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Abstract

High-level shape understanding and technique evaluation on large repositories of 3D shapes often benefit from additional infor-
mation known about the shapes. One example of such information is the semantic segmentation of a shape into functional or
meaningful parts. Generating accurate segmentations with meaningful segment boundaries is, however, a costly process, typically
requiring large amounts of user time to achieve high-quality results. In this paper we propose an active learning framework for large
dataset segmentation, which iteratively provides the user with new predictions by training new models based on already segmented
shapes. Our proposed pipeline consists of three components. First, we propose a fast and accurate feature-based deep learning
model to provide dataset-wide segmentation predictions. Second, we develop an information theory measure to estimate the predic-
tion quality and for ordering subsequent fast and meaningful shape selection. Our experiments show that such suggestive ordering
helps to reduce users’ time and effort, produce high-quality predictions, and construct a model that generalizes well. Lastly, we
provide interactive segmentation refinement tools, helping the user quickly correct any prediction errors. We show that our frame-
work is more accurate and in general more efficient than the state-of-the-art for large dataset segmentation, while also providing
consistent segment boundaries.
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1. Introduction1

Segmented datasets have already been shown incredibly use-2

ful for many applications, including shape matching [1], re-3

trieval [2] and modeling [3]. Semantic labels are also useful4

for shape understanding and abstraction [4], and shape pars-5

ing and partial shape recovery [5]. Shape segmentation tech-6

niques often benefit the most from such fully labeled datasets.7

Supervised techniques require ground truth labels to train seg-8

mentation classifiers [6], and both supervised and unsupervised9

techniques need ground truth labels to evaluate their methods10

[7]. While existing works have shown good efforts and results11

[8, 9, 10], clear ground truth inconsistencies still exist [11].12

This means both existing and new techniques could perform13

better with higher quality ground truth segmentations.14

Generating high-quality segmentations for shape datasets is15

a time-consuming and interaction-heavy task. Smaller datasets,16

with only small numbers of inconsistencies or errors may be17

manageable through manual effort [12, 7]. Massive datasets18

would take a great amount of user effort however [13]. Fur-19

ther, these massive datasets typically consist of non-manifold20

(multiple components, holes, zero thickness, etc.) and low-21

resolution shapes. These shapes are very difficult to process22

in segmentation pipelines. Recent works employ point cloud23

projection [14, 9], or further KD-connected point cloud pro-24

jection [15]. While these are viable techniques, there may25

be information loss when using point clouds, e.g., connectiv-26

ity and topology of the shape. Without these, certain reliable27

features are much harder to compute or are inaccurate when28

computed (e.g., Shape Diameter Function (SDF) [16], Geodesic29

Distance). Although connectivity can be re-established (e.g.,30

through K Nearest Neighbors, assuming the resolution of the31

point cloud is high enough), thin regions of the shape could be32

wrongly connected, leading to undesirable connections. More33

recently, there are increasing interests to use mesh-based rep-34

resentations to develop robust CNN techniques [17, 18]. For35

this reason, in our proposed pipeline, we largely focus on in-36

put meshes. We further show that by re-meshing these non-37

manifold 3D models into manifold meshes, our pipeline can38

handle very large datasets very well.39

Previous works that generate ground truth segmentations for40

large datasets typically focus on active learning approaches,41

where a user has some control over the system and influences42

the decisions in some way. [19] first used an unsupervised43

co-segmentation algorithm, where the user interactively selects44

pairs of parts between shapes to connect or disconnect. [14]45

used a supervised algorithm to label a single part at a time.46

Users are asked to paint two 2D views of a 3D shape. A learning47

model is trained based on the painted regions and similar shapes48

(according to global shape descriptors) are evaluated on that49

model. However, these techniques can only provide a coarse50

segmentation and output segmentations may have errors. Fur-51

ther, [14] requires one part to be labeled at a time, so datasets52

with high numbers of parts will take longer and more iterations53

to label. Here, we developed an active framework which allows54

full shape segmentation of a shape dataset, to ensure good seg-55
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mentation quality and it scales well with the number of parts in56

the dataset.57

One of the challenges when developing an active framework58

for segmentation is minimizing user interactions while maxi-59

mizing segmentation quality. To balance the quality and speed,60

we utilize a deep learning model for segmentation predictions.61

In general, deep learning models can take a long time to train,62

and typically require a large amount of training data. To re-63

solve these, we propose to use a small Convolutional Neural64

Network (CNN), using two 2D histogram features as input. The65

features have been shown useful in previous work [6, 8] and fit66

the CNN paradigm as 2D histograms are like images. Our ar-67

chitecture allows for quick model training and we also adopt an68

ensemble based learning scheme [20] to help generalize with69

reduced available training data. In our experiments we com-70

pare to other feature-based CNN techniques. We show that our71

model can perform better than existing fast techniques, with re-72

sults comparable to the state-of-the-art.73

Another difficulty of an active learning framework is the ex-74

ploration and analysis of model predicted results. It often takes75

a long time for users to choose the next 3D model to segment,76

and there are no ground truth data to compare the predictions77

for ranking. We thus use entropy, a measure of uncertainty, to78

define a ranking measure without needing ground truth segmen-79

tations. This ranking measure provides a meaningful ordering80

of the predicted segment labels in an interactive tabular view.81

This allows users to see which shapes the deep learning model82

segmented well or struggled with. Our experiments show that83

by selecting poorly segmented 3D models with respect to the84

ranking measure, it reduces both time and interactions required85

to segment the whole dataset.86

Lastly, another problem we observed in existing active87

frameworks (e.g., [14]) is that they do not allow quick boundary88

refinement. When there are slight errors in the output segmen-89

tation, users will likely discard the results, leading to extra man-90

ual effort and longer interaction time. With this observation, we91

propose an interactive segmentation refinement algorithm that92

takes the current segmentation and information about the shape93

(e.g., angle and thickness) to refine the segmentation bound-94

aries. This algorithm can quickly provide high-quality segmen-95

tations while greatly reducing interactions and time required to96

refine a shape.97

Our proposed framework has been demonstrated to work98

well on public datasets (including PSB, COSEG), and also on99

re-meshed datasets from ShapeNet, which contains thousands100

of shapes.101

Contributions. To summarize, the main contribution of this102

work is to develop the first deep learning driven active frame-103

work for segmentation of large 3D shape collections. The fo-104

cus is to maintain accurate and meaningful segment boundaries,105

while keeping human effort and time to a minimum. Our active106

learning framework consists of several key components:107

• First, we show and evaluate a novel deep learning pipeline108

for shape segmentation which is relatively fast and accurate,109

and is suitable for active learning purpose.110

• Second, we use an information-theoretical metric for order-111

ing the prediction of shape segmentation when ground truth112

data is not available. The metric is designed for our segmen-113

tation tasks. Users can still flexibly choose next shape to114

annotate through our interface. Our extensive experiments115

show that the ordering can help reduce total segmentation116

efforts and time.117

• Third, we develop a useful technique for interactive seg-118

mentation refinement, which takes into account the segmen-119

tation boundaries and thickness of shapes. Our experiments120

show that it can help users to quickly improve segmentation121

boundaries, reducing effort and time.122

We will also release the source codes of our tools for the com-123

munity, and provide new and more accurate ground truth seg-124

mentation for some existing datasets1.125

In the following, Section 2 discusses the existing work for126

segmentation, feature extraction and entropy in geometry pro-127

cessing. In Section 3, we briefly overview our active learning128

framework. Section 4 discusses the details of the three novel129

subsystems. We further discuss our framework interface and130

flow in Section 5 before outlining our experiments and showing131

their results in Section 6. Finally, in Section 7 we conclude and132

discuss possible future work.133

2. Related Work134

This work relates to several research areas. We summarize135

the literature with respect to shape features, shape segmenta-136

tion, active learning in image analysis, active learning in shape137

analysis, and use of entropy in graphics processing.138

Shape Features and Their Uses. Much of the existing work139

in shape segmentation is driven by features. These can be de-140

fined per face, per vertex, per patch (a cluster of faces), or even141

per shape. These features are designed for different purposes,142

and many have been successfully applied in mesh segmenta-143

tion. Per-face features include, SDF [16] which estimates the144

thickness of a shape at a given face, Conformal Factor (CF) [21]145

which computes a position invariant representation of the cur-146

vature of non-rigid shapes and Spin Images (SI) which capture147

the surface information around a face using a 2D histogram.148

Recent work has also adapted image based features to the 3D149

domain. One notable example is Shape Context (SC) [22]150

which is a 3D shape descriptor to encode both curvature and151

geodesic distance distributions in a 2D histogram [6]. How-152

ever, there are limitations to how useful a feature can be on153

certain shapes. Examples are that CF is susceptible on shapes154

with sharp curvature [11], SDF can fail if the shape has holes155

and geodesic distance will fail if the shape has multiple compo-156

nents. Therefore feature selection for a new technique is very157

important, as it can greatly impact the accuracy and speed. For158

these reasons, we opted to use two features for this work, SC159

and SI. Recent work has shown both features can be very use-160

ful in shape segmentation [6, 23, 11]. Further they are both 2D161

histograms, so can be generated at any scale (number of bins)162

and CNNs should work well to extract useful information.163

1
https://cs.swan.ac.uk/~csgarykl/ActiveLabeller/ActiveMeshLabeller.html
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Figure 1: Proposed Pipeline. After defining the input data (shapes, features and possible segment labels, Sections 4.1, 4.2), users pick some models (Section 4.3
Shape Subset Selection) and use the proposed interface and tools (Section 4.4, Patch Labeling, Painting, and Section 4.5 Interactive Boundary Refinement (IBR)) to
annotate ground truth labels. With these ground truths, a fast deep learning model is trained. Graph-cut is applied to refine the predicted labels (Section 4.6 Training
and Evaluation). The results are then ordered in an interface (Section 4.7, Order and Select Subset) for users to confirm the ground truth or further select a subset
for user-driven inspection and IBR refinement (same interface in Sections 4.4, 4.5). The iterative active segmentation repeats until dataset is fully labeled.

Unsupervised and Supervised Shape Segmentation. The164

goal of a shape segmentation algorithm is to partition a single165

shape into meaningful parts [24, 16]. These algorithms typi-166

cally used a feature which drives the partitioning (see Features167

section), though other work also used different strategies like168

fitting of primitive shapes [25]. Recently, unsupervised tech-169

niques looked into co-analysis of a set of shapes, using infor-170

mation consistent across the set to improve the final segmenta-171

tion [7, 26, 27, 28, 29]. However, these methods struggle with172

largely varying datasets, especially those with a low number of173

shapes per set [11]. Further, the segmentation of parts not only174

relates to the shape geometry, but also the meaning, function-175

ality and designs. All these challenges have led to the recent176

interests in supervised segmentation techniques.177

Supervised segmentation techniques rely on prior knowledge178

in order to train a model. Typically these methods use large179

pools of shape features as input and classify them according to180

segment labels [6]. Subsequent techniques further improve in181

different ways, such as ranking features to find segment bound-182

aries [30], and training an extreme learning machine [31, 23]183

to classify the labels. However, similar to unsupervised work,184

these techniques can struggle when datasets are very diverse. To185

combat this, work using CNNs was proposed [8]. This work ar-186

ranges a pool of features as an image, and uses an image-based187

convolution network to predict face labels. However, the simple188

arrangement leads to unnecessary interference of relationships189

between features with no correlation, and [11] reduces such190

interference using 1D convolutions, leading to better results.191

Recently, several techniques have shown new and interesting192

shape segmentation methods such as point cloud segmentation193

[32, 9], kd-tree point cloud segmentation [15], projecting im-194

age segmentations to shapes [33], hierarchical segmentations195

[34] and graph CNNs [10].196

With the recent surge of new segmentation papers, each fo-197

cusing on larger datasets, there is a need for high-quality ground198

truth labels. However, currently available ground truths for199

widely used segmentation datasets have been shown to con-200

tain inconsistent and poor labels for certain shapes within the201

dataset [11]. This can impact the training performance by in-202

troducing inconsistent labels for similar samples. It can also203

impact evaluation, as inconsistencies incorrectly degrade the204

performance of a model. Due to this, we emphasize providing205

accurate, high-quality segmentations in this work.206

There is a concurrent work [35] that shares similar spirit207

as ours which produces high quality part annotations. They208

employed professionals to carry out the annotation. The fine-209

grained part dataset further inspires more recent interests in hi-210

erarchical shape segmentation [36], and grouping and labeling211

of semantic parts [37]. Compared to [35], our work proposes an212

active learning framework that allows fast annotation of large213

datasets with the help of a machine learning model. The frame-214

work can be used for other work to complete annotations of215

large datasets. To our knowledge, it is the first deep learning216

driven active learning framework for segmentation of large 3D217

shape collections that aims at ground truth quality.218

Active Image Analysis. Active learning image analysis sys-219

tems have been widely explored to leverage the human user in-220

put to explore large datasets. They focus on using user input221

to aid the classifiers by annotation (painting, strokes) or draw-222

ing bounding boxes. This has the advantage that, the user can223

see what data the classifier is struggling with and incrementally224

provides new training data to alleviate this problem, making225

the classifier more generalized and accurate [38, 39, 40, 41].226

We utilize this functionality in 3D segmentation by allowing227

the user to incrementally tune the output labels of our model228

to make it generalize better, while also incorporating a sorting229
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method to easily rank the outputs of the model, and aid the user230

in selecting shapes to tune.231

Active Shape Analysis. Unlike the image domain, there are232

few methods using user interactions to aid 3D shape segmenta-233

tion. One of the earliest techniques proposed in [19] asks the234

user to select pairs of segments between shapes to denote if they235

have the same or different segments. This technique is driven236

by an unsupervised method, so segmentation between shapes237

can be mismatched, and thus the user input to select the right238

shapes is crucial. Similarly, [42] asks the user to paint regions239

of the shapes for segment matching. Both methods tend to fo-240

cus on smaller sets of shapes and use unsupervised methods241

to drive the segmentation. Recently, [14] proposed a frame-242

work for annotating massive 3D shape datasets. They offer a243

crowd-sourcing application for annotators to label a specified244

region which is used to train a conditional random field model.245

Once model predictions are obtained, the user would then be246

asked to verify the results by selecting all shapes that fail to247

have adequate annotations. While this technique shows good248

performance, fine details such as accurate segment boundaries249

can be difficult to achieve. Further, the user is only asked to250

verify results, and cannot fine tune ‘almost acceptable’ segmen-251

tations. These ‘almost acceptable’ segmentations then end up252

going through another round of model predictions or user label-253

ing. Finally, this approach is a labeling pipeline, where a full254

pass only provides a single segment for a dataset. Therefore,255

datasets with many distinct segments require many full passes256

to achieve a complete segmentation. Our proposed method alle-257

viates all of these problems. By making use of a fast and robust258

deep learning model and effective refinement tools, we provide259

high-quality full segmentations in efficient times.260

Entropy uses in Geometry Processing. Entropy is a mea-261

sure of uncertainty. It can be used to predict the probability262

of an event given some information. Entropy was first used in263

3D geometry processing by [43], where it was used to estimate264

how much information was contained in a 3D surface. More re-265

cently, entropy has also been used for shape simplification [44],266

shape compression [45] and to estimate the saliency of a 3D267

shape [46]. In this work, we use entropy to model uncertainty to268

rank the segmentation prediction without needing ground truth.269

To our knowledge such ordering and tabular interface for active270

learning 3D shape segmentation was not explored before.271

3. Framework Overview272

Our active learning framework aims to produce a full seg-273

mentation for every shape in a given dataset, whilst minimiz-274

ing the users’ manual efforts. The input to our framework is275

a collection of manifold 3D shapes of any size S , from a spe-276

cific category (e.g., aircraft), and a set of pre-defined segment277

identifiers L (e.g., wings, engines, body, stabilizer). With our278

framework, users guide the selection of shapes for labeling, in-279

teract with the prediction of a deep learning model, and verify280

the segmentation quality of each shape. The framework will281

then produce an output of per-face labels for each shape, indi-282

cating which face belongs to which segment. The pipeline for283

our framework is shown in Figure 1.284
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Figure 2: This graph shows the number of segmented shapes increases as users
use the system. The ‘proposed’ line represents our system with all features en-
abled, the NBR (No Interactive Boundary Refinement) line represents our sys-
tem with the boundary refinement feature disabled and the ‘manual’ represents
a system where only painting is enabled. The data making up the solid lines is
from our 1 hour user studies, while the dashed lines are interpolated from the
user study data. The figure shows that our system considerably speeds up shape
segmentation, compared to a manual painting approach. We will provide more
evaluations below.

The pipeline consists of several components. Each compo-285

nent is inspired by the observations of existing problems, lead-286

ing to our contribution of a fast and reliable active framework.287

The framework is driven by a deep learning model, which288

predicts the labels for faces given feature descriptors (see sec-289

tion 4.2 for feature details). As it is a supervised system, initial290

training data is required. This is obtained by the user manually291

segmenting several shapes. To aid the user in this task, the sys-292

tem will first suggest a small subset of shapes for the user to293

label, this is done by clustering global shape descriptors (See294

Section 4.3). This subset aims to well represent the dataset, to295

aid model generalization early on.296

When manually labeling the dataset, the system offers the297

user many effective tools to speed up the process while still298

maintaining the high segmentation quality. These tools include299

robust over-segmentation and effective painting utilities (Sec-300

tion 4.4) and interactive boundary refinement (Section 4.5).301

Once the user confirms the labels for any shape the deep302

learning model considers them as ground truth for training. So303

with the initial subset fully labeled, a model will be trained and304

used to predict results for the remaining shapes in the set (see305

Section 4.6). These results are displayed in our interactive table,306

which can be ordered in many useful ways (see Section 4.7).307

These different ordering methods allow the user to quickly see308

which shapes are correct and add them to the completed set309

(to be used for future model training). Alternatively, the table310

also quickly shows which shapes the model struggles with, and311

these can then be manually labeled to make the model more312

generalized and increase overall quality.313

The deep learning model is designed both to be quick and314

give high-quality results, as such, the above steps can be re-315

peated in quick successions to achieve a strong and generalized316

model. This can be used to quickly and effectively segment the317

entire dataset, with the user requiring less and less input per318

iteration (see Figure 2).319

4



Figure 3: Shape embedding space from COSEG [7] ChairsLarge dataset using
128-dimension LFD HOG features. Shapes displayed are the two closest shapes
to the corresponding cluster centers.

4. Methodology320

This section details all of the functions and tools provided by321

our active learning framework, in order to minimize user input322

and time, while still keeping high segmentation quality.323

4.1. Input Datasets324

The input to our framework is a dataset of 3D shapes. As325

our method makes effective use of both geodesic distances and326

graph traversal, the input shapes must be manifold. Let S be a327

dataset consisting of n shapes, S = {s1, s2, ...sn−1, sn}, where the328

ith shape si = {F,V, E} is made up of faces F, vertices V and329

edges E (the subscript i is omitted when there is no confusion to330

avoid clutter). In the supplementary materials, we also discuss331

a re-meshing procedure to handle shapes that are not manifold.332

It allows us to evaluate on a manifold sub-set of ShapeNet (see333

Section 6.4).334

4.2. Feature Extraction335

As a pre-processing step we compute several features which336

help drive the framework. Specifically, we compute 3 face-level337

features and 1 shape-level feature. Face-level: We use Shape338

Context (SC) [22] and Spin Images (SI) [47] as input for our339

deep learning architecture, which acts as a dual-branch Con-340

vNet. This independently compresses both features down and341

then combines them for classification (see Section 4.6). We342

also utilize the Shape Diameter Function (SDF) [16], which is343

used to aid our interactive boundary refinement process (see344

Section 4.5). Shape-level: We compute Light-Field Descrip-345

tors (LFDs) [48] for each shape in the dataset. Similar to [34],346

we extract multi-view snapshots of the shapes and then compute347

the Histogram of Oriented Gradients (HOG) features of those348

views. These shape-level features are used as an embedding349

space for shape selection (see Section 4.3). Empirically we find350

that PCA embedding works nicely and fast for our purpose.351

Though these are all pre-defined features, we find them use-352

ful for our later deep learning purpose (balance between speed353

and accuracy, Section 4.6) to support fast active learning. These354

features are also 2D by design and do not suffer from feature355

boundary issues [8, 11]. More details of feature extraction can356

be found in supplementary materials.357

4.3. Initial Shape Selection358

Our framework is driven by a deep learning architecture. In359

order to train it we first need some labeled data samples. One360

solution would be to let the user arbitrarily select some ini-361

tial shapes from the dataset and manually label them. While362

it works to provide labeled training data, there is a chance that363

this data will not be well distributed throughout the dataset.364

We address this by providing an embedded view of the data,365

which can then be clustered as desired. For a given number of366

clusters k, we compute k-means on the embedded LFD HOG367

features for the full dataset. Then, given the cluster labels Cl
368

and cluster centers Cc we compute the n closest shapes to each369

cluster center. These shapes are displayed to the user so they370

can select ones they wish to manually segment (Figure 3).371

4.4. Manual Segmentation Tools372

Letting the user segment several shapes in a naive way is one373

possible way of obtaining an initial training set for the model,374

such as letting them paint the entire shape from scratch or se-375

lect segment boundaries with precise clicks. While it works for376

existing work [14], their work focuses primarily on single part377

labeling with little regard for segment boundaries. As we focus378

on shape segmentation with additional care to preserve good379

segment boundaries, such a way of segmenting shapes manu-380

ally would be too time-consuming or produce poor results.381

As such, our manual segmentation pipeline contains several382

useful tools to aid the user in quickly and effectively segmenting383

each shape. Here we outline the manual segmentation pipeline,384

showing useful tools that help in each step.385

Shape Over-segmentation. The first step in the pipeline is to386

assign segment labels to an over-segmentation of the shape. We387

provide two options for the over-segmentation, in most cases388

the shape can be segmented to an almost completed level using389

random walks segmentation [49]. For the other cases, we also390

offer a k-means clustering on face centers. It gives uniform391

patches across the shape and is quick to compute. The outcome392

of either over-segmentation algorithm is a set of patches across393

the shape. These patches can quickly be assigned a segment394

label by the user so that they can move onto the refinement. The395

user does not have to give all patches a label, as the boundary396

smoothing algorithm (see Section 4.5) used to transit from this397

stage to the refinement stage will assign a label to any unlabeled398

patches.399

Segmentation Refinement. At this stage, the shape is fully400

segmented, however, some modifications may be needed to401

achieve a good quality segmentation or to make segment bound-402

aries acceptable. In this stage the user is able to ‘paint’ the403

shape to change the segment labels assigned to specific faces.404

There are several useful tools available in this stage:405

• Variable Sized Painting. When painting a shape, a406

breadth first search algorithm is used to traverse it and as-407

sign the new label to faces it traverses. This algorithm408

is constrained by an adjustable radius (which is clearly409

shown to the user during painting). This allows for both410

large label corrections, or altering very fine details on411

boundaries.412
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(a) Patches (b) Result (c) Predictions (d) Result

Figure 4: Resulting segmentation from running our interactive boundary re-
finement algorithm. The algorithm can take incomplete (gray input patches are
considered unlabeled) patch segmentations (a) and return very good refined re-
sults (b). The algorithm also performs well when given model predictions (c)
as the results shown in (d).

• Paint Restrictions. As a radius based breadth first search413

is used to paint the shape, it is possible that the bound-414

ing sphere that the radius corresponds to will pass over to415

parts of the shape the user does not wish to paint. To allevi-416

ate this, an angle based restriction can be enabled, which417

will compare the face normal of every traversed face to418

the normal of the face that was clicked. If the angle is419

greater than a user changeable threshold then the face will420

not be painted. As many segment boundaries lie on con-421

cave parts of shapes, this can be very useful for quickly422

refining boundaries.423

• Segment-wide Paint. If an entire part of the shape is mis-424

labeled (sometimes the result of the deep learning algo-425

rithm), it can be quickly re-labeled to another segment by426

using this feature. All connected faces to the clicked face427

will be re-assigned the new label.428

• Multiple Shape Views. Quickly analyzing the quality of429

a segmentation is essential to minimize the time and ef-430

fort needed by the user. For this, we allow for multiple431

views of the shape to be shown at once. This feature is432

best suited for quickly analyzing the output of the deep433

learning model, but can also be useful in the early stages434

of the pipeline.435

A final feature, which is the most useful tool in this stage436

is the interactive boundary refinement, which is covered below437

in Section 4.5. By making use of all of these tools the user438

interaction time and effort can be cut down substantially while439

keeping the segmentation quality high, which is the key focus440

of this work.441

4.5. Interactive Boundary Refinement442

To achieve a high level segmentation with smooth boundaries443

in an active system, typically, the user would have to spend time444

in a refinement stage. In this stage, users would typically fine445

tune the small details of boundaries to achieve the desired re-446

sult. This task is both tedious and time-consuming. To alleviate447

this we introduce an interactive boundary refining algorithm.448

Our idea is to use multi-label alpha expansion [50] to opti-449

mize consistent labels near the boundary areas. Let l̂ f be the450

(a) Input (b) Result - without SDF (c) Result - with SDF

Figure 5: Comparison of our boundary refinement algorithm with and without
SDF in the smoothness term. The segment boundaries (black lines) are poor
when SDF is not used (ω = 0) (b), but better when SDF is used (ω = 0.2) (c).

currently observed label of a face f . Such label can be obtained451

from our manual segmentation tools (Section 4.4), machine pre-452

diction after graph-cut (Section 4.6), or earlier results of this453

interactive boundary refinement technique. Our technique is454

user-driven and can be applied multiple times iteratively.455

Let N f be the set of neighboring faces of f , we can optimize
a new set of face labels l f by solving:

min
l f , f∈F

∑
f∈F

ξD( f , l f ) +
∑

f∈F, f ′∈N f

ξS ( f , f ′), (1)

The data term ξD estimates the probability of assigning a label
l f to face f whilst ξS is the smoothing term that promotes con-
sistent labels in adjacent faces. In our formulation, we define
the data term ξD as a weighted geodesic distance term that re-
lates to the closest label boundary. Specifically, we define a set
of label boundary edges E l̂

b ⊂ E where each e ∈ E l̂
b is shared

by a pair of neighboring faces u, v ∈ F, u ∈ Nv such that l̂u , l̂v.
We define dl̂

f = Gdist( f , E l̂
b) as the shortest distance from f to

the closest edge in E l̂
b, where Gdist(·, ·) is the geodesic distance.

(We approximate this geodesic distance using the multi-source
Dijkstra algorithm and compute the shortest distance between
vertices of edges E l̂

b and vertices of face.) With these, we define
ξD( f , l f ) = exp(−D( f , l f )) where:

D( f , l f ) =


1 if dl̂

f ≥ σ and l f = l̂ f

1/2 if dl̂
f < σ

0 otherwise.

(2)

The intuition is that if a face is far from a label boundary, we en-456

courage l f to be the observed label l̂ f . If a face f is withinσ dis-457

tance from a label boundary, the probability is set to exp(−0.5),458

allowing the labels to be optimized. In all our experiments, we459

empirically set σ to 0.01 times the bounding diagonal.460

The smoothness term ξS promotes consistent labels for adja-
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Figure 6: Architecture of our deep learning model. A Conv block consists of
a convolution layer with leaky ReLU [51] activation (α = 0.2), followed by a
2 × 2 max pooling layer with a stride of 2. The numbers underneath each layer
represent the output sizes. The architecture separately compresses both input
features before combining them to compute predicted class labels.

cent faces f and f ′ ∈ N f and is given by:

ξS ( f , f ′) =

0 if l̂ f = l̂ f ′

ξ̃S ( f , f ′) otherwise.
(3)

ξ̃S ( f , f ′) = (1 − ω) ·
(π − θ f f ′ )

π
+ ω ·

δ f f ′

max(δ)
(4)

The first term in ξ̃S penalizes large curvature where θ f f ′ is the461

dihedral angle between the normals of faces f and f ′. The sec-462

ond term penalizes large difference in thickness feature where463

δ f f ′ is the absolute difference between the SDF features [16]464

of faces f and f ′. Both terms are normalized to [0, 1]. ω is a465

weight (between 0 and 1) that trades off the two terms.466

In general, penalizing by large curvature provides good re-467

sults. The optimized labels are continuous and reflect segment468

boundaries well. This term is useful in both transitioning from469

patches to painting, and also as a refinement method for the470

output of the deep learning model (see Figure 4 where ω = 0).471

One drawback of simply using curvature is its inability to472

detect segment boundaries that do not lie on high curvature re-473

gions. One solution to this comes from the observation that474

segment boundaries also typically lie on regions with a large475

change in thickness [16]. With this observation in mind, we476

include the SDF feature in the interactive refinement algorithm.477

A comparison of the effect of both terms is shown in Fig-478

ure 5. It shows an example shape which would fail using only479

curvature term, but gives good results with SDF term (ω = 0.2).480

In our interface, users can freely choose to use either of these481

terms as both are strong in different ways (ω = 0.2 by default).482

Users can also apply this interactive refinement algorithm mul-483

tiple times if desired.484

4.6. Deep Learning Label Predictions485

The core of our active learning pipeline is the deep learning486

model. By providing a small subset of the data, our fast and487

effective model will predict segmentations for the rest of the488

dataset, removing the need for manual labeling from scratch.489

We have designed our deep learning architecture with both490

speed and performance in mind. The model must be quick to491

train and evaluate so that the user is not waiting for long peri-492

ods, but the model must also be accurate to further minimize493

the user’s input and time spent. With this in mind we designed494

a convolutional neural network to separately compress two fea-495

tures (SC and SI) and non-linearly combine them for label pre-496

dictions (see Figure 6 for the architecture).497
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Figure 7: Learning rate and loss plotted as the model is trained. Different
snapshots are shown in different colors. Each time the learning rate resets the
model optimizer is forced out of a local minima making the loss spike

Previous work has shown that geometric features can be very498

useful in making a deep learning model both accurate and gen-499

eralized [8, 11], so we opted to use two of the strongest features500

in our architecture and separately compress them using convo-501

lutional and pooling layers. We did this because both features502

are 2D histograms, so convolving over them in a 2D space is a503

logical way of compressing the size of the features while main-504

taining as much of information as possible. Once compressed,505

the two features are flattened down to a feature vector and con-506

catenated. We then pass this feature vector through a small fully507

connected network to obtain the final predictions via a softmax508

layer (Figure 6).509

We chose to train our models using a snapshot ensemble [20]510

learning scheme. This was because it allows for multiple mod-511

els to be trained in the same amount of time, increasing the512

ability for the model to generalize. Empirically, we chose to513

train our networks using the RMSProp [52] optimizer. In our514

experiments we train each model for T = 5000 iterations, and515

save M = 5 snapshots of the model weights. We employ the516

same learning rate function as proposed by [53]:517

α(t) =
α0

2

(
cos

(
π mod (t − 1, dT/Me)

dT/Me

)
+ 1

)
(5)

where α0 is the initial learning rate (we set α0 = 0.01). This518

gives a learning rate α for any given t < T . The learning rate519

resets M times so that the model can escape local minima giv-520

ing a more generalized model [20] (see Figure 7). As more521

shapes are labeled and the number of training samples grows,522

we opted to uniformly sample batches (each with 512 samples)523

from the entire pool of data. This allows us to fix the number524

of iterations and still train generalized models. This stops the525

model from taking an increasing amount of time to train each526

time new shapes are labeled.527

Once an ensemble of trained models has been obtained the528

remaining shapes in the dataset can be evaluated. The features529

for all the faces of a shape is passed through each network in530

the ensemble, and we then extract the label probabilities and531

average them across all ensembles, giving p. The label with the532

highest probability is considered the segment label for a given533

face, we call this the predicted segmentation.534

Overall, our framework is flexible to the inputs, features and535
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learning architectures. Our design focuses on trading off speed536

and accuracy so that an active framework is possible where an-537

notators do not need to wait too long. We note here that our ac-538

tive framework is not restricted to our proposed deep learning539

model. However other choices (e.g. [11] that requires process-540

ing many features) are too slow for an active framework.541

Graph Cut Refinement. In addition, we also compute a542

refined segmentation by again making use of multi-label alpha543

expansion [50] by solving:544

min
l f , f∈F

∑
f∈F

φD( f , l f ) + λ
∑

f∈F, f ′∈N f ,l f,l f ′

φS ( f , f ′), (6)

where λ is a non-negative constant used to balance the terms545

and φD( f , l f ) = exp(−pf (l f )) penalizes low probability of as-546

signing a label l f . The second term, φS = (π−θ f f ′ )/π, penalizes547

adjacent faces which form concavities, where θ f f ′ is the dihe-548

dral angle between the face normals of faces f and f ′, and is549

normalized to [0, 1]. This refinement technique has been used550

in recent work ([8, 7, 11]), but is slightly modified in compar-551

ison. The output of the refinement is a segment label per face,552

we call this the refined segmentation.553

Note that graph-cut refinement here is a post-processing step554

that refines the segmentation whenever there is a machine pre-555

diction. The Interactive Boundary Refinement (Section 4.5) is556

a user-driven refinement process to help obtain ground truth an-557

notation (i.e. after graph-cut refinement to further reduce user558

interaction (see Figure 1)). Though both Eqns 1 and 6 are559

solved by the multi-label alpha expansion, they have different560

focuses. The graph-cut refinement (Eqn 6) refines all segmenta-561

tion labels globally on all faces. The interactive algorithm (Eqn562

1) mainly optimizes labels of the faces close to the label bound-563

aries. It can also be activated multiple times with adjustable564

emphasis on the SDF term by the users.565

4.7. Effective Table Ordering566

Each time an evaluation of the model is completed, the user567

is presented with the results. There are several options to view568

the results. These options are spread across three menus, where569

one option per menu is selected at a given time.570

Displayed Segmentation. The first menu governs which571

segmentation is displayed on each model in the table. There572

are two options to choose from: predicted segmentation and re-573

fined segmentation. These are the outputs from the deep learn-574

ing model and the graph cut refinement, respectively.575

Ordering Algorithm. The second menu controls how the
table is ordered. There are two options; no order and entropy.
Given the probability matrix p, of shape S , the entropy score is
computed as:

ES =
∑
f∈S

∑
pl

f ∈pf
−pl

f log(pl
f )

nS
f

(7)

where nS
f is the number of faces in shape S , pf are all probabili-576

ties for face f , and pl
f is the probability of face f being assigned577

label l. As we do not have ground truth labels to evaluate the578

(a) High ranking shapes

(b) Low ranking shapes

Figure 8: Visual comparison of high (a) and low (b) ranking shapes when rank-
ing according to entropy.

performance of the remaining unlabeled shapes, we need an-579

other measure for ranking the shapes. Entropy is a measure of580

uncertainty of a probability distribution, therefore it is a natural581

alternative. For a shape we measure the entropy of each face582

and then average it across all other faces. This provides a score,583

which we then use to order the whole dataset.584

Order Direction. The final option controls if the data is pre-585

sented in ascending (worst to best) or descending (best to worst)586

order. Effective use of these different ordering methods can587

greatly reduce the time needed to label a dataset. The ordering588

is based on the model’s predictions. Manually refining shapes589

which the model has trouble segmenting allows the model to590

generalize more quickly to the rest of the dataset. A visual com-591

parison of entropy ranking is shown in Figure 8, which allows592

the user to quickly see shapes which the model is good/bad at593

segmenting. Note that the ordering tries to provide a consistent594

view in the table whilst annotators can still choose freely what595

to annotate next, allowing human analytics to be involved [54].596

5. Interface and Program Flow597

We provide a system with many useful tools for interactively598

segmenting a dataset of shapes. When using the system, the599

user is presented with two main interfaces, shown in Figures 9600

and 10. These interfaces dynamically change depending on601

which stage in the program pipeline (Figure 1) the user is cur-602
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Figure 9: Table interface of our system, which allows for quick analysis of
the entire dataset with an effective ordering method. A Table ordering (Sec-
tion 4.7). B Shapes shown in green have full segmentation and have been user
verified. These are used to train the deep learning model. C The table allows
for selection of shapes for manual refinement and verification. D Visualize the
selected shapes in the annotation interface (Figure 10).

rently at. Here we outline the program flow from each interface603

to the tools provided as the user progresses through the pipeline.604

New Dataset. This is the entry point of the system, where605

the user will be presented with the table interface showing all606

shapes in the dataset. At this point, the user will be able to607

initialize the different segments the dataset will contain. From608

here, the user needs to select starting shapes to manually seg-609

ment. They have two options to pick the subset: arbitrarily pick610

them from the table, or use our initial shape selection tool (Sec-611

tion 4.3).612

Coarse Segmentation. Given the subset of selected shapes,613

the user is now tasked with manual segmentation, this is done614

in the annotation interface. This is the part of the pipeline615

which requires the most user time, as such, we provide many616

options. To quickly assign coarse labeling, each shape is over-617

segmented, and we provide two options for this (Section 4.4618

Shape Over-segmentation), allowing the user to control over619

how many patches are generated. The user then assigns seg-620

ment labels to the patches by clicking a segment with a speci-621

fied label. They do not need to label all patches, and can tran-622

sit to the next stage by using the interactive boundary refine-623

ment algorithm to label the remaining segments and smooth the624

boundaries.625

Segmentation Refinement. In this stage the annotation in-626

terface changes to allow for ‘painting’ (shown in Figure 10).627

This is where the segmentation of a shape is completed to the628

user’s satisfaction. The interactive boundary refinement algo-629

rithm can be used as often as needed to automatically adjust630

boundaries, and the user can then fix any small segmentation631

defects that exist. The user can mark the shape as complete632

(shown by a green border around the shape) and move on to633

another shape. Once all shapes in the subset are completed they634

are then stored as ground truth, and marked in green on the table635

interface.636

Model Training and Evaluation. Once a number of shapes637

are segmented, the deep learning model can be trained and eval-638

Figure 10: Annotation interface of our system, where the user can label or refine
a subset of shapes. A Segment wide paint (Section 4.4). B Painting restriction
(Section 4.4). C Paint radius with visual indicator. D Multiple shape views for
quick segmentation analysis (Section 4.4). E Weight of the SDF influence on
the boundary refinement. F Segment names, colors and face counts. Selected
(gray) segment will be assigned to faces when painting. G Boundary refinement
(Section 4.5). H Model refinement (Section 4.6)

uated. This can be done at any time and allows for the table to639

be ordered much more effectively. For subsequent retraining,640

users can segment any number of shapes because our training641

and prediction technique uses an ensemble of trained models642

that uniformly sample batches (each with 512 samples) from643

the entire pool of data (see Section 4.6).644

Selecting the next subset. Just like starting with a new645

dataset, the user can arbitrarily pick shapes from the table, or646

use our initial shape selection tool (Section 4.3). In addition,647

the table can now be ordered to rank the shapes according to648

entropy (Section 4.7). The table can also be used to display the649

predicted or refined segmentation (Section 4.6). This can be650

useful, as the user can see shapes that the model has correctly651

segmented and quickly confirm them. Also, by using the rank-652

ing, the user can see shapes that the model could not segment653

well, and they can then select these as part of the next sub-654

set. From this stage the user can either segment the subset from655

scratch by using Coarse Segmentation, or refine the predicted656

or refined segmentation using Segmentation Refinement.657

The above program flow iterates and as the user confirms658

more shape segmentations, the model has access to more train-659

ing data and better generalizes, reducing the future interaction660

effort (Figure 2).661

6. Results and Discussions662

In this section we will evaluate our interactive system. There663

are several key components that make up our system, here we664

will provide experiments and results carried out to evaluate the665

individual components.666

6.1. Deep Learning Model667

While any appropriate deep learning model or classification668

algorithm could be used with our system, this work also pro-669
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No Refinement Graph Cut Refinement Boundary Refinement
Chairs Vases Aliens Chairs Vases Aliens Chairs Vases Aliens
92.19 89.98 90.87 96.76 92.73 94.62 96.66 92.80 94.56

10 Snapshots (5) 91.73 89.96 90.64 96.67 92.34 94.70 96.79 92.78 94.66

5 Snapshots 92.68 90.19 90.91 97.18 92.75 95.02 97.03 92.81 94.78

3 Snapshots 92.27 90.01 90.99 97.10 92.53 94.82 96.93 92.74 94.73

1 Snapshot 91.43 89.14 90.14 96.63 91.57 94.28 96.93 91.91 94.67

Fixed Learning Rate 79.49 87.37 86.22 83.41 90.19 90.79 83.99 90.73 91.50

Decaying Learning Rate 87.34 86.42 88.05 93.93 89.42 92.92 94.45 89.83 93.63

Table 1: 5-fold cross validation on the COSEG large datasets [7] using different learning schemes and refinement techniques. (5) denotes only the last 5 snapshots
were used for evaluation [20]. Bold values denote the highest accuracy for the set and refinement method.

poses a deep learning architecture, which is both fast and ef-670

fective for 3D shape segmentation. To evaluate our model671

and design choices we include results from several experi-672

ments. These evaluate (i) the use of ensemble based learning,673

(ii) the performance of the deep learning model and (iii) the674

performance of the interactive refinement techniques. We use675

PSB [12] and COSEG [7] and their ground truth in this section.676

Firstly, we evaluate the choice of an ensemble based learning677

scheme. We performed 5-fold cross validation of the 3 large678

COSEG datasets [7] with varying numbers of snapshots. For679

comparison, we also performed the same experiments with a680

fixed learning rate and decaying learning rate. We include these681

as examples of typical learning rate values for model training.682

The starting learning rate in all experiments was 0.01. All en-683

semble experiments used Eqn 5 to update the learning rate. The684

decaying learning rate experiment reduced the learning rate by685

a factor of 10 at 50% and again at 75% of the training process.686

The results are shown in the No Refinement columns of Ta-687

ble 1. As the columns show, using a snapshot learning scheme688

consistently improves results when compared to fixed and de-689

caying learning rate. There is also a considerable increase in690

accuracy when only using a single snapshot, which shows that691

the cosine learning function (Eqn 5) alone improves the quality692

of the trained model. In the experiment, each snapshot model693

is trained for 5000 iterations, regardless of the number of snap-694

shots. We limit 5000 iterations because of speed concern as it is695

required by our active framework. Specifically, in the “5 Snap-696

shots” model, each snapshot was trained 1000 iterations. In the697

“10 Snapshots (5)” model where the last 5 snapshots were used,698

each snapshot was only trained 500 iterations. These give less699

time for the “10 Snapshots (5)” to converge to local minima in700

the optimization, and thus the lower performance. Finally, the701

results show that in the majority of cases “5 snapshots” give the702

best performance increase. The setting is used in the remaining703

experiments.704

Next we evaluate the accuracy of our deep learning architec-705

ture. We devised two sets of experiments; leave-one-out cross706

validation on the PSB dataset [12] and 5-fold cross validation707

on the COSEG dataset [7]. We used the recent work from [11]708

as a comparison as they provide results from several feature709

driven deep learning architectures, and they also include results710

for the 2D CNN from [8]. Tables 2 and 3 show the results of711

PCA &
NN 2D CNN 1D CNN Proposed

Airplane (4) 92.53 94.56 96.52 95.22

Ant (5) 95.15 97.55 98.75 98.75

Armadillo (11) 87.79 90.90 93.74 94.99

Bird (5) 88.20 86.20 91.67 88.64

Chair (4) 95.61 97.07 98.41 97.61

Cup (2) 97.82 98.95 99.73 98.12

Fish (3) 95.31 96.16 96.44 96.43

Fourleg (5) 82.32 81.91 86.74 84.55

Glasses (3) 96.42 96.95 97.09 98.10

Hand (6) 70.49 82.47 89.81 88.21

Human (8) 81.45 88.90 89.81 90.66

Octopus (2) 96.52 98.50 98.63 98.71

Plier (3) 91.53 94.54 95.61 95.32

Table (2) 99.17 99.29 99.55 98.99

Teddy (5) 98.20 98.18 98.49 98.57

Vase (4) 80.24 82.81 85.75 82.87

Average 90.61 92.79 94.80 94.11

Table 2: Leave-one-out cross validation on the PSB dataset [12]. PCA & NN,
2D CNN [8] and 1D CNN results from [11]. (·) indicates the number of labels.

the experiments. As our model architecture was designed with712

speed in mind we compare against existing models that can be713

trained quickly (PCA & NN, 2D CNN). Table 2 shows that our714

proposed architecture has an increase of 3.5% over PCA & NN715

and a moderate increase of 1.3% over a 2D CNN [8]. Also when716

compared to a much bigger network [11], which uses more than717

4× more input features and takes considerably longer to train,718

our proposed method’s performance is still within 1% (on av-719

erage) difference. Similarly, in Table 3 our proposed method720

again outperforms the 2D CNN, with an increase of 4% when721

looking at large datasets. These results show that our proposed722

model offers overall comparable-slightly better accuracy whilst723

being fast and using less features. It is thus suitable for our724

proposed active learning framework.725

The improvements compared to 2DCNN [8] and 1DCNN726

[11] also show the strength of using 2D features rather than727
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2D CNN 1D CNN Proposed
Candelabra (4) 91.55 93.58 91.35

Chairs (3) 93.48 97.75 94.82

Fourleg (5) 90.75 94.12 92.40

Goblets (3) 92.79 97.80 87.40

Guitars (3) 97.04 98.03 96.23

Irons (3) 80.90 89.89 85.96

Lamps (3) 81.52 86.74 91.44

Vases (4) 89.42 92.47 86.08

Average 89.68 93.80 90.71

VasesLarge (4) 87.57 95.88 92.81

ChairsLarge (3) 92.68 97.71 97.18

AliensLarge (4) 91.93 97.84 95.02

Average 90.73 97.14 95.00

Table 3: 5-fold cross validation on the COSEG dataset [7]. 2D CNN [8] and
1D CNN results from [11]. (·) indicates the number of labels.

stacking many heterogeneous features as in [8] and [11]. As728

mentioned in [11], CNN pooling may be affected by the bound-729

ary issues within the stacked heterogeneous feature representa-730

tions. While [11] alleviates it by using only 1D features, we731

use only 2D SC and SI features which avoid the issues. These732

explain the overall good performance.733

Finally, we evaluate our refinement techniques, Graph Cut734

Refinement (end of Section 4.6) and Interactive Boundary Re-735

finement (Section 4.5). As the outputs of our ensemble experi-736

ments were reported without any refinement, we pass these out-737

puts through our two refinement algorithms. The Graph Cut738

Refinement and (Interactive) Boundary Refinement columns of739

Table 1 show the results of the experiments. As the columns740

show, both techniques show a considerable increase in accuracy741

compared to the un-refined results. The refined results also fur-742

ther support the use of 5 snapshot based ensembles, providing743

the highest accuracy across all results. Note that the interactive744

boundary refinement algorithm can be executed iteratively as745

the data term is based on the position of segment boundaries,746

which will change between runs. The results shown are after a747

single run of the interactive boundary refinement, so it is pos-748

sible for further improvements in the results using an iterative749

approach.750

6.2. Entropy Ranking751

Given the model predictions, optimally selecting the next set752

of shapes to refine is key to efficiently labeling a dataset. It753

might seem logical to select shapes that were predicted well754

by the model, as annotators can work on them quickly. How-755

ever, it may be more beneficial, overall, to select the shapes the756

model predicted poorly, as these are the ones that would make757

the training set more diverse and help the model generalize.758

Our entropy ranking (Section 4.7) allows for effective order-759

ing of the entire dataset based on the predictions of the model.760

We are interested in evaluating the long term effects that se-761

lecting high ranking or low ranking shapes has on the deep762

model. We devised four experiments to test the entropy rank-763

ing strategies: ‘Lowest Ranked’ first, ‘Highest Ranked’ first,764

‘Mixed Ranked’, and ’Random’. We run all experiments on the765

three large COSEG datasets.766

Our experiments used five-fold cross validation. Before all767

experiments, we split the COSEG data into “training set + eval-768

uation set” (80%) and “testing set” (20%) for each fold. Here,769

we define the “training set” as the set of shapes with known770

labels. They are used to train the deep model in our experi-771

ments. The “evaluation set” is the set of shapes with unknown772

labels. These are shapes yet to be annotated or confirmed by773

the users. In our iterative training procedure, we picked shapes774

from the “evaluation set” (according to one of the entropy rank-775

ing strategies/experiments discussed below) and have them an-776

notated. Then we move them to the training set. Note that the777

“evaluation set” will decrease in size during our training proce-778

dure. Thus we do not use the phrase “validation set” to avoid779

confusion. The “testing set” stays fixed throughout the experi-780

ments.781

In each of the four experiments, we train our deep model it-782

eratively using 3D shapes suggested by the entropy rankings.783

We start with 10 shapes in the training set, which were selected784

using our LFD HOG embedding (Section 4.3). The starting785

training set of each fold was fixed across all experiments for a786

dataset for fairness. Given the starting training set, the model787

is trained and evaluated on both the evaluation and test sets,788

then the evaluation set is ranked according to entropy. To carry789

out these experiment consistently, we use the ground truth la-790

bels from the COSEG datasets instead of asking users to anno-791

tate them. These 10 shapes are then moved to the training set.792

The shapes that are moved depend on the experiment: ‘Low-793

est Ranked’ moves the 10 shapes which had the lowest entropy,794

‘Highest Ranked’ moves the 10 shapes which had the highest795

entropy, ‘Mixed Ranked’ moves 5 highest and 5 lowest ranked796

shapes, and ‘Random’ moves 10 shapes at random. This pro-797

cess is then repeated until all shapes in the evaluation set are798

exhausted. The accuracies of both the evaluation and test sets799

are recorded each time the model is trained and evaluated, with800

the results shown in Figure 11. (To plot Figure 11 (a), we stop801

when there is 10 shapes remaining in the evaluation set.)802

The results shown in Figure 11 (a) are the evaluation accura-803

cies for each experiment and each dataset. As shown, choosing804

the best ranked shapes will give poor long-term results. This805

is because the highest ranking shapes are typically similar to806

shapes already in the training set, so adding these will cause the807

model to over fit and not generalize. Inversely, choosing the808

worst ranking shapes gives the best long-term results, as they809

are typically shapes that have large variation to the training set.810

Adding these shapes will allow the model to generalize better811

and prevents over fitting. Finally, the Mixed Ranking and Ran-812

dom results perform similarly, as selecting shapes randomly is813

likely to contain both high and low ranking shapes, similar to814

evenly selecting high and low ranking shapes. Additionally, in815

Figure 11 (b), we show the accuracies of the test set as the train-816

ing set grows. This shows that all methods except selecting the817
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(b) Testing Set

Figure 11: Results of running our entropy experiments (see text) on the large COSEG datasets [7]. Each graph shows the average accuracy of all runs for different
experiments on different datasets. Shapes are moved from the evaluation set to the training set based on the entropy rank and experiment, while the testing set
remains constant throughout the experiment. Each experiment consists of a 5-fold cross validation, where the omitted fold is the testing set and the remaining folds
are the training and evaluation sets.

best ranking methods provide a model which generalizes well818

when introducing new data to the dataset. Similarly, the worst819

ranking strategy often generalises faster among the four.820

6.3. Usability and User Study821

To test the usability of our system we conducted an in-lab822

user study which obtained interaction times, numbers of clicks823

and accuracies. We selected 11 participants with good com-824

puter skills and provided them with instructions and a demo of825

how to use the system. 10 of the participants were asked to826

segment the COSEG [7] ChairsLarge dataset for approximately827

1 hour. We chose this dataset as it contains 400 shapes and828

has a well defined ground truth segmentation for evaluation of829

the results. Half of the participants were given the full system,830

while the other half had the boundary refinement feature dis-831

abled. We did this to monitor the usefulness of the feature and832

its impact on the resulting segmentations. The final participant833

was asked to segment 6 of the small COSEG datasets, namely,834

Candelabra, Chairs, Goblets, Guitars, Irons and Lamps. The835

aim of this experiment was to record times to achieve certain836

set accuracies for comparisons to previous works.837

The results from the ChairsLarge user studies are shown in838

Figures 12 and 13. As the results show, the deep learning model839

quickly gives good performance when evaluated on the remain-840

ing shapes, requiring a training set of only 10% of the dataset to841

achieve over 80% accuracy (Figure 12). Additionally, Figure 13842

shows that the required time (a) and interactions (b) to label a843

shape becomes considerably lower as the model generalizes.844

Further, there is a significant reduction in labeling times and845
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Figure 12: User study results showing accuracy of the evaluation set as the
number of shapes in the training set grows. The evaluation set consists of shapes
that have not been confirmed by the user. The graph shows that the model
generalizes quickly, requiring less work from the user to achieve ground truth
accuracy.

interactions for the participants who had the boundary refine-846

ment feature enabled. This is due to the interactive boundary847

refinement algorithm providing accurate label outputs.848

Comparison to previous work. Our user study also pro-849

vided data for comparison to the two previous works, Active850

Co-analysis (ACA) [19] and Scalable Active Framework (SAF)851

[14]. The participant was asked to use the full system and com-852

pletely label 6 datasets to ground truth level. The times of these853

experiments were recorded as the dataset accuracy passed cer-854

tain milestones (i.e. 95%, 98%, etc.) and the results are shown855

in Table 4. As shown, our method is comparable to ACA and856

slightly slower than SAF at achieving a 95% accuracy. How-857
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Figure 13: User study results showing interaction time (in seconds) and num-
ber of clicks decreasing as more shapes are added to the training set. The charts
also show that users who had the interactive boundary refinement feature dis-
abled (NBR), took much longer and required more clicks to achieve the same
segmentations, resulting in significantly fewer shapes segmented in the same
time frame. All timings are in minutes.

ever, as the purpose of this work is providing a tool for ef-858

ficient ground truth generation, 95% accuracy is not a good859

enough segmentation. We show this in Figure 14, where the860

average accuracy of the set may be 95%, but certain individual861

shapes show very poor segmentations. For these reasons we862

also provide timings to achieve higher set accuracies, including863

a ground truth level (100%). Our method can achieve this level864

of segmentation as it not only asks the user to verify the results865

but correct any mistakes with a refinement stage.866

Computation Time. Our estimated computation times are867

based on using our system to label the COSEG ChairsLarge868

dataset. Our pre-processing stage consists of manifold check-869

ing (<0.1s per shape) and feature extraction (˜40s per shape).870

Then, our deep learning model takes ˜90s to train (This time871

is fixed due to our training scheme) and <0.25s per shape to872

evaluate and refine. In future we would refine the training and873

evaluation process to run concurrently with user interactions,874

greatly reducing the processing time. This scales linearly with875

the size of the dataset. All timings are reported using a 4-core876

4GHz Intel Core i7, 32GB of RAM and an Nvidia GTX 1080Ti877

with 11GB of VRAM.878

6.4. ShapeNet Labeling879

ShapeNet [13] is a massive online repository of 3D shapes880

used frequently in shape retrieval and matching techniques. The881

repository contains thousands of 3D shapes from dozens of882

shape categories giving shape analysis algorithms the potential883

ACA SAF Proposed

(in minutes) 95% 95% 95% 98% 99% 100%
Candelabra 7.00 1.40 5.56 6.34 7.47 8.17

Chairs 10.50* 0.90* 1.30 1.99 2.21 2.88

Goblets 1.20* 0.70* 1.01 1.51 1.51 1.54

Guitars 1.80* 1.90* 2.37 5.58 6.35 9.19

Irons 7.60* 7.20* 2.63 3.27 3.27 3.58

Lamps 0.60* 2.30* 3.14 3.82 4.54 5.26

Table 4: Comparison of user interaction times (in minutes) for achieving certain
dataset accuracies. We compare our method with the two previous works, ACA
[19] and SAF [14] (* denotes estimated times, see original papers). While
our method performs similarly to ACA and slightly worse than SAF at 95%,
we strive for high-quality segmentations and good boundaries. Furthermore,
reporting 95% accuracy is not ground truth level, so we also report times to
achieve accuracies up to ground truth level.

(a) 95% accuracy

(b) Ground truth accuracy

Figure 14: Visual comparison of segmentation results from sets labeled to 95%
accuracy (a) and to ground truth level (b). This shows that a set labeled to 95%
accuracy still requires significant work to complete, therefore times to achieve
this accuracy are less meaningful.

to be evaluated on widely diverse datasets. Recently, shape seg-884

mentation techniques have also begun to use ShapeNet datasets885

for benchmarking their proposed algorithms [32, 33], this was886

initiated by the ground truth labels from [14].887

However, due to the nature of such a large repository of888

shapes, many of the shapes are not manifold and consist of a889

large number of disconnected regions or even polygon soups.890

Due to this, many techniques have shifted to a point cloud891

driven algorithm, which sacrifices much of the information that892

can be obtained from a manifold shape. Furthermore, many893

mesh driven techniques are limited to point cloud ground truth894

segmentations (provided by [14]), as extracting a meaningful895

segmentation on the provided shapes is challenging due to low896

face counts, poor geometry and miscellaneous parts (see Fig-897

ure 15).898

To evaluate the usability of our system on very large datasets,899

we also try to use ShapeNet [13] datasets. However, as many of900

the shapes are non-manifold we have re-meshed several of the901

datasets for these experiments (see supplementary materials for902

our re-meshing procedure). We chose the Airplane and Guitar903
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(a) Multiple components (b) Low resolution

Figure 15: Examples from ShapeNet where shapes have multiple components
(a), and are low resolution (b). Different components are denoted by different
colors and red lines show where segment boundaries would lie. We also show
a case where two components have a significant gap between them (black box,
(a)).

Proposed SAF
N NR L T (Hrs) L T (Hrs)

Airplane 4027 4009 6 24.1* 4 22.6*

Bag 83 75 2 0.4 2 0.2*

Cap 56 55 2 0.3 2 0.2*

Earphone 73 60 4 0.3 2 0.2*

Guitar 793 794 3 3.0* 3 2.8*

Knife 426 420 2 1.7* 2 1.5*

Table 5: Re-meshing and labeling statistics for ShapeNet datasets. For each
dataset we report the number of shapes (N), number of successfully re-meshed
shapes (NR), number of labels (L) and the (user interaction) time to label the
dataset in hours (T). Any times shown with (*) are estimated based on labeling
the dataset for 1 hour.

datasets, and included 4 smaller datasets for a more thorough904

evaluation of the re-meshing quality.905

Our experiments are formulated similarly to our User Studies906

(Section 6.3), where our system was used for up to one hour of907

user time for each dataset, and users are asked to aim at ground-908

truth level. Table 5 shows the timings achieved when labeling909

the 6 ShapeNet datasets (10K face counts, times shown with910

(*) are estimated based on 1 hour of user time). The table also911

shows the number of shapes that were successfully re-meshed912

and the number of labels the dataset has.913

The results show that our method is slightly slower than SAF914

(based on results estimated in [14], see original paper). Note915

however that, in the experiment, we label the Airplane and Ear-916

phone datasets with an increased number of segments (6 instead917

of 4 for Airplane, 4 instead of 3 for Earphone). For SAF to918

achieve this number of segments, much more user time would919

be required (each new label requires a full pass of the dataset to920

be processed). Therefore, our running time is likely to be faster921

than what SAF would achieve with the same segmentations.922

For all sets, we also emphasize the high-quality segmentation923

we can achieve (100% accuracy of ours vs 95% accuracy of924

SAF).925

We further run an experiment on the Airplane set and invite926

an annotator to carry out 800+ annotations (6 labels). The result927
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Figure 16: Timing for annotating 800+ shapes with 6 labels (Airplane Set).

is shown in Figure 16. As SAF [14] did not release source code,928

we only analyze our results qualitatively. As shown in Figure 2929

of [14], the timing required for SAF to annotate 400 shapes fol-930

lows a superlinear curve against the number of shapes labeled.931

Our method however can practically achieve good performance932

for a larger set (800+, i.e., more than double the number of933

shapes even with more (6) labels). Figure 16 shows that our934

timing is roughly linear with a small gradient against the num-935

ber of shapes labeled. We also show the green dash line which936

is a projected line using initial data. This shows that the time937

required for later annotations reduces. Overall, the reduced in-938

teraction time is due to a deep model that improves over time.939

These justify the usefulness of our framework.940

We additionally compare the quality of the output segmenta-941

tion of each system. As Figure 17 shows, there is a significant942

difference in segment boundary quality between the two meth-943

ods. Our method maintains good quality boundaries, while the944

segmentation from SAF is poor in some regions. While this945

poor segmentation could be due to point cloud resolution or la-946

bel projection, Figure 17 shows that there are also many cases947

of poor labeling on the point cloud. Also note that SAF’s la-948

beling does not partition the surface. There may be overlapping949

labels or labels that do not jointly cover the shape [14]. Our ac-950

tive learning framework however can achieve ground truth-level951

quality.952

7. Conclusions953

The research development of 3D shape segmentation is often954

slowed down by the lack of ground truth annotation, and it, in955

turn, is due to long annotation time and the lack of tools to de-956

fine good quality shape segmentation boundaries. Researchers957

often need to pay professionals or rely on crowd-sourcing to958

obtain data. It would lead to high cost and quality control issue.959

In this work, we present an efficient and accurate active learn-960

ing framework to tackle these issues together. The idea is to ob-961

tain ground-truth level annotation with interactive machine co-962

assistance. To achieve this we combine three core systems: a963

fast and effective deep learning model, effective shape ordering964

and selection, and accurate refinement tools. These components965

are combined to create an iterative interactive active framework,966

which becomes more effective over time. The framework re-967

duces human interaction efforts whilst achieves a ground truth968

dataset with 100% accuracy.969
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(a) SAF [14]

(b) Proposed

Figure 17: Visual comparison of segmentation results from ShapeNet datasets.
We compare provided segmentations from [14] (a) to segmentations generated
by our proposed framework (b). Highlighted regions are shown on the right
in a zoomed view. As is shown, our method can provide much more accurate
segment boundaries with our refinement step.

We have shown that our active learning framework is not only970

more accurate than the current state-of-the-art, but also more ef-971

ficient for datasets with larger number of distinct segments. We972

also demonstrate that our system can scale with large datasets,973

allowing for quick and meaningful segmentation of large shape974

collections.975

7.1. Limitations and Future Work976

A trade-off we made with our pipeline was full dataset eval-977

uation. This enables us to provide a powerful shape ordering978

tool at the cost of processing time. While current dataset sizes979

do not pose a major time delay for evaluation, as datasets con-980

tinue to grow, it could soon be an issue. There are several ways981

we could resolve this while still maintaining effective shape or-982

dering. One way would be to only evaluate on a subset of the983

data. The selection of the subset would then be key to maintain-984

ing effective shape ordering. A solution would be using global985

shape descriptors to select shapes both similar and dissimilar to986

shapes in the training set. However, the size of the required sub-987

set would still need to be large so that the user has enough di-988

versity when selecting shapes to refine. A better solution would989

be to train and evaluate in the background. This solution would990

minimize any user down time while still providing an always991

up-to-date table. As shapes are confirmed they can be trained992

on quickly, then shapes can be evaluated (according to shape993

similarity) and the table can be dynamically updated.994

Another trade-off we made was requiring manifold shapes.995

While re-meshing software is available, and we show a working996

method in this work, this is still not ideal. The main reasons we997

require manifold shapes are feature extraction and user paint-998

ing. Other works have converted the shapes to point clouds,999

and while this fixes any topology issues, there is still informa-1000

tion loss in this process. Another solution would be to introduce1001

(a)

(b)

(c) (d)

Figure 18: Comparison between provided ShapeNet labels from SAF [14],
when displayed on point clouds or projected onto the original mesh. While
there are cases where point cloud resolution impacts the projection (black),
there are also many incorrectly labeled sections (red).

artificial edges in the shapes to join the components. While this1002

does not solve all the problems in ShapeNet datasets (such as1003

zero-thickness parts and low resolution), it would allow for fea-1004

tures to be extracted and painting between parts.1005

Our deep model at the moment only works on manifold1006

shapes. It requires our remeshing process to handle shapes with1007

defects and noise. Though our model is fast, it also depends1008

on handcrafted SC and SI features. We believe a more reli-1009

able, fast and data-driven method that can directly and flexibly1010

derive deep features from meshes, point-clouds and polygon1011

soups would further improve the active learning framework in1012

the future.1013

Given the recent interests in hierarchical semantic segmenta-1014

tion, grouping and labeling of shapes, primitive and abstraction,1015

we believe our framework would be extended to obtain valuable1016

ground truth in a cost-efficient way (e.g., by developing a fast1017

learning model and a more intuitive interface) for these new re-1018

search and unseen datasets in the future.1019
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A Deep Learning Driven Active1178

Framework for Segmentation of Large 3D1179

Shape Collections1180

Supplementary Materials1181

We provide more details about our implementation, with re-1182

spect to the Feature Extraction (Section 4.2) and our ShapeNet1183

Re-meshing pipeline.1184

Appendix A. Feature Extraction1185

As a pre-processing step we compute several features which1186

help drive the framework. Specifically, we compute 3 face-level1187

features and 1 shape-level feature. We use Shape Context (SC)1188

[22] and Spin Images (SI) [47] as input for our deep learning1189

architecture, which acts as a dual-branch ConvNet. This in-1190

dependently compresses both features down and then combines1191

them for classification (see Section 4.6). These features are both1192

represented as 16×16 2D histograms, where SC contains both1193

geodesic distance and uniform angle [6], and SI contains infor-1194

mation of shape vertex locations around a face. We also utilize1195

the Shape Diameter Function (SDF) [16], which is used to aid1196

our interactive boundary refinement process (see Section 4.5).1197

Finally we compute LFDs [48] for each shape in the dataset.1198

Similar to [34], we extract multi-view snapshots of the shapes1199

and then compute the HOG features of those views. We con-1200

catenate the HOG features of all views together and use that1201

feature vector as the LFD. We capture 20 views of the shape,1202

and each HOG feature is computed with 9 orientations, a cell1203

size of [8, 8] and a block size of [2, 2], and at full, half and1204

quarter resolution. This results in a 138240-dimension feature1205

vector. We then embed the LFD HOG features from all shapes1206

into a single space using PCA, to make each feature vector 128-1207

dimensions. These shape-level features are used as an embed-1208

ded space for shape selection (see Section 4.3). Empirically we1209

find that PCA works nicely and fast for our purpose.1210

Though these are all pre-defined features, we find them use-1211

ful for our later deep learning purpose (trade-off between speed1212

and accuracy, Section 4.6) to support fast active learning. These1213

features are also 2D by design and do not suffer from feature1214

boundary issues [8, 11].1215

Appendix B. ShapeNet Re-meshing1216

ShapeNet [13] is a massive online repository of 3D shapes1217

used frequently in shape retrieval and matching techniques. The1218

repository contains thousands of 3D shapes from dozens of1219

shape categories giving shape analysis algorithms the potential1220

to be evaluated on widely diverse datasets. Recently, shape seg-1221

mentation techniques have also begun using ShapeNet datasets1222

for benchmarking their proposed algorithms [32, 33], this was1223

initiated by the ground truth labels from [14].1224

However, due to the nature of such a large repository of1225

shapes, many of the shapes are not manifold and consist of1226

many disconnected regions or even polygon soups. Due to this,1227

many techniques have shifted to a point cloud driven algorithm,1228

which sacrifices much of the information that can be obtained1229

from a manifold shape. Furthermore, any mesh driven tech-1230

nique is limited to point cloud ground truth segmentations (pro-1231

vided by [14]), as extracting a meaningful segmentation on the1232

provided shapes is challenging due to low face counts, poor ge-1233

ometry and miscellaneous parts (see Figure 15).1234

While certain issues can be rectified by simple re-meshing1235

(face sub-division, vertex merging etc.), this would only make1236

a small percentage of the shapes in ShapeNet datasets manifold1237

with a reasonable face count. The remaining shapes require1238

more sophisticated techniques to become manifold.1239

To demonstrate that our technique can be applied on much1240

larger ShapeNet dataset, we apply a re-meshing procedure1241

which can successfully make the majority of ShapeNet man-1242

ifold and with reasonable face counts. (Note that other more1243

sophisticated techniques that convert ShapeNet models to 2-1244

manifold surfaces [55, 56, 57] would also be used interchange-1245

ably.) We report our re-meshing pipeline as follows:1246

1. For a 3D grid of fixed size (150×150×150), extract the1247

distances from geometry points to grid points, essentially1248

voxelizing the shape.1249

2. Pass the voxelized shape through a contour filter to gener-1250

ate an isosurface.1251

3. Extract the largest component from the isosurface, remov-1252

ing any internal cavities that may have been created.1253

4. Assert that the new shape surface is manifold and geo-1254

metrically similar to the original shape by comparing LFD1255

HOG features.1256

5. Decimate the new shape to a specified face count (e.g.,1257

20k, 10k, 5k) asserting manifoldness throughout. This1258

allows us to provide high, medium and low quality re-1259

meshing.1260

The output of this pipeline is a set of manifold shapes with1261

varying resolutions. These shapes can then be used with any1262

existing shape analysis pipeline, and are still compatible with1263

the available ground truth segmentations via nearest neigh-1264

bor matching. Any shape that fails the asserts throughout the1265

pipeline is passed through again with different tunable param-1266

eters (grid resolution, contour value), or removed from the1267

dataset if all parameter permutations are exhausted.1268

In general, lower quality meshes make labelling quicker as1269

the CNN can be trained quicker and the system runs quicker. It1270

could lead to poorer segment boundaries due to coarser tessel-1271

lation. Higher quality meshes should have smoother boundaries1272

due to finer tessellation at the cost of taking slightly longer to1273

train and process. Note that our experiment in the main paper1274

uses the 10k re-meshed shapes as we find them strike a good1275

balance.1276
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