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Abstract
Obesity and type 2 diabetes mellitus (T2DM) are common, chronic metabolic disorders with associated significant long-
term health problems at global epidemic levels. It is recognised that gut microbiota play a central role in maintaining host 
homeostasis and through technological advances in both animal and human models it is becoming clear that gut microbiota 
are heavily involved in key pathophysiological roles in the aetiology and progression of both conditions. This review will 
focus on current knowledge regarding microbiota interactions with short chain fatty acids, the host inflammatory response, 
signaling pathways, integrity of the intestinal barrier, the interaction of the gut-brain axis and the subsequent impact on the 
metabolic health of the host.
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Background

Obesity is an increasing global challenge with a current 
worldwide estimation of 1.9 billion adults being classed as 
overweight (body mass index (BMI) > 25), 650 million of 
which are obese (BMI > 30) with the total currently out-
numbering those with malnutrition [1, 2]. Key factors con-
tributing to the current obesity epidemic include:—1) an 
increased availability and intake of energy-dense foods that 
are high in fat and sugars; 2) a significant decrease in physi-
cal activity; and 3) the evolving interactions of host-intesti-
nal microbiota and environment. Obesity is a significant risk 
factor for prevalent non-communicable conditions such as 
cardiovascular disease, diabetes, musculoskeletal disorders 
and several types of malignancy. The risk for these disorders 

increases exponentially with increasing BMI underlying the 
need for early recognition and intervention.

The number of people being diagnosed globally with type 
2 diabetes mellitus (T2DM) is projected to reach beyond 700 
million within the next twenty-five years [3]. Importantly, 
the prevention of T2DM has been identified and declared 
a target priority by the World Health Organization (WHO) 
[4] and the United Nations (UN) [5]. Increasing weight, 
central body fat distribution and BMI play an integral role 
in the development of T2DM, a chronic metabolic disease 
characterised by hyperglycaemia and associated with insulin 
resistance and/or insufficient pancreatic insulin production 
[6]. Obesity alone accounts for 80–85% of the risk factors for 
T2DM [7]. Similar to obesity, the complications of T2DM 
include cardiovascular disease, kidney disease, limb ampu-
tations and blindness, which all subsequently can lead to 
disability and premature mortality with a global healthcare 
cost of greater than 1.3 trillion dollars [8].

Gut microbiota

Hippocrates, the ‘father of medicine’, claimed ‘all dis-
ease begins in the gut’ [9] indicating that the contribution 
to human health that the intestinal microbiota provides 
has been thought about for thousands of years. However, 
only recently, has the acknowledgement been stated that, 
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as humans, we are in fact ‘supra-organisms’ composed of 
both human and microbial cells [10]. Humans carry two 
sets of genes, those encoded in our own genome and those 
encoded in our microbiota. Metchnikoff, in the early 1900s, 
first suggested the central importance of the intestine in host 
physiology and pathology [11]. Intestinal microbiota were 
viewed as essential modulators with the ability to influence 
human homeostasis and that disruption of this harmony by 
specific microbiota could result in a diseased state through 
accumulation of microbiota by-products.

The ‘human microbiome’ was first postulated by Joshua 
Lederberg, to signify the ecological community of commen-
sal, symbiotic and pathogenic microorganisms that share 
our body space [12]. The genetic material of the intesti-
nal microbes, collectively defined the ‘gut microbiome’, 
surpasses the magnitude of the human genome over one 
hundred times [13, 14]. Many bacterial species cannot be 
cultured, but with the recent technological advancement of 
modern molecular methods has led to the evolution of next-
generation sequencing technology for the study of microbial 
deoxyribonucleic acid (DNA) from faecal samples. This has 
provided the ability to examine the entire genomic content of 
a community, by using direct sequencing of microbial RNA 
without the need for prior amplification [15–17].

An adult human is colonized by approximately one hun-
dred trillion microbes, most of which are predominantly 
found in the gastrointestinal tract (GIT). Accommodating 
this enormous number of microorganisms in the GIT has 
often led to the intestinal microbiota being referred to as 
the ‘hidden organ’ [18]. The GIT hosts bacteria, archaea, 
viruses and fungi, with the largest population of microbi-
ota being found to inhabit the colon. Gastric acid, bile and 

pancreatic secretions prevent the colonization of the stom-
ach and proximal small intestine by most bacteria. Bacterial 
density begins to increase towards the distal small intes-
tine (108 bacteria per gram content in the distal ileum), and 
increases rapidly throughout the colon rising to an estimated 
1011 – 1012 bacteria per gram of colonic content, contribut-
ing roughly 60% of faecal mass [15, 19] estimated to weigh 
approximately 1.5 kg (kg) [20].

Over 90% of all phylotypes of colonic bacteria belong to 
just two known phyla; Gram-positive Firmicutes and Gram-
negative Bacteroidetes. Bacteria are estimated to belong to 
over five hundred different species with 99% belonging to 
just thirty to forty genera from the four main phyla: Fir-
micutes 64% (e.g. Clostridium, Enterococcus, Lactobacil-
lus, Ruminococcus); Bacteroidetes 23% (e.g. Bacteroides, 
Prevotella); Proteobacteria 8% (e.g. Helicobacter, Escheri-
chia); and Actinobacteria 3% (e.g. Bifidobacterium) [21–23]. 
Other, much smaller phyla include Verrucomicrobia (Akker-
mansia) and Fusobacteria (Fusobacterium) (Fig. 1) [24]. It 
has been shown that the proximal GIT is enriched in bacteria 
belonging to the phyla Firmicutes and Proteobacteria, in 
particular the genus Lactobacilli, compared to the distal GIT 
which mainly comprises of bacteria belonging to the phyla 
Bacteroidetes and Firmicutes, with particular attention to the 
Akkermansia muciniphilia species [25].

Intestine microbial composition is highly variable 
between individuals and is being continuously modified 
by both endogenous and exogenous factors [26]. The host 
genome has a central role in determining the composition 
of gut microbiota but many geographic and environmental 
factors such as diet, illness, lifestyle, hygiene and medica-
tion can contribute to changes in the population [27–29]. 

Fig. 1   Colonic microbiota 
belong to the main phyla in the 
following order: Firmicutes 
(64%), Bacteroidetes (23%), 
Proteobacteria (8%), Actino-
bacteria (3%), Verrucomicrobia 
and Fusobacteria (2%)
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Reports have shown dietary modification can account for 
57% of the variations in gut microbiota compared to host 
genetic variations that may account for as little as 12% 
[30]. There is now a considerable amount of data to sug-
gest that disruption of gut microbiota may give rise to 
many inflammatory diseases such as obesity, inflammatory 
bowel disease, T2DM, arthritis and cancer [31].

As mentioned previously, the gut microbiota are becom-
ing increasingly recognized as having a fundamental role 
in human physiology and health, [32] with resulting direct 
or indirect host effects [33]. Mechanisms include:- the fer-
mentation of non-digestible substrates like dietary fibre 
and endogenous intestinal mucus to produce short chain 
fatty acids (SCFAs); the modulation of the immune and 
inflammatory response; regulation of neuronal signaling; 
regulation of integrity and mobility of the gut barrier; 
biosynthesis of vitamins, steroid hormones, and neuro-
transmitters; metabolism of branched chain amino acids 
(BCAAs), bile salts, and drugs; and the regulation of the 
hepatic production of triglycerides by suppressing lipopro-
tein lipase inhibitors [34–37].

Microbiome influence on obesity and T2DM

Diversity is key to a healthy gut allowing for microbe 
redundancy with multiple microbes capable of perform-
ing similar functions. Disruption in specific host microbial 
populations may be more important than overall phylo-
genetic ratios, resulting in changes in the production of 
SCFAs and metabolites that directly influence glucose 
and insulin regulation [38–40]. Suggested mechanisms 
for this development which will be discussed throughout 
this review and include immune dysregulation; altered 
energy regulation; altered gut hormone regulation; and 
pro-inflammatory mechanisms [41]. Body weight is not 
controlled by the calories that are ingested but rather by 
the calories that are absorbed [42]. When in calorie excess, 
adipose tissue cannot maintain its buffering capacity to 
store excess energy in the form of triglycerides, result-
ing in an overflow of lipids into the systemic circulation 
[43]. Increased lipid availability to non-adipose tissues 
such as the liver, skeletal muscle and pancreas contrib-
ute to ectopic fat storage and the development of insulin 
resistance. Secondly, adipose tissue generates inflamma-
tion triggering an increase in the production and secre-
tion of pro-inflammatory cytokines and adipokines such 
as tumour necrosis factor.

(TNF), interleukins (IL-6) and monocyte chemoattractant 
proteins (MCP-1) which may also accelerate the develop-
ment of peripheral insulin resistance and altered glucose 
homeostasis [43].

Gut microbiota metabolites: the importance 
of SCFAs

SCFAs are small organic monocarboxylic acids and are 
the major microbial metabolites produced during anaero-
bic carbohydrate fermentation in the intestine by acting as 
vital components in microbe-to-host signaling pathways 
[44]. Acetate, butyrate and propionate constitute greater 
than 95% of the total SCFA content [35, 45]. By-products 
of carbohydrate fermentation include the colonic gases 
(hydrogen (H2), carbon dioxide (CO2) and methane (CH4)) 
which can have inhibitory effects, limiting SCFA produc-
tion [35, 45, 46]. The species Methanobrevibacter Smithii 
(a H2-using methanogen) prevents the accumulation of H2 
by combining together H2 and CO2, producing CH4, allow-
ing for the continued carbohydrate fermentation resulting 
in greater SCFA production and the availability of calories 
to the host [47].

The roles of SCFAs in the host include constituting an 
important energy source providing as much as 10% of the 
daily energy requirement [48, 49]; facilitate hepatic con-
trol of lipids and carbohydrates; aid the transportation and 
metabolism of epithelial cells; positively influence epithelial 
cell growth and differentiation [50, 51]; promote the expres-
sion of mucin to strengthen the intestinal barrier [52]; have 
anti-inflammatory properties reducing the secretion of pro-
inflammatory cytokines and chemokines [53]; and serve as 
immune stimulators to condition tissue and immune cells to 
better eliminate pathogens [54] (Fig. 2).

SCFAs are predominantly produced from gut microbiota 
such as the genera Prevotella, Ruminococus, Coprococcus, 
and Roseburia, and the species Akkermansia muciniphilia 
and Eubacterium rectale [55]. During host fasting periods, 
intestinal microbes have adapted such that Akkermansia 
muciniphilia can degrade intestinal mucus, increasing the 
local availability of N-Acetylglucosamine, N-acetylgalac-
tosamine, fructose and galactose which can serve as essen-
tial substrates for continued microbial fermentation [45, 56].

SCFAs in metabolic pathways

SCFAs perform a central role in metabolic pathways acting 
as signaling molecules by linking with selected G-protein-
coupled receptors (GPRs): GPR41, GPR43 (also termed 
FFAR3 and FFAR2) GPR119 and GPR109A which are 
abundant in adipocytes, intestinal immune cells, gut epi-
thelial cells and pancreatic β-cells [57–61]. Propionate 
primarily activates GPR41, butyrate activates GPR109A 
however GPR43 and GPR119 can be activated by acetate, 
butyrate and propionate at similar rates [61, 62] (Fig. 3).
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Activation of GPR41 and GPR43 induces the secretion 
of peptide tyrosine-tyrosine (PYY), a short peptide that 
is released into the ileum and colon to reduce appetite by 
directly affecting the central nervous system. GPR41 cou-
pling can stimulate adipocytes to express leptin [63, 64], 
resulting in the inhibition of the release of neuropeptide 
Y (NPY), a hypothalamic neurotransmitter that stimulates 
eating. This was first demonstrated using GPR41 deficient 
mice that display significantly lower leptin levels than cor-
responding wild-type mice [65].

GPR43 activation leads to positive homeostatic effects on 
several metabolic pathways:- the release of glucagon-like pep-
tide 1 (GLP-1) from entero-endocrine L-cells which stimulate 
glucose-medicated insulin release from pancreatic β-cells, sup-
press pancreatic α-cell glucagon secretion, protect β-cells from 
apoptosis, promote β-cell proliferation and increase GIT transit 
time [66–68]; acetate activation directly reduces lipolysis in 
adipocytes leading to decreased plasma-free fatty acid levels 
[69]; promotion of the production of the antimicrobial peptides 
RegIIIγ and β-defensin in intestinal epithelial cells; and the 

Fig. 2   Overview of SCFAs 
in host metabolism. SCFAs 
provide an important energy 
source; facilitate hepatic control 
of lipids and carbohydrates; 
aid the transportation and 
metabolism of epithelial cells; 
influence epithelial cell growth 
and differentiation; promote 
the expression of mucin to 
strengthen the intestinal barrier; 
stimulate host inflammatory 
pathways; and regulate the 
immune system for the elimina-
tion of pathogens

Fig. 3   Main SCFAs and their 
roles in host signaling pathways. 
SCFAs perform a central role 
in metabolic pathways linking 
with selected GPRs. GPRs are 
abundant in adipocytes, intesti-
nal immune cells, gut epithelial 
cells and pancreatic β-cells. 
Propionate primarily activates 
GPR41 and butyrate activates 
GPR109A. GPR43 and GPR119 
can be activated by acetate, 
butyrate and propionate at 
similar rates
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generation of immunity-related cytokines such as IL-1, IL-6, 
IL-12 and IL-18 [70, 71].

GPR43 is mainly expressed in immune tissue and white 
adipose tissue as demonstrated in wild-type mice. Activa-
tion of GPR43 in white adipocytes reduces insulin-induced 
protein kinase B (AKT)-activation consequently suppressing 
fat accumulation. GPR43-deficient mice are phenotypically 
obese in contrast to mice who overexpress GPR43, specifi-
cally in adipose tissue. This cohort maintain their lean status 
even when subjected to high calorific feeding. Germ-free 
(GF) and antibiotic treated mice both had normal phenotypes 
suggesting the importance of gut microbiota as deliverers of 
GPR activating SCFAs [72].

GPR119 agonists reduce circulating blood glucose lev-
els by promoting the intestinal secretion of GLP-1, improv-
ing pancreatic β-cell function and insulin secretion [60]. 
GPR109A stimulation suppresses colonic inflammation 
and carcinogenesis, promoting anti-inflammatory aspects 
of colonic macrophages and dendritic cells inducing the 
differentiation of regulatory and IL-10 producing T-cells. 
GPR109A expression decreases in the absence of gut micro-
biota [73, 74].

Acetate

The most abundant SCFA in the GIT is acetate which is 
readily absorbed, transported to the liver and acts as a sub-
strate in cholesterol synthesis. Very little metabolism occurs 
within the colon. Acetate behaves as a substrate and signal-
ing molecule in the processes of cholesterol synthesis, lipo-
genesis, host appetite and glucose homeostasis. Methano-
brevibacter smithii can further exacerbate lipogenesis to the 
detriment of host adiposity, as it is heavily involved in the 
bacterial fermentation of fructans producing large amounts 
of acetate [75].

On entering the systemic circulation, the presence of 
acetyl-CoA synthetase in adipose tissue allows for the imme-
diate usage as a substrate in lipogenesis [76]. Acetate may 
have the ability to influence host appetite by manipulating 
the expression profiles of regulatory neuropeptides situated 
in the hypothalamus through activation of the Krebs cycle 
[43, 77]. Using a rodent model, Perry et al. demonstrated 
that increased levels of acetate led to an elevated production 
of ghrelin, the stimulation of parasympathetic activity which 
thus increased food intake and the promotion of glucose-
stimulated insulin secretion [78].

Butyrate

Butyrate has many important properties in host homeosta-
sis:—acts as the main substrate in colonocyte metabolism 
[76, 79]; regulates cell proliferation and differentiation [62, 

79]; induces apoptosis of colonic cancer cells [59, 62, 80, 
81]; activates intestinal gluconeogenesis (80); induces the 
inflammation cascade; provides protection against oxidative 
stress [81]; and maintains the permeability of the gut barrier 
[59, 62, 82].

Butyrate is oxidised in the mitochondria of colonocytes 
and contributes as a substrate in the Krebs cycle for adeno-
sine triphosphate (ATP) production. Catalysing enzymes 
in this process are down-regulated in GF-mice, leaving 
significantly decreased levels of ATP in GF-colonocytes. 
This highlights the potential stimulating role for butyrate-
producing microbiota [83–85].

Butyrate can affect DNA methylation, proliferation and 
differentiation in colonic epithelial cells by inhibiting his-
tone deacetylase and suppressing nuclear factor kappa B 
(NF-kB) activation [86]. NF-kB is a transcription factor 
in control of gene expression encoding pro-inflammatory 
cytokines, chemokines, inducible inflammatory enzymes, 
adhesion molecules, growth factors and some acute phase 
proteins and immune receptors [59, 87].

Butyrate exerts anti-inflammatory effects through the 
inhibition of interferon-y production, signaling pathways 
and the up-regulation of peroxisome proliferator-activated 
receptor gamma (PPARγ). PPARγ is a ligand-activated tran-
scription factor that is highly expressed in colonic epithelial 
cells and is thought to activate the anti-inflammatory cas-
cade [59].

Propionate

Propionate influences aspects of glucose homeostasis, 
inhibits hepatic cholesterol synthesis [62, 88], exerts anti-
inflammatory effects by the promotion of regulatory T-cell 
differentiation and IL-10 production [53] and has the ability 
to reduce host appetite. It has been demonstrated to have 
competing and opposite effects on gluconeogenesis [89] act-
ing as both a substrate and as an inhibitor [88]. The inhibit-
ing effect may be related to its metabolic intermediaries, 
methymalonyl CoA and succinyl CoA, which are specific 
inhibitors of pyruvate carboxylase. Propionate may influence 
hepatic glucose metabolism indirectly by lowering plasma 
fatty acid concentration [90], which is closely related to the 
rate of gluconeogenesis [91].

Propionate stimulates the intestinal release of the sati-
ety hormone PYY and GLP-1 coupling with GPRs [43]. De 
Vadder et al., demonstrated propionate supplementation can 
result in the reduction of weight, abdominal adipose tissue, 
hepatic fat and assist with insulin sensitivity maintenance 
[80]. Alhabeeb et al., also displayed the beneficial effects of 
propionate supplementation in healthy volunteers exhibiting 
increased satiety and reduced appetite, as measured by visual 
analogue scales [92].
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Other gut microbiota fermentation products

BCAAs, succinate, ammonia, amines, phenol and indole 
are other important gut microbiota metabolites which also 
behave as nutrients, messenger molecules and have the 
ability to shape host pathophysiology. They are mainly 
derived from protein metabolism, fermentation of aro-
matic amino acids and dietary fibre [93]. The most abun-
dant amino acid fermenting bacteria belong to the genera 
Clostridium, Bacteroides, Lactobacillus, Streptococcus, 
Propionibacterium and Fusobacterium [94, 95].

Bacterial fermentation of dietary fibre produces large 
amounts of succinate, reported as an unsuspected bacterial 
metabolite with the ability to improve glycaemic control 
through the activation of intestinal gluconeogenesis [96]. 
Increased BCAA plasma levels correlate with specific bac-
terial species such as Prevotella copri and Bacteroides 
vulgatus and have been shown to be characteristic of indi-
viduals with insulin resistance [97]. Increases in a small 
number of essential amino acids including the BCAAs 
(leucine, valine, and isoleucine), and the aromatic amino 
acids (phenylalanine and tyrosine), have been reported to 
be associated with a five-fold increased risk of developing 
T2DM [98].

Indolepropionic acid, generated from bacterial aromatic 
amino acid catabolism, is strongly correlated with host 
dietary fibre intake and appears to reduce the risk of devel-
oping T2DM. It exerts potent anti-oxidative activity and 
has radical scavenging properties in vitro, suggesting it has 
the ability to provide protection for the pancreatic β-cell 
and possibly from amyloid accumulation [99]. Indolepro-
pionic acid may also aid the modulation of incretin secre-
tion from entero-endocrine L-cells by inhibiting voltage-
gated potassium channels. This affects the action potential 
properties of L-cells resulting in enhanced calcium entry, 
triggering GLP-1 secretion. However, when stimulated 
over a longer period of time, it leads to the inhibition of 
mitochondrial metabolism creating a reduction in intracel-
lular ATP concentration. This induces the opening of ATP-
sensitive potassium channels, hyperpolarising the plasma 
membrane and slowing GLP-1 secretion [100, 101].

Lastly, imidazole propionate, produced from the deg-
radation of histidine by gut microbiota impairs the ability 
of cells to correctly respond to insulin. Imidazole propi-
onate inhibits the intracellular insulin receptor signalling 
cascade by activating the p38γ–p62– mammalian target of 
rapamycin complex 1 (mTORC1) pathway which inhib-
its the formation of the insulin receptor substrate protein 
and mTORC1 complex. mTORC1 is an integral part of 
the intracellular cascade and regulates various metabolic 
pathways, including the insulin receptor cascade [102].

Bile acids and gut microbiota 
and the beneficial effects on the host

Bile acids (BAs) are steroid carboxylic acids produced in 
perivenous hepatocytes primarily from the hydroxylation 
of cholesterol which is controlled by cytochrome P450 
enzyme cholesterol 7α hydroxylase (CYP7A1). Before 
being secreted for storage in the gallbladder, primary BAs 
are conjugated to glycine further enhancing their hydro-
philicity. Entero-hepatic circulation enables 95% of BAs 
to be reabsorbed from the distal ileum, allowing time for 
the interaction of gut microbiota and primary BAs to pro-
duce secondary BAs [103]. BAs have multiple functions 
including the facilitation of the digestion and absorption of 
dietary fats and lipid-soluble vitamins in the small intes-
tine; maintenance of the intestinal barrier; and control-
ling metabolic pathways by acting as signaling molecules 
for the regulation of triglyceride, cholesterol, glucose and 
energy homeostasis [104].

Gut microbiota play a key role in BA synthesis, modi-
fication and signaling by converting host-derived primary 
BAs into secondary BAs, and by deconjugation through 
the enzymatic activity of bile salt hydrolases [105]. The 
predominant microbiota that contribute in BA pathways 
are from the genera Lactobacillus, Bifidobacteria, Entero-
bacter, Bacteroides and Clostridium. Primary BAs bind to 
the nuclear hormone farnesoid X receptor (FXR) whereas 
secondary BAs bind to G protein-coupled BA receptor 1 
(TGR5) [103, 106]. BAs, acting through FXR signaling 
can decrease gluconeogenesis and promote glycogen pro-
duction in the liver. FXR stimulation results in the secre-
tion of gut-derived hormones, such as fibroblast growth 
factor 19 (FGF-19) which in turn regulates BA synthesis 
as well as lipid and glucose metabolism [103, 107, 108]. 
FGF-19 induces the synthesis of glycogen and inhibits glu-
cose production [109]. TGR5 receptor activation results 
in GLP-1 secretion from intestinal L-cells, whereas FXR 
signalling inhibits GLP-1. Both BA-TGR5 and BA-FXR 
signalling stimulates insulin production from β-cells in the 
pancreas. Glucose-stimulated insulin release is addition-
ally promoted by BA-TGR5 signalling in α-cells, which 
promotes the conversion of pro-glucagon to GLP-1 and 
GLP-1 release (Fig. 4).

Gut microbiota can control BA synthesis by metabolis-
ing naturally occurring FXR antagonist tauro-β-muricholic 
acid resulting in the development of obesity, steatosis and 
impaired tolerance to glucose and insulin [110, 111]. 
Increased BA synthesis contributes to greater energy 
expenditure by the stimulation of brown adipose tissue 
and skeletal muscle via TGR5, and by increasing thyroid 
hormone production by activating type 2 deiodinase [106, 
112]. In the hypothalamus, BA-TGR5 signalling mediates 
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satiety. BA-TGR5 activation in immune cells results in the 
inhibition of the nucleotide-binding domain-like receptor 
protein 3 (NLRP3)-inflammasome (a multimeric protein 
complex) and attenuated inflammation [106].

Disruption of the intestinal mucosal barrier 
by microbiota

The mucosal lining of the GIT acts as a natural barrier 
preventing undesirable interactions between the colonic 
epithelium, viruses, toxins and pathogenic bacteria [113]. 
Disruption of the GIT wall integrity allows for the trans-
location of toxins into the systemic circulation leading to 
metabolic endotoxaemia and results in low-grade inflam-
mation, autoimmunity and oxidative stress, which have the 
potential for β-cell destruction and insulin resistance [38, 
114]. Gut microbiota produce numerous organic compounds 
like nitrous oxide (NO), CH4, CO2, indole and hydrogen 
sulphide which possess pro and anti-inflammatory properties 
with the capability to alter GIT permeability [115].

GIT barrier function is maintained via several mecha-
nisms:—appropriate localisation and distribution of tight 
junction proteins (claudin-1, zonula occludens-1 and occlu-
din); the presence of a thick mucus layer covering the epi-
thelial cells; up-regulation of the secretion of mucus from 
goblet cells by butyrate; the presence of mucin-associated 
bacteria [116, 117]; a normal endocannabinoid system tone; 
and lipopolysaccharide (LPS) detoxification by intestinal 
alkaline phosphatase (Fig. 5 and 6). The presence of SCFAs 
enhance gut barrier integrity [114, 118, 119]. Gut microbiota 
have the ability to disrupt intestinal tight junction proteins 
and alter alkaline phosphatase activity resulting in increased 
gut permeability. Gut microbes selectively act to modulate 
colonic expression of endocannabinoid receptor type-1 
(CB1), which strongly influences gut permeability through 
effects on zonula occludens-1 and occludin [120, 121].

Obesity and T2DM are both conditions characterised 
by GIT barrier disruption leading to a significant increase 
in permeability, which correlates, with greater levels of 
LPS in the blood [122]. Brun et al., analysed cross-sec-
tional samples of intestine obtained from obese mice that 
clearly demonstrated a decrease in the tight junction protein 

Fig. 4   BA synthesis and signal-
ling pathway. BAs are produced 
in perivenous hepatocytes 
primarily from the hydroxyla-
tion of cholesterol. Before 
being secreted for storage in the 
gallbladder, primary BAs are 
conjugated to glycine further 
enhancing their hydrophilic-
ity. Entero-hepatic circulation 
enables 95% of BAs to be reab-
sorbed from the distal ileum, 
allowing time for the interaction 
of gut microbiota and primary 
BAs. Gut microbiota convert 
host-derived primary BAs 
into secondary BAs. Primary 
BAs bind to the FXR recep-
tor, secondary BAs bind to the 
TGR5 receptor. FXR signaling 
can decrease gluconeogenesis, 
promote glycogen production 
and enhance the secretion of 
gut-derived hormones such as 
FGF-19. FGF-19 has the ability 
to regulate BA synthesis, lipid 
and glucose metabolism. TGR5 
receptor activation results in 
GLP-1 secretion from intestinal 
L-cells. FXR signaling inhibits 
GLP-1. BA-TGR5 and BA-FXR 
receptor signaling stimulates 
insulin production from pancre-
atic β-cells
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Fig. 5   Gut microbiota interactions with the intestinal mucosal barrier. 
The mucosal lining of the GIT acts as a natural barrier preventing 
undesirable interactions. Disruption of the GIT wall integrity allows 
for the translocation of toxins into the systemic circulation lead-
ing to metabolic endotoxaemia resulting in low-grade inflammation, 
autoimmunity and oxidative stress. Gut microbiota produce numer-
ous organic compounds like NO, CH4, CO2, indole and hydrogen 

sulphide with the capability to disrupt GIT permeability. GIT barrier 
function is maintained using:—appropriate localisation and distribu-
tion of tight junction proteins; the presence of a thick mucus layer 
covering the epithelial cells; up-regulation of the secretion of mucus 
from goblet cells; the presence of mucin-associated bacteria; a nor-
mal endocannabinoid system tone; and LPS detoxification by intesti-
nal alkaline phosphatase

Fig. 6   LPS triggering the 
inflammatory pathway. LPS is 
recognised and bound by LBP. 
Bacterial fragments and LPS are 
recognised by TLRs. LPS binds 
and activates TLR4, triggering 
dimerisation, and the recruit-
ment of downstream adaptor 
molecules such as MyD88/
MAL to mount an inflammatory 
response. Activated MyD88/
MAL recruits IRAK), TRAF6, 
TAK1, JNK and IKK com-
plexes. The IKK complex con-
verges at NF-kB, which is main-
tained in the inactive state by 
IKKB. This, in turn, is degraded 
by proteasomes, resulting in the 
translocation of NF-kB into the 
nucleus, activating the release 
of pro-inflammatory molecules 
TNF-α, IL-1β, IL-6, and iNOS
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occludin and an irregular distribution of zonula occludens-1 
[123]. Several species have been shown to benefit gut bar-
rier function. Faecalibacterium prausnitzii and Roseburia 
intestinalis are important butyrate-producing microbes and 
are believed to protect against bacterial translocation either 
directly or through their ability to produce butyrate [124]. 
Increased levels of the genera Bifidobacterium have also 
been associated with reduced gut leakiness, allowing less 
LPS to translocate into the serum [122]. GIT motility and 
gut microbiota are closely interrelated and can significantly 
affect one another. Transplanting human gut microbes into 
GF-mice significantly shortened GIT transit time when sub-
jected to a polysaccharide-rich diet [125]. SCFAs modulate 
colonic motility by stimulating the secretion of serotonin 
from gut enterochromaffin cells, in part through activation 
of the vagus nerve via the serotonin (5-HT3) receptor [126].

Gut microbiota influence 
on the inflammatory response

Obesity and T2DM are characterised by chronic low-grade 
inflammation with abnormal expression and production of 
multiple inflammatory mediators such as increased levels of 
TNF, C-reactive protein (CRP), plasminogen activator inhib-
itor-1 and interleukins (IL-1, IL-6) [127–129]. The concept 
of inflammation in metabolic conditions was first proposed 
by Hotamisligil et al. who demonstrated that adipocytes can 
express the cytokine TNF-α and that this expression is par-
ticularly increased within obese animals. Neutralisation of 
TNF-α in these animals led to a decrease in insulin resist-
ance. This is believed to be the first experiment to potentially 
expose a relationship between the expression and plasma 
concentration of a pro-inflammatory cytokine and insulin 
resistance [130].

Gut microbiota, acting through LPS activity can influ-
ence inflammation and insulin resistance. LPS is an essential 
component of the cell walls of Gram-negative bacteria such 
as the phylum Bacteroidetes [131–133]. The lipid A portion 
of LPS contains the relevant endotoxin activity and has dif-
fering levels of pro-inflammatory activity owing to the vari-
ability in the detailed lipid A structure. LPS from members 
of the families Enterobacteriaceae and Desulfovibrionaceae 
(phylum: Proteobacteria), exhibit an endotoxin activity that 
is 1,000-fold that of LPS from the family Bacteroideaceae 
(phylum: Bacteroidetes of which members of this phylum 
are the most numerous LPS producers in the gut) [134].

Dietary fat is transported from the intestine after being 
incorporated as triglycerides into chylomicrons which have 
a high affinity for LPS. Thus, the formation of chylomicrons 
aids the movement of LPS from intestinal cells into the cir-
culation [131].

‘Metabolic endotoxemia’ is a condition characterised by 
a two to three-fold increase in circulating LPS levels [135]. 
After entering the circulation, LPS is recognised and bound 
by lipopolysaccharide binding protein (LBP), an acute-phase 
protein synthesised in the liver [136]. Bacterial fragments 
and LPS are recognised by toll-like receptors (TLRs) that are 
a family of key pattern recognition receptors that aid cells 
in the recognition of ligands such as endotoxin [132, 137, 
138]. LPS binds and activates TLR4, triggering dimerisa-
tion, and the recruitment of downstream adaptor molecules 
such as myeloid differentiation primary response 88 adaptor-
like (MyD88/MAL) to mount an inflammatory response [26] 
(Fig. 6).

Activated MyD88/MAL recruits the interleukin-1 recep-
tor-associated kinase (IRAK), tumour necrosis factor recep-
tor-associated factor 6 (TRAF6), transforming growth factor 
B-activated kinase 1 (TAK1), jun N-terminal kinase (JNK) 
and inhibitor of nuclear factor-kB kinase (IKK) complexes. 
The IKK complex converges at NF-kB, which is maintained 
in the inactive state by IkB. This, in turn, is degraded by 
proteasomes, resulting in the translocation of NF-kB into 
the nucleus, activating the release of pro-inflammatory mol-
ecules TNF-α, IL-1, IL-6, and inducible nitric oxide syn-
thase (iNOS). The activation of serum kinases (JNK and 
IKK) can induce insulin receptor substrate (IRS-1) serine 
phosphorylation, resulting in insulin resistance [27].

TNF-α expression upregulates the transcription of sup-
pressor of cytokine signaling 3 (SOCS-3) which binds to 
tyrosine 960 of the insulin receptor, preventing IRS-1 bind-
ing to the insulin receptor. IRS-1 is subsequently degraded 
leading to the disruption of the insulin signaling pathway 
and glucose transport (via GLUT-4) [136, 139]. The impor-
tance of the TLR-4 pathways in worsening metabolic dis-
ease was confirmed by inducing a deletion of TLR-4 which 
subsequently prevented high fat diet (HFD) induced insulin 
resistance [140, 141].

LPS can also activate a local immune response via high-
affinity binding to the NLRP3 inflammasome and NLRs 
expressed at high levels on the surface of macrophages and 
dendritic cells [142]. They are believed to play a role in the 
development of leptin resistance [143], resulting in hyper-
phagia and weight gain further increasing fat intake, raising 
LPS and ongoing inflammation [144].

HFD feeding significantly alters the gut microbial com-
position by reducing the numbers of the genera Bifidobac-
terium, which have many physiologically positive effects 
[145]. Mice who consume a HFD supplemented with oligo-
fructose have restored quantities of Bifidobacterium with 
associated decreased endotoxemia suggesting Bifidobacte-
rium may improve intestinal permeability and lower circu-
lating levels of endotoxin. The increase in Bifidobacterium 
correlates with improved glucose tolerance, glucose-induced 
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insulin secretion, lower body weight and decreased produc-
tion of inflammatory mediators [133, 146].

Obese rodents have two to three times greater levels 
of plasma LPS than non-obese counterparts and display 
low-grade systemic inflammation. Injection of the species 
Escherichia coli LPS subcutaneously into wild-type mice 
fed on normal chow led to the development of inflammation, 
obesity, fasted glycaemia and insulinaemia. Importantly, 
in cluster of differentiation 14 (CD14)-knockout mice, in 
whom LPS cannot be recognised, there was a delay or even a 
complete lack of development of most features of metabolic 
disease induced by a HFD or LPS infusion [135].

Antibiotic induced disruption 
of the microbiota

Antibiotics can strongly influence the composition of the gut 
microbiota for up to two years after administration [147]. 
Disruption caused by antibiotic treatment can induce a 
stress response which facilitates the transfer of drug resistant 
genes to virulent species leading to drug resistance [148]. 
A recently performed meta-analysis concluded an increased 
risk of childhood obesity in those children exposed to more 
than one antibiotic treatment within their first six months of 
life [149]. A population-wide case–control study in Den-
mark demonstrated a positive relationship between antibiotic 
exposure and the development of T2DM years later and a 
relationship between a T2DM diagnosis and the number of 
antibiotic prescriptions. Antibiotics may predispose patients 
to T2DM, however the authors suggest caution because 

T2DM patients are possibly more vulnerable to developing 
infections in the years prior to diagnosis [150].

Vrieze et al., analysed the effects of antibiotic treatment 
on gut microbiota and its effect on metabolic parameters 
in patients diagnosed with obesity and insulin resistance. 
Vancomycin significantly reduced microbial diversity, with 
particular decreases in the abundance of Firmicutes, mainly 
butyrate-producers, with corresponding increases in the phy-
lum Proteobacteria, specifically the genera Lactobacillus. 
These microbial changes were accompanied by an overall 
decrease in peripheral insulin sensitivity. No effect was 
observed with amoxicillin [151].

Impact of the gut microbiota 
on the gut‑brain axis

The gut-brain axis is a bi-directional signalling pathway 
regulating metabolism through balancing food intake and 
energy expenditure [152] whilst also influencing behaviour 
and brain function [153]. The gut signals to the brain via the 
central nervous system or acting through microbiota-derived 
metabolites, which have a role in controlling appetite directly 
or indirectly. Metabolites such as GLP-1, PYY, leptin and 
ghrelin modify gut hormone secretion, which can impact 
hypothalamic neuroendocrine pathways [78, 154, 155]. In 
particular, GLP-1 and PYY have receptors expressed in the 
brain involved in the regulation of host energy balance [155].

PYY modulates appetite and satiety by the suppression 
of NPY and activating proopiomelanocortin (POMC) neu-
rons in the arcuate nucleus (ARC) or by delaying gastric 

Fig. 7   Gut microbiota effects 
on the gut-brain axis. The gut-
brain axis is a bi-directional 
signalling pathway influencing 
food intake, energy expenditure, 
behaviour and brain function. 
The gut signals to the brain via 
a combination of the central 
nervous system and microbiota-
derived metabolites. PYY 
modulates appetite and satiety 
by the suppression of NPY and 
activating POMC neurons in 
the ARC or by delaying gastric 
emptying. GLP-1 also regulates 
appetite via effects on POMC 
and NPY neurons in the ARC 
and contributes to the inhibition 
of gastric emptying and gastric 
acid secretion. Dopamine, 
epinephrine, norepinephrine, 
gamma-aminobutyric acid, sero-
tonin and indole are derived by 
gut microbiota and may affect a 
persons’ dietary preference
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emptying [156, 157]. GLP-1 also regulates appetite via 
effects on POMC and NPY neurons in the ARC and con-
tributes to the inhibition of gastric emptying and gastric acid 
secretion [158, 159] (Fig. 7).

There is growing evidence that dopamine, epinephrine, 
norepinephrine, gamma-aminobutyric acid, serotonin, indole 
metabolites and other neurotransmitters derived by gut 
microbiota could affect a persons’ dietary preference [153].

Future Direction

The discovery of a link between gut microbiota and global 
metabolic disorders such as obesity and T2DM is undeniably 
exciting with the tantalizing possibility of targeting thera-
peutics for the production of personalised treatments. Well-
designed, tightly controlled prospective human and animal 
studies are still required to establish causality between 
microbiota and metabolic disease. The vast majority of cur-
rent gut microbiota human studies represent simple associa-
tions only; from which it is extremely difficult to interpret 
any firm causal conclusions. However, by using next-gener-
ation technology such as metagenomics and metabolomics 
to target microbial combinations with similar functions, we 
should develop a better understanding of the relationship 
between gut microbiota and metabolic disease.

Interventional studies surrounding microbiota transfer 
(faecal microbiota transplant, FMT) for metabolic disorders 
remain in their infancy, by using mainly GF-rodent mod-
els. These models provide crucial mechanistic information, 
however, it remains difficult to directly translate this data to 
humans with their inherent heterogeneity. We have already 
seen that gut microbiota can be disrupted by both host and 
environmental factors, so further investigations are required 
to fully appreciate this relationship.

Furthermore, by fully understanding the interplay 
between gut microbiota and metabolic disease, and by 
using methods such as microbiota transfer, pre/probiotic 
supplementation and dietary manipulation, we can design 
well-defined prospective studies to develop personalised 
treatments.

Conclusion

The increasing worldwide epidemic of obesity and T2DM 
is a cause of significant morbidity and cost. Both conditions 
are complex metabolic disorders with varying aetiology 
and early scientific evidence suggests that gut microbiota 
play a pivotal role in their development. The advancement 
of microbial analysis techniques and the combined usage 
of rodent and human models has allowed the ongoing 

investigation of the gut microbiota, as part of the patho-
aetiology of T2DM and obesity, to become more achievable.

Gut microbiota acting both directly and indirectly through 
the degradation products of intestinal fermentation have 
the ability to manipulate host homeostasis, metabolic and 
inflammatory pathways. This influence can be both benefi-
cial and detrimental to the host. This review has provided 
valuable insight into the many complex interactions that the 
gut microbiota initiate. The review appreciates the impor-
tance of the SCFAs, more specifically, acetate, butyrate and 
propionate, as well as bile acids, in initiating the inflamma-
tory cascade, the disruption caused to microbiota associated 
with antibiotic treatments, their ability to control the perme-
ability of the mucosal barrier and subsequent manipulation 
of the gut-brain axis to alter host behaviour.

Further detailed scientific work is necessary towards 
establishing the gut microbiota’s role in its ability to control 
the disease processes for the future purpose of treating both 
obesity and T2DM.
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