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Abstract
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Wasserstein distance and relative entropy of measures under the homeo-
morphism induced by Zvonkin’s transformation.
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1 Introduction

Let (E, p) be a metric space equipped with a o-field % such that p(-,-) is B x £
measurable and let &(FE) be the class of all probability measures on E. Given
p > 1, the LP-Wasserstein distance between u, v € & (FE) is defined by

Wo(u,v) = inf (EXEpp(x,y)ﬂ(dx,dy)>;,

TEEC (V)



where € (i, v) is the space of all couplings of x and v. The relative entropy of
v with respect to u is given by

[ log g—:dy, if v << p,

400, otherwise.

H(v|p) = {

We say that the probability measure j satisfies the W-transportation cost
inequality (TCI for short) on (E, p) if there exists a constant C' > 0 such that
for any probability measure v,

Wy (p,v) < 2CH (v|p).

To be short, we write p € T,(C) for this relation.

Since Talagrand’s work [17], the T (C') and the T5(C) have been intensively
investigated and applied to many distributions, such as [3, 6, 23, 25] for diffu-
sion processes, [11, 12, 15, 22] for stochastic differential equations (SDEs) with
Lévy noise or fractional Brownian motion, [2, 18] for stochastic functional dif-
ferential equations (SFDEs). As for T1(C), it is related to the phenomenon of
Gaussian concentration, see [6, 10]. Moreover, we highlight that [6] gave an
equivalent characterization of 77(C') by “Gaussian tail” on a metric space and
some applications to random dynamic systems and diffusions. Using Malliavin
calculus, [11, 22] proved T3 (C') for the invariant probability measure and for the
process-level law on the path space w.r.t. the L'-metric and uniform metric of
the solution to SDEs with jumps under dissipative conditions. By using the mir-
ror coupling for the jump part and the coupling by reflection for the Brownian
part, [13] extended some TCIs to non-globally dissipative SDEs with jumps. As
for T5(C'), it implies the dimension-free concentration of measure, see [10, 16].
However, T5(C) is stronger than T (C') since W{ < WJ, and it has been brought
into relation with some functional inequalities such as Poincaré inequality and
log-Sobolev inequality, see [4, 6, 7, 8, 10, 14, 19, 25] and references therein. For
instance, T5(C') can be derived from the log-Sobolev inequality, and T5(C') im-
plies the Poincaré inequality, see e.g. [4, 14]. Moreover, the T5(C') can also be
established when the log-Sobolev inequality is unknown, see for instance [2, 6]
and references therein.

It is worth noting that most of the above references of TCIs for laws of solu-
tions to SDEs and SFDESs are required to meet Lipschitz condition for the drifts,
some references relaxed this condition to the case with one-sided Lipschitz con-
dition. Recently, [1] used the Girsanov transformation and the Krylov estimate
to obtain T5(C') for law of solution to SDEs with measurable drift. However,
the drift term does not have growth at infinity. Motivated by [20, 26, 27|, we
aim to establish 71 (C) and T5(C') for SDEs with a Lipschitzian drift perturbed
by an irregular term. To this aim, we use the Zvonkin transformation, which
induces a homeomorphism on the state space. Following the idea introduced by
[6], we give stability results on the Wasserstein distance and relative entropy of
measures defined on a polish space under the homeomorphism, which leads to
the stability of 7,,(C). Based on [21] and the “Gaussian tail” characterization
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of T1(C), T»(C) and T1(C) on the free path space are established for SDEs with
irregular drifts.

The remainder of the paper is organized as follows: in Section 2, we present
a general result on 7,(C') for measure p on Polish space (E,p); in Section 3,
the main results including the T5(C') for SDEs with Dini continuous drift and
T1(C) for SDEs with singular coefficients are introduced; by the general results
in Section 2, the T5(C') for SDE (3.1) and the 71(C) for SDE (3.5) are proved
in Section 4 and Section 5, respectively.

2 A general result

Let (E, p) be a Polish space, & be the Borel o-field and ® be a homeomorphism
on E. We can see that ® induces a homeomorphism on F x E, which is still
denoted by ®:

O(z,y) = (2(2),2(y)), (z,y) € EXE.

It is clear that the inverse of ® on E x E is given by
o7 (z,y) = (27 (2), 7' (y)) , v,y € E.

We can now formulate the following result. The proof is direct, and we give the
details for readers’ convenience.

Lemma 2.1. For any p > 1,u,v € P(E), the following assertions hold.

(1) Wo(p,v) = WZPJO(I)_I([L o ® 1 vo ®t). Moreover, if there are positive
constants ¢; and cy such that

cip(z,y) < p(@(x), ®(y)) < capla,y), ©,y € E, (2.1)
then
aWo(p,v) < Wh(uo Pl vod )< caWo(p,v). (2.2)
(2) H(v|p) = H(vo® Hpod7H).
Proof. (1). Let m € €(u,v) and A € Z. Then one has

To® N AXE)=n (2 Y (AXx E)) =7 (2'(4) x 2 (E))
=7 (®7'(A) x E) = p(@'(A))
=po® (A).

Similarly, it is easy to see that
Tod N (ExA) =vod (A).

Thus To®d ' € G(puo®Hvodt).



On the other hand, for any # € € (uo ® 1, vo &) we similarly have
7o® € €(u,v). Moreover, (mo ®71) o ® = 7. Define

(@‘1)# T mod ™t e (u, ),

then (®~1)# is a bijection from € (i, v) to € (o ®~ !, vo®~1) with inverse ®#.
For any 7 € €(u,v), the bijection (®~1)# implies that

WA, )P < P’ (z, y)m(dz, dy)

ExXE

— PP o @ (z,y)m 0 & (dz, dy)

ExXE

= PP o @ Mz, y) (271 %7) (dz, dy),

ExXFE

which implies that

W (u,v)P < inf pPo®H(z,y) (1) 7) (do,dy)

Fe(g(ﬂ,l/) ExE

= inf O~ (z, y)7(dz,d
ﬁe(g(uoérl17yocl>—1) EXEpp 9 (x,y>ﬂ'( Z, y)
= W}p)o{:'fl(pd o (I)_l, Vo (I)—l)p. (23)

Since ®# is the inverse of (®~1)#, we have

od—1 -1 ~1
WP (o ® v o )P < Wh(u,v)P.

This, together with (2.3), yields the first assertion of (1).
Since (2.1), we have that

cipo (I)_l(I,y) S P(xa?/) S Cop © (I)_l(w7y)'
Then one obtains from the definition of LP-Wasserstein distance that

clwg“l"l(u 0od 1 vod )< Wo (o Pl vod
< 02W§°¢71(u o®d L yod ).
Combining this with the first assertion, we obtain (2.2).
(2). We first assume v < pu. For any A € A, if po ®1(A) = 0, ie.
u(®"1(A)) = 0, then one has
vod 1(A)=v(® (A)) =0,

which implies v 0 @1 < po ®~1. Similarly, if v o @1 <« o @, then v < p.
Hence, H(v, 1) < oo if and only if H(v o ® !|uo ®~ 1) < oco.
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By the definition of push-forward measure, one obtains that for any ¢ €

1
/wd’“’@ dﬂo@lz/wdyoq)l:/woq)dy
E E

dp o -1
:/woégdu:/w %Oéfl duoéfl’
E dp E dp

dvod™ _ g—; o® ! po® tas. We then can see that

dpod—1

dv dv dv
H = 1 = — | log —
(n) /E<0g du> V= /Edu (Og du) e
dv dv
= — | log — oq)1> dpo®d !
/E qdu ( & duﬂ :

which yields

]

From the above lemma, we obtain the stability of 7,,(C') under a homeomor-
phism map. This result can also be derived from [6, Lemma 2.1}, here we use
the direct relation (2.2) and (2) of Lemma 2.1.

Corollary 2.2. Assume (2.1). For anyp > 1 and p € P (E), if p € T,(C),
then o ®~1 € T,(Cc2); conversely, if po ® ' € T,(C), then u € T,(Ccy?).

Proof. If 1 € T,(C), we then derive from (2) of Lemma 2.1 that

We(u,v) < 2CH(vo o 1uo &),

p

this, together with (2.2), yields that

We(uod ™ vod™) < \/208H (v o @ |uod),

that is, po @1 € T,,(Cc3) on (F, p). Similarly, the converse statement can also
be proved. O

Throughout this work, the following notation will be used. (R%, (-,-),|-])
denotes the d-dimensional Euclidean space, R? ® R? is the family of all d x d
matrices. For a vector or matrix v, v* denotes its transpose. Let || - || denote
the usual operator norm. Fix 7' > 0 and set || f||7,c0 := Supye(o7yzere [|f (¢ )|
for an operator or vector valued map f on [0, 7] x R%, C'(R%; R%) means the set
of all continuous functions f : R? — R% Let C?(R%RY @ RY) be the family
of all continuously twice differentiable functions f : R? -+ R? @ RY. Vi.i € N
means the ¢-th order gradient operator. Let W, be a d-dimensional Brownian
motion defined on a complete filtration probability space (€2, (:%;)i>0,-%,P). We
will use 0 to denote vectors with components 0.
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3 TCI for SDEs with singular coefficients

Let T > 0 be any fixed real number. For the process-level law of the solution
to SDEs, we first present T5(C') for equations with Dini continuous drift, then
T1(C) for equations with singular coefficients on the path space C([0,T]; R%)
under the uniform metric. Throughout this paper, we denote by p the uniform
metric on C([0, T]; RY):

pr(&,n) = sup & —nl, &n € C(0, T);RY.
te[0,7T

3.1 T5(C) for SDEs with Dini continuous drift
Consider the following SDE

dX; = {Bi(Xy) + by (Xy) }dt + oy (X)) AW, (3.1)
where B,b: [0,T] x R? — R¢ are measurable, and o : [0, 7] x R? — R¢ @ R? is
measurable. Let

1
9 = {¢ 1 [0,00) — [0, 00) is increasing, ¢? is concave,/ @ds < oo}.
0o S

With regard to (3.1), we impose the following conditions on its coefficients.

(A1) ||b]|7,00 < 400 and there exists ¢ € Z such that
[be(2) = 0e(y)| < d(|lz —yl), t€[0,T],z,y € R

(A2) By(-) satisfies Lipschitz condition and sup,ejo 71 |B:(0)| < oo; for any z €
R? o4(x) is invertible and o; € C?(R?%; R?®@R?); there exists some positive
increasing function K € C([0,00); (0, 00)) such that

IV Bz + lollzec + Vo lToo + IV20llrec + [(00™) Iz < K(T).

Remark 3.1. According to [20, Theorem 1.1], for any T > 0, the equation
(3.1) has a unique strong solution (Xy)wcpo,m under the assumptions (A1)-(A2).
Indeed, we can choose any Hilbert space Hy, a cylindrical Brownian motion
(VNVt)tZO on Hy independent of (Wy)i>0 and a positive definite self-adjoint opera-
tor Ay on Hy satisfying [20, (al)]. Then H :=R%® Hy is a Hilbert space with
the natural inner product induced from that of R and H,. Set

_(1a O _(oi(x) O d
A= (O A0)7 Qt(‘rlaxQ)_ ( 0 ]Ho ) xleR 7$2€H07

where Iy and Iy, are the identity on RY and Hy respectively. It follows from
[20, Theorem 1.1] that the following equation on H has a unique strong solution

() =)o (PR s e ton (i)

which yields that (3.1) has a unique strong solution.
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Remark 3.2. The condition fol @ds < o0 15 well known as Dini condition.
If ¢ is Holder continuous with exponent «, then ¢ is Dini continuous. In fact,
if 9(0) =0 and |p(s) — o(t)| < L|s — t|*, then fol @ds < L holds. However,
there are numerous Dini continuous functions which are not Holder continuous
for any a > 0. For instance,

o(s) = {(log ﬁ)”, 5> 0,

0, s=0.
It is easy to check that lim,_,+ @ = 400 for any a > 0, so ¢ is not Holder

continuous, but ¢ s Dini continuous. Indeed, ¢ is continuous and increasing on
[0, +00) with fol @ds < 00, which implies that ¢ is Dini continuous. Moreover,
¢? is concave.

We now state the first result.

Theorem 3.1. Suppose the assumptions (A1)-(A2) hold.
(1) Let P* be the law of the solution (Xi)icpor to (3.1) with initial value X, =
x € R, The quadratic transportation cost inequality on the path space, i.e.

W' (Q,P7)* < CH(QIP?), Qe 2(C([0,T|;R?))

holds for some constant C' > 0.
(2) Let p € P(R?) and P* be the law of (Xy)iejor) with initial distribution fu.
Then

W5T(Q,P)? < CiH(QIP*), Qe 2(C([0,T];RY)) (3.2)
holds for some constant C7 > 0 if and only if
Wy (v, u)? < CoH (v|p), ve P(RY (3.3)
holds for some constant Cy > 0.

TCI is closely related to the concentration of measure phenomenon, and we
first review the definition of measure p satisfying the concentration property as
follows:

Definition 3.1. The probability measure pp € Z(E) has concentration on (E, p)
with the concentration function o(r), which is defined as

a(r):sup{l—u(Ar) cACE u(A) > %},r>0, (3.4)

where A, denotes by the r-neighbourhood of A, namely, A, = {x : p(z, A) < r}.
The normal concentration of i1 means that the associated concentration function
a(r) < Ce " for all r > 0 with some positive constants C, c.

Remark 3.3. Based on [10, Theorem 2.4], the conclusion of this theorem im-
plies that P* satisfies the concentration property with

ar) = e*%(T*TO)Q, r >0,

where o = 1/C'log(2) and the constant C' is same as in the above theorem.
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3.2 T3(C) for SDEs with singular dissipative coefficients
In this subsection, we consider the following SDE

dX; = b(Xy)dt + o(X,)dW,, (3.5)
where b : R? = R?% o : R = R? ® R? are Borel measurable functions. Assume
that the coefficients b and o satisfy the following conditions:

(B1) b= by + by such that b; € LP(R?) for some p > d, and one of the following
conditions holds for b,
(1) for some Ky, ko, kg >0, 7 > —1

(z,by(7)) < —ky|2)*T" 4 Ko, and |by(z)| < Kg(1 4 |2|*7); (3.6)
(2) for some k4 > 0

[ba2(2)] < Fa(1 + [z]). (3.7)

(B2) o is uniformly continuous, and |Vo| € LP(R?Y) with the same p in (B1).
There is a constant ¢y > 1 such that

o PP <o (2)E]* < coléf?, &z e RY

by is called the singular part and by is locally bounded. According to [27,
Theorem 2.1, Theorem 3.1] (or [28, Theorem 1.1]) and the proof of [26, Theorem
2.9], (3.5) admits a unique strong solution under (B1) and (B2). We now state
the T1(C) for law of the solution to SDE (3.5).

Theorem 3.2. Assume assumptions (B1) and (B2) hold. Let p € 2(R%) with

u(e50|'|2+"'+) < oo for some constant & > 0. Then the distribution P* of the

solution (Xy)iepo,r) to SDE (3.5) with initial distribution pu satisfies the Ti(C'):
WiT(Q,P*) < CH(Q[P"), Qe 2(C([0,T;RY)),

for some constant C' > 0.

Remark 3.4. The assumption (B1) is different from the one on the drift in
[1], since our drift includes two parts such that b = by + by with by € LP(RY) for
some p > d while p > 2(d+ 1) is needed in [1], and the condition (3.6) on by is
weaker than the condition (4.2) in [6] where the one sided Lipschitz condition
15 imposed on the drift.

4 Proof of Theorem 3.1

4.1 Regularization representation of the solution to (3.1)

By Lemma 2.1, we establish the T5(C') for P* by constructing a differeomorphism
on C([0,T];R%). To this end, we will find a transform @ : [0,7] x RY — R? in
the spirit of [20].

We first decompose B; into a smooth term and a bounded Lipschitz term.
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Lemma 4.1. There exist B, € C*(R?) and B, which is Lipschitz such that
Bt = Bt + Bt and

IV Bllz.0 + IV Bllz,00 < 00,
IVBllzoo VIV Bll7o VI Bllzce < VB0 (4.1)

Proof. Let x be a smooth function supported in {z € R? | |z| < 1} and
Jpa x(z)dz = 1. Set

Bi(x) = By x x(z), By(z) = By(x) — By(x).

Then the assertions of this lemma hold.

From this lemma, we could explicitly decompose the drifts as follows:
Bi(x) + bi(x) = Bi(x) + (Bi(x) + by(x)), (4.2)

where B, and B, are defined in Lemma 4.1. Let b,(z) = b,(x) + B,(z), we then
have that

~ ~

[be(x) — be(y)| < |z — y|) + 2| VB]lreo(lz — y| A1)
< ¢(|z — y|) + 2|V Bllre(lz — y|2 A1)
= o(lz —y|), z,y € R (4.3)

Moreover, we have that qg € 2. For notation simplicity, we use B; and b; instead
of B, and b;, respectively. Hence, we use the following assumption instead of

(A2).

(A2) Bi(-) € C*(R% R?) with sup,cp | Bi(0)] < o0; 0¢(x) is invertible and o, €
C*(R% R @ RY) with sup,c(o 7 [|0:(0)[] < oo; there exists some positive
increasing function K € C([0, 00); (0, 00)) such that

IV Bz + IV Bllzee + loll700 + Voll7,0
HIVZllzeo + (00") oo < K(T).

Remark 4.1. Before moving on, we give some comments on the case of semi-
linear SPDEs. According to [2, Theorem 4.1] and [9, Lemma 5.3, especially
(5.33)], To(C') holds for semilinear SPDEs under the setting of [9, Theorem
2.2]. However, the Lipschitz drift term in [9, Theorem 2.2] is imposed to be
bounded since the Zvonkin type transformation used in [9] or [20] does not map
the Lipschitz drift to a Lipschitzian one. In the following discussion, we use
a modified transformation, see the definition of ® and (4.5) below. Based on
Lemma 4.1, (4.2) and (4.3), we can assume the drift term is twice continuously
differentiable with bounded first and second order derivatives. However, this
argument may fail in the infinite dimension, see e.g. [5, Subsection 2.2]. One
can impose that the nonlinear reqular drift term satisfies a condition as (A2’)
directly for SPDFEs, but this assumption is strong. Hence, TCIs for semilinar
SPDEs with Dini drift are prepared in another paper.
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Consider the backward PDE
Oyuy = —Lyuy — by + Ay, ur =0, t € (0,71, (4.4)

where A\ > 0 is a parameter and
1
Ly = §tr(atafv2) + Vg, + Vi,

Set ®,(x) = x +u(z). Then 0,9, = Bi(z) — LiPi(x) + Aug(z). By Ito’s formula,
we formally have that (see Lemma 4.4 for a proof)
dq)t<Xt) = {(Qtfl)t)(Xt) —+ Ltq)t(Xt)}dt + V(Pt(Xt)O't(Xt)dm
= ()\Ut(Xt) + Bt<Xt))dt + V(I)t(Xt)O't(Xt)th. (45)
The irregular term b, is canceled. wu; is regular with ||Vullr. < 1 for large
enough A, see Lemma 4.3 below. Then ®, is a differecomorphism on R%.

We investigate (4.4) in a weaker form. Let {P }o<s<; be the semigroup
associated to the SDE below

dZ%, = B/(Z%)dt + 04(Z2,)dWs, t > 5, 2%, = . (4.6)

It is well known that the equation (4.6) has a unique solution under assumption
(A2’). Then we have

P f(x) =Ef(Z%,), t>s>0,2 €R: f € B(RY).
The generator of P, is

1
Lt = §tr(0't0':v2) + VBt.

By using PY,, (4.4) can be rewritten into the following integral equation

T
Us = / e A=) P {Vyuy + b }dt, s € [0, 7). (4.7)

In the following lemma, we give the gradient estimates for semigroup Pgt
defined by (4.6), which will be used to study the regularity properties of solution
u to (4.7). The proof of the following lemma follows from [20, Lemma 2.1]
completely, and we omit it.

Lemma 4.2. Fiz T > 0. Assume (A2’). Then the following assertions hold.
(1) For any f € B(RY), P),f € CZ(R?) for any 0 < s < t. There exists a
positive constant ¢ such that for any 0 < s <t < T,

C

© P2 (w) (43)
(t=s)

VPP < -

V2P, fPP(z) < P, f*(z), x €RY, f € By (RY). (4.9)

10



(2) There exist positive constants ¢y and co such that for any increasing ¢ :
[0,00) = [0, 00) with concave ¢?,

IV2P2, flloo = sup [|[ V2P, f ()| < c10(car/(t — 8))

)
z€R4 l—s

(4.10)

holds for any f € By(R?) satisfying
[f(@) = fl < o(le —yl), 0<s<t<TzyeR"
The following Lemma focuses on the existence and uniqueness of solutions
to (4.7) and gradient estimates of the solution, which is essentially due to [9,

Lemma 3.1] or [20, Lemma 2.3]. We include a complete proof for readers’
convenience.

Lemma 4.3. Assume ||b||r« < 00 and (A2’°). Let T > 0 be fized, then there
exists a constant \(T') > 0 such that the following assertions hold:

(1) For any A\ > X(T), (4.7) has a unique solution u € C([0,T]; C}(R% RY))
satisfying

lIm {||u||700 + [[Vul|7,00} = 0. (4.11)
A—400

(2) Moreover, if (A1) holds, then we have

lim ||V?ul|70 = 0. (4.12)
A—00

Proof. (1) Let # = C([0,T]; C{(R% R?)), which is a Banach space under the
norm ||ul|e = ||ul|reo + VU100, u € F.
For any u € 7, define the mapping

Cu(e) = [ e PRATul) + () a)dr

Firstly, we claim that ['Z C . In fact, for any u € 5, by (4.8), one has

ITullrc0 = sup
€[0,T],z€R4

[ P ) + e

< sup ‘/ A bl ([ Ve + 1)

s€[0,T]
bll7.00(||V o +1
16]] 7,00 (] /\UHT + )<OO7

IN

(4.13)

and

T
[ eI VTl + b} )i

IVTu|l700 =  sup
s€[0,T],z€R4

11



T —)\ts
<c s | [ b9l + 1

s€[0,T] Vit —
< PolreiVullre +1) (4.14)
VA

Therefore, the claim ' C 7 holds.

Next, we will show that for large enough A > 0, I' is contractive on 7.
Indeed, by the similar arguments as above, it is easy to check that for any
u,u € A, we have

ITu — Tl < f{" (14 0)|Vu = Vi 7,00
b
g”ﬂg<l+@mwwmf

= CN)[Ju =l

Choosing constant A(7") such that C(A) < 1 for A > A\(T'), we can see that I'
is contractive on % with A > \(T"). Thus, the fixed point theorem yields that
(4.7) has a unique solution u € 2.

Finally, the estimates (4.13) and (4.14) imply that (4.11) holds.

(2) (4.9) implies that for any f € %,(R?)

V() - VP )] < D p e ay e 0<s <<

This, together with (4.8), yields that

VP f(x) = VP f(y) < c ('Jc —ul (4.15)

= I

where ¢ is some constant. 3
Combining this with (4.7), one obtains that there exists a ¢ € 2 such that

’vbt(z)ut(x) + bi(w) — Vbt(y)ut<y) — by (y)|
< (14 IVullreo)o(lz — yl) + bl [ Vie(z) — Vu(y)|]

< (L+ [ Vullreo)o(lz = yl) + 2[bll700 vz = 4T a—yi>1y

T s (lr =yl 1
el Vot bl | e (E=5 A )1 ey

< (L+ [ Vullreo)o(lz = yl) + 2[bll 00 VT = 4T ga—yi>1y

1
+ c|[bll 7,00 [ Vot + bl 7,00 |2 — y| log (e +H)1{‘Hjlgl}

< e/ (o —yl) + | —y]
=: ¢(jz —yl), (4.16)
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the last inequality was due to the fact that for z € [0,1], \/zlog(e+1) is an
increasing function.
Using ||[Vu|l7.00 + ||b]| 7,00 < 00, (4.7), (4.10) and (4.16), we derive

T
V2700 = / e sup [ V2P {Vy u, + b, }(x) | dr
0

r€R4

< /T e ™ Mdr =:05(N). (4.17)

r

Noting that ¢ € 2, we have fOT Mdr < oo, which implies that §;(\) — 0
as A — 00. O

We provide the regularization representation (4.5) of solution to (3.1). We
borrow from [20, Proposition 2.5.] the method to prove this lemma.

Lemma 4.4. Fiz T > 0. Assume (A1) and (A2’°). Then there exists a constant
MT) > 0 such that, for any A > XN(T), the solution X; to (3.1) satisfies
t
X, = X+ w0(Xo) = w(X) + [ (o + (Vu)o} (X)W,
0

¢
+/ {A\us + Bs}(Xs)ds, te€]0,7T], P-a.s., (4.18)
0

where u solves (4.7).

Proof. Let G, = Vy, u, +b,, 7 > 0. For fixed § > 0, let

FO(z) = P sG.(z), 0<s<r<T,zeR%

S,r

According to (A1) and (4.11), we know G, is bounded and measurable. Then,
we obtain from (4.9) that

sup {||F[loo + IVER oo + IV2ER [0} < 00 (4.19)

0<s<r<T
By (4.6) and It6’s formula, we derive that for any 0 < s <r <T

ngjj)(Z,zﬁt) = ith@(Zﬁft)dt + (VF(‘”(Zﬁft), ol(ZE) AW, t >,

s,r

which yields that

3 4 d
gF(‘S)(x) : = —lim Fs(*)””"(x) — (@) — —lim P, PisGr(x) — FE)(x)
ds 5" 10 v vl0 v

- §
— _lim E‘Pso,r—l—éGT(Zsfv,s) B Fs(,r) (l‘)
v]0 v
8) rre 5
— _lim EFS(J’)(ZS—U,S) - FS(J’) (.’L’)
vl0 v

13



1 S
— —lim -E LF®) (22, ,)dt
in B [ (L7
= —Zst(fsr) (x),r > 0,a.e. s € [0,r]. (4.20)
Let
T T
ul® = / e M) PO Gdt = / e M) FOdr s e [0, 7). (4.21)

Then we obtain from (4.19), (4.20) and (4.21) that
asuff) =(A— [N/S)ug‘s) — P§S+5(Vbsus + by).
By Ito’s formula, we arrive at

dul®(X,) = {Lul® + V,u® + 0,uD}(X,)ds + (Vuld (X,), 0,(X,)dW,)
= {0 + v, ul — P {Vius + by} (X)ds
+ (Vuld(X,), 04(X,)dW,). (4.22)

It follows from (4.7) and (4.21) that
T
ul® —uy = / e MNP AP, Gy — Gih)dt, s € 10,T). (4.23)

By (4.16), Gy(-) is continuous. Then

6111(1;1 P? 116Gt = Psth,

which, together with the boundedness of ||Vul|| and b, implies by the dominated
convergence theorem that

T
lim |u( — ] §/ A=) iy | P2 AP, sGy — Gi})| dt

50+ ° 50+
—0, s€0,7]. (4.24)
By using the boundedness of |Vu|| and b again, we can derive from (4.8) and

(4.21) that supseoqy [[Vu®@||r,00 < 00. Moreover, combining (4.23) with (4.8),
we obtain from the dominated convergence theorem that

i [V — V| = tim | / N TP PG — G

A(t— s)
<li 2 H -
< lim H/ \/ﬁ AP0, G — GyPdt| = 0. (4.25)
Combining this with (4.22), (4.24) and (3.1), we obtain (4.18). O

Proof of Theorem 3.1

14



Proof. (1) By Lemma 4.3, we can take A(T") > 0 large enough such that for any
A > A\(T), the unique solution u to (4.7) satisfies

1
IVullroe < 5. (4.26)

This implies that ®;(x) := =+ uy(x) is a differeomorphism and satisfies that for
(t,z) € [0,T] x RY,

2
5 < IVe@) <3 5 <[Ve (@) <2 (4.27)

[\DIC»J

Since u € C([0, T]; CHR%; R?)), we define @ : C([0, T]; RY) — C([0, T]; R?) as
O(E)(1) = (&), €€ C([0, TR, ¢ € [0,T]. (4.28)
Moreover, it follows from (4.27) that

1D 0 (Grnt) — ©7H(&)]
<P N (Eerne) = Prin (G + 1P A (&) — BH(&)]
< ||v¢)t+At< )||00|5t+At §t| + |¢)t+At( ) (I)t_JrAt(CI)t—&-At(q)t_l(gt)))l

< 2{|ft+At — & & — Prpne(Py (ftm}»

which yields that ®1(£) is also continuous. Hence ® is a homeomorphisms on
C([0, T); R?) with

() = 27(&), €€ C(0, TR, tel0,T]. (4.29)

Then ® induces a homeomorphism on C'([0, T]; R?) x C([0, T]; RY) defined as in
Section 2 (setting E = C([0,T]; R?)) which is still denoted by ®, and its inverse
is still denoted by ®~!. Furthermore, it follows from (4.27) and (4.28) that for
any &,n € C([0, T|;RY)

%pT(f n) < pro®(,n) < 2%(6 n)- (4.30)

This means that condition (2.1) hold for ® by setting ¢; = £, ¢ = 3.
By setting Y; = ®,(X;), it follows from Lemma 4.4 that

¢
Y=Y, —l—/ (Aug + By) o ®,1(Y,)ds
0
¢
+/ (V®,0,) 0 @, (Y,)dW,, t €0, T). (4.31)
0

Moreover, it follows from (4.1), (4.17) and (A2’) that

IV(Au+ B)|l1.00 + [|V(VPO) | 7.00 < 0. (4.32)

15



Then there exists a constant C' > 0 (see e.g. [18, Theorem 1] or [2]) such that
W' (Qo® ' P od )2 <CHQod '[P od ™).
Combining this with (4.30), we derive from Corollary 2.2 that
W5 (Q,P?)? < 2CH(QIP?).

(2) Based on [21, Theorem 2.1], it suffices to verify the following assertions
respectively:

W5'(Q.P*)* < CLH(QIP*), Qe 2(C([0,T;RY), (4.33)
W' (P, P¥)? < Colo —yf*, @,y €RY, (4.34)

for some constants C; and C,.
Since (4.33) has been proved in (1), we only need to prove (4.34). Noting
that the law of (X, X/)co1) is a coupling of P* and P¥, we obtain that

W (P, P)? < Elpr (X7, X7 = B(sup | X7 — X/J?).

t€[0,T]

Denote by Y,**™ the solution of (4.31) with Yy = ®g(z). By (4.32), one can
derive from the Burkholder-Davis-Gundy inequality that

E( sup 177 = ;") < Clag(a) - @oly)l
te[0,7)

Combining this with (4.30), we have that

E( sup X7 - X7?) <4B( sup 17— vV2) <oCfe - g2
te[0,T] t€[0,T7]

Thus, (4.34) holds with Cy = 9C, and the proof is completed. O

5 Proof of Theorem 3.2

For the reader’s convenience, we sketch the construction of homeomorphism .
To this end, we consider the following elliptic equation

1
§tr(UU*V2u) + Vi u = Au — by. (5.1)

Before moving on, we introduce some spaces and notations. For (p, a) € [1, 00] x
(0,2] — {oo} x {1}, let H® = (I — A)~2(LP(R?)) be the usual Bessel potential

space with the norm

1 Fllay = (L = A)% fllp =< (1 Fllp + 1A% f1l,,

16



where || - ||, is the usual LP-norm in R% A is the Laplace operator on R¢, and
(I — A)3 f and A% f are defined through the Fourier transformation

(L= A f=F A+ P):Ff), A2f:=F | [*Ff).

For (p, @) = (00, 1), we define H., as the space of Lipschitz functions with finite
norm

11100 := l1fllcc + IV flloc < o0

Notice that for n = 1,2 and p € (1, 00), an equivalent norm in H is given by

[fllnp = [1fllp + V" Fllp < o0

The following Lemma shows the solvability of equation (5.1), which is a
consequence of [26, Theorem 7.6]. We remark here that the Holder continuity
assumption on o in [26, (Hg)] can be replaced by the uniformly continuity in
this paper due to [24, Theorem 3.2].

Lemma 5.1. Suppose that (B2) holds and by € LP(R?) for some p > d. Then
for some Ay > 1 and for all X > Ay, there exists a unique solution u € Hg to

equation (5.1), and for any p' € [p,o00] and v € (0,2) with % <2—v+ z%’ we
have

12—yt _d
Nl + 1Vl < bl (5.2

Taking p’ = +00,v = 1 in (5.2), one can see that there exist ¢, \; > 1 such
that for all A > Ay,

oo + [Vl oo < eX2G7. (5.3)

Define ®(z) = z+u(z). By (5.3) with A large enough, the map x — ®(z) forms
a C'-diffeomorphism and

1 _
5 < IVB|, VB < 2. (5.4

The Lemma below presents the regular representation of solution to (3.5) by
Zvonkin’s transformation. The following two lemmas are due to [26, Lemma
7.7 and Lemma 7.8].

Lemma 5.2. X; solves SDE (3.5) if and only if Y; := ®(X;) solves
dY; = b(Y;)dt + &(Y;)dW,, (5.5)
with initial value y := ®(x) and
b(y) = (Mu+ V- by) 0 & (y), G(y) = (VE-0)od ' (y).

The following Lemma shows that the conditions for by in (B1) are preserved
under Zvonkin’s transformation.

17



Lemma 5.3. Under (B1), the following assertion holds for large enough .

(B1) b satisfies one of the following conditions
(1) there exist r > —1, &1 > 0, Ry > 0 and k3 > 0 such that

b(y),y) < —Falyl" +Ra,  [b(y)| < Es(1+[yI™), y €RY (5.6)
(2) there ezists kg > 0 such that

[b(y)| < Fa(L+[y]), y € R (5.7)

We establish T7(C') by “Gaussian tail” following [6, Theorem 2.3], and we
recall the following lemma there.

Lemma 5.4. The probability measure p on (E, p) satisfies the L*-transportation
cost inequality with some constant C' if and only if

// @9 dp(z)dply) < +00, § € (0, E> (5.8)
holds.

The following two lemmas contribute to establishing (5.8) for solutions Y;
to the equation (5.5). By the definition of ¢ and (5.4), it is clear that

161l 115.00 == sup [[6(y)|ns < oo. (5.9)
y€ERd

Lemma 5.5. For the solution to (5.5) with random initial value Yy, we have
the following two assertions.

(1) Assume that b satisfies the condition (1) in (B1). Then there is a positive
constant C' independent of Yy such that

T
E {exp {9/ \Yg\?’*?dt} (Y;}} < O oMol
0

holds for 0 < 6 < 151“‘7HHSoo and Ky = 21_T/29/~€I1(T +2)7 ifr > 0;
0<0 <2036 5% 00 and Ko = V20(2+ 1) |6 700 if 7 € (—1,0].

(2) Assume that b satisfies the condition (2) in (B1). Then for 0 < 6 <
%’ there exists a constant C' > 0 independent of Yy such that

T -~
E {exp {9 / |Yt|2dt} )YO} < O eT0IINE
0

18



Proof. We denote by EY°[-] the condition expectation E[-|Yp)].
(1) Tt follows from Itd’s formula that

dlY;|* < (=281 Y| + 22) dt + 2(Y;, 6 (Yy)dW,) + [|6(Y)| Fgdt.  (5.10)

Below, we prove the assertion holds for r € (—1,0] and r € (0, c0), respectively.
a). For r € (—1,0], we have by (5.10) that

a1+ %) T < T2 (1 ) E (=2 Vil + 25, + [5]%s)

2

+(r+2) (14 [YP)? (v, 6(Y:)dWs)
+ 2 T,

+¥(1+|Y;’2)2 1|0'*(Y;5)Y;|2dt

T T 6- 2
< =23 (r 4+ 2)& |V dt + (r + 2) (22/%1 + Fo + lalees H;”""’) dt

+(r+2) (14 V)% (Y, 6(Y,)dWy), (5.11)
where in the last inequality we use
(14922t > 252 — 23 4y >0, re(—1,0]
Let .
T, = inf{t >0 | /0 Y, |**?"ds > n}.

Then it follows from (5.11) that

42 Tn
exp _9(1 + |%’2) 2 ]EYO exp Q/T/\ |Y|2—|—27‘dt
27‘/2%1 (T + 2) 0 ¢

9 TNTh, ,
S(%E%pr{~2r/’ <1+uﬂ%4nxﬂmmw®}]
0

K122

zlfﬁe 21—7"92 % 21—7’92 %
<G (B [oxp { 2" rne, — 00 )] ) (B9 |2 00| )
K1 K1 R
1
217r02 ~ 112 TN b)
< Cg <EYO {exp{ |~|Z||HS7OO/ |K|2+2Tdt}‘|) ’
K1 0

where

0T . 1601 15,00
Cop=ce (28 + Ry + ——2BX) L
9 Xp{f-@le( 1 2 9 )

TNy, ,
MMM:/ (1+ [ViP)? (Vi 6 ()W),
0

Choosing 6 = 12" (|5 || ;1%,, and letting n — +oo, we have

~92 T r/2z 2\ 742
2 1+ |Y¢
exp 1#2/ Yi[**2rde o | < Cfexp Fad +~| 5‘ 2
2 ||J||HS,oo 0 (7"+2)||0”Hs,oo
19
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Hence, for any 0 < 6 < R%2r71||5||1}25,007

g 21r20(1 + Yo |2) 2
EYo 0 Y, |[2t2rde b | < 02 0 .
o {o [ i) < oo {200

b). For r > 0, it follows from It6’s formula and the Hélder inequality that

r+2

AV, < —(r 4 2)7 |V 2dt + (282 + 16| Fr5.00 + 71|51 Fr5.00) [Yel"dt
+ (r + 2)|Yi|" Yy, 6(Yy)dWy)
< —(r + 2R Y[ T2At + e (r + 2)R1 |V T2de
N (r+2) (282 + (r + D6 [13500) (2rf2 + r(r 4+ D)6 ]35.00) 7
A(r + 1) (deriiy (r + 1)) 72
+ (r + 2)|Y3|" (Y3, o (Yy)dW),

dt

where ¢; € (0,1). For 0 < 0 < k—ﬁ, we choose €; = 1 — V20||6 || prs,00/F1-

2[15 117 5,00

Then
e B oo fo [ il
exp { —— EY |exp{ @ VARGENT
p{ e+ —a) LA
Y 0 T
< CpEY |ex —/ Y| (Y, 6(Y,)dW, H
i o { [ s
20°(15 13500 " :
< Yo ;00 2r—+2
cou o o 37 [
T 3
= Cp (EYD [exp{@/ |Yt]2r+2dt}]> ,
0
where
OT(r +2) (2&y + (r + 1)||5|2 Wiin + 1(r + DIF|2 )7
Om:exp{ (r+2)( I@M(T )||0||Hs,oo)(j%2 T(TL)IIUIIHS,OO) }
4/421(1 — 61)(7“ + 1)(461/%1(7" + 1))’“""2

This yields that for any 6 < %R%H& ”]_{?9700

’ 26| Yo >t
EY 0 / Y, 2’“+2dtH <Cj { : }
[exp{ 0 | t| = Gy €Xp R1(2+7’>(1 —61)
201Y- 2+r
:C’glexp{ V20| o }

2+ 7)ol s,
(2) It follows from the Ito formula and the Holder inequality that for oo > 374

d (e™Ye*) < e (Fa + 16]7r5.00) At — (o = BRa)e™ |V [*dt
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+2e70UY;, 6 (Y,)dW,).

We then have

0 T
exp{— - \%\2}EY° [exp {6/ eo‘t]Yt]thH
o — 3Ky 0

20 r
< CypoEY {eXp{ - / e~ (Y, 6(Y;)dWy) H
0

o — 3Ky
8615115
< Cyo | EY —’°° e Y, |?dt 5.12
< Cun (29 [onp { 1T [ ety (5,12
where
{9<’€4 + 1511 F5,00) (1 — e7T) }
092 = exXp
(v — 3Ry4)x
Choosing 6 = (aj:g@)? , we have that
8115 11% 5,00
EYo

— 3k4)|Yo)?

4|7 (15,00

— 3F 2 T
exp M / e—OétD/tht
8|0 11%s,00 Jo

By choosing the optimal o = % + 3Ry, we have

—(243R4T) T 2

(& 2 2 |Yb‘

exp —/ [Vi|*dt p | < Cgexpq oomg—5 ¢
{QII 5,007 Jo ” 20161175 00T

which, together with (5.12), implies the second claim.

EYo

]

Let Wt(l), Wt(Q) be two independent. Brownian motions defined on the filtered
probability (2, .7, (:%)i>0, P), and Y(Z , i = 1,2 are solutions of (5.5) driven by
Wt(z) with independent, identically dlstrlbuted initial value Y ) and Y( ). Let

7, = Y;(l) _ Y;(?)‘

Then

Eexp{ 6 sup |Z;|? // (& Py (A€)Py (dn),
tef0,1] C([0,T];RY) x C([0,T];R)

where Py is the law of Y on C([0, T]; R?).

Lemma 5.6. Suppose the assumptions in Lemma 5.5 hold and there exists o >
'f'+ .
0 such that EeblYa P < +o0o. Then there is §; > 0 such that for 0 < § < ;

te[0,7

E exp {5 sup |Zt|2} < 00.
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If Yo(l) = Yo(z) 15 determanistic, then we have that

(8H&H§{S7OOT(1 v kgf%;?f)) . if b satisfies (5.6),

(81161138007 (1 + T?73*H35T)) ™ if b satisfies (5.7).
Proof. Since

E exp {5 sup |Zt|2} =E {IE } ,  (5.13)
te[0,7)

we can first assume that the initial values of Y i = 1,2 are deterministic, i.e.
Y(l) (1) e Rd Y(2) ( ) e RY.
It follows from Ito’s formula that

exp{5 Sup |Zt|2} ’}/0(1)73/0(2)

te[0,7

Y(l) _By(Q) Y(l)_y(Q) ~ Y(l) 2
q /—1+|Zt|2:<(t ) — (¥, 7). Y, L) g o o s + 5% )HHSdt

VI+IZ} 1+ (2,
| (2 a (i) AE — o(v*)dwi?)
V14 |Z)?
e ZP + 15 (2P,
(L+|Z2)

(5.14)

We first deal with the case that b satisfies (5.6). In this case,

B,y = b(v,?), v\D — v
V14 |Z?

Putting this into (5.14), we have that

S /233 (2 + |}/;(1)|7‘+1 4 |Y;(2)‘r+1) .

AVTHIZ < 2fs + 5 st + s (V01 + V20 de 4+ d,

with

M, — / H(Z e (VD)awd — 5 (v awi?)
s V1t 2. ’

This, together with the Holder inequality yields that

E exp {6 < sup v/ 1+ [Zef2 — 2(Rs + (|6 315.00) T — V1 + |Zo|2> }

te[0,T

1
3 1
- (E sup ewMt) (E o265 f) (liﬁ“)V“H@@)lT“)dt)Q

t€[0,T]

1
2

2 .
<2 (E eQﬂMT)% (HEeﬂ?f% foT |Y;:(Z)T+1dt> 7 (515)
i=1
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where we used the Doob’s maximal inequality and the independence of Yt(l) and
Yt@). Since

Ta_* 2 5.* (2) t2
o= [ (2P + 1o () 2

dt <2/ )1%s..T

1+ |Z)?
we have
Ee28Mr _ | (ezﬁMT—262<M>T e262<M>T> < 4B151%r5,00T (5.16)
Since for any 8> 0 and 0 < § < W, we derive from Lemma 5.5 that
HS, 00

2-2 2-2
2675 [T VO rtlde o T o BT v prezar Ll
[ e*P"3Jo 1% <e & [EeJo It <(Ce ¢

(()i)|2+r
Combining this with (5.16), we derive that

EeXP{ﬁ(SHP 1+ Zef? = 2(Fs + 1161 315,00) T — 1+!Zo!2>}

t€[0,T]

BRT K5~ )
<206Xp{252||g||HSOOT+ 5 +TZ|?JOZ |2+r}. (5.17)

=1

Then, by Chebychev’s inequality and an optimization of [, it yields that

IP’{ sup /14 [Zo2 2 /1 +[Z]? + 2(Rs + ||0||Hsoo)T+£B}

t€[0,T)]

Kj <~ a2
<2Cexp{ =2 $ 7 b - — . (5.18)
{ 2 Zl 81611500 + 4RESIT

N ~ —1
Denote by C; = (suﬁuilsooT - 4%%5—@)  Cryor = 2R + |5]l35,0) T and
§ = supcpo (1 + |2/ )2 — (1 + |Zo|?)2. Then for 0 < § < OB

£
Ecs =K /
0

+oo
:/ 5e‘sx[P<sup \/1 |Zt|22\/1+|Z0|2+\/5> dr +1
0

2

+oo
5e‘sxdx+1>:/ 565$P(§22$)d1'+1
0

t€[0,T]
2 Yoo )
i 2—C2(/T—C. = )2
< 1+2C’5exp{ Z (@) ‘2”}/ 097=C3(V2=Cry5.1)* 1o
cB+a -
AC§ 50 T K3 S
<1+ expq — VP 5.19
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where in the last second inequality, we have used (5.18) and C' > 0 is the

constant in (5.18) which is independent of y(()l), y(g?) and §. Since

1—c¢

&> (1—¢) sup (1+|Z) -

(1 + |ZO|2)’ €€ (07 1]a
t€[0,T] €

we can derive form (5.19) that for e € (0,1) and 0 < 0 < C’B

E exp {5(1 —€) sup |Zt|2}

te[0,7

<o {2V 4 |2 B
€

- o(1—¢) Ks =, o)
< 1+ |Zo)%) + =2 Ut 5.20
< 5€XP{ . (+|0\)+2;!y0| (5.20)
where R
~ 4C6 Cs+90 .
Cs =1+ = exp§ 2—C5C2 b
Csz—0 Csz—0 ”
Choosing B = W, then C’B = 01. Then the assertion for the deter-

ministic initial value case holds. Since Kj is decreasing to zero as 3 decreases
to zero, there is &; > 0 and (1 > 0 so that for any 0 < B< B

Kj = i (1) 245t (2) 24t
exp {51(1 + ‘Zo|2) + 75 Z ‘y(())‘zw} < 06173 eéo(lyo | +lyy ™| ) .

i=1

Combining this with (5.13) and (5.20), the assertion for random initial value
case holds.
If b satisfies (5.7), then

By = b(v,?), vP — vy
V1+ 122

Putting this into (5.14), we have that

< (24 101+ ).

AVTHIZP < 25+ 5 s o)t + fa (1Y, 01+ [Y,2)) at + A,

By the Holder inequality, we derive that

t€[0,T

<E ( sup oM PR foT(m“MH@(QH)dt)

te[0,7)

E exp {ﬁ < sup /1422 — 2(Ra + (|6 515.00) T — V1 + IZo|2>}
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1
2 1
< <E sup eQﬁMt> <E626R4f(;r(|}/t<l)|+5/,5(2)|)dt)2

te[0,7)

[NIES

2
< 2 (B2 (HEe% I3 m“>dt>

=1

Combining this with (5.16) and (2) of Lemma 5.5, we can derive that for any
B e (0,1,

Eexp {6 ( sup /1 +[Z,]? = 2(Fa + [16]75,00) T — V1 + IZo|2> }
te[0,T

< 2exp { 28%15 s oo T (1 4+ T2; 2957 571) |

1
2 —(243R~aT) 3 T 2
(§
x| [[Eexp {— yy(“\?dt}

o )

<C 26215126 T (1 TR] e“““) B (Iyé "2+ Jyg )IQ)

=~ exp o 500 4 d _ |
’ p 46117500 T

where C' > 0 is a constant independent of y(gl) and y(()2). Then by Chebychev’s
inequality and an optimization of 3, it yields that

IP’{ sup /14 |Ze> > 1+ |Zo? + 2(Fa + |6 }i5,00)T + x}
te[0,7)

0 1 2
B (1" + 17 7

< Cexp — — _
4”‘7”%15,00T 8||&||§{5va (1 + TQ’%?; @2+3RaT 5—1)

N _ ~ —1
Let Cg = (815 13T (1 + 222557 571)) " and Cr, o = 2(Rat 15350 T-

Arguing as (5.19) and (5.20), we have that for 0 < ¢ < Cj

11— 2
E exp {5(1 —€) sup |Zt|2} < exp {6< 6)(1 + |Z0|2)}IEZe‘SE
€

te[0,T
2 1 2
B (1" + 19612)

Al7s 0T

_ 1—
< Cpexp { W29

(14 |Zo|*) + ,ee (0,1, (5.21)

where

_ 4C6 Cs+40 .
Ch=1+— exp{ ———C5C2
s S P{ Y R4,6,T

Cz—0
with a constant C' > 0 independent of y(()l), y(g?) and 0. Choosing 8 = 1, one can

see that OB = 0;. Hence, the assertion for the deterministic initial value case
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holds. For random initial value, there are 8; > 0 and 3; > 0 such that for any

B S (0751)

2 (1,02 (2))2
B <|y0 | + |y0 | > ~e(go<|y(()1)‘2+|y(()2)|2>

511+ | Zo|? <
R R R (T

This, together with (5.13) and (5.21), yields the desired assertion.

Proof of Theorem 3.2

Proof. Taking the similar arguments as in the proof of Theorem 3.1, the asser-
tions of this theorem follows from Lemma 5.6, Lemma 5.4 and (5.4). It follows
from (5.4) that ® induces a homeomorphism on C([0, T]; R?) by using the same
argument in Theorem 3.1. Moreover,

%pT(f,n) < pro®(&n) <2pr(&m), &neC(0,T;RY (5.22)
%pT o @—1(67 77) S PT(&U) S 2PT o ‘13_1(5777)7 5777 € C([()?T]?Rd)

Since Y; = ®4(X;), the law of Y is P* 0 @' and for any 0 < §) < dy

+ +
e50|X0|2+T +C(56’50||U||2+r

24 otrt
E %lYol™™ — | o0 (1Xol+lullr,e0)*™™ <E Teo < 4.

Then by Lemma 5.6 and Lemma 5.4, there is a constant C' > 0 such that for
any measure @ on C([0,T]; R?),

WiT(Qo® !\, P*od ") < \/CH(Qo & '|Prod1),

Combining this with (5.22) and Corollary 2.2, it yields that

WiT(Q,P*) < 4CH(Q[P#).
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