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Abstract

A nonintrusive reduced order method able to solve a parametric modal analysis is proposed in this work. The main objective
s being able to efficiently identify how a variation of user-defined parameters affects the dynamic response of the structure in
erms of fundamental natural frequencies and corresponding mode shapes. A parametric version of the inverse power method
IPM) is presented by using the proper generalised decomposition (PGD) rationale. The proposed approach utilises the so-
alled encapsulated PGD toolbox and includes a new algorithm for computing the square root of a parametric object. With
nly one offline computation, the proposed PGD-IPM approach provides an analytical parametric expression of the smallest
in magnitude) eigenvalue (or natural frequency) and corresponding eigenvector (mode shape), which contains all the possible
olutions for every combination of the parameters within pre-defined ranges. A Lagrange multiplier deflation technique is
ntroduced in order to compute subsequent eigenpairs, which is also valid to overcome the stiffness matrix singularity in
he case of a free-free structure. The proposed approach is nonintrusive and it is therefore possible to be integrated with
ommercial finite element (FE) packages. Two numerical examples are shown to underline the properties of the technique.
he first example includes one material and one geometric parameter. The second example shows a more realistic industrial
xample, where the nonintrusivity of the approach is demonstrated by employing a commercial FE package for assembling the
E matrices. Finally, a multi-objective optimisation study is performed proving that the developed method could significantly
ssist the decision-making during the preliminary phase of a new design process.
2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

http://creativecommons.org/licenses/by-nc-nd/4.0/).

eywords: Algebraic PGD; Parametric modal analysis; Reduced order model; Shape optimisation

1. Introduction

The dynamic response of an engineering structure depends on its material and geometric properties. Changes in
he design parameters can have considerable effects on the structural dynamic behaviour. For this reason, during the
evelopment process of a new system, designers have to run sensitivity analysis, such that potential problems can
e identified and corrected before time, money and resources are wasted on prototyping and manufacturing a non-
ptimal design. The modal analysis is widely used in industry to predict the dynamic properties of a structure under
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free-vibration conditions. This consists of solving a generalised eigenvalue problem where the eigenvectors represent
the natural deformation of the structure when vibrating (mode shapes), and the eigenvalues are the corresponding
natural frequencies. Trying to efficiently identify how the mode shapes and natural frequencies depend upon the
design parameters is still today a challenging computational task. In fact, standard mesh-based discretisation methods
would approach this multidimensional problem by solving it for several combinations of the parameters. Due to
the exponential increase of the computational complexity with the dimension of the problem, this task becomes
unaffordable in real industrial applications. In order to overcome this issue, known as the curse of dimensionality,
reduced order methods (ROMs) represent an attractive alternative. ROMs are based on the idea that the essential
behaviour of complex systems can be accurately described by simplified low-order models. Several ROMs have
been developed in the last decades and employed in the most diverse applications. Usually, they are classified into
a-posteriori and a-priori methods. Some of the most popular a-posteriori methods are the Krylov-based methods [1],
he reduced basis method [2], and the proper orthogonal decomposition (POD) technique [3], which is one of the

ost applied in the context of structural dynamics [4–7]. These approaches first need to solve the full-order problem
or a suitably chosen set of parameters, such that a set of basis functions describing the most relevant characteristics
f the solution can be computed. The obtained reduced model is then used to solve similar problems at a much
heaper computational cost. Clearly, the accuracy of the solution for any new value of the parameters highly depends
n the right choice of the representative set of problems used to extract the reduced basis. An appealing alternative
s represented by the proper generalised decomposition (PGD) method [8–10], that is able to provide explicit
arametric solutions to parametric boundary value problems. In its standard from, PGD is an a-priori reduced

order technique, in the sense that it computes the reduced basis without relying on previously computed full-order
solutions associated with arbitrary samples of the parametric space. This is possible thanks to the main assumption
of the method, that is to treat the parameters as extra coordinates and approximate the solution of the resulting
high-dimensional problem as a sum of functional products, each one involving the basis functions that depend
separately on the parameters by assumption. The PGD algorithm is constructed such that the basis functions are
computed simultaneously and on-the-fly during an offline stage, usually performed by employing high-performance
computing resources. In order to provide the solution in the described explicit parametric representation, the method
requires the input data of the problem to be described in the same separated format. Unfortunately, it is not always
possible to find an analytical expression of the separated input data (such as stiffness matrices), especially when
general geometric parameters are involved in the problem. For this reason, the authors recently developed [11] a
hybrid version of the PGD method. On one hand, it can still be considered an a-priori approach, as it does not require
any previous full-order computation of the solution. On the other hand, a pre-process step is added, where the input
data are only sampled (without solving the problem) in the parametric domain of interest and then expressed in the
required separated format. This then allows to proceed as in the standard PGD method and explore any user-defined
parametric domain with only one offline computation. Afterwards, in an online stage, the obtained solution can be
particularised in real time for any choice of the parameters in the domain. The PGD method has been successfully
tested in the most diverse fields, such as flow problems [12–17], thermal problems [18–20], solid mechanics [21–23],
fracture mechanics [24,25], geophysical problems [26,27], elastic metamaterials and coupled magneto-mechanical
problems [28,29]. Several applications are available also in the dynamic framework. For example, [30] and [31]
proposed a POD-PGD approach to implement a real-time integration scheme able to solve the equations of solid
dynamics depending on parametric initial conditions. In [32,33] and [34], PGD is coupled with a hybrid integration
scheme which combines modal and harmonic analysis to efficiently solve frequency-dependent parametric problems.
In this work, the PGD approach has been coupled with an eigensolver technique, the inverse power (IPM) method, to
efficiently identify how a variation of user-defined material and geometric parameters affects the dynamic response
of the structure in terms of dominant eigenmodes and related natural frequencies. Similar works have been presented
in the field of nuclear reactor analysis, which confirms the potentiality of the proposed method in general areas of
applications. In particular, the PGD method has been coupled with standard eigenvalue solvers, such as the Arnoldi
technique [35], the IPM [36] and the direct power method [37], in order to solve single- and multi-group neutron
diffusion eigenvalue problems. The PGD-IPM computational tool presented in this work uses a PGD-based library
known as Encapsulated-PGD toolbox [38]. The toolbox not only allows to solve parametric boundary value problems
as in the standard PGD approach, but it can perform basic algebraic operations with parametric objects expressed in
the standard separated PGD format. Here, in particular, it is able to perform all the algebraic parametric operations

needed by the inverse power iteration in a transparent manner. In other words, the user only needs to prepare the
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input data in the PGD separated format and perform one offline computation. As a result, the smallest (fundamental)
eigenvalue and corresponding eigenmode are obtained in the parametric format. If the structure is unconstrained, the
structure undergoes rigid body motions and the IPM cannot be applied because of the stiffness matrix singularity. To
overcome this issue, first the parametric rigid body modes are computed as detailed in [11], where the PGD method
was coupled with the Inertia Relief (IR) method to perform the static analysis of an unconstrained structure. Here, in
addition, a Lagrange multipliers technique is presented which imposes orthogonality to the set of rigid body modes
and computes the first non-zero eigenvalue. The same technique can be used to compute the subsequent non-zero
eigenvalues and the corresponding eigenmodes. Another important challenge in PGD applications is represented by
complex geometric parametrisations. In fact, if geometric parameters are introduced in the problem, it is not trivial
to find separable representation of the input quantities. Several works have been presented in order to solve this
issue [39–44]. In the above-mentioned work [11], the authors proposed also an algebraic approach which consists of
a sampling of the input data such that they can be expressed in a separated format even when geometric parameters
are considered. By using this algebraic approach together with the Encapsulated-PGD toolbox, the method preserves
a nonintrusive implementation. This means that, unlike the standard PGD method, it does not require to access and
modify the FE source code. As a consequence, the method can easily interact with commercial FE packages allowing
its wider application in industry.

The paper is organised as follows. Section 2 reviews the formulation of the modal analysis in the standard
non-parametric framework. In particular, the IPM is introduced as the eigensolver to be coupled with the PGD
method. The description of the parametric modal analysis is given in Section 3. In 3.2, the implementation of a
new algorithm able to calculate the square root of a parametric quantity is introduced and used in the parametric
eigensolver. Two numerical examples are proposed in Section 4 in order to show the potential of the proposed
method. It is worth noting that the same FE models were tested under unconstrained static conditions in [11]. In
the first example, the modal analysis of a simple linear elastic three-dimensional (3D) structure with one material
and one geometric parameter is considered to underline the main properties of the developed ROM. In the second
example, an industrial application is considered, that is the modal analysis of a dummy car. Here, the nonintrusive
interaction with the commercial FE software MSC-Nastran is demonstrated. A multi-objective optimisation study
is also performed to prove the potential of the method as a fast and reliable tool to support designers during the
decision-making procedure. Finally, conclusions and outlooks are summarised in Section 5.

2. Problem statement: finite element discretisation and modal analysis

In the absence of volumetric forces, the unknown displacement field u(x, t) is to be computed for x ∈ Ω and
∈ (0, T ] such that

ρ ü = ∇ · σ (u), (1)

here ρ stands for the density, ü := ∂2u
∂t2 is the acceleration, and σ denotes the Cauchy stress tensor. The differential

Eq. (1) is to be complemented with boundary conditions and initial conditions. Typically, the boundary of the domain
Ω , ∂Ω , is partitioned into the disjoint parts ΓD and ΓN , where Dirichlet and Neumann boundary conditions are
prescribed. In the free-free case analysed in the following, ΓN coincides with ∂Ω and the Neumann boundary
onditions are homogeneous everywhere.

The Cauchy stress tensor dependence on u is given by the constitutive law (here, the generalised Hooke’s law
ssociated with the fourth order stiffness tensor C) and the definition of the linear strain tensor, namely

σ (u) = C : ε(u), and ε(u) =
1
2

(
∇u +∇u⊤

)
. (2)

Using weighted residuals in space (integrating in Ω ), problem (1) is re-written in the weak form∫
Ω

ρ v(x) · ü(x, t) dΩ  
m(ü,v)

+

∫
Ω

ε(v(x)) : σ (u(x, t)) dΩ  
a(u,v)

= 0 (3)

for every v(x) taking values in Ω , and at very time t . The discretised versions of the bilinear forms m(·, ·) and
(·, ·) in a finite element space are the mass matrix M and the stiffness matrix K, respectively. Similarly, the discrete
3
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version of the unknown u(x, t) is the vector of time-dependent nodal values U(t) ∈ Rndof . Thus, the semi-discrete
ounterpart of Eq. (3) is the following linear system of ordinary differential equations

MÜ(t)+KU(t) = 0. (4)

.1. Modal analysis

The modal analysis solution of Eq. (4) assumes that the time dependence of U(t) is harmonic, that is

U(t) = cos(ωt − α)φ, (5)

here ω is the angular velocity and α the phase angle. Note that the frequency of the mode is ω
2π . Hence

Ü(t) = −ω2 cos(ωt − α)φ = −ω2U(t) (6)

and therefore, replacing Eq. (6) in Eq. (4), it turns out that

Kφ = ω2Mφ. (7)

xpression (7) is an eigenvalue problem. Since M is symmetric positive-definite and K is symmetric semi-positive,
he solution of Eq. (7) provides eigenvalues ω2

i and their corresponding eigenvectors φi , for i = 1, 2, . . . , ndof (it
is assumed they are sorted such that ω1 ≤ ω2 ≤ · · · ≤ ωndof ).

Eigenmodes φi , for i = 1, 2, . . . , ndof, associated with eigenfrequencies ωi , are the natural mode shapes,
representing the deformation of the structure as vibrating in its i th mode. Modes associated with different frequencies
re orthogonal with respect to both M and K. That is φ⊤i Mφ j = 0 and φ⊤i Kφ j = 0 for i and j such that ωi ̸= ω j .

Note that once the eigenmode φi is available, the corresponding eigenfrequency is readily computed invoking
the Rayleigh quotient:

ω2
i =

φ⊤i Kφi

φ⊤i Mφi
. (8)

In order to enforce unicity (up to their sign) of the eigenmodes, they are normalised with respect to the metric
rovided by M. That is, φi are selected such that φ⊤i Mφi = 1, and consequently φ⊤i Kφi = ω

2
i , for i = 1, 2, . . . , ndof.

The solution U(t) of Eq. (4) is recovered as a linear combination of the modes φi multiplied by their time
armonic dependence, cos(ωi t − αi ), and their corresponding amplitude. The amplitude and the phase αi of each
ode are to be computed using the initial conditions.
Often, structural engineering analysis does not require obtaining the full time dependence. The fundamental

odes corresponding to the lowest eigenfrequencies provide the essential information to assess the structural
ynamics response. Thus, obtaining the lowest eigenfrequencies ωi and their corresponding eigenmodes is a
ertinent outcome for engineering analysis.

.2. Numerical eigenvalue solver: the inverse power method

Several numerical methods are available in the literature [45–47] in order to solve the eigenvalue problem (7).
epending on the mathematical structure, the number of eigenpairs of interest and the computational cost associated

o the algebraic operations, a different numerical eigensolver might be recommended. Roughly speaking, two main
ategories can be identified: global approaches, such as the QR method [48], that approximates all the eigenvalues,
r partial methods which compute a smaller set of eigenvalues, such as Lanczos [49], Arnoldi [50], Davidson [51],
nd Jacobi–Davidson [52] methods. The simplest eigensolvers are the well-known power methods, that aim at
omputing the largest eigenvalue and its corresponding eigenvector (direct power method) or the lowest (inverse
ower method). After computing the largest (resp. lowest) eigenvalue, a deflation technique is used to remove it
rom the problem and the same method provides the second largest (resp. lowest). In this work we are interested
nly in a few lowest eigenvalues, so the IPM represents a suitable choice. Moreover, the generalisation to the
arametric problem introduced in the next section suggests adopting the algorithmically simplest methodology.
ssuming ω2

1 > 0, the IPM iterates approximations to eigenvector φ1. An initial guess φ0
1 is selected. Then, the

-th iteration φν1 is obtained solving the following linear system
ν ν−1
Kφ1 =Mφ1 , for ν = 1, 2, 3 . . . (9)

4
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The iterative sequence is expected to converge to φ1 and the corresponding eigenvalue ω2
1 is obtaining computing

the Rayleigh quotient, as indicated in Eq. (8). Note also that the obtained value of φ1 is to be normalised by dividing
by its M-norm, that is dividing by

√
M⊤φ1M.

The subsequent eigenvectors and eigenvalues are computed using a deflation technique, which consists of
removing the already computed eigenvectors from the original matrix. In practice, in a power method this can also be
done at the level of the iteration (9), enforcing orthogonality to the already computed eigenvectors. Thus, the second
smallest eigenvalue ω2

2 and its corresponding eigenvector φ2 are computed similarly, but enforcing M-orthogonality
o φ1 (which is already available) at every iteration, that is φ⊤1 Mφν2 = 0. In the standard algorithms, this is readily
one subtracting the projection of the iterated approximation, for example by means of the Gram–Schmidt-type
rthogonalisation processes (see [47]), that is replacing φν2 by

φν2 − (φ⊤1 M φν2)φ1. (10)

ere, for the sake of easing the generalisation to the parametric case analysed in the next section, an equivalent
trategy is adopted, enforcing orthogonality already in the linear system to be solved at each iteration using Lagrange
ultipliers. Accordingly, Eq. (9) is to be replaced by a new (ndof + 1)× (ndof + 1) system of equations[

K Mφ1
(Mφ1)⊤ 0

] [
φν2
λ

]
=

[
Mφν−1

2
0

]
, (11)

here λ is the Lagrange multiplier, which is an instrumental unknown to be discarded as part of the result.
When the first n eigenvalues ω2

1, ω
2
2, . . . , ω

2
n are already computed and the corresponding eigenvectors are

ollected in the ndof × n matrix Φn =
[
φ1,φ2, . . . ,φn

]
, the iterative scheme to compute φn+1 boils down to

olve the following (ndof + n)× (ndof + n) system of equations at each iteration[
K MΦn

(MΦn)⊤ 0

] [
φνn+1

λ

]
=

[
Mφν−1

n+1
0

]
, (12)

here λ is the n× 1 vector of Lagrange multipliers. An important case to take into account, which is typical in the
utomotive and aerospace applications, is the case of a free-free structure (with no loads and no constrains). The
tiffness matrix K associated to this kind of systems is singular, with a six-dimensional kernel (in 3D) containing the
igid-body modes. This is to say ω2

i = 0 for i = 1, 2, . . . , 6 and the corresponding rigid-body modes are precisely
1,φ2, . . . ,φ6, collected in the ndof × 6 matrix Φ6.

The computation of the 6 rigid-body modes is to be performed using a different technique concerning only matrix
(therefore, independent of M) that is described in detail in [11], both for the standard implementation and the

arametric one.
Once the rigid-body modes Φ6 are obtained, the fundamental eigenfrequency and eigenvector, ω2

7 and φ7 are
omputed using the iterative scheme described in Eq. (12). This is summarised in Algorithm 1 for a general
igenvalue ω2

n+1 and eigenvector φn+1, assuming that the previous ones are available in Φn .

. Parametric modal analysis

As mentioned in the introduction, the goal of this work is to solve the parametric version of the problem stated
n Section 2, and more precisely of the eigenvalue problem (7) arising from the modal analysis. The input data of
he problem is assumed to depend on a set of n p parameters µ = [µ1, µ2, . . . , µn p ]T

∈ M ⊂ Rn p describing
he material properties (e.g. elastic modulus, density, etc.) and the geometric characterisation of the shape of the
tructure. Typically, the multidimensional parametric domain M is defined as the Cartesian product of sectional
ntervals, for each one of the parameters, namely M := M1 ×M2 × · · · ×Mn p , with µ j ∈ M j ⊂ R for
j = 1, . . . , n p. Based on this assumption, the parametric version of the modal analysis results in solving the
igenvalue problem (7) for parameter-dependent input matrices, that is K(µ) and M(µ). The solution also depends
n the design parameters and it is given in terms of eigenvalues ω2

i (µ) and eigenvectors φi (µ) for i = 1, 2, . . . , ndof.

.1. Inverse power iteration and deflation with the encapsulated PGD toolbox

A coupling of the proper generalised decomposition (PGD) method with the inverse power method (IPM) is

roposed to solve the parametric eigenvalue problem. The final goal is being able to compute a set of neig smallest (in

5
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Algorithm 1 Inverse power method to compute φn+1 and ωn+1

Input: K, M, Φn , tolerance ε and initial guess φold (for ν = 0)

1: Normalise φold
← φold/

√
φold⊤M φold

2: while Eφ > ε ∥φnew
∥ do

3: Solve

⎡⎣ K MΦn

(MΦn)⊤ 0

⎤⎦⎡⎣φnew

λ

⎤⎦ =
⎡⎣Mφold

0

⎤⎦
4: Normalise φnew

← φnew/
√

φnew⊤M φnew

5: Compute errors Eφ = ∥φnew
− φold

∥

6: Update φold
← φnew

7: Store solution φn+1 = φnew

8: Compute ωn+1 =

√
φ⊤n+1K φn+1

utput: φn+1 & ωn+1

magnitude) non-zero eigenvalues and the corresponding eigenmodes, both in a parametric format. From a conceptual
point of view, the extension of the IPM algorithm from the non-parametric to the parametric framework is as simple
as rewriting all quantities in Algorithm 1 with their parametric dependency. However, in a numerical sense, the
algorithm requires several parametric algebraic operations to be performed, which is certainly a challenging task.
The recently developed Encapsulated PGD Toolbox, see [38], plays a key role in this work. The toolbox contains a
collection of PGD-based algorithms able to perform algebraic operations between parametric objects, such as scalars,
vectors and matrices depending on the parameters µ. This allows the introduction of a general methodology to solve
ll the parametric operations involved in the IPM algorithm, that is: (1) solving a linear system of equations (line
in Algorithm 1); (2) divide a vector by a scalar (lines 1 and 4), vector–matrix–vector product (lines 1, 4 and 8);

nd (3) compute the square root of a scalar (parameter-dependent) quantity (lines 1, 4 and 8). All operations but
he square root were already available in the toolbox. The square root routine was developed in the context of this
ork and added to the toolbox, following the algorithmic structure described in Section 3.2.
According to the standard PGD philosophy, the encapsulated toolbox assumes a separated representation of the

ultidimensional solution, which is obtained using a greedy-type algorithm combined with an alternated directions
cheme, as deeply described in [38] and [53]. As a consequence, the PGD approximation of the n-th eigenmode
n(µ) can be expressed as the linear combination of an a-priori unknown number of terms nφn , namely

φn(µ) ≈ φPGD
n (µ) =

nφn∑
i=1

β i
φn

φi
n

n p∏
j=1

F j,i
φn

(µ j ). (13)

very i-th term of this sum is given by the product of a series of functions, each one depending separately on one
f the problem parameters. More precisely, φi

n refers to the spatial dimension and F j,i
φn

(µ j ) corresponds to the set
f parametric functions depending separately on each parameter µ j , for j = 1, 2, . . . , n p. If spatial and parametric
erms are normalised, a factor or amplitude β i

φn
appears, that indicates the relevance of the i-th term of the sum to

he final separated solution. Analogously, the PGD approximation of the angular frequency ωn(µ) reads

ωn(µ) ≈ ωPGD
n (µ) =

nωn∑
i=1

β i
ωn

n p∏
j=1

F j,i
ωn

(µ j ). (14)

ote that, being ωn a scalar, its spatial part becomes βωn . In order to perform parametric operations by means of

he encapsulated toolbox, the input data of the routines must also be provided in the separated form. In this case,

6
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a pre-process step is necessary to define the parametric stiffness and mass matrices as

K(µ) =
nK∑
i=1

Ki
n p∏
j=1

F j,i
K (µ j ) and M(µ) =

nM∑
i=1

Mi
n p∏
j=1

F j,i
M (µ j ). (15)

f an exact analytical separated expression exists for the two matrices, the amplitudes do not appear in (15) because
o normalisation of the PGD terms is needed. It is important to underline that it is not always trivial to find a
eparated analytical representation of the input data, especially when geometric parameters are considered in the
roblem. Furthermore, assuming that a separated expression can be found, standard a-priori PGD methods require
modification of the weak form of the problem. Such an “intrusive” approach is practically not employable in the

ndustrial context, where commercial FE software is used, i.e. source codes are typically not accessible. For this
eason, a hybrid and nonintrusive algebraic approach was proposed by the authors in a previous work [11], which
s able to deal with general shape parametrisations and allows an easy interaction with commercial software. The

ain idea is to add a pre-process step to the method. From the computational point of view, this process consists
n assembling (without solving the problem) the input matrices for every possible combination of the parametric
alues in the discretised domain and then expressing them in the separated format. If each introduced parametric
imension µ j ∈M j for j = 1, 2, . . . , n p is discretised using m j nodal values, then the full-order sampling of the
arametric matrices consists of evaluating K(µ) and M(µ) in the set of m tot points used to discretise the parametric
omain M :=M1 ×M2 × · · · ×Mn p , where m tot =

∏n p
j=1 m j . It is worth noting that this technique preserves

fficiency, since the computational cost for the matrices assembly is small compared to the cost of a full-order
ynamic simulation. For the example tested in this work, which is discretised with a coarse FE mesh relatively to
eal industrial models, the time needed to assemble the input matrices for one configuration is four times cheaper
han solving the corresponding dynamic problem. If finer meshes are considered, the cost of the assembling is
xpected to be negligible compared to the full-order computation. In addition, the sampling of the matrices can
e done in parallel. Once the matrices are sampled, they can be expressed as in Eq. (15). The number of PGD
erms needed to describe the two matrices can be reduced to a much smaller number than m tot by performing a
GD-based data compression [53]. In fact, every time a PGD operation (such as product, sum, difference) leads to
large number of terms, data compression is advisable to reduce the number of PGD terms whilst maintaining a

esired level of accuracy.
If the structure is unconstrained, the parametric matrix Φ6(µ) =

[
φ1(µ),φ2(µ), . . . ,φ6(µ)

]
containing the first

ix (in 3D) rigid-body modes must be also given as separated input data to the IPM. As explained in detail in [11],
t can be computed in a separated format as the kernel of the stiffness matrix. These rigid-body modes depend on
he design variables only if geometric parameters are involved in the problem because, by definition, the rigid body

odes of a structure do not depend on the material properties.
Once the initial input of the problem is available, a “cascade” application of the PGD method can be performed,

n the sense that the output of each parametric algebraic operation, obtained by calling an encapsulated PGD routine,
an be directly used as the input of the next operation, until the global solution is obtained. The parametric input data
re computed as separated multidimensional tensors, which we indicate with the superscript □PGD. An overloading
f the arithmetic operators allows to use the standard Matlab symbols to call the algebraic operations contained in
he encapsulated library, which makes the method highly user-friendly. Table 1 summarises some of the algebraic
perations available in the Encapsulated PGD library and the corresponding Matlab symbols.

Fig. 1 shows a pseudo-code describing the algorithmic aspects of the method when the first non-zero neig smallest
igenpairs of an unconstrained structures are sought.

Analogously to Eq. (12), the parametric IPM consists of iteratively solving the following system of equations:[
K(µ) M(µ)Φn(µ)

(M(µ)Φn(µ))⊤ 0

] [
φn+1(µ)

λ(µ)

]
=

[
M(µ)φn+1(µ)

0

]
. (16)

f the first non-zero eigenmode φ7(µ) is sought, then the matrix of already known mode shapes coincides with the
atrix of rigid body modes, i.e. Φn(µ) = Φ6(µ). For every new computed eigenmode φn+1, the matrix is updated

s Φn(µ) = [Φn(µ),φn+1]. The Lagrange multipliers λ(µ) are introduced in order to get unicity by enforcing
ass-orthogonality to the set of already known eigenvectors. It is important to point out that, according to the

uthor’s knowledge, this deflation technique has not been proposed before in the context of the standard IPM.

his is due to the fact that in a non-parametric context other more efficient methods can be used, as discussed

7
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Table 1
Some of the algebraic operations available in the encapsulated PGD toolbox. Matlab
symbols can be used in a standard way.

Matlab symbol Encapsulate PGD routine

KPGD
\ f PGD Solve linear system

uPGD
+ vPGD Sum (or difference)

KPGD
∗ uPGD Product

uPGD./vPGD Division
(uPGD)

′

Transpose
sqrt(uPGD) Square root˜uPGD Compression[
uPGD, vPGD

]
and

[
uPGD
; vPGD

]
Arrays concatenation

in Section 2.1. Nevertheless, in this novel extension of the eigenvalue problem to the parametric framework, the
Lagrange multipliers technique proved to be the most efficient. Alternative strategies were also tested. For example,
Felippa et al. [54] proposed a modification of the stiffness matrix as K+Φ6Φ

⊤

6 , whose eigenvalues are identical to
hose of K but the eigenvalues associated to the rigid body modes are raised to unity. This overcomes the stiffness
ingularity but leads to full matrices, which is not advisable, especially in the parametric format. Furthermore, extra
perations should be performed in order to normalise the obtained eigenvectors at every iteration, e.g. by means
f the Gram–Schmidt orthogonalisation. The Lagrange multipliers technique proposed here solves the singularity
ssue and compute an orthonormal set of eigenvectors at the same time, reducing to the minimum the number of
lgebraic operations needed in the parametric case.

As it is shown in the pseudo-code, a PGD guess vector φold needs to be prepared every time a new eigenmode
s sought. Then the extended system in Eq. (16) is iteratively solved by calling the corresponding encapsulated
outine until convergence is reached, that is when a quantity Eφ is smaller than a user-defined tolerance. Here Eφ

s defined as:

Eφ =

⏐⏐⏐∑nφnew

i=1 β i
φnew
−
∑n

φold

j=1 β
j
φold

⏐⏐⏐∑n
φold

j=1 β
j
φold

, (17)

where β i
φnew

and β j
φold

represent, respectively, the amplitudes of the PGD terms describing φnew and φold after
being normalised. The normalisation is performed every time a new eigenvector φnew is computed, by dividing it
by its M-norm, namely

√
(φnew,PGD)⊤MPGDφnew,PGD, where sqrt and ∗ are the Matlab symbols used to perform the

ncapsulated square root and product between PGD objects. Note that, in a parametric format, the normalisation
equires four algebraic operations: a product, a compression, a square root and a division.

Finally, once convergence is reached, the sought eigenvector φPGD
n+1 can be stored and the corresponding eigenvalue

an be calculated according to the Rayleigh quotient (ωPGD
n+1)2

= (φPGD
n+1)⊤KPGDφPGD

n+1. The same procedure is repeated
ntil the desired number neig of eigenpairs is obtained.

It is worthy to emphasise that the described algorithm is solved by means of just one offline computation. The
esulting eigenpairs represent the compact version of all the possible solutions for every value of the parameters.
nce this offline stage is completed, the obtained computational vademecum can be used for optimisation studies,
r it could be uploaded on light computing devices such as a tablet, where the designers could visualise in real time
ow the global response of the structure would change with a variation of the parameters.

.2. PGD square root

The PGD operations necessary to code the parametric version of the algorithm are collected in Table 1. All of
hem but the square root were already available in the Encapsulated PGD toolbox, and the corresponding algorithms
resented in [38]. This section presents the algorithm devised to implement the square root operation in the toolbox.

Recall that PGD combines a greedy strategy (computing sequentially the rank-one terms) and, for each rank-one
roblem, an iterative alternated directions scheme looping in all the parametric dimensions (for γ = 1, 2, . . . , n p)

ssuming that all the sectional information is known for any other sectional dimension j ̸= γ . The core of the

8
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Fig. 1. Pseudo-code of the PGD-IPM method.
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algorithm is summarised in the expression used to iterate (how to compute the sectional dimension γ , assuming
that the rest of the sectional dimensions are known). The goal of this section is to present this expression for the
square root operation. In this particular case, the expression for the first term (i = 1) is different than for the
subsequent terms (i = 2, 3, . . . ).

The input is a scalar parametric value X (µ) expressed in a separated format

X (µ) =
nX∑
i=1

β i
X

n p∏
j=1

F j,i
X (µ j ), (18)

which is assumed to be nonnegative for every value of µ. Note that, in accordance with the previous developments,
the amplitude β i

X of each term arises from a normalisation of the parametric sectional modes F j,i
X (µ j ).

The aim is to compute Y (µ) =
√

X (µ), that is Y (µ), nonnegative and such that Y (µ)2
= X (µ). The solution is

ritten in the form of a sum of nY rank-one terms, namely

Y (µ) =
nY∑
i=1

β i
Y

n p∏
j=1

F j,i
Y (µ j ). (19)

irst rank-one term (i = 1).
The standard greedy approach in the PGD consists of computing the rank-one terms sequentially. Let us denote

he first rank-one term, prior to the normalisation of the sectional modes that brings out amplitudes, by

Ỹ (µ) =
n p∏
j=1

F j
Ỹ

(µ j ). (20)

he idea is to find Ỹ such that

(Ỹ )2
= X. (21)

n alternated directions strategy is adopted that consists of computing the sectional mode Fγ

Ỹ
(µγ ) assuming that

he rest of the modes F j
Ỹ

(µ j ) are known for j ̸= γ , and looping for γ = 1, 2, . . . , n p. Given γ , the problem is
olved multiplying by a weighting function

δỸ (µ) = δFγ (µγ )
∏
j ̸=γ

F j
Ỹ

(µ j ) (22)

nd integrating in all parametric dimensions but γ , that is∫
· · ·

∫
µ j ̸=µγ

(
Ỹ
)2
δỸ (µ)

∏
j ̸=γ

dµ j =

∫
· · ·

∫
µ j ̸=µγ

XδỸ (µ)
∏
j ̸=γ

dµ j (23)

sing expressions (20) and (22) in (23) results in⎡⎣∏
j ̸=γ

∫
µ j

(F j
Ỹ

(µ j ))3dµ j

⎤⎦
  

=:β⋆

(Fγ

Ỹ
(µγ ))2δFγ (µγ ) =

nX∑
i=1

β i
X

⎡⎣∏
j ̸=γ

∫
µ j

F j,i
X (µ j )F j

Ỹ
(µ j )dµ j

⎤⎦ F i,γ
X (µγ )

  
=:R(µγ )

δFγ (µγ )

(24)

or all δFγ (µγ ). Note that scalar β⋆ and function R(µγ ) introduced in (24) are computable at this stage of the
lternated directions algorithm. Thus, the resulting sectional mode Fγ

Ỹ
(µγ ) is updated in this iteration using the

ollowing expression:

Fγ

Ỹ
(µγ ) =

√
R(µγ )/β⋆, (25)

which defines the core of the PGD square root algorithm (for the first term, i = 1).

ubsequent rank-one terms (i = 2, 3, . . . ).
10
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Now, assume that expression (19) for Y is obtained for some nY and it has to be enhanced adding the nY + 1
term. This rank-one term is denoted, prior to normalisation of the sectional contributions, by

∆Y (µ) =
n p∏
j=1

F j
∆Y (µ j ). (26)

The algorithm proposed is based on the fact that in the PGD greedy algorithm, the first modes produce a fair
approximation of

√
X (µ) and therefore, in order to compute the next term, a linearisation of the equation is sufficient

o improve the approximation. The following approximated equation for ∆Y results from neglecting the quadratic
term (∆Y )2 in front of Y∆Y , namely

(Y +∆Y )2
= X results in Y∆Y ≈

1
2

(X − Y 2). (27)

Once again, the unknowns F j
∆Y , for j = 1, 2, . . . , n p are computed with the standard alternate directions strategy,

that is assuming that F j
∆Y are known for j ̸= γ , multiplying by a variation δY , and integrating in all sectional

dimensions but γ , analogously to (23). The variation δY reads

δY (µ) = δFγ (µγ )
∏
j ̸=γ

F j
∆Y (µ j ). (28)

hus, in Fγ

∆Y is computed such that, for all δFγ (µγ )

nY∑
i=1

β i
Y

=:βi
⋆  ⎡⎣∏

j ̸=γ

[∫
µ j

F j,i
Y (µ j )

(
F j
∆Y (µ j )

)2
dµ j

]⎤⎦ Fγ

∆Y (µγ )F i,γ
Y (µγ )δFγ (µγ ) =

⎡⎣∫ · · · ∫
µ j ̸=µγ

1
2

(X − Y 2)

⎛⎝∏
j ̸=γ

F j
∆Y (µ j ) dµ j

⎞⎠⎤⎦
  

=:R(µγ )

δFγ (µγ ) (29)

Thus, the expression defining the core of the alternated directions algorithm for the subsequent terms i = 2, 3, . . .
(and analogous to (25) for i = 1) reads

Fγ

∆Y (µγ ) = R(µγ )/

( nY∑
i=1

β i
Yβ

i
⋆F i,γ

Y (µγ )

)
. (30)

4. Numerical examples

Two numerical examples are presented in this section to show the potential of the proposed PGD-IPM method.
In the first example, the method is used to analyse the dynamic properties of a 3D solid structure characterised
by both material and geometric parameters. In the second example, a more realistic industrial case is investigated,
which concerns the dynamic response of a dummy car. Also, a multi-objective optimisation study is performed,
which makes the PGD-IPM method a very interesting tool to be employed in the context of design optimisation
problems.

4.1. Parametric inverse power method with material and geometric parameters

The modal analysis of an unconstrained linear elastic 3D structure characterised by one material and one
geometric parameter is considered. The two variables, which are treated as additional coordinates of the problem, are
denoted with µ ∈Mµ and θ ∈Mθ for the material and geometric parameters, respectively. As depicted in Fig. 2,
the reference domain Ω̂ consists of a block with dimensions [−L x/2, L x/2]×[−L y/2, L y/2]×[−L z/2, L z/2] with
an inclusion given by [−L x/6, L x/6]× [−L y/4, L y/4]× [−L z/2, L z/2], where L x = 6, L y = 12 and L z = 1. The
patial discretisation, also shown in Fig. 2, consists of a regular mesh with 236 nodes and 742 linear tetrahedral
lements.
11
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Fig. 2. Computational domain, showing the partition into two non-overlapping subdomains ΩA(θ) and ΩB (θ ) (left) and top view of the
iscretised computational domain (right).

Fig. 3. Physical domain for three different values of the geometric parameter θ .

The physical domain Ω (θ ) depends upon the geometric parameter and it is split into two non-overlapping
ubdomains ΩA(θ ) and ΩB(θ ), such that the parametric Young’s modulus E is defined as

E(x, µ) =

{
E A(µ) = µ for x ∈ ΩA(θ ),
EB = 200 for x ∈ ΩB(θ ),

(31)

here the Young modulus E A(µ) is considered varying in the range Mµ = [10, 410], and Mµ is discretised with
uniform distribution of nµ = 41 points. The Poisson’s ratio and the density are assumed constant in the whole

omain and take values ν = 0.3 and ρ = 1 respectively.
The geometrically parametrised domain Ω (θ ) is described with the Cartesian coordinates x, and it is defined as

he image of the reference domain Ω̂ , with reference coordinates x̂, via a geometric mapping Ψ (x̂, θ), namely⎧⎪⎪⎪⎨⎪⎪⎪⎩
x = ψ1(x̂, θ) = x̂ + θ sin

(
π ŷ
L y

)(
x̂ −

L x

2

)
,

y = ψ2(x̂, θ) = ŷ,
z = ψ3(x̂, θ) = ẑ.

(32)

he parameter θ is taken to be in the interval Mθ = [0, 0.5], and Mθ is discretised with a uniform distribution
of nθ = 21 points. The effect of the geometric parameter is depicted in Fig. 3, where the deformed computational
domain for three different values of the parameter θ is presented. The particular value θ = 0 leads to a deformed
configuration that coincides with the reference configuration, i.e. the mapping of Eq. (32) becomes the identity.

The objective of this numerical test is to explore how changing the introduced design parameters affect the
dynamic response of the structure. This can be done by performing a parametric modal analysis of the structure by
means of the proposed PGD-IPM eigensolver. As explained in the previous section, the first essential step consists of
defining the input data (i.e. stiffness and mass matrices) in a separated format. Thanks to the linear dependence of the
stiffness matrix on the Young’s modulus, an analytical separable representation of the stiffness matrix with respect
to µ can be easily constructed. For the geometric parameter θ , it is not trivial to find a separated representation. For
this reason, a novel algebraic technique is employed, as mentioned in Section 3 and discussed in detail in [11]. The

main idea behind this algebraic technique is to generate a new geometrically deformed mesh for every nodal value

12
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of the geometric parameter θ p
= [θ1, θ2, . . . , θnθ ]T , according to the mapping of Eq. (32). For each new mesh,

wo stiffness-like matrices KA(θ p) and KB(θ p) are assembled. The quantity KA(θ p) is calculated by imposing the
Young’s modulus (E A, EB) = (1, 0), thus accounting for the contribution of the finite elements belonging to the
subdomain ΩA(θ p) to the global stiffness matrix. Analogously, KB(θ p) corresponds to the choice (E A, EB) = (0, 1)
and accounts for the contribution of the finite elements belonging to the subdomain ΩB(θ p). Once these matrices are
sampled in the parametric nodes nθ , a separated form of the parametric global stiffness matrix is readily available,
namely

K(µ, θ) = E A(µ)
nθ∑

i=1

Ki
A ki (θ )+ EB

nθ∑
i=1

Ki
B ki (θ ), (33)

with ki (θ p) = δp,i , for every nodal value p = 1, 2, . . . , nθ of the geometric parameter. If the number of PGD
terms is large, it is advisable to perform data compression. This is of particular importance in the framework of
the PGD-IPM as compressing the PGD terms will alleviate the cost of the subsequent algebraic operations. In this
example, after performing compression with a tolerance of 10−5, an accurate approximation of the stiffness matrix
was obtained with only nK = 10 terms, instead of the initial 861 terms:

KPGD(µ, θ) =
nK∑
i=1

β i
K Ki M i

K(µ) G i
K(θ ). (34)

The PGD approximation of the parametric mass matrix is obtained by following the same procedure:

MPGD(µ, θ) =
nM∑
i=1

β i
M Mi M i

M(µ) G i
M(θ ). (35)

It should be mentioned that the mass matrix is actually independent on the Young modulus, that is M i
M(µ) = 1.

owever, the general expression of Eq. (35) is used to maintain a consistent notation for all the inputs of the
GD-IPM approach. Note that, from now on, the material parametric functions will be denoted by M(µ), while

G(θ ) will be used for the geometric functions, omitting the subindex for a better readability.
Once the separated representation of the input data is available, the proposed method can be finally employed

ollowing the steps shown in Fig. 1. In this example, the goal is to compute the first three mode shapes φn(µ, θ),
ith n = 7, 8, 9, corresponding to the smallest non-zero eigenvalues. For each n-th mode, the generalised PGD

solution reads:

φn(µ, θ)PGD =
Nφ∑
i=1

β iφi
n M i (µ)G i (θ ). (36)

ig. 4 shows the generalised results in terms of amplitude, parametric and spatial terms for the three modes
PGD
7 ,φPGD

8 ,φPGD
9 . As expected, the amplitudes β i rapidly decrease as the number of PGD terms increase. Using

tolerance of 10−3 to stop the enrichment of the PGD solution, a maximum number of 10 terms is needed to
et an accurate representation of the three parametric mode shapes. In addition, the results show that the first four
GD terms capture the most relevant information of the generalised solution, as the fifth and subsequent terms
ave an amplitude at least two orders of magnitude lower than the amplitude of the first PGD term. For this reason,
he first four parametric and spatial terms are also shown in Fig. 4. For each mode shape, same colours are used
o depict the parametric functions and amplitudes related to the same i-term. The parametric functions seem to
how a higher influence of the material parameter then the geometric one on the final response. The spatial modes
rovide an illustration of the deformation induced by the four most relevant terms of the generalised solution. Those
llustrations already allow to identify the type of mode shapes. In fact, the first mode φPGD

7 can be identified as a
exional mode, the second φPGD

8 as torsional, while the third φPGD
9 mode shows a shear-type deformation along the

ongest edge of the structure.
In order to get a particularised solution for a chosen set of the parameters (µ̄, θ̄ ), the corresponding function

alues M i (µ̄) and G i (θ̄ ) are evaluated for each PGD-term i and then multiplied by the corresponding spatial term
nd amplitude of the desired mode shape. This procedure can be easily performed in a post-process step, providing
eal-time results for any combination of the parameters. As already known, once the parametric mode shapes are

vailable, the corresponding three eigenvalues can be simply computed by means of the Rayleigh quotient. In order

13
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Fig. 4. PGD generalised solution for the first three shape modes φPGD
7 ,φPGD

8 and φPGD
9 . For each mode, the evolution of the amplitude β i of

he PGD terms, the first four parametric functions and first four spatial terms are shown. Same colour is assigned to amplitudes values and
orresponding parametric functions.
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Table 2
Accuracy of the PGD results with respect to the full-order FE computations measured as the
relative error between the PGD and FE solutions in the L2 and L∞ norm according to Eqs. (37)
and (38).

ωPG D
7 (µ, θ) ωPG D

8 (µ, θ) ωPG D
9 (µ, θ)

∥εPGD∥2 9.18× 10−4 1.00× 10−3 1.00× 10−3

∥εPGD∥∞ 4.20× 10−3 3.56× 10−3 1.15× 10−1

Fig. 5. Variation of the first three smallest natural frequencies f7, f8 and f9 with respect to the parameters µ and θ .

to validate the PGD results, the accuracy with respect to the full-order FE computations is measured as the relative
error between the PGD and FE eigenvalue solutions in the L2(Mµ ×Mθ ) norm, that is

∥εPGD∥2 =

⎛⎝∫Mθ

∫
Mµ

(
ωPGD
− ωFE

)2 dµ dθ∫
Mθ

∫
Mµ

(ωFE)2 dµ dθ

⎞⎠1/2

. (37)

Also the maximum error is calculated as the L∞(Mµ ×Mθ ) norm:

∥εPGD∥∞ = max
µ∈Mµ,θ∈Mθ

(⏐⏐ωPGD
− ωFE

⏐⏐
ωFE

)
. (38)

Table 2 reports the calculated L2 and L∞ errors for the three computed eigenvalues, proving that a high level
f accuracy can be obtained by using the proposed PGD-IPM method. It is worth noting that to compute this error
easure, the problem had to be solved by means of the standard FE method for each possible combination of

he parameters, that is nµ × nθ = 21 × 41 = 861 FE simulations. It is important to underline that the main goal
n the PGD context is not to reduce the computational cost, but to provide a method which is able to explore
n arbitrary large parametric space with only one offline computation. Another important advantage concerns the
torage memory. In fact, the obtained PGD computational vademecum needs ˜182 KB of storage memory for
he three eigenmodes versus the ˜14900 KB needed to store 861 full-order FE solutions for each of the three
igenmodes.

To conclude, another important property of the method is shown, which is the possibility to explore the design
pace and check, in real time, the effects of the design parameters on a predefined quantity of interest (QoI). In this
ase, the frequency associated to each mode shape is chosen as QoI, which is computed as:

f PGDn (µ, θ) =
ωPGD

n (µ, θ)
2π

. (39)

The variation of the three frequencies f PGD7 , f PGD8 and f PGD9 in the parametric space is depicted in Fig. 5. This
results clearly show that the geometric parameters have less influence on the frequency, especially for values of µ
smaller than the constant Young’s modulus E0 in the remaining domain. This conclusion could be used to make
decisions during the design process.
15
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Fig. 6. Geometry and mesh properties of the BIW structure used for the dynamic global torsional stiffness analysis (left). The three car
omponents highlighted (right) are characterised by parametric properties, that is the thickness of each one of the components.

.2. Industrial test: parametric modal analysis of a dummy car

The PGD-IPM method is now employed to solve a more realistic problem, which is the noise, vibration and
arshness analysis (NVH) of a vehicle. Finite element modal analysis is usually employed in order to predict the
ynamic properties of a vehicle in terms of its natural frequencies and shape modes. At this purpose, the PGD-IPM
ethod is proposed here to study the influence of predefined design parameters on the dynamic behaviour of the

ody in white (BIW) car structure, where BIW is the technical name used in the automotive industry to indicate a
ar body’s frame when all the components have been joined together.

The geometry of the BIW and the mesh discretisation are shown in Fig. 6. Isoparametric quadrilateral shell
lements are used to discretise the FE model which is formed by a total number of 3819 nodes, each one
haracterised by six degrees of freedom (three translations and three rotations). All the car components are
haracterised by a linear elastic material. In this example, the thickness of three car components highlighted in
ig. 6 are introduced as extra coordinates of the problem. The three parameters are denoted by µ = [µ1, µ2, µ3]T

nd they vary in the intervals M j = [0.7, 1.5] mm, for j = 1, 2, 3. Each parametric domain is discretised with
1 = n2 = n3 = 9 equidistant nodes. Although from a physical point of view the thickness is meant as a geometric
arameter, in the shell element formulation it is treated as a material property.

The proposed PGD-IPM approach is employed following the same procedure described in the previous example.
n important difference with respect to the previous test is that, in this numerical example, the commercial FE
ackage MSC-Nastran is employed, demonstrating the nonintrusive character of the proposed PGD-IPM. The
oftware is used to assemble the parametric input matrices for each possible combination of the parameters
without solving the problem) and stored. Afterwards, the matrices can be expressed in the required separated form
PGD(µ) and MPGD(µ), as done in the previous example. Also in this example the structure is in its unconstrained

onfiguration, so that the rigid body modes need to be computed. The goal of this numerical test is to compute
he first three eigenvectors φPGD

7 , φPGD
8 and φPGD

9 associated to the smallest non-zero eigenvalues by means of the
GD-IPM eigensolver.

In this example, it can be verified that the first and third eigenvectors represent two different kinds of flexional
odes for every combination of the parameters, while the second eigenvector always represents a torsional mode.
owever, when more complex models are analysed, the order of the modes can easily change with the parameters,

o their identification would represent an important task.
Since the torsional mode plays a crucial role in the characterisation of the dynamic properties of the BIW, Fig. 7

hows only the PGD generalised solution for the second shape mode φPGD
8 , defined as:

φPGD
8 (µ1, µ2, µ3) =

N∑
i=1

βi φi
8 M i

1(µ1) M i
2(µ2) M i

3(µ3). (40)

lthough this example is more complex and realistic than the previous one, the amplitudes β i decrease rapidly
ith the number of PGD terms and only 11 terms are needed to ensure an amplitude of 10−3. Also in this case,

he first four terms contain the most important information about the solution, since the fifth and subsequent terms

ave an amplitude of at least two order of magnitude smaller than the amplitude of the first term. The parametric
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Fig. 7. PGD generalised solution for the first torsional mode φPGD
8 . Evolution of the amplitude β i of the PGD terms (top). First four

arametric functions of the generalised solution (centre). First four spatial PGD terms (bottom). Same colour is assigned to amplitude values
nd correspondent parametric functions.

unctions, shown in Fig. 7, contain the information about the influence of the parameters on the particularised
igenmode φPGD

8 (µ1, µ2, µ3). Finally, the spatial terms clearly show that this eigenmode represents a torsional mode
hape. Fig. 8 shows the deformation and the equivalent von Mises stress field for the three eigenvectors when three
ifferent set of parameters are chosen. Also the frequencies associated to each parametric choice are indicated,
hich are calculated according to Eq. (39).
This post-process helps to understand which components of the BIW structure are most sensitive to changes in

he parameters. In particular, for all vibrational modes, the maximum values of the von Mises stress concentrate
n the windshield header. Furthermore, it is shown how small variations in the thicknesses of the three parametric
omponents can lead to variations of the frequency in the range of about 2 Hz, which might change the perception of
ibration for the occupants of the vehicle. It is important to remember that this particularised solutions are calculated

n real-time, after having obtained the PGD solution by performing the offline PGD-IPM computation.

17
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Fig. 8. Particular cases of the generalised solution, showing the von Mises stress field related to the three eigenvectors associated to the
first three smallest non-zero eigenvalues, for three different sets of the parameters. The solutions are obtained in real-time after the PGD is
applied to compute the spatial and parametric modes.

Fig. 9. Isosurfaces showing the variation of the first three smallest natural frequencies f7, f8 and f9 with respect to the parameters µ1, µ2
and µ3.

In order to have a better understanding of how the design parameters affect the dynamic response of the car, the
variation of the three smallest natural frequencies in the parametric space is shown in Fig. 9, in terms of isosurfaces.

To conclude this numerical example, a multi-objective optimisation process is demonstrated by using the PGD-
IPM results. Let us assume that the goal of the optimisation is to find the combination of parameters able to maximise

the frequency associated to the torsional mode, while minimising the mass of the three car components considered

18
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Fig. 10. Multi-objective optimisation showing the Pareto front as a function of the objectives (left) and the PGD parameters (right).

in this example. To this end, the following two objective functions are considered{
g1(µ) = ρ (µ1 A1 + µ2 A2 + µ3 A3),
g2(µ) = f PGD8 (µ).

(41)

The function g1(µ) represents the mass of the material needed to manufacture the three car components, equal
o the product of the material density ρ and the parametric volume. The latter is given by the sum of the products
etween the car components areas (A1, A2, A3) times their variable thicknesses (µ1, µ2, µ3). Clearly, this quantity
s strictly related to the production cost. The objective function g2(µ) represents the parametric torsional frequency
ssociated to φPGD

8 and calculated by means of the Rayleigh quotient. Thanks to the explicit dependency of the
requency on the parameters, the optimisation problem could be directly solved by means of the gamultiobj

unction available in the Global Optimisation Toolbox released by Matlab. The function uses a genetic algorithm
n order to find the Pareto front of multiple objective functions, meant as a set of optimal points in the parametric
pace that represent a trade-off between the objective functions. More specifically, a point is considered optimal
f no objective can be improved without sacrificing at least one other objective. The results of the optimisation
tudy are shown in Fig. 10, where the optimal Pareto front correspond to the coloured points, while the empty
oints represent the whole range of configurations that should be considered if all the parametric combinations are
nalysed. The coordinates (µ1, µ2, µ3) of the optimal points are also shown in the right plot of Fig. 10. All the
ptimal points belong to the boundaries of the parametric domain, except two points which are indicated in the
icture. In conclusion, the optimisation process allows to drastically reduce the range of solutions to be considered
y a designer in the decision-making process. Note that, in this example, the Pareto front was computed by assigning
he same weight to the objective functions. Nevertheless, it is straightforward to obtain other fronts if the user wants
o put more emphasis on one of the objective functions.

. Conclusion and outlook

This work proposes a nonintrusive algebraic PGD approach combined with the inverse power method (PGD-IPM)
o perform the parametric modal analysis of unconstrained structures being characterised by material and geometric
arameters. The developed eigensolver uses a library of PGD-based routines implemented by Dı́ez et al. [38] to
equentially perform algebraic operations between parametric objects in a black-box format. In addition, a new
lgorithm was developed and added to the encapsulated library, which computes the square root of a parametric
uantity. Furthermore a Lagrange multipliers deflation technique is proposed to overcome singularity issues in the
ase of unconstrained structures and to compute a multiple set of smallest natural frequencies and corresponding
ode shapes. Two numerical examples are tested to compute the desired parametric solutions. In the first example,

n academic test case with one material and one geometric parameter is proposed to show the properties of the PGD
olution. The variation of the natural frequencies and mode shapes in the parametric domain is calculated with only

ne offline computation and the accuracy of the generalised solution is measured by comparing the PGD solution to
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the whole set of standard FE full-order solutions. In the second example, a more realist industrial case is presented to
show the nonintrusive interaction of the proposed method with the commercial FE package MSC-Nastran. Here, the
parametric results of the modal analysis of a dummy car are presented. The solution for specific sets of parameters
are computed in real-time during a post-process step at the negligible cost of a linear combination. Finally, a multi-
objective optimisation study is performed, which makes the method significantly appealing for industrial applications
where designers urgently need new computational tools to support the decision-making process. With a small effort,
the generalised solutions generated by employing the developed technique could be uploaded on portable devices
(such as tablets) such that designers could evaluate in real time the impact of certain parameters on the global
response of the structure.
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