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ABSTRACT 

This thesis presents the development and analysis of a position monitoring and 

adaptation system to be used in conjunction with a KUKA KR16-2 articulated robot 

using components readily available in most manufacturing settings. This system could 

be beneficial in the manufacturing sector in areas such as polymer welding and spray 

painting. In the former it could be used to maintain an effective distance between a 

welding end effector laying molten plastic and the surface area of the parts being 

welded, or in the case of the latter the system would be useful in painting objects of 

unknown shape or objects with unknown variations in the surface level. In the case of 

spray painting if you spray to close to an object you will get an inconsistent amount of 

paint applied to an area. This system would maintain the programmed distance between 

the robot system and target object. Typically, systems that achieve this level of control 

rely on expensive sensors such as force torque sensors. This research proposes to take 

the first step in trying to address the technical problems by introducing a novel way of 

adapting to a target surface deformation using comparably low cost photoelectric 

diffuse sensors.  

The key outcomes of this thesis can be found in the form of a software package to 

interface the photo-electric sensors to the KUKA robot system. This system is operated 

by a custom-built algorithm which is capable of dynamically calculating robot 

movements based off the sensor input. Additionally, an optimum system setup is 

developed with different configurations of sensor mounting and speeds of robot 

operation discussed and tested. The viability of the photo-electric diffuses sensors used 

in this application is also considered with further works suggested. Finally, a secondary 

application is developed for recording and analysing KUKA robot movements for use 

in other research activities.  
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 INTRODUCTION 

This thesis is a culmination of study and development towards the goal of creating a 

robot end effector position varying system that is capable of maintaining a specified 

distance between the robot tool centre point (TCP) and a target work surface. The 

system needs to be able to adapt to an unknown geometry or surface that has 

inconsistent surface levels. This project was inspired by research on a plastic welding 

system capable of adapting to deformations of target polymers in a live environment 

using a force torque sensor. This thesis takes the step of generalising such a system so 

it may be applied to various other manufacturing processes such as spray painting.  

With the ever-increasing applications of robot systems in manufacturing, 

businesses deploying such systems are always looking to increase their return on 

investment. With this in mind, one of the first objective for this research was to develop 

an application that could be easily introduced into manufacturing environments 

utilising existing technology. Using a KUKA KR16-2 a six-axis articulated robot as an 

example system, a return on investment could be achieved by utilising Python 

programming to develop an application that would interface two photoelectric diffuse 

sensors and the robot’s KUKA C4 controller via a computer utilising the KUKA Robot 

Sensor Interface (RSI) software. To test the viability of this system, a series of 

experiments were conducted using a KUKA KR16-2 robot paired with a KUKA C4 

controller. 

First, a study of existing methods of interfacing with a KUKA robot was 

undertaken to establish what software is available on the market or through existing 

research. Additional focus was spent investigating existing polymer welding methods, 

and current applications in robotics. Finally, a study in to the manual methods of 

polymer welding was undertaken to establish an understanding of the required robotic 

control needed for an automated application. Initially an interface was designed to allow 

communications between a PC and the KUKA C4 using the KUKA Robot Sensor 

Interface. A User Datagram Protocol (UDP) point-to-point network was utilised with 

Python programming to build the underlying communication method. Once satisfactory 

communication was achieved, a study and trial on how to control the KUKA KR16-2 

robots’ motion entirely from the PC rather than the KUKA pendant device was 

conducted. Different combinations of RSI configuration were tested to suit the 

requirements of the project and to establish better understanding of the software’s 
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capabilities. Through this testing an additional benefit of this research was achieved 

where a method of recording data from a KUKA robot was created for robots utilising 

the RSI package. Information such as Cartesian coordinates, angle position, torque and 

voltage values are recorded from the robot while a KUKA program is in motion, 

allowing for analysis and testing of robot programs/motions. Details of this research are 

also contained in this thesis.  

When the movements of the robot were satisfactorily established, an 

understanding of how to perform concurrent communication and calculations 

simultaneously was needed to allow parallel communication with the robot and 

calculation or robot movements based off user input. This resulted in using parallel 

processing functions to create processes that were assigned to separate computing 

threads to avoid conflict and to allow this functionality to run without conflict. 

Additionally, an understanding of how to connect and control sensory devices via a PC 

is required. Research into software and hardware requirements was completed with an 

overview of different types of sensors applicable to this research. Finally, all these steps 

were then tied together in the final application presented in this thesis and the testing 

surrounding its suitability is presented. 
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 RESEARCH OBJECTIVES 

The aim of this research is to develop a way for an industrial robot to adapt to 

deformations in a surface material to maintain a specific distance between a robot end 

effector and said surface using photoelectric diffuse sensors. Analysis of robot 

movements using calculated geometry as obstacles to influence robot movement is 

conducted. The effectiveness of the motion control in the desired task is measured by 

extracting data from the robot and comparing the position to predicted movements. To 

assist analysing experimental data, a system needs to be investigated to record the robot 

operations and to be able to visual this data in a useful manner.  

To summarise, the objects of this research are: 

• Develop a communication interface with a KUKA KR16 robot. 

• Develop a robot and sensor interface for positional accuracy. 

• Develop a system to adapt to sensory input. 

• Design and implement a novel system to extract robot data for post experiment 

analysis. 

• Create a process for analysis of the data extracted.  
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 THESIS ORGANISATION 

This thesis is structured in a rather linear fashion where the reader is guided through the 

process of designing an application for robot position adaptation from its inception to a 

working prototype. The first chapter lays out the objectives of the thesis (detailed in the 

previous section). Chapter 2 is an overview of all the literature reviewed before 

undertaking this project. This involves applications in industry where the position 

adaptation system could potentially be beneficial such as plastic welding and painting. 

This chapter 3 contains a detailed examination of the KUKA KR16 industrial robot and 

associated user interfaces. The focus being on the equipment and configuration of the 

work area of the robot and the software configurations for interfacing with the robot 

controller. Next, a review of the sensors being utilised in the project along with the 

equipment needed to operate them is presented, finalising in a set of investigatory 

experiments used to confirm a sufficient understanding of the robot and systems has 

been established. Chapter 4 presents the development of the application with a focus on 

the program development. Chapter 5 introduces the KUKA logging software developed 

to aid with robot analysis during this project. In chapter 6 a series of experiments is 

conducted and where the program developed is optimised further. Finally, in chapter 7 

a review the project as a whole is completed where the merits are discussed as well as 

its drawbacks and future prospects of the proposed automation system.  
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 LITERATURE REVIEW 

 

 Introduction 

This chapter sets out the groundwork required for this project. The intention is to lay 

out for the reader a comprehensive history of robotics to build a better understanding 

of where robotics came from and where it is going. The following sections will take the 

reader from the earliest origins of the word robot up until modern day manufacturing 

examples, addressing all the major steps along the way. This literature review then 

becomes more focussed and address relevant literature in areas such as robotic welding 

which links directly to this project and highlights some key knowledge gaps that present 

an opportunity for producing some novel research. 

 

 History of robotics 

Human obsession with robotics can be traced back to the eighteenth century. One of the 

earliest inventions that had fascinated Europeans was the Canard Digérateur or by its 

more common name the digestion duck [1], later known as the Vaucanson’s duck, a 

mechanical device that had the appearance of being able to eat and digest corn and grain 

and to later excrete the processed food that operated on a clockwork system of gears 

and pipes that could mimic the movement of a duck. While it was later found to not 

actually process the food but rather excrete stored waste, it was described by Vaucanson 

as a machine or automaton. It was not a very complex device but this was one of many 

important first steps by man towards todays robotics and led to Vaucanson becoming 

an Associated Mechanician in the Paris Academy of Sciences. [2, p. 601]. Vaucanson 

moved into investigating the mechanisation of silk weaving after the success of his 

automated duck. Work he completed in this field was later built upon by Joseph Marie 

Jacquard which led to one of the first examples of a programmable robot that came in 

1804 in the form of the Jacquard loom [3, p. 30]. A machine that could be instructed 

which patterns were to be woven by using a chain of holed punch cards. The Jacquard 

loom is an interesting invention because not only was it a hallmark of early robotics by 

being able to perform a physical task and be programmable [4, p. 1] but it also provided 

one of the very first examples of a programmed computer system or computer assisted 

robotics.  

Whilst these were early interpretations of robots, the term robot did not actually 

appear until 1920. From a Czech science fiction play write known as Karel Čapek in 
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his play Rossumovi Univerzální Roboti or by its English subtitle “Rossum’s Universal 

Robots” (RUR), the term robot was coined by his brother Josef, in the Czech language 

means serf labour but colloquially meant hard work or drudgery, an appropriate term 

considering how robots would be used in times to come. In the play RUR the robots 

were artificial people or androids who later rebelled against the human race. This play 

later turned out to be well before its time, where androids is now the official 

terminology used for describing human looking robots, at the time this was seen as pure 

fiction. 

One of the most impactful science fiction authors to influence the field of robotics 

is Isaac Asimov. Asimov was born in the early 1920’s in Russia and later emigrated to 

America at a young age. He became a professor of biochemistry at the University of 

Boston whilst becoming an accomplished author. Asimov’s contribution to robotics 

largely came from his literary work, he is attributed to coining the term “robotics” in 

his short story called “Liar!” in 1941. Through the multitudes of books and short stories 

authored by Asimov, the field of robotics was expanded greatly as he offered through 

literary means a view point of the ethics and social issues that would arise through the 

developments of robot systems. Asimov is probably most famous for creating the three 

laws or robotics. In his short story “Runaround” written in 1942 the 3 laws were created;  

 

1. A robot may not injure a human being or, through inaction, allow a human being 

to come to harm. 

2. A robot must obey the orders given it by human beings except where such orders 

would conflict with the First Law. 

3. A robot must protect its own existence as long as such protection does not 

conflict with the First or Second Laws.  

 

These were seen as an important step for man as it would protect us from any harm by 

way of the robot. Even though these laws are still not needed today due to the level of 

independence robots have, they remain an important reminder or the caution that is 

needed as robots develop. These laws would later be adapted to include a fourth law. 

Although taking multiple revisions, the final version was adapted in Asimov’s 

“Foundation and Earth”. Considered the zeroth law it precedes all other laws and states;  
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0. A robot may not injure humanity, or, by inaction, allow humanity to come to 

harm. 

 

These laws were widely popularised through the motion picture adaptation of 

Asimov’s’ story “I Robot” and would go on to influence the field for years to come. 

Asimov was a widely regarded as a visionary in the field. His work has led on to 

influence later science fiction. One such influence came where he coined the term 

positronic brains, this would become a famous example where the character Data, a 

cybertronic android created in Star Trek: The Next Generation, a show that would go 

on to inspire many thousands of children to work in the sciences. Asimov’s work has 

arguably shaped perceptions of what robots are for generations of people. 

Whilst Vaucanson, Jacquard, Čhapek and Asimov had important impacts in 

shaping the perceptions of robotics, the first patent filed to be considered a robot by 

modern standards would be for a mechanical arm with a gripper that was attached to a 

track. Created by George C. Devol, the patent was issues in 1961 [5]. This device’s 

motions were controlled by patterns encoded on a magnetic drum and represented the 

first real robot that could be used for multiple tasks by way of different programmed 

sequences. Devol went and founded Unimation with Joseph Engelberger in 1956, this 

was the first company to offer robot systems as their product. Their first industrial robot 

was installed in 1961 at a General Motors factory in America. In 1968 Unimation Inc 

licensed the first robot to Kawasaki Heavy Industries which in turn produced the first 

Japanese industrial robot. Despite Japan already having a long running fascination with 

robots, all previous incarnations took the form of automata, similar to the Vaucanson’s 

duck [6]. Devol and Engelberger’s vision was to have millions of robots working in 

industrial settings. By looking at modern manufacturing you can clearly say that this 

vision has been realised, and today robots are used for such tasks as welding, painting, 

loading and unloading, electronic assembly [4, p. 2]. Unimation went through many 

changes in following years mainly by being bought out by multiple companies as they 

expanded. The technology and people from this company went on to be extremely 

influential in the field of robotics.  

In 1969 Victor Scheinman at Stanford University invented the Stanford arm. This 

would be a defining point for robotics as it was the first all-electric 6 degree of freedom 

articulated robot arm that was controlled entirely by computer control [7]. Whilst not 
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truly anthropomorphic - as it contained five revolute joints and one prismatic, this arm 

is what popularised arm-type robots by proving its mobility and flexibility made it 

superior to other types of robot. This design was later sold to Unimation where it was 

further developed and deployed into manufacturing settings. At about the same time, in 

1975 a Swiss company named Allmänna Svenska Elektriska Aktiebolaget (ASEA) 

developed the ASEA IRB, another fully electrically driven robot. It was a first in 

robotics because it had a microprocessor-controller built in that relied on Intel’s first 

chipset. In 1988 ASEA went on to merge with another Swiss company, Brown, Boveri 

& Cie to form the ABB Group (ASEA Brown Boveri). ABB went on to establish 

themselves as a key player in the robotics arena and has been a Fortune 500 company 

for 24 years. In 1973 KUKA, another company involved in industrial automation 

unveiled the FAMULUS industrial robot [8]. A 6-axis revolute robot arm that would 

go on to revolutionise the automotive industry and to be the first example of one of the 

most popular robot types for years to come. 

 

 Automation 

Robots from the 60s onwards have continued to play a major part in shaping 

manufacturing and pushing what is possible in terms of automation. Automation being 

the technology which takes a process or procedure and creates a method of reproducing 

a task with minimal human intervention. The international Society of Automation 

defines automation as "the creation and application of technology to monitor and 

control the production and delivery of products and services” [9]. There are many areas 

where automation can be useful such as banking, laboratories, space, medical and at 

home which mean a vast array of technologies converge under this one topic. In 

manufacturing terms, the main purpose of automation is to increase productivity. With 

the start of the industrial revolution many jobs were replaced or assisted by new tools 

designed with the sole task of replacing a repetitive task. Jacques de Vaucanson’s 

automated loom was a prime example of this. In modern times robotics and automation 

almost, fit hand in hand, particularly when it comes to industrial automation. Industry 

4.0, representing the fourth industrial revolution has spurred a number of innovations 

since its conception. The Robotic Industries Association expects most advances in 

automation to be related to connectivity and communication, software architectures and 

security as increased internet connectivity permeates manufacturing [10]. The 
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International Federation of Robotics released a press release in 2020 discussing the 

explosion of robotics in industry, expecting two million new robots to enter the 

manufacturing arena between 2020-2022,  the advances in Industry 4.0 mean robots are 

getting smarter and more connected [11]. With the increase of connectivity, the use of 

sensors is greatly increasing. By reducing computation time of the robot by linking it 

to more powerful systems, more advances sensors can be used in conjunction with the 

robot. Finally, versatility is a huge challenge for the industry, current limitations from 

a cost standpoint come with paying for an expensive robot that is suited to a singular 

task. Through the use of multi end-effector setups and creative programming, robots 

are being adapted to fit into different manufacturing scenarios.  

Within industrial automation lays three distinct fields of automation, fixed, 

programmable and flexible. Fixed automation, also known as hard automation is when 

a production line is fixed in the sense that the automation is completed by machines 

that use cams, gears and hard-wired machinery that cannot be easily changed from 

making one product to another.  They tend to have high initial investment costs and 

high production volume. Programmable automation operates in the sense of being able 

to manufacture multiple batches of different products but only manufacturing one type 

at a time. This can range from a dozen to several thousand products. At the end of the 

production run the equipment is reprogrammed for a new product. This means the 

production run is followed by a period of non-productive time, followed by a new batch. 

This sort of automation comes with a generally lower production rate when compared 

to fixed automation. Finally, flexible automation comes as an extension of 

programmable automation, however with flexible automation the factory setup is 

limited to a smaller set of products so the change over time is smaller than 

programmable due to the defined nature of each product [12], [13].  

 

 Types of automation robots 

 

2.4.1 Welding Robots 

Robot welding has become almost ubiquitous in manufacturing. Offering greater 

precision than human counterparts, having superior repeatability enabling increased 

production throughput as well as being unable to tire, robot welding was partly 

responsible for the increased uptake in automation during the 1980s. Some of the most 

common types of welding consist of Arc, Resistance, Spot, TIG, MIG, Laser and 
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Plasma welding [14]. Whilst welding is a long-established manufacturing method of 

assembly, the development of robot welding has been focused mainly on optimisation 

of the existing process. An example of this optimisation is by pushing an automated 

welding system more into the category of autonomous welding. Where most welding 

systems are created through a teach and playback method, where an operator runs 

through a weld manually whilst recording all the steps so the robot can re-play the 

process, it would be a more efficient system if the robot was able to detect the seam that 

needed welding and to weld it automatically without any human intervention. An 

example of modern development in this field, Yuan Li et all presented a defect detection 

system for weld beads [15] where they designed a new sensor capable of detecting 

defects that is attached to the robot. By increasing the robot’s capability to see they 

have taken it another step towards being truly autonomous. Another example of 

increasing the vision of a welding robot can be seen in work by Kitti 

Suwanratchatamanee et al [16], tactile sensors were developed to give robots the ability 

to visualise 3D objects, specifically in the case of welding, giving the robot the ability 

to detect the edges of objects requiring welding. Utilising these new types of sensors 

and combining with Artificial Intelligence, Yunhe Feng discussed a method of 

processing multiple optical sensors using various neural networks [17].  

In the following sub-section, hot gas welding is discussed specifically. As this 

topic is a relatively new application of robot automation it means there is a lack of 

existing literature so what is available should be noted.  

 

2.4.1.1 Hot Gas Welding 

Hot gas welding is a manual plastic welding process that is being used in current 

manufacturing processes in the manufacturing of industrial sized plastic piping. 

Developed in the mid-20th century, the process involves using a hot-gas torch to direct 

high temperature welding gas (usually air) towards a plastic weld rod that is inserted 

between another thermoplastic object and the target surface. Heating the materials to a 

temperature until they reach their softening temperature. The pressure of the weld rod 

creates a bonding effect between the two materials [18].  

There are two types of hot-gas welding, both hand welding and speed welding 

are common in the industry. Whereas hand welding is a technique where the weld rod 

is applied directly to the weld joint and the pressure that is applied is controlled by hand. 
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Speed welding on the other hand has a nozzle specific design that combines the hot gas 

torch and welding rod apparatus together into a single unit. The benefits to this design 

are it allows the user a more controlled application of pressure. An example of this tool 

is shown in Figure 2-1. There are different designs of welder which include different 

shape weld rods, these come as round or triangular. Whereas hand welding is better 

suited to constrained areas or designs which contain complex geometry due to the 

design of the weld gun, speed welding is the opposite, it is better suited for simple joint 

design due to orientating the welder of that size. There are four parameters that are 

important to consider when hot gas welding, gas temperature and flow rate, pressure, 

travel speed and orientation of the tool. 

Literature appears to be sparse on the subject of robotic hot gas welding 

however a few interesting points of note have been found. Valk Welding, a company 

based out of the Netherlands has developed their own hot gas welding end effector for 

the purpose of welding plastic tanks shown in Figure 2-2 [19]. Similarly, Eugen 

Riexinger GmbH & Co. KG have demonstrated a dual end effector setup utilising 

KUKA robots where the milling process and welding process are combined (Figure 2-

3) using tools switching stations.  

 

 

Figure 2-1 An example of a hot gas speed welding apparatus 
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Figure 2-2 Hot gas welding end effector 

 

Figure 2-3 CNC & Welding end effector dual configuration [20] 

 

2.4.2 Painting Robots 

Industrial painting robots largely came to existence due to the automotive industry. 

Originally being very large an expensive, recent developments in low cost robotics has 

resulted in rather unique applications being developed that are not constrained the 

manufacturing domain as it largely was during the 80s and 90s. Painting applicators 

have now moved away from being a role suited best by articulated robot arms and 

become more available for other systems such as UAVs [21]. Within manufacturing 

robotic painting has its advantages due to increased quality and efficiency of the sprayer 

as well as a wider range of operation all whilst removing a human operator from 

working with hazardous chemicals. Despite being used within industry for many years 



 26 

there is still the challenges to overcome when painting very large objects. Meng Z et all 

proposes a positioning system to overcome working with extremely large surfaces 

where a robot is incapable of maintaining position and location within the ship painting 

industry [22] while Chen et all discuss the problems of compensating for distortions 

when working with large scale structures [23]. Another area of research is on how to 

achieve different types of paint effects. The paper presented by Helou et al discusses 

using deep learning to generate appropriate spray commands to create textured painted 

surfaces [24]. Within manufacturing, development has mainly focused around 

optimisation, From et al who discusses optimal paint gun orientations to maintain 

constant velocities during the paint process [25] and Yu proposes an algorithm to 

efficiently control the overlaps on a painting task [26]. 

 

2.4.3 Pick and Place Robots 

Pick and place robots are a staple of the manufacturing sector. They utilise a variety of 

grippers to pick and place material. Some examples are bag grippers used to work with 

soft materials such as sand, soils and absorbent materials, magnetic grippers used to 

work with heavier steel products, suction grippers which utilise vacuums and cups 

typically used to manipulate hard and flat products such as boxes and claw grippers 

which use two of more fingers to grasp objects and move them, typically used for 

moving boxes and packing materials. Whilst these grippers are usually used with 

articulated robots, the use of delta robots is also prolific within the industry because of 

their ability to pick, place and sort at extremely high speeds. These are particularly 

useful for small objects such as medication and food. Companies such as Ocado have 

pushed the usage of pick and place robots and have expanded their usage into the 

grocery sector [27]. Advances in pick and place robots in recent years has come from 

reduced motor size while maintaining or increasing payload capacity, as well as 

improvements in motion control software and hardware. An example of improved 

hardware can be seen where Ngadimin et al proposes a new design of pick and place 

robot to overcome issues rating to the size of components on surface mounted 

technology [28] and Zhang et al proposes a design of high speed sorting using vision 

systems [29]. Whereas He at al discusses optimisation of existing pick and place by 

optimising picking points by adjusting robot joint rotations and conveyor speed [30]. 

The company Amazon has been particularly keen in the pick and place sector. For 
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several years they run the Amazon Picking Challenge (APC) to promote development 

in the field and to obviously benefit their business. In 2017, what seems to have been 

the final year of the competition, an Australian team led by Peter Corke a renowned 

robotics expert, won the challenge by creating the Cartman robot, a Cartesian based 

robot that outperformed several other types of robot [31]. Despite the competition 

ending, work created through the project has gone on to influence further development. 

Zeng et al [32, p.] competed in APC in 2016, whilst they placed third and fourth in the 

competition, they developed a framework to estimate 6D poses which has gone on to 

be referenced by over 50 other papers. On top of this they have provided a high-quality 

dataset of images and scenes for future development.  

 

2.4.4 Assembly Robots 

Assembly robots are a staple type of robot in manufacturing. These robots position, fit, 

mates and assembles components or parts and are one of the most repetitive reducing 

devices in manufacturing. They increase productivity and quality while having a high 

return on investment. Despite assembly robots being so common they are among the 

most complicated type of robots to develop due to the extremely high accuracy required 

when positioning parts and the force of the parts being connected also needs to be 

considered. Recent trends show assembly robots moving more towards the 

collaborative robots rather than industrial robots. While industrial robots require a 

caged cell for safety, they offer greater payload weights and with the dual arm robots 

on the rise and stronger motors being utilised collaborative robots (Cobots) are making 

an ever-increasing contribution to the sector. Cobots have the advantage of not 

requiring a safety cell, in part because they do not have the payload compacity of their 

industrial counterparts but also because of the various force sensors built in which halt 

robot activity when a collision is detected. Developments have continued in this area to 

try and increase the safety of these cobots. Hakozaki et all proposed a robotic skin in 

1999 by producing a sensor chip that detects electrical current, removing the need for 

wires which are embedded within a flexible skin like material [33]. Development 

continued and Yamada et al in 2005 discussed the development of a robot skin capable 

of accurately sensing the location of objects in area contact with the skins surface [34]. 

Due to the higher levels of safety, cobots often lower costs by not requiring the 

expensive cells which are typically required when operating articulated robots. The 



 28 

removal of this cell means they can be used on assembly lines working side by side 

with humans and removing undesirable tasks such as screw fastening or box packing 

[35]–[37] 

 

 Future trends in robots 

There are a myriad of developments happening in robots at an extremely fast pace. Just 

like modern televisions or mobile phones new models are being manufactured and 

marketed frequently. With such a large field that is continuously expanding there are a 

few emerging technologies that will be particularly impactful:  

• Human Robot Interaction 

• Underwater robots 

• Multi-robot Coordination 

• Legged Mobility 

Each of these sections is elaborated on further in the proceeding sections. 

 

2.5.1 Human Robot Interaction 

Human Robot Interaction (HRI) is a field or robotics dedicated to the design, evaluation 

and understanding of interactions between a human and a robot. Generally, this study 

is split into two field, remote and proximate interactions. The former is where the robot 

and human are separated spatially or even temporally and the latter where the robot and 

human are co-located [38].  Examples of HRI have been mentioned in previous 

sections. Cobotics takes aim at the proximate interactions with humans, the task of 

making a robot operate in a safe manner that does not risk harming the human operator. 

As robotics appear into everyday life the ability to interact with these devices is 

paramount. Whilst society is not quite at the time when the four laws of robotics are 

required, the ability to work safely around robots is becoming ever more paramount. It 

is not only the safety of the operator that needs to be considered. Lamy et al discuss in 

their paper [39] a novel concept that has not been widely considered, this being how to 

control the amplified forces that a robot is capable of performing compared to a human. 

This being useful because whilst development towards cobotics is moving rapidly, 

humans are still much better equipped to evaluate and adapt to new unstructured 

condition. This work goes towards enabling operators to control robots that exert much 

greater force to specific tasks.  
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2.5.2 Underwater robots 

Robots that do not often get much publicity are underwater robots or autonomous 

underwater vehicles (AUV). Over 363 square kilometres or 72% of the Earth’s surface 

is covered by ocean. In 2017 nearly 2.4 billion people lived with 100 km of the ocean 

representing around 40 percent of the world’s population [40]. Due climate change, 

rising sea levels and concern over the ecosystem of the oceans, AUVs have become an 

increasing interest due to their ability to withstand higher pressures that submarines and 

to be able to go where no one has explored before. The first AUV was developed by 

the Applied Physics Laboratory at the University of Washington known as the SPURV 

or Self-propelled underwater research vehicle. The SPURV was capable of diving over 

10,000 feet and had an operation of time of about four hours [41]. In 2000, Yuh 

conducted a survey and found that at the time there was over 46 types of AUVs 

available for such purposes [42]. In recent years with the developments in autonomous 

navigation and sensor development AUVs have been used for mapping sea floors in 3D 

[43]–[45], monitoring sea ice [46] and monitoring sea life [47], [48]. 

 

2.5.3 Multi-robot Coordination 

Multi-robot coordination or swarm robotics is a field of robotics that focuses on 

coordinating robot movements/actions to achieve joint goals or to enable individual 

tasks without collisions with other robots. This is a growing field in robotics because 

of the realisation that multiple robots can achieve a goal better than an individual robot. 

In addition to this there is a need to coordinate multiple robots working together. 

Examples of multi robot coordination can been seen in modern warehouses at 

companies such as Amazon and Ocado [49], [50]. These companies have leveraged the 

technology to stream line product picking and transportation to increase productivity. 

This sort of technology is by no means limited to warehouses, and is increasingly being 

looked at in the search and rescue fields [51], [52], mapping [53], [54] and construction 

[55], [56]. 

 

2.5.4 Legged Mobility  

Whilst robots are replacing many tasks constrained to humans, humans still tend to have 

the advantage in many areas due to our flexibility and mobility. Robot arms have been 
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with us for many years but its usefulness is limited to its ability to reach its target. That 

is why a huge amount of effort has gone into developing biped and quadruped robots 

and in recent years a huge advancement has been made. When thinking of quadruped 

robots one cannot help but think of Boston Dynamics SPOT [57], a 4 legged robot 

“dog” that is capable of navigating an environment autonomously. There are many 

other actors coming to market that offer similar capabilities. Oxford University has been 

testing a quadruped robot for remote inspection of industrial sites [58]. Whilst a lot of 

progress has gone towards these types of robots, future developments are needed to 

develop their ability to navigate unstructured environments with rough terrain.  

 

 Trends in Automation 

With Industry 4.0 being considered as the next industrial revolution, there are many 

areas of industrial automation that are going to see huge advancements in coming years. 

Some areas of particular interest are Machine learning/Artificial intelligence, smart 

factories, virtual/augmented reality, flexible manufacturing and cloud computing.  

 

2.6.1 Machine learning 

Machine learning is the study of computer algorithms that have the ability to improve 

itself based on experience it has gained whilst running. It in itself is a subset of artificial 

intelligence. Machine learning uses neural networks that takes training data and then 

tries to make predictions or decisions without being explicitly programmed to do so. 

Giving points to correct decisions a machine learning algorithm can be left to teach 

itself how to do a job better than previously. An example of machine learning can be 

found in email filtering, the algorithm will learn from user input how to identify spam 

emails, and then adapts itself to filter this content. Google has been using machine 

learning through bot identification verification to teach its AI how to identify common 

day to day objects in images, such as traffic lights, crossings, buildings. This training 

data has then gone into improving their self-driving cars, giving cars the ability to 

identify these common objects through the various array of sensors. Google have also 

been using robots to create their data sets. The TossingBot has been developed to create 

datasets on how to toss unknown objects in an unstructured environment outside of the 

robots kinematic range [59], by using multiple robots, repeating the same process over 

and over, the robots are able to improve their understanding of throwing objects and 
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gradually improve their accuracy over time. Another example is where Tan et al use 

machine learning to train quadruped robots to walk using reward signals in a simulation 

which can then be transferred to real applications [60].  

 

2.6.2 Smart Factories 

Smart factories are a response to ever changing demand and increased pressure on 

manufacturing to operate at lower costs and to be more flexible in their offerings. The 

term smart factory means a highly digitised and connected environment, consisting of 

modular machinery and equipment that is able to improve itself through the process of 

automation and self-optimisation. These modules or parts of production can be 

connected via Internet of Things (IoT) devices or other types of integrated circuits 

which enable sensing, measurement, control and communication of everything that is 

happening through the manufacturing process. These smart factories can include 

everything from production, information and communication technologies and includes 

the potential to integrate across entire supply chains [61]. With this integration and 

monitoring of everything happening within a factory, huge amounts of data can be 

generated meaning the information networks need to be capable of keeping up with a 

high rate of transmission. Migration from traditional factories to smart does however 

pose a problem for many businesses given the large scale and systematic changes 

required. Sjӧdin et al has tried to address these issues by gathering data from five in-

depth studies of factories already making this transition to identify key steps needed 

during implementation, and from this have offered a preliminary model for future smart 

factories to work from. This model revolves around three key principles, the digitisation 

of people, introducing agile processes and configuring modular technologies [62]. Part 

of this trend is to take on the big challenge of data transfer and energy usage. Luo et al 

takes a look at these issues and proposed a mobile and hierarchical data transmission 

architecture to integrate wired/wireless field bus networks and wireless networks by 

taking advantages already present in existing mobile intelligence such as automatic 

guided vehicles (AGVs) in smart factories and by doing so propose a novel data and 

materials delivery scheme to overcome these issues [63]. With the virtual becoming 

every closer to the real, IoT within smart factories have played a large part in paving 

the way towards the full realisation of Industry 4.0. Needing to be highly flexible with 

volume and customisation proposes its own problems. Shrouf proposes an architecture 
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for IoT based smart factories which defines the main characteristics of these factories 

with a focus on sustainability [64].  

 

2.6.3 Virtual Reality 

In the last 5 years Virtual Reality (VR) and Augmented Reality (AR) have penetrated 

[65] various sectors other than computer games and this includes manufacturing and 

robotics. Augmented reality in particular has become widespread because the 

technology works perfectly in tandem with modern mobile phones which are 

omnipresent [66]. VR on the other hand has been a bit more limited in its impact partly 

due to the technological requirements. In particular the processing and graphical power 

required to operate more complicated VR applications as held it back. Companies such 

as Oculus have worked to try and bridge the gap between AR and VR with their more 

mobile VR headsets where as companies such as Valve have double down on higher 

specification hardware. AR has become particularly useful in industry. Areas such as 

remote maintenance [67] and quality assurance are prime examples [68]. 

 

2.6.4 Flexible Manufacturing 

Flexible Manufacturing Systems (FMS) is another area where automation is seeing 

increased focus in recent years. FMS is a method of production that is designed to be 

easily adaptable in what it manufactures and at what quantities. Compared to typical 

manufacturing where mass production of a single item sees a lower production cost, 

FMS is set up to manufacture a range of products as demand sees fit. Having this level 

of flexibility has a cost so FMS typically has a higher upfront cost due to having to 

purchase and install specialised equipment but can return a lower production cost over 

time. FMS is a part of the make-to-order strategy that allows a level of customisation 

for customers. FMS was developed by Jerome H. Lemelson who was an American 

industrial engineer and inventor. Lemelson had patented the concept in 1954 [69] of a 

robot-based system that could weld, rivet, convey and inspect manufactured goods. By 

the 1970s systems based from Lemelson’s design started hitting factory floors in the 

US and in Europe [70]. Flexible manufacturing systems have their advantages and 

disadvantages. The advantages come in the form of reduced manufacturing cost, lower 

cost per unit, greater labour productivity and improved quality among others, whereas 

the disadvantages are the initial cost for systems and planning, requiring skilled labour 
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to operate the systems and they can be complicated to run and maintain [71]. Whilst 

FMS systems are not new, the renewed attention is down to quickly changing markets 

and world events. With advances in technology and artificial intelligence and with 

technology associated to smart factories, FMS are growing ever more intelligent [72].  

 

 Automation and Robot Sensors 

Within industry, automation sensors have a very important role to play. They allow 

systems to detect, analyse, measure and process changes in measurements such as 

position, height, length, appearance or displacement. There are many types of sensors 

within automation such as vision, ultrasonic, position, proximity, photoelectric and 

temperature sensors. Robotic sensors are used to evaluate the robot’s environment and 

condition. They connect to the robot controller which is then responsible for processing 

the information generated and to enable an appropriate behaviour of the robot. Sensors 

in robots are typically considered to be akin to human sensory organs as they perform 

the same sorts of functions. Robots require extensive information about their 

environment to operate effectively and sensors supply this. Robots also typically have 

internal sensors responsible for monitoring the robots state. They are used to measure 

current position, velocity and acceleration of the robot’s joints and end effector. These 

sensors consist of position and velocity sensors. Position sensors include an encoder 

which is a digital optical device that converts the joints movements into digital pulses, 

a potentiometer which provides a variable resistance in terms of voltage of linear or 

angular displacements, synchros which transforms angular position into an electric 

signal [73] and resolvers which are rotatory transformer used to measure degrees of 

rotation which provide position and speed feedback [74].  Finally, velocity sensors 

measure position over time by taking measurements at known intervals and then 

computing the change in position values.   

Sensors are analogues to human senses but they also extend further to sense 

things that humans are incapable of. There are typically four main classifications of 

sensors followed by two sub classes of each. There are simple and complex touch 

sensors, the former sensing an objects presence or absence while the latter sensing size, 

shape or hardness. Simple and complex force sensors, simply measuring forces along a 

single axis while complex sensing over multiple. In a similar fashion there are simple 

and complex vision sensors. Again, the former sensing edges, holes and corners and the 
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latter being capable of recognising objects. Last there are proximity sensors - in a class 

of its own which is a non-contact sensor simply capable of detecting objects in front of 

it. These sensors can measure many different properties, for example object proximity 

such as presence, bearing, colour or physical orientation and object’s coordinates in 

space. There are also sensors capable of detecting the presence or concentration of 

chemicals and ones capable of detecting sound attributers such as frequency or intensity 

[75] among others.  

Without sensors like these, advanced automation would not exist. It is these 

sensors which replicate or extend human capabilities further that enable tasks to be 

automated. More so it is sensors like these that enable robot capabilities to extend 

further and further and the development of newer more advanced sensors that is going 

to push the development of robotics and automation further. When Microsoft released 

the Xbox Kinect in 2010 [76] and new wave of vision sensing technology emerged as 

a result. The ability to detect RGB colours as well as depth (RGB-D sensors) allowed 

many advancements in robotic vision systems. Lai et al presented in 2011 a large dataset 

of classified images for researchers to develop better object recognition, manipulation, 

navigation and interaction capabilities [77]. Lai et al’s work went on to contribute 

towards many further development in the field such as Boubou et al developing an 

adaptive filter for creating improved 3D data captured using the Kinect [78].  

In the following section a more detailed review is undertaken of photo-electric 

sensors. Due to their uniqueness of their application in the system being developed, a 

dedicated sub-section is a provided detailing basic mechanics and application. 

 

2.7.1 Photo-electric Sensors 

A photoelectric sensor works by emitting a light beam which can be visible or infrared 

from a light-emitting element and a reflective-type photoelectric sensor is used in 

conjunction to detect the light being emitted. These can be used to discover the distance, 

absence or presence of an object [79] by using the transmitted light. Commonly used in 

industrial manufacturing there are three different types available. Opposed or through-

beam, retro-reflective and proximity-sensing or defused. Both through-beam and retro-

reflective work as partner sensors where one sensor emits the light and the other as the 

reflector which detects the light. Diffuse on the other hand is a single unit with both the 

emitter and reflector combined which then relies on the emitted light being reflected off 
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the target surface. There are advantages and disadvantages to each type of sensor, these 

being; Through-beam sensors are the most accurate of this type of sensor with the 

longest range and are considered very reliable, however the must be installed at two 

points on the system, one side being the emitter and the other being the receiver. 

Reflective offer slightly less accuracy compared to through-beam however, their range 

extends further than diffuse sensors. They too are also considered very reliable. The 

disadvantages come in a similar fashion as through-beam, they must be installed at two 

points, they are of a higher cost than diffuse and their range is lesser than through-beam. 

Diffuse sensors are slightly different to the former two sensors, they install at one point 

by combining the emitter and reflector in to a single unit and they also come at much 

lower costs. The disadvantage is that they are less accurate and require more time to 

setup as they require calibration to the target surface [80]. Photoelectric sensors are 

used in varying manufacturing environments, from the automotive industry to material 

handling to food and beverage, these sorts of sensors are used for object detection of 

parts or containers. When considering a type of sensor for a robot position adaption 

system, typically photo-electric diffuse sensors would not be considered because it is 

not their typical area of application. Currently there is no literature covering their use 

in the position adaption application which presents an opportunity to produce 

something novel. This thesis will go some way in answering whether these sensors are 

viable in this configuration. 

 

 KUKA Robotics 

KUKA is a German manufacturer owned by the Chinese company Midea Group who 

are one of the world’s leading suppliers of intelligent automation solutions.  KUKA 

Systems GMbH is a division of KUKA whom are an international supplier of automated 

manufacturing solutions who have systems and equipment being used by many 

companies such as BMW, GM, Ford, Airbus, Siemens and many others [81]. KUKA 

Robotics offer a very broad range of different types of robots. Ranging from 3 kg to 

1000 kg payloads and industrial robots to medical cobots. Their systems are based on 

an open architecture PC-based controller and as a result KUKA are the number one PC-

controller robot manufacturer in the world. KUKA controllers are suitable for major 

customisation meaning they can integrate custom components or integrate with existing 

automation systems. Not limited to hardware they also offer various software systems 
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such as KUKA SIM which allows for virtual design and testing of complete robot 

systems. In addition KUKA offer a Systems Partner program giving availability of 

experts in key industries which mean they can offer technologies that can transform a 

generic KUKA robot into an application specific solution [82]. While predominantly in 

the automotive industry [83], KUKA operate in many other areas such as the medical 

field [84], manufacturing [85], construction and food and beverage industries [81]. 

KUKA also play a huge roll within the research and science fields assisting researchers 

and developing educational tools. The KUKA youBot is an example this [86], 

developed as an opensource educational tool that meets the requirements of industrial 

requirements as well as educational and research but most of all comes at an affordable 

price point.  

 

2.8.1 Tool Centre Point  

Within manufacturing there are many areas where manual labour outperforms robot 

systems, this is usually due to a human’s exceptional ability to adapt to a change in 

circumstances. With a focus on specific tasks such as plastic welding industrial pipes, 

this research considers sensor aided positioning of a TCP. A robot’s TCP is vital to any 

operation being completed by a robot. It provides information to the robot controller 

about where the tip of the tool attached to the end of a robot is located. As this part of 

the robot typically interacts with an object or surface, it is vital for the robot to know 

where it is in relation to the flange of the robot’s arm. Figure 2-4 shows an example of 

a TCP, in this case the robot is configured with a gripper holding a pencil, and the tip 

of the pencil is configured as the TCP. Using this information, the position of the TCP 

is translated into rotary motions of the robot individual axis so the tip of the tool stays 

on the defined path specified in the robot program. Whilst this is the goal of the 

research, the following sections reviews literature where TCP control in manufacturing 

is critical. 
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Figure 2-4 TCP Example 

 

2.8.2 Type of KUKA robot movement  

When programming an articulated robot there are a set of three different movement 

types available to the user as a base, Point-to-point (PTP), linear (LIN) and circular 

(CIRC). Point-to-point moves the tool centre point of the end effector from point A to 

point B by the shortest path possible (Figure 2-5). This does not mean the path is a 

straight line as it may be quicker for the robot to move between points by taking a more 

indirect route. The reason for this is because when moving between the two points, all 

6 joints of the robot need to move as well, a PTP movement takes this in to consideration 

and tries to move each joint as little as possible by achieving the desired motion. A 

linear movement on the other hand is a straight-line movement between point A and 

point B (Figure 2-6). This movement takes longer because each joint needs to move 

further. Then there is the circular movement, this movement as described moves the 

TCP in an arc movement allowing a circular path to be drawn. A CIRC movement 

requires 3 points to be completed, a start and end point and an auxiliary point (Figure 

2-7). The auxiliary point determines the size of the circular arc between the start and 

end points. Building off these movements there is the addition of spline movements. 

These movements are particularly useful for complex movements such as curved paths. 

Whilst curved paths can be completed using typical PTP, LIN and CIRC movements, 

TCP 
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splines have their advantages. When generating the path with PTP, LIN and CIRC 

commands points are approximated, meaning not all defined points on the desired path 

are met. Spline movements do not have this issue, they follow generated points along 

the entire path and can work at a maintained velocity better than other movement types. 

The path always remains the same and is irrespective of any over settings used. When 

spline movements are generated, the robot controller takes the physical limits of the 

robot into considering and the robot moves as fast as possible within the constrains 

programmed by the operator. With the other basic movements, the physical limits are 

the robot are not considered until the movement is in motion which may result in the 

robot ceasing motion due to these limits breaching. In more recent iterations of KUKA 

robots they have introduced another set of commands to compliment spline movements, 

SPTP, SLIN and SCIRC commands. These commands work on the same principle as 

spline in the sense that they are more accurate and calculated ahead of time [87, pp. 

159–160].  

 

 

Figure 2-5 PTP Movement 

 

 

Figure 2-6 LIN Movement 
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Figure 2-7 CIRC Movement 

 

Even though robot movement types have been well established for many years, 

optimisation of these paths is very important to reduce cycle times in the industrial 

process. Even the smallest of time savings accumulate over time and can make a huge 

impact of production costs. Sven Severin and Juergen Rossmann discuss this 

optimisation in an environment where collisions are possible. When a robot needs to 

avoid an obstacle, intermediate points are needed, however when this is the case the 

robot will lose momentum moving between point A as it gets to point B and onward to 

point C. In their paper they compare three different metaheuristics to find where points 

B position should be located to reduce time lost and to maintain momentum [88]. 

Further examples of optimisation can be found in an in an article by Cooper et al. In 

their paper six degree of freedom robots have been considered from surface mount 

assembly of electronic components where these types of robot are not typically used 

[89]. The approach used here was using a genetic algorithm to optimise component 

placement ordering to decrease cycle times. In their paper they compare the various 

different movement types not just PTP movements. This shows that whilst the 

movement of the robot itself can be optimised, so can the positioning of objects the 

robot is interacting with.  

 

2.8.3 KUKA Hardware Interfacing 

Hardware interfaces involve connecting other systems or technologies to a robot 

system. For example, connecting a personal computer to a robot controller to expand 

control over the connecting robot. To do this KUKA offer a variety of different methods 

for interfacing such as Process Field Bus (PROFIBUS) and Ethernet. PROFIBUS is a 

standard for fieldbus communication for automation technology that was promoted by 

the German Department of Education and Research (BMBF) in 1989 [90]. It was from 

the combined work of the German government, twenty-one businesses and industry 

Point A Point B 

Trajectory 

Auxiliary Pint 
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leaders at the time which became the Central Association for the Electrical Industry 

(ZVEI) that created what still stands as leading solution for hardware interfacing 

particularly between European customers. It was only in 1993 that PROFIBUS was 

considered completed, it was when PROFIBUS DP (Decentralised Periphery) standard 

was introduced that allowed easier configuration and faster messaging [91]. The 

Ethernet interface on the other hand is a simpler interface in the sense that it is a standard 

communication interface used on the majority of computers all over the world. This 

software comes in different versions such as  KUKA Ethernet KRL [92], KUKA 

Ethernet RSI XML [93] and KUKA Robot Sensor Interface [94]. Each of these software 

packages is an extension on the previous and represent the evolution of Ethernet control 

for KUKA robots. They work on the principle of exchange XML messages that can be 

configured on the controller via configuration files. The Ethernet interface of KUKA 

robots has allowed a variety of different research to be conducted using their devices, 

adding KUKA’s commitment to development in the field of robotics.  

 

2.8.4 Adaptive control 

Adaptive control is a method where by a controller has the ability to adapt a controlled 

system with parameters that can very or ones that can be uncertain [95]. Adaptive 

control has for a long time been seen as an effective system for robot manipulator 

controller design due to its ability to deal with unknown certainties of robot dynamics 

models. The design of the controller for a serial manipulator contains two parts, an end 

effector path or trajectory that is first specified which generates a set of joint angles to 

achieve a desired path and then a second part to calculate the required torque that each 

joint needs to apply to achieve the required motion. The torque can be calculated based 

on inverse dynamic equations. Due to robot systems being extremely nonlinear, 

controlling the manipulator can be complex. When a robot mechanism is in motion the 

variables controlling each joint change and this is what makes the dynamic equations 

alter throughout the robot movement. This is why robots use Model Reference Adaptive 

Control (MRAC) as it has the ability to take these changes in to account. Traditional 

controller techniques generally are not used for robotics due to their poor performance 

at high speed, PID control systems may not provide stability or optimal control for the 

system either [96], this is why MRAC is one of the most prevalent methodologies used 

today [97]. KUKA robot controllers handle this adaptive control internally but expose 
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various options to build upon it. The KUKA RSI and Ethernet XML software packages 

expose certain parameters of the robot and allow manipulation to be extended from this.  

 

 Robot Data Acquisition  

An important part of working with robots particularly as the world moves into Industry 

4.0 is the ability to learn from experience. This can be in the form of neural networks 

and machine learning but also in the form of old fashion research. This means the ability 

to acquire data from robot and robot sensors in paramount. There are no real standards 

when it comes to this partly due to the sheer breadth of robot and sensor systems 

available. There has been some attempts to develop frameworks to achieve this [98]. 

There are two types of data acquisition that is typical seen, real time and offline. Real 

time usually relates to reading live sensory data as its generated such as GPS data and 

offline is where data is recorded on to a device and then analysed post completion of 

the desired task. A simple example of data acquisition can be found in Lego Mindstorms 

products [99] which is used when teaching data acquisition for a low cost. Other 

examples can be found from various research papers on the topic. Zhou discusses using 

C++ programming language to access sensory data of a mobile autonomous robot [100], 

Bryant and Gandhi discuss a real time data acquisition using LabVIEW software and 

Sarma and Bezboruah discuss using low cost Arduino UNO to interface with analogue 

sensors for data acquisition. Essentially data acquisition relies on the systems being 

used and their capability to be extended. 

 

 Summary 

This literature review covers a wide range of topics with the purpose of giving the 

reader a complete introduction to robotics. Starting with its history the evolution of the 

robotics is discussed from the Vaucanson’s duck to the modern articulated robot. Then 

the history of automation is reviewed culminating in an overview of Industry 4.0 – the 

latest industrial revolution. Once a firm foundation is built, a more specific 

investigation into industrial robotic automation is completed. An overview of four 

different types of robot systems prevalent in the manufacturing sector is discussed. 

These types of robots being welding pick and place, painting and assembly. A particular 

emphasis has been placed on hot gas welding in this section to highlight a lack of 

literature in the field. Next future trends are reviewed to understand where future robot 
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and automation development is heading to see if any topics intersects with research 

undertaken in this thesis.  

The final three sections of the literature review focus on understanding the 

requirements of the hardware and software used in this project. A general overview of 

different types of sensors used within the manufacturing industry is presented with a 

dedicated sub-section for discussing the photo-electric sensors used in this project. The 

reason for having a dedicated sub-section is to communicate the uniqueness of the 

application of these sensors in this project. Where photo-electric sensors are typically 

used with pick and place robots, to use them as sensors for position adaption is novel 

and currently has no scientific research available addressing their use in the context of 

this thesis. Next an understanding of the KUKA robot systems is presented focusing on 

the KUKA KR16 used for experimentation. Certain aspects important to the project are 

discussed such us the movements types the robot is capable of completing and the 

hardware interfaces available. Finally, robot data acquisition is reviewed. The ability to 

accurately measure and analyse the robot movements during experimentation is 

important to the success of the research. Whilst there are many ways to record robot 

data, there is no standardised set of tools available and bespoke approaches are the 

typical norm. This presented an opportunity for development, specifically when 

working with KUKA robots. The next chapter takes the information garnered from this 

literature review and applies it to develop the experimental setup for this thesis.  
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 EXPERIMENTAL SETUP 

 

 Introduction 

This chapter discusses the lab setup, robot configuration and resources used during the 

formulation of this thesis. Initially the laboratory and workspace available is 

investigated, followed by and introduction to the robot being used along with its 

configuration. Then the Ethernet interface and robot communication are discussed 

detailing the configuration steps required. Next the Robot Sensor Interface software is 

detailed along with the RSI configuration used initially during experimentation. Finally, 

the sensor setup and communication is discussed along with the hardware components 

used to give the reader a complete guide for replicating the experiments discussed in 

later chapters.   

  

 Workspace configuration 

During this research a robot cell equipped with a KUKA KR16-2 has been used. The 

cell is 3 x 3m in size and the robot is configured with software limits that are set just 

short of the surrounding cell walls (Figure 3-1). Multiple safety stops are located around 

the cell, two inside the cell, one external of the cell and one located directly on the tech 

pendent.  

 

Figure 3-1 Robot Cell 
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 KUKA KR16-2 

The KUKA KR16-2 shown in Figure 3-2 is a versatile robot and well suited for the 

purposes of this thesis. An articulated robot with six axes, the KR16-2 has a payload of 

16 kg which has been designed and manufactured by KUKA Robotics. Flexible with 

strength, the KR16 is constructed with light-weight alloys and designed to be space 

saving and cost effective. The KR16-2 is commonly found in the automotive 

components industry and various manufacturing sectors. The robot has a repeatability 

factor of ±0.05 mm making it well suited for position-oriented tasks. In Table 3-1 the 

main specification for the robot can be found followed by the range of motion available 

for each axis and each axis top motion speed. The robot has an affective reach of 2.412 

meters making it ideal for the range of testing envisaged through this project. In Figure 

3-3 the full working area of the robot is visualised, followed by the set of measurements 

for each position in Table 3-2. The KUKA KR16-2 is equipped with a gripper. 

Specifically, a two jaw parallel gripper manufactured by Zimmer [101] shown in Figure 

3-4. The gripper is a useful tool, typically used for picking and placing but in the scope 

of this project it allows quick changes between sensor mounts and assemblies.  

 

Figure 3-2 A KUKA KR 16-2 Robot 
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Table 3-1 KUKA KR16-2 Main specification 

Maximum Robot Load 16 kg 

Number of axis 6 

Maximum horizontal reach 1611 mm 

Repeatability ±0.05 mm 

Controller KR C4 

Axis information Range of 

motion 

Robot motion speed in º/s  

(16 kg Payload) 

Axis 1 ± 185°  156° 

Axis 2 +35° / -155° 156° 

Axis 3 +154° / -130° 156° 

Axis 4 ± 350° 330° 

Axis 5  ± 130° 330° 

Axis 6 ± 350° 615° 

 

 

Figure 3-3 KR16-2 Work Envelope Visualised [102, p. 4] 

Table 3-2 Work envelope figures 

Work Envelope KR16-2 

A 2026 mm 

B 2412 mm 

C 1611 mm 

D 1081 mm 
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E 530 mm 

F 1027 mm 

G 670 mm 

Volume 14.5 m3 

 

 

Figure 3-4 Zimmer Gripper 

3.3.1 The KR16 Controller and Smart Pad Teach pendant 

The KUKA C4 controller show in Figure 3-5 was a pioneering controller developed by 

KUKA robotics. Combining robot control, PLC control, motion control and safety 

control into a single unit means it is a common controller used within manufacturing 

where KUKA robots have been deployed. It has fast response times and options for 

expandability, coupled with the prolific use of KUKA robots in industry, mean it is the 

ideal candidate to be used in development of robot sensor systems [103]. The KUKA 

smartPAD Teach Pendant is a hand-held interface that gives the user complete control 

over the robot system. This pendant is used for the manual programming and adjustment 

of the KUKA robot. Its onscreen interface allows individual control over each axis 

along with the ability to switch between different coordinate frames. Coupled with a 

3D mouse it gives a high level of control over the robot to the user.  The smartPAD is 

quite intuitive by design and consists of an array of buttons and a touch screen display. 

Each of these buttons is described in Table 3-3 and the smartPAD itself can be seen in 

Figure 3-6. 
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Figure 3-5 KUKA C4 Robot Controller  

  

Figure 3-6 KUKA Teach Pendant Front 

View  

Table 3-3 KUKA smartPAD descriptions [87] 

Item Description 

1 Button for disconnecting the smartPAD 

2 Key switch for calling the connection manager. The switch can only be 

turned if the key is inserted. The operating mode can be changed by using 

the connection manager. 

3 EMERGENCY STOP button. Stops the robot in hazardous situations. 

The EMERGENCY STOP button locks itself in place when it is pressed. 

4 Space Mouse: For moving the robot manually. 

5 Jog keys: For moving the robot manually. 

6 Key for setting the program override 

7 Key for setting the jog override 

8 Main menu key: Shows the menu items on the smartHMI 

9 Status keys. The status keys are used primarily for setting parameters 

in technology packages. Their exact function depends on the 

technology packages installed. 

10 Start key: The Start key is used to start a program. 

11 Start backwards key: The Start backwards key is used to start a 

program backwards. The program is executed step by step. 

12 STOP key: The STOP key is used to stop a program that is running. 
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13 Keyboard key Displays the keyboard. It is generally not necessary to press 

this key to display the keyboard, as the smartHMI detects when keyboard 

input is required and displays the keyboard automatically. 

 

3.3.2 KUKA Robot Language 

The KUKA Robot Language (KRL) is a proprietary language developed for non-

collaborative KUKA systems to enable easier programming of their robots via the 

KUKA pendant. The language exposes various degrees of complexity to suit different 

skill levels when programming, from simple inline forms used through the teach 

pendant to fully typed sections of code via its development environment. A typical KRL 

program is shown in Figure 3-7 and is structured with a leading DEF statement and the 

name of the KRL program, followed by INI which contains any internal variables or 

parameters that are initialised at the start of the program. Next the main content of the 

program is contained, in this instance a home position is specified followed by two LIN 

commands ending with the home position again. Finalising the program is the END 

statement, terminating execution of the code.  

The language exposes seven movement types for use with a KUKA robot, PTP, 

LIN, CIRC, SPTP, SLIN, SCIRC and Spline blocks. The three formers are legacy 

movements whereas the latter are Spline movements which are newer motions designed 

to be more accurate and efficient. The PTP and SPTP movement moves the TCP along 

the fastest route possible to reach its endpoint. The fastest path not necessarily being 

the shortest. LIN and SLIN movements produce a straight-line path that the TCP 

follows at a desired velocity to reach its endpoint. CIRC and SCIRC movements 

produce circular paths that the TCP follows. This movement is made up of three 

parameters, a start points, auxiliary point and end point. A Spline block is simply a 

grouping of spline motions which is calculated and executed by the robot controller as 

a single motion.  
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Figure 3-7 Example KRL program 

 Robot configuration 

3.4.1 End effector 

The robot is equipped with a Zimmer GPP5010 gripper shown in Figure 3-4[101]. The 

decision to work with a gripper rather than a dedicated end effector mount was 

influenced by the intended use of the final design. To this end the mount design was a 

secondary issue, but the sensor positioning was in the important part. This means 

working with a gripper would be quicker in terms of designing new mounts and 

manufacturing them through 3D printing.  

 

3.4.2 Sensor mounts 

During development various sensor positions were considered. The initial design of the 

mounts for these sensors worked on the principle of two sensors of opposite sides 

angled to trigger at the same position. As this system is intended to work by integrating 

into existing systems, with tools already on the market such as the hot gas welding 

device in Figure 2-2 different mounting positions needed to be analysed to factor into 

any further research.  Figure 3-8 shows the initial concept idea, as a comparison the 

setup in Figure 3-9 was considered, finally Figure 3-10 shows a hybrid of the previous 

two designs creating a more compact design. In Figure 3-9, the second sensor setup has 

target areas parallel to each other. The reason for this is to test whether overlapping 

targets points creates confusion between the two sensors as to which is being triggered 

at a given time.  
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Figure 3-8 Proposed sensor configuration 1 

 

Figure 3-9 Proposed sensor configuration 2 

 

Figure 3-10 Proposed sensor configuration 3 
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 Ethernet Communication 

3.5.1 Controller Configuration 

The RSI software relies on the User Datagram Protocol (UDP) over IP (Internet 

Protocol) communication to work. First the configuration of the RSI interface needs to 

be completed. An IP of 10.10.10.1 is assigned to this interface specifically to avoid any 

confusion with other interfaces on the robot as they maintain the 192.168 IP range. 

Warnings to this is present on the configuration screen. To configure this, the network 

settings of the device are accessed through the teach pendant. From here a new network 

interface is added, dedicated to RSI as shown in Figure 3-11.  

 

Figure 3-11 RSI network configuration 

3.5.2 Client Configuration 

Once the cabinet network interface has been configured, the client interface can be 

created. An CAT6 Ethernet cable is used to connect the laptop directly into the 

controller’s X66 port shown in Figure 3-12, then a static IP address of “10.10.10.10” is 

assigned to the Ethernet interface of the laptop. A ping test is then used to test whether 
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communication has been established successfully.  The RSI software’s Ethernet objects 

works on the basis of sending a message and waiting for a reply. If a reply is not 

received within a specified timeframe the robot program will timeout resulting in the 

immediate stop of robot operation. If no change is expected in the robot then a reply of 

0 values is returned by default. To test this configuration the RSI software comes with 

a test server interface shown in Figure 3-13. The server application has basic 

functionality, it allows configuration of the clients’ network interface, allows the user 

to read incoming and outgoing XML messages and gives basic movements commands 

in the form of jogging the different robot axes.  

 

Figure 3-12 KUKA C4 cabinet X66 port location 

 

Figure 3-13 Robot Sensor Interface - Server Application 

 

X66 Port 
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 Robot Communication 

One challenge to overcome is deciding on how to connect to the robot to influence its 

control. The following sections cover various products and research already completed 

into this field. 

 

3.6.1 Robot Sensor Interface 

KUKA Robot Sensor Interface (RSI) is a proprietary software package that expands the 

capabilities of a KUKA KR C4 Robot Controller giving it the ability to complete data 

exchange between a robot and sensor system via Ethernet or the Input/output system of 

the robot controller external factors to influence the motion of the robot or program 

execution. Configuration of the signal flow or RSI Context is done through the RSI 

Visual software package (Figure 3-14). RSI Visual provides access to a library of RSI 

Objects which are used to configure the signal flow.  

 

Figure 3-14 KUKA RSI Visual Software Package 

3.6.1.1 Data communication 

There are two options available for communicating with a robot controller adapted with 

KUKA RSI are via the I/O system or via Ethernet. Using the I/O system is a more direct 

method but working over Ethernet gives us much greater flexibility. Using a real-time 

capable network connection, data is transmitted via UDP/IP where no fixed data frame 

is specified. This must be configured in an XML file on the robot controller.  Cyclical 

data transmissions from the robot controller to sensor system is run in parallel to the 
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robot program execution. For example, operating mode, position data and axis angles 

can be sent to the sensor system. The sensor system then again via cyclical data 

transmissions send information in parallel to program execution. UDP is a 

connectionless network protocol and is not reliable or secure. As it cannot be guaranteed 

that the packets sent arrive in a reliable manner it is up to the programmer to implement 

sufficient error correction measures to ensure proper operation. This could be checking 

that all packets have arrived correctly and re-requesting any that have failed.  

 

3.6.1.2 Signal Processing 

Signals are processed using RSI objects. An RSI object is essentially a function that has 

inputs and outputs like any other program (Figure 3-15). As talked about previously, 

RSI Visual provides a user with an extensive range of RSI objects via its library. A 

signal flow is constructed by stringing multiple RSI objects together via their inputs 

and outputs as demonstrated in Figure 3-16. Combined together these objects are known 

as the RSI context. Once an RSI context has been constructed using RSI Visual, the 

RSI context can be loaded in a KRL program and triggered to run in parallel. This 

allows the signals processed from sensory input and the KRL program to run 

concurrently and gives the user the ability to activate and deactivate as they see fit. The 

processing is calculated at the sensor cycle rate which depends of the selected mode. 

Either a rate of 12ms or 4ms where the former operates sensor mode #IPO and the latter 

operates sensor mode #IPO_FAST. This is shown in Figure 3-17. 

 

 

Figure 3-15 Structure of RSI object 
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Figure 3-16 Structure of an RSI context 

 

Figure 3-17 Relation between KRL program and RSI context.  

3.6.1.3 Principle of data exchange via the I/O system 

All data and sensor signals are read and written via the I/O system of the robot controller 

($IN representing digital input and $ANIN representing analogue input). The signals 

are processed by the RSI context and then returned to the sensor system again via the 

I/O system ($OUT representing digital output and $ANOUT representing analogue 

outputs). These signals are read and written at the rate that the sensors cycle has been 

set to. In Figure 3-18, an RSI context is taking signals from a digital and analogue input 

of the I/O system, processed by the RSI context and written back to the I/O system via 
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the MAP2DIGOUT and MAP2ANOUT methods.  

 

Figure 3-18 Data exchange via I/O system.  

3.6.1.4 Principle of data exchange via the Ethernet system 

Data exchange via the Ethernet system works in a similar fashion to the I/O system, 

however all communication to sensors is managed through an RSI object called 

ETHERNET within the RSI context. Shown in Figure 3-19, there are up to 64 inputs 

and outputs available for the ETHERNET RSI object where the signals at the inputs are 

sent to the sensor system and signals of the outputs are received by the robot controller. 

When signal processing is activated from within the KRL program a channel is prepared 

for sending data to the sensor system via the UDP protocol. The robot controller is 

responsible for initiating the data exchange. Once established it sends data packets to 

the sensor system at the sensor cycle rate specified previously. The sensor system is 

then responsible for responding to the data packets sent by the robot controller with 

data of its own. Data transmitted between the two systems is defined using a data set 

contained within an XML formatted file. This data set is transmitted at the sensor cycle 

rate. The XML file name is specified when created the ETHERNET RSI object. Figure 

3-20 demonstrates the sequence of events when data is exchanged via Ethernet.  
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Figure 3-19 Example of data exchange via Ethernet 

 

Figure 3-20 Data flow over Ethernet 
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either Cartesian or axis-specific. Cartesian creates a Correction Coordinate System in 

the TCP where the BASE, ROBROOT, TOOL, WORLD or Tool-based technologies 
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sensor correction cannot be used for asynchronous axes. There are also two correction 

modes, relative and absolute. Where relative correction values are added together and 

the new position results from the offset of the starting position by the previous 

correction and the current correction value combined, absolute correction results in an 

offset from the starting position by the correction value. Figure 3-21 and Figure 3-22 

demonstrate these movements respectively. Finally, there are two sets of correction 

methods available; superposed sensors correction and sensor-guided motion. In the 

former, corrections are applied to existing programmed movement contained in a KRL 

program and merely adjusts pre-existing motions and the latter controls the entire 

movement of the robot system where no previous programmed trajectory has been 

configured.  

 

Figure 3-21 Sensor-guided motion based on relative values 

 

Figure 3-22 Sensor-guided motion based on absolute values 

 

3.6.1.6 KUKA WorkVisual 

KUKA WorkVisual (Figure 3-23) is a tool used for configuring and servicing KUKA 

Robot Controllers. A project within WorkVisual is a set of saved configurations for 

P0 

P0 
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each robot being configured. Whilst it is not intended to service the robot during this 

project, WorkVisual has the added benefit of having a KRL editor built into the package 

with the ability of transferring KRL programs to and from the robot controller. This can 

be a useful tool to have as it is faster and easier to construct KRL programs via a PC 

than on the teach pendant directly and also allows for offline editing of the robot 

programs. Within the editor there is validation to verify whether the program written 

has any errors in the code.  

 

Figure 3-23 WorkVisual Development Environment Programming and Diagnosis 

Panel 

 RSI Configuration 

Once the network configurations have been established, configuration of the RSI 

package is needed. The software itself relies on three configuration files and a single 

network configuration file. Different network configurations can be used with different 

sets on RSI configurations so project independent packages can be developed that do 

not require manual reconfiguration of the robot. Before the RSI Signal Flow can be 

created, a network configuration file is needed.  

 

3.7.1 Network Configuration 

The RSI network configuration file is an XML document with the following structure. 

Consisting of four main parameters shown in Figure 3-24 are what dictate how the 
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Ethernet interface of the robot will act. Here the IP address and port of the laptop is set. 

This is to reduce cross talk between multisensory systems. The <SENTYPE> element 

is a keyword that must be present in all replies from the laptop. This ensures the correct 

signal flow is replying to the right message. Finally, the <ONLYSEND> element tells 

the RSI interface whether to expect a reply. This is useful in situations where the Robot 

Sensor Interface is used for monitoring robot activity and not for influencing it. 

 

Figure 3-24 RSI Network Configuration example 

 

3.7.2 Send & Receive values 

The secondary parameters relate to the configuration of the RSI signal flow and depends 

on what objects are used during the signal flow configuration. Within the RSI package 

are a set of system variables that allow basic information to be transmitted. In this 

instance the “RIst”, “RSol”, “AIPos”, “ASPos”, “Delay” provides Cartesian 

coordinates, axis positions setpoint positions, Cartesian and joint target positions and 

any delay acceptability (in milliseconds) respectively. System variables which are 

values provided by the controller are marked as “INTERNAL” in the INDX attribute. 

The remaining rows names and user dependant. They can be named anything as long 

as the INDX attribute reflects the output of the Ethernet object within the RSI Signal 

Flow. Any “.” Notation used with in a tag specifies a single RSI Attribute and in respect 

outputs an XML message such as <POSCor X=0 Y0 Z0 Z=0 A=0 B=0 C=0>. Any 

example of a complete Send section is shown in Figure 3-25. All XML values are 

processed by the RSI Ethernet object and messages and formed using the information 

provided by the configuration file. The above configuration will then translate to what 

can be seen in Figure 3-26. This information is converted into binary and is transmitted 

by the C4 controller to the client IP address that was configured.  

 In the same respect as the send values, the receive values configure the 

parameters the RSI Ethernet object expects to receive. Each INDX value is matched to 

<CONFIG> 

<IP_NUMBER>10.10.10.10</IP_NUMBER> 

<PORT>1337</PORT> 

<SENTYPE>RSIMastersThesis</SENTYPE> 

<ONLYSEND>FALSE</ONLYSEND> 

</CONFIG> 
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a corresponding output of the Ethernet Object in the RSI Signal flow. Any “.” Tags 

translate to multi value elements and in this instance the RKorr values are 

communicating XYZABC Cartesian correction values back to the respective axis. The 

tag “EStr” gives the program an opportunity to send messages back to the KUKA Teach 

Pendant for any human operative using the system to see. Finally, in Figure 3-27 is an 

example of the expected configuration of the received XML message. Figure 3-28 then 

showing how the message actually looks when converted by the RSI Ethernet object. 

 

<SEND> 

      <ELEMENTS> 

         <ELEMENT TAG="DEF_RIst" TYPE="DOUBLE" INDX="INTERNAL" />    

         <ELEMENT TAG="DEF_RSol" TYPE="DOUBLE" INDX="INTERNAL" />    

         <ELEMENT TAG="DEF_AIPos" TYPE="DOUBLE" INDX="INTERNAL" />   

         <ELEMENT TAG="DEF_ASPos" TYPE="DOUBLE" INDX="INTERNAL" />       

         <ELEMENT TAG="DEF_Delay" TYPE="LONG" INDX="INTERNAL" />     

         <ELEMENT TAG="PosCorr.X" TYPE="DOUBLE" INDX="1" /> 

         <ELEMENT TAG="PosCorr.Y" TYPE="DOUBLE" INDX="2" /> 

         <ELEMENT TAG="PosCorr.Z" TYPE="DOUBLE" INDX="3" /> 

         <ELEMENT TAG="PosCorr.A" TYPE="DOUBLE" INDX="4" /> 

         <ELEMENT TAG="PosCorr.B" TYPE="DOUBLE" INDX="5" /> 

         <ELEMENT TAG="PosCorr.C" TYPE="DOUBLE" INDX="6" /> 

      </ELEMENTS> 

   </SEND> 

Figure 3-25 RSI Send XML example 

 

<Rob Type="KUKA"> 

    <RIst X="1376.3" Y="0.9" Z="882.6" A="-180.0" B="45.0" C="-180.0"/> 

    <RSol X="1376.3" Y="0.9" Z="882.6" A="-180.0" B="45.0" C="-180.0"/> 

    <AIPos A1="0.0" A2="-90.0" A3="90.0" A4="0.0" A5="45.0" A6="0.0"/> 

    <ASPos A1="0.0" A2="-90.0" A3="90.0" A4="0.0" A5="45.0" A6="0.0"/> 

    <Delay D="0"/> 

    <PosCorr X="0.0" Y="0.0" Z="0.0" A="0.0" B="0.0" C="0.0"/> 

    <IPOC>2273640</IPOC> 

</Rob> 

Figure 3-26 Example of RSI XML Send Message 
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<RECEIVE> 

  <ELEMENTS>         

     <ELEMENT TAG="DEF_EStr" TYPE="STRING" INDX="INTERNAL" /> 

     <ELEMENT TAG="RKorr.X" TYPE="DOUBLE" INDX="1" HOLDON="1" /> 

     <ELEMENT TAG="RKorr.Y" TYPE="DOUBLE" INDX="2" HOLDON="1" /> 

     <ELEMENT TAG="RKorr.Z" TYPE="DOUBLE" INDX="3" HOLDON="1" /> 

     <ELEMENT TAG="RKorr.A" TYPE="DOUBLE" INDX="4" HOLDON="1" /> 

     <ELEMENT TAG="RKorr.B" TYPE="DOUBLE" INDX="5" HOLDON="1" />     

     <ELEMENT TAG="RKorr.C" TYPE="DOUBLE" INDX="6" HOLDON="1" />     

  </ELEMENTS> 

</RECEIVE> 

Figure 3-27 Example receive XML settings 

 

<Sen Type='RSIMastersThesis'> 

    <EStr>"RSI Connected "</EStr> 

    <RKorr X="0" Y="0" Z="0" A="0" B="0" C="0"/> 

    <IPOC>1212</IPOC> 

</Sen> 

Figure 3-28 Example XML send by KUKA RSI Software 

 

3.7.3 RSI Signal Flow 

Once the configuration file name is known, the RSI Signal flow is configured which 

will form the basis of communication to and from the robot. Shown in Figure 3-29, the 

signal flow is constructed of one or many RSI objects which are interlinked together. 

This project uses the following objects: 

 

• POSCORRMON: Returns Cartesian values of the robot’s current position, 

connected the inputs of the ETHERNET object.  

• AXISCORRMON: Returns axis position values of the robot’s current position, 

again connected to the inputs of the ETHERNET object. 

• POSCORR: Receives correction values from the ETHERNET object’s outputs, 

sets the upper and lower limits of corrections allowed. The outputs of this object 

are connected to the MONITOR object. 

• MONITOR: This object creates an RSI Monitor instance which visualises the 
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changes made to the corresponding axes. The RSI Monitor interface is shown 

in Figure 3-30. 

• ETHERNET: The Ethernet object as discussed in other chapters controls the 

information flow via the Ethernet interface of the device.  

 

Once the signal flow is complete and saved, two files are created with the extensions 

“.rsi” and “.rsi.xml”. This in conjunction with the network configuration file created in 

previous sections are then transferred via a USB device to the C4 controller into the 

“C:\KRC\ROBOTER\Config\User\Common\SensorInterface” directory. 

 

Figure 3-29 RSI signal flow example 
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Figure 3-30 RSI Monitor example 

 Sensor Configuration 

3.8.1 Photoelectric diffuse sensors  

Photoelectric sensors were chosen as they are relatively low-cost sensors that have not 

been used in this context before. The principal idea is to run two sensors in parallel with 

offset trigger distances. Sensor 1 is responsible for ensuring the target surface is within 

distance. This sensor is active by default, and if this value changes, it alerts the robot to 

move towards the target surface in the appropriate axis. Sensor 2 has its trigger distance 

reduced and is inactive by default. If the target surface fluctuates and raises higher than 

expected, sensor 2 triggers and informs the robot to move away from the target surface. 

When the TCP moves a sufficient distance from the target, sensor 2 deactivates, 

returning the application into its normal state. This is visualised in Figure 3-31.  

As discussed in chapter 3.4.2, different sensor positions were tested. To 

accommodate these configurations Figure 3-32 shows the sensor mounts that are 

designed in SolidWorks 2020 and 3D printed using PLA plastic. The thought process 

behind these designs is to test whether the positioning of the sensors around the TCP of 

the robot effected the accuracy of the system. For example, initial experiments showed 

a lag in when between sensor activation and robot movement, so an additional sensor 

mount was developed to test whether this delay could be compensated for in the design 

of the sensor mount. Various designs were considered during the conceptualising stage 

but 3 designs were chosen to experiment with. These are shown in Figure 6-2. 
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Figure 3-31 Sensor trigger distance configuration 

 

Figure 3-32 Example sensor mounts 

 

3.8.2 Data Acquisition Device 

These sensors are connected via a USB-1608G Data Acquisition device (DAQ) [104] 

manufactured by Measurement Computing (Figure 3-33). The USB-1608G DAQ was 

chosen because it is low cost and has digital inputs that the sensors which are to be used 

in this project are compatible with. The DAQ connects to a laptop via USB. By 

connecting the data terminal of sensor 1 to DIO1 terminal on the DAQ and sensor 2 to 

terminal DIO2. Negative terminal grounded and positive terminal to the 5v. Testing 

using MCC’s company’s software called DAQami confirms operation of the sensors. 

Utilising the Python libraries provided by MCC, sensor input is then incorporated into 

the main application. The two sensors are set up adjacent to the end effectors tool centre 
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point directed at a single location at the tip of the TCP.  

 

Figure 3-33 USB-1608G DAQ 

 

 Investigatory Experiments 

Initially a better understanding on how to use the RSI software was required. The 

following sets of experiments were designed to test basic movements of the robot and 

different settings of the RSI software. The results of these experiments were fed back 

into the design of the application and the final design was tested in chapter 6. Before 

moving on to more complex movements initial control over the robot needed to be 

proven. The following series of motions were tested to verify whether a sufficient 

understanding over the communication with the robot and the RSI package employing 

control over the robot was held. Each test was developed to incrementally more 

complex than the previous, culminating in a fully developed concept that can be taken 

forward to more advanced movements. 

 

3.9.1 Experimental design 

The first set of tests is to establish communication with the robot. Starting by 

establishing a connection whilst maintaining stability. Following successful 

communication, a set of tests were designed (Table 3-4) to establish how to move the 

robot successfully, and is aimed at testing the limits of the basic controls of the robot. 

Moving the robot in incrementally larger steps to ascertain the velocity and movement 

sizes allowed by the RSI system. The purpose of these sets of experiments is to establish 

the greatest movement allowed in a single correction. For movements under 1 mm in a 

single motion, the movement was smooth and without issue, however when moving 1 

mm, the robot movements included a lot of vibration, and any greater movements 

resulted in a violent jerk or velocity errors from the system. Whilst almost identical to 

the previous set of experiments, the purpose of set 2 is to establish the difference in 
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relative and absolute movements within the RSI package to determine the more 

appropriate method of control for the application. As discussed in chapter 3.6.1.5 the 

difference between these movements types is how the robot received correction data. 

Whereas relative movements receive each correction individually, e.g. three correction 

values of 0.1, resulting in a total movement of 0.3 mm, absolute movements receive a 

total movement amount, e.g.  three corrections of “0.1, 0.2, 0.3” for a total movement 

of 0.3 mm. This means that any movement larger than 1 mm requires additional 

calculation to send the correct correction value to the system. Experiments 3-1 and 3-2 

were used to test larger movements of the robot. Experiment 3-1 was an addition to the 

previous tasks as the application is required to calculate the appropriate correction 

values at a speed the robot can handle. Whilst initially this resulted in jerky movements, 

lowering the correction value resulted in smoother movements. Moving to a particular 

coordinate was a more challenging task to test the robot’s movement in more than one 

axis. The fifth set of tests is related to influencing motion of an existing KRL 

application. First to test how modifying the movement of the robot moving in a LIN 

movement and secondly testing the influence to the robot moving in a CIRC movement. 

As expected both movements worked correctly and the only difference between free 

movement and correctional movement are the RSI the values in the KRL program. 

Table 3-4 Initial experiment plan 

Test Description 

0-1 Establish connection with robot controller 

0-2 Receive information from controller 

0-3 Send information to controller 

1-1 Move robot +0.1 mm in X axis using Relative movements 

1-2 Move robot +0.2 mm in X axis using Relative movements 

1-3 Move robot +1 mm in X axis using Relative movements 

1-4 Move robot +2 mm in X axis using Relative movements 

1-5 Move robot +5 mm in X axis using Relative movements 

2-1 Move robot +0.1 mm in X axis using Absolute movements 

2-2 Move robot +0.2 mm in X axis using Absolute movements 

2-3 Move robot +1 mm in X axis using Absolute movements 

2-4 Move robot +2 mm in X axis using Absolute movements 

2-5 Move robot +5 mm in X axis using Absolute movements 
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3-1 Move robot +100 mm in X axis 

3-2 Move robot to X Y Z Cartesian coordinates 

4-1 Influence control over existing KRL program on a plane 

4-2 Influence control over existing KRL program on an arc 

 

3.9.2 Results 

These sets of experiments, whilst do not look overly useful, they are critical in 

influencing the design of the Python application as they represent the fundamental 

motions required in this task and the limits of these motions. These results also give 

insights into further work needed to understand how the robot is moving versus what it 

is expected. A limitation encountered when analysing results was that working with 

such small movements and especially corrections to existing programs, it is often 

difficult to actually see the corrections being made when the corrections are of such a 

small value. The next chapter discusses a way of addressing this using the RSI software.  

Another application is developed for the express purpose of data analysis to overcome 

these issues going forward.  

 

 Summary 

Chapter 3 starts by detailing the workspace used in all experiments, including the 

KUKA KR16 robot and its associated hardware. Included is all the configuration 

information along with a detailed overview of the KUKA Robot Sensor Interface 

software culminating in a set of pre-experiments to confirm appropriate understanding 

has been achieved. The next section discusses the application that is developed to 

utilise the KUKA hardware and software discussed in this chapter and the problems 

encountered when doing so.  
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 APPLICATION DEVELOPMENT 

 

 Introduction 

In the previous chapter the KUKA robot and its associated systems were set up and 

tested to confirm a sufficient understanding of the underlying systems had been 

achieved. This chapter takes the knowledge gathered and is applied to create a system 

that interlinks all the components discussed in chapter 3. First the initial concept of the 

software is discussed, followed by a breakdown of the main applications structure and 

how it intends to operate. The user interface is then presented along with all the 

unexpected problems encountered during development. Finalising in a summary of the 

final system that is used in all future experiments.  

 

 Initial Concept 

KUKA’s RSI software exposes access to exert control over the robot, so a 

communication interface and control system needed to be developed to interface with 

this system. Reviewing previous literature there were two options available for 

interfacing with the RSI software. The first being a Python interface designed for 

previous versions of RSI and the other being the Robot Operating System. The decision 

was made to write a custom piece of software to keep the software footprint low as ROS 

required large amounts of libraries to be installed on a system. Additionally, the RSI 

module for ROS is currently written in Python 2.7 whereas the libraries required for 

communication with the sensors requires Python 3, this means the supporting ROS 

libraries to interface with the RSI software would need to be re-written to support 

Python 3. Three Python threads are created when running this program, the first 

controlling the networking. The second running the user interface and the third 

controlling the sensor logic. Multiple threads are used to reduce processor delay, to stop 

the user interface from freezing and to allow the network communication run in the 

background while calculations are being calculated to avoid network timeouts. 

 

 Main application structure 

The communication of the application operates in a closed loop where a UDP socket is 

polled at 4ms intervals looking for data sent by the robot system. Any information 

received is converted from binary into XML and the relevant variables are extracted 
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and stored. This reply may contain a default set of zero values or positive or negative 

correction values. The structure of the messages received is discussed in chapter 3.7.2.  

 Figure 4-1 shows the operating loop of the communication function. The 

process is broken down in to five steps. The program polls the network card and waits 

for data to be received. If no data appears, the network connection times out, resets and 

waits again. If information is detected the values is stored into a variable and step 2 

continues. 

 

• Process Message: The message received will be in binary format, this is 

converted to a string to form an XML message, from here values are extracted 

and validated for data integrity.  

• Check Sensors: Any sensors attached to the system are probed for information. 

The resulting values stored in variables. 

• Update Status: The UI is updated and all new joint positions and message 

values are refreshed. 

• Formulate Reply: Values polled from the sensor system and from message 

received and then used to perform the calculations need to produce correction 

values to be sent to the robot. 

• Send Reply: These values are then converted into binary and sent to the IP 

address identified from the message previously received.  

 

Figure 4-1 Python application communication process 
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 User Interface 

The initial user interface was designed using Python TK as a framework. Whilst bloated 

and over saturated with numbers it proved rather useful in the initial debugging of the 

application as well as testing of the RSI software. In Figure 4-2 the initial design of the 

UI is shown before a more advanced version was completed for the final experiments. 

The UI was heavily influenced by the RSI test server application. Through testing 

discussed in chapter 3.9, the UI was modified to include buttons to trigger and labels to 

view robot movements that were used when learning how to use RSI and influence the 

robot (Figure 4-3). This allowed for quicker testing and debugging, along with exposing 

sent and received information in a more presentable manner. The final interface shown 

in Figure 4-4 is far removed from its predecessors. More focussed and to task, the UI 

presents the basic information needed for operating the application by stripping out all 

unnecessary information. The IP address is presented to ensure correct connectivity, 

and then the Cartesian and axis values of the current robot position. Following this there 

are two visual indicators representing each sensor state and the centre value displays 

the current total correction value currently being used. Finally, a status box to display 

current application state, with a “Run” and “Stop” button to initialise and stop program 

operation.  

 

Figure 4-2 Initial UI Concept 
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Figure 4-3 Updated UI Design 

 

 

Figure 4-4 Final UI Design 
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 Unexpected problems 

 

4.5.1 KUKA Documentation 

Documentation relating the RSI technology is rather sparse. The main Robot Sensor 

Interface manual [94] contained enough information for installation and configuration 

along with several example applications to learn from but the manual lacked critical 

information about the system variables that are available to be used when programming. 

This was not shipped with the product. System variables were eventually found in 

KUKA System Variables manual [105], whilst XML variables for the RSI network 

configuration was found in a previous KUKA product named KUKA Ethernet KRL 

[92], a previous product by KUKA and as a result they share a lot of the same system 

variables.  

 

4.5.2 Singularities 

One of the initial problems encountered during development was a singularity found in 

the robots starting position. A singularity was discovered when the robot axes were in 

the following position: A1 0°, A2 -90°, A3 90°, A4 0°, A5 0°, A6 0°. This resulted in 

errors on several axis, terminating the robots’ movement. A singularity in terms or 

robotics is when multiple robot joints align in the same direction, the robot’s end 

effector is unable to adopt certain poses. With the KUKA KR16-2, this results in the 

errors mentioned above rather than risking damage to the robot by moving in an 

unknown situation.  

In the instance of this project, the problem was quickly overcome by moving 

the start position of the robot to another position, thus avoiding this singularity in 

particular.  Whilst unlikely that the robot would hit this particular position during 

running of its main application, the error must be documented as a robot in an existing 

manufacturing environment would need to adjust its home position if this system is 

implemented. 

 

4.5.3 Network timeouts 

When initially testing the RSI software a constant network connection with the robot 

was difficult to maintain. This was because the program was not responding to the 

messages sent by the robot correctly. Due to a lack of documentation, excessive 

troubleshooting was required to determine why this was happening. Ultimately, it was 
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found to be caused by interpreting the values received by the robot controller incorrectly 

which resulted in incorrect values being sent back. The RSI system would catch this 

information and terminate the program due to the error. These problems were overcome 

when the modified user interface was used to display more information about what was 

being sent and received, allowing the error to be identified and from this a resolution to 

be created.  

 

4.5.4 Multiple program threads 

During initial development of the user interface a lock up in the user interface when 

trying to influence the robot was encountered. The problem occurred due to the way the 

program logic looped. During idle operating the program iterated through the user 

interface code and the logic code without issue but when influencing the robot, a 

secondary loop was created which did not allow any further user interface code to 

execute. The solution to this was running multiple threads with the user interface code 

and the program logic code separated into its own threads. A third thread was 

introduced to run any code influencing the robot system, allowing all other threads to 

run unimpeded. This had the additional benefit of speeding up execution, where the 

communication thread would reply with the correct values to the robot even if the logic 

thread had not completed processing. As long as the delay configured in the RSI 

configuration had not been breached, it allowed the system to process information with 

a built-in tolerance for a delay.  

 

4.5.5 Erratic movement 

During the first set of tests the robot experienced very sudden movements which 

resulted in velocity errors from the robot controller. These errors were the result of poor 

understanding and interpretation of the example RSI programs. For the robot to move 

smoothly, the flow of correction values had to be consistent. For example, to move in 

the X axis by a distance of 15 mm, a correction value of 0.1 needed to be sent to the 

robot continuously until the distance of 15 mm was met. However due to poor 

understanding, the resulting messages appeared: “0.1, 0.1, 0, 0, 0.1, 0” where as they 

should have looked like “0.1, 0.1, 0.1, 0.1, 0.1, 0.1”. This was fixed within the source 

code to smooth out the movement action.  

 



 75 

4.5.6 Velocity errors 

Other than the issues discussed in the previous sections, a high number of velocity 

errors were encounter, this time due to trying to move the robot quicker than it was 

possible to do so. After running through a set of experiments discussed in the following 

chapter more appropriate correction values were determined to use in further 

experiments.  

 

 Final System 

Once all testing has completed, the final application operates as described in Figure 4-5. 

The control system operates on a PC or Laptop, connected via Ethernet to the KUKA 

C4 controller, the C4 controller then influences the robot. The sensors are connected to 

the DAQ which is then connected via USB to the laptop. The system uses two variables, 

to control the logic; the axis to move and a value called “data rate”. The data rate is the 

value that is sent as a “correction” to the robot. This value represents the distance to 

move the axis chosen in millimetres. When the sensors are triggered, a Boolean value 

is used to represent its state. Two Boolean values represent each sensor and when these 

values are received, the system communicates the data rate to the robot controller based 

on the logic detailed in Figure 4-6. This set of logic is referred to as the “simple 

algorithm”. A “smart algorithm” is introduced in chapter 6.2.  

 

Figure 4-5 Overview of Control System 
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Figure 4-6 Sensor system logic flow 

 

 Summary 

This chapter takes the reader through the development of the position adaption system. 

The concept, structure and interface of the application is discussed giving the reasoning 

behind all design choices and all of the problems encountered throughout is detailed, 

finalising in an overview of the final system. The next chapter takes a look at an 

application developed as an offshoot of the position adaption system that has been 

created for the sole purpose of gathering and analysing KUKA robot movement data.  
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 ROBOT DATA LOGGER 

 

 Introduction 

As discussed in chapter 3.9 a method for visualising robot movements was required for 

more accurate analysis of robot movements. The following chapter discusses how this 

was accomplished and how this method was further developed into a standalone 

application which can be used to analyse in post full KUKA KRL programs. The 

following chapter discusses the process of developing this tool and examples of what 

information can be produced.  

 

 Development 

Whilst developing this system proposed in this thesis, it became apparent the 

information passed between the robot controller and the laptop can actually be quite 

useful for post analysis. Modifying the existing program to expose more values through 

the RSI Software, a subroutine was added for recording said data to a comma-separated 

value file (CSV). Later being moved into its own independent program, the system has 

the ability to add the relevant RSI code to existing KRL files to enable this functionality 

and then runs as on a third-party device connected to the controller via Ethernet. Whilst 

the main KRL program is operated, the system records all data being sent by the 

controller. When running with larger KRL programs a problem became apparent when 

the network connection would time out. Debugging the code to resolve the issue led to 

discovering that the process of writing to the CSV file become increasingly more time 

consuming as the file grew in size. This would delay the communication loop of the 

main program causing the timeout. Moving the CSV writing process to separate thread 

resolved the issue as the two processes now run concurrently without one process 

delaying another. The resulting CSV file contains 25 columns of data which can then 

be interpreted in programs such as Microsoft Excel or Matlab. The headings listed in  

Table 5-1 summarise each column, each RIst, RSol, AIPos and ASPos have 6 columns 

each representing either the XYZABC coordinates of axis 1-6 and Figure 5-1 shows an 

example of a typical log file created after a KRL program has been run. 

Table 5-1 RSI Datalogger Column Headings 

Column Header Description 

IPOC Timestamp of movement 
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RIst Setpoint position of robot TCP 

RSol Actual position of robot TCP 

AIPos Setpoint position of robot axis 

ASPos Actual position of robot axis 

 

The Figure 5-2 to Figure 5-4 show information collected when using this RSI data 

logger in conjunction with a KRL program used to place components on a PCB. Using 

this data, individual target points that the robot is moving to can be visualised. In Figure 

5-2 Matlab was used to plot the coordinates to visualise the positions of a KRL program. 

Each position would represent a component to be placed on the PCB. Each point 

represents either the start location, part feeders, or target component locations and is 

useful for analysing theoretical vs actual and for validating a KRL program is correctly 

programmed. Additionally, the robot TCP trajectory can be plotted. This is useful when 

optimising robot movements because when watching a robot in operation it is difficult 

pinpointing a singular movement when there are multiple rapid movements in 

succession. Figure 5-3 gives an example of how this can be visualised. Not only can the 

robot movement in a three-dimensional space be visualised but it can also be viewed in 

a two-dimensional context. In Figure 5-4, joint 1 to 6 of the robot over the total time 

period of the application running is compared. This is useful to view how each of the 6 

joints is moving during the total operation of the program and to test to see if there is 

any correlation between their movements. 
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Figure 5-1 Example RSI data 
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Figure 5-2 RSI Datalogger Point Data 
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Figure 5-3 RSI Logger Actual Movements 
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Figure 5-4 RSI Logger Axis Position Comparison 
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 Standalone application 

A standalone package was developed with the aim of being easy to use. A user interface 

was constructed shown in Figure 5-5. In this UI, two sets of options are presented, the 

primary being to initiate the data logging process and the second being a method to 

modify the existing KRL code to include the required RSI configurations files needed 

for the logging software to work. The output of this file is a duplicate of the original 

KRL program with the appendage “_rsi”. This appendage was to not overwrite the 

original application and allow for additional analysis rather than a replacement. Once 

the RSI code if added to a file, that program will no longer operate on the KUKA robot 

without the RSI logger software active. Accompanying RSI configuration files and 

instructions are packaged with the program. For the remainder of this project the 

functions presented in this chapter are built in to the final application for testing and 

verification purposes.  

 

Figure 5-5 KUKA Logger UI 

 Summary 

This chapter demonstrates the KUKA data logger application which has been developed 

in response to requiring a more accurate way of analysing the experimental data within 

this thesis. The next section goes back to focusing on the position adaption system and 

outlines the optimisation phase of development which in part utilises methods discussed 

in this chapter.  
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 OPTIMISATION EXPERIMENTS 

 

 Introduction 

Previous chapters have covered the conception, testing and development of the position 

adaption system created in this thesis. This chapter takes the application and runs it 

through a series of experiments to investigate whether further optimisation is possible. 

A set of different parameters such as speed and sensor position are tested and an 

algorithm derived to improve system accuracy is introduced. The results are then 

collated and analysed to introduce further improvements.  

 

 Experimental design 

Any adaptations to robot movement needed to be visually analysed because simply 

observing these changes while the robot was moving proved difficult. From the 

previous experiments the need to improve upon the data analysis of the experiments 

was identified. Whilst having the ability to record this data is beneficial, it required a 

means to visualise it. The initial concept for these optimisation experiments was to use 

folded paper shapes to act as obstacles for the robot to avoid. However, it proved 

difficult to visualise these shapes on a graph, the paper would flex and fold under the 

its own weight and if the robot TCP collided it would result in an obstacle being 

permanently disfigured. This meant any experiments undertaken with this type of 

obstacle would yield inaccurate results. To resolve this a series of shapes was developed 

where their geometric data is structured by an equation or set of graph coordinates 

which can then be overlaid onto a plot along with the robot data recorded to analyse the 

effectiveness of the overall system and to identify improvements.  

Each object would be 150 mm long and have varying degrees of change in the 

shape presented. The first object shown in Figure 6-1a is 150 mm long section with a 

small inclination at the centre. This a simple object to test basic functionality of the 

program to adapt to a small variation. The second object demonstrated in Figure 6-1b 

has a large inclination at the centre to test the upper limits of its ability to adapt. The 

third object (Figure 6-1c) is a sine wave with a smaller amplitude repeated to test the 

applications ability to adapt to repeated variations in surface materials over a short 

distance. These objects were derived from mimicking the types of deformation likely 

to be encountered during the process of polymer welding industrial pipes. In this sort 

of application, you would encounter gradual change in surface shape rather than 
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encountering a random shaped object. To test both minor change in surface and large 

changes object 1 and 2 was developed. Object 3 was an extension of this thinking and 

designed to replicate a large number of variations rather than a singular change.  

Figure 6-1a to c are created with equations 1-3 respectively. Creating the objects 

in this manner allows for easy calculation of the expected trajectory of the robot. The 

base KRL program used for these experiments is a simple LIN motion between two 

points, the XYZ coordinates generated from this movement is used as inputs for three 

equations to plot the expected trajectory of the robots TCP when the sensor system is 

used in conjunction with each object. In chapter 6.3 the expected trajectory is compared 

with actual to visualise how the robot is moving against what is expected. 

  

a b 

 

 

c  

Figure 6-1 Example obstacle objects; (a) Object 1 (b) Object 2 (c) Object 3 

Equation 1 Object 1 equation 

𝑦 =  10 ∗ sin (
𝑥 − 37

24.3
) + 11 
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Equation 2 Object 2 equation 

𝑦 =  30 ∗ sin (
𝑥 − 37

24.3
) + 31 

Equation 3 Object 3 equation 

𝑦 = 10 ∗ sin (𝑥 −
12.7

7.95
) − 12 

 

Additional to experimenting with different obstacles, a set of three different sensor 

mounts was tested to analyse the effectiveness of photoelectric diffuse sensors 

positioned in different orientations to see whether the position of the sensor affects the 

response of the system. The first mount shown in Figure 6-2a positions the sensors next 

to each other angled at 10 degrees so the target locations converge at the same point. 

This is then mounted to the robot using the gripper and orientated at a 27-degree angle 

to focus the sensors at the TCP. Figure 6-2b shows a mount where the sensors are 

positioned either side of the end effector, angled at 32 degrees to converge on the TCP. 

These two designs represent possible mounting points of these sensors onto existing 

equipment. When considering robot plastic welding for example, the TCP is going to 

be subject to very high temperatures, which means keeping the sensors away from this 

point was important. The mount shown in Figure 6-2c is similar to Figure 6-2b but the 

sensor positions are offset by 5.7 mm to target ahead of the robot TCP. The purpose of 

this was to test to see whether sensing changes in the target surface ahead of time is 

adequate as the cycle time of the KUKA RSI software may not be quick enough to 

compensate for changes at high speed. Each of these sensor mounts were designed and 

3D printed so that quick replacements with optimised modifications if needed.  

In Appendix A, Table 9-1 details the list of parameters used for each experiment 

conducted. The purpose of these tests was to analyse how the application developed in 

chapter 4 responds against different obstacles using different data rate values, robot 

speeds and sensor mounts. In addition to testing these parameters, two more parameters 

of a more advanced algorithm were tested. This “smart algorithm” was developed to 

control the data rate value being sent to the robot unlike the simple algorithm which 

used a fixed data rate value. This “smart algorithm” has two parameters which need to 

be optimised. The “smart delay” which represents the number iterations the algorithm 

logic loops through before incrementing the data rate with the “smart increment” value. 
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The number of loops is referred to as “cycles” through the rest of this thesis. The smart 

increment is the value actually added to the data rate. Each experiment was conducted 

in the YZ frame. A total of 240 tests were completed. Figure 6-3 illustrates the expected 

outcome when the robot is operated with the sensor system active and Figure 6-4 shows 

the KRL program trajectory that is used in our experiments. 

 

 

a b 

 

c 

Figure 6-2 Sensor mount designs (a) Adjacent Sensors (b) Parallel sensor mount (c) 

Parallel offset sensor mount 

 

Figure 6-3 Linear Experiment 

Gripper 

 

TCP 

 

Obstacle 

 

Planned Path 

 

Expected motion  
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Figure 6-4 Baseline LIN results 

 Results 

In the following section the results from the experiments conducted are discussed. The 

aim of these experiments is to establish how capable the system is in maintaining a 

fixed distance from the target surface when an obstacle of unknown geometry is 

encountered in the robot TCPs path. Additionally, to identify optimum values for the 

smart algorithms’ parameters. First, a comparison of the different objects is used to test 

the system using the simple algorithm. Then how different robot speeds and data rates 

affect the responsiveness of the sensor system. This is then followed by testing different 

sensor mounts and validating them. Next the same tests are repeated but now using the 

smart algorithm. The results are evaluated and compared to the simple algorithm to 

establish whether the smart algorithm performs any differently to the simple. Next a set 

of experiments to test different parameters of the smart algorithm is performed to see if 

any optimisation can be made. Finally, the optimum values are selected from these 

results and a last set of tests is performed. Tests were conducted using speeds of 1%, 

3%, 5%, 10% and 30% of 2 m/s.  

To help evaluate these results a scoring system was devised to analyse the 

effectiveness of each experimental run. To calculate the score the actual trajectory of 
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the robot is compared to the position of the obstacle. Each obstacle was designed to be 

150 mm in length which means equation 4 below can be used to calculate a value where 

x1 represents the X coordinate of the obstacle and x2 represents the X coordinate of the 

actual robot trajectory. The sum of x2 value deducted from x1 value at each millimetre 

point on the X axis is divided by 100 to give a score. This demonstrated in Figure 6-5, 

the yellow line represents the object, the orange line represents the KRL programmed 

path and the blue line represents the actual trajectory. If the program results in a run 

that is largely under the object line the score becomes positive, if the robot is completely 

avoiding the obstacle the score becomes negative, the closer to zero the value gets the 

more accurate the system is.  

Equation 4 Accuracy Score Equation 

 

 

 

Figure 6-5 Example trajectory comparison 
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Figure 6-6 Invalid Data Example 

 

The first set of experiments completed highlighted a few inaccuracies in the 

experimental design. The first being a slope in the Z axis between the start and end 

points of the LIN movement found in the KRL program which was used as a base to 

these experiments. Whilst a minor issue, it made visualising the experiments difficult 

because it did not accurately represent the surface of the podium used. Next a problem 

with the data logger was found, information from previous runs was carrying over to 

the next which contaminated the results. An example of this is highlighted in Figure 

6-6a. Figure 6-6b also shows there was a problem with the calibration of the sensors. 

Too large of a gap between the sensor 1 and 2 triggering height resulted in the robot 

positioning itself too close to the surface at the initial run of the experiment and then 

too far away at the end of the movement. To resolve this problem, the start and finish 

positions of the run were adjusted to be closer to the centre of the table and performing 

dry runs of the experiment without any objects in between when calibrating the sensors 

to ensure they trigger where expected.  

As discussed in chapter 6.2, three objects were designed for these experiments. 

Figure 6-5a shows a subset of results displaying the typical response from each obstacle. 

While these varied slightly through other parameters discussed later on they are largely 

representative of all results relating to the objects used as seen in Figure 6-7. Each 

experiment run resulted in the robot TCP being unable to maintain its fixed distance 

from the object. Despite this result in Figure 6-8, object 1 and 2 have movements 

A 

B 
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resembling the objects being tested even though they did not manage to fully avoid the 

obstacle. Object 3 on the other hand did not respond well, Figure 6-7c shows an 

example of a completed run. All remaining results are very similar which suggests that 

the system is incapable of repeat variations in a defined space or that the photoelectric 

sensors are simply not capable of responding in time. When analysing the results in 

Table 6-1, object one - the smallest object, scored the lowest, whereas these scores 

jumped significantly when testing the larger object 2, and then reduced for object 3. 

This suggests there is an upper limit to the size of corrections capable of being made by 

the adaptive system developed. Object 3 on the other hand produced low scores because 

the system tends to cut through the middle of the object. This shows that whilst these 

scores are useful in analysing each configuration used, without a visual understanding 

of the movements the scoring would produce inaccurate results. 
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Figure 6-7 Example results of all objects using 0.01mm corrections 
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Figure 6-8 Example of object 1 and 2 - 0.1 corrections 
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The first observation made when comparing the various speeds tested is a trend between 

the speed of the robot and smoothness of the correction. At the lowest speed of 1% the 

robot produces a large number of fluctuations between the two sensors trying to correct 

its position. However, when increasing the speed of the robot these jagged lines smooth 

out but as a consequence the system is unable to move the robot TCP the same distances 

as it can at slower speeds. Figure 6-9 shows a comparison of using mount 1 with object 

2 with a data rate of 0.01 mm, 0.05 mm and 0.1 mm. 8-9b and c both show that the 

system is reacting to the change in surface and does go some way into reacting 

effectively however there is still a gap of 10 mm between where the object is and where 

the TCP should be. When reviewing the scores of the experiments derived from 

equation 4 shown in Appendix A Table 9-4, overall 1% speed scored highest in 9 out 

of 15 groups of tests followed by 3% which scored highest in 3 out of the 15 tests.  

In all experiments a data rate of 0.01mm provided too little of a change and does 

not allow the robot to compensate at a speed that matches the speed of the KRL program 

but provides a smoother trajectory. 0.05mm changes produced much better results as 

seen in Figure 8-9, however the higher speeds result in the trajectory curved flattening 

off. The 0.1 mm corrections provided the more accurate movements, however this in 

turn introduces a lot of instability in the movement at lower speeds. In particular, it was 

observed that movements become sharp and overcompensation is common.  
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Figure 6-9 Mount 1 - Object 2 Speed Comparisons   
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Figure 6-10 Mount 1, 2 and 3 compared 
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When comparing the three mounts, mount 3 seems to perform the best when observed 

visually but also when comparing the accuracy scores. In Figure 6-10c looking at line 

A, mount 3 responds before mounts 1 and 2. Again at line B you can see the sensors 

moving and the robot reacting to objects and finally at line C the motion taking place 

where as mounts 1 and 2 shown in Figure 6-10a and b respond at a later point. The draw 

back here is at line D the sensors stop responding sooner than the other two mounts. 

Overall, sensor mount 3 provided consistently better accuracy scores which can be seen 

in Table 6-2. This suggests that there is a delay between sensing and the robot 

responding, so compensation needs to be factored in to get a better result. 

Table 6-1 Mount comparison results 

Obstacle Robot 

Speed 

Algorithm Data 

Rate 

Accuracy Scores 
 

Adjacent Parallel Parallel 

Offset 

2 1% Simple 0.05 16.69 20.60 18.17 

2 3% Simple 0.05 29.51 25.03 20.91 

2 5% Simple 0.05 36.88 30.98 27.28 

2 10% Simple 0.05 33.90 37.44 35.46 

2 30% Simple 0.05 42.38 42.92 40.627 

 

After completing the experiments using the simple algorithm it became apparent that a 

speed of 1% was needed to make any significant change in robot trajectory due to the 

fixed data rate limiting the maximum attainable change in distance. Any speed greater 

than 1% reduced this maximum value further.  The smart algorithm was derived to 

attempt to overcome this issue, its function is to scale up the smart increment value 

based on the length of time the sensors were triggered. It also filters out any minor 

fluctuations in the sensor readings to smooth out any movements made, this is done by 

implementing a correction if the sensor is triggered two cycles consecutively. Early 

tests show the accuracy value is slightly lower with all mounts, but mount 3 again 

provided better results overall, this can be seen in Figure 6-11. This algorithm operates 

on two values, these being the delay value and change increment value. The delay value 

operates to slow the increment value changing. If this was not used the change value 

would almost instantly get to its maximum value before the sensor system cycled. The 

change increment value is simply the value added to the value sent to the robot on every 
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cycle the sensors are active. Whereas originally a fixed value was sent every time the 

sensors were triggered, when consecutively triggered this would raise in 0.01 steps. A 

start value of 0.01 was used to provoke a smoother response with a maximum value of 

0.1.  

  

Figure 6-11 Smart algorithm results compared 

 

 

Figure 6-12 Further smart delay experiment results using mount 3 [Cycles] 

 

When looking at the accuracy results in Appendix A Table 9-2, a delay value of 100 

cycles slightly improves upon the results of the 500-cycle delay. A cycle being the 
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number of iterations in the algorithm loop. This suggested that this variable could be 

fine-tuned to offer better results. Further tests were then run comparing additional 

delays of 50, 100, 150, 200, 300 and 400 using a small subset of parameters such as a 

single mount and object. The results shown in Table 9-3 and Figure 6-12 show an odd 

pattern. As the delay value gets greater the result value gets higher meaning further 

deviation from the desired trajectory, except for the value of 300 which sees a partial 

drop in its results value suggesting this is the optimum value. When looking visually 

studying the results shown in Figure 6-13, whilst 300 may offer a more accurate 

movement, the shape of the curve is pointed. Visually a value of 150 appears to be 

closer to the shape of the object and a smoother trajectory. Figure 6-13 shows that the 

higher the delay meant the robot was responding to the object too slow resulting in the 

case of the 400 value as almost missing the object. 

Table 6-2 shows the results of testing individual increment values. The results 

show that the larger the increment value is the better the accuracy value, however the 

larger the number the higher frequency of fluctuations can be seen in the trajectory, a 

trend as seen in experiments previously discussed. When studying the Figure 6-14 the 

value of 0.02 seemed to offer the smoothest movement resulting in a movement closest 

to the object being avoided.  

Table 6-2 Increment values results 

Obstacle Robot 

Speed 

Algorithm Data 

Rate 

Smart 

Delay 

Smart 

Increment 

Score 

2 3 Smart 0.01 100 0.01 19.16 

2 3 Smart 0.01 100 0.02 18.66 

2 3 Smart 0.01 100 0.05 18.84 

2 3 Smart 0.01 100 0.1 18.20 

 



 100 

 

Figure 6-13 Delay Values Compared 
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Figure 6-14 Increment Values Compared 
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 Summary 

This section of optimisation has largely been successful and has given some insights 

into the ideal parameters for the smart delay, smart increment and data rate. Two 

common trends were identified when reviewing the results of the parameter tested 

during experimentation, the greater the value sent in a single cycle to move the robot 

the closer to the desired coordinates the robot moved. However, the greater these values 

the greater the instability in the associated movement. When consecutive movements 

are made any change in axis direction results in a sharp movement often resulting in a 

torque error on the robot. A balance is needed between the robots overall operating 

speed and the data rate value used to influence the robot’s motion. Introducing the smart 

algorithm mitigates some of these issues by scaling the data rate based on movement 

duration. Whilst the smart algorithm has improved the sensor system responses, it is 

unlikely to solve the main problem where the corrected trajectory of the robot is not 

capable of navigating around the object. The peak of each object is typically where the 

issue is observed. Figure 6-15 shows a 11.1 mm gap between the object and the 

trajectory. Further tests need to be conducted to try and isolate this issue. Additional 

materials as the target surface need to be tested as infrared absorption could be what is 

preventing the sensors from reacting appropriately. Aluminium is the most reflective 

surface for the IR sensors so a round of experiments will be conducted using this as a 

surface. If this can be removed then a selection of experiments will be re-run to validate 

previous findings. Then a final set of experiments will be conducted used the optimum 

values found during this phase of optimisation.  
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Figure 6-15 Trajectory Gap 
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 CONCLUSIONS 

 

This thesis is the culmination of study and development towards the goal of creating a 

robot end effector position varying system that is capable of maintaining a specified 

distance between the robot TCP and a target work surface. The aim of this research was 

to develop a novel concept to allow an industrial robot to adapt to deformations in a 

surface material to maintain a specific distance between a robot end effector using 

photoelectric diffuse sensors. The system needed to be able to adapt to an unknown 

geometry or surface that has inconsistent surface levels. For a better understanding of 

industrial robotics an in-depth study was taken into its history with particular focus on 

articulated robots and robot applications. Then to gain familiarity with the research 

laboratory resources, a study of KUKA robots and established robot operations was 

collated. Existing methods of interfacing peripheral technology with a KUKA robot was 

investigated, and research into software and hardware requirements with an overview of 

different types of sensors applicable to this research given was completed. Using a KUKA 

KR16-2, a six-axis articulated robot; a system was designed and tested utilising a 

developed Python program that can interface two photoelectric diffuse sensors and a 

KUKA C4 controller via a computer utilising the KUKA Robot Sensor Interface software.  

To test the viability of this system a series of experiments was completed using 

the KUKA KR16-2 robot paired with a KUKA C4 controller. This system was taken and 

applied in a laboratory setting. Results of these experiments was recorded using another 

developed Python program that was written to read the values received from the KUKA 

Robot Sensor Interface and record them to a file. This file then contains robot movement 

data captured whilst the robot is in full operation. This data was then evaluated using a set 

of custom functions created in Matlab to visualise robot movements. A scoring system 

was developed using the robot positional data to work in combination with these 

visualisations in order to identify which experiments performed best and closest to the 

expected outcome.  

The key findings from the experiments undertaken were: 

• A software package was developed with capabilities to influence a KUKA KR16-

2 robots movements based off sensory input from two photoelectric diffuse 

sensors. The package was written in Python and designed to be light weight and 

compatible with low cost computer systems such as a Raspberry Pi. This system 

is designed to be integrated into existing manufacturing environments with ease 
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and can be operated with digital sensors.  

• An algorithm was developed to dynamically calculate values being communicated 

to the KUKA robot. These values are determined by the combination and duration 

of the sensor values being supplied. Two key values are used to configure this 

algorithm, a delay value which represents the number of iterations the system logic 

loops through before outputting and an increment value which is a float value that 

is added to the correction value that is then sent to the robot. This algorithm was 

tested against a simpler version that contained static correction values to determine 

effectiveness and was determined to provide a higher rate of accuracy when 

moving the robot to its required position to avoid an obstacle.  

• An optimum increment value of 0.05 mm was identified through 240 iterations of 

experiments when compares against values of 0.01, 0.02 and 0.1 mm. 

Additionally, an optimum delay value of 200 algorithm cycle iterations was 

applied in the same set of experiments where values of 50, 100, 150, 200, 300 and 

400 were tested. The increment and delay value results were evaluated by means 

of visual inspection and a scoring system that was created for this project.  

• Comparing the KUKA robot operating speed, percentages of 1, 3, 5,10 and 30% 

of 2 m/s was tested. A speed of 0.1 m/s was identified as the optimum speed for 

the robot to operate at when using the proposed positioning system presented in 

this thesis. 0.1 m/s offered a balance between speed and accuracy when compared 

to the other values. 

• Through testing three different sensor mounts it was identified that positioning the 

systems sensors at a distance of 5.7 mm ahead of the tool centre point resulted in 

corrections closer to the desired trajectory of the robot over sensors targeted 

directly at the TCP.  

• To further understand the robot movements, a program to record robot path 

operations for the use with KUKA robots supporting the Robot Sensor Interface 

software was developed. The application is capable of producing detailed value 

files and the Matlab functions can create plots from these files to view the robot’s 

movement and to compare joint positions from multiple programs.  

 

The results of these experiments showed the position adaption system worked as expected 

despite the system underperforming due to the sensors utilised. Using photoelectric 
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diffuse sensors proved to not provide enough accuracy when detecting surfaces for the 

system to work at its optimum, they demonstrated the system works as intended and 

showed it would still find a place for a wide range of industrial applications. Photoelectric 

sensors had been used as a low-cost solution in an environment where resources were 

limited. There are however sensors on the market that would offer better accuracy and 

could work very well in conjunction with the system designed. Further work could be 

undertaken to investigate this. With the existing sensor system additional research can be 

conducted to provide a more defined specification as to which materials the photoelectric 

sensors work best with. Additional obstacle such as cylindrical objects can be tested to 

further verify the ability of this. Finally, the system can be tested in conjunction with one 

of its intended applications such as plastic welding or spray-painting surfaces. This would 

be to verify the system’s ability to successfully compensate when actively welding or 

painting and object. 

 

 Future work 

The KUKA robot logging software developed in this thesis is extremely valuable for 

assisting current and future research that utilise a KUKA robot. Its ability to record KUKA 

robot movements in conjunction with the functions in Matlab for analysis will 

complement future work well by giving researchers a better way of visualising robot 

movements. This software lends itself to aiding research in many other areas of robotics.  

Future development of the position adaption system would focus around applying the 

system to real world applications such as hot gas welding or spray painting to assess the 

viability of it and to further refine the system and algorithm. There is scope to apply 

different sensors more suited to the application intended and other industrial applications 

outside of the initial areas considered. Once a real-world application is validated future 

work in machine learning can be applied. With the data logging features developed in this 

thesis, data sets containing information on industrial processes could be built and 

analysed. This information can then be applied using machine learning and neural net 

algorithms which could be integrated in to the adaption system, enabling a degree of 

artificial intelligence. Further following the Industry4.0 trends, smart factory functionality 

could be added including real-time data communication. 
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 APPENDIX A – Results Tables 

 

Table 9-1 Optimisation Experiment Plan 

Obstacle Robot Speed Algorithm Data Rate Smart Delay 

1 1% Simple 0.01 N/A 

1 3% Simple 0.01 N/A 

1 5% Simple 0.01 N/A 

1 10% Simple 0.01 N/A 

1 30% Simple 0.01 N/A 

1 1% Simple 0.05 N/A 

1 3% Simple 0.05 N/A 

1 5% Simple 0.05 N/A 

1 10% Simple 0.05 N/A 

1 30% Simple 0.05 N/A 

1 1% Simple 0.1 N/A 

1 3% Simple 0.1 N/A 

1 5% Simple 0.1 N/A 

1 10% Simple 0.1 N/A 

1 30% Simple 0.1 N/A 

2 1% Simple 0.01 N/A 

2 3% Simple 0.01 N/A 

2 5% Simple 0.01 N/A 

2 10% Simple 0.01 N/A 

2 30% Simple 0.01 N/A 

2 1% Simple 0.05 N/A 

2 3% Simple 0.05 N/A 

2 5% Simple 0.05 N/A 

2 10% Simple 0.05 N/A 

2 30% Simple 0.05 N/A 

2 1% Simple 0.1 N/A 

2 3% Simple 0.1 N/A 

2 5% Simple 0.1 N/A 

2 10% Simple 0.1 N/A 

2 30% Simple 0.1 N/A 

3 1% Simple 0.01 N/A 

3 3% Simple 0.01 N/A 

3 5% Simple 0.01 N/A 

3 10% Simple 0.01 N/A 

3 30% Simple 0.01 N/A 

3 1% Simple 0.05 N/A 

3 3% Simple 0.05 N/A 

3 5% Simple 0.05 N/A 

3 10% Simple 0.05 N/A 

3 30% Simple 0.05 N/A 

3 1% Simple 0.1 N/A 

3 3% Simple 0.1 N/A 

3 5% Simple 0.1 N/A 
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3 10% Simple 0.1 N/A 

3 30% Simple 0.1 N/A 

1 1% Smart 0.01 500 

1 3% Smart 0.01 500 

1 5% Smart 0.01 500 

1 10% Smart 0.01 500 

1 30% Smart 0.01 500 

1 1% Smart 0.01 100 

1 3% Smart 0.01 100 

1 5% Smart 0.01 100 

1 10% Smart 0.01 100 

1 30% Smart 0.01 100 

2 1% Smart 0.01 500 

2 3% Smart 0.01 500 

2 5% Smart 0.01 500 

2 10% Smart 0.01 500 

2 30% Smart 0.01 500 

2 1% Smart 0.01 100 

2 3% Smart 0.01 100 

2 5% Smart 0.01 100 

2 10% Smart 0.01 100 

2 30% Smart 0.01 100 

3 1% Smart 0.01 500 

3 3% Smart 0.01 500 

3 5% Smart 0.01 500 

3 10% Smart 0.01 500 

3 30% Smart 0.01 500 

3 1% Smart 0.01 100 

3 3% Smart 0.01 100 

3 5% Smart 0.01 100 

3 10% Smart 0.01 100 

3 30% Smart 0.01 100 

 

Table 9-2 Smart Algorithm Results 

Number Obstacle Robot 

Speed 

Data 

Rate 

Smart 

Delay 

Accuracy Scores 

Mount 1 Mount 2 Mount 3 

1 1 1% 0.01 500 4.33 6.22 3.14 

2 1 3% 0.01 500 9.43 10.11 6.48 

3 1 5% 0.01 500 12.22 12.56 10.06 

4 1 10% 0.01 500 14.68 14.61 13.29 

5 1 30% 0.01 500 16.10 15.94 15.12 

6 1 1% 0.01 100 3.92 6.00 3.31 

7 1 3% 0.01 100 4.28 6.17 3.19 

8 1 5% 0.01 100 3.98 6.70 2.68 

9 1 10% 0.01 100 7.48 7.94 3.10 

10 1 30% 0.01 100 13.47 12.49 11.52 
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11 2 1% 0.01 500 4.04 6.39 3.41 

12 2 3% 0.01 500 3.97 5.48 3.00 

13 2 5% 0.01 500 3.69 6.47 2.99 

14 2 10% 0.01 500 4.74 5.39 2.36 

15 2 30% 0.01 500 10.86 10.03 7.88 

16 2 1% 0.01 100 37.52 32.16 27.95 

17 2 3% 0.01 100 37.90 40.94 36.84 

18 2 5% 0.01 100 41.66 42.46 39.93 

19 2 10% 0.01 100 44.60 44.85 43.08 

20 2 30% 0.01 100 45.05 44.59 44.29 

21 3 1% 0.01 500 16.69 20.60 18.17 

22 3 3% 0.01 500 29.51 25.03 20.91 

23 3 5% 0.01 500 36.88 30.98 27.28 

24 3 10% 0.01 500 33.90 37.44 35.46 

25 3 30% 0.01 500 42.38 42.92 40.62 

26 3 1% 0.01 100 16.51 20.07 18.33 

27 3 3% 0.01 100 19.58 21.02 18.79 

28 3 5% 0.01 100 25.92 23.98 18.59 

29 3 10% 0.01 100 35.45 32.58 28.60 

30 3 30% 0.01 100 38.73 38.19 37.03 

 

Table 9-3 Further smart delay experiment results using mount 3  

Obstacle Robot 

Speed 

Algorithm Data 

Rate 

Smart 

Delay 

Smart 

Increment 

Accuracy 

Score 

2 3 Smart 0.01 50 0.01 19.04 

2 3 Smart 0.01 100 0.01 19.31 

2 3 Smart 0.01 150 0.01 19.55 

2 3 Smart 0.01 200 0.01 20.23 

2 3 Smart 0.01 300 0.01 18.54 

2 3 Smart 0.01 400 0.01 21.22 

 

Table 9-4 Simple Algorithm Results 

Object Robot 

Speed 

Algorithm Data 

Rate 

Accuracy Scores  
Mount 1 Mount 2 Mount 3 

1 1% Simple 0.01 4.33 6.22 3.14 

1 3% Simple 0.01 9.43 10.11 6.48 

1 5% Simple 0.01 12.22 12.56 10.06 

1 10% Simple 0.01 14.68 14.61 13.29 

1 30% Simple 0.01 16.10 15.34 15.12 

1 1% Simple 0.05 3.92 6.00 3.31 

1 3% Simple 0.05 4.28 6.17 3.19 

1 5% Simple 0.05 3.98 6.70 2.68 

1 10% Simple 0.05 7.48 7.94 3.10 

1 30% Simple 0.05 13.47 12.34 11.52 

1 1% Simple 0.1 4.04 6.39 3.41 
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1 3% Simple 0.1 3.97 5.48 3.00 

1 5% Simple 0.1 3.69 6.47 2.99 

1 10% Simple 0.1 4.74 5.39 2.36 

1 30% Simple 0.1 10.86 10.03 7.88 

2 1% Simple 0.01 37.52 32.16 27.95 

2 3% Simple 0.01 37.90 40.94 36.84 

2 5% Simple 0.01 41.66 42.46 39.97 

2 10% Simple 0.01 44.60 44.85 43.08 

2 30% Simple 0.01 45.05 44.59 44.29 

2 1% Simple 0.05 16.69 20.60 18.17 

2 3% Simple 0.05 29.51 25.03 20.91 

2 5% Simple 0.05 36.88 30.98 27.28 

2 10% Simple 0.05 33.90 37.44 35.46 

2 30% Simple 0.05 42.38 42.92 40.62 

2 1% Simple 0.1 16.51 20.07 18.33 

2 3% Simple 0.1 19.58 21.02 18.79 

2 5% Simple 0.1 25.92 23.98 18.59 

2 10% Simple 0.1 35.45 32.58 28.60 

2 30% Simple 0.1 38.73 38.03 37.03 

3 1% Simple 0.01 12.02 10.58 8.59 

3 3% Simple 0.01 13.10 13.41 10.11 

3 5% Simple 0.01 14.39 14.41 12.31 

3 10% Simple 0.01 17.46 16.11 14.58 

3 30% Simple 0.01 14.60 14.49 13.85 

3 1% Simple 0.05 12.06 9.58 8.41 

3 3% Simple 0.05 12.06 9.80 8.27 

3 5% Simple 0.05 11.80 10.09 9.32 

3 10% Simple 0.05 13.09 11.65 8.70 

3 30% Simple 0.05 14.65 12.90 10.28 

3 1% Simple 0.1 12.31 9.76 8.77 

3 3% Simple 0.1 12.35 9.791 8.54 

3 5% Simple 0.1 11.84 10.55 8.84 

3 10% Simple 0.1 11.26 9.82 7.82 

3 30% Simple 0.1 10.79 1.28 8.78 

 

 




