sensor mount 3 provided consistently better accuracy scores which can be seen

in Table 6-2. This suggests that there is a delay between sensing and the robot

responding, so compensation needs to be factored in to get a better result.

Table 6-1 Mount comparison results

Obstacle Robot

Speed

Algorithm Data

Rate

Accuracy Scores

Adjacent Parallel Parallel

Offset

2 1% Simple 0.05 16.69 20.60 18.17

2 3% Simple 0.05 29.51 25.03 20.91

2 5% Simple 0.05 36.88 30.98 27.28

2 10% Simple 0.05 33.90 37.44 35.46

2 30% Simple 0.05 42.38 42.92 40.627

After completing the experiments using the simple algorithm it became apparent that a

speed of 1% was needed to make any significant change in robot trajectory due to the

fixed data rate limiting the maximum attainable change in distance. Any speed greater

than 1% reduced this maximum value further. The smart algorithm was derived to

attempt to overcome this issue, its function is to scale up the smart increment value

based on the length of time the sensors were triggered. It also filters out any minor

fluctuations in the sensor readings to smooth out any movements made, this is done by

implementing a correction if the sensor is triggered two cycles consecutively. Early

tests show the accuracy value is slightly lower with all mounts, but mount 3 again

provided better results overall, this can be seen in Figure 6-11. This algorithm operates

on two values, these being the delay value and change increment value. The delay value

operates to slow the increment value changing. If this was not used the change value

would almost instantly get to its maximum value before the sensor system cycled. The

change increment value is simply the value added to the value sent to the robot on every

 98

cycle the sensors are active. Whereas originally a fixed value was sent every time the

sensors were triggered, when consecutively triggered this would raise in 0.01 steps. A

start value of 0.01 was used to provoke a smoother response with a maximum value of

0.1.

Figure 6-11 Smart algorithm results compared

Figure 6-12 Further smart delay experiment results using mount 3 [Cycles]

When looking at the accuracy results in Appendix A Table 9-2, a delay value of 100

cycles slightly improves upon the results of the 500-cycle delay. A cycle being the

500

520

540

560

580

600

620

640

Mount 1 Mount 2 Mount 3

To
ta

l A
cc

u
ra

cy
 S

co
re

Mount Used

18

18.5

19

19.5

20

20.5

21

21.5

0 50 100 150 200 250 300 350 400 450

A
cc

u
ra

cy
 S

co
re

Smart Delay Value [Cycles]

 99

number of iterations in the algorithm loop. This suggested that this variable could be

fine-tuned to offer better results. Further tests were then run comparing additional

delays of 50, 100, 150, 200, 300 and 400 using a small subset of parameters such as a

single mount and object. The results shown in Table 9-3 and Figure 6-12 show an odd

pattern. As the delay value gets greater the result value gets higher meaning further

deviation from the desired trajectory, except for the value of 300 which sees a partial

drop in its results value suggesting this is the optimum value. When looking visually

studying the results shown in Figure 6-13, whilst 300 may offer a more accurate

movement, the shape of the curve is pointed. Visually a value of 150 appears to be

closer to the shape of the object and a smoother trajectory. Figure 6-13 shows that the

higher the delay meant the robot was responding to the object too slow resulting in the

case of the 400 value as almost missing the object.

Table 6-2 shows the results of testing individual increment values. The results

show that the larger the increment value is the better the accuracy value, however the

larger the number the higher frequency of fluctuations can be seen in the trajectory, a

trend as seen in experiments previously discussed. When studying the Figure 6-14 the

value of 0.02 seemed to offer the smoothest movement resulting in a movement closest

to the object being avoided.

Table 6-2 Increment values results

Obstacle Robot

Speed

Algorithm Data

Rate

Smart

Delay

Smart

Increment

Score

2 3 Smart 0.01 100 0.01 19.16

2 3 Smart 0.01 100 0.02 18.66

2 3 Smart 0.01 100 0.05 18.84

2 3 Smart 0.01 100 0.1 18.20

 100

Figure 6-13 Delay Values Compared

 101

Figure 6-14 Increment Values Compared

 102

 Summary

This section of optimisation has largely been successful and has given some insights

into the ideal parameters for the smart delay, smart increment and data rate. Two

common trends were identified when reviewing the results of the parameter tested

during experimentation, the greater the value sent in a single cycle to move the robot

the closer to the desired coordinates the robot moved. However, the greater these values

the greater the instability in the associated movement. When consecutive movements

are made any change in axis direction results in a sharp movement often resulting in a

torque error on the robot. A balance is needed between the robots overall operating

speed and the data rate value used to influence the robot’s motion. Introducing the smart

algorithm mitigates some of these issues by scaling the data rate based on movement

duration. Whilst the smart algorithm has improved the sensor system responses, it is

unlikely to solve the main problem where the corrected trajectory of the robot is not

capable of navigating around the object. The peak of each object is typically where the

issue is observed. Figure 6-15 shows a 11.1 mm gap between the object and the

trajectory. Further tests need to be conducted to try and isolate this issue. Additional

materials as the target surface need to be tested as infrared absorption could be what is

preventing the sensors from reacting appropriately. Aluminium is the most reflective

surface for the IR sensors so a round of experiments will be conducted using this as a

surface. If this can be removed then a selection of experiments will be re-run to validate

previous findings. Then a final set of experiments will be conducted used the optimum

values found during this phase of optimisation.

 103

Figure 6-15 Trajectory Gap

 104

 CONCLUSIONS

This thesis is the culmination of study and development towards the goal of creating a

robot end effector position varying system that is capable of maintaining a specified

distance between the robot TCP and a target work surface. The aim of this research was

to develop a novel concept to allow an industrial robot to adapt to deformations in a

surface material to maintain a specific distance between a robot end effector using

photoelectric diffuse sensors. The system needed to be able to adapt to an unknown

geometry or surface that has inconsistent surface levels. For a better understanding of

industrial robotics an in-depth study was taken into its history with particular focus on

articulated robots and robot applications. Then to gain familiarity with the research

laboratory resources, a study of KUKA robots and established robot operations was

collated. Existing methods of interfacing peripheral technology with a KUKA robot was

investigated, and research into software and hardware requirements with an overview of

different types of sensors applicable to this research given was completed. Using a KUKA

KR16-2, a six-axis articulated robot; a system was designed and tested utilising a

developed Python program that can interface two photoelectric diffuse sensors and a

KUKA C4 controller via a computer utilising the KUKA Robot Sensor Interface software.

To test the viability of this system a series of experiments was completed using

the KUKA KR16-2 robot paired with a KUKA C4 controller. This system was taken and

applied in a laboratory setting. Results of these experiments was recorded using another

developed Python program that was written to read the values received from the KUKA

Robot Sensor Interface and record them to a file. This file then contains robot movement

data captured whilst the robot is in full operation. This data was then evaluated using a set

of custom functions created in Matlab to visualise robot movements. A scoring system

was developed using the robot positional data to work in combination with these

visualisations in order to identify which experiments performed best and closest to the

expected outcome.

The key findings from the experiments undertaken were:

• A software package was developed with capabilities to influence a KUKA KR16-

2 robots movements based off sensory input from two photoelectric diffuse

sensors. The package was written in Python and designed to be light weight and

compatible with low cost computer systems such as a Raspberry Pi. This system

is designed to be integrated into existing manufacturing environments with ease

 105

and can be operated with digital sensors.

• An algorithm was developed to dynamically calculate values being communicated

to the KUKA robot. These values are determined by the combination and duration

of the sensor values being supplied. Two key values are used to configure this

algorithm, a delay value which represents the number of iterations the system logic

loops through before outputting and an increment value which is a float value that

is added to the correction value that is then sent to the robot. This algorithm was

tested against a simpler version that contained static correction values to determine

effectiveness and was determined to provide a higher rate of accuracy when

moving the robot to its required position to avoid an obstacle.

• An optimum increment value of 0.05 mm was identified through 240 iterations of

experiments when compares against values of 0.01, 0.02 and 0.1 mm.

Additionally, an optimum delay value of 200 algorithm cycle iterations was

applied in the same set of experiments where values of 50, 100, 150, 200, 300 and

400 were tested. The increment and delay value results were evaluated by means

of visual inspection and a scoring system that was created for this project.

• Comparing the KUKA robot operating speed, percentages of 1, 3, 5,10 and 30%

of 2 m/s was tested. A speed of 0.1 m/s was identified as the optimum speed for

the robot to operate at when using the proposed positioning system presented in

this thesis. 0.1 m/s offered a balance between speed and accuracy when compared

to the other values.

• Through testing three different sensor mounts it was identified that positioning the

systems sensors at a distance of 5.7 mm ahead of the tool centre point resulted in

corrections closer to the desired trajectory of the robot over sensors targeted

directly at the TCP.

• To further understand the robot movements, a program to record robot path

operations for the use with KUKA robots supporting the Robot Sensor Interface

software was developed. The application is capable of producing detailed value

files and the Matlab functions can create plots from these files to view the robot’s

movement and to compare joint positions from multiple programs.

The results of these experiments showed the position adaption system worked as expected

despite the system underperforming due to the sensors utilised. Using photoelectric

 106

diffuse sensors proved to not provide enough accuracy when detecting surfaces for the

system to work at its optimum, they demonstrated the system works as intended and

showed it would still find a place for a wide range of industrial applications. Photoelectric

sensors had been used as a low-cost solution in an environment where resources were

limited. There are however sensors on the market that would offer better accuracy and

could work very well in conjunction with the system designed. Further work could be

undertaken to investigate this. With the existing sensor system additional research can be

conducted to provide a more defined specification as to which materials the photoelectric

sensors work best with. Additional obstacle such as cylindrical objects can be tested to

further verify the ability of this. Finally, the system can be tested in conjunction with one

of its intended applications such as plastic welding or spray-painting surfaces. This would

be to verify the system’s ability to successfully compensate when actively welding or

painting and object.

 Future work

The KUKA robot logging software developed in this thesis is extremely valuable for

assisting current and future research that utilise a KUKA robot. Its ability to record KUKA

robot movements in conjunction with the functions in Matlab for analysis will

complement future work well by giving researchers a better way of visualising robot

movements. This software lends itself to aiding research in many other areas of robotics.

Future development of the position adaption system would focus around applying the

system to real world applications such as hot gas welding or spray painting to assess the

viability of it and to further refine the system and algorithm. There is scope to apply

different sensors more suited to the application intended and other industrial applications

outside of the initial areas considered. Once a real-world application is validated future

work in machine learning can be applied. With the data logging features developed in this

thesis, data sets containing information on industrial processes could be built and

analysed. This information can then be applied using machine learning and neural net

algorithms which could be integrated in to the adaption system, enabling a degree of

artificial intelligence. Further following the Industry4.0 trends, smart factory functionality

could be added including real-time data communication.

 107

 BILBIOGRAPHY

[1] D. M. Fryer and J. C. Marshall, ‘The Motives of Jacques de Vaucanson’,

Technology and Culture, vol. 20, no. 2, pp. 257–269, 1979, doi:

10.2307/3103866.

[2] J. Riskin, ‘The Defecating Duck, or, the Ambiguous Origins of Artificial Life’,

Critical Inquiry, vol. 29, no. 4, pp. 599–633, Jun. 2003, doi: 10.1086/377722.

[3] E. J. Hobsbawm, The age of revolution 1789-1848, 1st Vintage Books ed. New

York: Vintage Books, 1996.

[4] P. Corke, Robotics, Vision and Control, 2nd ed. Springer International Publishing.

[5] J. G. C. Devol, ‘Programmed article transfer’, US2988237A, Jun. 13, 1961.

[6] ‘Japanese robots at Expo 2005 Aichi’, Mar. 06, 2006.

https://web.archive.org/web/20060306224452/http://int.kateigaho.com/spr05/robo

ts.html (accessed May 15, 2020).

[7] ‘The Stanford Arm’.

http://infolab.stanford.edu/pub/voy/museum/pictures/display/1-Robot.htm

(accessed May 15, 2020).

[8] ‘History of KUKA: Automation then and now’, KUKA AG.

https://www.kuka.com/en-gb/about-kuka/history (accessed May 17, 2020).

[9] ‘What is Automation?- ISA’, International Standards of Automation - What is

automation? https://www.isa.org/about-isa/what-is-automation/ (accessed May

18, 2020).

[10] R. O. M. T. POSTED 06/12/2018, ‘Top 6 Future Trends in Robotic Automation’,

Robotics Online. https://www.robotics.org/blog-article.cfm/Top-6-Future-Trends-

in-Robotic-Automation/101 (accessed May 18, 2020).

[11] IFR, ‘Top Trends Robotics 2020’, IFR International Federation of Robotics.

https://ifr.org/ifr-press-releases/news/top-trends-robotics-2020 (accessed May 18,

2020).

[12] ‘Automation - Manufacturing applications of automation and robotics’,

Encyclopedia Britannica. https://www.britannica.com/technology/automation

(accessed May 31, 2020).

[13] ‘What is Industrial Automation | Types of Industrial Automation’, ELECTRICAL

TECHNOLOGY, Sep. 26, 2015.

https://www.electricaltechnology.org/2015/09/what-is-industrial-automation.html

(accessed May 31, 2020).

[14] R. O. M. T. POSTED 11/28/2017, ‘7 Common Types of Robotic Welding

Processes and When They’re Used’, Robotics Online.

https://www.robotics.org/blog-article.cfm/7-Common-Types-of-Robotic-

Welding-Processes-and-When-They-re-Used/72 (accessed May 18, 2020).

[15] Y. Li, Y. F. Li, Q. L. Wang, D. Xu, and M. Tan, ‘Measurement and Defect

Detection of the Weld Bead Based on Online Vision Inspection’, IEEE

Transactions on Instrumentation and Measurement, vol. 59, no. 7, pp. 1841–

1849, Jul. 2010, doi: 10.1109/TIM.2009.2028222.

[16] K. Suwanratchatamanee, M. Matsumoto, and S. Hashimoto, ‘Robotic Tactile

Sensor System and Applications’, IEEE Transactions on Industrial Electronics,

vol. 57, no. 3, pp. 1074–1087, Mar. 2010, doi: 10.1109/TIE.2009.2031195.

[17] Y. Feng, Z. Chen, D. Wang, J. Chen, and Z. Feng, ‘DeepWelding: A Deep

Learning Enhanced Approach to GTAW Using Multisource Sensing Images’,

IEEE Transactions on Industrial Informatics, vol. 16, no. 1, pp. 465–474, Jan.

 108

2020, doi: 10.1109/TII.2019.2937563.

[18] P. Kushwah, ‘Plastic Welding Technique’, 3, 2019. [Online]. Available:

www.ijtre.com.

[19] ‘Hot gas end effector’, Valk Welding Website, 2018.

https://www.valkwelding.com/en/news/welding-of-plastic (accessed Jan. 16,

2020).

[20] ‘Eugen Riexinger GmbH & Co. KG Robot Milling and Welding’, YouTube.

https://www.youtube.com/channel/UCQqMA-Ml822uwJdYx1L81Ww (accessed

Jan. 16, 2020).

[21] A. S. Vempati et al., ‘PaintCopter: An Autonomous UAV for Spray Painting on

Three-Dimensional Surfaces’, IEEE Robotics and Automation Letters, vol. 3, no.

4, pp. 2862–2869, Oct. 2018, doi: 10.1109/LRA.2018.2846278.

[22] Z. Meng, C. Li, G. Li, J. Zhao, and J. Yan, ‘Research of positioning method for

automatic spraying on large ship block surfaces’, in 2016 IEEE International

Conference on Real-time Computing and Robotics (RCAR), Jun. 2016, pp. 431–

436, doi: 10.1109/RCAR.2016.7784068.

[23] R. Chen, G. Wang, J. Zhao, J. Xu, and K. Chen, ‘Fringe Pattern Based Plane-to-

Plane Visual Servoing for Robotic Spray Path Planning’, IEEE/ASME

Transactions on Mechatronics, vol. 23, no. 3, pp. 1083–1091, Jun. 2018, doi:

10.1109/TMECH.2017.2747084.

[24] M. E. Helou, S. Mandt, A. Krause, and P. Beardsley, ‘Mobile Robotic Painting of

Texture’, in 2019 International Conference on Robotics and Automation (ICRA),

May 2019, pp. 640–647, doi: 10.1109/ICRA.2019.8793947.

[25] P. J. From, J. Gunnar, and J. T. Gravdahl, ‘Optimal Paint Gun Orientation in

Spray Paint Applications—Experimental Results’, IEEE Transactions on

Automation Science and Engineering, vol. 8, no. 2, pp. 438–442, Apr. 2011, doi:

10.1109/TASE.2010.2089450.

[26] Q. Yu, G. Wang, and K. Chen, ‘A robotic spraying path generation algorithm for

free-form surface based on constant coating overlapping width’, in 2015 IEEE

International Conference on Cyber Technology in Automation, Control, and

Intelligent Systems (CYBER), Jun. 2015, pp. 1045–1049, doi:

10.1109/CYBER.2015.7288089.

[27] ‘Experimenting with robots for grocery picking and packing’, Ocado Technology.

https://www.ocadotechnology.com/blog/2019/1/14/experimenting-with-robots-

for-grocery-picking-and-packing (accessed May 25, 2020).

[28] J. I. Ngadimin, F. I. Hariadi, and M. I. Arsyad, ‘Design and implementation of 3D

motion control of small scale pick and place surface-mount technology machine’,

in 2017 International Symposium on Electronics and Smart Devices (ISESD), Oct.

2017, pp. 95–100, doi: 10.1109/ISESD.2017.8253312.

[29] W. Zhang, J. Mei, and Y. Ding, ‘Design and Development of a High Speed

Sorting System Based on Machine Vision Guiding’, Physics Procedia, vol. 25,

pp. 1955–1965, Jan. 2012, doi: 10.1016/j.phpro.2012.03.335.

[30] Z. He, Z. Li, and J. Ma, ‘Research on a high-speed picking-placing motion of the

sorting robot based on the optimal picking point’, in 2016 Chinese Control and

Decision Conference (CCDC), May 2016, pp. 5148–5153, doi:

10.1109/CCDC.2016.7531917.

[31] ‘Aussies Win Amazon Robotics Challenge - IEEE Spectrum’, IEEE Spectrum:

Technology, Engineering, and Science News.

https://spectrum.ieee.org/automaton/robotics/industrial-robots/aussies-win-

amazon-robotics-challenge (accessed May 25, 2020).

 109

[32] A. Zeng et al., ‘Multi-view self-supervised deep learning for 6D pose estimation

in the Amazon Picking Challenge’, in 2017 IEEE International Conference on

Robotics and Automation (ICRA), May 2017, pp. 1386–1383, doi:

10.1109/ICRA.2017.7989165.

[33] M. Hakozaki, H. Oasa, and H. Shinoda, ‘Telemetric robot skin’, in Proceedings

1999 IEEE International Conference on Robotics and Automation (Cat.

No.99CH36288C), May 1999, vol. 2, pp. 957–961 vol.2, doi:

10.1109/ROBOT.1999.772431.

[34] Y. Yamada, T. Morizono, Y. Umetani, and H. Takahashi, ‘Highly soft

viscoelastic robot skin with a contact object-location-sensing capability’, IEEE

Transactions on Industrial Electronics, vol. 52, no. 4, pp. 960–968, Aug. 2005,

doi: 10.1109/TIE.2005.851654.

[35] ‘Cobots Take Over Undesirable Tasks, Optimize Assembly and Packaging by

30%’. https://www.youtube.com/watch?v=8e76BjH9ez4 (accessed Jun. 02,

2020).

[36] ‘Techman Robot Automatic Packing and Boxing’.

https://www.youtube.com/watch?v=X-WmAatNyrA (accessed Jun. 02, 2020).

[37] A. Owen-Hill, ‘Cobots in Packaging: The State of the Industry in 2018’.

https://blog.robotiq.com/cobots-in-packaging-the-state-of-the-industry-2018

(accessed Jun. 02, 2020).

[38] ‘1: Introduction | Human-Robot Interaction’. https://humanrobotinteraction.org/1-

introduction/ (accessed May 26, 2020).

[39] X. Lamy, F. Collédani, F. Geffard, Y. Measson, and G. Morel, ‘Overcoming

human force amplification limitations in comanipulation tasks with industrial

robot’, in 2010 8th World Congress on Intelligent Control and Automation, Jul.

2010, pp. 592–598, doi: 10.1109/WCICA.2010.5553839.

[40] ‘Ocean-fact-sheet-package.pdf’. Accessed: May 26, 2020. [Online]. Available:

https://www.un.org/sustainabledevelopment/wp-content/uploads/2017/05/Ocean-

fact-sheet-package.pdf.

[41] ‘Special Purpose Underwater Research Vehicle (SPURV)’.

http://www.navaldrones.com/SPURV.html (accessed May 26, 2020).

[42] J. Yuh, ‘Design and Control of Autonomous Underwater Robots: A Survey’,

Autonomous Robots, vol. 8, no. 1, pp. 7–24, Jan. 2000, doi:

10.1023/A:1008984701078.

[43] S. Negahdaripour, X. Xu, A. Khamene, and Z. Awan, ‘3-D motion and depth

estimation from sea-floor images for mosaic-based station-keeping and navigation

of ROVs/AUVs and high-resolution sea-floor mapping’, in Proceedings of the

1998 Workshop on Autonomous Underwater Vehicles (Cat. No.98CH36290),

Aug. 1998, pp. 191–200, doi: 10.1109/AUV.1998.744455.

[44] ‘Seafloor mapping AUV’, MBARI, Dec. 02, 2015. https://www.mbari.org/at-

sea/vehicles/autonomous-underwater-vehicles/seafloor-mapping-auv/ (accessed

May 26, 2020).

[45] K. Zwolak et al., ‘An unmanned seafloor mapping system: The concept of an

AUV integrated with the newly designed USV SEA-KIT’, in OCEANS 2017 -

Aberdeen, Jun. 2017, pp. 1–6, doi: 10.1109/OCEANSE.2017.8084899.

[46] P. Norgren and R. Skjetne, ‘Using Autonomous Underwater Vehicles as Sensor

Platforms for Ice-Monitoring’, MIC, vol. 35, no. 4, pp. 263–277, 2014, doi:

10.4173/mic.2014.4.4.

[47] N. Barrett, J. Seiler, T. Anderson, S. Williams, S. Nichol, and N. Hill,

‘Autonomous Underwater Vehicle (AUV) for mapping marine biodiversity in

 110

coastal and shelf waters: Implications for marine management’, Jun. 2010, pp. 1–

6, doi: 10.1109/OCEANSSYD.2010.5603860.

[48] D. Haulsee, M. Breece, D. Miller, B. Wetherbee, D. Fox, and M. Oliver, ‘Habitat

selection of a coastal shark species estimated from an autonomous underwater

vehicle’, Mar. Ecol. Prog. Ser., vol. 528, pp. 277–288, May 2015, doi:

10.3354/meps11259.

[49] J. Vincent, ‘Welcome to the automated warehouse of the future’, The Verge, May

08, 2018. https://www.theverge.com/2018/5/8/17331250/automated-warehouses-

jobs-ocado-andover-amazon (accessed May 31, 2020).

[50] ‘Your First Look Inside Amazon’s Robot Warehouse of Tomorrow’, Wired.

[51] N. C. Hou, L. W. Han, and L. M. Kuan, ‘Optimising Search Operations with

Swarm Intelligence’, in 2019 Asia-Pacific Signal and Information Processing

Association Annual Summit and Conference (APSIPA ASC), Nov. 2019, pp.

1993–1997, doi: 10.1109/APSIPAASC47483.2019.9023211.

[52] E. R. Magsino, F. A. V. Beltran, H. A. P. Cruzat, and G. N. M. De Sagun,

‘Simulation of search-and-rescue and target surrounding algorithm techniques

using Kilobots’, in 2016 2nd International Conference on Control, Automation

and Robotics (ICCAR), Apr. 2016, pp. 70–74, doi:

10.1109/ICCAR.2016.7486701.

[53] S. M. Thayer and S. P. N. Singh, ‘Development of an immunology-based multi-

robot coordination algorithm for exploration and mapping domains’, in IEEE/RSJ

International Conference on Intelligent Robots and Systems, Sep. 2002, vol. 3, pp.

2735–2739 vol.3, doi: 10.1109/IRDS.2002.1041683.

[54] P. Pirjanian and M. Mataric, ‘Multi-robot target acquisition using multiple

objective behavior coordination’, in Proceedings 2000 ICRA. Millennium

Conference. IEEE International Conference on Robotics and Automation.

Symposia Proceedings (Cat. No.00CH37065), Apr. 2000, vol. 3, pp. 2696–2702

vol.3, doi: 10.1109/ROBOT.2000.846435.

[55] Y. Meng and J. Gan, ‘A distributed swarm intelligence based algorithm for a

cooperative multi-robot construction task’, in 2008 IEEE Swarm Intelligence

Symposium, Sep. 2008, pp. 1–6, doi: 10.1109/SIS.2008.4668296.

[56] R. L. Stewart and R. A. Russell, ‘A Distributed Feedback Mechanism to Regulate

Wall Construction by a Robotic Swarm’, Adaptive Behavior, vol. 14, no. 1, pp.

21–51, Mar. 2006, doi: 10.1177/105971230601400104.

[57] ‘Spot® | Boston Dynamics’. https://www.bostondynamics.com/spot (accessed

May 31, 2020).

[58] O. R. Institute, ‘Legged Robots’, Oxford Robotics Institute.

https://ori.ox.ac.uk/theme/legged-robots/ (accessed May 31, 2020).

[59] A. Zeng, S. Song, J. Lee, A. Rodriguez, and T. Funkhouser, ‘TossingBot:

Learning to Throw Arbitrary Objects with Residual Physics’, 2019, Accessed:

May 27, 2020. [Online]. Available: https://tossingbot.cs.princeton.edu/.

[60] J. Tan et al., ‘Sim-to-Real: Learning Agile Locomotion For Quadruped Robots’,

arXiv:1804.10332 [cs], May 2018, Accessed: May 27, 2020. [Online]. Available:

http://arxiv.org/abs/1804.10332.

[61] O. Motors, ‘What is the Smart Factory and its Impact on Manufacturing?’, OTTO

Motors, May 29, 2020. https://www.ottomotors.com/blog/what-is-the-smart-

factory-manufacturing (accessed May 30, 2020).

[62] D. R. Sjödin, V. Parida, M. Leksell, and A. Petrovic, ‘Smart Factory

Implementation and Process Innovation’, Research-Technology Management, vol.

61, no. 5, pp. 22–31, Sep. 2018, doi: 10.1080/08956308.2018.1471277.

 111

[63] Y. Luo, Y. Duan, W. Li, P. Pace, and G. Fortino, ‘A Novel Mobile and

Hierarchical Data Transmission Architecture for Smart Factories’, IEEE

Transactions on Industrial Informatics, vol. 14, no. 8, pp. 3534–3546, Aug. 2018,

doi: 10.1109/TII.2018.2824324.

[64] F. Shrouf, J. Ordieres, and G. Miragliotta, ‘Smart factories in Industry 4.0: A

review of the concept and of energy management approached in production based

on the Internet of Things paradigm’, in 2014 IEEE International Conference on

Industrial Engineering and Engineering Management, Dec. 2014, pp. 697–701,

doi: 10.1109/IEEM.2014.7058728.

[65] A. Sanna and F. Manuri, ‘A Survey on Applications of Augmented Reality’,

Advances in Computer Science : an International Journal, vol. 5, no. 1, Art. no. 1,

Jan. 2016.

[66] M. Filipenko, A. Angerer, A. Hoffmann, and W. Reif, Opportunities and

Limitations of Mixed Reality Holograms in Industrial Robotics. 2020.

[67] R. Masoni et al., ‘Supporting Remote Maintenance in Industry 4.0 through

Augmented Reality’, Procedia Manufacturing, vol. 11, pp. 1296–1302, Jan. 2017,

doi: 10.1016/j.promfg.2017.07.257.

[68] Production Engineering, Centro Universitário de Araraquara – UNIARA,

Araraquara, Brazil, M. A. Frigo, E. C. C. da Silva, and G. F. Barbosa,

‘Augmented Reality in Aerospace Manufacturing: A Review’, JIII, 2016, doi:

10.18178/jiii.4.2.125-130.

[69] J. H. Lemelson, ‘Flexible manufacturing systems and methods’, US6708385B1,

Mar. 23, 2004.

[70] A. Hayes, ‘How a Flexible Manufacturing System (FMS) Works’, Investopedia.

https://www.investopedia.com/terms/f/flexible-manufacturing-system.asp

(accessed May 31, 2020).

[71] ‘Flexible manufacturing system’, Wikipedia. Apr. 23, 2020, Accessed: May 31,

2020. [Online]. Available:

https://en.wikipedia.org/w/index.php?title=Flexible_manufacturing_system&oldi

d=952645940.

[72] P. Kostal, A. Mudrikova, and D. Michal, ‘Possibilities of intelligent flexible

manufacturing systems’, IOP Conf. Ser.: Mater. Sci. Eng., vol. 659, p. 012035,

Oct. 2019, doi: 10.1088/1757-899X/659/1/012035.

[73] ‘Synchro’, Circuit Globe, Sep. 12, 2017. https://circuitglobe.com/synchro.html

(accessed May 27, 2020).

[74] ‘What is a Resolver? - A Galco TV Tech Tip’.

https://www.youtube.com/watch?v=7X7KBtx3D7o (accessed May 27, 2020).

[75] ‘Robot Platform | Knowledge | Types of Robot Sensors’.

http://www.robotplatform.com/knowledge/sensors/types_of_robot_sensors.html

(accessed May 27, 2020).

[76] ‘Kinect’, Wikipedia. May 26, 2020, Accessed: May 27, 2020. [Online]. Available:

https://en.wikipedia.org/w/index.php?title=Kinect&oldid=958970348.

[77] K. Lai, L. Bo, X. Ren, and D. Fox, ‘A large-scale hierarchical multi-view RGB-D

object dataset’, in 2011 IEEE International Conference on Robotics and

Automation, May 2011, pp. 1817–1824, doi: 10.1109/ICRA.2011.5980382.

[78] S. Boubou, T. Narikiyo, and M. Kawanishi, ‘Adaptive filter for denoising 3D data

captured by depth sensors’, in 2017 3DTV Conference: The True Vision -

Capture, Transmission and Display of 3D Video (3DTV-CON), Jun. 2017, pp. 1–

4, doi: 10.1109/3DTV.2017.8280401.

[79] A. Javed, H. Tariq, and A. Khalid, ‘Implementation of IR sensors in thru-beam

 112

and diffuse-reflective modes for obstacle detection’, in 2017 International

Symposium on Wireless Systems and Networks (ISWSN), Nov. 2017, pp. 1–5, doi:

10.1109/ISWSN.2017.8250013.

[80] ‘What is a photoelectric sensor? | Sensor Basics: Principle-based Guide to Factory

Sensors | KEYENCE’.

https://www.keyence.co.uk/ss/products/sensor/sensorbasics/photoelectric/info/

(accessed May 27, 2020).

[81] ‘KUKA’, Wikipedia. Apr. 29, 2020, Accessed: May 28, 2020. [Online].

Available: https://en.wikipedia.org/w/index.php?title=KUKA&oldid=953909414.

[82] ‘KUKA Robotics Corporation on Robotics Online’, Robotics Online.

https://www.robotics.org/company-profile-detail.cfm/Supplier/KUKA-Robotics-

Corporation/company/378 (accessed May 28, 2020).

[83] ‘Robot-based friction stir welding for the production of electric car batteries’,

KUKA AG. https://www.kuka.com/en-gb/industries/solutions-

database/2018/12/friction-stir-welding-emobility (accessed May 28, 2020).

[84] ‘Robot-assisted rehabilitation with ROBERT® and KUKA’, KUKA AG.

https://www.kuka.com/en-gb/industries/solutions-database/2019/08/robert-from-

life-science-robotics (accessed May 28, 2020).

[85] ‘Pick and place: KUKA robot loads tube laser’, KUKA AG.

https://www.kuka.com/en-gb/industries/solutions-database/2019/09/trafoe

(accessed May 28, 2020).

[86] R. Bischoff, U. Huggenberger, and E. Prassler, ‘KUKA youBot - a mobile

manipulator for research and education’, in 2011 IEEE International Conference

on Robotics and Automation, May 2011, pp. 1–4, doi:

10.1109/ICRA.2011.5980575.

[87] K. R. Gmbh, Kuka System Software 8.3 Operating Instructions. 2013.

[88] S. Severin and J. Rossmann, ‘A Comparison of Different Metaheuristic

Algorithms for Optimizing Blended PTP Movements for Industrial Robots’, in

Intelligent Robotics and Applications, Berlin, Heidelberg, 2012, pp. 321–330, doi:

10.1007/978-3-642-33503-7_32.

[89] M. P. Cooper, C. A. Griffiths, K. T. Andrzejewski, C. Giannetti, and College of

Engineering, Swansea University, Swansea, UK, ‘Motion optimisation for

improved cycle time and reduced vibration in robotic assembly of electronic

components’, AIMS Electronics and Electrical Engineering, vol. 3, no. 3, pp.

274–289, 2019, doi: 10.3934/ElectrEng.2019.3.274.

[90] ‘Profibus’, Wikipedia. Jan. 06, 2020, Accessed: May 29, 2020. [Online].

Available:

https://en.wikipedia.org/w/index.php?title=Profibus&oldid=934510812.

[91] ‘PROFIBUS Protocol Overview’, Real Time Automation, Inc.

https://www.rtautomation.com/technologies/profibus/ (accessed May 29, 2020).

[92] KUKA Roboter GmbH, ‘KUKA System Technology - Kuka Ethernet KRL 2.1’. .

[93] KUKA Robot Group, ‘Kuka Ethernet RSI XML 1.1’. .

[94] KUKA Roboter GmbH, ‘KUKA System Technology - Kuka

RobotSensorInterface 3.3’, 2016.

[95] ‘Adaptive control’, Wikipedia. May 15, 2020, Accessed: May 31, 2020. [Online].

Available:

https://en.wikipedia.org/w/index.php?title=Adaptive_control&oldid=956730179.

[96] A. Visioli, Practical PID Control. Springer Science & Business Media, 2006.

[97] T. Hsia, ‘Adaptive control of robot manipulators - A review’, in 1986 IEEE

International Conference on Robotics and Automation Proceedings, Apr. 1986,

 113

vol. 3, pp. 183–189, doi: 10.1109/ROBOT.1986.1087696.

[98] S. Youssefi, S. Denei, F. Mastrogiovanni, and G. Cannata, ‘A real-time data

acquisition and processing framework for large-scale robot skin’, Robotics and

Autonomous Systems, vol. 68, pp. 86–103, Jun. 2015, doi:

10.1016/j.robot.2015.01.009.

[99] M. Caputo, J. T. Lyles, M. S. Salazar, and C. L. Quave, ‘LEGO MINDSTORMS

Fraction Collector: A Low-Cost Tool for a Preparative High-Performance Liquid

Chromatography System’, Anal. Chem., vol. 92, no. 2, pp. 1687–1690, Jan. 2020,

doi: 10.1021/acs.analchem.9b04299.

[100] M. Zhou and W. Gao, ‘Multi-sensor Data Acquisition for an Autonomous Mobile

Outdoor Robot’, in 2011 Fourth International Symposium on Computational

Intelligence and Design, Oct. 2011, vol. 2, pp. 351–354, doi:

10.1109/ISCID.2011.190.

[101] Zimmer, ‘Zimmer Gripper GPP5010’.

https://www.g4.com.tw/userfiles/files/Datasheet/zimmer_gripper_gpp5010.pdf

(accessed Jan. 17, 2020).

[102] Kuka Roboter GmbH, ‘Kuka KR 6-2, KR 16-2’, 2012, [Online]. Available:

http://www.kuka-robotics.com/en/products/industrial_robots/low/kr6_2/start.htm.

[103] Kuka Roboter GmbH, ‘Kuka KR C4’, KUKA AG. https://www.kuka.com/en-

gb/products/robotics-systems/robot-controllers/kr-c4 (accessed Jan. 17, 2020).

[104] ‘USB-1608G DAQ’. https://www.measurementsystems.co.uk/data-acquisition-

solutions/usb_data_acquisition/usb-1608g (accessed Jan. 20, 2020).

[105] KUKA Roboter GmbH, ‘Kuka System Variables 8.1 - 8.3’. .

 114

 APPENDIX A – Results Tables

Table 9-1 Optimisation Experiment Plan

Obstacle Robot Speed Algorithm Data Rate Smart Delay

1 1% Simple 0.01 N/A

1 3% Simple 0.01 N/A

1 5% Simple 0.01 N/A

1 10% Simple 0.01 N/A

1 30% Simple 0.01 N/A

1 1% Simple 0.05 N/A

1 3% Simple 0.05 N/A

1 5% Simple 0.05 N/A

1 10% Simple 0.05 N/A

1 30% Simple 0.05 N/A

1 1% Simple 0.1 N/A

1 3% Simple 0.1 N/A

1 5% Simple 0.1 N/A

1 10% Simple 0.1 N/A

1 30% Simple 0.1 N/A

2 1% Simple 0.01 N/A

2 3% Simple 0.01 N/A

2 5% Simple 0.01 N/A

2 10% Simple 0.01 N/A

2 30% Simple 0.01 N/A

2 1% Simple 0.05 N/A

2 3% Simple 0.05 N/A

2 5% Simple 0.05 N/A

2 10% Simple 0.05 N/A

2 30% Simple 0.05 N/A

2 1% Simple 0.1 N/A

2 3% Simple 0.1 N/A

2 5% Simple 0.1 N/A

2 10% Simple 0.1 N/A

2 30% Simple 0.1 N/A

3 1% Simple 0.01 N/A

3 3% Simple 0.01 N/A

3 5% Simple 0.01 N/A

3 10% Simple 0.01 N/A

3 30% Simple 0.01 N/A

3 1% Simple 0.05 N/A

3 3% Simple 0.05 N/A

3 5% Simple 0.05 N/A

3 10% Simple 0.05 N/A

3 30% Simple 0.05 N/A

3 1% Simple 0.1 N/A

3 3% Simple 0.1 N/A

3 5% Simple 0.1 N/A

 115

3 10% Simple 0.1 N/A

3 30% Simple 0.1 N/A

1 1% Smart 0.01 500

1 3% Smart 0.01 500

1 5% Smart 0.01 500

1 10% Smart 0.01 500

1 30% Smart 0.01 500

1 1% Smart 0.01 100

1 3% Smart 0.01 100

1 5% Smart 0.01 100

1 10% Smart 0.01 100

1 30% Smart 0.01 100

2 1% Smart 0.01 500

2 3% Smart 0.01 500

2 5% Smart 0.01 500

2 10% Smart 0.01 500

2 30% Smart 0.01 500

2 1% Smart 0.01 100

2 3% Smart 0.01 100

2 5% Smart 0.01 100

2 10% Smart 0.01 100

2 30% Smart 0.01 100

3 1% Smart 0.01 500

3 3% Smart 0.01 500

3 5% Smart 0.01 500

3 10% Smart 0.01 500

3 30% Smart 0.01 500

3 1% Smart 0.01 100

3 3% Smart 0.01 100

3 5% Smart 0.01 100

3 10% Smart 0.01 100

3 30% Smart 0.01 100

Table 9-2 Smart Algorithm Results

Number Obstacle Robot

Speed

Data

Rate

Smart

Delay

Accuracy Scores

Mount 1 Mount 2 Mount 3

1 1 1% 0.01 500 4.33 6.22 3.14

2 1 3% 0.01 500 9.43 10.11 6.48

3 1 5% 0.01 500 12.22 12.56 10.06

4 1 10% 0.01 500 14.68 14.61 13.29

5 1 30% 0.01 500 16.10 15.94 15.12

6 1 1% 0.01 100 3.92 6.00 3.31

7 1 3% 0.01 100 4.28 6.17 3.19

8 1 5% 0.01 100 3.98 6.70 2.68

9 1 10% 0.01 100 7.48 7.94 3.10

10 1 30% 0.01 100 13.47 12.49 11.52

 116

11 2 1% 0.01 500 4.04 6.39 3.41

12 2 3% 0.01 500 3.97 5.48 3.00

13 2 5% 0.01 500 3.69 6.47 2.99

14 2 10% 0.01 500 4.74 5.39 2.36

15 2 30% 0.01 500 10.86 10.03 7.88

16 2 1% 0.01 100 37.52 32.16 27.95

17 2 3% 0.01 100 37.90 40.94 36.84

18 2 5% 0.01 100 41.66 42.46 39.93

19 2 10% 0.01 100 44.60 44.85 43.08

20 2 30% 0.01 100 45.05 44.59 44.29

21 3 1% 0.01 500 16.69 20.60 18.17

22 3 3% 0.01 500 29.51 25.03 20.91

23 3 5% 0.01 500 36.88 30.98 27.28

24 3 10% 0.01 500 33.90 37.44 35.46

25 3 30% 0.01 500 42.38 42.92 40.62

26 3 1% 0.01 100 16.51 20.07 18.33

27 3 3% 0.01 100 19.58 21.02 18.79

28 3 5% 0.01 100 25.92 23.98 18.59

29 3 10% 0.01 100 35.45 32.58 28.60

30 3 30% 0.01 100 38.73 38.19 37.03

Table 9-3 Further smart delay experiment results using mount 3

Obstacle Robot

Speed

Algorithm Data

Rate

Smart

Delay

Smart

Increment

Accuracy

Score

2 3 Smart 0.01 50 0.01 19.04

2 3 Smart 0.01 100 0.01 19.31

2 3 Smart 0.01 150 0.01 19.55

2 3 Smart 0.01 200 0.01 20.23

2 3 Smart 0.01 300 0.01 18.54

2 3 Smart 0.01 400 0.01 21.22

Table 9-4 Simple Algorithm Results

Object Robot

Speed

Algorithm Data

Rate

Accuracy Scores
Mount 1 Mount 2 Mount 3

1 1% Simple 0.01 4.33 6.22 3.14

1 3% Simple 0.01 9.43 10.11 6.48

1 5% Simple 0.01 12.22 12.56 10.06

1 10% Simple 0.01 14.68 14.61 13.29

1 30% Simple 0.01 16.10 15.34 15.12

1 1% Simple 0.05 3.92 6.00 3.31

1 3% Simple 0.05 4.28 6.17 3.19

1 5% Simple 0.05 3.98 6.70 2.68

1 10% Simple 0.05 7.48 7.94 3.10

1 30% Simple 0.05 13.47 12.34 11.52

1 1% Simple 0.1 4.04 6.39 3.41

 117

1 3% Simple 0.1 3.97 5.48 3.00

1 5% Simple 0.1 3.69 6.47 2.99

1 10% Simple 0.1 4.74 5.39 2.36

1 30% Simple 0.1 10.86 10.03 7.88

2 1% Simple 0.01 37.52 32.16 27.95

2 3% Simple 0.01 37.90 40.94 36.84

2 5% Simple 0.01 41.66 42.46 39.97

2 10% Simple 0.01 44.60 44.85 43.08

2 30% Simple 0.01 45.05 44.59 44.29

2 1% Simple 0.05 16.69 20.60 18.17

2 3% Simple 0.05 29.51 25.03 20.91

2 5% Simple 0.05 36.88 30.98 27.28

2 10% Simple 0.05 33.90 37.44 35.46

2 30% Simple 0.05 42.38 42.92 40.62

2 1% Simple 0.1 16.51 20.07 18.33

2 3% Simple 0.1 19.58 21.02 18.79

2 5% Simple 0.1 25.92 23.98 18.59

2 10% Simple 0.1 35.45 32.58 28.60

2 30% Simple 0.1 38.73 38.03 37.03

3 1% Simple 0.01 12.02 10.58 8.59

3 3% Simple 0.01 13.10 13.41 10.11

3 5% Simple 0.01 14.39 14.41 12.31

3 10% Simple 0.01 17.46 16.11 14.58

3 30% Simple 0.01 14.60 14.49 13.85

3 1% Simple 0.05 12.06 9.58 8.41

3 3% Simple 0.05 12.06 9.80 8.27

3 5% Simple 0.05 11.80 10.09 9.32

3 10% Simple 0.05 13.09 11.65 8.70

3 30% Simple 0.05 14.65 12.90 10.28

3 1% Simple 0.1 12.31 9.76 8.77

3 3% Simple 0.1 12.35 9.791 8.54

3 5% Simple 0.1 11.84 10.55 8.84

3 10% Simple 0.1 11.26 9.82 7.82

3 30% Simple 0.1 10.79 1.28 8.78

