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There are numerous examples of phenological shifts that are recognized
both as indicators of climate change and drivers of ecosystem change. A press-
ing challenge is to understand the causal mechanisms bywhich climate affects
phenology. We combined annual population census data and individual
longitudinal data (1992–2018) on grey seals, Halicheorus grypus, to quantify
the relationship between pupping season phenology and sea surface tempera-
ture. A temperature increase of 2°C was associated with a pupping season
advance of approximately seven days at the population level. However,
we found that maternal age, rather than sea temperature, accounted for
changes in pupping date by individuals. Warmer years were associated with
an older average age of mothers, allowing us to explain phenological
observations in terms of a changing population age structure. Finally, we
developed a matrix population model to test whether our observations were
consistent with changes to the stable age distribution. This could not fully
account for observed phenological shift, strongly suggesting transient modifi-
cation of population age structure, for example owing to immigration. We
demonstrate a novel mechanism for phenological shifts under climate
change in long-lived, age- or stage-structured species with broad implications
for dynamics and resilience, as well as population management.
1. Introduction
There are numerous examples of changes to the timing of biological events from
wide-ranging taxonomic groups and it is well understood that these shifts can
provide sensitive indicators of the effects of climate change, e.g. [1–4]. The
causes and consequences of phenological shifts resulting from climate change
have become a major area of interest in recent years, across many ecosystems
and geographical regions; for examples of recent reviews and syntheses, see
[5–9]. Now, a pressing challenge is to develop a robust, mechanistic understand-
ing of how these processes operate [10–12]. This is needed to predict changes in
abundance and distribution and to facilitate conservation of endangered or
otherwise important species [13].

Additionally, species do not exist in isolation and phenological changes
can cascade through biological communities, via trophic, competitive, andmutua-
listic interactions [14–16]. In particular, mismatches in seasonal events, for example
between predator and prey populations or flowering plants and their pollinators,
can decouple biological communities and lead to critical transitions in population
structure, biological regime shifts, and even collapse of ecosystem services [17–19].
In ecological communities that are strongly regulated by top-down processes,
climate change-driven shifts in predator distributions and dynamics are likely
to have downstream effects on whole assemblages of species and ecosystem
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functions [10,14,20–22]. Therefore, understanding the mechan-
istic drivers of phenological shifts in key predatory species is
of fundamental importance for our ability to meet the global
challenge of conserving biodiversity and ecosystem function
under climate change.

Here, we focus on grey seals (Halichoerus grypus), as a well-
studied example of marine mammals, e.g. [23–29]. Like many
other seal species, grey seals are iteroparous capital breeders
with a high degree of site fidelity [30]. They start breeding at
around 5 years old and reproduce annually for potentially
several decades, resulting in populations with overlapping
generations [31,32]. Marine mammal phenology has been
cited as evidence of a major system shift in the Indian Ocean
and parts of the Southern Ocean [33] and climate-driven
changes in seasonal timing are predicted to have substantial
impacts on marine mammal populations themselves [32,34].
There are now observable changes in the timing of seal life his-
tory across the Atlantic [35–37], including phenological shifts
associated with climate [32], making this an important focal
group in their own right, as well as important indicators of
the wider effects of climate change.

Phenological shifts in life-history events, including breed-
ing [37–39], pupping [40] and moulting [41] have been
reported in many seal species. Many species of seal are
known to undergo delayed implantation, or embryonic dia-
pause [42–44], in common with other large carnivore species
[45–49]. This has been proposed as the mechanism by which
climate acts on pupping phenology in seal species [26]. It is
hypothesized that colder sea temperatures invoke a physiologi-
cal response which delays implantation, thus the mode of
action operates at the individual seal level [26]. However,
whether temperature alone is sufficient is not certain [49,50],
and it is hard to test whether this potential mechanism is
responsible for observed population level phenological shifts
in highly mobile and elusive species.

An alternative hypothesis has been proposed: that the
mechanism of pupping season phenology acts at the popu-
lation level, through climate-driven modification of the local
population age structure, rather than at the individual level,
e.g. [26,35]. While the effect of climate change on age structure
has been shown to underpin phenological shifts in birds
[51,52], and fishes [53], the age structure hypothesis has
rarely been tested in mammals, including seals, and not sup-
ported where it has [35]. If found to occur in nature, this
would open an important new line of enquiry into themechan-
isms driving phenological responses to climate change in
long-lived predatorswith age- or stage-structured life histories.

A possible reason why the age structure hypothesis has
not been supported in seals previously is a focus on local
populations and demographic processes [35]. In closed popu-
lations, describing the stable age structure may be enough to
understand dynamics, brought about through local demo-
graphic processes, such as changes to fecundity and
differential survival across age classes. However, along with
many age- or stage-structured species, grey seals are known
to roam widely [54–56] and even where site fidelity is high,
local populations are open to immigration and emigration
as a further source of changes to age structure [30]. In grey
seals, younger adults have been found to be more likely to
remain resident and have smaller home ranges than older
adults [57]. This suggests a mechanism where older animals
are more likely to move to favourable sites as environmental
conditions change, increasing the mean age of the population
at those locations. Coupled with older grey seals having
higher weaning success [31], and observations that older indi-
viduals tend to reproduce earlier across many taxa, including
seals [58–62], it seems reasonable to hypothesize that climate
change may act on phenology and population dynamics
through modification of age structure, underpinned by move-
ment patterns.

The aims of the current study are to: (i) quantify how
changes in the timing and progression of the grey seal pup-
ping season are dependent on climatic drivers throughout a
long-term monitoring programme; (ii) identify whether
phenology acts at the individual level or population level in
a natural setting; and (iii) test the hypothesis that modifi-
cation of population age structure is the causal mechanism
for observed phenological changes. While we do not have
data to test whether it is local demography or movement
that changes age structure, we focus our modelling on
whether stable age structure can account for our findings
and discuss the likely role of movement in explaining that.
2. Methods
(a) Study site
The Skomer Marine Conservation Zone (SMCZ) area in Pembro-
keshire, south Wales, UK (51°43055.200 N, 5°16033.600 W) comprises
the island of Skomer and mainland Marloes Peninsula (figure 1)
and is the location of one of the largest grey seal pupping sites in
Wales [54]. Adult female grey seals haul out on sheltered beaches
and caves throughout this area to give birth and nurse pups until
weaning after about three weeks [55]. The pupping season
around Pembrokeshire runs from late August to December
(figure 1, inset calendar).
(b) Seal data
Each year, trained staff carry out surveys most days during the
pupping season (typically every 1–3 days from late summer to
the end of the year). For this study, records of seal pup counts
were used for the period 1992–2018 (27 years) (electronic sup-
plementary material, figure S1). Individual records were kept
of each pup’s progress from birth to moult (approx. three
weeks) following a standardized protocol, e.g. [54]. Details
included a unique numerical pup identifier, the location (beach
name) and date of first observation, the developmental stage
(from 1 to 5) of the pup [56], date of subsequent observations,
and a record of neonatal survival until weaning.

On Skomer Island, seal pups were marked with a unique pat-
tern using coloured aerosol sheep fleece marker sprays to help
monitor each individual. Additionally, adult seals were identified
using their distinctive pelage patterns, which persist as unique
identifiers throughout adult life, particularly on females [63].
This approach allowed multi-annual records of individual
adult female pupping timing to be compiled. On the Marloes
Peninsula, pups are spread across a series of small, inaccessible
beaches, surrounded by cliffs. Pup numbers on each beach are
low enough for individuals to be recognized by experienced
staff on subsequent days without marking. This allows accurate
recordings to be made during a given season but follow-up of
adults between years was not formalized for Marloes seals
[55]. Seal pup analysis for this study was conducted across the
whole SMCZ, while analysis of adults in this study was con-
ducted on Skomer seals only. Approximately 72% of the seal
pup productivity in this study was on Skomer Island.

Some wider context about SMCZ seals is available as
electronic supplementary material, Study species.
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Figure 1. Skomer Island and the Marloes Peninsula, southwest Pembrokeshire, Wales. Inset map shows the location of the study area within the British Isles (red
arrow). Inset circular plot shows the pupping season for grey seals around Pembrokeshire relative to our defined seasons: ‘autumn’ = September–November (the
majority of the pupping season), ‘winter’ = December–February, ‘spring’ = March–May and ‘summer’ = June–August. (Online version in colour.)
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(c) Environmental data
HadISST1 satellite measurements of sea surface temperatures
(SST) over the period of this study were obtained from the
British Atmospheric Data Centre (http://www.ceda.ac.uk/
data-centres/). These data are resolved into geographical cells
(1° latitude × 1° longitude). We used the cell with the northwest
corner (52° N, 6° W), covering the whole of the SMCZ. SST data
(electronic supplementary material, figure S2) were aggregated
into quarterly averages, anchored around the height of the
pupping season: ‘autumn’ = September–November (pupping
season), ‘winter’ =December–February, ‘spring’ =March–May
and ‘summer’ = June–August.
(d) Statistical analysis
Observations of seal pupping were used to analyse the cumulative
increase in pup counts throughout the pupping season for each
year. All dates were described as days since 1 July in a given
year. However, because the end of the observing season was dic-
tated more by logistical constraints than the date of the last pup
birth, we developed a model to estimate the progression of the
pupping season that was insensitive to random fluctuations in
the tails of the season.

Empirical cumulative counts of pups were seen to closely
follow a sigmoid shape each year (electronic supplementary
material, figure S3). Therefore, we fitted three-parameter logistic
curves to cumulative pup counts, separately for each year, using
nonlinear mixed-effects models with ‘year’ as a random vari-
able [64]. We accounted for within-year serial dependency as a
first-order autoregressive error process, and between-year hetero-
scedasticity by estimating within-year variances separately. The
three parameters that describe these curves are the asymptotic
total number of pups, the point of inflection of the fitted sigmoid
curve, and a scale parameter regulating the steepness of increase
of the curve. The point of inflection provides a robust estimate of
the midpoint of the season (the date where 50% of pups have
been counted) and the scale parameter is proportional to the
length of the season. We assessed goodness of fit using concor-
dance correlation coefficients [65], with greater than 99.5%
concordance in all years.

Changes in each of these three yearly derived parameters
(pupping season total, midpoint and length) were modelled sep-
arately using generalized additive models (GAMs). We fitted SST
as an explanatory variable to test our hypothesis and included
the estimate of pupping season total from the previous year as
an additional explanatory variable, to account for autocorrelation
[37], potentially owing to a number of factors, including autocor-
related environments, energetic carry-overs, or unaccounted for
species interactions. Mating occurs after pupping, which could
introduce a lagged effect on season midpoint and length. There-
fore, we also included the season midpoint and season length
estimates from the previous year in our statistical models of
season midpoint and length, respectively. All explanatory vari-
ables were modelled using cubic smoothing splines. In all
cases, we modelled residual error distributions using gamma dis-
tributions with natural logarithm link functions.

Here, stepwise model selection was inappropriate, as models
are not nested owing to differences in the degree of nonlinearity
[66]. In such cases, shrinkage smoothers are recommended [67],
which were used here. Separate models were constructed for
each of the quarterly SST estimates (‘previous autumn’, ‘winter’,
‘spring’, ‘summer’ and ‘autumn’ = current pupping season) and
compared using Akaike information criterion (AICc). Since
‘winter’ was found to result in the lowest AICc, we proceeded
using this season. This is also consistent with the hypothesis that
the three months following mating (which occurs in the autumn,
after pupping) determines the subsequent pupping date [26].

http://www.ceda.ac.uk/data-centres/
http://www.ceda.ac.uk/data-centres/
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Figure 2. Grey seal pupping season parameters and sea surface temperature (SST) around the Skomer Marine Conservation Zone, from 1992 to 2018. Left-hand
vertical axes show season parameters: (a) the total pups over the season, (b) the midpoint of the season (days since 1 July) and (c) an estimate of 95% of the
season length (days). Blue data points show season parameter estimates. Right-hand vertical scale shows winter SST (December–February). The fill colour of temp-
erature data points (bottom of plots) scales with SST. Solid lines showing fitted trends and shaded ribbons representing marginal 95% confidence intervals. (Online
version in colour.)
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To assess population-level demographic responses to climate,
we used longitudinal data on re-sightings of individual adult
females. Here, ‘age’ is measured as years since first sighting.
We modelled how the average age of adult females around
Skomer varied with SST using a GAM. We fitted natural
logarithm-transformed mean adult age as the response variable,
with winter SST as an explanatory variable using cubic smoothing
splines. We modelled residual error using Gaussian distributions
with identity link functions.

In cases where individual adults were observed to give birth
over several years, we were also able to assess whether the date
at which an individual gives birth changes with age, or in response
to SST, as well as the statistical interaction between ageing
and SST. We modelled the date of pupping by individual
adults around Skomer using generalized additive mixed models
(GAMMs) with gamma error distributions and natural logarithm
link functions. We fitted years since the first sighting of a given
individual adult and SST as additive fixed effects using cubic
smoothing splines. As the age of adults at first sighting is unknown,
we also incorporated individual adult female seal identity as a
random effect. This allowed us to describe their response to fixed
effects without assuming a common starting age (intercept).

(e) Age-structured population modelling
To explore the relationship between demography and the
phenology of the breeding season, we constructed a seven-
stage matrix population model (MPM) (electronic supplementary
material, table S1). This model serves as a useful tool to explore
the potential effects of altered vital rates on population structure,
and consequently on population-level breeding phenology. The
model is age-based and includes four juvenile stages and three
adult stages. The first juvenile stage represents weaned age
(approx. 3–4 weeks old) to 1 year, while the others represent
years. Reproduction from the three adult stages varies, account-
ing for the probability of successful weaning depending on
maternal age. Therefore, our model’s transitions from these
adult age-classes to the ‘weaning-1 year’ stage include both the
probability of giving birth and neonatal survival until weaning.

Full details of MPM parameterization are available as the
electronic supplementary material, Matrix population model
parameterization.

The age structure of the seal population could influence the
population-level mean pupping date if individual-level pupping
date is associated with maternal age. Therefore, we conducted a
sensitivity analysis of this MPM to explore how changes in vital
rates, and consequently age structure (stable age distribution),
might influence population-level average pupping date. We calcu-
lated the expected population-level average pupping date by using
the stable age distribution as weights in a calculation of mean
pupping date given our knowledge of age-specific pupping dates.

Specifically, we calculated the change in population-level
mean pupping date resulting from a +10% increase in each
matrix element. For transitions with a negative sensitivity (i.e.
that could result in an earlier pupping date), we then asked
how much earlier could the pupping date potentially become?
We did this by calculating the effect on pupping date of increas-
ing these survival transitions up to the maximum reasonable
value of 0.999.

All statistical analysis was undertaken using R v. 3.6.0 [68]
with additional packages: AICcmodavg v. 2.3–1 for model com-
parisons and selection [69], mgcv v. 1.8–31 for GAM(M)s [70],
ncdf4 v. 1.17 for reading SST data from .nc files [71], and
popdemo v. 1.3–0 for matrix population modelling [72].
3. Results
(a) Phenological trends
Overall, the SMCZ grey seal pupping season showed marked
variation throughout the study period, 1992–2018 (figure 2).
The annual total grey seal pup counts showed a substantial
increase in the last quarter of the survey period, averaging
around 200 pups until 2009, then doubling by 2015 (figure 2a).
The estimated midpoint of the season was in the first week of
October at the beginning of the survey (latest date: 7 October
in 1992), advancing by about three weeks to mid-September
through themiddle part of the survey (earliest date: 16 Septem-
ber in 2004), and returning to early October towards the end of
the survey (figure 2b). The estimated pupping season length
showed a twofold change throughout the monitoring period:
47 days in 1995, 98 days in 2011 (figure 2c). For all three pheno-
logical parameters, the respective parameter value from the
previous year had a statistically significant effect (total pup
estimate: F = 51.7, p < 0.001; season length: F = 11.4, p < 0.001;
season midpoint: F = 36.1, p < 0.001), demonstrating strong
temporal autocorrelation. We went on to test the hypothesis
that SST affected pupping season phenology.

(b) Environmental predictors of phenology
We tested the effects of SST as a predictor of key parameters
describing the seal pupping season (table 1). Winter SST
was associated with pupping season midpoint: increasing
SST was associated with an advance of 7.6 days to the



Table 1. Winter (December–February) sea surface temperature (SST) as a predictor of the grey seal pupping season around Skomer Marine Conservation Zone.
(Season parameters are total pups over the season, the midpoint of the season (days since 1 July) and an estimate of 95% of the season length (days).)

term

estimates SST

min (year) max (year) range F-ratio p-value

total 166 (2002) 383 (2015) 216 0.001 0.933

midpoint 78 (2004) 99 (1992) 21 2.571 0.018

length 47 (1995) 98 (2011) 51 0.001 0.870
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Figure 3. Winter (December–February) sea surface temperature (SST) as a predictor of the grey seal pupping season around Skomer Marine Conservation Zone: the
effects of winter SST on (a) total pup count, (b) pupping season midpoint and (c) season length. Solid lines show fitted estimates, with shaded ribbons representing
marginal 95% confidence intervals, and points are partial residuals. The fill colour of data points scales with SST. (Online version in colour.)
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season, explaining 36% of the observed phenological shift
(figure 3). However, SST did not explain a statistically
significant amount of observed variation in pup numbers
or season length.
(c) Individual adult female responses
To understand the phenological patterns that we uncovered,
we first explored the prevailing hypothesis; that the mechan-
ism underpinning phenological responses in grey seal
pupping operates at the individual adult seal level (through
temperature-dependent delayed implantation). Of the adult
female seals giving birth to a pup at least once around
Skomer, the identities of 150 were recorded (out of a total
of 327 adult grey seals identified). Of these, 58 were recorded
to have given birth on more than 1 year, and there was no
linear trend in the average age of mothers over the monitor-
ing period (F = 3.79, p = 0.084). In those cases, we assessed the
role of adult female ageing (estimated by years since first
sighting) and SST on date of pupping over successive years.
We found no statistical interaction between ageing and SST
(ΔAICc = 1.93), suggesting that individual level phenological
responses to SST were not dependent on ageing of the
mother. Ageing of the mother had a statistically significant
effect (figure 4a; F = 9.77, p = 0.002), with adults giving birth
to pups earlier as they got older, on average, but SST did
not affect when an individual gave birth (figure 4b; F =
0.206, p = 0.65). These findings do not support the prevailing
hypothesis that sea temperature drives phenological shifts by
act directly on individuals’ dates of pupping.
(d) Population responses
Next, we tested a novel hypothesis that the phenological
mechanism operates at the population level, through modifi-
cation of the local population age structure. Based on our
observations that older females give birth earlier (individual
adult dataset), and that warmer SST is associated with
earlier pupping seasons (pup population dataset), we pre-
dicted that warmer SST would be associated with an
increase in the average age of females giving birth (individual
adult dataset). As predicted, we found average age of adult
females increased with increasing SST (figure 4c; F = 11.8,
p = 0.002).
(e) Age-structured population modelling
Our matrix model provided a very good approximation to
dynamics, with a finite population growth rate (λ) of 1.07;
almost identical to the maximum likelihood estimate of
growth rate fitted to empirical population size (λ = 1.07; elec-
tronic supplementary material, figure S3, left panel), and very
similar to rates reported elsewhere the UK [73] and North
America [74]. As expected, the sensitivity analysis showed
that an increase in the transition rates for older breeding
adult survival (5–6 and 6+ years) led to an earlier mean pup-
ping date (figure 5a). By contrast, an increase in younger
breeding adult survival [4,5] led to a later pupping season,
demonstrating the timing of the pupping season is dependent
on the relative balance of younger and older breeding adults
in the population. However, most importantly, we found that
manipulating just these two older stages by increasing
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survival to 99.9% could lead to at most a shift in mean
pupping date by just –0.65 days (i.e. 15.7 h earlier).

We further investigated the generality of our MPM by
testing a range of breeding adult survival values in the two
oldest groups (5–6 and 6+ years), from 5% to our original
90%, and calculating the predicted advance to the pupping
season when survival was increased to 0.999. For lower
adult survival values, the absolute increase to 99.9% is clearly
larger, so a greater advance to the pupping season is pre-
dicted. However, even when we set adult breeding survival
in the oldest two transitions to just 5%, increasing to 99.9%
could only produce a shift of –6.4 days, against our observed
advance of 7.6 days (figure 5b).
4. Discussion
While broad-scale, multispecies studies of ecological patterns
are critical to identify global challenges resulting from climate
change, a recent review has highlighted a lack of mechanistic
understanding in this area [12]. This is needed to help us
reconcile observed differences in phenological responses to
environmental change across, for example latitude, elevation,
trophic level, migratory strategy, thermoregulatory mode and
generation time. In particular, where research into pheno-
logical shifts moves beyond correlative studies of cue and
response, these often assume a single mechanism and do not
consider or compare alternatives [12]. This is potentially a



royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

288:20212284

7
critical shortcoming that nowpresents a barrier to our ability to
mitigate against climate change-induced phenological shifts.

We chose awell-studied and regionally important predator
species, the grey seal (H. grypus), to test different hypotheses on
the underlying mechanism of phenological change. Our key
population-level finding was that the peak of the pupping
season was more than a week earlier in the warmest years,
compared to the coolest. This response was most strongly
associated with the previous winter’s SST, which we defined
as December–February, i.e. SST towards the end of, and shortly
after, a given pupping season affects the timing of the following
pupping season. This is consistent with the observation that
grey seal pupping is earlier in populations that experience
warmer SSTs due to latitude [26]. Elsewhere, a negative
relationship has also been shown between grey seal birth
date and SST, as well as other broad scale climate indicators
[32]. The similarity with our population level findings suggests
our inferences about the mechanistic basis of this phenological
shift may be more widely generalizable.

Our key population-level result is consistent with the mech-
anism of delayed implantation, set by sea temperatures in the
months after mating (which follows autumn pupping in our
study population). However, we found no influence of SST in a
given year on the timing of pupping for individual mothers.
As capital breeders, grey seals accumulate resources for breeding
during themajorityof theyearand thendonot foragewhile suck-
ling their pups [31]. Therefore, the influence of sea conditions
earlier in the year is also consistent with resource-limitation
affecting competition between individuals. We found that
older mothers tended to give birth to pups earlier in the
season. This has also been observed in other seal species
[58,59], terrestrialmammals [60], aswell asmanybirds [61,62,75].

These observations using population census data provides
the basis of an alternative hypothesis based on the age structure
of the population: observation (1) warmer years are associated
with earlier pupping seasons, and observation (2) older females
breed earlier. Therefore, we expected observation (3) the aver-
age age of females pupping in warmer years will be greater.
We tested this prediction using individual-based, longitudinal
data from our focal grey seal population in the SMCZ. Overall,
population-level data showed a 1°C increase in observedwinter
SST equated to around 3–4 days advance in peak pupping date
(observation 1). Fromour individual-level data, we found that a
1-year increase in mean adult female age equated to a 1-day
advance in mean pupping date (observation 2). Therefore, we
predicted a change of around 6 years to the mean adult
female age across the observed temperature range of nearly 2°
C. In fact, we observed a difference of just 2 years associated
with the observed temperature range (observation 3). However,
this discrepancy is within the 95% confidence intervals in par-
ameter estimates so, we believe, represents good support for
the age-structured pupping phenology hypothesis.

The SMCZ is a major grey seal pupping site in Wales, so
we assume that adult females sighted there are the ‘winners’
of any competition. Given the time lag with SST, it seems that
such competition would be for limiting resources such as
prey availability earlier in the year, rather than access to bea-
ches during the pupping season. However, it is known that
Welsh seals can travel widely throughout the Irish Sea and
as far as southwest England, France and Ireland [30,76–78].
Therefore, a wider study of other pupping sites around the
region would be needed to really understand the processes
driving dynamics in such a mobile and open population.
Grey seals are particularlywell studied in theUK, and simi-
lar data to ours have been collected at several Welsh pupping
sites, e.g. [79]. It would be possible to infer connectivity
between sites using time-lagged spatial cross-correlation of
annual pup censuses. However, to fully separate the effects of
local demography from movement, direct observation of
adult resightings quantifying breeding female site fidelity
between years are required. In the Welsh context, the recently
published EIRPHOT database of individual adult grey seals,
identified from photos, across the Irish Seawould be ideal [30].

The reasons for older females of many species breeding
earlier have been explored elsewhere, e.g. [80,81]. This, and
associated increases in reproductive success in older females,
are hypothesized to result from one or more of: (i) ‘selec-
tion’—the disappearance of late-breeders over age classes, (ii)
‘restraint’—the prioritization of current breeding over future
survival in older females, (iii) ‘constraint’—improvement in
breeding skills with age, and (iv) ‘delayed breeding’—the
incorporation of early breeders over age classes [82]. Which-
ever mechanism accounts for an increase in the average age
of female grey seals around the SMCZ in warmer years, it is
also well documented that older grey seals are typical of
long-lived animals, e.g. red deer [83], in having increased
success in raising a pup to weaning [31]. Concomitantly,
pups born early in the season aremore likely to beweaned suc-
cessfully [84], having potentially important consequences for
population resilience and viability with climate change.

We concluded our study by developing an age-structured
MPM with which to explore dynamics. This model was
motivated by the life history of grey seals and parameterized
using grey seal demography data where appropriate
[31,85,86]. While our empirical data showed a shift in phenol-
ogy and age-structure associated with SST, there was no clear,
monotonic trend in SST during the study period. Therefore,
we question whether SST is acting on the stable age distri-
bution of the population, or through transient effects. If SST
affects stable age distribution, then this could affect long-
term population growth rate and resilience, since older
females are known to have greater weaning success rates
[31]. Alternatively, the SMCZ grey seal population is known
to mix with neighbouring populations [30], such that SST
might change population structure through immigration
and emigration. Our MPM clearly showed that biasing the
stable age distribution to its limit could not fully account
for the observed advance in mean pupping date. This sup-
ports the hypothesis that transient changes to the age
structure of the population, in response to environmental sto-
chasticity in SST, are currently underpinning observed
phenological shifts.

The relationship between age structure, climate change
and phenology has been studied across a broad taxonomic
range of long-lived animal species, including birds [51,52] and
fishes [53], andproposed inmammals [35,87]. Thehypothesized
underlying mechanism typically focusses on age-dependent
differences in local demographic plasticity. For example, in
superb fairy wrens (Malurus cyaneus), older males are thought
to risk moulting in less favourable times of year than younger
males [51], in Eurasian blue tits (Cyanistes caeruleus) older
females are less plastic in their reproductive phenology than
younger birds [52], and in walleye pollock (Gadus chalcogram-
mus) climate variation interacts with the age-diversity of the
stock to drive mean spawning date [53]. In parallel, climate is
known to affect the phenology of long-range movement in
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numerous species, which itself may be age-dependent [88–90].
However, our findings indicate that these two research areas,
demography and movement ecology, need to be considered
together to understand the interplay between population
dynamics, climate change and phenology.

In summary, the hypothesis that climate variability acts at
the population level, through modification of age structure,
provides an alternative to the longstanding, individual-level
hypothesis of delayed implantation in large carnivores
[35,40]. Moreover, this age structuring mechanism results in
population dynamic responses to climate warming that the
widely assumed delayed implantation mechanism would
not. This may well explain the poor support for a direct
link between sea temperatures and pupping phenology in
grey seals to date [32,49,50]. More than simply demonstrating
a newly recognized phenomenon in a single species, our find-
ings provide motivation and guidance for researchers to
consider alternative mechanisms for phenological cue-
response shifts in other long-lived species; in particular,
including mechanisms acting at the population level.
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