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Abstract

Purpose

The main purpose of this paper is to devise a tool, based on Compu-
tational Fluid Dynamics (CFD) and Machine Learning (ML), for the as-
sessment of potential airborne microbial transmission in enclosed spaces.
A Gated Recurrent Units Neural Network (GRU-NN) is presented to learn
and predict the behaviour of droplets expelled through breaths via particle
tracking datasets.

Design/methodology/approach

A computational methodology is used for investigating how infectious
particles originated in one location are transported by air and spread through-
out a room. High-fidelity prediction of indoor air flow is obtained by means
of an in-house parallel CFD solver which employs a one equation Spal-
rat–Allmaras (SA) turbulence model. Several flow scenarios are considered
by varying different ventilation conditions and source locations. The CFD
model is used for computing the trajectories of the particles emitted human
breath. The numerical results are used to the ML training.

Finding

In this work, it is shown that the developed ML model, based on the
Gated Recurrent Units Neural Network (GRU-NN), can accurately predict
the airborne particle movement across an indoor environment for different
vent operation conditions and source locations. The numerical results in
the paper prove that the presented methodology is able to provide accurate
predictions of the time evolution of particle distribution at different locations
of the enclosed space.

Originality/value

This study paves the way for the development of efficient and reliable
tools for predicting virus airborne movement under different ventilation con-
ditions and different human positions within an indoor environments, poten-
tially leading to new design. A parametric study is carried out to evaluate
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the impact of system settings on the time variation particles emitted human
breath within the space considered.

Keywords: COVID-19 infection, CFD modelling, Spalrat–Allmaras (SA)
model, Particle tracking, Inhalation airflow, Recurrent Neural Network,
Gated Recurrent Units (GRU)

1. Introduction

In indoor environments, the main transmission route of COVID-19 in-
volves the emission of respiratory droplets from the mouth and nose which
can remain suspended in the air for several minutes, exposing the surround-
ing people to high infection risk [1–4]. In this context, different methodolo-
gies for characterizing the fluid dynamics patterns within the indoor environ-
ment have been proposed [5–8]. These efforts have also been accompanied by
recent research focusing on how pollution and biological agents can spread
throughout an enclosed space [9–14]. Recently, Vuorinen, et al. [15] mod-
elled physical processes related to aerosol dispersion in air and focused on
transmission by inhalation in the context of COVID-19. These authors gave
various examples on the transport and dilution of aerosol dimeters of d ≤ 20
µm over distances O(10m) in public indoor environments by Monte-Carlo
modelling. Furthermore, Löhner et al. [16, 17] studied the characteristics
of virus contaminants and the transmission via droplets and aerosols in a
narrow corridor with moving pedestrians and in a typical hospital rooms
considering a bi-directional coupling, whereby the flow and the motion of
the crowd are computed concurrently and with mutual influences. In subse-
quent work, Abuhegazy et al.[18] investigated aerosol removal and surface
deposition in a realistic classroom with nine students and a teacher us-
ing computational fluid particle dynamics algorithm implemented by Ansys
Fluent. These authors [18] found that a 24%-50% of particles smaller than
15 µm exit the system within 15 minutes through the air conditioning sys-
tem and particles larger than 20 µm almost entirely deposit on the ground,
desks, and nearby surfaces in the room. Additionally Lau et al. [19, 20] de-
scribed a model for indoors airborne transmission where the concentration
of airborne infectious particles governed by an advection–diffusion–reaction
equation.These authors compared the model both with more complex mod-
els and with experimental data and found good agreement. Moreover, to
address the relevant background, the impact of ventilation on the airflow
pattern has been also extensively studied [21–23]. Ventilation plays an im-
portant role in reducing the risk of transmission through dilution and re-
moval of the infected particles within the indoor environment [24].

Despite aerosol transport within indoor environments has been exten-
sively studied in the last decades [25], there is a pressing need for the estab-
lishment of efficient computational tools for the prediction of transmission
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and infectivity level of airborne viruses (such as COVID-19 virus) through-
out enclosed spaces. To the authors’ knowledge, ML methods and specifi-
cally Gated Recurrent Units (GRU) neural network [26, 27] have not been
employed before for this purpose. With all the information available regard-
ing the migration of airborne infectious particles in indoor environments, a
robust control tool to capture, store and analyse data using ML algorithms
is essential. Machine Learning represents an efficient and accurate approach
to find patterns in the most complex and abstract data by proposing alterna-
tives to analysing large volume of data to forward-looking predictive models
[28, 29]. ML has attracted strong interest over many years and is a standard
tool today in many applied science topics. The main advantage of ML lies in
that the computer can achieve the purpose of self-learning and predict the
trend through operating algorithms. Because of this feature, the computer
can be continuously trained, the training dataset can be increased, and over
time more accurate results can be obtained through data accumulation by
developing fast and efficient algorithms [30–33].

Through the present study we devised a combined ML and CFD mod-
elling approach for defining the particle distribution associated to airflow
patterns within an indoor environment. This includes natural circulation
inside enclosed spaces by air-conditioning with several flow scenarios regard-
ing the operation of inlet vents, location of a person in an active office [34]
with different human standing positions, analysing the potential of virus
spread through the air from an infected person, identification of critical
points, and particle dispersion and deposition in the enclosed environment.
Moreover, a Gated Recurrent Units Neural Network (GRU-NN) is presented
to learn and predict the behaviour of droplets expelled through breaths via
particle tracking datasets. This article is organised as follows: Section 2
provides the details on the adopted computational methodology including
the particle tracking scheme for modelling infectious particle behaviours.
The description of the problem considered is reported in Section 3. The
neural network architecture methodology is described in Section 4. This
is followed by the Section 5 in which the results are reported. In the last
section, the significant findings of the study are summarised.

2. Mathematical modelling and solution method

The forced air circulation within an active office may be described by
using turbulent incompressible flow equations. These equations and their
solution method are briefly summarised in this section.

2.1. Air flow within the room

The motion of the fluid throughout the room is described by means
of the incompressible Navier-Stokes equations, combined with a turbulence

3
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model. The mass and momentum conservation equations in dimensional
form read:

∇ · v = 0, (1)

∂v

∂t
= −(v · ∇)v − 1

ρ
∇p+ (ν + νT )∇2v, (2)

where v is the velocity vector, ρ is the air density, p is the pressure, ν
is the kinematic viscosity, whilst νT is the turbulent eddy viscosity. The
space and time distribution of the turbulent eddy viscosity νT is obtained
by employing the one equation Spalart-Allmaras (SA) model [35–38], which
uses several turbulence parameters (cb1, σ, cb2, k, cw1, cw2, cw3 and cv1) for
describing the transport of the variable ν̂ = νT /fv1. The scalar equation is:

∂ν̂

∂t
= −v ·∇ν̂+cb1Ŝν̂+

1

σ

[
∇ · ((ν + ν̂)∇ν̂) + cb2(∇ν̂)2

]
−cw1fw

[
ν̂

y

]2
, (3)

where

Ŝ = S + fv2
ν̂

k2y2
, (4)

fv2 = 1−X/(1 +Xfv1), (5)

fv1 = X3/(X3 + c3v1), (6)

fw = g

[
1 + c6w3

g6 + c3w3

]1/6
, (7)

X = ν̂/ν, (8)

g = r + cw2(r
6 − r), (9)

r =
ν̂

Ŝk2y2
, (10)

in which S is the magnitude of vorticity and y is the near wall distance.
The turbulence parameters are set as follows: cb1 = 0.1355, σ = 2/3, cb2 =
0.622, k = 0.41, cw1 = cb1/k

2 + (1+ cb2)/σ, cw2 = 0.3, cw3 = 2 and cv1 = 7.1.
The equations above are solved by using an in-house parallel CFD li-

brary based on a established finite-element characteristic-based split (CBS)
scheme, which is suitable for problems with unstructured meshes [37, 39].
The velocity and pressure fields within the room are computed in time by
solving Equations 1-2, in conjunction with the SA turbulence model (Equa-
tion 3). Here we used the semi-implicit (in time) version of the CBS since
it represent a good compromise between efficiency, accuracy and flexibility
for external component integration [40]. These features make the scheme
ideal for computing incompressible flow in complex geometries. The code is
written in Fortran90 and all simulations are carried out using an Open shift
Container Platform (OCP) cluster on 40 processors with the OpenMPI.
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2.2. Particle tracking

To calculate the trajectory of a particle drifted by the air current in
the room, we evaluate the particle pathway in every mesh cell met by the
particle during its travel. Since we use a tetrahedral mesh, the calculation
of trajectory requires tracing a particle through a tetrahedron. Here, it
is necessary to calculate the leaving point in the tetrahedron surface for
given entering point alongside the propagation time trough the cell [25].
For this, we use the linear shape functions ξi associated to the nodes of the
tetrahedron. In this way, any point P inside the cell can be determined as
a linear combination of the coordinates of the tetrahedron vertices P i:

P =
4∑

i=1

ξiP i, (11)

where
∑4

i=1 ξi(P ) = 1.
Here the velocities are computed at cell vertices, and the velocity varies

linearly in space over every cell. The velocity at any point P can be ex-
pressed through its shape functions

v =

4∑
i=1

ξivi. (12)

where vi are velocities at tetrahedron vertices. By solving a system of three
linear equations we can represent velocity v at P through coordinates of
tetrahedron vertices in the following form

v =
4∑

i=1

v̂iP i,
4∑

i=1

v̂i = 0. (13)

The linear shape functions ξi also can be treated as coordinates in the master
element. Then every parameter v̂i in (13) represents a velocity component
along ith master element coordinate ξi. This enables calculation of the
propagation time of the particle to the plane of every face and finding which
face can be reached first, i.e. the face containing the leaving point.

A trajectory in the linearly varying velocity field can be expressed an-
alytically through the exponential function, but to find the leaving point
we have to solve numerically an algebraic equation (see [25]). Instead we
propose here a fast and accurate predictor-corrector type method. First,
we calculate the values of shape functions for the entering point P in and,
employing equation (12), calculate the velocity vector vin at it. Consider-
ing velocity vin as the uniform velocity, we calculate the master element
velocity components (13) and the predicted leaving point P out

∗ . Second, we
calculate the velocity vout

∗ at this predicted leaving point. Now we take the
mean velocity

v = 1
2

(
vin + vout

∗
)

(14)

5
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and considering it as a uniform velocity in the cell, calculate the master
element velocity components and the corrected leaving point P out as well
as the propagation time.

The leaving point of the given cell is an entering point of the adjacent
cell in which this algorithm is repeated. As the result, the trajectory of
particle is determined by entering/leaving points at the boundary between
two adjacent cells and time instants when these points are reached. After
that the trajectory is linearly interpolated onto a uniform time grid.

The trajectory can be terminated

1. if the particle leaves the domain through the outlet (no adjacent cell
at the leaving cell face);

2. if the particle is settled at a wall or other surface: floor, ceiling,
pipeline, etc. This can occur if the particle reaches a near-boundary
cell which has three boundary vertices and the velocity at the non-
boundary vertex has a component toward the boundary;

3. if the particle is trapped in the air between two adjacent cells hav-
ing mean velocities directed to each other. This can happen near
stagnation points in the velocity field: intersection of three flow sepa-
ration surfaces. In a real flow, the probability to get into such point
is infinitesimal. In a discretised domain used for computation, this
probability is small but finite.

4. Some particles can remain in the air for a long time trapped by a large
vortex caused by intensive ventilation.

The algorithm has been implemented in C++. Computation of several
hundred trajectories with the maximal preset time of one hour is performed
in less than one second.

3. Problem specification

We considered an indoor space within Swansea University Bay Campus,
part of a building constructed in 2018 for studying the performances of an
active office [34]. The air conditioning system in active office consists of two
supply diffusers and one door vent as shown in Figure 1. In this work, and
for the computational modelling, a human body is placed under vent2 (case
1) and at the middle between two vents (case 2) of a 46.44 m3 room 4.0 m by
4.3 m, and 2.7 m high. Additionally, six different human standing positions
(0, 60, 120, 180, 240, and 300 degrees) are considered. Figure 1 illustrates
the configuration of the simulated room. Detailed characteristics for each
mesh is recorded in Table 1 for case 1 (human body under vent2). Almost
the same mesh characteristics are used for case 2 (not shown). Extensive
mesh sensitivity for the characteristic-based split (CBS) method has been
performed in previous articles (see for example, [41, 42]). The Reynolds
number for this study is defined based on the vents diameter of the room.

6
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Figure 1: Schematic of model room and corresponding meshes with human standing
positions

Table 1: Mesh characteristic parameters, human under vent2
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Table 2: Reynolds numbers (Re) for different air vent diffusers

With the reference velocity of 1m/s, a non-dimensional diffuser inlet vertical
air velocity of unity is imposed. Air flow from mouth is assumed to be
exhaled at a velocity inlet boundary condition 2.0 m/s for a mouth inlet
area of 0.0028m2. No slip conditions are applied on walls and windows of
the room. For the Spalart-Allmaras (SA) model the scalar variable ν̂ is
prescribed equal to 1.0 at the inlet and zero on the solid walls. First, the
steady-state solution is obtained for the airflow without particles with the
convergence criterion to steady state of 10-6 tolerance value. We assumed
that during a single normal breathing around N = 750 particles at the
person’s mouth location are released into the room.

For the ML model, a dataset containing 108 samples/numerical solution
for different configurations are generated. Here, the effect of opening both
vents with three different Reynolds numbers of Re=10000, 20000, and 30000
are considered. Additionally, we also considered the case in which one of
the vents is closed and the flow in the other one is doubled (ie, Re=20000,
40000, 60000) (see Table 2). For the machine learning (see Section 4), the
dataset is split randomly into train/test sets following a 80:20 ratio (80%
of the data for training and 20% of the data for testing). This database is
then used to train the machine learning algorithms. The trained algorithm
is then used to predict in time for 1800 seconds (30 minutes), the total
number of particles in the air, the total number of particles left the room
air through the vent door, the total number of particles attached to the
wall, and the particles stuck in the air at locations with zero-velocity. In
addition, Gated Recurrent Units (GRUs) are used to speed up the training
time and to accelerate the ML workloads.

4. Neural network architecture

In this work, a hybrid neural networks comprising of Gated Recurrent
Units (GRU) and Multi-Layer Perceptions (MLP) are used to predict the
number of particles movement released from normal breathing. The GRU
offers a very comparable accuracy to the more widely used Long Short-
Term Memory (LSTM), while incurring a shorter training time [43]. The
GRU neural networks [26, 27, 44] is an extended and improved version of
the Recurrent Neural Network (RNN) [45, 46] which are designed to work

8

Page 8 of 47

http://mc.manuscriptcentral.com/hff

International Journal of Numerical Methods for Heat and Fluid Flow

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



International Journal of Num
erical M

ethods for Heat and Fluid Flow

with the sequential data architecture and are capable of handling long-term
dependencies. A RNN unit takes input from the previous step (c<t−1>) and
current input (x<t>). The cell state (c<t>) at the current time is then given
by.

c<t> = g
(
Wc[c

<t−1>, x<t>] + bc
)

(15)

where Wc are weights, bc are biases, or trainable parameters, and g is the
activation function. RNN’s face short-term memory problem and cannot
process very long sequences. It is caused due to vanishing gradient problem.
As RNN processes more time steps it suffers from vanishing gradient making
them unable to learn long-term dependencies efficiently [47, 48].

Gated Recurrent Units (GRU) is able to process even the longest se-
quence data without vanishing of the gradient. GRU’s are created as the
solution to short-term memory. They have internal mechanisms called gates
that can regulate the flow of information. As shown in Figure 2, GRU has
a complex recurrent structure in a single unit, which is chronologically con-
nected in time. GRU has two gates, reset gate (Γr) and update gate (Γu).
The reset gates are used to decide how much past knowledge are irrelevant
later in the future to drop and update gates and decide what knowledge to
be added to the cell state. Each gate has its own weights and biases. The
relationship between the input and the output of GRU may be defined by
a set of the following equations:

ĉ<t> = tanh
(
Wc[Γr ∗ c<t−1>, x<t>] + bc

)
Γr = σ

(
Wr[c

<t−1>, x<t>] + br
)

Γu = σ
(
Wu[c

<t−1>, x<t>] + bu
)

c<t> = Γu ∗ ĉ<t> + (1− Γu) ∗ c<t−1>

(16)

where Wc, Wr, and Wu are the parameter matrices (weights) and bc, br, and
bu are bias vectors. σ(x) = 1

1+exp(−x) is the element-wise logistic sigmoid

function. The corresponding diagram for equations (16) is displayed in
Figure 2.

The main part of the Artificial Neural Networks methodology is the
learning or training process in which the errors determined at the output
layer are successively reduced by adjusting the weights and biases through-
out the network. The back-propagation algorithm changes the weights to-
wards a lower error at the end. The network weights and biases of Neural
Networks (NNs) are tuned based on data using the adaptive moment es-
timation (Adam) [49] algorithm. Adam method is one of the most popu-
lar gradient-based optimization algorithms for optimizing neural networks
and is computationally efficient, has little memory requirement, and is well
suited for problems that are large in terms of data/parameters [49]. In this

9
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Figure 2: The diagram of the hybrid neural networks comprising of Gated Recurrent
Units (GRU) and Multi-Layer Perceptions (MLP), input and output data

work, default setting of hyper-parameters of Adam optimization algorithm
are used. For more details on Adam optimizer see [49, 50].

The input to Neural Networks are inlet vent conditions, location of a
person in the room with different mouth positions and particle dispersion
and deposition. The output of the NN is the total number of particles in the
air, the total number of particles left the room through the outlet vent door,
the total number of particles attached to the wall, and the particles stuck in
the air at locations with zero-velocity. The detailed network configuration
and the parameters, the input to Neural Networks, and the output of the
NN used in this work are shown Figure 2 and in Table 3. In order to
verify the prediction accuracy performance of the proposed model for the
continuous-time associated to our airborne movement problem, this paper
uses the mean square error (MSE) as the model criterion, ie,

EMSE =
1

n

n∑
i=1

(xi − x̂i)
2 (17)

where x̂i is the prediction value and n is the number of sample points in the
test data set.

5. Results and Discussion

In the present work we analysed three main factors affecting the particle
transport: air flow ventilation rates, human standing positions, and human
location in the room. In the proposed settings, variations in the ventilation

10
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Table 3: ANN parameters – airborne movement problem

RNN cell Gated Recurrent Unit
Number of hidden GRU layers 2-4
Number of units within hidden- 2 or 4
GRU layers
Number of inputs 5
Number of dense layers 2: with 11 and 8 neurons
Number of fully connected layers 1 (output layer, no. of particles in time)
Dense activation layers Tanh (hyperbolic tangent)
Output activation layer Sigmoid function
loss function Mean squared error
Number of epochs 1000
Validation-split 0.2
Optimiser Adam (default hyper-parameters)

air flow (ie, Re=10000-60000), human standing positions (0, 60, 120, 180,
240, and 300 degrees), and human location in the room significantly modified
the level of air flow and airborne infections response.

5.1. Effects of ventilation rates

The role of ventilation rates in airborne infections are shown in Figure 3
for three different vents scenarios where either both vents are open or one of
the vents is closed and the Reynolds number on the other vent is doubled.
The general trends demonstrate how the infection can be persistently car-
ried by the airflow in the room from one point to another depending on the
pattern of the airflow, location of ventilators, and location of the human. In
Figure 3, steady state visual representation of airflow trajectories (stream
wise, top) and contour plot (middle) colored to velocity magnitude is pre-
sented for Re=20000 (both vents open), Re=40000 (vent1: open, vent2:
closed), and Re=40000 (vent1: closed, vent2: open) with the human stand-
ing position of 0 degree (see Figure 1). Additionally, in Figure 3 (bottom),
the distribution of particles released from normal breathing is displayed in
time for 1800 seconds (30 minutes). The red line indicates the total number
of particles in the air. Blue line shows the total number of particles left
the room air through the vent door [green] or attached to the wall [cian].
The particles stuck in the air at locations with zero-velocity are shown in
magenta color. It is clearly apparent that when vent1 is closed and vent2 is
open (Figure 3c, f), the total number of particles left the room air (O(400),
55 % of the particles, blue line) is less than the case when vent1 is open and
vent2 is closed (O(660), almost 90 % of the particles, (Figure 3b, e)). This
is due to closing the air vent where some particles remain under vent1 and
not moving. Furthermore, when both vents are open (Figure 3a, d), the
total number of the particles without interacting with any surfaces (55 %,
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Figure 3: Steady state visual representation of airflow trajectories in active office colored
to velocity magnitude (a-f), Distribution of particles released from normal breathing (g-l)
in time, human under vent2, mouth position: 0 degee, Re=20000, 40000

Figure 3g) left the room after 30 minutes (green line) are greater than the
cases when one of the vents is open (around 30 % and 16 %, Figures 3h, i,
green lines). In general, when both vents are open, the particles in air (red
line) move rapidly comparing with the cases with only one vent open.

Next, we compare the performance of the hybrid neural network predic-
tion model described in Section 4 with the the numerical results obtained
using the CFD model. Figure 5 shows the model loss for the training dataset
for Gated Recurrent Unit(GRU) with different level of layers and neurons.
Figure 4 shows the CFD-data against the machine learning predictions with
three GRU model variants, GRU(4-2), 2 layers with 4 and 2 units, GRU(4-
2-2), 3 GRU layers with 4, 2 and 2 units, and GRU(4-2-2-2), 4 layers with
4, 2, 2 and 2 units, respectively. In Figure 4, the total number of particles
in the air, the particles stuck in the air at locations with zero-velocity, and
the total number of particles left the room air through the vent door are
captured in 1800 seconds (30) minutes. In this case the values of Reynolds
number are taken to be Re=40000 (both vents are open, Figure 4a) and

12

Page 12 of 47

http://mc.manuscriptcentral.com/hff

International Journal of Numerical Methods for Heat and Fluid Flow

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



International Journal of Num
erical M

ethods for Heat and Fluid Flow

(a)

(b)

Figure 4: Distribution of particles released from normal breathing in time, human under
vent2, mouth position: 0 degree, a) Re=40000,both vents open b) Re=50000, vent1 closed,
vent2 open, CFD vs Gated Recurrent Unit(GRU) with different level of layers and units

Re=50000 (vent1 closed, vent2 open, Figure 4b). Note that, both Reynolds
number values are outside the training data range. As shown in Figures
4a and 4b, the CFD results (red lines) are captured in a tight window pro-
vided by the range of GRUs neural networks (GRU(4-2-2),GRU(4-2), and
GRU(4-2)). Here, GRU(4-2-2-2) with more number of trainable parameters
presents a closer prediction to CFD findings when compared to its counter-
part GRU(4-2).

In addition, model loss for the training dataset for GRU(4-2), GRU(4-
2-2), and GRU(4-2-2-2) are shown in Figure 5. The loss values predicted by
the neural network for trained data are around 1.5% for almost all GRUs,
after an initial stabilisation period. Furthermore, very little differences in
training loss are observed between the three GRU neural networks. Ad-
ditionally, the training loss is consistent with increasing number of epochs.
This leads to model stability and non overfitting, indicating desirable model
performance.
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Figure 5: Model loss for the training dataset for Gated Recurrent Unit(GRU) with dif-
ferent level of layers and neurons

5.2. Effects of human standing position

The overall impact of human position on air flow trajectories and particle
distribution for selected three different human standing positions of 0, 240,
and 300 degrees is presented in Figure 6. In this case, Reynolds number
is taken to be Re=30000 where both vents are open. In Figure 6c and its
counterpart GRUNN-prediction plot in Figure 6f, one may note the rapid
decline in number of particles in air (red line) and at the same time rapid
increase in the number of particles left the room (blue line). This is due to
orientation and mouth position of 300 degree, where the human standing
position is in a direction toward the vent1 and this causes the particles to
leave the room much faster when comparing to other cases with human
orientation in the room. In this case (mouth position: 300), almost 97 % of
the total particles (Figure 6f, blue line) left the room after around 8 minutes
(500 seconds). Yet, The total number of particles left the room at the same
time (8 minutes) with human standing positions of 0, and 240 degrees are
approximately 66 %, and 90 %, respectively ((Figures 6d, e). Moreover, the
number of particles attached to the wall [cian] is almost 16 % of the total
released particles for the case of 300 degree mouth position after 30 minutes
(1800 second), (Figure 6f). The number of particles attached to the wall is
increased to around 38 %, and 40 % of the total particles, for 240, and 0
degree mouth position cases, respectively (Figures 6e, d). Furthermore, the
maximum number of particles remain in suspension in the system after 30
minutes (1800 seconds) are around 17 particles (4 % of the total particles)
for the case of 0 degree mouth position (Figure 6d).

5.3. Effects of human location in room

In this section, prediction under two different human locations (human
under vent 2 and human in the middle of the room between two vents) are
considered, with the purpose of investigating the effects of movement and
maintaining social distancing from the infectious person in the room and
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Figure 6: Steady state visual representation of airflow trajectories in active office colored
to velocity magnitude (a-c), human under vent2, Re=30000, prediction of particles move-
ment released from normal breathing (d-f) in time, GRU(4-2-2-2)

predicting of particle movement released from normal breathing. In Figure
7a-d, steady state visual representation of airflow trajectories is presented
for Re=30000 with the human standing position of 120, and 180 degrees. In
addition, for the same setting, the Neural network for prediction of number
of particles movement in time is shown in Figure 7e-h. As expected, the
particles spread more through the space when the human is in the middle
of the room between the vents (Figure 7c,d) compared to the case when the
human is at the corner of the room under vent2 (Figure 7a,b). Considering
the orientation and mouth position of 180 degree with human in the middle
of the room (Figure 7h), a sharp drop in particle movement in air (red line)
is evident when comparing to its counterpart in Figure 7f with human at
the corner of the room under vent2. Moreover, almost 40 % of the particles
left the room air directly through the vent door (Figure 7e,f, green lines)
whilst this increases to 68 % in the case with human in the middle of the
room between vents (Figure 7g,h). Additionally, Figure 7h with human in
the middle between vents and with mouth position of 180 degree reports
lowest number of particles (13 %) attached to the wall (cian line).

Finally, Figure 8 demonstrates that the Gated Recurrent Units Neural
Network (GRU-NN) is capable of predicting the aerosol movement under
various ventilation conditions with different human mouth position. Note
that, all the inputs for the GRU-NN prediction model in Figure 8a-f are
taken to be outside the training data range.
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Figure 7: Steady state visual representation of airflow trajectories in active office colored
to velocity magnitude, human under vent2 (a,b), human in the middle between vents
(c,d), Re=30000, prediction of particles movement released from normal breathing (d-f)
in time, GRU(4-2-2-2), human under vent2 (e,f), human in the middle between vents (g,h)
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Figure 8: Prediction of particles movement released from normal breathing (a-f) in time
with GRU(4-2-2-2), Various Re and human mouth positions

6. Conclusions

Through this work a predictive method for the accurate capture of infec-
tious particle behaviours, originated during normal breathing of a human, is
established. The methodology is based on a Gated Recurrent Units Neural
Network (GRUs-NN) model, which is capable of handling long-term depen-
dencies. High-fidelity prediction of indoor air flow is obtained by means
of an in-house parallel CFD solver which employs a one equation Spal-
rat–Allmaras (SA) turbulence model. Several flow scenarios regarding the
operation of inlet vents, location of a person in an active office with differ-
ent human standing positions and particle dispersion and deposition in the
enclosed environment are considered. The airflow pattern shows how the
particles can be carried by the airflow within active office. The recorded
airflow pattern in the active office can be very complex, depending on the
location of air ventilations and ventilation rates, as well as on the position
of particles. Movement of people within the room can further complicate
the resulting fluid dynamics. Through the proposed cases we showed that
the Gated Recurrent Units Neural Network model can provide predictions
in time which are in good agreement with the CFD numerical results. This
study paves the way for the development of efficient and reliable tools for
predicting virus airborne movement under different ventilation conditions
and different human positions within an indoor environments, potentially
leading to new design.
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Predicting the airborne microbial transmission via human
breath particles using a Gated Recurrent Units neural

network

Abstract

Purpose

The main purpose of this paper is to devise a tool, based on Compu-
tational Fluid Dynamics (CFD) and Machine Learning (ML), for the as-
sessment of potential airborne microbial transmission in enclosed spaces.
A Gated Recurrent Units Neural Network (GRU-NN) is presented to learn
and predict the behaviour of droplets expelled through breaths via particle
tracking datasets.

Design/methodology/approach

A computational methodology is used for investigating how infectious
particles originated in one location are transported by air and spread through-
out a room. High-fidelity prediction of indoor air flow is obtained by means
of an in-house parallel CFD solver which employs a one equation Spal-
rat–Allmaras (SA) turbulence model. Several flow scenarios are considered
by varying different ventilation conditions and source locations. The CFD
model is used for computing the trajectories of the particles emitted human
breath. The numerical results are used to the ML training.

Finding

In this work, it is shown that the developed ML model, based on the
Gated Recurrent Units Neural Network (GRU-NN), can accurately predict
the airborne particle movement across an indoor environment for different
vent operation conditions and source locations. The numerical results in
the paper prove that the presented methodology is able to provide accurate
predictions of the time evolution of particle distribution at different locations
of the enclosed space.

Originality/value

This study paves the way for the development of efficient and reliable
tools for predicting virus airborne movement under different ventilation con-
ditions and different human positions within an indoor environments, poten-
tially leading to new design. A parametric study is carried out to evaluate
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the impact of system settings on the time variation particles emitted human
breath within the space considered.

Keywords: COVID-19 infection, CFD modelling, Spalrat–Allmaras (SA)
model, Particle tracking, Inhalation airflow, Recurrent Neural Network,
Gated Recurrent Units (GRU)

1. Introduction

In indoor environments, the main transmission route of COVID-19 in-
volves the emission of respiratory droplets from the mouth and nose which
can remain suspended in the air for several minutes, exposing the surround-
ing people to high infection risk [1–4]. In this context, different methodolo-
gies for characterizing the fluid dynamics patterns within the indoor environ-
ment have been proposed [5–8]. These efforts have also been accompanied by
recent research focusing on how pollution and biological agents can spread
throughout an enclosed space [9–14]. Recently, Vuorinen, et al. [15] mod-
elled physical processes related to aerosol dispersion in air and focused on
transmission by inhalation in the context of COVID-19. These authors gave
various examples on the transport and dilution of aerosol dimeters of d ≤ 20
µm over distances O(10m) in public indoor environments by Monte-Carlo
modelling. Furthermore, Löhner et al. [16, 17] studied the characteristics
of virus contaminants and the transmission via droplets and aerosols in a
narrow corridor with moving pedestrians and in a typical hospital rooms
considering a bi-directional coupling, whereby the flow and the motion of
the crowd are computed concurrently and with mutual influences. In subse-
quent work, Abuhegazy et al.[18] investigated aerosol removal and surface
deposition in a realistic classroom with nine students and a teacher us-
ing computational fluid particle dynamics algorithm implemented by Ansys
Fluent. These authors [18] found that a 24%-50% of particles smaller than
15 µm exit the system within 15 minutes through the air conditioning sys-
tem and particles larger than 20 µm almost entirely deposit on the ground,
desks, and nearby surfaces in the room. Additionally Lau et al. [19, 20] de-
scribed a model for indoors airborne transmission where the concentration
of airborne infectious particles governed by an advection–diffusion–reaction
equation.These authors compared the model both with more complex mod-
els and with experimental data and found good agreement. Moreover, to
address the relevant background, the impact of ventilation on the airflow
pattern has been also extensively studied [21–23]. Ventilation plays an im-
portant role in reducing the risk of transmission through dilution and re-
moval of the infected particles within the indoor environment [24].

Despite aerosol transport within indoor environments has been exten-
sively studied in the last decades [25], there is a pressing need for the estab-
lishment of efficient computational tools for the prediction of transmission

2
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and infectivity level of airborne viruses (such as COVID-19 virus) through-
out enclosed spaces. To the authors’ knowledge, ML methods and specifi-
cally Gated Recurrent Units (GRU) neural network [26, 27] have not been
employed before for this purpose. With all the information available regard-
ing the migration of airborne infectious particles in indoor environments, a
robust control tool to capture, store and analyse data using ML algorithms
is essential. Machine Learning represents an efficient and accurate approach
to find patterns in the most complex and abstract data by proposing alterna-
tives to analysing large volume of data to forward-looking predictive models
[28, 29]. ML has attracted strong interest over many years and is a standard
tool today in many applied science topics. The main advantage of ML lies in
that the computer can achieve the purpose of self-learning and predict the
trend through operating algorithms. Because of this feature, the computer
can be continuously trained, the training dataset can be increased, and over
time more accurate results can be obtained through data accumulation by
developing fast and efficient algorithms [30–33].

Through the present study we devised a combined ML and CFD mod-
elling approach for defining the particle distribution associated to airflow
patterns within an indoor environment. This includes natural circulation
inside enclosed spaces by air-conditioning with several flow scenarios regard-
ing the operation of inlet vents, location of a person in an active office [34]
with different human standing positions, analysing the potential of virus
spread through the air from an infected person, identification of critical
points, and particle dispersion and deposition in the enclosed environment.
Moreover, a Gated Recurrent Units Neural Network (GRU-NN) is presented
to learn and predict the behaviour of droplets expelled through breaths via
particle tracking datasets. This article is organised as follows: Section 2
provides the details on the adopted computational methodology including
the particle tracking scheme for modelling infectious particle behaviours.
The description of the problem considered is reported in Section 3. The
neural network architecture methodology is described in Section 4. This
is followed by the Section 5 in which the results are reported. In the last
section, the significant findings of the study are summarised.

2. Mathematical modelling and solution method

The forced air circulation within an active office may be described by
using turbulent incompressible flow equations. These equations and their
solution method are briefly summarised in this section.

2.1. Air flow within the room

The motion of the fluid throughout the room is described by means
of the incompressible Navier-Stokes equations, combined with a turbulence

3
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model. The mass and momentum conservation equations in dimensional
form read:

∇ · v = 0, (1)

∂v

∂t
= −(v · ∇)v − 1

ρ
∇p+ (ν + νT )∇2v, (2)

where v is the velocity vector, ρ is the air density, p is the pressure, ν
is the kinematic viscosity, whilst νT is the turbulent eddy viscosity. The
space and time distribution of the turbulent eddy viscosity νT is obtained
by employing the one equation Spalart-Allmaras (SA) model [35–38], which
uses several turbulence parameters (cb1, σ, cb2, k, cw1, cw2, cw3 and cv1) for
describing the transport of the variable ν̂ = νT /fv1. The scalar equation is:

∂ν̂

∂t
= −v ·∇ν̂+cb1Ŝν̂+

1

σ

[
∇ · ((ν + ν̂)∇ν̂) + cb2(∇ν̂)2

]
−cw1fw

[
ν̂

y

]2
, (3)

where

Ŝ = S + fv2
ν̂

k2y2
, (4)

fv2 = 1−X/(1 +Xfv1), (5)

fv1 = X3/(X3 + c3v1), (6)

fw = g

[
1 + c6w3

g6 + c3w3

]1/6
, (7)

X = ν̂/ν, (8)

g = r + cw2(r
6 − r), (9)

r =
ν̂

Ŝk2y2
, (10)

in which S is the magnitude of vorticity and y is the near wall distance.
The turbulence parameters are set as follows: cb1 = 0.1355, σ = 2/3, cb2 =
0.622, k = 0.41, cw1 = cb1/k

2 + (1+ cb2)/σ, cw2 = 0.3, cw3 = 2 and cv1 = 7.1.
The equations above are solved by using an in-house parallel CFD li-

brary based on a established finite-element characteristic-based split (CBS)
scheme, which is suitable for problems with unstructured meshes [37, 39].
The velocity and pressure fields within the room are computed in time by
solving Equations 1-2, in conjunction with the SA turbulence model (Equa-
tion 3). Here we used the semi-implicit (in time) version of the CBS since
it represent a good compromise between efficiency, accuracy and flexibility
for external component integration [40]. These features make the scheme
ideal for computing incompressible flow in complex geometries. The code is
written in Fortran90 and all simulations are carried out using an Open shift
Container Platform (OCP) cluster on 40 processors with the OpenMPI.
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2.2. Particle tracking

To calculate the trajectory of a particle drifted by the air current in
the room, we evaluate the particle pathway in every mesh cell met by the
particle during its travel. Since we use a tetrahedral mesh, the calculation
of trajectory requires tracing a particle through a tetrahedron. Here, it
is necessary to calculate the leaving point in the tetrahedron surface for
given entering point alongside the propagation time trough the cell [25].
For this, we use the linear shape functions ξi associated to the nodes of the
tetrahedron. In this way, any point P inside the cell can be determined as
a linear combination of the coordinates of the tetrahedron vertices P i:

P =
4∑

i=1

ξiP i, (11)

where
∑4

i=1 ξi(P ) = 1.
Here the velocities are computed at cell vertices, and the velocity varies

linearly in space over every cell. The velocity at any point P can be ex-
pressed through its shape functions

v =

4∑
i=1

ξivi. (12)

where vi are velocities at tetrahedron vertices. By solving a system of three
linear equations we can represent velocity v at P through coordinates of
tetrahedron vertices in the following form

v =
4∑

i=1

v̂iP i,
4∑

i=1

v̂i = 0. (13)

The linear shape functions ξi also can be treated as coordinates in the master
element. Then every parameter v̂i in (13) represents a velocity component
along ith master element coordinate ξi. This enables calculation of the
propagation time of the particle to the plane of every face and finding which
face can be reached first, i.e. the face containing the leaving point.

A trajectory in the linearly varying velocity field can be expressed an-
alytically through the exponential function, but to find the leaving point
we have to solve numerically an algebraic equation (see [25]). Instead we
propose here a fast and accurate predictor-corrector type method. First,
we calculate the values of shape functions for the entering point P in and,
employing equation (12), calculate the velocity vector vin at it. Consider-
ing velocity vin as the uniform velocity, we calculate the master element
velocity components (13) and the predicted leaving point P out

∗ . Second, we
calculate the velocity vout

∗ at this predicted leaving point. Now we take the
mean velocity

v = 1
2

(
vin + vout

∗
)

(14)

5
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and considering it as a uniform velocity in the cell, calculate the master
element velocity components and the corrected leaving point P out as well
as the propagation time.

The leaving point of the given cell is an entering point of the adjacent
cell in which this algorithm is repeated. As the result, the trajectory of
particle is determined by entering/leaving points at the boundary between
two adjacent cells and time instants when these points are reached. After
that the trajectory is linearly interpolated onto a uniform time grid.

The trajectory can be terminated

1. if the particle leaves the domain through the outlet (no adjacent cell
at the leaving cell face);

2. if the particle is settled at a wall or other surface: floor, ceiling,
pipeline, etc. This can occur if the particle reaches a near-boundary
cell which has three boundary vertices and the velocity at the non-
boundary vertex has a component toward the boundary;

3. if the particle is trapped in the air between two adjacent cells hav-
ing mean velocities directed to each other. This can happen near
stagnation points in the velocity field: intersection of three flow sepa-
ration surfaces. In a real flow, the probability to get into such point
is infinitesimal. In a discretised domain used for computation, this
probability is small but finite.

4. Some particles can remain in the air for a long time trapped by a large
vortex caused by intensive ventilation.

The algorithm has been implemented in C++. Computation of several
hundred trajectories with the maximal preset time of one hour is performed
in less than one second.

3. Problem specification

We considered an indoor space within Swansea University Bay Campus,
part of a building constructed in 2018 for studying the performances of an
active office [34]. The air conditioning system in active office consists of two
supply diffusers and one door vent as shown in Figure 1. In this work, and
for the computational modelling, a human body is placed under vent2 (case
1) and at the middle between two vents (case 2) of a 46.44 m3 room 4.0 m by
4.3 m, and 2.7 m high. Additionally, six different human standing positions
(0, 60, 120, 180, 240, and 300 degrees) are considered. Figure 1 illustrates
the configuration of the simulated room. Detailed characteristics for each
mesh is recorded in Table 1 for case 1 (human body under vent2). Almost
the same mesh characteristics are used for case 2 (not shown). Extensive
mesh sensitivity for the characteristic-based split (CBS) method has been
performed in previous articles (see for example, [41, 42]). The Reynolds
number for this study is defined based on the vents diameter of the room.

6
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Figure 1: Schematic of model room and corresponding meshes with human standing
positions

Table 1: Mesh characteristic parameters, human under vent2
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Table 2: Reynolds numbers (Re) for different air vent diffusers

With the reference velocity of 1m/s, a non-dimensional diffuser inlet vertical
air velocity of unity is imposed. Air flow from mouth is assumed to be
exhaled at a velocity inlet boundary condition 2.0 m/s for a mouth inlet
area of 0.0028m2. No slip conditions are applied on walls and windows of
the room. For the Spalart-Allmaras (SA) model the scalar variable ν̂ is
prescribed equal to 1.0 at the inlet and zero on the solid walls. First, the
steady-state solution is obtained for the airflow without particles with the
convergence criterion to steady state of 10-6 tolerance value. We assumed
that during a single normal breathing around N = 750 particles at the
person’s mouth location are released into the room.

For the ML model, a dataset containing 108 samples/numerical solution
for different configurations are generated. Here, the effect of opening both
vents with three different Reynolds numbers of Re=10000, 20000, and 30000
are considered. Additionally, we also considered the case in which one of
the vents is closed and the flow in the other one is doubled (ie, Re=20000,
40000, 60000) (see Table 2). For the machine learning (see Section 4), the
dataset is split randomly into train/test sets following a 80:20 ratio (80%
of the data for training and 20% of the data for testing). This database is
then used to train the machine learning algorithms. The trained algorithm
is then used to predict in time for 1800 seconds (30 minutes), the total
number of particles in the air, the total number of particles left the room
air through the vent door, the total number of particles attached to the
wall, and the particles stuck in the air at locations with zero-velocity. In
addition, Gated Recurrent Units (GRUs) are used to speed up the training
time and to accelerate the ML workloads.

4. Neural network architecture

In this work, a hybrid neural networks comprising of Gated Recurrent
Units (GRU) and Multi-Layer Perceptions (MLP) are used to predict the
number of particles movement released from normal breathing. The GRU
offers a very comparable accuracy to the more widely used Long Short-
Term Memory (LSTM), while incurring a shorter training time [43]. The
GRU neural networks [26, 27, 44] is an extended and improved version of
the Recurrent Neural Network (RNN) [45, 46] which are designed to work
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with the sequential data architecture and are capable of handling long-term
dependencies. A RNN unit takes input from the previous step (c<t−1>) and
current input (x<t>). The cell state (c<t>) at the current time is then given
by.

c<t> = g
(
Wc[c

<t−1>, x<t>] + bc
)

(15)

where Wc are weights, bc are biases, or trainable parameters, and g is the
activation function. RNN’s face short-term memory problem and cannot
process very long sequences. It is caused due to vanishing gradient problem.
As RNN processes more time steps it suffers from vanishing gradient making
them unable to learn long-term dependencies efficiently [47, 48].

Gated Recurrent Units (GRU) is able to process even the longest se-
quence data without vanishing of the gradient. GRU’s are created as the
solution to short-term memory. They have internal mechanisms called gates
that can regulate the flow of information. As shown in Figure 2, GRU has
a complex recurrent structure in a single unit, which is chronologically con-
nected in time. GRU has two gates, reset gate (Γr) and update gate (Γu).
The reset gates are used to decide how much past knowledge are irrelevant
later in the future to drop and update gates and decide what knowledge to
be added to the cell state. Each gate has its own weights and biases. The
relationship between the input and the output of GRU may be defined by
a set of the following equations:

ĉ<t> = tanh
(
Wc[Γr ∗ c<t−1>, x<t>] + bc

)
Γr = σ

(
Wr[c

<t−1>, x<t>] + br
)

Γu = σ
(
Wu[c

<t−1>, x<t>] + bu
)

c<t> = Γu ∗ ĉ<t> + (1− Γu) ∗ c<t−1>

(16)

where Wc, Wr, and Wu are the parameter matrices (weights) and bc, br, and
bu are bias vectors. σ(x) = 1

1+exp(−x) is the element-wise logistic sigmoid

function. The corresponding diagram for equations (16) is displayed in
Figure 2.

The main part of the Artificial Neural Networks methodology is the
learning or training process in which the errors determined at the output
layer are successively reduced by adjusting the weights and biases through-
out the network. The back-propagation algorithm changes the weights to-
wards a lower error at the end. The network weights and biases of Neural
Networks (NNs) are tuned based on data using the adaptive moment es-
timation (Adam) [49] algorithm. Adam method is one of the most popu-
lar gradient-based optimization algorithms for optimizing neural networks
and is computationally efficient, has little memory requirement, and is well
suited for problems that are large in terms of data/parameters [49]. In this
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Figure 2: The diagram of the hybrid neural networks comprising of Gated Recurrent
Units (GRU) and Multi-Layer Perceptions (MLP), input and output data

work, default setting of hyper-parameters of Adam optimization algorithm
are used. For more details on Adam optimizer see [49, 50].

The input to Neural Networks are inlet vent conditions, location of a
person in the room with different mouth positions and particle dispersion
and deposition. The output of the NN is the total number of particles in the
air, the total number of particles left the room through the outlet vent door,
the total number of particles attached to the wall, and the particles stuck in
the air at locations with zero-velocity. The detailed network configuration
and the parameters, the input to Neural Networks, and the output of the
NN used in this work are shown Figure 2 and in Table 3. In order to
verify the prediction accuracy performance of the proposed model for the
continuous-time associated to our airborne movement problem, this paper
uses the mean square error (MSE) as the model criterion, ie,

EMSE =
1

n

n∑
i=1

(xi − x̂i)
2 (17)

where x̂i is the prediction value and n is the number of sample points in the
test data set.

5. Results and Discussion

In the present work we analysed three main factors affecting the particle
transport: air flow ventilation rates, human standing positions, and human
location in the room. In the proposed settings, variations in the ventilation
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Table 3: ANN parameters – airborne movement problem

RNN cell Gated Recurrent Unit
Number of hidden GRU layers 2-4
Number of units within hidden- 2 or 4
GRU layers
Number of inputs 5
Number of dense layers 2: with 11 and 8 neurons
Number of fully connected layers 1 (output layer, no. of particles in time)
Dense activation layers Tanh (hyperbolic tangent)
Output activation layer Sigmoid function
loss function Mean squared error
Number of epochs 1000
Validation-split 0.2
Optimiser Adam (default hyper-parameters)

air flow (ie, Re=10000-60000), human standing positions (0, 60, 120, 180,
240, and 300 degrees), and human location in the room significantly modified
the level of air flow and airborne infections response.

5.1. Effects of ventilation rates

The role of ventilation rates in airborne infections are shown in Figure 3
for three different vents scenarios where either both vents are open or one of
the vents is closed and the Reynolds number on the other vent is doubled.
The general trends demonstrate how the infection can be persistently car-
ried by the airflow in the room from one point to another depending on the
pattern of the airflow, location of ventilators, and location of the human. In
Figure 3, steady state visual representation of airflow trajectories (stream
wise, top) and contour plot (middle) colored to velocity magnitude is pre-
sented for Re=20000 (both vents open), Re=40000 (vent1: open, vent2:
closed), and Re=40000 (vent1: closed, vent2: open) with the human stand-
ing position of 0 degree (see Figure 1). Additionally, in Figure 3 (bottom),
the distribution of particles released from normal breathing is displayed in
time for 1800 seconds (30 minutes). The red line indicates the total number
of particles in the air. Blue line shows the total number of particles left
the room air through the vent door [green] or attached to the wall [cian].
The particles stuck in the air at locations with zero-velocity are shown in
magenta color. It is clearly apparent that when vent1 is closed and vent2 is
open (Figure 3c, f), the total number of particles left the room air (O(400),
55 % of the particles, blue line) is less than the case when vent1 is open and
vent2 is closed (O(660), almost 90 % of the particles, (Figure 3b, e)). This
is due to closing the air vent where some particles remain under vent1 and
not moving. Furthermore, when both vents are open (Figure 3a, d), the
total number of the particles without interacting with any surfaces (55 %,
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Figure 3: Steady state visual representation of airflow trajectories in active office colored
to velocity magnitude (a-f), Distribution of particles released from normal breathing (g-l)
in time, human under vent2, mouth position: 0 degee, Re=20000, 40000

Figure 3g) left the room after 30 minutes (green line) are greater than the
cases when one of the vents is open (around 30 % and 16 %, Figures 3h, i,
green lines). In general, when both vents are open, the particles in air (red
line) move rapidly comparing with the cases with only one vent open.

Next, we compare the performance of the hybrid neural network predic-
tion model described in Section 4 with the the numerical results obtained
using the CFD model. Figure 5 shows the model loss for the training dataset
for Gated Recurrent Unit(GRU) with different level of layers and neurons.
Figure 4 shows the CFD-data against the machine learning predictions with
three GRU model variants, GRU(4-2), 2 layers with 4 and 2 units, GRU(4-
2-2), 3 GRU layers with 4, 2 and 2 units, and GRU(4-2-2-2), 4 layers with
4, 2, 2 and 2 units, respectively. In Figure 4, the total number of particles
in the air, the particles stuck in the air at locations with zero-velocity, and
the total number of particles left the room air through the vent door are
captured in 1800 seconds (30) minutes. In this case the values of Reynolds
number are taken to be Re=40000 (both vents are open, Figure 4a) and
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(a)

(b)

Figure 4: Distribution of particles released from normal breathing in time, human under
vent2, mouth position: 0 degree, a) Re=40000,both vents open b) Re=50000, vent1 closed,
vent2 open, CFD vs Gated Recurrent Unit(GRU) with different level of layers and units

Re=50000 (vent1 closed, vent2 open, Figure 4b). Note that, both Reynolds
number values are outside the training data range. As shown in Figures
4a and 4b, the CFD results (red lines) are captured in a tight window pro-
vided by the range of GRUs neural networks (GRU(4-2-2),GRU(4-2), and
GRU(4-2)). Here, GRU(4-2-2-2) with more number of trainable parameters
presents a closer prediction to CFD findings when compared to its counter-
part GRU(4-2).

In addition, model loss for the training dataset for GRU(4-2), GRU(4-
2-2), and GRU(4-2-2-2) are shown in Figure 5. The loss values predicted by
the neural network for trained data are around 1.5% for almost all GRUs,
after an initial stabilisation period. Furthermore, very little differences in
training loss are observed between the three GRU neural networks. Ad-
ditionally, the training loss is consistent with increasing number of epochs.
This leads to model stability and non overfitting, indicating desirable model
performance.
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Figure 5: Model loss for the training dataset for Gated Recurrent Unit(GRU) with dif-
ferent level of layers and neurons

5.2. Effects of human standing position

The overall impact of human position on air flow trajectories and particle
distribution for selected three different human standing positions of 0, 240,
and 300 degrees is presented in Figure 6. In this case, Reynolds number
is taken to be Re=30000 where both vents are open. In Figure 6c and its
counterpart GRUNN-prediction plot in Figure 6f, one may note the rapid
decline in number of particles in air (red line) and at the same time rapid
increase in the number of particles left the room (blue line). This is due to
orientation and mouth position of 300 degree, where the human standing
position is in a direction toward the vent1 and this causes the particles to
leave the room much faster when comparing to other cases with human
orientation in the room. In this case (mouth position: 300), almost 97 % of
the total particles (Figure 6f, blue line) left the room after around 8 minutes
(500 seconds). Yet, The total number of particles left the room at the same
time (8 minutes) with human standing positions of 0, and 240 degrees are
approximately 66 %, and 90 %, respectively ((Figures 6d, e). Moreover, the
number of particles attached to the wall [cian] is almost 16 % of the total
released particles for the case of 300 degree mouth position after 30 minutes
(1800 second), (Figure 6f). The number of particles attached to the wall is
increased to around 38 %, and 40 % of the total particles, for 240, and 0
degree mouth position cases, respectively (Figures 6e, d). Furthermore, the
maximum number of particles remain in suspension in the system after 30
minutes (1800 seconds) are around 17 particles (4 % of the total particles)
for the case of 0 degree mouth position (Figure 6d).

5.3. Effects of human location in room

In this section, prediction under two different human locations (human
under vent 2 and human in the middle of the room between two vents) are
considered, with the purpose of investigating the effects of movement and
maintaining social distancing from the infectious person in the room and
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Figure 6: Steady state visual representation of airflow trajectories in active office colored
to velocity magnitude (a-c), human under vent2, Re=30000, prediction of particles move-
ment released from normal breathing (d-f) in time, GRU(4-2-2-2)

predicting of particle movement released from normal breathing. In Figure
7a-d, steady state visual representation of airflow trajectories is presented
for Re=30000 with the human standing position of 120, and 180 degrees. In
addition, for the same setting, the Neural network for prediction of number
of particles movement in time is shown in Figure 7e-h. As expected, the
particles spread more through the space when the human is in the middle
of the room between the vents (Figure 7c,d) compared to the case when the
human is at the corner of the room under vent2 (Figure 7a,b). Considering
the orientation and mouth position of 180 degree with human in the middle
of the room (Figure 7h), a sharp drop in particle movement in air (red line)
is evident when comparing to its counterpart in Figure 7f with human at
the corner of the room under vent2. Moreover, almost 40 % of the particles
left the room air directly through the vent door (Figure 7e,f, green lines)
whilst this increases to 68 % in the case with human in the middle of the
room between vents (Figure 7g,h). Additionally, Figure 7h with human in
the middle between vents and with mouth position of 180 degree reports
lowest number of particles (13 %) attached to the wall (cian line).

Finally, Figure 8 demonstrates that the Gated Recurrent Units Neural
Network (GRU-NN) is capable of predicting the aerosol movement under
various ventilation conditions with different human mouth position. Note
that, all the inputs for the GRU-NN prediction model in Figure 8a-f are
taken to be outside the training data range.
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Figure 7: Steady state visual representation of airflow trajectories in active office colored
to velocity magnitude, human under vent2 (a,b), human in the middle between vents
(c,d), Re=30000, prediction of particles movement released from normal breathing (d-f)
in time, GRU(4-2-2-2), human under vent2 (e,f), human in the middle between vents (g,h)
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Figure 8: Prediction of particles movement released from normal breathing (a-f) in time
with GRU(4-2-2-2), Various Re and human mouth positions

6. Conclusions

Through this work a predictive method for the accurate capture of infec-
tious particle behaviours, originated during normal breathing of a human, is
established. The methodology is based on a Gated Recurrent Units Neural
Network (GRUs-NN) model, which is capable of handling long-term depen-
dencies. High-fidelity prediction of indoor air flow is obtained by means
of an in-house parallel CFD solver which employs a one equation Spal-
rat–Allmaras (SA) turbulence model. Several flow scenarios regarding the
operation of inlet vents, location of a person in an active office with differ-
ent human standing positions and particle dispersion and deposition in the
enclosed environment are considered. The airflow pattern shows how the
particles can be carried by the airflow within active office. The recorded
airflow pattern in the active office can be very complex, depending on the
location of air ventilations and ventilation rates, as well as on the position
of particles. Movement of people within the room can further complicate
the resulting fluid dynamics. Through the proposed cases we showed that
the Gated Recurrent Units Neural Network model can provide predictions
in time which are in good agreement with the CFD numerical results. This
study paves the way for the development of efficient and reliable tools for
predicting virus airborne movement under different ventilation conditions
and different human positions within an indoor environments, potentially
leading to new design.

17

Page 40 of 47

http://mc.manuscriptcentral.com/hff

International Journal of Numerical Methods for Heat and Fluid Flow

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



International Journal of Num
erical M

ethods for Heat and Fluid Flow

Acknowledgements

Authors acknowledge the financial support from Ser Cymru III - Tack-
ling Covid 19 fund, Welsh Government Project number 095. The authors
are also grateful for helpful discussion with Dr Justin Searle and active of-
fice team, SPECIFIC Innovation & Knowledge Centre, Swansea University,
UK.

References

[1] Michael A Kohanski, L James Lo, and Michael S Waring. Review
of indoor aerosol generation, transport, and control in the context of
COVID-19. In International forum of allergy & rhinology, volume 10,
pages 1173–1179. Wiley Online Library, 2020.

[2] Neeltje Van Doremalen, Trenton Bushmaker, Dylan H. Morris,
Myndi G. Holbrook, Amandine Gamble, Brandi N. Williamson, Azaibi
Tamin, Jennifer L. Harcourt, Natalie J. Thornburg, Susan I. Gerber,
et al. Aerosol and surface stability of SARS-CoV-2 as compared with
SARS-CoV-1. New England Journal of Medicine, 382(16):1564–1567,
2020.

[3] Lidia Morawska and D.K. Milton. It Is Time to Address Airborne
Transmission of Coronavirus Disease 2019 (COVID-19). Clinical Infec-
tious Diseases, 71(9):2311–2313, 2020.

[4] Mengjia Tang, Ningling Zhu, Kerry Kinney, and Atila Novoselac.
Transport of indoor aerosols to hidden interior spaces. Aerosol Sci-
ence and Technology, 54(1):94–110, 2020.

[5] Ramon Codina, Christopher Morton, Eugenio Onate, and Orlando
Soto. Numerical aerodynamic analysis of large buildings using a finite
element model with application to a telescope building. International
Journal of Numerical Methods for Heat & Fluid Flow, 10(6):613–633,
2000.

[6] Souad Morsli, Mustapha Boussoufi, Amina Sabeur, Mohammed
El Ganaoui, and Rachid Bennacer. Small to large scale mixed turbulent
convection: buildings application. International Journal of Numerical
Methods for Heat & Fluid Flow, 28(1):188–205, 2018.

[7] Zohir Younsi, Lounes Koufi, and Hassane Naji. Numerical study of the
effects of ventilated cavities outlet location on thermal comfort and air
quality. International Journal of Numerical Methods for Heat & Fluid
Flow, 29(11):4462–4483, 2019.

18

Page 41 of 47

http://mc.manuscriptcentral.com/hff

International Journal of Numerical Methods for Heat and Fluid Flow

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



International Journal of Num
erical M

ethods for Heat and Fluid Flow

[8] Pedro M de Oliveira, Leo CC Mesquita, Savvas Gkantonas, Andrea
Giusti, and Epaminondas Mastorakos. Evolution of spray and aerosol
from respiratory releases: theoretical estimates for insight on viral
transmission. Proceedings of the Royal Society A, 477(2245):20200584,
2021.

[9] Khaled Talaat and Jinxiang Xi. Computational modeling of aerosol
transport, dispersion, and deposition in rhythmically expanding and
contracting terminal alveoli. Journal of Aerosol Science, 112:19–33,
2017.

[10] Vinh Van Tran, Duckshin Park, and Young-Chul Lee. Indoor air pol-
lution, related human diseases, and recent trends in the control and
improvement of indoor air quality. International Journal of Environ-
mental Research and Public Health, 17(8):2927, 2020.

[11] Ioannis Manisalidis, Elisavet Stavropoulou, Agathangelos Stavropou-
los, and Eugenia Bezirtzoglou. Environmental and health impacts of
air pollution: A review. Frontiers in public health, 8, 2020.

[12] Luis Alfredo Anchordoqui and Eugene M Chudnovsky. A Physicist
View of COVID-19 Airborne Infection through Convective Airflow in
Indoor Spaces. SciMedicine Journal, 2:68–72, 2020.

[13] D Fontes, J Reyes, K Ahmed, and M Kinzel. A study of fluid dynamics
and human physiology factors driving droplet dispersion from a human
sneeze. Physics of Fluids, 32(11):111904, 2020.

[14] Sanjay Kumar and Heow Pueh Lee. The perspective of fluid flow be-
havior of respiratory droplets and aerosols through the facemasks in
context of SARS-CoV-2. Physics of Fluids, 32(11):111301, 2020.

[15] Ville Vuorinen, Mia Aarnio, Mikko Alava, Ville Alopaeus, Nina
Atanasova, Mikko Auvinen, Nallannan Balasubramanian, Hadi Bor-
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Reply to Reviewer 1: 

We acknowledge the comments offered by Reviewer 1, and summarise the detailed corrections within 
the response below:  

• As requested, more theoretical details of the Deep Neural Networks have now been added to the 
revised version of the paper in pages 9-11. This includes the following figure (Figure 2 page 10) in 

which the detailed explanation of the input and output data are included.  

 

• More details of the loss function are added to the manuscript.  In addition, a new figure (Figure 
5) for model loss for the training dataset is included.  Please see pages 10 ,13, and 14. 

• More details of the Adam optimization algorithm are added to the manuscript. Please see page 
9. 

• More details of neural network hyper-parameters are included in Table 3 (page 11). 

• We believe that with the new DNN details added in the paper, the results are reproducible. 

We hope that these detailed corrections and responses clarify the various points raised by this reviewer, 
whom we thank for his constructive comments.  
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