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Abstract 

This work proposes a simple but robust 4-node 24-DOF facet shell element for static analysis of 

small-scale thin shell structures. To accommodate the size effects, the modified couple stress theory 

is employed as the theoretical basis. The element is constructed via two main innovations. First, the 

trial functions that can a priori satisfy related governing differential equations are adopted as the 

basic functions for formulating the element interpolations. Second, the generalized conforming 

theory and the penalty function method are employed to meet the C1 continuity requirement in weak 

sense for ensuring the computation convergence property. Several benchmarks of shells with 

different geometries are tested to assess the new facet shell element’s capability. The numerical 

results reveal that the element can effectively simulate the size-dependent mechanical behaviors of 

small-scale thin shells, exhibiting satisfactory numerical accuracy and low susceptibility to mesh 

distortion. Moreover, as the shell element uses only six degrees of freedom per node, it can be 

incorporated into the commonly available finite element programs very readily. 

Keywords: facet shell element; Kirchhoff-Love shell; modified couple stress theory; size effect; 

mesh distortion 

 

 



2 

 

1. Introduction 

Because of efficient mechanical properties, the shell structures have extensive applications in small-

scale devices, such as the components of the micro electromechanical system (MEMS) and the nano 

electromechanical system (NEMS) [1-3]. Numerous experimental evidences have indicated that the 

mechanical behaviors of small-scale structures are considerably size-dependent, and the classical 

continuum theory is insufficient for accurately describing the size effect. The atomic and molecular 

dynamic simulation methods are certainly conceptually valid for small length scales but almost 

always computationally intensive. On the other hand, the high-order continuum theories 

incorporating additional intrinsic material length scale parameters, such as the nonlocal theories [4-

6], the strain gradient theories [7-9] and the couple stress theories [10-13], are capable of effectively 

simulating the size-dependent response of the small-scale structures. Among those high-order 

continuum theories, the modified couple stress theory proposed by Yang et al. [14] has become more 

and more popular due to its easy applicability and verifiability. In this development, the curvatures 

which are also considered in addition to the strains for contribution to the deformation energy are 

defined based on only the symmetric parts of rotation gradients. Consequently, just one intrinsic 

material length scale parameter is required to describe the size-dependence. 

  Based on the modified couple stress theory [14], a considerable amount of non-classical shell 

models has been successfully established in recent years. For instance, Zeighampour and Beni [15, 

16] developed the thin cylindrical shell and conical shell models respectively for free vibration 

analysis of the single-walled carbon nanotube and nanocone; Jouneghani et al. [17] developed the 

first-order shear deformation shell model for orthotropic doubly curved micro shells; Ghayesh and 

Farokhi [18] studied the nonlinear mechanical behaviors of the doubly curved shallow micro shells; 

Hosseini-Hashemi et al. [19] proposed the size-dependent model for the closed micro/nano spherical 

shells; Ghadiri and Safarpour [20] performed the analysis of the cylindrical nano shell considering 

the magneto-electro-thermoelastic coupling effects; Wang et al. [21] investigated the vibration 

responses of the circular cylindrical polymeric shell reinforced by graphene platelet. Other 

contributions on micro/nano shell models based on the modified couple stress theory can be found 

in Beni et al. [22], Salehipour et al. [23], Wang et al. [24] and the references therein. 

From the above literature review, one can clearly find that although the developments of size-
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dependent shell models are quite successful, only limited problems with simple geometries and 

certain loading cases can be analytically solved because of the complexity of governing equations. 

Consequently, there is an urgent need to develop reliable numerical approaches with good accuracy 

and efficiency for practical engineering applications. As it is well known, the finite element method 

(FEM) is usually recognized as a very efficient tool to simulate the complicated behaviors of shells. 

The standard FE implementations of the size-dependent shell models naturally require more 

demanding displacement continuity. It is significant to notice that the high-order continuity 

requirement will bring great interpolation difficulties to element construction as well as make the 

element’s performance more susceptible to mesh distortion. Over the past decades, tremendous 

efforts have been made to develop finite elements with concise formulation and satisfactory 

performance. But unfortunately, those existing works primarily focus on the membrane elements 

[25-31], solid elements [32-36] and plate bending elements [37-40]. The literatures regarding the 

shell elements, especially the ones which can be used for analysis of shells with complex geometries, 

are very limited [41]. 

The isogeometric analysis (IGA) proposed by Hughes et al. [42] which adopts the CAD basis 

functions as the shape functions is recently regards as an effective method to overcome the obstacle 

of high-order continuity [43, 44]. To name a few, Balobanov et al. [45] proposed an H3-conforming 

IGA implementation for Kirchhoff-Love shells; Thai et al. [46] developed a nonlinear IGA thin shell 

element based on the modified couple stress theory; Schulte et al. [47] developed IGA shell elements 

for analysis of fiber reinforced composite materials. However, it’s known that the IGA element 

ordinarily has a much larger support domain than the usual FEM, implying larger computational 

expense and more complicated formulation. Besides, the imposition of the boundary condition in 

the IGA still experiences some inadequacies. 

To date, the FEM remains to be the most commonly used numerical tool in scientific and 

engineering computations. Thus, further efforts should be devoted to developing robust shell 

elements based on the high-order continuum theories. To this end, the objective of the current work 

is to propose a novel quadrilateral 4-node facet shell element in the framework of the modified 

couple stress theory for size-dependent static analysis of small-scale thin shells with complex 

geometries. Compared with other types of shell elements, the facet shell element can be constructed 
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and efficiently applied without complicated treatments in mathematical derivation [48]. Besides, it 

is more convenient in handling complex boundary conditions and analyzing folded plate structures. 

As mentioned above, the major difficulties encountered in developing the present facet shell element 

are the interpolation difficulty and mesh distortion sensitivity problems caused by the C1 continuity 

requirement in the modified couple stress theory. To circumvent these obstacles, it is achieved with 

two main formulation innovations. First, the C1 continuity requirement is satisfied in weak sense by 

using the generalized conforming theory [49] and the penalty function method without sacrificing 

the computation convergence property. Second, the trial functions that can a priori satisfy the related 

governing equations are introduced into the element construction to improve the element’s 

performance in distorted meshes. Several well-established benchmark examples of shells with 

different geometric shapes are examined to validate the capability of the new facet shell element. It 

is observed that the element can effectively capture the size dependence of small-scale shell 

structures, exhibiting exceptional numerical accuracy and high tolerance to mesh distortion. 

Moreover, as the new element has only six degrees of freedom (DOF) per node, it can be 

incorporated into the commonly available finite element programs very readily. 

 

 

2. Element Formulations 

2.1. Overview of the modified couple stress elasticity  

In the modified couple stress elasticity [14], the strains ij   and mechanical rotations i   are 

defined as the symmetric and skew-symmetric parts of the displacement gradients, respectively: 

 
, ,

,

1
,

2 2

i j j i

ij i ijk k j

u u
e u 

+
= = , (1) 

in which ijke  is the permutation symbol. The curvatures ij  that are defined as the symmetric part 

of the rotation gradients are given by  

 
, ,

2

i j j i

ij

 


+
= . (2) 

For linear isotropic elastic materials, only one additional material length scale parameter l is 

required in the constitutive relationships to describe the size-dependent behaviors and thus, the 

stresses ij  and couple stresses ijm  can be calculated by 
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 22 , 2ij kk ij ij ij ijG m Gl    = + = . (3) 

in which   and G  are the two Lame’s constants. Besides, the stresses and couple stresses should 

satisfy the following equilibrium equations:  

 
, ,

1
0

2
ij j ijk jm mk ie m f − + = , (4) 

in which if  denotes the body force per unit volume.  

The displacement boundary conditions in the modified couple stress theory [14] are given by  

 ( ),i i i j j i iu u n n  = − = , (5) 

where iu  and i  are the prescribed displacements and rotations along the boundary while jn  is 

the direction cosine of the outer normal direction. The traction boundary conditions are  

 
, 

1
0, 0

2
j ij nmi m nj j i j ij in e n m t n m c − − = − = , (6) 

where it  and ic  are the prescribed boundary stresses and couple stresses, respectively.  

 

2.2. The basic equations for facet shell model  

When using the facet shell elements to analyze the shell structure, the core idea is to approximate 

the shell’s curved geometry by using a series of flat subdomains and each subdomain will be 

modeled by a facet shell element. Figure 1 briefly illustrates the schematic representation of a typical 

thin flat subdomain, in which the mid-surface is defined as the ˆ ˆx y−  plane of the local Cartesian 

coordinate system, while ẑ   represents the thickness-direction ( )ˆ2 2h z h−     and h   is the 

thickness. For brevity, the Voigt notation is used in the following sections and the style with cap 

over a character is used to denote the components defined in the local coordinate system. 

By introducing the Kirchhoff-Love hypothesis and neglecting the coupling effects between the 

bending and membrane deformations at the subdomain level, the displacement vector û   with 

respect to the local Cartesian coordinate system ( )ˆ ˆ ˆ, ,x y z  can be expressed by   
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u , (7) 

in which m m
ˆ ˆ,u v  and mŵ  respectively are the three displacement components of the mid-surface. 

Therefore, the mid-surface can be employed as the reference plane for formulating the new facet 

shell element.  

Next, by inserting Equation (7) into the kinematic equations of the modified couple stress theory 

[14], the non-zero strain vector ε̂   and physical rotation vector ω̂   with respect to the local 

Cartesian coordinate system are obtained: 
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ε , (8) 
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Then, the non-zero curvature vector χ̂  is further deduced: 
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As suggested by [50] , in the present model, the stress vector σ̂  and couple stress vector m̂  
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which respectively are the work conjugate pairs of the above strain ε̂  and curvature χ̂  are derived 

using the reduced constitutive relationship of the plane stress state instead of the original three-

dimensional ones:  
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m D χ D , (12) 

in which E  is Young’s modulus,   is Poisson’s ratio and ( )2 1G E = + .  

  

2.3. The formulations of the new facet shell element 

Let us consider a quadrilateral 4-node 24-DOF facet shell element as shown in Figure 2, in which 

1~4 denote the element nodes whilst 5~8 are the mid-side points of the element’s four edges. The 

element nodal DOF vector e
a  with respect to the global Cartesian coordinate system ( ), ,x y z  is  

 
T

1 2 3 4

e e e e e =  a a a a a , (13) 

with 

 ( )[ ], 1~ 4e

i i i i xi yi ziu v w i  = =a . (14) 

 

2.3.1 The relationship between the global and local coordinate systems 

Regarding that the four mid-side points 5~8 are always coplanar even though the geometry of the 

shell element is warped, the local Cartesian coordinate system ( )ˆ ˆ ˆ, ,x y z  which is attached to the 

facet shell element is established in accordance with the position of the planar face 5678. The 

intersection point C is set as the origin of the local Cartesian coordinate system. The base vectors of 

the ˆ-x  and ˆ-z  axes are respectively determined by  
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and  
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in which ( ), ,i i ix y z , ( )5 ~ 8i =  are the global Cartesian coordinates of the mid-side points 5~8; 

the symbol   denotes the cross product of vectors and 
2

.  is to calculate the length of a vector. 

Besides, the base vector of the ˆ-y  axis is given by 

 3 1
ˆ

3 1 2

y


=



V V
e

V V
. (17) 

  Making use of the foregoing definitions, the transformation relationship between the local 

Cartesian coordinates and the global Cartesian coordinates is obtained as follows: 

 

C
T

ˆ ˆ ˆC

C

ˆ

ˆ ,

ˆ

x y z

x x x

y y y

z z z

−  
   

 = − =     
   −   

λ λ e e e , (18) 

where ( )C C C, ,x y z  are the global Cartesian coordinates of the intersection point C. Accordingly, 

the element nodal DOF vector ˆ e
a   with respect to the above local Cartesian coordinate system 

( )ˆ ˆ ˆ, ,x y z  is  

 
T

1 2 3 4
ˆ ˆ ˆ ˆ ˆe e e e e =  a a a a a , (19) 

with 

 ( )ˆ ˆ ˆ
ˆ ˆ ˆˆ ˆ ˆ ˆ[ ], 1 ~ 4e

i i i i xi yi ziu v w i  = =a . (20) 

The relationship between ˆ e
a  and e

a  is given by  

 ˆe e=a Ta , (21) 

where 
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 

t

t λ
T t

t λ

t
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in which the matrix λ  is given by Equation (18). 

As preceding discussed, the coupling effects of the bending and membrane deformations are 

neglected at the element level. Therefore, when designing the element interpolations in the local 

Cartesian coordinate system, the out-of-plane displacement ( )m
ˆ ˆ ˆ,w x y  which corresponds to the 

bending behaviors and the other two components ( )m
ˆ ˆ ˆ,u x y  and ( )ˆ ˆ ˆ,mv x y  which correspond to 

the membrane deformations can be constructed independently. Accordingly, the element nodal DOF 

vector ˆ e
a  given in Equation (19) can be divided into the out-of-plane group ˆ e

ba  and the in-plane 

group ˆ e

ma , which respectively are for describing the bending and membrane deformations: 

 ( )
T

ˆ ˆ1 2 3 4
ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ, [ ], 1 ~ 4e e e e e e

b b b b b bi i xi yiw i  = = = a a a a a a , (23) 

 ( )
T

ˆ1 2 3 4
ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, [ ], 1 ~ 4e e e e e e

m m m m m mi i i ziu v i = = = a a a a a a . (24) 

 

2.3.2 The interpolations related to the bending deformations 

Since the out-of-plane displacement of the mid-surface ( )m
ˆ ˆ ˆ,w x y  is related only to the bending 

deformations, it can be initially assumed as the linear combination of the Trefftz functions of the 

micro thin plate bending problem [39] in the context of the modified couple stress theory:  

 ( )m
ˆ ˆ ˆ,w x y = Wα , (25) 

in which 

 2 2 3 2 2 3 3 3 4 4 2 2 4 4ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ1 6x y x xy y x x y xy y x y xy x y x y x y = − − − W , (26) 

  
T

1 2 14. .  .  =α . (27) 

It’s noted that the above assumed out-of-plane displacement field mŵ  can satisfy the homogeneous 

governing differential equations of the concerned bending problem of the micro thin plate. For more 

details, one can kindly refer to the reference [39].  
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Next, the coming fourteen compatibility conditions which are chosen based on the generalized 

conforming theory [49, 51] are employed to obtain the relation between the introduced coefficient 

α  and the element nodal DOFs: 

(I) at the four nodes 1~4,   

 ( ) ( )m
ˆ ˆ ˆ ˆ, , 1~  4  i i iw x y w i= = , (28) 

in which the left-hand side of the equation is the deflection calculated by substituting the local 

Cartesian coordinates into Equation (25), whilst the right-hand item is the corresponding nodal 

transverse displacement DOF listed in Equation (23);   

(II) at the eight points as illustrated in Figure 3,  

 
( )

( )m

1 1 2 2 3 3 4 4

ˆ ˆ ˆ,
, , , , , , , ,  

k k

nk

w x y
k A B A B A B A B

n
=


=


, (29) 

in which n is the outer normal direction of the element’s edge and for the edge ij ; the right-hand 

item is calculated by substituting the Gaussian parametric coordinate    of the point k into the 

following function: 

 ( ) ( ) ( )ˆ ˆ ˆ ˆ

1 1ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ , 12, 23, 34, 41
2 2

  nij ij yi ij xi ij yj ij xjs c s c ij
 

    
− + 

= − + + − + = 
 

, (30) 

where ( )ˆ ˆ,ij ijs c  are the direction cosines of the outer normal direction n with respect to the local 

Cartesian coordinate system; ˆ
ˆ
xi , ˆ

ˆ
yi , ˆ

ˆ
xj  and ˆ

ˆ
yj  are the nodal rotation DOFs listed in Equation 

(23); 

(III) at the four mid-side points 5~8,  

 m 5 5 m 7 7 5 7
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( )  , w x y w x y w w+ = + , (31) 

 m 6 6 m 8 8 6 8
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) w x y w x y w w+ = + , (32) 

in which the left-hand items are obtained in accordance with Equation (25) and the right-hand items 

are calculated by  

 ( ) ( ) ( )ˆ ˆ ˆ ˆ4

1 1 ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ , 12, 23, 34, 41
2 2 8

 
8

ij ij

i i j ij yi ij xi ij yj ij xj

l l
w w w s c s c ij   + = + + + − + = , (33) 

where ijl  is the length of the element edge ij. 

  In our previous works [39, 52], it has been proved that the above set of fourteen conditions can 

effectively meet the C1 compatibility requirement of the Kirchhoff thin plate in weak sense. In 
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general, the requirement is satisfied more strictly as the mesh being gradually refined. For more 

details of the generalized conforming theory, one can kindly refer to [51, 52].  

From these conditions, the coefficient vector α  can be finally expressed in terms of the vector 

ˆ e

ba  in Equation (23):  

   ˆ e

b=α Ζa , (34) 

and therefore, the transverse displacement of the mid-surface ( )m
ˆ ˆ ˆ,w x y  is rewritten as  

 ( )m
ˆˆ ˆ ˆ  , e

bw x y = WΖa . (35) 

By inserting Equation (35) back into Equation (9), the deduced physical rotations are obtained:  
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x e

b

y





  
= 

  
ΨΖa , (36) 

with 
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=  
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Ψ .  

   (37) 

  Next, substitutions of Equations (35) and (36) respectively into Equations (8) and (10) further 

yield  

 

2

m

2

2

m

2

2

m

ˆ
ˆ

ˆ

ˆ
ˆˆ

ˆ

ˆ
ˆ2

ˆ ˆ

e

b

w
z

x

w
z

y

w
z

x y

 
− 

 
  

− = 
 

 
 −

   

QΖa , (38) 

 

ˆ

ˆ

ˆˆ

ˆ

ˆ

ˆ
ˆ

ˆ

ˆˆ

ˆ ˆ

x

y e

b

yx

x

y

y x







 
 

 
  

=  =  
 

 
 +

   

α Ζa , (39) 

in which 

 

2 2 2

2 2 2

2 2

ˆ ˆ ˆˆ ˆ ˆ ˆ0 0 0 2 0 0 6 2 0 0 6 0 12 12 12

ˆ ˆ ˆˆ ˆ ˆ ˆˆ 0 0 0 0 0 2 0 0 2 6 0 6 12 12 12

ˆ ˆ ˆ ˆ ˆˆ0 0 0 0 2 0 0 4 4 0 6 6 0 48

x y xy x y x

z x y xy y x y

x y x y xy

 −
 

= − − − 
 
 

Q , (40) 
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2 2

2 2

2 2 2 2

ˆ ˆ ˆ ˆ ˆˆ0 0 0 0 1 0 0 2 2 0 3 3 0 24

ˆ ˆ ˆ ˆ ˆˆ0 0 0 0 1 0 0 2 2 0 3 3 0 24

ˆ ˆ ˆ ˆ ˆˆ ˆˆ ˆ ˆ ˆ ˆ0 0 0 2 0 2 6 2 2 6 6 6 12 12 24 24

x y x y xy

x y x y xy

x y x y xy xy y x x y

 
 

 = − − − − − − 
 − − − − − − − 

.  

  (41) 

 

2.3.3 The interpolations related to the membrane deformations 

  When formulating the two in-plane displacement components of the mid-surface ( )m
ˆ ˆ ˆ,u x y  and 

( )ˆ ˆ ˆ,mv x y  that are only related to the membrane deformations, the C1 interelement compatibility 

requirements will be satisfied in weak form by using the penalty function method, enabling the 

usage of C0 continuous shape functions as the element interpolations. Firstly, these two 

displacements are interpolated by the element’s in-plane DOF vector ˆ e

ma  as follows: 

  m

m m 1 2 3 4

m

ˆ
ˆ ,

ˆ

e

m

u

v

 
= = 

 
N a N N N N N , (42) 

with 

 

( )

( )

1
ˆ ˆ0

2
, 1 ~ 4

1
ˆ ˆ0

2

i i i

i

i i i

N N y y

i

N N x x

 
− − 

= = 
 −
  

N , (43) 

in which iN  is the standard isoparametric shape function: 

 

( )( ) ( )( )

( )( ) ( )( )

1 2

3 4

1 1
1 1 , 1 1

4 4

1 1
1 1 , 1 1

4 4

N N

N N

   

   


= − − = + −


 = + + = − +


. (44) 

Note that the above displacement interpolation will coincide with the conventional Allman’s 

interpolation [53] along the element boundaries but has a more concise expression. Accordingly, 

substitution of Equation (42) into Equation (8) yields 

  

m

m
1 2 3 4

m m

ˆ

ˆ

ˆ
ˆ ,

ˆ

ˆ ˆ

ˆ ˆ

e

m

u

x

v

y

u u

y x

 
 

 
 

= = 
 

  
+ 

  

Γa Γ Γ Γ Γ Γ , (45) 
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with 

 

( )

( )

( ) ( )

ˆ ˆ, ,

ˆ ˆ, ,

ˆ ˆ ˆ ˆ, , , ,

1
ˆ ˆ0

2

1
ˆ ˆ0 , 1 ~ 4

2

1 1
ˆ ˆ ˆ ˆ

2 2

i x i x i

i i y i y i

i y i x i x i i x i

N N y y

N N x x i

N N N x x N y y

 
− − 

 
 = − =
 
 
 − − −
  

Γ . (46) 

Besides, instead of being directly derived from the displacements using the kinematic equation 

as shown in Equation (9), the physical rotation ˆ
ˆ

z  is approximated by an independently assumed 

rotation field: 

 ˆ
ˆ ˆe

z m

 = N a , (47) 

with 

  1 2 3 4= 0 0 0 0 0 0 0 0N N N N
N . (48) 

The penalty function method is employed to constrain the difference 0 → : 

 m m
ˆ 1 2 3 4

ˆ ˆ1
ˆ ˆ , =

ˆ ˆ2

e

z m m m m m m m

v u

x y
        

  = − − =     
N a N N N N N , (49) 

where 

 ( ) ( )ˆ ˆ ˆ ˆ, , , ,

1 1 1
ˆ ˆ ˆ ˆ , 1 ~ 4

2 2 2
mi i y i x i x i i y i iN N N x x N y y N i  

= − − + − − = 
 

N . (50) 

Afterwards, by substituting Equation (47) into Equation (10), we can get 

 

ˆ

ˆ

ˆ

ˆ
ˆ

ˆ

ˆ

z

e

m

z

x

y





 
  

= 


 
  

Pa , (51) 

with 

 
ˆ ˆ ˆ ˆ1, 2, 3, 4,

ˆ ˆ ˆ ˆ1, 2, 3, 4,

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

x x x x

y y y y

N N N N

N N N N

 
=  

 
P . (52) 

  It’s worth pointing out that the strain interpolation given by Equation (45) still delivers 

unsatisfactory performances in distorted meshes even though the strains have been enriched by the 

nodal rotation DOFs through the linked interpolation technique [54]. For purpose of effectively 

improving the element’s performance in distorted meshes, inspired by the hybrid stress function 

method [55] which is developed for the classical elasticity, the following substitute strain field are 
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introduced: 

 

m

1m

m m

substitute

ˆ

ˆ

ˆ

ˆ

ˆ ˆ

ˆ ˆ

u

x

v

y

u v

y x



−

 
 

 
 

= 
 

  
+ 

  

D Hβ , (53) 

with 

 

ˆ ˆ0 0 2 0 0 2 6

ˆ ˆ2 0 0 6 2 0 0

ˆ ˆ0 1 0 0 2 2 0

x y

x y

x y

 
 

=
 
 − − − 

H , (54) 

  
T

1 2 7...  =β , (55) 

where D  is given by Equation (11) and H  consists of the Airy stress trial functions that can a 

priori satisfy the governing equations of the plane stress problem.  

The weighted residual method is employed to establish the relationship between this substitute 

strain and the original one given in Equation (45): 

 ( )T 1ˆ de

m h

−


−  = H Γa D Hβ 0 , (56) 

in which   represents the domain of the element’s reference plane. From Equation (56), we can 

get  

 1 ˆe

m

−=β M Va , (57) 

with 

 T 1 dh

−


= M H D H , (58) 

 T dh


= V H Γ . (59) 

Next, by substituting Equation (57) back into Equation (53), we can obtain the final expression of 

the substitute strain: 
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m

1 1m

m m

substitute

ˆ

ˆ

ˆ
ˆ

ˆ

ˆ ˆ

ˆ ˆ

e

m

u

x

v

y

u v

y x



− −

 
 

 
 

= 
 

  
+ 

  

D HM Va . (60) 

 

2.3.3 The element stiffness matrix  

By substituting Equations (38) and (60) back into Equation (8) and assembling their components 

in accordance with the DOFs’ sequence in Equation (19), the final integrated form of the strain 

interpolation which is expressed in terms of ˆ e
a  is delivered: 

 

ˆ

ˆ

ˆˆ

ˆ

ˆ ˆˆ

ˆ2

x

e

y

xy









 
 

= = 
 
 

ε B a . (61) 

Simultaneously, substations of Equations (39) and (51) back into Equation (10) also yield the final 

expression of the curvature interpolation: 

 

ˆ

ˆ

ˆˆ

ˆˆ

ˆˆ

ˆ

ˆ

ˆ ˆ2ˆ

ˆ2

ˆ2

x

y

e
xy

xz

yz













 
 
 
 

= = 
 
 
  

χ B a . (62) 

Now that the element stain and curvature interpolations have been determined, the element 

stiffness matrix with respect to the local Cartesian coordinate system can be derived by simply 

applying the principle of minimum potential energy: 

 ( )T T T2 2

2 2

d d d d
h h

h hz k z     

 

 − −
= +  +    K B D B B D B N N , (63) 

in which the last item is the penalty stiffness matrix because of the usage of the penalty function 

method to impose the constraint 0 →  shown in Equation (49); 
N  is derived from Equation 

(50) and has the expression:  

 1 2 3 4=      N N N N N , (64) 

 ( ) ( )ˆ ˆ ˆ ˆ, , , ,

1 1 1
ˆ ˆ ˆ ˆ0 0 0 , 1 ~ 4

2 2 2
i i y i x i x i i y i iN N N x x N y y N i  

= − − + − − = 
 

N ; (65) 
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k  is the penalty parameter and in general, the constraint is satisfied more strictly as the penalty 

parameter increases. The numerical results of the parametric studies reveal that 410k G =  is an 

appropriate value that can enforce the constraint at an acceptable level and doesn’t make the stiffness 

matrix ill conditioned. The penalty stiffness part is integrated by using the one-point quadrature 

strategy for eliminating the possible locking problem [56-59] while the other items are calculated 

using the full quadrature scheme. 

As previously discussed, in general, the geometry of a quadrilateral 4-node shell element is 

warped. The element stiffness matrix obtained by following the above process is formulated actually 

in accordance with the projected flat plane 1 2 3 4     instead of the real domain 1234 , as shown in 

Figure 4. Therefore, in order to take the influence of the geometry warpage into consideration, the 

rigid link correction strategy [60] is employed here for modifying the element stiffness matrix: 

 T

local =K ΧKΧ , (66) 

with 

 

1

2

3

4

1

0 1

0 0 1
,

ˆ0 0 1

ˆ 0 0 0 1

0 0 0 0 0 1

i

i

i

z

z

 
 

   
   
 = =  
   
   − 

 
  

Χ

Χ
Χ Χ

Χ

Χ

, (67) 

in which ˆ
iz  is the local Cartesian coordinate of the node i. 

  Finally, the element stiffness matrix with respect to the global Cartesian coordinate system can 

be obtained by  

 T

global local=K T K T , (68) 

in which the matrix T  has been given in Equation (21).  

It is worth noting that the new facet shell element still uses the same nodal DOFs with the 

conventional ones which are based on the classical continuum theory. Thus, it can be directly 

integrated into the existing finite element programs without special treatments. For instance, the 

new element can be incorporated into the commonly used FE software Abaqus through the user 

element subroutine [61] very readily.  
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3. Numerical Examples  

For purpose of validating the capability of the new quadrilateral 4-node facet shell element in 

analyzing the size-dependent mechanical responses of small-scale shells with different complex 

geometric shapes, several classical benchmark examples are extended to the modified couple stress 

elasticity. Since the closed-form solutions of these problems are unavailable in the open literature, 

the numerical overkill solutions obtained by using the three-dimensional (3D) hexahedral solid 

element proposed in [35] are employed as the reference values.  

 

3.1. The patch test 

Figure 5 illustrates the model and typical meshes used for the patch test for assessing the 

convergence property of the new element with the flat plate geometry. The displacements and 

rotations calculated at the boundary nodes in accordance with the given functions are imposed to 

the patch as the prescribed boundary conditions, whilst the values at the inner nodes are monitored. 

First, the following functions related to the bending deformation in constant rotation gradient state 

are considered: 

 2 2 , 2 , 2  x yw x y xy y x x y = + + = + = − − , (69) 

and it is shown that the exact results can always be delivered by the new element. Second, the 

functions that correspond to the membrane deformation in constant rotation gradient state [62] is 

considered: 

 ( ) ( ) ( )( )2 2 2 26 8 , 6  8  , 4 1zu x xy y v x xy y x y   = − − + = − − + = − − . (70) 

The numerical results reveal that the element can strictly pass the test when the regular mesh is used 

whilst some errors are experienced in distorted meshes due to that the C1 compatibility requirements 

for the in-plane displacements are satisfied only in weak sense. Next, the computations are repeated 

by simply subdividing the distorted mesh to validate the element’s convergence property in refined 

mesh, and it is observed that the errors can be effectively eliminated by the mesh refinement. 

 

3.2. The pinched micro cylinder  
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As shown in Figure 6, the pinched cylinder with end diaphragms is subjected to a pair of opposite 

concentrated forces in the mid-span. Due to symmetry, only an eighth of the shell is modeled. This 

is a useful test for evaluating the facet shell element’s capability in simulating the inextensional 

bending and complex membrane deformations. Four different ratios of the material length scale 

parameter to the shell thickness (l/h=0, 0.1, 0.2, 0.3) are considered. In particular, the case l/h=0 

corresponds to the classical elasticity. First, to check the convergence property, the computations 

are operated using the regular meshes 44, 88, 1616 and 2424. It can be seen from the results 

summarized in Table 1 that the new element converges rapidly. Besides, Figure 7 gives the 

distributions of y-direction deflections along the path AB calculated using the regular mesh 2424, 

showing that the cylinder shell becomes stiffer as the material length scale parameter increases. 

Moreover, Figure 8 provides the y-direction deflection contours obtained respectively using the 

regular mesh and distorted mesh. One can clearly observe that the new element can capture the size 

effects effectively even though the severely distorted meshes are used.  

 

3.3. The micro hemispherical shells 

  As shown in Figure 9, this test involves the hemispherical shells subjected to concentrated loads 

for assessing the influences of geometry warpage on the facet shell element’s numerical accuracy. 

Taking advantage of symmetry, only one quarter of the shell structure is considered. First, the 

hemispherical shell with an 18° open hole, which is characterized by the inextensional bending 

deformation and rigid body rotation about the normal to the shell surface, is investigated. The 

convergences of the z-direction deflections at the load point A for different material length scale 

parameters are listed in Table 2, while the corresponding deflection contours are given in Figure 10. 

Second, the full hemispherical shell which experiences more pronounced warping element 

configurations than the previous one is also analyzed, and the numerical results are provided in 

Table 3 and Figure 11. It can be easily observed that the proposed facet shell element can still predict 

the size-dependent mechanical behaviors of small-scale shells very well even when the element’ 

geometry is warped. 

 

3.4. The micro Scordelis-Lo roof 
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Figure 12 illustrates the well-known Scordelis-Lo roof problem which consists of a cylindrical 

shell section with end rigid diaphragms and subjected to a self-weight load. Due to symmetry, only 

a quarter of the roof is analyzed by using both the regular mesh and distorted mesh. The vertical 

deflections at the load point A calculated using the regular meshes are summarized in Table 4 whilst 

their distributions along the path AB are provided in Figure 13. Besides, the vertical deflection 

contours of the roof obtained respectively using the regular and distorted meshes are presented in 

Figure 14. This test demonstrates once again that the new facet shell element possesses good 

effectiveness and distortion tolerance in capturing the size effects.  

 

3.5. The micro hyperbolic paraboloid shell  

As shown in Figure 15, the hyperbolic paraboloid shell is clamped at one end and subjected to a 

self-weight load. Owe to symmetry, only a half of the shell is modeled. This is a challenging test for 

checking the element’s performance in modeling the pure bending dominated deformations. The 

vertical deflections at the point A for different material length scale parameters are summarized in 

Table 5. Besides, the vertical deflection contours are given in Figure 16. One can clearly observe 

that the new facet shell element converges rapidly and captures the size dependence of the micro 

shell efficiently. 

 

 

4. Conclusion 

Within the framework of the modified couple stress elasticity, a quadrilateral 4-node 24-DOF facet 

shell element is developed for size-dependent static analysis of small-scale thin shell structures with 

arbitrary geometries. To overcome the interpolation difficulty and mesh distortion sensitivity 

problems caused by the C1 continuity requirement, the trial functions that can a priori satisfy related 

governing differential equations are adopted as the basic functions for element construction whilst 

the generalized conforming theory and the penalty function method are employed to satisfy the C1 

continuity requirement in weak sense for ensuring the convergence property. Besides, the warpage 

correction is introduced to take the influence of element’s warping geometry into the consideration. 

To the best of our awareness, there are no other elements of the same type available in the open 
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literatures. Compared with the IGA elements, the new element has some advantages in versatility 

and easy applicability. For instance, as the 4-node shell element uses only six conventional DOFs 

per node, it can be incorporated into the commonly used FE software or programs very directly.  

As the present paper mainly focuses on the innovation in the finite element formulation, several 

classical benchmarks of shells with different geometries are extended to the modified couple stress 

elasticity for validating the capabilities of the new facet shell element. More realistic engineering 

problems will be considered in the subsequent works. It is found that the element can simulate the 

size-dependent mechanical behaviors of small-scale thin shells very effectively. In particular, the 

facet shell element can still provide satisfactory numerical accuracy even when the element 

geometry is severely distorted and warped. 
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Table 1. The y-direction deflections at the load point A of the pinched cylinder (m) 

Mesh 44 88 1616 2424 Reference 

l/t=0 11.2815 16.4817 17.8972 18.1129 18.248 [63] 

l/t=0.1 11.0778 16.1006 17.4535 17.6596 17.866* 

l/t=0.2 10.5288 15.0877 16.2804 16.4625 16.636* 

l/t=0.3 9.7746 13.7305 14.7233 14.8757 15.017* 

*The reference values are obtained using 200000 hexahedral solid element [35] 
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Table 2. The z- deflections at the point A of the hemispherical shell with 18° open hole (m) 

Mesh 422 444 488 Reference 

l/t=0 3.91213 8.96532 9.32594 9.4 [64] 

l/t=0.1 3.73365 8.05685 8.35010 8.3733* 

l/t=0.2 3.28506 6.18770 6.36634 6.3857* 

l/t=0.3 2.73890 4.47548 4.57618 4.5915* 

*The reference values are obtained using 100000 hexahedral solid element [35] 
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Table 3. The z- deflections at the point A of the full hemispherical shell (m) 

Mesh 322 344 388 Reference 

l/t=0 3.57011 8.74082 9.20547 9.24 [65] 

l/t=0.1 3.42115 7.86503 8.24175 8.2756* 

l/t=0.2 3.04094 6.05476 6.28238 6.3075* 

l/t=0.3 2.56652 4.38704 4.51416 4.5332* 

*The reference values are obtained using 75930 hexahedral solid element [35] 
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Table 4. The vertical deflections at the point A of the micro roof (m) 

Mesh 44 88 1616 Reference 

l/t=0 3.13487 3.03047 3.01112 3.024 [66]   

l/t=0.1 2.94726 2.85236 2.83466 2.8375* 

l/t=0.2 2.50993 2.43589 2.42185 2.4243* 

l/t=0.3 2.03244 1.97899 1.96867 1.9713* 

*The reference values are obtained using 200000 hexahedral solid element [35] 

  



29 

 

Table 5. The vertical deflections at the point A of the hyperbolic paraboloid shell (m) 

Mesh 84 168 3216 6432 Reference 

l/t=0 3.53532 6.09765 6.30851 6.35857  6.394 [67] 

l/t=0.1 3.48078 5.92452 6.12791 6.17466 6.2577* 

l/t=0.2 3.35309 5.49360 5.66379 5.70349 5.8383* 

l/t=0.3 3.16550 4.93497 5.06837 5.10097 5.1213* 

*The reference values are obtained using 200000 hexahedral solid element [35] 
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Figure 1. The schematic representation of a thin flat subdomain 
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Figure 2. The quadrilateral 4-node facet shell element  
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Figure 3. The points of the edge ij for imposing compatibility conditions  
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Figure 4. The projection of warped element into flat one 
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Figure 5. The meshes for the patch test  
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Figure 6. The pinched micro cylinder 

R=3mm, L=6mm, t=30m, E=3105Mpa, =0.3, P=1N 
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Figure 7. The distributions of y-direction deflections along the path AB of 

the pinched cylinder obtained using the regular mesh 2424 
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Figure 8. The y-direction deflection contours of the pinched cylinder obtained 

respectively using the regular and distorted meshes (m) 
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Figure 10. The z- deflection contours of the hemispherical shell with 18° open hole (m) 
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(b) l/t=0.1 (a) l/t=0 
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Figure 11. The z- deflection contours of the full hemispherical shell (m) 
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R=2.5mm, L=5mm, t=25m, E=4.32105MPa, =0, self-weight 910-3N/mm2 

Figure 12. The micro roof 
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Figure 13. The distributions of the vertical deflections along the path AB 

of the micro roof using the regular mesh 1616 
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Figure 14. The vertical deflection contours of the roof obtained respectively using the 

regular and distorted meshes (m) 
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Figure 15. Partly clamped hyperbolic paraboloid shell 

t=1m, E=2107MPa, =0.3, self-weight 8.010-4N/mm2 

z=x2-y2, x [-0.5, 0.5], y [-0.5, 0] (mm) 
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Figure 16. The z- deflection contours of the hyperbolic paraboloid shell (m) 
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