Lyons, R., Dipnall, J. F., Page, R., Du, L., Costa, M., Cameron, P., . . . Gabbe, B. (2021). Predicting fracture outcomes from clinical registry data using artificial intelligence supplemented models for evidence-informed treatment (PRAISE) study protocol. PLOS ONE, 16(9), p. e0257361. doi:10.1371/journal.pone.0257361
Chicago Style CitationLyons, Ronan, et al. "Predicting Fracture Outcomes From Clinical Registry Data Using Artificial Intelligence Supplemented Models for Evidence-informed Treatment (PRAISE) Study Protocol." PLOS ONE 16, no. 9 (2021): e0257361.
MLA CitationLyons, Ronan, et al. "Predicting Fracture Outcomes From Clinical Registry Data Using Artificial Intelligence Supplemented Models for Evidence-informed Treatment (PRAISE) Study Protocol." PLOS ONE 16.9 (2021): e0257361.