
Non-Intrusive Reduced Order Models
for Aerodynamic Applications

Kensley Balla

Zienkiewicz Centre for Computational Engineering

Faculty of Science and Engineering

A thesis submitted in fulfillment of the

requirements for the degree of

Doctor of Philosophy

August 26, 2021

Copyright: The author, Kensley Balla, 2021.

A.A.ZASHEVA
New Stamp

iii

Dedicated to my family . . .

v

Declaration of Authorship

Statement 1

This work has not previously been accepted in substance for any degree and is not

being concurrently submitted in candidature for any degree.

Signed : (candidate)

Date : August 26, 2021

Statement 2

This thesis is the result of my own investigations, except where otherwise stated.

Other sources are acknowledged by footnotes giving explicit references. A

bibliography is appended.

Signed : (candidate)

Date : August 26, 2021

Statement 3

I hereby give consent for my thesis, if accepted, to be available for photocopying and

for inter-library loan, and for the title and summary to be made available to outside

organisations.

Signed : (candidate)

Date : August 26, 2021

vii

Acknowledgements
First of all, I would like to thank my supervisors, Prof. Oubay Hassan, Prof. Rubén

Sevilla and Prof. Kenneth Morgan for giving me the opportunity to pursue research

under their supervisions. I am grateful for their invaluable support and guidance

they have provided me over the course of the PhD. Their passion for research and

profound knowledge are inspiring. I cannot begin to list what I have learnt. Also, the

present work would not have been possible without the financial support from my

supervisors and Swansea University. I am very grateful for it.

The three years of study could not have been possible without the support of my

friends from across the globe. A huge shout-out to Sanjay, Nidhal, German, Matheus,

Leandro, Guillem, Paulo and many others. They made my stay enjoyable and are one

of the reasons I could pull through to the day.

I am forever indebted to my family; Mami, Ato Kam, Aji, Kreti and Papi for making

me the person I have become, pushing my limits and more importantly, believing

in me. It is still difficult to forget my late grandparents who I have lost during the

PhD. I really wish they were here. A special mention to Paul for his kind help and

constant encouragement to believe in me when I was struggling during my studies,

and especially during the pandemic which did not make it any easier.

ix

Abstract
During the design and optimisation of aerodynamic components, the simulations to

be performed involve a large number of parameters related to the geometry and flow

conditions. In this scenario, the simulation of all possible configurations is not af-

fordable. To overcome this problem, the present work proposes a novel multi-output

neural network (NN) for the prediction of aerodynamic coefficients of aerofoils and

wings using compressible flow data. Contrary to existing NNs that are designed to

predict aerodynamic quantities of interest, the proposed network considers as output

the pressure or stresses at a number of selected points on the aerodynamic surface. The

proposed approach is compared against the more traditional networks where the aero-

dynamic coefficients are directly the outputs of the network. Furthermore, a detailed

comparison of the proposed NN against the popular proper orthogonal decomposi-

tion (POD) method is presented. The numerical results, involving high dimensional

problems with flow and geometric parameters, show the benefits of the proposed ap-

proach.

The proposed NN is used to accelerate the evaluation of the objective function in

an inverse aerodynamic shape design problem. The optimisation algorithm uses the

gradient-free modified cuckoo search method. Applications in two and three dimen-

sions are shown, demonstrating the potential of the proposed framework in the con-

text of both optimisation and inverse design problems. The performance of the pro-

posed optimisation framework is also compared against existing frameworks where

the more traditional NNs are employed.

Keywords: neural network; proper orthogonal decomposition; reduced order model;

geometric parameters; NURBS; shape optimisation; inverse design

xi

Research Output
Journal :

• KB, R Sevilla, O Hassan, K Morgan, An application of neural networks to the predic-

tion of aerodynamic coefficients of aerofoils and wings, Applied Mathematical Mod-

elling, 2021. https://doi.org/10.1016/j.apm.2021.03.019.

• KB, R Sevilla, O Hassan, K Morgan, A comparison of novel neural networks for the

prediction of aerodynamic coefficients of aerofoils and wings, 2021. (In preparation).

Book chapter :

• KB, R Sevilla, O Hassan, K Morgan, Inverse aerodynamic design using deep neural

networks, ECCOMAS-Springer series, Computational Methods in Applied Sci-

ences, 2021. (Under review).

Conference :

• KB, R Sevilla, O Hassan, K Morgan, Deep neural networks for fast aerodynamic

predictions, 28th Conference of the UK Association of Computational Mechanics,

UK, 2021. https://doi.org/10.17028/rd.lboro.14587662.v1.

• KB, R Sevilla, O Hassan, K Morgan, An investigation of neural networks for aero-

dynamic predictions, 27th Conference of the UK Association of Computational

Mechanics, UK, 2020. https://doi.org/10.17028/rd.lboro.12095931.v1.

– Highly commended award at the UKACM Research Highlight Competition

• KB, R Sevilla, O Hassan, K Morgan, Fast aerodynamic predictions using neural net-

works, 14th World Congress in Computational Mechanics (WCCM), 2020.

– Recipient of the International Association of Computational Methods (IACM)

Scholarship

• Poster prize winner at the annual Zienkiewicz Centre student workshop 2020 at

Swansea University, UK.

https://doi.org/10.1016/j.apm.2021.03.019
https://doi.org/10.17028/rd.lboro.14587662.v1
https://doi.org/10.17028/rd.lboro.12095931.v1

xiii

Contents

List of Figures xvii

List of Tables xxiii

List of Abbreviations xxv

1 Introduction 1

1.1 Motivation . 1

1.2 Non-intrusive ROMs in aerodynamic design 3

1.2.1 The POD . 4

1.2.2 Machine learning and NNs . 6

1.2.3 Aerodynamic shape optimisation 8

1.3 Scope of thesis . 10

1.3.1 Aims and objectives . 10

1.3.2 Outline . 11

2 The Full Order Model 13

2.1 Introduction . 13

2.2 Formulation of compressible flows . 17

2.2.1 Governing equations . 17

2.2.2 Turbulence modelling . 19

2.2.3 Boundary conditions . 25

2.2.4 Computation of the aerodynamic coefficients 27

2.3 Discretisation procedure . 28

2.3.1 Domain discretisation . 28

2.3.2 The vertex centred finite volume method 33

2.4 Solution procedure . 38

3 Reduced Order Models 41

xiv

3.1 Introduction . 41

3.2 Proper orthogonal decomposition . 47

3.2.1 Computation of the POD modes 48

3.2.2 Continuous extension of the POD coefficients 51

3.3 Artificial neural networks . 55

3.3.1 Neural network architecture . 56

3.3.2 Forward propagation . 57

3.3.3 Error evaluation of the NN model 60

3.3.4 Learning algorithms . 60

3.3.5 Methods to improve generalisation 71

3.4 Design of experiment . 74

3.5 Workflow . 76

4 Aerodynamic predictions using flow parameters 79

4.1 Benefits of multi-output NN . 79

4.2 Comparison of NN with the POD . 84

4.3 Benefits of the multi-output NN for viscous flows 93

4.4 Influence of the accuracy of the CFD data on the NN predictions 101

5 Aerodynamic predictions using geometric parameters 111

5.1 Comparison of NN with the POD . 111

5.1.1 Inverse shape design for a target pressure distribution 116

5.2 Benefits of the multi-output NN for viscous flows 119

5.2.1 Inverse shape design for a target pressure distribution 122

5.3 Comparison of the multi-output NN with existing NNs 124

5.3.1 Inverse shape design to maximise lift-to-drag ratio 129

5.4 Deforming wings at various flow conditions 133

6 Concluding remarks 139

6.1 Conclusions . 139

6.2 Recommendations for future work . 141

A Supporting materials 145

A.1 Non-Uniform Rational B-splines (NURBS) 145

A.2 Delaunay graph method . 148

A.3 The cuckoo search . 150

xv

A.3.1 Modified cuckoo search . 151

B Comparison of two NN architectures 153

Bibliography 155

xvii

List of Figures

2.1 Evolution of the complexity of the flow solved over the 40 prominent

years of CFD developments at Airbus, with an indication on the ad-

vancement of the applied methods, taken from [3]. 14

2.2 Standard CFD approximations to the NS equations [92]. 16

2.3 Illustration of the Delaunay scheme. The solid circle denotes the initial

set of nodes and the dashed line is the Dirichlet tessellation. The solid

line represents the edges constructed from the Delaunay triangulations. 29

2.4 Illustration of the advancing front scheme. The generation front is rep-

resented using the red dashed line and solid circles, and the open circle

denotes the newly inserted node. The solid black lines and circles rep-

resent the edges and nodes. 31

2.5 Example of a hybrid mesh in two dimensions. 33

2.6 Illustration of two FV schemes in an interior mesh. The solid black lines

and circles denote the edges and nodes in the original mesh. The con-

trol volume definition is represented using the blue dashed line and the

location where the unknowns are stored is identified by the solid red

circles. 35

3.1 A classification of the main machine learning paradigms. 44

3.2 The influence of the shape parameter ε on the shape of two popular

basis functions that are employed in the RBF approximation. The arrow

denotes the direction of increasing values of ε. 54

3.3 Schematic representation of a multi-layer perceptron NN. 57

3.4 The variation of four common types of activation functions employed

in a NN and their corresponding derivatives. 58

3.5 The effect of the added bias to the log-sigmoid function. 59

xviii

3.6 The influence of the learning parameter τ on the convergence of the gra-

dient descent algorithm for a quadratic function with a strong minimum. 64

3.7 The comparison of the convergence of three learning algorithms using

the quadratic function f (x) = x1
2 + 25x2

2 and, the starting position,

x1 = −3 and x2 = −1. 68

3.8 An illustration of two design of experiment methods using three design

variables. 76

4.1 The sampling space used to define the training and test dataset using

nTr = 40 and nTe = 119 cases respectively. 80

4.2 Mean value of the error measured in lift counts, εCL , as a function of the

number of hidden neurons, nN, and the number of hidden layers, nL. . . 81

4.3 Mean value of the error measured in drag counts, εCD , as a function of

the number of hidden neurons, nN, and the number of hidden layers, nL. 82

4.4 Mean value of the error measured in moment counts, εCM , as a function

of the number of hidden neurons, nN, and the number of hidden layers,

nL. 83

4.5 Regression plot for the lift coefficient as a function of the free-stream

Mach number M∞. 83

4.6 Binary classification of subsonic (denoted by circles) and transonic (de-

noted by squares) cases using the local Mach number M for a training

set with nTr = 160 cases. The continuous line denotes the classification

boundary and it is shown with (a) the training cases and with (b) the

nTe = 100 test cases. The highlighted crosses denote the two test cases

used to further illustrate the performance of the three strategies later in

this section. 85

4.7 Evolution of the mean and maximum error on the test set, measured in

lift counts, as the number of training examples is increased for the three

strategies proposed using neural networks. 86

4.8 Comparison of the pressure coefficient, Cp, obtained with the CFD solver

and the predicted Cp using the three strategies considered. 88

4.9 Relative frequency of the error on the test set, measured in lift counts,

for all the test cases using neural networks with the three strategies con-

sidered. 88

xix

4.10 Evolution of the mean and maximum error on the test set, measured

in lift counts, as a function of the number of cases used to perform the

interpolation with RBFs, nRBF. 89

4.11 Evolution of the mean and maximum error on the test set, measured in

lift counts, as the number of training cases, or snapshots, is increased

for the three strategies proposed using the POD. 90

4.12 The evolution of the mean error on the test set, measured in lift counts,

as the number of training cases is increased in (a) and the relative fre-

quency of the error on the test set in (b), also measured in lift counts,

when nTr = 160 training examples are used, for the three global ap-

proaches. 91

4.13 The domain of selection by colours and relative frequency of the error

on the test set, measured in lift counts, for the three NNs. 92

4.14 Mean value of the errors, measured in lift counts, as a function of the

number of hidden neurons, nN, and the number of hidden layers, nL. . . 94

4.15 Mean value of the errors, measured in drag counts, as a function of the

number of hidden neurons, nN, and the number of hidden layers, nL. . . 96

4.16 Mean value of the errors, measured in moment counts, as a function of

the number of hidden neurons, nN, and the number of hidden layers, nL. 97

4.17 Evolution of the mean error on the test set, measured in counts, as the

number of training examples is increased for the four strategies. 97

4.18 Comparison of the relative frequencies of the error for strategy 3 and 5,

measured in counts in the test set. 99

4.19 Comparison of the pressure and stress distributions obtained with the

CFD solver and the predicted distributions from the third and fifth

strategies, for a test case in subsonic flow, M∞ = 0.49, α = 2.2◦ and

Re = 4.2 × 106. 100

4.20 Comparison of the pressure and stress distributions obtained with the

CFD solver and the predicted distributions from the third and fifth

strategies, for a test case in transonic flow, M∞ = 0.69, α = 4.0◦ and

Re = 3.1 × 106. 101

xx

4.21 The sampling space used to define the training and test dataset using

nTr = 160 and nTe = 100 simulations respectively. The highlighted

cross denotes the test case used to further illustrate the performance of

the strategy employed in this section. 102

4.22 The surface mesh used to obtain CFD data in IM × Iα, consisting of 1,977

nodes and 3,900 triangles. 102

4.23 Mean value of the lift counts, εCL , measured in the test set as a function

of the number of hidden neurons, nN, and the number of hidden layers,

nL. 103

4.24 Mean value of the drag counts, εCD , measured in the test set as a func-

tion of the number of hidden neurons, nN, and the number of hidden

layers, nL. 104

4.25 Mean value of the moment counts, εCM , measured in the test set as a

function of the number of hidden neurons, nN, and the number of hid-

den layers, nL. 104

4.26 Detailed view of the three meshes used for the NACA 0012 aerofoil

(top) and on the symmetry plane for the ONERA M6 wing (bottom). . . 105

4.27 Mean value of the errors, measured in the test set, for the three levels of

mesh refinement in two and three dimensions. 106

4.28 Comparison of the pressure coefficient, Cp, obtained with the CFD solver

and the predicted Cp using NN for a transonic test case at a free stream

Mach number, M∞ = 0.71 and an angle of attack, α = 9.1◦, for the

meshes employed in two and three dimensions. 107

5.1 Examples of aerofoil shapes generated with NURBS. 112

5.2 Relative frequency of the error on the test set, measured in lift counts,

for the proposed NN and the POD for subsonic and transonic flows and

with different number of training cases, nTr. 114

5.3 Pressure coefficient over the aerofoil of figure 5.4 compared to the pre-

dictions by the NN and the POD. 115

5.4 Geometry of the aerofoil chosen to compare the NN and POD predic-

tion capability in figure 5.3. The squares denote the control points of the

NURBS and the discontinuous line is the control polygon. 115

xxi

5.5 Value of the objective function after the minimisation problem is solved

with the MCS as a function of the number of cases used for training the

NN. 118

5.6 Target, initial and optimised geometry and pressure coefficient obtained

using the MCS and the proposed NN to predict the values of the objec-

tive function. 118

5.7 Relative frequency of the error on the test set for the four strategies em-

ployed, measured in counts. 120

5.8 Comparison of the pressure and stress distributions obtained with the

CFD solver and the predicted distributions from the third strategy, for

an example case in the test set. 121

5.9 Value of the objective function after the minimisation problem is solved

with the MCS as a function of the number of cases used for training the

NN. 123

5.10 Target, initial and optimised geometry and pressure coefficient obtained

using the MCS and the NN to predict the values of the objective function.124

5.11 The skin friction coefficient distribution of the target, initial and opti-

mised geometry obtained using the MCS and the NN. 124

5.12 The ONERA M6 wing used as the base geometry and parametrised us-

ing the control points of the NURBS, denoted by circles. The lines rep-

resent the control polygon. The independent variables are coloured in

red and the dependent variables in blue. 126

5.13 Relative frequency of the error on the test set for the three neural net-

works employed, measured in counts. 128

5.14 Comparison of the pressure coefficients, Cp, obtained with the CFD

solver and NN predictions using the third network for a test case at

different locations in the spanwise direction of the wing. 130

5.15 A visual comparison of the distribution of lift and drag coefficients in

the training dataset (denoted by circles) and, the optimised solutions

by the first network (denoted by diamonds) and the third network (de-

noted by squares) in the minimisation problem. 131

xxii

5.16 Comparison of pressure coefficients, Cp, for the initial geometry and the

optimised geometry as predicted by NN, and the full order solution of

the optimised geometry at various locations in the spanwise direction

of the wing. 132

5.17 Illustration of the deformed ONERA M6 wing in Iβ × Iκ, scaled by an

amplifying factor of 10. 134

5.18 Relative frequency of the error on the test set for the three neural net-

works employed, measured in counts. 135

5.19 Comparison of the pressure coefficients, Cp, obtained with the CFD

solver and NN predictions using the third network for a test case with

inflow conditions, M∞ = 0.83 and α = 5.4◦, at different locations in the

spanwise direction of the wing. 137

A.1 B-spline basis functions using the knot vector in 146

A.2 Illustration of an untrimmed and trimmed NURBS curve. The solid

black line represents the curve, formed using knots which are denoted

by ◦. The NURBS curve is parametrised using control points, denoted

by � and found within the control polygon denoted by the blue dashed

line. 147

A.3 A tetrahedral element with the annotated relative volume coefficients

around node P. 149

B.1 Mean value of the error measured in lift counts, εCL , as a function of the

number of hidden neurons, nN, and the number of hidden layers, nL. . . 154

xxiii

List of Tables

2.1 Constants defined in the Spalart-Allmaras turbulence model. 24

4.1 The selected NN configurations for the prediction of lift using the three

networks considered. 82

4.2 The accuracy of the binary classification approach in the test set using

the confusion matrix. 86

4.3 The selected NN configurations for the predictions of lift using the three

strategies considered. 87

4.4 The selected NN configurations for the predictions of lift using the three

networks considered. 92

4.5 The selected NN configurations for the predictions of lift using the four

strategies considered. 99

4.6 The selected NN configurations for the prediction of lift using the three

networks considered. 103

4.7 Mean value of the errors, measured in the test dataset, for the medium

level of mesh refinement when nTr = 160 simulations are used in the

training of the third network. 108

5.1 Control points of the top curve of the base geometry approximating a

NACA0012 aerofoil. 112

5.2 The selected NN configurations for the predictions of lift using the four

strategies considered. 120

5.3 Control points of the top curve at the root and tip aerofoil section of the

base geometry approximating the ONERA M6 wing. 125

5.4 The selected NN configurations for the prediction of lift using the three

networks considered. 128

5.5 The selected NN configurations for the prediction of lift using the three

networks considered. 135

xxv

List of Abbreviations

CFD Computational Fluid Dynamics

FV Finite Volume

LHS Latin Hypercube Sampling

LSTM Long Short Term Memory

MLP Multi-Layer Perceptron

NS Navier-Stokes

NN Neural Network

NURBS Non-Uniform Rational B-Splines

PGD Proper Generalised Decomposition

POD Proper Orthogonal Decomposition

RBF Radial Basis Function

ROM Reduced Order Model

RANS Reynold Averaged Navier-Stokes

SA Spalart-Allmaras

1

Chapter 1

Introduction

As we have moved from the great pioneers, such as Lanchaster, to the modern age of

sophisticated computational methods and integrated ways of working, so we have moved from

the art of compromise to the science of optimisation.

Jeff Jupp [1].

1.1 Motivation

Over the last decade, there has been a rapid and steady growth in the volume of air

traffic, especially for commercial air transportation and this trend is anticipated to con-

tinue in the foreseeable future [2]. Due to the continuous growth of the aviation indus-

try, the carbon dioxide emissions from aircraft are becoming a prominent contributor

to climate change and henceforth raising public concerns [2]. In order to address the

impact of greenhouse gas emissions from aircraft on the global climate, several inter-

national air transport associations have set targets on the carbon emission from air

transports. It is reported that by 2050, carbon emissions should be reduced by 50%

compared to the carbon level recorded in 2005 [2]. As such, researchers from both

academia and the industry are making an effort to deliver innovative technologies to

meet the set targets for the next generation of aircraft.

To address the challenge of reducing carbon emission, designers are developing new

techniques and methods in various fields, such as employing more efficient jet en-

gines or using composite materials to build the body of the aircraft. Of the wide

considerations, one key aspect is to improve the aerodynamic efficiency of the air-

frame technology. The intrinsic complexity of modern aircraft designs is becoming

2 Chapter 1. Introduction

more dependent on the development and assessment of new theoretical and numer-

ical methodologies which are capable of reducing the cost of experiments or even re-

placing them. Moreover, these methods are often employed to explore the trade-offs

at extreme conditions when a decision on the design path or a selection from a pool of

candidates is considered. There are two main characteristics that are usually required

in aircraft design analysis: high-fidelity and low-cost. High-fidelity is related to the

capability of the theoretical method to replicate real-life phenomena with a high de-

gree of accuracy. A few challenging examples of such flow phenomena include flow

transition, separation, shock placement and aerodynamic stall. The application of the-

oretical or numerical representation of physical behaviours is generally preferred in

the early design stage of design processes as global competitions push the increasing

number of technical and commercial requirements in a posteriori stages. As a result, a

vast number of degrees of freedom exists in the preliminary stage of the design cycle.

Semi-empirical tools and rules, which are derived from experiments, are tradition-

ally applied as they are computationally efficient. However, a loss in accuracy should

generally be expected when the design path deviates from the conventional config-

urations. It is therefore relevant to explore unconventional configurations for which

semi-empirical simulation tools are not applicable. Strong progress over the last two

decades has led to the implementation of highly accurate design methods involving

geometry representation and physics modelling [3]. Scientific computing enabled the

prototyping of aircraft design through complex physics-based emulators that resulted

in saving substantial costs compared to performing experiments in wind tunnels. In

fact, the first large body aircraft was entirely designed from simulation based analy-

ses in the 1980s [4]. However physics-based emulators also have their shortcomings.

Numerically solving the fluid flow equations is challenging due to the transient and

non-linear effects of fluid dynamics. Moreover, this implies a large amount of data

storage, data handling and intensive processing cost, even when it is implemented on

modern state-of-art computing platforms. Additionally, in the design of a full aircraft,

the computational resources needed to support advanced-decision making at the con-

ceptual design phase are prodigious due to the broadness of the flight envelope. It is

reported that the complex aerodynamic systems can easily have millions of degrees

of freedom requiring wall-clock times in the order of days to obtain a solution, even

when resolved in parallel [4]. This turns out to be a much bigger problem when para-

metric studies or optimisation problems typically are of interest and the computational

1.2. Non-intrusive ROMs in aerodynamic design 3

fluid dynamics (CFD) simulations must be run thousands of times. As a result, it is not

feasible to perform the simulation of all required configurations in high-dimensional

problems where geometric and flow parameters are involved.

Therefore, there is the need of robust and reliable methods to produce fast aerody-

namic predictions while maintaining a high level of accuracy. Researchers in the engi-

neering community across the world are increasingly focused on the use of reduced or-

der models (ROMs). It has become a popular alternative to alleviate the computational

burden associated with CFD simulations involving a large number of parameters [5].

ROMs are generally thought of as a computationally inexpensive representation of

complex mathematical models that can offer the potential for near real-time analysis.

Additionally, it should also provide an accurate and compact representation of the sys-

tem [5]. Such methods have been heavily used across various fields and they can be

broadly categorised into two main groups: the intrusive ROMs and the non-intrusive

ROMs [5]. As the name suggests, the two classes differ from each on how intrusive the

ROM is to the solver. Both types of ROMs tend to be sensitive to the so-called train-

ing phase which commonly consists of feeding the ROM with high-fidelity data and

finding the set of parameters which best fit the model to the data seen in the training

phase. Hence, an effective sampling method of the multi-dimensional design space

is required. Designers usually employ design of experiments in an attempt to max-

imise the amount of information from the multi-dimensional space in the requested

number of samples. The selected sampling points are evaluated with the high-fidelity

tools and depending on the design objectives and constraints, a model is selected to

construct the ROM. That said, sampling the design space is not a trivial task as a trade-

off exists between the exploration of the design solutions and the improvement of the

accuracy of the model.

1.2 Non-intrusive ROMs in aerodynamic design

Recent progress in aircraft development has witnessed the introduction of non-intrusive

approaches as a rapid and cheaper way to address high-dimensional aerodynamic

problems. Such approaches, part of the ROM family, are a popular alternative to alle-

viate the computational burden of CFD simulations in the early design stage of aero-

dynamic components. The attractive properties of non-intrusive approaches include

its simplicity and the ability to deal with complex problems regardless of the nature

4 Chapter 1. Introduction

of the problem. Additionally, it is entirely independent of the source of the data and

relies only on the content present in the dataset. One major drawback of such meth-

ods includes the reproducibility of complex solutions using regression techniques to

adequately represent equally complex systems of partial differential equations [6]. For

instance, accurate predictions of highly non-linear aerodynamic behaviours, such as

shocks, still remains a challenge [7, 8, 9]. As a result, it is important that the employed

non-intrusive ROM is capable of capturing the very possible irregular solutions. Tra-

ditional non-intrusive approaches are generally said to be prone to more non-physical

predictions as consistency is generally conserved in the solutions of intrusive ROMs.

Nonetheless, intrusive ROMs tend to get complicated rapidly when the number of di-

mensions in parametric studies increases. Additionally, non-intrusive approaches are

usually preferred for multi-physics problems to avoid the complication of coupling

systems of equations [6].

This thesis focuses only on non-intrusive approaches. Some of the most popular non-

intrusive ROMs in the engineering research community that are relevant to the context

of this work, are the proper orthogonal decomposition (POD) [10, 11, 12, 13], reduced

basis methods [5, 14, 15], eigensystem realisation algorithm [9, 16, 17] and machine

learning techniques [18, 19, 20]. The more recent proper generalised decomposition

is traditionally intrusive, however there are only few non-intrusive approaches in the

literature [21]. The next section provides a brief discussion on the application of two

non-intrusive ROMs, namely the POD and the artificial neural networks (NNs), in the

aerodynamic design of aerofoils and wings.

1.2.1 The POD

The POD remains the most popular ROMs in the engineering community and is well

documented [6]. It is capable of extracting an optimal set of modes and provides

a means of truncating the expansion of modes to represent the original state at the

prescribed level of accuracy. The POD has been widely adopted via the method of

snapshots, proposed in [22], for the analysis of unsteady fluid flow problems [23, 24,

25, 26, 12]. The POD has been less commonly employed for solutions of steady fluid

flow problems in parametric studies via the method of snapshots. The procedure usu-

ally begins by generating a set of instantaneous flow solutions or snapshots from the

CFD solver in which the design variables are sampled, usually according to a design

1.2. Non-intrusive ROMs in aerodynamic design 5

of experiment. The POD is then used to produce an optimal low-dimensional rep-

resentation of these snapshots using a finite set of basis functions or modes. Given

a new set of design variables, an independent set of equation is solved to obtain the

POD coefficient in the low dimensional subspace. The new calculated coefficients are

then used in the reconstruction to the original state. It is worth noting that the perfor-

mance of non-intrusive models in general are sensitive to the sampling of the design

space [27]. One of the first work in the construction of POD using steady state solu-

tions for the design of aerofoils is in [28]. The authors generate a set of snapshots using

the pressure defined at all the nodes in the mesh and employ least square techniques

to interpolate the POD coefficient to obtain the solution of a modified geometry [28].

Other parametric studies focus on only flow conditions [29, 12, 30] or both flow and

geometric parameters [31]. Various other works employ the POD in a similar manner,

however they only differ in the way the continuous expansion of the POD coefficient

is performed for a new set of design variables. A few popular choices include linear

functions [30], cubic spline methods [32] least square regression [33] and radial basis

functions (RBFs) based on Euclidean distance [12, 31, 34] or Gaussian processes [6].

It is worth noting that the methods employed thus far, have considered the pressure

defined at all the mesh nodes or a subset of the nodes in the domain, in an attempt to

reconstruct the pressure field.

Other variants to the original implementation of the POD exists. The gappy POD was

developed to address the problem of missing data points in the snapshots used to

build the ROM [35]. This is especially helpful when the data is obtained from ex-

periments and least square fit is generally employed to approximate the missing data

points locally [35]. A posteriori POD models have also been built by adapting the

ROM with a greedy algorithm, in an attempt to minimise the computational cost of

traditional non-intrusive models [36, 37]. The greedy algorithm provides an error in-

dicator on the solutions being adaptively added to the ROM. However, the authors

underline the exhaustive search of greedy algorithms when high dimensional prob-

lems are considered [36]. Other POD variant includes the so-called balanced-POD [39].

It is worth noting that there are a few works in the past which perform a direct interpo-

lation rather than using a ROM, such as in [40, 41, 42, 43]. However the authors in [44]

speculate that employing a ROM should be generally better than direct interpolation

techniques.

6 Chapter 1. Introduction

1.2.2 Machine learning and NNs

Machine learning techniques have also been successfully employed as a non-intrusive

ROM in many areas of science and engineering [45], including CFD [18, 46]. Accord-

ing to the authors in [47], the application of classic machine learning techniques for

the prediction of aerodynamic coefficients at various flow conditions and geometric

parameters can be considered as established. NNs, on the other hand, offer a feasi-

ble approach to aerodynamic design in the field of fast design space evaluation due

to their economic computational consumption and accurate generalisation capabili-

ties [46]. One of the first applications of NNs for the predictions of aerodynamic coef-

ficients can be found in [20], where flight test data was obtained at various angles of

attack. The last two decades have seen an explosion in the use of NNs in CFD applica-

tions. In [48], two multilayer perceptrons, the fully-connected NN model, were used

to predict the lift and drag coefficients separately at different values of Mach num-

ber and angle of attack. One of the first applications of NN to study geometrically

parametrised aerofoils was presented in the 1990s [49]. The use of the so-called PAR-

SEC aerofoil representation has also been extensively employed to train NNs for the

prediction of aerodynamic coefficients [50, 51, 52]. Other geometry parametrisation

techniques have also been applied in aerodynamic design, in an attempt to reduce the

number of geometric parameters required to define an aerofoil or wing shape. This is

specially advantageous to ROMs as the lower the number of parameters defining the

geometry, the lower is the computational effort in training the NN or machine learn-

ing techniques in general. For instance, the author in [53] employs a hybrid geometric

parametrisation using the PARSEC representation and Bezier curves. A comparison of

the parametrisation techniques on the accuracy of the aerodynamic predictions goes

beyond the scope of this thesis, see [54, 55] for more information. More recent methods

that have gained considerable attention in the last five years, are the use of modern

NN architecture which are capable of reducing the number of dimensions to define an

aerofoil profile [56].

One of the first works where the pressure is predicted over a geometrically parametrised

wing is in [57]. The authors use as many NNs as the number of points on the surface to

predict the pressure [57]. In [58], the authors train a NN which considers three inputs

corresponding to the x, y and z coordinates defining the aerodynamic surface and one

output corresponding to the pressure coefficient defined at that location. Hence, the

1.2. Non-intrusive ROMs in aerodynamic design 7

size of the dataset scales with the number of points discretising the aerofoil as well as

the number of aerofoils considered in the training. The authors remark that a draw-

back to this method is that the training of the NN becomes cumbersome as the num-

ber of training samples increases [58]. NN was also employed in parametric studies to

reconstruct the pressure flow field in the entire domain [59, 60]. The main disadvan-

tage of this approach lies in the number of outputs required to reconstruct the flow

field, which scales with the total number of nodes in the mesh. Consequently, more

weights need to be optimised and longer training time should be expected. More re-

cently, approaches based on aerofoil images, rather than a mathematical description,

have also been considered [61]. A more recent NN architecture, known as the con-

volutional NN, considers the graphical interpretation of aerofoil shape in the form

of images as inputs and the aerodynamic coefficient of interest, the lift, drag or mo-

ment is considered as the output [61]. Similar work can be found in [47], however

the authors predict all three aerodynamic coefficient using only one network. The au-

thor in [62] proposes a non-conventional way to predict the aerodynamic coefficients

using convolutional NN. The approach considers images of modified aerofoils as in-

puts, however the outputs differ to conventional techniques. The pressure defined at

the nodes in the computational mesh are discretised into a finite number of intervals

or classes. The outputs correspond to the finite number of classes. Hence, the usual

regression problem is turned into a classification one. The authors remark that this

approach provides a prediction with a mean accuracy of only 80% [62]. Despite the

remarkable progress in employing the convolutional NN, it has several limitations. A

major drawback in employing the convolutional NN is the loss of information [63].

This is specially crucial in numerical examples where both flow and geometric param-

eters are synthesised onto an image as in [62, 47, 61]. Moreover, the authors in [64,

65] remark that a larger dataset is generally required in convolutional NN to provide

similar accuracies compared to other simpler NN architectures. Consequently, longer

training hours should be expected due to its complex architecture.

Physics-inspired NN models have also been built in which a NN is used to map the

explanatory variables to the POD coefficients such that for a new set of inputs, the

POD coefficients are obtained in the lower dimensional space of the ROM [66, 67, 68].

Using the POD coupled with the NN is relatively new and according to the author’s

knowledge, a comparison of the performance of the POD coupled with the NN and

other interpolation techniques such as RBFs, still remains.

8 Chapter 1. Introduction

1.2.3 Aerodynamic shape optimisation

The modern way of improving the aerodynamic designs is to define a numerical opti-

misation problem where the solutions from full order models, such as CFD solvers, are

coupled to an optimisation algorithm to effectively automate the process. According

to the classification in [69], aerodynamic shape optimisation problems can be cate-

gorised into two groups, mainly optimisation design and inverse design. In the opti-

misation design problem, the optimum shape configuration is found by minimising or

maximising an objective function related to a specified aerodynamic performance. It

is usually subject to constraints in the geometry and the aerodynamic quantities of in-

terest. Conversely, in the inverse design problem, the optimum shape configuration is

usually determined by minimising the difference between a target and the computed

pressure distribution. The authors in [69] remark that an ideal aerodynamic system

must have both functionalities. The shape optimisation process can be classified into

two main approaches, based on the type of the optimiser that is employed.

The first approach involves the use of a gradient-based method which computes the

gradients of the cost function with respect to the design variables to determine the

direction of descent. One of the earliest studies was performed in [70], where the au-

thors couple the solver with the gradient-based optimiser. The main drawback of this

method is the large computational cost associated with the computation of the gradi-

ents. To alleviate the curse of dimensionality in the direct computation of the gradient,

the author in [71] introduced the concept of adjoint methods where an indirect evalu-

ation of the gradient is performed. Although this method has been proven to be effec-

tive when a large number of design variables are used, there are two main drawbacks

in employing this method. Firstly, the high development cost of adjoint methods is

attributed to the linearisation of the complex systems and this requires modification

each time the code is altered [72]. Secondly, this approach becomes more complicated

to implement as the number of design variables is increased and is intolerant to noisy

objective function spaces, inaccurate gradients, categorical variables and topology op-

timisation [72]. Additionally, an often-mentioned disadvantage is that gradient-based

techniques are generally sensitive to the initial design and therefore may not reach the

global optimum in high dimensional design problems. This is attributed to the noisy

performance surface and gradient-based method may get stuck in a local minimum.

The second approach employs a gradient-free optimisation algorithm coupled with

1.2. Non-intrusive ROMs in aerodynamic design 9

the solver to find the optimum shape. This approach alleviates the common diffi-

culty in computing the sensitivities of gradient-based techniques. Some of the popu-

lar choices are genetic algorithm [73], particle swarm methods [74] and the modified

cuckoo search [75]. These optimisers have minimal development cost and are also

known to be tolerant to noise in the objective function [72]. The use of a gradient-

free optimiser in shape optimisation has proven to be valuable in practice for finding

the so-called global minimum [76, 77, 78]. It is worth noting that the key disadvan-

tages of the gradient-based methods are the strengths of the gradient-free optimisers.

However, these heuristic methods suffer from two main drawbacks, mainly slow con-

vergence near an optimum and a termination criterion is not so straightforward [72].

The computational cost of employing gradient-free optimisation algorithms directly

with the solver may become prohibitive due to the need of running a large number of

full order CFD simulations [78].

To accelerate the evaluation of the objective function in shape optimisation problem,

the most recent trend involves the use of a ROM constructed using the solutions of

a full order model [79, 46, 80, 81]. One of the most attractive properties of ROMs is

that, once the ROM is built, predictions can be performed in almost real time. ROMs

were introduced to tackle the high computational cost of evaluating the full order

models, faced by traditional techniques [79]. Traditional techniques include the use

of an optimiser directly with the CFD solver as in [70, 71, 72, 77, 78]. Over the years,

a number of optimisers and classic non-intrusive ROMs have been employed to ob-

tain the optimum shape configuration, including Gaussian-based regression [80] and

radial basis functions [81]. The use of NNs to perform directly the optimisation of

aerofoils and wings has also recently attracted considerable attention [82, 53, 83]. A

review of NNs in aerodynamic design is available in [46]. When the ROM is em-

ployed, there is the choice of gradient-based and gradient-free optimisers to be made.

It is reported that the performance of gradient-free algorithms is superior to that of

gradient-based algorithms when a ROM is employed due to the existing pitfalls of

gradient-based techniques, especially in high dimensional problems, as mentioned

earlier [84]. Therefore, it can be deduced that a combination of ROM and gradient-

free algorithm can provide an excellent framework for shape optimisation problems

due to two main reasons. Firstly, the ROM alleviates the computational cost of the

gradient-free optimisation algorithm by accelerating the evaluation of the objective

function. Secondly, the gradient-free algorithm is generally insensitive to the initial

10 Chapter 1. Introduction

design and it may converge to the global optimum, provided sufficient information

on the optimisation space is obtained in the first generation.

1.3 Scope of thesis

With the motivation and relevant background highlighted in the previous sections,

the discussion leads to the key objectives and the contributions accomplished in the

present work that are suitable to the aerodynamic design research community. The

remaining part of the chapter is dedicated to present the outline of the thesis.

1.3.1 Aims and objectives

The primary objective of this work is to establish a reliable and robust non-intrusive

ROM that enables the fast evaluation of aerodynamic coefficients of aerofoils in two

dimensions and wings in three dimensions. A posteriori ROMs are considered and

they require the construction of a database. Steady Euler and NS calculations are per-

formed to build the database. To align the objectives of the current work with some of

the challenges identified by NASA’s 2030 CFD vision [85], the design of the aerody-

namic components is aimed to have a higher degree of automation involved in geom-

etry creation, mesh generation and adaption, creation of large simulation databases,

extraction and understanding the vast amount of information generated, and lastly the

ability to guide the process. Furthermore, the automated system is also anticipated to

have high levels of reliability and robustness to minimise human intervention.

To these aims, a non-intrusive ROM is built using a multi-output NN for the fast pre-

dictions of aerodynamic coefficients on aerofoils and wings in numerical examples

involving flow conditions and parametrised geometries. The output of the proposed

NN consists of the pressure evaluated at a number of points on the aerodynamic sur-

face. Here this is done using a single NN, rather than as many NNs as the number

of points on the surface, as performed in [57].The performance of the proposed NN

is compared with the most common approach found in the literature, where a NN

with a single output, corresponding to one aerodynamic coefficient, the lift, drag or

moment, is considered [86, 50, 87, 51, 49, 61]. The proposed NN is also compared

against another existing NN where all aerodynamic coefficients are considered as the

outputs, introduced in [47]. Additionally, the performance of the proposed approach

1.3. Scope of thesis 11

is compared to the classic ROM in the literature, the POD, in the numerical examples

in two dimensions.

In an attempt to improve the aerodynamic efficiency of aerofoils and wings, as well as

addressing the challenge of reducing carbon footprints by 2050 [2], an efficient opti-

misation framework is presented using the proposed non-intrusive ROM and a global

optimisation algorithm. It is applied to both optimisation and inverse design prob-

lems. The cost of evaluation of the objective function is alleviated by the use of the

non-intrusive ROM, as in [82, 53, 83]. A comparison with an existing framework is

also performed to identify the advantages of the proposed framework.

1.3.2 Outline

A brief outline of the structure of the thesis is given below:

• Chapter 2 : A brief introduction to the evolution of CFD and the selection of

available approximation methods in aerodynamic design is provided. The for-

mulations implemented in the full order CFD model is presented. Additionally,

the mesh generation and the discretisation of the governing equations of the NS

equations are detailed. Finally, an overview of the implemented solution proce-

dure in the full order model is provided.

• Chapter 3 : The chapter aims at discussing ROMs which are commonly em-

ployed in CFD applications. Two concepts that are used as a non-intrusive ROM,

are introduced. Firstly, a brief overview of the POD via the method of snapshots

is provided. Some of most popular choices in interpolating the POD coefficients

is written. Secondly, the NN is reviewed with the forward propagation and back-

propagation detailed in steps. Several optimisation algorithms adapted to NNs

are also considered. Finally, a brief discussion on popular design of experiment

techniques are discussed.

• Chapter 4 : The chapter presents the application of the proposed NN using nu-

merical examples that involves flow parameters. The wide range of flow con-

ditions considered in the examples leads to the subsonic and transonic regime.

The examples considered shows the benefits of the proposed NN against exist-

ing NNs and the POD using several strategies. The influence of the number of

12 Chapter 1. Introduction

training cases on the accuracy of the predictions for the NN and POD is demon-

strated. The chapter also includes an extension to fast aerodynamic prediction

on three dimensional wings using the proposed NN. Special emphasis is placed

on the influence of the accuracy of the CFD data on the predictions of the em-

ployed ROM.

• Chapter 5 : The numerical examples presented in this chapter demonstrates the

application of the proposed NN to the fast predictions of aerodynamic coeffi-

cient in problems involving geometric parameters. The examples have various

levels of complexity and a comparison on the performance of the proposed NN

against existing NNs and the POD is shown. The influence of the number of

training cases on the accuracy of the predictions is also explored. An applica-

tion to using the proposed NN and the modified cuckoo search is presented for

an optimisation and inverse design problem. Additionally, the superior perfor-

mance of the proposed technique in the context of optimisation design is demon-

strated against existing NNs. Finally, an example on deforming wings over a

wide range of conditions is shown to exemplify the robustness of the proposed

method.

• Chapter 6 : The thesis ends with some concluding remarks. It recalls the con-

tributions of the present work and comments on the future outlook on aerody-

namic design using current technologies.

• Appendix A : The appendix provides additional supporting materials that have

been employed in this work for completeness and consists of three sections. The

first section provides a brief description of the non-uniform rational B-splines

(NURBS). The second section describes the Delaunay graph mapping that was

employed to deform a reference mesh. The third section presents an overview

of the cuckoo search algorithm with remarks on the key implementation of the

modified cuckoo search algorithm.

• Appendix B : The appendix shows the comparison of the performance of two

NN architectures, mainly the extended multi-layer perceptron and the long short

term memory network in a numerical example involving flow parameters.

13

Chapter 2

The Full Order Model

The fluid flow problems in this thesis are governed by the compressible Euler and NS

equations for a calorically perfect gas in their stationary form. This chapter begins by

providing a brief introduction to the evolution of CFD and the selection of available

approximation methods. The work in this thesis employs the Flite system, which is

an in-house CFD solver [88]. A summary of the formulations implemented in the full

order model is presented. Furthermore, the mesh generation and the discretisation

of the governing equations for the flow problems relevant to this work are detailed.

Finally, an overview of the implemented solution procedure is provided.

2.1 Introduction

Before the development of transistors, the solutions of fluid problems relied on hand

calculations by discretising the domain and applying basic numerical methods. An

English mathematician Lewis F. Richardson was one of the pioneers in the field to nu-

merically solve the governing equations by hand, for the purpose of weather predic-

tions [89]. The numerical analysis performed on a cylinder at low Reynolds numbers

was first documented in the 1930s [89]. The researcher described that the flow field

should be broken down into a set of squares of any size and finer grid sizes would pro-

vide more accurate solutions where the gradients in the flow are large. Fortunately,

due to the development of transistors in the second half of the 20th century, modern

high performance computers were able to handle extremely high-speed calculations

to produce reliable solutions. This has led CFD to become an important tool in the

analysis of fluid flow problems in both academia and the industry. The wide range of

applications has also caused the development of various methods to meet the need of

14 Chapter 2. The Full Order Model

Figure 2.1: Evolution of the complexity of the flow solved over the 40 prominent years of
CFD developments at Airbus, with an indication on the advancement of the applied meth-
ods, taken from [3].

users. Each approach differs from each other in the physical and computational ac-

curacy, or precision and speed, based upon the assumptions that underlay the model

and the quality of any potential discretisation.

The CFD study of aerodynamic flows has evolved to embrace the advancements over

the years. Figure 2.1 shows the evolution in the uptake of CFD methods between

1965 and 2002 at Airbus. Accurate solutions obtained with the progress of numer-

ical and computational capabilities have allowed new opportunities. For instance,

it has allowed for improving aerodynamic designs, reduced expenditures in exper-

imental testing and more importantly, broaden the understanding of physical phe-

nomena. A recent report of NASA’s CFD vision for 2030 has identified key areas that

requires high-priority research in order to advance the fields and obtain accurate so-

lutions to the NS equations [85]. Amongst the discussed strategies relevant to this

work is a higher degree of automation in all steps involved at the early design stage

of aerodynamic components. This involves geometry creation, mesh generation and

adaptation, creation of large simulation databases, extraction and understanding of

the databases, and the ability to computationally guide the process. The report also

underlines that every step in the process should have high levels of reliability and ro-

bustness to minimise human intervention [85]. Another identified area is the flexibil-

ity to tackle capability and capacity of computing tasks in both industry and research

environment. This involves large datasets of compact solutions or small datasets of

large solutions that should be readily accomplished with the computational resources

2.1. Introduction 15

available [85].

Next, the computation of a flow solution requires the careful selection of a numerical

or analytical approximation to the NS equations. The computational cost of the NS

equations is approximately proportional to O(Re3), where Re denotes the Reynolds

number [90]. Direct numerical simulation relies on some of the most powerful com-

puters in the world to produce solutions over simple geometries such as spheres and

flat plates [91]. The standard CFD approximations shown in figure 2.2 are well known

and can be found in [92].

Aerodynamic flows are physically approximated based on three main methods, namely,

physical assumptions, mathematical reductions and modelling. The first method ex-

plicitly removes physical phenomena from the equations which consequently reduces

the size of the system of equations to solve. An example is that of potential flow meth-

ods which assume that the flow is incompressible and irrotational. The second method

allows a simplification of the governing equations without explicitly removing phys-

ical phenomena or performing a simplification on the assumptions made upon a cer-

tain behaviour. An example of this approach includes the time-averaging performed

in the derivation of the Reynolds averaged Navier-Stokes (RANS) equations where the

temporal variability of the viscous terms are first averaged and then modelled. The

third method models any behaviour that are not well represented using the current

methodology. The higher accuracy obtained with the last approach comes at a cost,

however it is still significantly cheaper than solving the NS equations directly. An ex-

ample is the large eddy simulation which models the micro-scale turbulence using a

semi-analytical and empirical model.

For examples involving geometric parameters, potential flow methods are unable to

represent arbitrary shapes and produce the correct approximations as the methods

rely on the user specification of the locations of the stagnation point and separation

point to enforce a flow pattern. On the other hand, the cost of large eddy simula-

tion and direct numerical simulation makes their use impractical. In the case where

only compressibility is required, solving the Euler equation is a popular choice and

when both compressibility and viscosity is required, RANS model is usually selected

as it can capture the correct trends between different inflow and geometric configura-

tions [3].

16 Chapter 2. The Full Order Model

Figure 2.2: Standard CFD approximations to the NS equations [92].

The accuracy of a solution coming from an Eulerian formulation, a standard CFD ap-

proach for simulations without free-surfaces, is highly dependant on the quality of dis-

cretisation used for the surface and the domain. The discretisation can be achieved us-

ing two approaches, the structured and unstructured meshing techniques. The struc-

tured mesh has the benefits of having elements aligned with the principal directions

of the flow which further simplifies the analysis of viscous flow problems. On the

other hand, unstructured meshes allow for a wider range of element shapes and are

2.2. Formulation of compressible flows 17

boundary conforming to complex geometries [93, 94].

The selection of discretisation methods is also dependent on the equations being com-

puted and the complexity of the expected flow features. For instance, the turbulence

models used in RANS simulations are particularly sensitive to the rate of growth in

the normal direction away from the no-slip wall boundaries. As a result, very small el-

ements and smooth gradation to the outer boundary are required to accurately model

the growth of the boundary layer. That said, mesh generation is not a trivial task.

Moreover, it is of utmost importance to obtain an accurate description of the discre-

tised geometry in the computational domain [95]. As a matter of fact, a low fidelity

representation of the geometry is known to have a major impact on the solution ac-

curacy, as well as the convergence to the correct solution [96, 97]. This has led the

mesh generation community to produce fast and robust mesh generation tools [97].

However, providing automatic generation of high quality meshes with minimal user

intervention is still considered a challenge in the research community [85, 95].

2.2 Formulation of compressible flows

This section is devoted to the full order formulation of the compressible NS equations

in their stationary form and under the assumption of a calorically perfect gas. A brief

overview of the turbulence model using the Favre-averaging procedure is provided.

Furthermore, a short discussion of the boundary conditions relevant to this work is

presented. Finally, the computation of aerodynamic quantities of interest is written.

2.2.1 Governing equations

The fluid flow problems considered in this work are governed by the NS equations

for a compressible fluid. The strong form of the problem, in a computational domain

Ω ⊂ Rd in d spatial dimensions and in the absence of external volume forces, can be

written as
U t +∇ · F(U)−∇ · G(U) = 0 in Ω × (0, Tf] ,

U = U0 in Ω × {0},

B(U, U∞) = 0 in ∂Ω × (0, Tf].

(2.1)

18 Chapter 2. The Full Order Model

The vector of conservation variables, U, the flux tensor, F, and the viscous tensor, G,

are given by

U :=


ρ

ρv

ρE

 , F :=


ρvT

ρv ⊗ v + pId

(ρE + p)vT

 , G :=


0

T

(vTT − qT)

 , (2.2)

Here, U0 denotes the initial condition, Tf is the final time and B is the generic flux

used to define the boundary conditions over the inflow, outflow and wall boundaries.

In the above expressions ρ is the density, ρv is the momentum, ρE is the total energy

per unit volume, p is the pressure and Id is the identity matrix of dimension d. The

contribution of the deviatoric stresses in the direction j is written as Tj = [τ1j, τ2j, τ3j]
T

and contains the deviatoric stress components which can be expressed in terms of the

velocity gradients as

τij = −2
3

µ
d

∑
k=1

∂vk

∂xk
δij + µ

(
∂vi

∂xj
+

∂vj

∂xi

)
, where

δij = 1 if i = j

δij = 0 if i 6= j
(2.3)

and for i, j = 1, 2, .., d. vl is the l-th component of the velocity vector. µ is the dynamic

viscosity, δij is the Kronecker delta, and the heat flux is given as

q = −κ
∂Ť
∂x

, (2.4)

where κ is the thermal conductivity and Ť is the absolute temperature, measured in

Kelvin. It is assumed that the dynamic viscosity varies with temperature according to

the Sutherland’s law,

µ

µ◦
=

(
Ť
Ť◦

)1\2
Ť◦ + 110
Ť + 110

, (2.5)

where µ◦ and Ť◦ are the reference state. The Prandtl number is expressed as

Pr =
cpµ

κ
, (2.6)

taken to be constant and Pr = 0.72. In this expression, cp is the specific heat at constant

pressure. The system of equations is closed with the equation of state for a perfect

2.2. Formulation of compressible flows 19

polytropic gas, in the form

p = (γ − 1)ρ
(

E − 1
2
‖v‖2

)
, (2.7)

where γ = 1.4 is the ratio of the specific heats for air. The flow around a given ge-

ometry with its corresponding boundary conditions can be fully described using the

Prandtl, Reynolds, Mach, and Strouhal numbers, written as

Pr∞ =
cpµ∞

κ∞
, Re∞ =

ρ∞‖v‖l
µ∞

, M∞ =
‖v‖
cs

, St∞ =
‖v‖tc

l
, (2.8)

going from left to right, respectively. In the above expressions, the subscript ∞ denotes

the freestream values, l is a specified reference length scale, tc is a characteristic time

scale and cs =
√

γp/ρ is the speed of sound.

2.2.2 Turbulence modelling

The most challenging part in CFD simulations is to accurately and efficiently capture

the complex and non-linear features of turbulent flows. The necessity to solve turbu-

lent flow problems resulted in the development of turbulence modelling. The selection

of an appropriate turbulence model is required to accurately model any given prob-

lem [98]. There are three main approaches that are commonly employed to resolve

turbulent flows, mainly, the direct numerical simulation, large eddy simulation and

RANS.

The principle behind direct numerical simulation is to directly solve all of the turbu-

lence length and time scales. An adequately fine mesh is needed, which subsequently

requires large computational resources [99]. Due to this high computational demand,

the author in [100] underlines that direct numerical simulation is only suitable to solve

low Reynolds number flow problems or domains with smaller degrees of freedom. As

most research in aerodynamics involves high Reynolds number flow problems and

large domains, solving the governing equations directly is not feasible. In an attempt

to reduce the computational efforts to solve a given flow problem, researchers have

modelled or approximated the turbulent flows at various levels of accuracy. More-

over, it also depends on how much of the NS equation wants to be retained. The large

eddy simulation is an example in which a semi-analytical and empirical approach is

used to model the micro-scale turbulence. It is assumed at this level, turbulence is

20 Chapter 2. The Full Order Model

reasonably homogeneous and easier to model compared to large-scale chaotic flow.

According to [98], the authors note that large eddy simulation compares well against

direct numerical simulation as the CPU time for large eddy simulation is between five

to ten percent of that needed for direct numerical simulation. However, the authors

in [101] report that for high Reynolds number flows, large eddy simulation also re-

quires large computational resources because of its time-dependent nature and hence

is sometimes deemed too expensive for some aerodynamic analyses. For instance,

large eddy simulation requires approximately 600 million elements to discretise the

domain in the near-wall region of y+ < 20 for a wall bounded flow around a simple

vehicle [102]. Moreover, large eddy simulation requires precise level of turbulence at

the inlet and regular isotropic elements with smooth and gradual spatial change in

resolution outside the wall region in order to minimise the erosive effect on numerical

dissipation [103].

The next level of approximation is the so-called RANS which represents the domi-

nant approach in industrial applications. It involves the modelling of turbulence at

all characteristic length scales by decomposing the flow variables into the mean and

fluctuating parts, followed by an averaging procedure [104]. This is favourable in the

context of aerodynamic design exploration where multi-query simulations are per-

formed and the averaging procedure speeds up the process of obtaining a solution to

the NS equations. It is usually recommended to apply the density weighted averag-

ing procedure, also referred to as the Favre averaging [105], to certain flow quantities in

compressible flows. This is usually performed to avoid the complications in correla-

tion terms involving density fluctuations. Additionally, when a statistically averaged

steady-state solution of compressible flows is sought, as in this work, Favre averaging

is the most popular choice [94].

Favre averaging relies on the Morkovins hypothesis. It states that if fluctuations are

small compared to the mean density in the flow, then the effects of the density fluc-

tuations on the turbulence will also be small [106]. This assumption is however only

valid for Mach numbers up to at most five [98]. The Favre averaging procedure can be

described by first introducing the Reynolds time-averaging using a general variable u

as

u =
1

∆t

∫ t+∆t

t
u(x, t) dx, (2.9)

where u is the averaged quantity and ∆t denotes the time over which the variable u

2.2. Formulation of compressible flows 21

is averaged. The time should be large enough to alleviate small turbulent oscillations.

The Favre averaging of the generic variable, ũ can therefore be written as

ũ =
ρu
ρ

, (2.10)

which represents the density-weighted version of the Reynolds procedure. The fluc-

tuations can now be defined using these definitions as

u′ = u − u and u′′ = u − ũ, (2.11)

for the Reynolds and Favre averaging procedure respectively.

By inserting the decomposed variables into the NS equations and performing the av-

eraging, the same equations for the mean variables are obtained with the exception of

two additional terms in the momentum and energy equations. The first term corre-

sponds to the Reynolds-stress tensor, TR = −ρv′′ ⊗ v′′, where v′′ denotes the density-

weighted fluctuating parts of the velocity components v. The second term corre-

sponds to the turbulent heat flux, denoted as qR = −ρh′′v′′.

There are two major benefits of this approach. Firstly, coarser meshes can be used

compared to large eddy simulations, and secondly stationary mean solution can be

assumed for attached and moderately separated flows. These two features signifi-

cantly reduces the computational effort in comparison to solving the NS equations

directly or using large eddy simulation. As a result, the RANS approach is a popular

choice in engineering designs and applications.

The two additional terms that were obtained by applying the Favre averaging proce-

dure, that is the Reynolds-stress tensor and the turbulent heat flux, have to be approx-

imated to close the system of equations. A large variety of turbulence models was

devised to close the RANS equations. The models can be broadly categorised into two

groups, the Reynolds-stress model and the turbulent viscosity model, respectively.

The Reynolds-stress method models the Reynolds-stress tensor directly. On the other

hand, the Boussinesq assumption is made in the turbulent viscosity model, where the

turbulent effects are treated as diffusive effects in the NS equation. For instance, this

22 Chapter 2. The Full Order Model

assumption on the deviatoric stress contribution can be mathematically written as

τR
ij = −2

3
µtb

d

∑
k=1

∂ṽk

∂xk
δij + µtb

(
∂ṽi

∂xj
+

∂ṽj

∂xi

)
− 2

3
ρκδij , (2.12)

where µtb is the turbulent viscosity and the last term is added to ensure that the rela-

tion τR
ii = −2ρκ is respected. κ denotes the turbulent kinetic energy term. The analogy

of Reynolds to relate the momentum and heat transfer can be written as

qR = −µtb cp

Prtb
∂T̃
∂x

, (2.13)

where cp is the specific heats at constant pressure and the turbulent Prandtl number

is usually taken to be Prtb = 0.9 for air. The full order model employs the turbulent

viscosity model in the examples considered due to numerical difficulties caused by

the stiffness in the Reynolds stress model [107].

Next, the turbulent viscosity coefficient µtb has to be determined with the aid of a tur-

bulence model. There are various turbulent viscosity models within this paradigm,

which can be grouped by the number of differential equations used to model the

turbulent viscosity. The first turbulent viscosity model is known as the zero-equation

model, which does not require the solutions to the differential equations to model the

turbulent viscosity. It is generally inspired by Prandtl’s mixing-length theory [108]

which relates the turbulent viscosity to the momentum transfer in the shear layers.

Two of the most commonly used methods in this class are the Cecebi-Smith [109] and

Baldwin-Lomax [110] models. These models provide satisfactory results for flows in-

volving simple geometries and small separations, however there are limitations to

their applicability to complex geometries.

The second type of turbulence models uses one differential equation, usually referred

to as one-equation model, and represents significant improvement in modelling the

turbulent viscosity. Two popular choices of this scheme are the Baldwin-Barth [111]

and the Spalart-Allmaras (SA) [112] models. These models were designed specifically

for aerodynamic applications and compare well for a wide variety of problems under

this category [113]. It is known that the SA model is superior to the Baldwin-Barth

model as it exhibits mesh dependency [114]. One disadvantage of the SA model is

that the specification of the trigger location where a laminar flow becomes turbulent, is

required. However, it is argued that most turbulence models are incapable of finding

2.2. Formulation of compressible flows 23

the separating regions and the trigger location approach can be easily adapted to a

separation-detection model to alleviate the need of user input [112].

The third type of turbulence models are the two-equation models which solves two dif-

ferential equations to obtain the turbulent viscosity. The most popular choice of this

type are the κ − ε [115], κ − ω [116], and the shear-stress transport model [117]. The

turbulent kinetic energy κ and dissipation rate ε are used to model the turbulent vis-

cosity in the κ − ε model. Conversely, the turbulent kinetic energy and the specific

dissipation rate ω are used to model the turbulent viscosity in the κ − ω model. The

shear-stress transport model blends both the κ − ω and κ − ε models and has two

distinct benefits than its counterparts when employed separately. Firstly, the shear-

stress transport model takes advantage of the good stabilising properties and accurate

predictions of adverse pressure gradients in flows using the κ − ω model near the sur-

face [118]. Secondly, it also exploits the superior characteristics of the κ − ε model near

the boundary layer edge [118]. The author in [98] underlines that the two-equations

models are superior to the one-equation models in engineering applications and that

the latter shows marginal improvements to the zero-equation model. However, it is

also reported in [113] that the overall performance of the SA model compares well

with the κ − ε and κ − ω models, and is inferior to the shear-stress transport model in

regions of separation. One main drawback for this class of turbulence models is that

they require more calculations in the boundary layers compared to other models.

It can therefore be deduced that there is no perfect approach in modelling turbulence

accurately for all engineering problems. In this work, the SA model is employed as it

offers numerical convenience over improved accuracy, which is often required in the

early design stage of aerodynamic components.

A brief summary of the benefits and formulations of the SA model follows. The one-

equation SA model was derived using arguments of dimensional analysis, empiri-

cism, Galilean invariance and selective dependence on the molecular viscosity [119].

It was calibrated using results from two dimensional mixing layers, wakes and flat-

plate boundary layers, respectively [107]. The model allows for reasonably accurate

predictions of turbulent flows with adverse pressure gradients. Moreover, there is

usually a smooth transition from laminar to turbulent flow. According to the authors

in [107], the SA model is robust, fast to converge to steady-state solutions and only

requires moderate mesh resolution in the near-wall regions. The kinematic turbulent

24 Chapter 2. The Full Order Model

cb1 = 0.1355 cb2 = 0.622 $ = 2/3
κ = 0.41 cw2 = 0.3 cw3 = 2
cv1 = 7.1 ct1 = 1 ct2 = 2
ct3 = 1.1 ct4 = 2

Table 2.1: Constants defined in the Spalart-Allmaras turbulence model.

viscosity is related to an eddy viscosity, ν̃ using the definition,

νtb =
µtb

ρ
= ν̃ fv1(ν̃), (2.14)

where the eddy viscosity is obtained using the transport equation, written as,

ν̃t + ṽ ·∇ν̃ = cb1(1 − ft2)S̃ν̃ +
1
$

{
∇ · ((ν + ν̃)∇ν̃) + cb2(∇ν̃)2

}
−(cw1 fw − cb1

κ2 ft2)

(
ν̃

d

)2

+ ft1∆‖ṽ‖2.

(2.15)

The left hand-side of the transport equation represents the Langrangian derivative

of the eddy viscosity ν̃. The terms on the right hand-side correspond to the produc-

tion, diffusion, destruction and transition going from left to right, respectively. The

unknown terms introduced in the transport equation are defined as

fv1 =
χ3

χ3 + c3
v1

, χ =
ν̃

ν
,

S̃ = ω̃ +
ν̃

κ2d2 fv2, fv2 = 1 − χ

1 + χ fv1
,

fw = g
(

1 + c6
w3

g6 + c6
w3

)1\6

, g = r + cw2(r6 − r),

r = min
(

ν̃

S̃κ2d2
, 10
)

, ft2 = ct3e−ct4χ2 ,

gt = min
(

0.1,
∆ṽ

ω̃t∆x

)
, ft1 = ct1gte

−ct2
ω̃2

t
∆ṽ2 (d

2 + g2
t d2

t),

cw1 =
cb1

κ2 +
1 + cb2

$
,

(2.16)

where the constants introduced in the formulations are defined in Table 2.1. In the

above expression, d is the distance from a given point to the nearest wall and ω̃ =

‖∇× v‖2 is the vorticity magnitude, ∆ṽ is the difference in velocity between a point

and an associated user-defined trigger point in two dimensions or curve in three di-

mensions, dt denotes the closest distance to that trigger location and ∆x is the surface

grid-spacing at the trigger location.

2.2. Formulation of compressible flows 25

Hence, the resulting Favre-averaged NS equation to solve, reads as

Û t +∇ · F̂(Û)−∇ · Ĝtb
(Û) = 0 in Ω × (0, Tf] (2.17)

where Û and F̂ denote the Favre-averaged vector of conservation variables and flux

tensor, respectively. The resulting viscous tensor Ĝtb, when combined with the corre-

lation tensor, is written as

Ĝtb
=


0

T̃tb

(ṽTT̃ − q̃tb T)

 , (2.18)

where the turbulent deviatoric stress tensor and the turbulent heat flux is set as T̃tb
=

T̃ + TR
ij and q̃tb = q̃ + qR, respectively. The turbulent viscosity, µtb, which appears in

the turbulent deviatoric stress tensor T̃tb, is computed using the SA model.

2.2.3 Boundary conditions

The problem is well defined when boundary conditions are applied on the boundaries

of the computational domain. There are four main types of boundary conditions, the

wall, symmetry, inflow and the outflow boundary condition, respectively.

The wall boundary condition ensures that the relative normal component of the veloc-

ity at the wall must vanish to prevent flow traversing through the surface such that

the relation vinw
i = vw

i nw
i holds in inviscid flows. The fluid particles are prescribed to

stick to the wall in viscous flows, that is, vi = vw
i . This shows that the velocity at the

wall is zero if it is stationary. In addition to the boundary conditions imposed on the

velocity components, one boundary condition must be imposed on the temperature.

Two popular choices are the assumption of an isothermal wall where Ť = Ťw or alter-

natively, a Neumann boundary condition assuming the wall to be isentropic, that is,

∂Ť
∂nw =

∂Ť
∂x

· nw = 0. (2.19)

In this work, the assumption of an adiabatic wall is considered and the turbulent vis-

cosity is set to zero at the wall boundaries as there are no fluctuations in velocity.

Next, the symmetry boundary is a boundary in the domain where the normal velocity

component with respect to that boundary is zero and, the density and total energy

26 Chapter 2. The Full Order Model

have zero normal derivatives, that is,

u · ns = 0,
∂ρ

∂ns =
∂ẽ

∂ns = 0, (2.20)

where ns denotes the normal to the symmetry surface. The symmetry boundary condi-

tion is particularly useful for reducing the size of the problem when symmetry planes

are known. An application of one such problem is the flow around a symmetric air-

craft with no side-slip angle.

It is worth noting that the number of each boundary condition required at a partic-

ular point is determined by the number of characteristics entering the domain. As

a result, the number of boundary conditions at the inflow and outflow regions may

differ. Moreover, the number and type of boundary conditions relevant to a specified

boundary in the domain depends on the system of equation considered and on the

local Mach number. Only the boundary conditions relevant to this work is discussed,

that is, for subsonic and transonic flows.

The numerical simulation of external flows are performed within a bounded domain.

Artificial farfield boundary conditions are implemented to meet two requirements.

Firstly, the truncation of the domain should have no sizeable effect on the flow so-

lution compared to an infinite domain. Secondly, any outgoing disturbances cannot

be reflected back into the flow field [120]. The concept of characteristic variables is

employed when selecting boundary conditions for the farfield, as described in [121].

The farfield in a physical domain consists of two flow situations, the flow entering the

domain referred to as the inflow and the flow leaving the domain which is referred to

as the outflow.

The inflow boundary condition for inviscid flows has four boundary conditions re-

quired to fully define the system of equations since one characteristic is leaving the

computational domain. In contrast with the inviscid flow, all the five boundary con-

ditions are specified in viscous flows at the inflow. Moreover, the viscosity ν̃ in the

SA turbulence model is set to ten percent of the laminar viscosity at the inflow. In the

outflow boundary condition, four flow variables, that is, density and the three velocity

components, are extrapolated from the interior of the domain. The fifth variable, pres-

sure, must be specified externally for inviscid flows. This results in only one boundary

condition at the outflow. Conversely, four boundary conditions are required in viscous

2.2. Formulation of compressible flows 27

flows due to the inclusion of viscous terms in the governing equations. It is worth not-

ing that the solution in viscous flows where the boundary of the physical domain is

found far away from regions of significant gradients, behaves as though it is governed

by the Euler equations [94]. On the other hand, for problems where the boundary is

located near regions of significant gradients, such as in internal flows, the application

of boundary conditions can be challenging. In this work, only external flows are con-

sidered and inviscid boundary conditions are employed at the farfield. The turbulent

viscosity from the turbulence model is also extrapolated from the interior nodes.

2.2.4 Computation of the aerodynamic coefficients

The calculations of the lift, drag and moment coefficients for a given configuration are

written as

CL =
1

q∞SΓ

∫
Γ
(σw · n∞) dΓ, (2.21)

CD =
1

q∞SΓ

∫
Γ
(σw · t∞) dΓ, (2.22)

CM =
1

q∞SΓl

∫
Γ
(r × σw) dΓ, (2.23)

where Γ is the integration surface, SΓ is the reference area, taken to be the chord length

in two dimensions or the planform area in three dimensions, q∞ is the free-stream

dynamic pressure, t∞ and n∞ are the tangential and normal unit vectors with respect

to the direction of the free-stream velocity. σw is the wall stress vector and is given by

σw := (−pId + T) · nw, (2.24)

where nw denotes the outward unit normal vector to the wall surface.

The vector obtained in equation 2.23 represents the moment coefficients in the x, y

and z directions. In this work, only the pitching moment is reported, corresponding

to the moment about the y-axis in three dimensions. A length scale, l, is introduced

and this is usually taken to be the chordlength of the aerofoil in two dimensions or the

chordlength of the mid-span aerofoil cross section of the wing in three dimensions.

The vector r denotes the position of a point, x, on Γ with respect to a reference point

xref, namely r = x − xref. The reference point is taken as the aerodynamic centre in

28 Chapter 2. The Full Order Model

two dimensions or the centre of gravity in three dimensions, unless stated otherwise.

2.3 Discretisation procedure

This section considers the construction of a finite set of discrete equations to approx-

imate the NS equations. The section begins by providing a brief discussion on the

types of domain discretisation procedures in fluid problems, followed by the mesh

generation procedure used in this work. Next, a brief comparison of finite volume

methods is presented. The formulation of the vertex-centred finite volume methods

relevant to the discretisation used in this work is described for inviscid and viscous

flow problems.

2.3.1 Domain discretisation

A key requirement in numerical simulation is the discretisation of the domain, where

the geometry is discretised into nel elements. The domain is generally discretised us-

ing triangles, quadrilaterals, hexahedrals or a combination of the three. Also referred

to as the mesh generation procedure, it can be described as the process of breaking up

the physical domain Ω into nel sub-domains Ωe in order to facilitate the computation

of numerical solution of a partial differential equation. This can be mathematically

represented as

Ω =
nel⋃
e=1

Ωe, Ωe ∩ Ω f = ∅, for e 6= f . (2.25)

There are two main classes of mesh generation techniques, the structured and unstruc-

tured, respectively. The difference between the two is the valence of an internal mesh

node, that is, the number of connectivities that an internal node has. In a structured

mesh, the valence of an arbitrary node is constant, while in an unstructured mesh, the

valence is not constant. Additionally, unstructured meshes require the construction of

an element connectivity table which relate the nodes to each element.

The development of structured mesh generation started with the construction of sim-

ple quadrilaterals using algebraic methods or partial differential equations [107]. How-

ever, with the increasing complexity of geometries that needed to be simulated, the

meshes had to be divided into a number of topologically simpler blocks, also known

as the multi-block approach. Although there has been significant improvement in

generation of structured meshes using the multi-block approach, it is known to be

2.3. Discretisation procedure 29

(a) (b) (c)

Figure 2.3: Illustration of the Delaunay scheme. The solid circle denotes the initial set of
nodes and the dashed line is the Dirichlet tessellation. The solid line represents the edges
constructed from the Delaunay triangulations.

time-consuming. This is attributed to the fact that setting up the connectivities at the

interfaces of the blocks and ensuring such connections do not create overlapping ele-

ments can be a challenge [122]. Moreover, there are reasonable doubts about the pos-

sibility of ensuring a low cell skewness, a smooth point distribution and an adequate

grid resolution in regions of interest [123]. In addition, it will be difficult to automate

the structured mesh generation. The motivation to overcome these issues has led to

the use of unstructured meshes comprising of triangles in two dimensions and tetra-

hedra in three dimensions [124]. The mesh can be adapted to irregular boundary and a

smooth transition of the size of the elements can be achieved with minimal or zero dis-

tortion [124]. The solutions of Euler equations on complex geometries have efficiently

been obtained using unstructured meshes [94, 125, 93, 126, 88].

In this thesis, unstructured meshes are generated due to its adaptive capabilities and

relatively inexpensive mesh generation procedure. Moreover, it is a fully automated

process with minimal or zero user interaction and has the ability to handle complex

geometries. There are various ways to obtain an unstructured mesh. This thesis fo-

cuses on two methods, the Delaunay and advancing front methods, respectively. The

two differ from each other in the way that the points and elements are introduced in

the computational domain.

The Delaunay method [127] defines an arbitrary set of nodes in the computational do-

main to form a valid mesh consisting of triangles in two dimensions and tetrahedra

in three dimensions [128]. As this method is not well-defined for closed domains, it

requires recovery methods to ensure the validity of the interface at the boundary and

internal mesh [94]. Figure 2.3 shows an illustration of the Delaunay scheme in two di-

mensions. The starting point of the Delaunay scheme is an initial set of nodes pi ∈ <d,

i ∈ [1, N], as in figure 2.3(a). The Dirichlet tesellation is constructed by assigning

30 Chapter 2. The Full Order Model

a territory to each point, as shown in figure 2.3(b). The tessellation of a closed do-

main would result in a set of non-overlapping convex polygons known as the Voronoi

regions [129], i.e., V i ⊂ <d. Hence the region V i is defined as a subset of the com-

putational domain that is closer to node pi than any other node in the domain. The

territorial boundary, part of the side of the Voronoi polygon, must be midway due to

construction of the perpendicular bisector from the line joining two nodes. The Delau-

nay triangulation now consists of joining all the nodes that have a common Voronoi

face. Figure 2.3(c) illustrates the resulting triangulations. It is worth noting that each

Delaunay triangle contains a unique vertex of a Voronoi diagram and there is no other

vertex found within the circle centered at this vertex. This may however be an im-

practical approach to generate the triangulation efficiently. The approach used for the

meshes generated in this work employs a sequential process of introducing new mesh

nodes into the existing structure. This is followed by a check on the validity of the

new Delaunay triangulation using an in-circle criterion. The criterion states that for

the triangulation to be valid, the circle passing through the points in that triangle can-

not contain any node and must have its centre at a Voronoi vertex. When the new

triangulation violates this criterion, the element is split and a local Delaunay proce-

dure is performed. One of the major advantage of Delaunay triangulations over other

types is that it maximises the minimum angles of the triangles. This tends towards

equiangularity in the triangles and therefore avoids triangles which are dispropor-

tional. Additionally, the triangulation is also independent of the order the points are

processed.

In the advancing front scheme [130], the meshes are built from the computational

boundaries [131]. The physical domain is divided into two parts at any given time of

the process, mainly, regions where meshing is complete and regions where meshing

has not been performed yet. The scheme is said to be local in nature due to this prop-

erty and this results in a very memory efficient scheme with the ability to generate

meshes of high quality [132]. Figure 2.4 provides an illustration of the advancing front

scheme. A brief description of the advancing front scheme in two dimensions fol-

lows. The scheme utilises the concept of a generation front which uses a dynamic data

structure that changes continuously during the procedure. The algorithm begins by

discretising the boundary into N segments and is defined as the initial front, as shown

in figure 2.4(a). The nodes forming the front are added to a list and are termed as

active. The scheme finds the shortest segment on the boundary and introduces a new

2.3. Discretisation procedure 31

(a) (b) (c) (d)

Figure 2.4: Illustration of the advancing front scheme. The generation front is represented
using the red dashed line and solid circles, and the open circle denotes the newly inserted
node. The solid black lines and circles represent the edges and nodes.

point into the unmeshed region. The position of this new point is determined from

the desired point distribution, as described in figure 2.4(b). A check is performed to

determine if any of the existing points from the front is within a specified tolerance

from the ideal position. If the new point satisfies this check, the validity of the ele-

ment is confirmed before adding the new point to the dynamic list of nodes forming

the front. Figure 2.4(c) shows the new front once it has been added to the list. Con-

versely, if there are points within the specified tolerance, the closest of these points

that forms a valid triangle, is selected. The procedure stops when the list containing

the segments becomes empty. Figure 2.4(d) shows when the advancing front scheme

is completed. In addition to being memory efficient, the advancing front scheme has

the advantage of preserving boundary integrity and the capacity to create clusters of

high aspect-ratio triangles in boundary layer regions.

In this work, the unstructured mesh procedure for the inviscid cases in two dimen-

sions employs the advancing front scheme, while the mesh generator in three dimen-

sions takes advantage of both the advancing front scheme and the Delaunay method.

It can be summarised as follows:

1. The advancing front scheme is used to generate triangles on the surface seg-

ments. The meshing procedure are performed in the parametric space in two

dimensions using the user-specified spacing.

2. An initial Delaunay triangulation is performed by connecting the nodes from

the surface triangulation.

3. A boundary recovery technique is employed to ensure the validity of the inter-

face between the volume and surface meshes. The elements found outside the

32 Chapter 2. The Full Order Model

computational domain are deleted.

4. One node is introduced in the interior mesh at a time and a tetrahedral element

is formed by creating connections with the newly inserted node using the De-

launay algorithm. The node is positioned according to a specified background

mesh and user-defined sources.

5. The mesh quality is controlled by employing mesh cosmetic techniques such as

diagonal swapping, element collapsing and Laplacian mesh smoothing.

More information on the unstructured mesh generation procedure for inviscid flows,

part of the solver, can be found in [88].

The viscous terms in the NS equations complicates the domain discretisation as the

normal gradients at the wall are considerably larger in high Reynolds number flows.

As a result, a dense mesh is required in this direction to capture the flow features accu-

rately in those regions. A larger spacing can be used in the tangential direction along

the wall as the gradients along this direction are much smaller in magnitude. This

would result in stretched elements along the boundary. In this work, an unstructured

hybrid mesh is used to obtain solutions of viscous flow problems. The mesh genera-

tor employs an advancing layer method that creates meshes of structured appearance

in the normal direction of the viscous wall. This regularity is exploited in the gen-

eration of the hybrid meshes where edges are removed in the boundary layers by

merging elements [133]. According to the authors in [94, 133], this approach reduces

the global number of edges by 30-45% of a given tetrahedral mesh. This becomes spe-

cially advantageous when the numerical discretisation is formulated over the edges in

the mesh. Additionally, the diagonals of simplex meshes in the boundary layers have

adverse effects on the accuracy of the solutions [133]. It is hence desirable to eliminate

the diagonal edges in the boundary layers.

In the current work, viscous problems in two dimensions are considered and a brief

overview of the hybrid mesh generation procedure follows. The procedure begins by

discretising the solid wall boundaries using the spacings specified by the user via a

mesh control function. The approach proceeds in a similar way to the advancing front

scheme used in inviscid meshes. The advancing front technique generates a triangu-

lar mesh of double the desired element size. Quadrilaterals are formed by an indirect

method of combining triangles coupled with a splitting scheme [133]. The advancing

2.3. Discretisation procedure 33

Figure 2.5: Example of a hybrid mesh in two dimensions.

layer method is employed to generate stretched elements adjacent to the boundary

wall surface [133]. The height and number of layers are specified by the user. The lay-

ers are constructed by generating points along prescribed lines using advancing front

mesh generation scheme and triangles are formed by connecting the generated points.

For the first layer, the prescribed lines are normal to the surface, while for succeeding

layers, smoothing of the line directions is performed. The generation of points stops

before the prescribed number of layers is reached if an intersection appears or if the

local mesh size is close to that prescribed user-defined mesh size. Once the viscous

layers are discretised, the diagonals are deleted and the remaining part of the domain

is meshed using the standard advancing front scheme, followed by mesh cosmetic

techniques, as described in the inviscid mesh generation. Figure 2.5 shows an exam-

ple of a hybrid mesh generated around an aerofoil geometry in two dimensions. More

information on the generation of hybrid meshes used in this thesis can be found in [94,

133].

2.3.2 The vertex centred finite volume method

The finite volume (FV) method is a numerical technique that transforms the partial

differential equations representing the conservation laws over differential volumes

into discrete algebraic equations over discrete volumes. Due to the direct discretisa-

tion of the integral formulation into the physical space and the inherent conservative

properties of the FV method, many industrial applications have made this approach

34 Chapter 2. The Full Order Model

their preferred choice [93, 94, 134]. Similar to the finite difference or the finite ele-

ment method, the first step involves the discretisation of the computational domain

in the form of a grid or mesh to create the discrete elements. In the FV method,

it is required that the computational domain is discretised into non-overlapping fi-

nite volumes, referred to as control volumes. Next, the partial differential equations

are discretised into algebraic relations by integrating over each control volume using

quadrature rules of the desired accuracy. Lastly, a system of algebraic equations is

obtained by choosing suitable interpolation profiles for approximating the values on

the surface of the control volumes based on the values of the discrete control volumes

of the conservative variables.

There are two main types of FV schemes, the vertex-based and the element-based.

The difference between the two types is found in the construction of the control vol-

umes. In the vertex-based method, the discrete flow variables are stored at the vertices

and each control volume is constructed to have only one node. This virtual element

connected by virtual edges is known as the dual mesh. It is constructed using the

median dual principle, which involves the connection of the edge centres, face and the

volume centroid of the elements. Moreover, the vertex-based schemes integrate the

fluxes over the dual mesh, usually by looping over the edges of the actual mesh. On

the other hand, element-based schemes do not require the construction of the dual

mesh and the elements in the mesh are defined as the control volumes. The discrete

dependent variables are stored within the element, usually at the centroid, and the

fluxes are integrated over the edges in two dimensions and faces in three dimensions.

This is known as the cell-centred FV method. Figure 2.6 illustrates the vertex-based

and cell-based FV schemes using triangular elements in a two dimensional interior

mesh.

It is worth noting that the number of calculations required on a given grid does not

differ significantly between the two types of FVs schemes for problems in two dimen-

sions. This is because both schemes loop over the edges. However, in three dimen-

sions, the cell-based approach is computationally more expensive as the fluxes are

integrated over the faces. In tetrahedral meshes, the ratio of the number of faces to

the number of edges is approximately 1.7. Moreover, the number of elements is about

5.5 times the number of nodes. Hence, the vertex-based schemes prove to be more

efficient in terms of storage requirements [135].

2.3. Discretisation procedure 35

(a) Vertex-centred FV (b) Cell-centred FV

Figure 2.6: Illustration of two FV schemes in an interior mesh. The solid black lines and
circles denote the edges and nodes in the original mesh. The control volume definition is
represented using the blue dashed line and the location where the unknowns are stored is
identified by the solid red circles.

The vertex-centred FV, part of the vertex-based family, has been extensively applied

to Euler and NS equations as an efficient discretisation technique for steady flows [93,

136, 137]. A vertex-centred approach was shown to be equivalent to a linear finite

element method [138]. Moreover, the vertex-centred FV method is known to en-

sure a minimum number of degrees of freedom in the vicinity of the aerodynamic

shape when compared to other FV schemes such as the cell-centred or face-centred

approach [139]. Additionally, the vertex-centred approach performs better than the

element-based counterparts in regions of high distortion and anisotropy in the mesh [140].

This is attributed to the fact that the unknowns are stored on the boundary of the

computational domain itself. As a result, this does not represent a complication when

boundary conditions are applied, compared to element-based schemes.

A few nomenclatures related to the data structure of edge-based formulation in vertex-

centred FV scheme are introduced. Let Ωi be the control volume of an arbitrary node i

in the FV domain discretised using ncv mesh nodes. A set of facets {Υi} of size nf that

defines the boundary of the control volume ∂Ωi is written as

∂Ωi =
nf⋃

j=1

Υi,j. (2.26)

In two dimensions, straight edge facets are formed by connecting the edge centre and

element centroid, while in three dimensions, triangular facets are constructed by con-

necting the edge centre, face centroid and element centroid. For a mesh node lying on

36 Chapter 2. The Full Order Model

the boundary, the set of facets {ΥΓ
i } contains facets constructed from nodes lying on

the boundary, that is, ΥΓ
i ∈ ∂Ω.

The semi-discrete form of the steady-state NS equations results in a non-linear system of

equations, obtained by the assembly of each nodal contribution Ri as

Ri := ∑
j∈Λi

Ci,j
l F̃ i,j

l + ∑
j∈ΛΓ

i

Ci,j,Γ
l F̃ i,Γ

l

− ∑
j∈Λi

Ci,j
l G̃i,j

l − ∑
j∈ΛΓ

i

Ci,j,Γ
l G̃i,Γ

l

+ ∑
j∈Λi

mi,j ϕi,j(Ej − Ei)− ∑
j∈Λi

ε2ϕi,jsi,j(U j − U i),

(2.27)

for i = 1, 2, ..., ncv, where Λi denotes the set of nodes connected to an arbitrary node

i through an edge and, Ci,j
l and Ci,j,Γ

l are the flux coefficients of an interior edge and a

boundary edge, respectively. The coefficients are given by

Ci,j
l = ∑

Υi∈Υi,j

|Υi|nΥi
l , Ci,j,Γ

l = ∑
Υi∈ΥΓ

i,j

|Υi|nΥi
l , (2.28)

where |Υi| denotes the area of the facets Υi and nΥi
l is the outward unit normal vector

of the facet from node i. The first two terms of equation (2.27) correspond to the

treatment of the inviscid fluxes. The discrete fluxes F at the interior and boundary

nodes are expressed in terms of the discrete conservative variable U by using a second-

order central difference scheme. Here, the trapezoidal rule across an edge is used and

is given by

F̃ i,j
l =

(
F l(U i) + F l(U j)

2

)
, F̃ i,j,Γ

l =
3F l(U i) + F l(U j)

4
. (2.29)

This ensures a second-order convergence of the method. The third and fourth terms of

equation (2.27) corresponds to the viscous tensors for an interior node and boundary

node, respectively. The solver uses an edge-based formulation with a compact stencil

to discretise the velocity gradients which provides second-order accurate solutions.

This compact stencil splits the evaluation of the derivatives into the tangential and

normal components at an edge midpoint using flow variables computed at only two

nodes. It is performed using finite difference. Moreover, the solver uses a first order

upwind scheme to discretise the convective terms from the SA model when turbulent

2.3. Discretisation procedure 37

flows are modelled around the aerodynamic components. It avoids the numerical

instabilities in the scheme. Any other terms from the viscous tensors are discretised

using the standard finite volume procedure.

The central difference scheme described is known to be unstable for equations of hy-

perbolic nature. In order to stabilise such schemes, dissipation is usually employed to

damp oscillations originating from the convective terms. The fifth term corresponds

to a third order biharmonic dissipation term that is employed in the CFD model used

in this thesis [88]. The scaled artificial dissipation flux E(U) at node i is expressed in

terms of the conservative variables as

Ei =
1

∑j∈Λi
l−1
i,j

∑
j∈Λi

l−1
i,j (U j − U i), (2.30)

where li,j is the length of the edge connecting node i and j. This scaling is performed

so that the artificial dissipation scheme is close to the discrete fourth-order differences.

The coefficients mi,j and ϕi,j of the bi-harmonic term are written as,

mi,j = max(0, ε4 − ε2si,j), ϕi,j =
1

|Λi|+ |Λj|
min

(
|Ωi|
∆τi

,
|Ωj|
∆τj

)
, (2.31)

where ε2 and ε4 are user-defined constants known as the biharmonic dissipation fac-

tors and taken to be 0.2 in this work. |Λi| denotes the number of edges connected to

node i and ∆τi is the size of the local time step. The biharmonic term however, does

not smooth out oscillations in regions of high gradients and therefore the scheme re-

quires a local addition of harmonic dissipation which renders the scheme to be first

order locally. This harmonic term corresponds to the sixth term in equation (2.27). It

only contributes significantly to high pressure gradients due to presence of a pressure

sensor si,j, given by,

si,j = max(|∆pi|, |∆pj|), ∆pi = 12
∑

k∈Λi

(pk − pi)

∑
k∈Λi

(pk + pi)
, (2.32)

where pi is the pressure at an arbitrary node i. The pressure sensors are activated in

regions of high gradients such as shocks in the flow. The third-order dissipative term

is suppressed since it causes perturbations near shocks when it is activated. This is

38 Chapter 2. The Full Order Model

performed using the second-order difference term to obtain first-order accuracy lo-

cally.

2.4 Solution procedure

The unknowns in the set of discrete equations described in equations (2.27) are de-

termined by a solution procedure. There are several ways to obtain a solution and

the procedures can be broadly categorised into two main groups, the implicit and ex-

plicit solution schemes. In the context of implicit schemes, the procedure requires

non-trivial matrix inversions directly or iteratively. This may become cumbersome

when large meshes with tens of millions of unknowns are used. On the other hand,

explicit schemes do not require the storage and inversion of matrices. The updated

solution is explicitly given as a function of known entities through localised vector

products and summations. Explicit schemes are naturally iterative and require many

more iterations than its counterpart to achieve convergence. Two distinct advantages

of the explicit schemes are the reduced storage requirements and reduced difficulty to

parallelise the code.

Albeit the many choices available in the literature to obtain a solution explicitly [141,

142], the multi-stage Runge-Kutta time stepping scheme, described in [143], is used in

the solver. The mathematical representation of the three stage Runge-Kutta method to

obtain the explicit solution of the ordinary differential equation of the form, |Ωi|U t,i +

Ri(U i) = 0, can be written as

Ur0
i = Un

i ,

Ur1
i = Ur0

i − ϑ1CFL ∆τiRi(U
r0
i)

Ur2
i = Ur1

i − ϑ2CFL ∆τiRi(U
r1
i)

Un+1
i = Ur2

i − ϑ3CFL ∆τiRi(U
r2
i),

(2.33)

for i = 1, 2, ..., ncv. In the above expression, the Un
i denote the unknowns at iteration

n, Ur1
i are the unknowns at Runge-Kutta iteration r and sub-iteration 1 of the three

stage scheme. ∆τi is the local time-step and the coefficients ϑ are selected as 0.6, 0.6

and 1.0 [141]. The maximum allowable CFL number for stability is usually limited by

the number of stages employed in the scheme [144].

2.4. Solution procedure 39

One major drawback of explicit scheme is that several iterations are required for the

correction of an arbitrary node to influence the computational domain. This is at-

tributed to the fact that the domain of influence of an arbitrary node is dictated by

the local stencil of the discretisation scheme and the number of stages involved in the

explicit approach [141]. As a result, explicit schemes are not efficient in viscous flows

of high Reynolds numbers which are of hyperbolic nature outside the boundary lay-

ers and have low error frequencies. The solver uses the multigrid method [141, 94,

144] to effectively dampen the errors of all frequencies at once while preserving a low

operation count per iteration and low memory usage of the schemes. There are two

main types of multigrid schemes, the algebraic and geometric scheme. The algebraic

approach linearises the non-linear system of equations and generates several smaller

matrix systems that are successively added. The effect of this allows the domain of

influence of a mesh node to span to a larger part of the computational domain. How-

ever, this scheme has the complications of computing and storing the Jacobian matrix,

which is not favourable when larger systems of equations are solved. On the other

hand, the geometric approach consists of employing meshes at various coarseness

levels to solve the discrete equations. Each level of mesh refinement removes differ-

ent intervals in the frequency of the errors and the coarser meshes dampen the lower

frequency errors. Similar to the algebraic scheme, as the spacing in the domain is

increased, the domain of influence at an arbitrary node is also increased. Therefore,

the explicit relaxation scheme on a coarse mesh smooths out effectively the low error

frequencies which slows down convergence on the fine mesh. Moreover, the computa-

tional cost per iteration is considerably lower on a coarse mesh than a fine mesh. The

solver uses the FAS multigrid scheme which is capable of handling non-linearities.

More information on the implementation of the FAS scheme is available in [94].

41

Chapter 3

Reduced Order Models

This chapter aims at discussing ROMs which are commonly employed in CFD appli-

cations. Two concepts that are used as a ROM in this work are introduced. Firstly,

the popular proper orthogonal decomposition coupled with the radial basis functions

is formulated to use in a regression setting. Secondly, the NN is reviewed with the

forward propagation and backpropagation detailed in steps. Moreover, several opti-

misation algorithms adapted to NNs are also considered. Lastly, a brief overview of

various design of experiment techniques is presented.

3.1 Introduction

Despite the huge progress attained by current CFD simulation capabilities, a num-

ber of problems remains challenging. Numerical simulations of turbulent flows, flow

separation, high-lift devices and other multi-physics problems involving complex ge-

ometries are still computationally demanding. The number of simulations required

becomes unaffordable when designers have to perform simulations for a range of

model parameters such as geometric parameters or flow conditions.

The use of ROMs has become a popular alternative to alleviate the computational

burden associated with CFD simulations involving a large number of parameters [5].

This allows users to render full order simulations to become affordable by reducing

the CPU time and memory requirements. Some of the more popular ROMs are the

POD [10, 11, 12, 13], the reduced basis method [14, 5, 15], the eigensystem realisation

algorithm [9, 16, 17] and the PGD [145, 146, 147].

The POD is a general technique for extracting the most significant energies of the be-

haviour of a system using a set of POD basis vectors that reflect a lower dimensional

42 Chapter 3. Reduced Order Models

representation of the real system [39]. The application of POD as a data-driven tech-

nique in CFD can be found in [10, 11, 12, 13]. The reduced basis method is another

family of ROMs which requires the use of a greedy algorithm and an a posteriori error

function to construct the reduced bases. This method has an offline stage where the

reduced basis model is constructed on a given set of data, followed by an online stage

for solving different model parameters with control on the accuracy of the model.

When the error becomes unacceptable, a greedy adaption strategy is established to

enrich the reduced bases [5, 14, 15]. The eigensystem realisation algorithm is a linear

ROM which is part of the system identification family [148]. The method is usually

employed in modal analysis to construct a state-space dynamic model for modern

control design. The eigensystem realisation algorithm has seen applications in model

reduction of dynamic systems, for instance, in gust problems [17, 9]. See [148] for more

information.

A more recent ROM, the PGD, is based on the separation of variables when solving a

set of partial differential equations analytically [145, 146, 147]. The origin of the PGD

can be traced back to the 1980s [149], where it was used to construct the space-time

separated representations of transient solutions involved in strongly non-linear mod-

els. The concept of the PGD became popular when the original idea was extended

to consider parameters as extra coordinates [149]. The application of the PGD can

be found in optimisation, inverse analysis and simulation-based control [149]. Al-

though non-intrusive approaches exist [150, 151, 21], the applicability of the PGD is

often limited by the number of parameters to be considered. The limitations of the

PGD is shown in the work of [152], by considering a time-dependent example with

a non-separable solution. The authors report that the convergence of the error of the

PGD relative to the reference known solution tends to decrease when the assump-

tion of the separation of variables cannot respect the problem to solve [152]. More-

over, the authors speculate that parameter dependent problems may have the same

behaviour [152].

The non-linear normal modes method is one of the techniques that are rarely em-

ployed in fluids and have seen more applications in the field of structural dynam-

ics. The idea behind this method lies in the construction of the ROM using specific

properties of the dynamic system and by adapting the mathematical reduction tech-

niques of the centre manifold theorem and normal form theory into the governing

3.1. Introduction 43

equations [153]. The authors in [153] compare the POD with the non-linear normal

mode technique, and report that the only advantage that the latter has over the POD

is that it is non-linear. As a result, fewer modes can be utilised to capture the non-

linearities in the system and therefore lower computational cost. However, given that

non-intrusive empirical models are selected for the examples considered in this work,

this technique is not employed. Next, the centroid voronoi tessellation method in the

context of ROM is a data compression technique which considers a set of snapshots as

in the POD [154]. The voronoi tessellation takes place in the higher dimensional space,

spanned by the snapshot vectors, to determine the generators of the centroid voronoi

tessellation method which constitute the reduced bases. A low dimensional represen-

tation of the complex system can then be obtained in a similar way as that obtained

with the POD [154]. The authors in [154] compare the centroid voronoi tessellation

method with the POD for an incompressible viscous flow problem, and report that

neither technique proves to have an advantage over the other. This remark was based

on the computational cost and errors of both techniques and was found to be of the

same order. However, as it is less well tested in the literature and is still currently an

active area of research, this approach is not considered in this work.

Machine learning techniques can also be employed as a data-driven ROM that im-

proves automatically through experience. This field which lies at the intersection of

computer science and statistics, has seen major advances over the last two decades

with development of new algorithms and theories [155]. Machine learning has rapidly

evolved in many areas of science and engineering, leading to more evidence-based

decision making fields such as health care, manufacturing, education, financial mod-

elling and marketing [156, 157, 158, 159, 160]. There are two dominant machine learn-

ing paradigms based on the extent that the training involves labelled data, mainly

the supervised and unsupervised learning. In addition to the two dominant paradigms,

reinforcement learning forms another type of learning which involves goal-oriented

interactions of an agent with its environment for solving problems [182]. A classifica-

tion of main machine learning techniques organised by tasks is shown in figure 3.1.

The semi-supervised learning, a hybrid to the two main paradigms, is a type of machine

learning technique which represents learning using labelled data as well as unlabelled

data [161].

Four main stages can be described when employing a machine learning algorithm.

44 Chapter 3. Reduced Order Models

Machine Learning

Classification

UnsupervisedSupervised

Regression Clustering Embedding

▪ Linear/polynomial/
spline

▪ Neural network
▪ Support vector

regression
▪ Gaussian Process
▪ Radial Basis
▪ Ensemble methods

▪ K-means
▪ Hierarchical
▪ Gaussian Mixture
▪ Expectation-

maximisation
▪ Self-organising

maps

▪ Proper orthogonal
decomposition
(POD/PCA/SVD)

▪ Kernel-PCA
▪ Auto-encoder
▪ Isomap
▪ Locally linear (LLE)

▪ Decision tree
▪ Nearest neighbour
▪ Support vector

machines
▪ Neural network
▪ Naïve Bayes
▪ Ensemble methods

Reinforcement

Figure 3.1: A classification of the main machine learning paradigms.

The first stage defines an objective. The datasets are then collected and curated in

the second stage. Next, an appropriate model architecture and parametrisation are

identified in the third stage. Lastly, an optimisation algorithm is chosen to obtain the

parameters of the model. Human intelligence is required in each stage. Although

considerable attention is usually given to the selection of various models, it is often

the data collection and optimisation stages that are the main factors contributing to

the computational cost and time. As a matter of fact, exploring a broad and diverse

set of machine learning architectures as a black-box model is a hallmark feature of data-

centric companies nowadays [4]. It is also worth noting that known physics such as

invariances, symmetries, conservation laws and constraints may be incorporated in

any of the stages [162].

In supervised learning, it is assumed that the training data has both the inputs, x and the

target outputs, y. If the targets are categorical, such as the categorical representation of

images, then the learning task is referred to as classification. On the other hand, if the

targets are continuous, then the task is referred as regression. The goal of the supervised

algorithm is to train a model to minimise a cost function.

The predominantly used learning for real life applications are usually supervised and

they are capable of automating complex tasks when the data is labelled with expert

knowledge [4]. Some examples of supervised learning are the classification trees, ran-

dom forests, support vector machines and NNs [163, 164, 165]. Classification trees

3.1. Introduction 45

and random forests fall under the tree algorithm paradigm and is the most popular

algorithm in data mining. However, the authors in [166] underline that decision tree

algorithms can be unstable, that is, a small change in the data may lead to a large

change in the outputs of the system. It is worth noting that this is not Next, support

vector machines have the ability to solve complex problems. However, as the size of

the dataset or the dimensionality of the data is increased, long training time must be

expected [166, 167]. Moreover, the authors in [167] underline that a concern of using

support vector machines is to find a suitable kernel function which can sophistically

represent the data in the Hilbert space. Additionally each kernel function comes with

their respective hyperparameters that need to be tuned during the training [167]. The

extensive use of these shallow machine learning techniques over the years has led

to rigorous mathematical analyses in the literature. With the rise in computational

capabilities, specialised hardware for matrix operations and the availability of larger

datasets, NNs have gained considerable attention in both academia and the industry

over the last decade [168]. NNs are said to surpass the performance of traditional

methods, provided sufficient data is used in the training [168]. Moreover, the univer-

sal approximation property of the NN has been shown in the work of [169]. The pri-

mary disadvantage of NN is the hyperparameters, which are problem dependent and

need to be fine-tuned during the training. This can consequently render the training

stage to be time-consuming. However, fine-tuning hyperparameters of the NN model

during the training stage is not unlike most other machine learning methods. More

information on NN is provided in section 3.3. Researchers have also employed pre-

trained models to partly alleviate the computational burden of optimising the weights

from initial condition. This is referred to as transfer learning [170] in the literature and

is a way of improving the learning of a new task through the transfer of knowledge

from a related task that has been learnt in the pre-trained model. It has been proved to

be beneficial in deep NN architectures where millions of weights are optimised [171,

170].

Unsupervised learning establishes the underlying structure of a dataset without a given

set of target outputs. It is also referred to as data mining, pattern extraction or feature

extraction across various fields. Two common classifications of this type of learning

are clustering, where the task is to group data into distinct categories and embedding,

where the task is to find a low-dimensional representation of a continuous distribu-

tion. It is tedious to perform such a task given that the algorithm is not guided by

46 Chapter 3. Reduced Order Models

the targets. As a result, these algorithms seek for any kind of correlation that exists

between the features of the dataset in an exploratory fashion and this new information

is often used in future developments that are supervised.

The most common unsupervised clustering methods include k-means, hierarchical

clustering and more recently, self-organising maps [164, 165, 172]. In each case, the

user has to specify the number of distinct clusters to find in the data. This can also be

considered as a numerical parameter in the training stage.

Unsupervised embedding is a technique that finds a low-dimensional representation

of the input data and it is also referred as a dimension reduction technique. Such repre-

sentation can be a linear or non-linear transformation to a low-dimensional subspace,

parametrised by a latent variable v, which describes the original high-dimensional

state x. For instance, the goal is to find two transformation functions, an encoder

v = ψ(x) and a decoder x̃ ≈ ϕ(v) such that, x̃ = ϕ(ψ(x)) ≈ x. The classic method,

the POD, belongs to this category of learning. This embedding consists of a linear

transformation to a lower dimensional subspace. The mapping between the high-

dimensional and low-dimensional state of the data can also be structured using non-

linear functions such that the underlying structures in the non-linear manifolds are un-

covered. The kernel principal component analysis is one example of such embedding

method which are commonly used as a feature extraction method in the explanatory

variables [173, 174]. Researchers report that reconstruction from their correspond-

ing principal components to the higher-dimensional feature space is always possible,

however there are still difficulties in the reconstruction to the input space [175]. The

autoencoder algorithm is an alternative example of embedding algorithms. This al-

gorithm makes use of two NNs as a means to first compress the data using the first

network and to decompress the data with the second, for the purpose of information

filtering bottleneck [176, 177].

Generative adversarial network is another example of unsupervised learning models

which create dummy data that follows a probability distribution and aim to imitate

the original data used in the training stage. The algorithm consists of two networks

that compete with each other. The first network, termed as the generative network,

creates the dummy data used in the training of the second network. The goal of the

second network, termed as the discriminative network, is to optimise for a specific

task [178].

3.2. Proper orthogonal decomposition 47

Semi-supervised learning is a learning approach that operates under partial supervision.

It makes an attempt to improve the performance of the supervised and unsupervised

learning using labelled and unlabelled data, respectively [161]. This type of learning

is particularly relevant to scenarios where labelled data is scarce [161]. It is usually

referred to as either transductive learning. The goal of transductive learning is to

infer the correct targets for the given unlabelled data. This is generally performed

by adding a loss term which accounts for the learning on the unlabelled data and

encourages the model to generalise better [179]. Two recent examples of this type of

learning are the extended-generative adversarial networks [180] or variational auto-

encoders [181]. More information on various methods in this type of learning can be

found in [161].

Reinforcement learning is another area of machine learning and it has been used as a

mathematical framework for solving problems that involves goal-oriented interac-

tions of an agent with its environment [182]. The agent performs an action from a

library of actions, perceives the state of the action and compensates the state with full,

partial or negative rewards. In addition to that, the agent is not only concerned with

uncovering patterns in its actions or in the environment, but also with maximising its

long term rewards. Applications of reinforcement learning that exemplify its strengths

and limitations are found in gaming [183]. It is worth noting that reinforcement learn-

ing requires a lot of computational resources due to the number of actions required

through the trial and error interactions of the agent with the environment [184]. The

authors in [185] underline that reinforcement learning may be prohibitive in experi-

ments and flow simulations as it is computationally expensive for high-dimensional

case studies. However, the authors also quote that this is rapidly changing as more

computational resources are becoming available [185].

3.2 Proper orthogonal decomposition

The POD is a popular model order reduction technique that has successfully been ap-

plied in many areas of science and engineering. The POD has its roots in statistical

analysis and has been referred as the principal component analysis, Karhunen-Loeve

decomposition, Hotelling transform and empirical orthogonal eigenfunctions in other

disciplines [186]. The goal of the POD is to identify an optimal coordinate system,

here a set of linear basis, to represent an ensemble of empirical solutions by removing

48 Chapter 3. Reduced Order Models

redundant information or noise [187]. The most common applications in CFD prob-

lems are found in transient fluid flow problems where the POD is constructed as a

non-intrusive ROM [39, 10, 11, 12]. The application of POD to parametric problems

in CFD, as considered in this thesis, is more recent and some examples can be found

in [28, 35, 13].

According to the authors in [188], the striking property of the POD is its optimality as

it is observed that POD is efficient at capturing dominant components. Moreover, the

authors underline that when the modes are truncated and arranged from highest to

lowest energies, it captures more relative energies with the selected modes than any

other decomposition method truncated in the same way [188]. In addition, the POD is

said to be an unbiased technique since it acts solely on the data and requires no prior

information on which the optimal linear basis functions are constructed [189].

3.2.1 Computation of the POD modes

Let us consider a set of nTr training cases, usually called snapshots in a POD context,

defined by a vector of N inputs, xk = {xk
1, . . . , xk

N}, and a vector of M outputs, yk(xk) =

{yk
1(xk), . . . , yk

M(xk)}, for k = 1, . . . , nTr. The matrix of snapshots is formed with all the

available outputs as

Y(x1, x2, . . . , xnTr) =


y1

1(x1) y2
1(x2) · · · ynTr

1 (xnTr)

y1
2(x1) y2

2(x2) · · · ynTr
2 (xnTr)

...
...

...

y1
M(x1) y2

M(x2) · · · ynTr
M (xnTr)

 . (3.1)

This snapshot matrix can be approximated using a set of linear basis functions, ϕ,

written as,

yk(xk) =
M

∑
j=1

αk
j (xk)ϕj , (3.2)

where αk
j corresponds to the coefficients of the basis vectors, ϕj. The mathematical

statement of optimality is that the basis functions are chosen so that they maximise

the averaged projection of the ensemble of snapshots onto the projected basis, written

as,

max
ϕ

|ϕTyk|2

‖ϕ‖2 , subject to ‖ϕ‖2 = 1, (3.3)

3.2. Proper orthogonal decomposition 49

where · denotes the mean, | · | is the modulus and ‖ · ‖ denotes the L2-norm. The mean

is maximised to reflect the goal of representing a typical member of the snapshots and

the normalisation factor ‖ϕ‖2 is included to prevent ϕ from increasing without limit.

However, the functional in (3.3) can have multiple local maxima which would pro-

vide additional basis functions for the decomposition of equation (3.2). In order to

constrain this optimisation problem under the condition ‖ϕ‖2 = 1, the problem is

reformulated to seek the maximum of

J(ϕ) = |ϕTyk|2 −L(‖ϕ‖2 − 1), (3.4)

where L is a Lagrange multiplier. After some algebra, as described in [186], it is shown

the basis functions that are being sought, must satisfy the eigenvalue problem for a

finite dimensional case as,
1

nTr
YYTϕj = Ljϕj, (3.5)

where YYT represents the autocorrelation matrix of size M × M. Their correspond-

ing eigenvalues, Lj are real and positive, and represents the relative energy contained

in each POD mode. The eigenvectors ϕj are mutually orthogonal and are termed the

POD basis vectors [190]. Building a ROM from an ensemble of snapshots using POD

implies that the constructed ROM will contain all the intrinsic properties found within

the data as only linear operations are performed to obtain the basis [191]. This pro-

vides confidence that no information is lost in the process.

It is worth noting that even in the case where only a small number of modes is neces-

sary to represent a new function which is not found in the snapshot matrix, an eigen-

value problem of order equal to the size of the autocorrelation matrix is still required

to be solved. To improve this, iterative techniques can be used to find eigenvectors

with the highest energy content first and then downward to lower energy contents.

A more elegant procedure that reduces the cost for computing these eigenvectors is

the use of the singular value decomposition [22]. The singular value decomposition

of the snapshot matrix is given by

Y = VΣW∗, (3.6)

where V is a unitary matrix of dimension M× M, whose columns, Vj for j = 1, . . . , M,

50 Chapter 3. Reduced Order Models

are the left singular vectors of Y and corresponds to the eigenvectors ϕ in (3.2) and

Σ is a rectangular diagonal matrix of dimension M × nTr whose entries, ψj for j =

1, . . . , min{M, nTr}, are the singular values of Y and equal to ψj =
√
Lj. W represents

a unitary matrix of dimension nTr × nTr, whose columns, Wj for j = 1, . . . , nTr, are the

right singular vectors of Y and the superscript ∗ denotes the conjugate transpose.

Since the columns of V form an orthonormal basis, each column of the snapshot matrix

Y, corresponding to a set of inputs xk, for k = 1, . . . , nTr, can be written as

yk(xk) =
M

∑
j=1

αk
j (xk)Vj, (3.7)

where αk
j are the POD coefficients and the vectors Vj are referred to as POD modes.

The POD coefficients are computed as αk
j = Vj

Tyk for j = 1, 2, ..., M.

The diagonal elements of Σ consist of r = min{M, nTr} non-negative numbers which

denotes the unique singular values of Y arranged in decreasing order, that is, ψ1 ≥

ψ2 ≥ ... ≥ ψr ≥ 0. The rank of Y is determined by the value of r. When the ensemble

of snapshots considered has noise, a lower rank matrix approximation can be obtained

where eigenvectors with the lower energy content are ignored or set to zero, resulting

in a truncated set of basis V?
j for j = 1, 2, ..., r?, where r? < r. This yields an orthonor-

mal basis that provides an efficient low-dimensional representation of the snapshot

matrix. Among all the orthonormal bases of size r?, the POD basis minimises the least

square error of the snapshot reconstruction,

min
Vj

‖Y − V?V?TY‖2
=

M

∑
j=r?+1

ψj
2. (3.8)

The sum of squares of the singular values corresponding to the left singular vectors

that are not included in the POD basis gives the square of the error in the snapshot

representation. Thus, the singular values provide a quantitative guidance for selecting

the lower rank order, r? needed to approximate the snapshot matrix accurately. A

typical approach used to select r? is

∑r?
j=1 ψj

2

∑M
j=1 ψj

2
> κ, (3.9)

where κ is a user-defined tolerance and the authors in [192] underline that it should

3.2. Proper orthogonal decomposition 51

be chosen to be in the vicinity of the unity in order to capture most of the energy of

the snapshot basis. The left-hand side of the above equation is referred as the relative

energy captured by the first r? POD modes.

3.2.2 Continuous extension of the POD coefficients

The ability of the POD to approximate the full order solution depends entirely on

the information contained in the snapshot matrix used to generate the basis vectors.

The continuous extension of the POD coefficients allows the user to approximate the

outputs, y, for a set of inputs, x that is not present in the set of training examples as

y(x) ≈
M

∑
j=1

αj(x)Vj, (3.10)

where the POD coefficients αj can be obtained using two approaches, the interpola-

tion and projection methods, respectively. They both share the common eigenfunc-

tions and differ from each other by the method to obtain the POD coefficients. The

interpolation approach determines the POD coefficients for a new set of exploratory

variables by solving an independent set of equations relating the explanatory variables

in the training design space to its corresponding set of POD coefficients. On the other

hand, the projection approach determines the coefficients by projecting the continu-

ous governing equations onto a lower linear subspace spanned by the eigenfunctions.

The POD with projection techniques are usually employed with Galerkin methods for

generating solutions of unsteady problems [193, 194, 195]. This approach is not gen-

erally employed for steady problems, although few literatures are available [196]. It

is worth noting that the projection approach is not adopted for problems which can-

not be described in the form of continuous functions. The authors in [196] shows the

implementation of POD with Galerkin projection for both steady and unsteady heat

transfer problems.

Remark 1 (Local selection of eigenfunctions). Following the parametric studies performed

in [196], the authors deduced that the interpolation approach produces errors of magnitude

lower than those produced with the projection approach, provided a local selection of the eigen-

vectors is performed to do the interpolation. As a result, this is applicable to the parametric

studies performed in this thesis.

In [197], the authors underline that the interpolation approach is accurate for strong

52 Chapter 3. Reduced Order Models

non-linear problems and is commonly employed for steady problems. The POD with

interpolation has been widely used as a data-driven technique and its low intrusive-

ness property has allowed it to be applied in various fields. Moreover, it appears to

be well tested and a popular choice in the literature. As a result, due to the attractive

properties of the POD with interpolation, the projection approach is not implemented

in this work. For more information on the projection methods, see [196, 198].

It is worth noting that, in practice, the number of modes selected to construct the ap-

proximation y(x) is lower than M. However, in the examples shown in this work, all

the POD modes are considered to ensure that the accuracy of the POD approximation

is not influenced by the number of modes considered. In addition, the POD model

does not have a global predictive feature, that is, large errors may be obtained when

the POD model extrapolates outside the design space over which the lower subspace

is built.

In the case of a one dimensional parametric problem, the continuous extension can

be obtained by Lagrange linear interpolation, while in two dimensional cases, bilin-

ear and spline interpolation can be performed. The expression for a single variable

Lagrange linear interpolation is written as

αj(x) = αj(xa) +
αj(xa)− αj(xb)

xa − xb
(x − xa), (3.11)

where the subscripts a and b denote the upside and downside values of the interpola-

tion. When there are N number of independent parameters, researchers usually em-

ploy least square regression technique which performs a best fit approximation of the

POD coefficients. The second-order least square method relating the POD coefficients

to the design parameters {x1, x2, ..., xM} can be written as

αj(x) = w0 +
M

∑
i=1

wi
1̂,kxi +

M

∑
j=1

M

∑
j=1

w2̂,k
ij xixj + ε, (3.12)

for j = 1, . . . , M and k = 1, . . . , nTr. In the above expression, wi
1̂,k is the first i-th

unknown coefficient of the k-th sample and ε is an estimate of the error of the ap-

proximation. The second model can be useful in the presence of strong non-linear

behaviour in the input-output relation, however, there are cases where only a first-

order least square is required to fit the system behaviour properly. For instance, when

only a small number of model parameters is considered in the example or in subsonic

3.2. Proper orthogonal decomposition 53

flows.

For multi-dimensional parametric problems where an exact fit is not obtained with

least square methods, researchers usually employ the radial basis functions (RBFs).

The guiding principle behind this approach is to use translations of a single basis func-

tion Θ(r) that depends on the Euclidean distance from a specified center. This creates

a multi-dimensional interpolant which is radially symmetric about that center [199].

RBFs are known to be an effective tool for solving partial differential equations of en-

gineering and science problems [200, 198]. Some other applications can be found in

surface reconstructions, mesh morphing, NNs, fuzzy system, pattern recognition and

data visualisation [201, 202, 203].

The primary advantage of using RBFs is its meshless nature as other interpolation

techniques, such as Hermite interpolation, require gradients defined at each data point

which result in the need of triangulation [12]. Those techniques are highly dependent

on the accuracy of the derivative estimates [19]. The RBF is found to have a superior

performance when compared to 31 competing interpolation techniques on a range of

functions [19]. Moreover, it is reported that the computational cost of the RBF approx-

imation increases non-linearly with the number of points in the dataset and linearly

with the dimensionality of the parametric problem [203]. According to the authors

in [204], the RBF approximation was demonstrated to be flexible, convenient and ac-

curate for any dimensional scattered data. However, one major drawback of the RBF

interpolation is the cost of computing the RBF weights which becomes cumbersome

when the number of data points exceeds 100 [19]. This is attributed to the linear sys-

tem that needs to be solved is dense and often ill-conditioned [205]. However, this

value is constantly changing due to the availability of computational resources.

The radial basis function interpolation is given by

αj(x) =
nTr

∑
k=1

wk
j Θ(‖x − xk‖), (3.13)

for j = 1, . . . , M, where wk
j , for k = 1, . . . , nTr, is the set of unknown coefficients and Θ

is a radial basis function. The RBF can also be expressed in terms of radius of influence

r, where r = ‖x− xk‖. Amongst the many available choices, some of the most popular

54 Chapter 3. Reduced Order Models

(a) Gaussian (b) Multi-quadric

Figure 3.2: The influence of the shape parameter ε on the shape of two popular basis func-
tions that are employed in the RBF approximation. The arrow denotes the direction of in-
creasing values of ε.

basis functions used in RBFs are,

Gaussian: Θ(r) = e
−

r
2ε2 ,

Multi-quadric: Θ(r) =
√

r2 + ε2 ,

Inverse multi-quadric: Θ(r) = (r2 + ε2)−1/2 ,

Thin plate spline: Θ(r) = r2 ln r ,

, (3.14)

where ε is a numerical parameter that dictates the radius of influence of the data. It

is also commonly referred as the shape parameter and is subject to the constraint,

ε > 0. The influence of the shape parameter on two common basis functions for the

RBF approximations is shown in figure 3.2. In addition to the popular basis func-

tions, there are also compactly supported RBFs, proposed in [206], that can be used.

Their use is desirable due to their localisation properties. However, the author in [207]

underlines that several compactly supported functions give rise to non-singular inter-

polation problems. Moreover, as it is more recent and therefore not well established

in the literature compared to the traditional basis functions listed above, they are not

considered in this work. Further information on the performance of the compactly

supported radial basis functions is available in [208].

The coefficients wk
j in equation (3.13) are computed by solving a set of independent

linear system of equations,

Awj := fj, (3.15)

3.3. Artificial neural networks 55

for j = 1, . . . , M, with AI J = Θ(‖xI − xJ‖) and f j
I = αI

j (xI). I and J are the indices

denoting the two inputs involved in the calculations of the RBF interpolant. When

the value of ε is selected, the unknown coefficients w can be obtained provided it is

non-singular, that is an inverse of the coefficient matrix can be obtained. The formu-

lation presented in (3.13) implies the constraint of using as many RBFs as the number

of data points. In this work, it is equal to the number of snapshots, nTr. If this number

is much larger than the number of degrees of freedom required to generate an accept-

able fit, the linear system can become ill-conditioned which renders the matrix A as

singular [209]. When these problems arise, researchers have employed the Moore-

Penrose pseudo-inverse of matrix A which can be solved in a least square sense [210].

Polynomial terms have also been added to the RBF approximations to overcome the

ill-conditioned matrix problem, referred as the augmented RBF method in the litera-

ture [210].

Following the work in [12], the RBF interpolation implemented with the multi-quadric

basis function is selected. It was deduced in [19] that the multi-quadric function is the

best technique for scattered data interpolation. Moreover, the author speculates that

the coefficient matrix A is invertible and this approach is well-posed whenever the

multi-quadric function is employed [19]. The accuracy of the multi-quadric RBF is

dependent on the numerical parameter ε and to tackle this issue, the authors in [211]

proposed an algorithm to find the optimum value for a particular data set. However

due to the additional expense of performing such an analysis, a numerical experiment

on the radius of influence is performed to obtain the optimum value in terms of the

number of closest cases for the examples considered in this thesis.

3.3 Artificial neural networks

The artificial NN is a technique inspired by the human nervous system that allows

learning by example from representative data that describes a physical phenomenon

or a decision process [212]. The computational network relates the inputs and outputs

of a system by forming a mathematical model using a composite of linear or non-linear

functions to address a given problem. The authors in [213] emphasise that there are

an infinite number of ways to arrange a NN, however only a few dozens have been

explored and put to common usage.

56 Chapter 3. Reduced Order Models

3.3.1 Neural network architecture

The neuron of a NN represents a mathematical function and it is conceived as a model

of biological neurons. Here the neuron in a NN takes a set of inputs, performs an

operation using an activation function, and outputs a value. Each connection formed

between the neurons has an associated weight.

A generic NN model can be described in terms of its architecture which defines the

structure of the network. The most basic NN has three types of layered structure,

the input layer, the hidden layers and the output layer, respectively. The input layer

and the output layer consist of input neurons and output neurons. The layers that

are found between these two layers are termed as the hidden layers and the neurons

found within, as the hidden neurons. Each hidden layer can be chosen to perform a

specific task and follow a specific connection between the layers in order to solve a

given problem [214]. The type of connections between the layers forms two types of

networks, the feed-forward NN and the feedback or recurrent NN, respectively [215].

The feed-forward NN has only forward connections from the input layer to the output

layer. It is usually referred to as a static NN as only one set of outputs is obtained with

one set of inputs. On the other hand, the feedback NN has both forward and feedback

connections and is sometimes referred to as a dynamic NN, as several outputs can be

obtained for the same set of inputs. Over the last decade, several other NN architec-

tures have been invented that can be categorised under the same dichotomy. The

multi-layer perceptron, convolutional NN, self-organising map, auto-encoders and

decoders, and the more recent generative adversarial networks are a few examples

of feed-forward networks [82, 172, 176, 178]. Recurrent NN, convolutional recurrent

NN, long short term memory, convolutional memory networks are examples of feed-

back networks [216]. An illustration of the most basic NN with forward connections,

the multi-layer perceptron NN, is shown in figure 3.3. The first and last layers corre-

spond to the inputs and outputs, and the hidden layers, are numbered from l = 1 to

l = nL, with nL being the number of hidden layers. The number of hidden layers de-

fines the depth of the NN. In practice, researchers classify NN with two or more hidden

layers as deep networks and this field of study is loosely referred as deep learning [168].

According to the authors in [169], a regressor multilayer perceptron with at most two

hidden layers can provide approximations to the desired degree of accuracy, provided

3.3. Artificial neural networks 57

Figure 3.3: Schematic representation of a multi-layer perceptron NN.

sufficient hidden neurons are used and the optimised weights are not stuck in a lo-

cal minimum. A more recent study in [217] also shows the universal approximation

property of the multi-layer perceptron. It is also reported that for linear and quadratic

functions only one hidden layer is required, while for approximations of higher or-

ders, only two hidden layers should be used [217].

In this work, a static network is employed as steady state CFD solutions are used to

build the datasets and following the findings of the authors in [169, 217], the multi-

layer perceptron and its extendable deep-structured variant are selected and referred

to as NN hereafter. It is worth noting that, the NN algorithm, SwANN, is employed

to perform data analysis in this work. SwANN was written in Matlab by the au-

thor of this thesis. SwANN is a fully-connected NN with deep learning capabilities.

In addition to the learning opportunity that comes with coding a NN toolbox from

scratch, SwANN ensures it does not converge prematurely as three errors are moni-

tored, namely the cost function, the finite precision errors propagated by the inputs

and the derivatives of the cost function with respect to the weights.

3.3.2 Forward propagation

During the so-called forward propagation, the value associated to each neuron is com-

puted by using the values associated to the connected neurons in the previous layer,

the weights of the connections and an activation function Fl . More precisely, the value

58 Chapter 3. Reduced Order Models

(a) Activation function (b) Derivative of activation function

Figure 3.4: The variation of four common types of activation functions employed in a NN
and their corresponding derivatives.

of the j-th neuron in the layer l + 1, denoted by zl+1
j , is computed as

zl+1
j = Fl

 nl
N

∑
i=1

θl
ijz

l
i + bl

j

 , (3.16)

where bl
j is a bias unit, θl

ij denotes the weight of the connection between the i-th neuron

of the layer l and the j-th neuron of the layer l + 1 and nl
N is the number of neurons in

the layer l.

The activation function of the neurons in the output layer determines the objective of

the network. It is essential to induce non-linearities in the NN as a composition of

linear functions would only result in another linear transform. As a result, non-linear

activation functions are used in the hidden layers to allow the NN to learn the complex

mapping between the inputs and the outputs. There are various types of activation

functions that have been employed over the years. Some of the popular functions are

Linear: L(x) = x

Log-sigmoid: S(x) =
1

1 + e−x

Hyperbolic tangent sigmoid: T(x) =
ex − e−x

ex + e−x

Rectified linear unit: R(x) = max{0, x}

Figure 3.4(a) shows the variation of the four types of activation functions that are

commonly employed in NNs and their corresponding gradients. The linear activa-

tion function is usually used in the output layer when a continuous output is required

while the sigmoid functions are by far the most popular choice when the outputs are

discrete. When the rectified linear activation function is used, it can be either R(x) = 0

3.3. Artificial neural networks 59

Figure 3.5: The effect of the added bias to the log-sigmoid function.

for x ≤ 0 or R(x) = x for x > 0. This results in the function to be non-differentiable

for x ≤ 0 and therefore the model cannot learn from the data when a gradient-based

algorithm is employed to optimise the weights in the network.

Remark 2 (Inputs standardisation). The log-sigmoid and the hyperbolic tangent function

saturates as |x| increases and it becomes difficult to update the weights of the network due to

its vanishing gradient properties. As a result, experts always recommend to scale the inputs

such that this problem is avoided [218].

A comparison of the activation functions is performed in [219], to show the supe-

riority of the sigmoid functions. The author underlines that the log-sigmoid func-

tion remains the most popular choice in NN models due to the ease of computing its

derivatives [219].

Two classes of functions are considered in this work, namely the log-sigmoid function

S(x) and the linear function L(x). When the NN is designed as a function approxi-

mant, the activation functions are selected as Fl = S for l = 0, . . . nL − 1 and FnL = L. In

contrast when the NN is designed as classifiers, all the activation functions are taken

as the log-sigmoid, Fl = S for l = 0, . . . nL. Figure 3.5 shows the effect of the added

bias unit to the activation functions. This increases the flexibility of the NN model to

fit the data by shifting to the left or right. The concept of the bias unit in NN is analo-

gous to the role of the constant in the equation of a line. Without the constant, the line

will only pass through the origin. Conversely, with the constant, the line can cross the

y-axis at any position along the axis. The author in [220] carried out empirical studies

to show the importance of the bias for accurate predictions in deep learning models.

60 Chapter 3. Reduced Order Models

3.3.3 Error evaluation of the NN model

A training case is defined by a vector of N inputs, x = {x1, . . . , xN}T, and a vector

of M outputs, y(x) = {y1(x), . . . , yM(x)}T. Given a set of nTr training cases, xk =

{xk
1, . . . , xk

N} and yk = {yk
1, . . . , yk

M}, for k = 1, . . . , nTr, the quadratic cost function is

defined as

CQ(θ) =
1

MnTr

nTr

∑
k=1

nnL+1
N

∑
i=1

[
yk

i (xk)− hk
i (θ)

]2. (3.17)

The values hk
i correspond to the predicted outputs, computed using a forward prop-

agation, starting from the input values z0
i = xk

i for k = 1, . . . , nTr and i = 1, . . . , n0
N. It

is worth noting that the number of neurons in the input layer is taken as n0
N = N and,

similarly, the number of neurons in the output layer is taken as nnL+1
N = M.

Equation (3.17) is the mean square error and it measures the discrepancy between

the target outputs and the NN predictions when the NN is designed as a function

approximant. Conversely, when the NNs are designed as classifiers, the cross-entropy

cost function is the most popular option and is written as

CCE(θ) =− 1
MnTr

nTr

∑
k=1

nnL+1
N

∑
i=1

{
yk

i (xk) log
[

hk
i (θ)

]
+ [1 − yk

i (xk)] log
[
1 − hk

i (θ)
] }

(3.18)

In addition to the popular choices of cost function described in equations (3.17) and

(3.18), there are several other options such as the exponential, Hellinger-distance,

Kullback-Leibler divergence and Itakura-Saito distance cost functions [221]. These

cost functions have been used in both supervised and unsupervised learning algo-

rithms [221]. A comparison of the cost functions is beyond the scope of this work, see

[222, 223] for more information.

3.3.4 Learning algorithms

The goal of the so-called training stage is to obtain the weights associated to all the con-

nections of the NN that minimise the cost function. There are two main approaches,

the gradient-based [215] and the gradient-free [224], respectively, each adapted to min-

imise the cost function of a NN model. Gradient-based methods which employ the

backproprogation procedure to obtain the derivatives with respect to the weights, is

by far the most commonly used technique for multi-layered NNs. This approach be-

comes more complicated to implement as the number of weights is increased and is

3.3. Artificial neural networks 61

intolerant to noisy objective function spaces, inaccurate gradients, categorical vari-

ables and topology optimisation [72]. Additionally, an often-mentioned disadvantage

is that gradient-based techniques are generally sensitive to the initial set of weights

and therefore may not reach the global optimum in high dimensional design prob-

lems. This is attributed to the noisy performance surface and gradient-based method

may get stuck in a local minimum.

On the other hand, gradient-free optimisation does not rely on the calculations of

derivatives with respect to the weights to move towards the global minimum. As

a result it is known to be tolerant to noise in the objective function , however, it is

reported that gradient-free algorithms such as genetic algorithm, require between five

and 200 more times the number of function evaluations than the gradient-based ap-

proach for high dimensional problems [72]. Therefore, gradient-free algorithms in the

context of weight optimisation in NN, are not employed as up to millions of weights

are considered in this work.

The iterative process of the most general form of a gradient-based algorithm to com-

pute the weights at iteration r + 1 is given by

θl,r+1
ij = θl,r

ij + τsl,r
ij , (3.19)

or if the weights are re-arranged in a vector format for ease of understanding, it can

be written as,

θr+1 = θr + τsr, (3.20)

where τ is the step length to move in the direction of the search direction sr. There are

three main types of learning algorithms that are discussed in this section. The deriva-

tions of each one of them is based on a general quadratic cost function, expressed in a

vector format as

C(θ) =
1
2

θTHθ+ dTθ+ c , (3.21)

where (·)T denotes the transpose operator of a tensor, H is the symmetric Hessian

matrix or the second derivative of the quadratic function, d is the free coefficient vector

and c is the constant of the quadratic equation .

The first type of learning is the Gradient descent, which is a first-order optimisation

algorithm for finding the minimum of a function iteratively. The aim of this task is

62 Chapter 3. Reduced Order Models

to have C(θr+1) < C(θr) and to move in the search direction s by a step length τ.

Consider the first order Taylor series expansion of the cost function, C(θr+1),

C(θr+1) = C(θr + ∆θr) ≈ C(θr) +
∂C
∂θr

T
∆θr, (3.22)

where ∆θr represents a change in the values of the weights and using equation (3.20),

it can be written as

∆θr = θr+1 − θr = τsr, (3.23)

and for the equality C(θr+1) < C(θr) to be valid,

∂C
∂θr

T
∆θr = τ

∂C
∂θr

T
sr < 0. (3.24)

Since the learning rate τ is a small positive value, it implies that the dot product of

the derivatives with respect to the weights and the search direction must be less than

zero, and this inner product will be most negative when the derivatives are taken to

be negative. Hence, the gradient descent algorithm can be written as,

θr+1 = θr − τ
∂C
∂θr , (3.25)

The derivatives with respect to weights in the input and hidden layers can be obtained

using the so-called backpropagation procedure. As the error is not an explicit function

with respect to the weights in the network, it can be difficult to compute the deriva-

tives. The backpropagation procedure implements the chain rule, starting from the

output layer to the input layer, to obtain the derivatives with respect to the weights at

iteration r + 1 and this can be written as

∂C
∂θr,l

ij

=
2

MnTr

nTr

∑
k=1

nl+1
N

∑
j=1

∂C
∂zk,l+1

j

∂zk,l+1
j

∂θr,l
ij

, (3.26)

for l = nL, nL − 1, ..., 0, where the derivatives of the activation function zk,l+1
j of layer

l + 1, with respect to the weights, θl
ij of layer l at iteration r + 1, can be expressed as

∂zk,l+1
j

∂θr,l
ij

=
e−zk,l

i θr,l
ij

(1 + e−zk,l
i θr,l

ij)2
if Fl(·) = S(·),

∂zk,l+1
j

∂θr,l
ij

= zk,l
i if Fl(·) = L(·).

(3.27)

3.3. Artificial neural networks 63

The learning rate in equation (3.25) is a positive scalar value and it can either be fixed,

or it can be computed in each step to maximise the minimisation along every search

direction. In the fixed learning rate approach, the maximum value of τ can be deter-

mined by expressing it in terms of the eigenvalues of the Hessian matrix of the cost

function C. The derivative of equation (3.21) with respect to the weights in the output

layer can be written as

g =
∂C
∂θ

= Hθ+ d, (3.28)

where g denotes the gradient vector. Substituting this expression in equation (3.25),

θr+1 = [I − τH]θr − τd, (3.29)

where I is the identity matrix. This is a linear dynamic system where the eigenvalues

of [I − τH] is stable if it is less than one and that the eigenvectors of [I − τH] is the

same as [1 − τγi] where γi denotes the eigenvalue of the Hessian matrix, H [225]. If

it is assumed that the quadratic function has a strong minimum, then its eigenvalues

must be positive [215] and the equation reduces to,

τ <
2

γmax
, (3.30)

where γmax denotes the maximum eigenvalue of the Hessian matrix. The maximum

stable learning rate is therefore inversely proportional to the maximum curvature of

the quadratic function. If τ > τmax, that is, the learning rate is too large, the algo-

rithm may jump past the minimum point and if τ = τmax, the algorithm will con-

verge the quickest. To illustrate the sensitivity of the learning parameter, τ, consider

the quadratic function f (x) = x1
2 + 25x2

2, with a strong minimum at the origin. The

eigenvalues of the quadratic equation are 2 and 50. According to the equation in (3.30),

the maximum stable learning rate is 0.04. Figure 3.6 shows the influence of the learn-

ing parameter on the convergence of the gradient descent algorithm, with a fixed ini-

tial position at x1 = −3 and x2 = −1. It illustrates that the learning rate is limited by

a particular value which corresponds to the maximum eigenvalue of the Hessian ma-

trix. Figure 3.6(a) shows that with a smaller learning rate τ < 0.040, the convergence

is guaranteed. However, more iterations are required to reach the global minimum.

The gradient descent algorithm converges the quickest when the learning parameter

is equal to the largest eigenvalue, that is, τ = 0.040, moving in the direction of the

64 Chapter 3. Reduced Order Models

(a) τ = 0.010 (b) τ = 0.040 (c) τ = 0.041

Figure 3.6: The influence of the learning parameter τ on the convergence of the gradient
descent algorithm for a quadratic function with a strong minimum.

eigenvector, as shown in figure 3.6(b). In the case where τ > 0.040, the algorithm may

get past the minimum as shown in figure 3.6(c). As a result, the gradient descent algo-

rithm requires a careful selection of the learning parameter. A practical approach that

researchers usually employ is to use small values of τ in the case where the function

is unknown which may however affect the time for the algorithm to converge.

The variable learning rate approach minimises the cost function with respect to θr +

τsr along the search direction in the context of gradient descent, termed hereafter as

the variable gradient descent. For a quadratic function, the derivative of the cost function

with respect to the learning rate at iteration r can be written as

∂C(θr + τsr)

∂τr =
∂C
∂θr

T
sr + τrsrT ∂2C

∂θr2 sr , (3.31)

The learning rate at iteration r can be obtained by setting equation (3.31) to zero and

solve for τr,

τr = −
∂C
∂θr

T
sr

srT ∂2C
∂θr2 sr

= − grTsr

srTHsr
. (3.32)

In the case of the gradient descent algorithm, the search direction is equal to the

derivative of the cost function with respect to the weights. By minimising along the

line, this allows the weights to move to the minimum along the search direction sr at

iteration r. This point is tangent to the contour line and since the gradient is orthogo-

nal to the contour line, the gradient in the next iteration will also be orthogonal to the

current iteration. The concept of orthogonality is also shown in another optimisation

algorithm discussed later in this section.

3.3. Artificial neural networks 65

To alleviate the common difficulty of gradient-based methods to reach a global min-

imum in problems where multiple local minimums are present, a heuristic modifica-

tion to the simple gradient descent is applied in which a low pass filter is used. More

precisely, the momentum gradient descent approach computes the optimum weights at

the iteration r + 1 as

θr+1 = (1 + η)θr − ηθr−1 − τ(1 − η)gr, (3.33)

where η ∈ [0, 1) is the momentum coefficient of the first order smoothing filter.

Remark 3 (Momentum gradient descent). The momentum gradient descent allows the user

to use a larger learning rate while maintaining the stability of the optimisation [215]. This

could be possible as the oscillations on the performance surface are smoothed out using a first

order filter. Another prime feature of this heuristic modification is that it tends to accelerate

convergence when the trajectory is moving in a consistent direction [215].

Next, the second type of learning is the Newton’s method which is based on the sec-

ond-order Taylor series expansion and has the quadratic termination property. In other

words, it minimises a quadratic function in a finite number of iterations. The sec-

ond order Taylor expansion of the quadratic cost function in equation (3.21) can be

expressed as

C(θr+1) = C(θr + ∆θr) ≈ C(θr) + grT∆θr +
1
2

∆θrTHr∆θr. (3.34)

Finding the derivatives with respect to the θr and setting it to zero reduces the equa-

tion to

gr +Hr∆θr = 0 , (3.35)

and, rearranging the formula to obtain the Newton’s method

θr+1 = θr − [Hr]−1gr. (3.36)

Equation (3.36) will always march to the minimum of a quadratic function with a

strong minimum in just one step. However, the performance surface in NN contains

several local minima and therefore the learning algorithm may terminate in more than

one step. Moreover, as the number of weights increases in the NN, the size of the

Hessian matrix scales proportionally to the squared of the number of weights. On the

66 Chapter 3. Reduced Order Models

other hand, the gradient vector scales proportionally to the number of weights in the

NN. As a result, it may be impractical to perform the computation and storage of the

Hessian matrix and its inverse.

To avoid this issue, researchers use the Jacobian matrix, J to approximate the Hes-

sian matrix [226]. For instance, the quadratic cost function in (3.21) can be further

simplified to

C =
N

∑
i=1

ei(θ)
2 = eT(θ)e(θ), where e(θ) = y − h(θ), (3.37)

where y and h are taken to be a vector of the target and predicted outputs respectively

for ease of understanding. The derivative can be expressed as

∂C
∂θ

= 2J T(θ)e(θ), (3.38)

where the Jacobian matrix, J is expressed in its matrix form as

J (θ) =



∂e1
∂θ1

∂e1
∂θ2

· · · ∂e1
∂θn

∂e2
∂θ1

∂e2
∂θ2

· · · ∂e2
∂θn

...
...

...
∂eN
∂θ1

∂eN
∂θ2

· · · ∂eN
∂θn

 . (3.39)

Next, the Hessian matrix can be found using the Jacobian as

H =
∂2C(θ)

∂θ2 = 2J T(θ)J (θ) + S(θ), (3.40)

where

Sk,j(θ) = 2
N

∑
i=1

ei(θ)
∂2ei(θ)

∂θk∂θj
(3.41)

It is assumed the contribution of S(θ) is comparably smaller than the product of the

Jacobian and can be ignored. Therefore, the Hessian matrix can be approximated to

be

H̃(θ) ≈ 2J T(θ)J (θ) (3.42)

Gauss-Newton method is obtained if the equations in (3.42) and (3.38) are substituted

in (3.36),

θr+1 = θr − [J T(θr)J (θr)]−1J T(θr)e(θr) (3.43)

3.3. Artificial neural networks 67

It is worth noting that the advantage of Gauss-Newton method is that it does not re-

quire the computation of the Hessian matrix. However in some cases, this matrix may

not be invertible and therefore computing the Hessian would not be possible. For

this operation to be possible, it can be made into a positive definite matrix by using,

H̃ + µI, where µ is a positive scalar value. This value is increased until the eigen-

values, (γi + µ) > 0 for all i, which leads to the Levenberg-Marquardt algorithm [227],

written as,

θr+1 = θr − [J T(θr)J (θr) + µrI]−1J T(θr)e(θr) (3.44)

An important feature of this algorithm is when the value of µr is increased, it approxi-

mates the gradient descent algorithm with a small learning rate and as µr approaches

zero, the algorithm approximates the Gauss–Newton method. For more information

on the application of this algorithm within a NN framework, see [215].

Finally, the conjugate gradient method is yet another learning approach that has the

quadratic termination property of Newton’s method but does not require the compu-

tation of the Hessian matrix. The computation of the Jacobian matrix is still required

and a set of mutually conjugate vectors with respect to the Hessian matrix is used as

search directions. Here the conjugacy condition, srTHsr? for r 6= r?, must hold.

From equation (3.21) and (3.28), the change in gradient vector at iteration r + 1 can be

written as

∆gr = gr+1 − gr =
∂C

∂θr+1 − ∂C
∂θr = H∆θr, (3.45)

and similarly, the change in weights using equation (3.20) is,

∆θr = θr+1 − θr = τsr. (3.46)

The conjugacy condition can be restated as

τrsrTHsr? = ∆θrTHsr? = ∆grTsr? = 0, for r 6= r? (3.47)

Since the conjugacy condition is restated in terms of the gradient vector, there is no

need to calculate the Hessian matrix iteratively. The search direction at iteration r will

be conjugate to the search directions at any previous iterations if they are orthogonal

to the changes in gradient. In order to maintain this conjugacy condition, a proce-

dure similar to Gram-Schmidt orthogonalisation [215] can be implemented and this is

68 Chapter 3. Reduced Order Models

(a) Variable gradient descent (b) Conjugate gradient (c) Newton’s method

Figure 3.7: The comparison of the convergence of three learning algorithms using the
quadratic function f (x) = x1

2 + 25x2
2 and, the starting position, x1 = −3 and x2 = −1.

expressed as

sr = −gr + βrsr−1, (3.48)

where the constant βr, due to the authors in [228], is defined as

βr =
grTgr

gr−1Tgr−1
. (3.49)

There are other alternatives for choosing the scalars of βr and are discussed in [227].

It is worth noting that the first search direction, s1 can be arbitrary and it is usually

taken to be the negative of the first gradient, g1. The search directions in the successive

iterations, {s2, s3, ..., sr}, will be orthogonal to each other and the iterative formulation

of the conjugate gradient method can be written as

θr+1 = θr − τrgr + τrβrsr−1. (3.50)

Figure 3.7 shows the convergence of three learning algorithms using the quadratic

function, f (x) = x1
2 + 25x2

2, and the same initial coordinates, x1 = −3 and x2 =

−1. Figure 3.7(a) shows the orthogonality properties of the search directions in the

variable gradient descent approach. Next, the quadratic termination property and

the conjugacy property of the conjugate method to terminate in only two steps are

illustrated in figure 3.7(b). lastly, the quadratic termination property of the second-

order Newton’s method which terminates in only one step in figure 3.7(c).

The simple gradient descent is the simplest first order algorithm and it is often re-

ported to have slow convergence when using a small learning rate or an oscillatory

3.3. Artificial neural networks 69

behaviour when a much larger learning rate is used, as shown in figure 3.6. As a re-

sult, it is hard to find the optimum value for a particular problem and can be regarded

as a numerical parameter of the optimisation algorithm. The variable learning rate ap-

proach allows users to move to the minimum in each search direction and hence the

algorithm converges in a smaller number of steps when compared to the fixed learn-

ing rate approach. However, to be able to compute the learning rate in each iteration

of the variable gradient descent, the Hessian matrix needs to be computed, as shown

in equation (3.32). The momentum gradient descent allows the use of a larger learn-

ing rate and hence a faster convergence by using a low pass first-order filter to damp

down the oscillations found in the performance surface of a NN.

Newton’s method is much faster and provides the user with quadratic convergence.

However, it requires the computation and storage of the Hessian matrix and the calcu-

lations of its inverse. Although Levenberg Marquardt algorithm of Newton’s method

converges in only one step for a quadratic function, as seen in figure 3.7(c), with in-

creasing number of parameters to optimise non-quadratic functions, the method may

require more iterations to converge. As a result, it may seem to be an impractical

approach. The conjugate gradient method, on the other hand, is a compromise as

it does not require the computation of the second derivatives, and yet achieves the

quadratic termination property with at most n iterations for functions of n-th orders.

Figure 3.7(b) shows that the conjugate gradient approach converges in two steps for a

quadratic function. However, in the application of NN, the performance surface is not

of quadratic type due to the induced non-linearities of the activation functions in the

system. As a result, the conjugate gradient method does not terminate in two steps.

Two common steps are usually employed in conjunction with the conjugate gradient

method, the interval location and interval reduction respectively, which works when a

moderate number of parameters are optimised. The purpose of the interval location is

to perform a linear search along the search direction to find some initial intervals that

contains a local minimum. The interval reduction step then reduces these intervals to

obtain a minimum at the desired degree of accuracy. More information on this adapta-

tion to the conjugate gradient method can be found in [227, 215]. However, as the NN

architecture becomes more pronounced, these approaches can become cumbersome.

The author in [215] underlines that the conjugate gradient converges in fewer iter-

ations compared to most optimisation algorithms, however each iteration performs

more function evaluations than any other methods.

70 Chapter 3. Reduced Order Models

In this work, the backpropagation approach with momentum gradient descent is em-

ployed as it has demonstrated a good performance for training NNs of moderate

size [229]. The algorithm also requires the choice of the parameters η and τ for the

iterative process given by equation (3.33). This choice is usually based on numeri-

cal experiments and some recommendations can be found in the literature [215]. For

the numerical examples presented in this thesis, the values selected are η = 0.9 and

τ = 0.5, and are close to the values found in other studies.

In addition to the selection of the learning algorithm, stopping criteria have to be de-

fined to stop the training when the defined criteria satisfy a specified tolerance. The

traditional stopping criterion is to check if the absolute value of the cost function falls

below the specified tolerance. This can however be a drawback as the tolerance is cho-

sen before the training is started. Such a choice is highly subjective to the dataset and

involves trial and error. To circumvent this issue, researchers always work with stan-

dardised datasets and more than one criterion are usually defined to ensure conver-

gence. To provide another quantitative measure of the error during the training, the

error propagated by the inputs are calculated. Consider a non-linear function F(z, θ),

which has two input variables, z and θ, each has an finite precision error and whose

sources are known prior to the data manipulations. Similarly, the multiplication of

two input variables incur another error in the operation. The errors in the inputs to

each neurons is propagated forward through the hidden neurons of the hidden layers

to the neurons of the output layer [230]. The first-order Taylor series approximation of

the error E propagated by the inputs of the neuron zl+1
j of layer l + 1 can be written as

E
(

zl+1
j

)
= E

Fl

 nl
N

∑
i=1

θl
ijz

l
i


=
(

Fl
)′ nl

N

∑
i=1

θl
ijz

l
i

 E

 nl
N

∑
i=1

θl
ijz

l
i

 ,

(3.51)

3.3. Artificial neural networks 71

where (Fl)′ is the derivative of the activation function and,

E

 nl
N

∑
i=1

θl
ijz

l
i

 =
nl

N

∑
i=1

E
(

θl
ijz

l
i

)

=
nl

N

∑
i=1

θl
ijE(z

l
i) + E(θl

ij)z
l
i + E(θl

ij)E(zl
i)

≈
nl

N

∑
i=1

θl
ijE(z

l
i) + E(θl

ij)z
l
i ,

(3.52)

where the errors E(θl
ij) and E(zl

i) are small numbers and their product is taken to be

negligible. This error is used as one of the stopping criteria in the optimisation algo-

rithm. Beside the cost function and the error propagated by the inputs, the derivatives

of the cost function with respect to the weights are also monitored and used as a stop-

ping criteria in this work as it provides an indication whether the NN is learning or

not. The tolerances of all the stopping criteria used in this thesis are reported in later

chapters.

3.3.5 Methods to improve generalisation

One of the most common problem with training NNs is overfitting, which is the conse-

quence of a trained model that performs well on the training data and poorly on the

unseen test data [231]. A trained model is said to be ideal when the network gener-

alises well in both the training and test datasets. There are several approaches that

have been proposed to address this problem, some of which includes, growing, global

searches, drop-outs, early stopping, addition of noise and regularisation.

Growing methods start with the minimum number of hidden neurons and/or hidden

layers in the NN and subsequently more hidden neurons or layers are added until an

adequate performance is achieved. This represents one of the most common technique

used to improve generalisation in the test set. Global searches are meta-heuristic or

gradient free algorithms such as genetic algorithms and cuckoo search which perform

a search of all possible network architectures to locate the simplest model that can

generalise well. A well-known drawback of this method involves the high number of

evaluations that are required to locate the minimum.

72 Chapter 3. Reduced Order Models

The drop-out technique has also proven to be an effective method in addressing over-

fitting in NNs. This approach preserves the size of the training dataset. The co-

adaptation of hidden neurons which contributes to overfitting, is prevented by stochas-

tically selecting the hidden neurons and setting the value of their activation function to

zero during the training [232]. This approach is also conceived as a bagging approach

that implicitly induces sparsity in the NN model. Several authors deem this technique

as promising, especially in deep NN [233, 234]. However it is worth noting that the

drop-out technique is not accustomed as researchers do not have clear understanding

why this method works well in deep NN.

When the early stopping approach is used during the training, another dataset in addi-

tion to the training and test datasets, known as the validation set, is used to prevent

the network from memorising the training data. This set is usually built by taking a

subset of the training data, usually about [10%, 25%]. The error on the training and

validation set is monitored during the training stage. The aim is to record the set of

weights when the error on the validation set starts to diverge and that of the training

still converges. It is assumed that the network is about to memorise the data and the

predictions will not generalise well on the test dataset at this clipping point and be-

yond [235]. As a result, this clipping point is used as a stopping criterion. The use of

validation set reduces the size of the training data available for learning and this can

be a major setback when there is not enough data such as in experiments. The multi-

fold cross-validation techniques, proposed in [236], provides a way to train on scarce

datasets. It involves partitioning the dataset into a number of subsets, among which

one subset is left out for validation and the rest is used for training. Multiple rounds

of the different selections of the subsets are used for training and the validation results

are usually averaged to obtain an overall performance of the model.

Next, there are three main approaches how the addition of noise can be used to over-

come overfitting. Artificial noise has been added to the input data with the hope that

the added noise will perturb the training [237]. This makes the learning more difficult

for the NN to perfectly fit the training data. A common way to model the artificial

noise is to use a Gaussian distribution and this would introduce two numerical pa-

rameters in the training, the mean and standard deviation of the perturbation, respec-

tively [237]. The authors in [238] have added artificial noise to the weights of the NN

and report that such an approach comes with rigorous weight updates which can lead

3.3. Artificial neural networks 73

to convergence issues. The authors in [239] propose a method to add noise during

the training to alleviate this problem. Alternatively, researchers have also successfully

addressed overfitting by adding artificial noise to the derivatives of the cost function

with respect to the weights [240]. Literature where this method is used in deep NN

and recurrent NN are available in [240, 241]. As this method is not well established in

the literature, it is not implemented in this work.

Finally, regularisation is a method which is employed to penalise the weights to reduce

the non-linear learning capabilities of the NN models. It corresponds to one of the

most popular techniques used in NNs to avoid overfitting [242, 243]. This approach

has been shown to marginally discourage overfitting in the training stage by adding

a penalty term or regularisation term to the cost function of the NN model [244]. The

two most common types of weight penalisation schemes are the L1 and L2 regularisa-

tion, respectively. For a NN model as a function approximant, the cost function with

the L1 regularisation is written as

C̃(θ) =
1

MnTr

nTr

∑
k=1

nnL+1
N

∑
i=1

[
yk

i (xk)− hk
i (θ)

]2
+

λ

nTr

nL

∑
l=0

nl+1
N

∑
i=1

nl
N

∑
j=1

|θl
ij|, (3.53)

where | · | denotes the absolute value and λ is the overfitting parameter which controls

the impact of the weight penalisation. It is worth noting that the weights to the bias

term are not regularised as it has been shown that this usually has a negative effect on

the NN approximation properties [245]. The cost function with the L2 regularisation

is,

C̃(θ) =
1

MnTr

nTr

∑
k=1

nnL+1
N

∑
i=1

[
yk

i (xk)− hk
i (θ)

]2
+

λ

2nTr

nL

∑
l=0

nl+1
N

∑
i=1

nl
N

∑
j=1

(θl
ij)

2. (3.54)

Both approaches shrink the weights to low values and some to zeros, however more

attention has been given to L2 regularisation. The authors in [246] provides a discus-

sion on the effectiveness of the two types of regularisation.

The drawback of using this method is that it is difficult to determine the optimum

value of the overfitting parameter, λ. As a result, researchers consider this parameter

as another hyperparameter of the NN and needs to be tuned for a specific problem.

If this parameter is too small, the trained network may overfit and conversely if the

parameter is too large, the network may underfit. To alleviate this problem, the author

in [247] proposes a method to determine the overfitting parameter in an automated

74 Chapter 3. Reduced Order Models

fashion using the Bayesian framework.

In this work, two methods are selected to improve predictions of the trained NN mod-

els, the growing method, and the L2 regularisation respectively. Moreover, the perfor-

mance surface of highly dimensional problems usually contains several local minima

and saddle points. When the weights are initialised using the same initial weights, for

instance zero value, it will converge to the same minima using gradient-based algo-

rithms. On the other hand, if the weights are large, the solution can fall on a flat part

of the performance surface due to saturation of the sigmoid activation function [215].

Following [248], the initialisation of the weights for a layer l uses a uniform distribu-

tion to break symmetry within the interval [−
√

al ,
√

al], with al = 6/(nl
N + nl+1

N). The

authors remark that in order to avoid the multiplicative effects through layers, this ini-

tialisation procedure approximately satisfies the objectives of maintaining activation

variances and back-propagated variances as one moves up or down the network [248].

Moreover, to mitigate the possibility of being stuck in a local minima, a practical ap-

proach is to train the network using more than one random initialisation and the result

with the minimum error is taken.

3.4 Design of experiment

In order to use the various types of non-intrusive ROMs mentioned in this chapter,

the training stage requires a selection of data points. This selection is usually obtained

using design of experiments. It was originally introduced to plan and conduct experi-

ments with the aim of understanding the behaviour of a system [27]. With the advent

of numerical methods and computing facilities, researchers applied the same concept

of performing experiment through computer-based simulations. Sampling the design

space or selecting a good set of training data points is one of the key issues in numer-

ical experiments as the goal is to maximise the amount of information from a limited

number of samples.

The central composite design is a classic example of design of experiment which is

usually employed for building second order models without the need to populate a

three-level full factorial experiment. A drawback to this method is that the number of

points increases exponentially with the number of design variables [249]. As a result, it

becomes inefficient for high dimensional design problems, for instance, parametrised

geometries in the area of aerodynamic design exploration. Another example is the

3.4. Design of experiment 75

D-optimal design, which has also been widely utilised [249]. This method requires a

smaller number of data points than the central composite design. However, the au-

thor in [27] underlines that D-optimal design has a model dependent efficiency which

does not address the prediction variance. The author also remarks that a good experi-

mental design for deterministic computer analyses should fill the design space rather

than focusing on the boundary [27]. Two of the popular space filling methods are

the orthogonal arrays [250] and latin hypercube samplings (LHS) [251, 252]. LHS de-

signs are usually preferred over random sampling and stratified sampling, as it was

found to estimate the mean, variance and distribution functions of an output more

accurately. Moreover, LHS ensures that each of the input variables is well represented

over the range considered, even when the number of input variables are large. As a

result, this renders the method computationally inexpensive in comparison to other

methods.

The process to generate samples with LHS involves two main steps, firstly the range of

each input variable is divided into n intervals and secondly, a datapoint within each

interval is chosen from a normal distribution. In real life applications, some combi-

nations of the variables are not computationally feasible and LHS design allows to

adjust a variable without undermining its fundamental properties [253]. Moreover,

LHS provides the flexibility on the size of the sample as different applications may

have different constraints such as time and budget. The authors in [254] report that

the number of samples for building a response surface model with LHS is approxi-

mated to be between 20% and 50% of the size of sample generated using D-optimal

designs. Figure 3.8 shows a comparison of the full factorial design using 33 variable

combinations and the LHS design using three samples. The authors in [255] report that

the sampling strategy should be based on the function to be approximated. However

in the case where the function to be approximated is unknown, a sensitivity analysis

based on the size of the samples is usually recommended. This ensures that a min-

imum number of samples is generated using the selected design of experiment such

that the ROM accurately represents the black-box function the designer is attempting

to model. A survey of the various types of design of experiments can be found in [27].

76 Chapter 3. Reduced Order Models

(a) Full factorial sampling (b) Latin hypercube sampling

Figure 3.8: An illustration of two design of experiment methods using three design vari-
ables.

3.5 Workflow

A summary of the workflow employed to perform prediction using a trained ROM

follows. There are five main steps involved to obtain a trained ROM and the workflow

used in this thesis is automated on high performance computing facilities.

1. The first step begins by generating a dataset for the training and test set using

predefined intervals of the explanatory variables and Latin hypercube sampling.

2. The aerofoil and wing geometries over which the flow needs to be resolved are

modelled in the second step. NURBS is used in the case where geometric pa-

rameters are involved.

3. The third step involves the domain discretisation using unstructured meshes

around the geometry. To avoid the computational burden of generating meshes

around several geometries, mesh morphing schemes such as Delaunay graph

method and Laplacian smoothing are employed.

4. Next, the full order solution is obtained using the Flite system [88], which is a

second-order vertex-centred FV solver.

5. The last step involves training a ROM using the training set and testing the per-

formance of the ROM using the test set.

The a posteriori nature of this work allows the choice of multiple ROMs, however here

the in-house NN or POD coupled with RBF is employed. It is worth noting that the

3.5. Workflow 77

training and test set are standardised, to avoid saturation in the log-sigmoid function

employed in the hidden neurons, as noted in remark 2.

When choosing either the NN or the POD, there is the choice of several hyperparam-

eters leading to various trained models with different predicting capabilities. As a

result, a numerical experiment is performed to explore the accuracy of the predicted

aerodynamic coefficients on the test set as a function of the hyperparameters of the

employed ROM. For instance, in the case of NN there is the choice of the number of

hidden neurons, nN, the number of hidden layers, nLand the overfitting parameters, λ.

The NN is trained for each combination of the three listed hyperparameters in a pre-

defined range and, the quadratic and cross-entropy cost function in equations (3.17)

and (3.18) are employed to evaluate the errors in the training when the NN is used as a

regressor and classifier, respectively. Moreover, the cost function is implemented with

the regularisation term, as in equation (3.53), to avoid the need to divide the dataset

into validation and training cases. This choice implies that the over-fitting parameter

has to be tuned, but it ensures that the whole set of available data can be used for train-

ing. The NN is trained 10 times for each combination of hidden layer, hidden neurons

and the overfitting parameter. This is performed in an attempt to obtain a trained

model that is not stuck in a local minimum. The weights of the trained model with the

lowest value of the error measured in the test set is recorded and the next combination

of hyperparameters is trained. To facilitate the interpretation of the performance of

each trained model, the errors are expressed in terms of lift, drag or moment counts,

as they are more user-friendly and are generally used in the industry [256]. For in-

stance, the error in the lift prediction of the k-th test case, measured in lift counts, is

defined as

εCL,k = |CL(k)− C?
L(k)| × 103, (3.55)

where CL is the lift coefficient from the CFD solver and C?
L is the lift coefficient pre-

dicted by the ROM or NN. In the case when the drag or moment coefficient is pre-

dicted, the error measured in drag counts or moment counts is calculated in the ten

thousandths decimal. In the numerical examples, two error measures are considered

to assess the overall performance of the NNs, namely the mean value of the error

measured in the test set, defined as

εCL =
1

nTe

nTe

∑
k=1

εCL,k, (3.56)

78 Chapter 3. Reduced Order Models

and the maximum value of the error measured in the test set, defined as

εCL,max = max
k=1,...,nTe

{εCL,k} . (3.57)

When a comparison of the performance of the ROM is performed, the trained model

with the lowest mean value of the error measured in counts is selected.

79

Chapter 4

Aerodynamic predictions using

flow parameters

The present chapter demonstrates the application of ROMs for the fast aerodynamic

predictions in numerical examples involving flow parameters. There are four exam-

ples in this chapter. The first example shows the benefits of using the proposed NN

against existing NNs, where the aerodynamic coefficients are predicted directly as the

outputs, using two dimensional inviscid compressible data in the training. The sec-

ond example provides a comparison of the NN with the POD using several strategies.

The influence of the training examples on the accuracy of the predictions is also ex-

plored. Moreover, the choice of outputs in the proposed NN is justified by performing

an analysis on the effect of the number of outputs on the accuracy of the predictions.

The multi-output NN is compared against existing NNs in the third example by using

two dimensional viscous compressible solutions in the training. Finally, the fourth

example considers the computation of the aerodynamic coefficients on wings by us-

ing inviscid compressible solutions in the training. Special emphasis is placed on the

influence of the accuracy of the CFD data on the predictions of the ROM. The wide

range of inflow conditions considered in all the examples of this chapter, leads to the

subsonic and transonic flow regimes.

4.1 Benefits of multi-output NN

The first example considers the computation of the aerodynamic coefficients of a NACA0012

aerofoil at a free stream Mach number, M∞, and an angle of attack, α, in predefined

intervals IM = (0.3, 0.9) and Iα = (−5◦, 11◦), respectively.

80 Chapter 4. Aerodynamic predictions using flow parameters

(a) Training set (b) Test set

Figure 4.1: The sampling space used to define the training and test dataset using nTr = 40
and nTe = 119 cases respectively.

Three NNs are considered and compared. The first network considers M∞ and α as

inputs and, the lift, drag or moment coefficient as a single output. The second NN

also considers M∞ and α as inputs and has three outputs, corresponding to the three

aerodynamic coefficients. The third network considers M∞ and α as inputs and the

output is the pressure at a user defined set of points on the aerofoil. The set of points

considered corresponds to the 300 mesh nodes used to discretise the aerofoil. As the

geometry is not changing, the pressure obtained from the full order solution is com-

puted at those 300 points for each combination of explanatory variables. Additionally,

this allows the user to have a consistent number of points at which the pressure is

defined and therefore 300 outputs are used in the NN. The first and second networks

have previously been considered [86, 50, 87, 51, 49, 61], whereas the third network, to

the authors’ best knowledge, has not been investigated previously.

All three networks are trained using a dataset of nTr = 40 simulations obtained from

compressible Euler calculations. The training set is selected by using the latin hyper-

cube sampling [251] in IM × Iα. The test set consists of nTe = 119 cases in IM × Iα

and employs an equally-spaced distribution in IM with step 0.1. Similarly, an equally-

spaced distribution in Iα with step 1◦ is considered for each value of M∞. Figure 4.1

shows the design sampling space used to define the training and test data. It can be

observed that the test set contains a number of points that will induce an extrapola-

tion, i.e. they are outside of the convex hull defined by the training set. Therefore, this

example is also useful to evaluate the performance of the different networks when the

predictions involve extrapolation. The learning rate and the momentum coefficient

4.1. Benefits of multi-output NN 81

(a) Network 1 (b) Network 2 (c) Network 3

Figure 4.2: Mean value of the error measured in lift counts, εCL , as a function of the number
of hidden neurons, nN, and the number of hidden layers, nL.

of the networks considered in this work, are taken as τ ∈ [0.005, 0.5] and η = 0.9 re-

spectively. These two parameters have been obtained after performing experiments

with the two networks considered, and are similar to the parameters used in other

studies [215].

The first numerical experiment explores the accuracy of the predicted aerodynamic

coefficients as a function of the number of hidden neurons, nN, and the number of

hidden layers, nL, for the three networks considered and for different values of the

over-fitting parameter, λ. It should also be noted that the third network outputs the

pressure on the aerofoil and the computation of the lift is performed after the pressure

distribution is predicted.

Figure 4.2 shows the mean value of the error, measured in lift counts, as a function of

the number of hidden neurons, nN, and the number of hidden layers, nL. The results

in figure 4.2(a) show that for the first network, with a single output corresponding to

the lift, the highest accuracy is obtained with one hidden layer and a large number of

neurons, namely nN ∈ [20, 30] and nN ∈ [170, 200]. The best accuracy obtained with

this network is εCL = 55. Similar accuracy is also provided by using three hidden

layers and 200 hidden neurons. However, the results show that a small variation in

the number of neurons can lead to a substantial increase in the error, suggesting a lack

of robustness.

The second network, with three aerodynamic coefficients as outputs, provide more

accurate results with two or three hidden layers over the range of number of neurons

covered, nN = [60, 70, 170, 190], however, higher deviations from the mean error are

observed in the first network. This indicates that this network has a higher depen-

dence on the number of hidden layers and neurons.

82 Chapter 4. Aerodynamic predictions using flow parameters

Table 4.1: The selected NN configurations for the prediction of lift using the three networks
considered.

Network
1 2 3

Input M, α

Output CL CL, CD, CM Cp
Hidden layer, nL 1 2 1
Hidden neuron, nN 20 60 70
Overfitting, λ 0.01 0.01 0

(a) Network 1 (b) Network 2 (c) Network 3

Figure 4.3: Mean value of the error measured in drag counts, εCD , as a function of the
number of hidden neurons, nN, and the number of hidden layers, nL.

The results for the third network, with multiple outputs corresponding to the pressure

on the aerofoil, are shown in figure 4.2(c). It can be observed that the accuracy is less

dependent on the number of neurons in the hidden layers and the mean error has a

tendency to decrease as the number of neurons is increased. The best accuracy ob-

tained with this network is εCL = 31, when one hidden layer with 70 hidden neurons

is used. There are no significant differences in the accuracy provided by the network

with one hidden layer and a number of neurons nN ∈ [120, 180] or with three hidden

layer and a number of neurons in a similar range. This illustrates its robustness when

compared to the first two networks, that is, the mean value of the error shows less

variation with the number of hidden layers and hidden neurons. For the third net-

work, there is no advantage in using more than one hidden layer. This shows that

the level of non-linearity required to model the pressure on the aerofoil is lower than

the level of non-linearity required to directly model the lift as an output. Table 4.1

shows a summary of the selected NN configurations for the predictions of lift in the

test set using the three networks considered in this example. Figure 4.3 shows the

mean value of the error, measured in drag counts, as a function of the number of hid-

den neurons, nN, and the number of hidden layers, nL for the three different NNs. The

first NN provides less accurate results, whereas the proposed NN provides the most

4.1. Benefits of multi-output NN 83

(a) Network 1 (b) Network 2 (c) Network 3

Figure 4.4: Mean value of the error measured in moment counts, εCM , as a function of the
number of hidden neurons, nN, and the number of hidden layers, nL.

(a) Network 1 (b) Network 2 (c) Network 3

Figure 4.5: Regression plot for the lift coefficient as a function of the free-stream Mach
number M∞.

accurate results and is less sensitive to the choice of the hyperparameters. The second

NN is also capable of providing accurate results if only two and three hidden layers

are used.

Finally, figure 4.4 shows the mean value of the error, measured in moment counts, as a

function of the number of hidden neurons, nN, and the number of hidden layers, nL for

the three different NNs. For this aerodynamic quantity of interest, the superiority of

the proposed NN is clearly observed. The first and second NNs are not able to provide

a single case where the prediction provides an error below 150 counts, whereas the

proposed NN is consistently providing much lower errors. For this quantity of interest

it seems advantageous to employ more than one hidden layer.

To illustrate the performance of the networks in the different flow regimes consid-

ered, figure 4.5 shows the regression plots for the lift coefficient using the three types

of network employed. Different symbols are used for different free-stream Mach num-

bers to show the accuracy of the predictions in terms of the flow regime. The results

shown correspond to the best accuracy measured in the mean value of the error in lift

84 Chapter 4. Aerodynamic predictions using flow parameters

counts obtained with the networks considered. The first network employs one hid-

den layer and 20 hidden neurons, the second network has two hidden layers and 60

hidden neurons, and finally, the third network is selected to have one hidden layer

and 70 hidden neurons. The results for the first and second networks, reported in fig-

ures 4.5(a), and 4.5(b), show a large deviation for M∞ = 0.8 and M∞ = 0.9. The higher

accuracy of the third network is clearly observed in figure 4.2(c), with a much lower

deviation in all cases. The results also show that the only sizeable deviation in the

predictions with the proposed NN are observed for M∞ = 0.9. This corresponds to

cases which contains strong shocks and where an extrapolation is performed, as seen

in figures 4.1.

4.2 Comparison of NN with the POD

The second example considers the prediction of the lift on RAE2822 aerofoil at a free

stream Mach number, M∞, and an angle of attack, α, in predefined intervals IM =

(0.3, 0.9) and Iα = (−5◦, 12◦) respectively. It is worth noting that solutions of inviscid

compressible data are used to build the datasets.

This example investigates the effect of performing a global or local binary classifica-

tion, separating the subsonic and transonic cases, before training the NN or employing

the POD. The influence of the number of training cases considered on the accuracy of

the predictions is also studied by considering training sets ranging from nTr = 20 up

to nTr = 160 cases. Moreover, this example is used to compare the performance of

the NN with multiple outputs proposed in the previous example against a popular re-

duced order modelling technique, the POD [257], coupled with RBF. The performance

of the NN is also compared with a physics-inspired NN [68], where the POD is cou-

pled with a NN. In addition, the effect of the choice of number of pressure outputs on

the accuracy of the lift predictions is investigated.

The first approach considers the network with multiple outputs proposed in section 4.1

and it utilises the whole set of training cases, including subsonic and transonic cases,

to perform the predictions. This is the strategy proposed in the previous example that

was shown to outperform the traditional techniques where the aerodynamic coeffi-

cients are directly predicted as the outputs of the network. It is referred to as global in

this example.

4.2. Comparison of NN with the POD 85

(a) Training set (b) Test set

Figure 4.6: Binary classification of subsonic (denoted by circles) and transonic (denoted by
squares) cases using the local Mach number M for a training set with nTr = 160 cases. The
continuous line denotes the classification boundary and it is shown with (a) the training
cases and with (b) the nTe = 100 test cases. The highlighted crosses denote the two test cases
used to further illustrate the performance of the three strategies later in this section.

The second approach proposed here, referred to as globally classified, consists of two

stages. In the first stage, a binary classification of the training data is performed to

separate subsonic and transonic cases, by considering the local Mach number, M. In

the second stage two neural networks, or POD models, are built by using the subset of

the training cases corresponding to subsonic and transonic cases respectively. When

a prediction is performed, the inputs are used first to estimate if the case of interest is

subsonic or transonic and the network, or POD basis, corresponding to the subsonic

or transonic training cases is utilised. Figure 4.6(a) shows the results of the binary

classification performed using a training set with nTr = 160 cases obtained from the

latin hypercube sampling in IM × Iα. In this example, 53 cases are classified as subsonic

and the remaining 107 cases as transonic.

The performance of the classification approach is illustrated in figure 4.6(b), where

the classification boundary is shown together with a set of nTe = 100 test cases ob-

tained from the latin hypercube sampling in (0.35, 0.85)× (−4.5, 11.5). The test cases

have been selected in a smaller space compared to the training cases to minimise the

adverse effects observed in the previous example when performing an extrapolation.

The figure 4.6(b) shows the results of binary classification and table 4.2 demonstrates

the accuracy of the binary classification approach in the test set. The results show that

the classifier is able to predict all the subsonic cases correctly in the test set. On the

other hand, the classifier predicts 67 out of the 68 transonic cases correctly and has

86 Chapter 4. Aerodynamic predictions using flow parameters

Table 4.2: The accuracy of the binary classification approach in the test set using the confu-
sion matrix.

Predicted
Subsonic Transonic Total

Targets
Subsonic 32 0 32
Transonic 1 67 68

Total 33 67 100

(a) Mean error (b) Maximum error

Figure 4.7: Evolution of the mean and maximum error on the test set, measured in lift
counts, as the number of training examples is increased for the three strategies proposed
using neural networks.

only one wrong prediction in the test set.

The third approach, referred to as locally classified, also consists of two stages. In the

first stage, a binary classification of the training data is performed at each point of the

aerofoil, to separate the cases that lead to a local Mach number lower or higher than

one, at that point. In the second stage, as many networks or POD models are built

as points on the aerofoil. All the examples considered here employ 300 points on the

aerofoil. When a prediction is performed, the inputs are used first to estimate which

network or POD model is to be utilised to predict the pressure at every point of the

aerofoil.

Figure 4.7 compares the performance of the three strategies previously described by

reporting the mean and maximum error as a function of the number of training cases,

nTr. The results in figure 4.7(a) show that the global and the globally classified strate-

gies provide very similar accuracy when the mean error is considered. In both cases,

the accuracy obtained by using the set of nTr = 160 training cases is below 10 lift

counts. In contrast, the locally classified strategy provides less accurate results for all

4.2. Comparison of NN with the POD 87

Table 4.3: The selected NN configurations for the predictions of lift using the three strate-
gies considered.

Strategy
Global Globally classified Locally classified

Input M, α

Output Cp
Number of NNs 1 2 600
Hidden layer, nL 1 1 1
Hidden neuron, nN 98 120 40
Overfitting, λ 0 0 0

the cases investigated. It can be observed that the accuracy of the global strategy with

nTr = 80 is similar to the accuracy of the locally classified strategy with nTr = 160.

The accuracy in terms of the maximum error is represented in figure 4.7(b). For NNs

trained with relatively low number of cases, i.e. nTr ≤ 80, the maximum error is

around 100 lift counts and above, whereas using a set of nTr = 160 training cases, the

first strategy produces accurate results, with a maximum error of 29 lift counts. For

the same set of training cases, the second strategy shows a substantially higher error,

64 lift counts, whereas the third approach produces a maximum error of 94 lift counts.

Table 4.3 summarises the selected NN configurations for the predictions of lift in the

test set using the three strategies considered.

To further illustrate the performance of the three strategies proposed, figure 4.8 shows

a comparison of the pressure coefficient, Cp, obtained with the CFD solver and the

predicted Cp using the three strategies considered. The two different cases considered

correspond to the cases highlighted with a cross in figure 4.6(b) and they involve a

subsonic and a transonic flow. The results show that all methods provide an accu-

rate prediction of the pressure coefficient for the subsonic case. The prediction for the

transonic case is substantially more challenging. The three strategies show a devia-

tion with respect to the reference CFD results in the region near the strong shock on

the top curve describing the aerofoil. The strategies that use the binary classification

show a more pronounced oscillatory solution near the strong shock. This behaviour is

attributed to the possibility of wrongly classifying the cases as subsonic or transonic,

leading to the use of the incorrect NN to perform the prediction, as shown in table 4.2.

It can be observed that the locally classified strategy shows oscillations even in the

region near the leading edge. This behaviour is attributed to the amount of networks

that are employed to perform the prediction. For each point on the aerofoil a different

88 Chapter 4. Aerodynamic predictions using flow parameters

(a) M∞ = 0.33, α = −3.5◦ (b) M∞ = 0.77, α = 2.7◦

Figure 4.8: Comparison of the pressure coefficient, Cp, obtained with the CFD solver and
the predicted Cp using the three strategies considered.

Figure 4.9: Relative frequency of the error on the test set, measured in lift counts, for all the
test cases using neural networks with the three strategies considered.

network is used, leading to the possibility of having nodes where the binary classifi-

cation fails to accurately predict the subsonic or transonic character of the solution.

Figure 4.9 quantifies the accuracy of the three NNs proposed. The histogram repre-

sents the relative frequency of the error, measured in lift counts, for all the test cases.

The results show that the first strategy predicts almost 70% of the cases with an error

lower than 10 lift counts and almost 30% of the remaining cases with an error lower

than 20 lift counts. The second strategy is able to predict a similar number of cases

with an error lower than 20 lift counts. However, it predicts a larger number of cases

with higher errors and, more importantly, there are cases where the lift prediction has

an error between 60 and 70 lift counts. The third strategy shows a significant lower

percentage of cases where the prediction provides an error with less than 10 lift counts.

In addition, it can be observed that the locally classified strategy leads to a number of

4.2. Comparison of NN with the POD 89

(a) Mean error (b) Maximumn error

Figure 4.10: Evolution of the mean and maximum error on the test set, measured in lift
counts, as a function of the number of cases used to perform the interpolation with RBFs,
nRBF.

cases where the error is substantially higher.

The performance of the POD method with RBFs used to perform the interpolation [12],

is evaluated. In all cases, POD modes are computed from the training cases, also re-

ferred to as snapshots in the context of the POD, corresponding to the pressure over

the 300 points describing the aerofoil, rather than estimating the value of the lift di-

rectly. To predict the value of the pressure for a given test case, the RBF interpolation

requires the selection of the radius of influence, that is the parameter ε in the multi-

quadric function of equation (3.14). To study the effect of this numerical parameter,

figure 4.10 shows the evolution of the mean and maximum error, measured in lift

counts, as a function of the number of cases that are included in the interpolation,

nRBF, for an increased value of the radius of influence. The results show that the opti-

mal value of the radius, when the number of snapshots is large enough, i.e. nTr = 160,

is such that the RBFs use the values of the closest eight cases to perform the interpola-

tion. Larger values of the radius do not significantly affect the mean value of the error,

as shown in figure 4.10(a), but lead to a loss of accuracy when the maximum error is

considered, as shown in figure 4.10(b).

Figure 4.11 compares the performance of the three strategies previously described by

reporting the mean and maximum error as a function of the number of training cases,

or snapshots, in the context of the POD. The results show that the global strategy

provides the best accuracy in all cases when the accuracy is measured as the mean

or the maximum error. With the first approach, the accuracy is also less dependent

90 Chapter 4. Aerodynamic predictions using flow parameters

(a) Mean error (b) Maximumn error

Figure 4.11: Evolution of the mean and maximum error on the test set, measured in lift
counts, as the number of training cases, or snapshots, is increased for the three strategies
proposed using the POD.

on the number of snapshots, whereas with the other two strategies the accuracy is

highly dependent on the number of snapshots. For a large number of training cases,

the accuracy of the three approaches is comparable.

The accuracy of the proposed NN and the POD with RBFs is compared. In both cases

the global approach is adopted, as previous numerical examples show that this strat-

egy provides the highest accuracy when predicting the lift coefficient. The NN em-

ployed has only one hidden layer and 98 neurons and the over-fitting parameter is set

to λ = 0. For the POD, eight closest cases are considered to perform the interpolation

using the RBFs. Additionally, the two methods are also compared with a third strat-

egy. The third strategy builds a POD model using nTr = 160 simulations and employs

the NN to interpolate the POD coefficients in the low dimensional subspace of the

eigenfunctions, as proposed in [68]. The third strategy is referred to as POD-NN in

this example. As before, a numerical experiment on the number of hidden layers and

hidden neurons is performed to obtain the NN configuration with the lowest error.

The NN predicting the POD coefficients employs one hidden layers with nN = 150

neurons and the overfitting parameter is selected as λ = 0.1. In all the three cases, the

prediction of the pressure is performed at the 300 points used to discretise the aerofoil

and the lift coefficient is computed after the ROM makes a prediction.

Figure 4.12 compares the accuracy of the proposed NN, the POD coupled with RBFs

and the POD coupled with NN. Figure 4.12(a) shows the evolution of the mean error

on the test set, measured in lift counts, as the number of training examples is increased

4.2. Comparison of NN with the POD 91

(a) Evolution (b) Relative frequency

Figure 4.12: The evolution of the mean error on the test set, measured in lift counts, as the
number of training cases is increased in (a) and the relative frequency of the error on the test
set in (b), also measured in lift counts, when nTr = 160 training examples are used, for the
three global approaches.

from nTr = 20 to nTr = 160 simulations. The results show that the mean value of the

error decreases as the number of training examples is increased for all three methods.

However, NN can be seen to consistently produce more accurate results compared to

the POD or POD-NN. The mean value of the error when nTr = 160 simulations are

used in the training is 8, 12 and 14 lift counts for the NN, POD, and the POD-NN,

respectively. The histogram in figure 4.12(b) represents the relative frequency of the

error, measured in lift counts, for all the test cases. The results show that the NN and

the POD are able to provide an error below 10 lift counts for almost 70% of the test

cases, with the NN achieving a marginally higher percentage. On the other hand, the

POD-NN can be observed to predict with an error below 10 lift counts for only 58%

of the test cases. The first significant difference is that the NN provides a prediction

with an error below 30 lift counts for 100% of the test cases, whereas almost 90% of

the test cases using the other two methods. The NN, POD and POD-NN predict with

a maximum error of 29, 65 and 68 lift counts, respectively. It is worth noting that the

overall performance of the POD coupled with RBFs is better than the POD coupled

with NN. This is attributed to the local approximation property of RBFs.

Lastly, with the aim to defend the choice of the proposed NN predicting on the aero-

dynamic surface, two other NNs are employed to investigate the effect of the choice of

the NN outputs and the results are compared. All three NNs consider M∞ and α as in-

puts. The first network corresponds to the proposed NN which considers the pressure

defined at the mesh node discretising the aerofoil, as outputs. This corresponds to 300

92 Chapter 4. Aerodynamic predictions using flow parameters

Table 4.4: The selected NN configurations for the predictions of lift using the three networks
considered.

Network
1 2 3

Input M, α

Output Cp
Selected nodes Surface One chordlength Full domain
Hidden layer, nL 1 3 3
Hidden neuron, nN 98 170 290
Overfitting, λ 0 0 0

(a) Domain (b) Relative frequency

Figure 4.13: The domain of selection by colours and relative frequency of the error on the
test set, measured in lift counts, for the three NNs.

outputs. The second network considers mesh nodes within one chord length from

the midpoint position of the aerofoil as outputs and corresponds to 6808 mesh nodes.

The third network considers all the nodes used to discretise the mesh and corresponds

to 8004 outputs in the computational domain. Again, the networks are trained using

nTr = 160 simulations and tested with nTe = 100 simulations.

The first network employs one hidden layer and 100 hidden neurons, the second net-

work employs three hidden layers and nN = 170 hidden neurons and lastly, for the

third network, three hidden layers and 290 hidden neurons are selected. The three

NNs select the overfitting parameter to be λ = 0. Table 4.4 summarises the selected

NN configurations for the predictions of lift in the test set using the three networks

considered.

Figure 4.13 shows the domain of selection by colours and the histogram quantifies

the accuracy, measured in lift counts in the test set, for the three NNs. The results

show that all three approaches predict with an error below 20 lift counts for almost

4.3. Benefits of the multi-output NN for viscous flows 93

70% of the test set. However, significant differences can be clearly observed in the re-

maining 30% of the test data. The first network produces a maximum error below 30

lift counts, while the second and third networks have a maximum error of 33 and 39

lift counts, respectively in the test set. In addition, it is worth noting that the second

and third networks require more hidden layers and neurons to be able to match the

accuracy obtained using the first network. Additionally, the problem consists of opti-

mising 30,398, 1,222,818 and 2,498,814 weights in the first, second and third networks,

respectively. Due to the higher errors in the test set and the higher cost of training the

second and third NNs, the first network is preferred.

4.3 Benefits of the multi-output NN for viscous flows

This example considers the computation of the aerodynamic coefficients on the NACA0012

aerofoil at a free stream Mach number, M∞, an angle of attack, α, and Reynolds num-

ber, Re, in predefined intervals, IM = (0.3, 0.9), Iα = (0◦, 12◦) and IRe = (2, 6)× 106.

This example is used to compare four strategies using numerical experiments as a

function of the number of hidden layers, nL, and hidden neurons, nN. The influence

of the number of training cases on the accuracy of the predictions is also studied by

considering training sets of sizes ranging from nTr = 20 up to nTr = 320 cases. The

first strategy employs one NN which considers M∞, α and Re as inputs and one aero-

dynamic coefficient, the lift, drag or moment, as output. The second strategy also

employs one NN which considers M∞, α and Re as inputs and the three aerodynamic

coefficients directly as the outputs. The third strategy employs three NNs and con-

sider M∞, α and Re as their inputs. The first network considers the pressure coeffi-

cient defined at the 223 mesh nodes used to discretise the aerofoil. The second and

third networks output the stresses, given as τ̃ = T · nw, in the x and y directions re-

spectively. Finally, the fourth strategy employs only one NN which considers M∞, α

and Re as inputs and, the pressure and the stresses in the x and y directions as outputs

using a single NN. This leads to three times the number of outputs compared to one

of the NN employed in the third strategy.

Latin hypercube sampling is used to train the networks with a dataset of nTr = 320

simulations performed with the Favre-averaged NS solver [94], in IM × Iα × IRe. The

test dataset consists of nTe = 100 simulations in IM × Iα × IRe.

94 Chapter 4. Aerodynamic predictions using flow parameters

(a) Strategy 1 (b) Strategy 2

(c) Strategy 3 (d) Strategy 4

Figure 4.14: Mean value of the errors, measured in lift counts, as a function of the number
of hidden neurons, nN, and the number of hidden layers, nL.

Figure 4.14 shows the mean value of the error, measured in lift counts, as a function

of the number of hidden layers, nL and hidden neurons, nN. Figure 4.14(a) shows the

results for the first strategy corresponding to a trained NN model with one single out-

put, here the lift. The results show that a small change in the number of neurons can

lead to a substantial change in the error when two or three hidden layers are selected.

Conversely, one hidden layer tend to be less sensitive to the hidden neurons. The

highest accuracy with this configuration is εCL = 10, obtained with two hidden lay-

ers and nN = 190 neurons. Similar accuracy is also obtained with three hidden layers

and nN = 100 neurons. Figure 4.14(b) corresponds to the results of the second strat-

egy with three aerodynamic outputs. The results show that the predictions are also

highly dependent on both the number of hidden layers and neurons, demonstrating

a lack of robustness. The highest accuracy is obtained with multiple NN configura-

tions, such as with one hidden layers and a number of neurons, nN = {20, 50, 170, 190},

with two hidden layers and nN = {140, 200} neurons, or with three hidden layers and

4.3. Benefits of the multi-output NN for viscous flows 95

nN = {10, 140, 150, 160} neurons. It is worth noting that this model cannot produce a

prediction with an error less than εCL = 9 lift counts.

The results for the third strategy, corresponding to the training of three NNs predict-

ing the pressure and the stresses in the x and y direction, are shown in Figure 4.14(c).

It can be observed that the accuracy is weakly dependent on the number of neurons

in all the three hidden layers and for neurons in the range nN ∈ [100, 200]. The high-

est accuracy is εCL = 6, obtained with one hidden layer and nN = 90 neurons. It is

worth noting that there are no significant variation in the errors for neurons in the

range, nN ∈ [100, 200] and for any number of hidden layers considered. This indicates

the robustness of this method. Finally, figure 4.14(d) shows the results of the fourth

strategy, corresponding to the predictions of the pressure and the stress vector in the

x and y direction using only one NN. It can be observed that the mean value of the

error has a higher dependence on the number of hidden layers and neurons than the

third strategy, but a lower dependence compared to the first and second strategies.

The highest accuracy is obtained with one hidden layer and nN = 200 neurons. The

mean value of the error at this configuration is εCL = 7. It is worth noting that a larger

number of hidden neurons is required to model the pressure and stresses in the same

network compared to the third strategy where the quantities are predicted separately

using three NNs. Moreover, only 90 hidden neurons or less are required in the third

strategy to provide predictions with similar accuracy.

Figure 4.15 shows the mean value of the error, measured in drag counts, as a function

of the number of hidden layers, nL and hidden neurons, nN, for the four strategies

employed. The first and second strategies in figures 4.15(a) and 4.15(b) are observed to

be dependent on the number of hidden layers and hidden neurons. The best accuracy

obtained with the first strategy is εCD = 18 when three hidden layers and nN = 200 are

used. The second strategy provides a mean error of εCD = 17 when two hidden layers

and nN = 100 neurons are selected. Figure 4.15(c) shows the results of third strategy.

It shows that the strategy is almost insensitive to the number of hidden neurons in the

range nN ∈ [100, 200] when one hidden layer is employed. The lowest mean value of

the error εCD = 15, is obtained with one hidden layer and nN = 200 hidden neurons.

Similar accuracy can also be obtained with three hidden layers and the same number

of hidden neurons. Finally, the fourth strategy produces slightly higher mean errors

than the third strategy. Moreover, it is observed that the errors across the three hidden

96 Chapter 4. Aerodynamic predictions using flow parameters

(a) Strategy 1 (b) Strategy 2

(c) Strategy 3 (d) Strategy 4

Figure 4.15: Mean value of the errors, measured in drag counts, as a function of the number
of hidden neurons, nN, and the number of hidden layers, nL.

layers do not vary significantly for hidden neurons in the range, nN ∈ [110, 200].

Figure 4.16 shows the mean value of the error, measured in moment counts, as a func-

tion of the number of hidden layers, nL and hidden neurons, nN, for the four strate-

gies employed. The results show that there are no significant difference between the

highest accuracies obtained across the four strategies. However, there is a strong de-

pendence on the number of hidden layers and neurons for the first, second and fourth

strategies. Conversely, the third strategy is observed to be less sensitive for all the

number of hidden layers considered in the higher end of the range of hidden neurons,

that is nN ∈ [100, 200]. The best accuracy, εCM = 12, is obtained with three hidden

layers and nN = 120 neurons. Similar accuracies can also be obtained with one hidden

layer and nN = 60 neurons. It is worth noting that for all other strategies, the lowest

mean values of the error, measured in moment counts, are obtained with two or three

hidden layers and a larger number of hidden neurons, nN ∈ [150, 180].

Figure 4.17 compares the accuracy of the four strategies, measured in lift, drag and

4.3. Benefits of the multi-output NN for viscous flows 97

(a) Strategy 1 (b) Strategy 2

(c) Strategy 3 (d) Strategy 4

Figure 4.16: Mean value of the errors, measured in moment counts, as a function of the
number of hidden neurons, nN, and the number of hidden layers, nL.

(a) Lift counts (b) Drag counts (c) Moment counts

Figure 4.17: Evolution of the mean error on the test set, measured in counts, as the number
of training examples is increased for the four strategies.

moment counts, as the number of training examples is increased. It is worth noting

that the best accuracy of the NNs is reported in terms of the mean error of the pre-

dictions in the test set for each number of training examples. Figure 4.17(a) shows the

evolution of the mean value of the error, measured in lift counts, as a function of the

number of training cases. The results show that as the number of training cases is in-

creased from nTr = 20 to nTr = 320 simulations, the mean error decreases for all four

98 Chapter 4. Aerodynamic predictions using flow parameters

strategies. It can be observed that the first and second strategies provide predictions

with similar accuracies at all number of training examples. The best accuracy obtained

with the first and second strategies when nTr = 320 simulations are employed is 10

and 9 lift counts, respectively. A similar deduction can be made for the third and

fourth strategies. However, lower errors compared to the first and second strategies

are consistently obtained for all number of training examples considered. The highest

accuracy obtained with the third and fourth strategies is 6 and 7 lift counts, respec-

tively, when nTr = 320 simulations are used. It can also be deduced that the multi-

output NN used in the third and fourth strategies in this example requires nTr = 320

simulations to match the accuracy obtained in section 4.2 where nTr = 160 solutions

of the inviscid compressible flow are used to train the NN.

Figure 4.17(b) shows the evolution of the mean value of the error, measured in drag

counts, as a function of the number of training cases. The results show that the mean

errors decrease as the number of training examples is increased for all four strategies.

It can be observed that the first and second strategies provide predictions with larger

errors compared to the multi-output NN used in the third and forth strategies, at all

number of training examples. The highest accuracy when nTr = 320 simulations are

used in the training, is obtained with the third strategy. It corresponds to a mean error

of 15 drag counts. Finally, figure 4.17(c) shows the results measured in moment counts.

A similar deduction to the mean errors in lift and drag counts can be made. The third

and forth strategy provides a consistent decrease of the mean value of the error as the

number of training examples is increased. The highest accuracy of 12 moment counts

is obtained with the third strategy when nTr = 320 simulations are used.

In addition to the strategies explored in this example, another strategy is introduced.

It uses a NN which considers the pressure evaluated at the discretised mesh nodes in

inviscid flow and the corresponding Reynolds number of each case defined in IM ×

Iα × IRe, as inputs. The outputs of the NN corresponds to the pressure and the stresses

in the x and y directions, defined at the mesh nodes on the NACA0012 aerofoil, for the

M∞ and α evaluated in viscous flow. The same training and test datasets of size, nTr =

320 and nTe = 100 simulations, in IM × Iα, are obtained by performing steady Euler

calculations. This strategy is referred to as strategy 5 in this section. It is compared

with the third strategy where M∞, α and Re are considered as inputs and three multi-

output networks are considered to predict the pressure and the stress distributions

4.3. Benefits of the multi-output NN for viscous flows 99

Table 4.5: The selected NN configurations for the predictions of lift using the four strategies
considered.

Strategy
1 2 3 4

Input M, α, Re
Output CL CL, CD, CM Cp/τ̃x/τ̃y Cp, τ̃x, τ̃y
Hidden layer, nL 2 1 1 1
Hidden neuron, nN 190 20 90 200
Overfitting, λ 0.01 0 0 0

(a) Lift counts (b) Drag counts (c) Moment counts

Figure 4.18: Comparison of the relative frequencies of the error for strategy 3 and 5, mea-
sured in counts in the test set.

separately. The third strategy is selected due to its superior performance compared to

the three other strategies. Table 4.5 summarises the selected NN configurations for the

predictions of lift in the test set using the four strategies considered.

Figure 4.18 compares the relative frequency of the errors of the third and fifth strate-

gies on the test set when nTr = 320 simulations are used in the training. The NNs in

the third strategy employ three hidden layers and 130 hidden neurons, and the NN

in the fifth strategy considers two hidden layers and 200 hidden neurons. An over-

fitting parameter, λ = 1 is selected for both strategies. The results show that both

strategies produce an error below 10 lift counts for 76% and 75% respectively. The

highest error obtained in the test set is 41 and 51 lift counts for the third and fifth

strategies, respectively. Figure 4.18(b) shows the relative frequency of the errors mea-

sured in drag counts. It is observed that both networks have 74% of the test cases with

an error below 25 drag counts. The lowest accuracies obtained are 156 and 189 drag

counts respectively. Finally, figure 4.18(c) shows the relative frequency of the errors

measured in moment counts. There are 78% and 81% of the test cases producing an

error below 20 moment counts. Although the fifth strategy has 3% more test cases

with a prediction error below 20 moment counts, there is a significant difference in the

maximum error between the two. The maximum errors obtained with the third and

100 Chapter 4. Aerodynamic predictions using flow parameters

(a) Pressure coefficient (b) Skin friction coefficient

Figure 4.19: Comparison of the pressure and stress distributions obtained with the CFD
solver and the predicted distributions from the third and fifth strategies, for a test case in
subsonic flow, M∞ = 0.49, α = 2.2◦ and Re = 4.2 × 106.

fifth strategies are 95 and 153 moment counts, respectively.

To further illustrate the performance of the two strategies, figure 4.19 shows the com-

parison of the pressure and skin friction distributions, obtained with the CFD solver

and predicted distributions from the two strategies, for a test case in the subsonic

regime. It is worth noting that the skin friction coefficients are calculated after the

predictions of the stresses in the x and y directions are made. The results show that

both strategies provide accurate predictions for the pressure and stress distributions

in the subsonic regime. The NNs are also capable of predicting the skin friction distri-

bution accurately over the aerofoil. There are only minor discrepancies between the

two predictions and the CFD data at x/c = 0.3.

Figure 4.20 shows the comparison of the pressure and skin friction distributions, ob-

tained with the CFD solver and the predicted distributions from the third and fifth

strategies, for a test case in the transonic regime. It is observed that predictions in

transonic flows are more challenging. For instance, deviations from the reference CFD

results can be observed at x/c = 0.3 for both strategies. The NNs are not capable of

predicting the sharp gradient of the shock in figure 4.20(a). The fifth strategy show

more deviations from the reference results on the upper surface of the aerofoil as well

as in the shock region. The deviations from the CFD results are clearer in figure 4.20(b).

Both strategies struggle to predict the sharp gradient in the skin friction distribution

around x/c = 0.3. However, the fifth strategy shows more pronounced deviations

than its counterpart for x/c ∈ [0.1, 0.5].

4.4. Influence of the accuracy of the CFD data on the NN predictions 101

(a) Pressure coefficient (b) Skin friction coefficient

Figure 4.20: Comparison of the pressure and stress distributions obtained with the CFD
solver and the predicted distributions from the third and fifth strategies, for a test case in
transonic flow, M∞ = 0.69, α = 4.0◦ and Re = 3.1 × 106.

4.4 Influence of the accuracy of the CFD data on the NN pre-

dictions

This example considers the computation of the aerodynamic coefficients of the ON-

ERA M6 wing [258] at a free stream Mach number, M∞, and an angle of attack, α, in

predefined intervals IM = (0.3, 0.9) and Iα = (0◦, 12◦), respectively.

This example is used to compare the accuracy of the predictions made by three NNs.

The first network considers M∞ and α as inputs and one aerodynamic coefficient, the

lift, drag or moment, as a single output. The second NN also considers M∞ and α as

inputs and the three aerodynamic coefficients as outputs. The third network considers

the same inputs as the other two networks and the output is the pressure at a user

defined set of points on the wing. The set of points considered corresponds to the

mesh nodes used to discretise the wing.

The networks are trained using a dataset of nTr = 160 simulations, obtained by per-

forming steady Euler calculations using the vertex-centred finite volume scheme [94].

Every trained network is then tested using a dataset of nTe = 100 simulations. Both

dataset is selected by using the latin hypercube sampling [251] in IM × Iα. Figure 4.21

shows the sampling space of the training and the test sets. In contrast to figures 4.1,

more training data is used to ensure the sampling space is well covered. Moreover,

the test set is defined using a smaller interval as IM = (0.35, 0.85) and Iα = (1◦, 11◦),

so that there is no extrapolation. The volume mesh used in this example consists of

102 Chapter 4. Aerodynamic predictions using flow parameters

(a) Training set (b) Test set

Figure 4.21: The sampling space used to define the training and test dataset using nTr = 160
and nTe = 100 simulations respectively. The highlighted cross denotes the test case used to
further illustrate the performance of the strategy employed in this section.

Figure 4.22: The surface mesh used to obtain CFD data in IM × Iα, consisting of 1,977 nodes
and 3,900 triangles.

167,824 elements and 29,025 nodes. Figure 4.22 shows the surface mesh used in this

analysis, which consists of 1,977 nodes and 3,900 triangles.

The first numerical experiment explores the accuracy of the predicted aerodynamic

quantities as a function of the number of hidden neurons, nN, and the number of hid-

den layers, nL, for all the three networks considered and for different values of the

over-fitting parameter, λ. It is worth noting that the third network explores the accu-

racy on the test set in a higher range of hidden neurons, namely in the interval InN =

(100, 300), compared to the first and second network in the interval InN = (10, 200).

This is attributed to the fact that the first and second network produce predictions us-

ing one and three output neurons, respectively, and the third network has to predict

at 1,977 output neurons corresponding to pressure defined at the surface mesh nodes.

4.4. Influence of the accuracy of the CFD data on the NN predictions 103

(a) Network 1 (b) Network 2 (c) Network 3

Figure 4.23: Mean value of the lift counts, εCL , measured in the test set as a function of the
number of hidden neurons, nN, and the number of hidden layers, nL.

Table 4.6: The selected NN configurations for the prediction of lift using the three networks
considered.

Network
1 2 3

Input M, α

Output CL CL, CD, CM Cp
Hidden layer, nL 3 1 3
Hidden neuron, nN 200 180 270
Overfitting, λ 1.0 1.0 0.1

Figure 4.23 shows the evolution of the mean error in the lift as a function of the number

of hidden layer, nL, and hidden neurons, nN. The results show that the accuracy of the

first two networks is comparable, with an error between 10 to 15 lift counts in the

majority of cases. The second network is able to provide higher accuracy, with an

error near five lift counts, with one hidden layer and nN = 180. Finally, the third

network provides the most accurate results, with an error below three lift counts for

any combination of the values of nL and nN. This experiment shows the robustness

of the third NN model. Table 4.6 summarises the selected NN configurations for the

predictions of lift in the test set using the three networks considered in this example.

Figure 4.24 shows the mean value of the errors of the three types of trained NNs,

measured in drag counts, as function of hidden layers, nL and hidden neurons, nN.

The first two networks are observed to have a higher level of oscillations, indicating

a strong dependence on the number of hidden neurons and layers. The networks are

not able to produce an accuracy lower than 15 drag counts, both achieved with three

hidden layers and a comparatively larger number of neurons, namely nN ∈ [120, 200].

The third network provides again the most accurate results and it also shows a weak

dependence on the hyperparameters.

104 Chapter 4. Aerodynamic predictions using flow parameters

(a) Network 1 (b) Network 2 (c) Network 3

Figure 4.24: Mean value of the drag counts, εCD , measured in the test set as a function of
the number of hidden neurons, nN, and the number of hidden layers, nL.

(a) Network 1 (b) Network 2 (c) Network 3

Figure 4.25: Mean value of the moment counts, εCM , measured in the test set as a function
of the number of hidden neurons, nN, and the number of hidden layers, nL.

Finally, figure 4.25 shows the mean value of the error, measured in moment counts, as

a function of the number of hidden layers, nL and the number of hidden neurons, nN for

the three different types of networks considered. Similar conclusions can be drawn as

both the first and second networks are observed to have more oscillations with a max-

imum accuracy of no less than 50 counts for any combination of hyperparameters. In

this figure, the superiority of the third network is clearer with a marginally lower er-

ror measured in the test set. The highest accuracy for this network leads to an error

of only six moment counts, achieved with three hidden layers and nN = 220 neurons.

This corresponds to the same configuration used to predict the lift and drag coeffi-

cients.

It is worth noting that the network proposed in this work provides greater accuracy

for this three dimensional example, compared to the two dimensional results of pre-

vious examples. To better understand this phenomenon, two studies are performed.

First, the influence of the accuracy of the CFD data on the accuracy of the NN pre-

dictions is studied. Next, the flow features present in the two and three dimensional

cases are analysed and compared to a three dimensional example that considers an

4.4. Influence of the accuracy of the CFD data on the NN predictions 105

(a) Coarse, 2D (b) Medium, 2D (c) Fine, 2D

(d) Coarse, 3D (e) Medium, 3D (f) Fine, 3D

Figure 4.26: Detailed view of the three meshes used for the NACA 0012 aerofoil (top) and
on the symmetry plane for the ONERA M6 wing (bottom).

extruded wing, rather than the ONERA M6 swept wing. Only the third network is

used because, as previously shown, it provides the most accurate results.

To study the influence of the accuracy of the CFD data on the accuracy of the NN pre-

dictions, three levels of mesh refinement are considered in two and three dimensions.

Figure 4.26 shows the meshes employed in this example. There are approximately

the same number of mesh nodes across any xz-plane in the spanwise direction of the

ONERA M6 wing as in the corresponding meshes in two dimensions.

The two dimensional meshes have 1,936, 5,810 and 12,964 elements, and 51, 101 and

167 nodes are used to discretise the aerofoil surface, respectively. The three dimen-

sional volume mesh used previously in this example, represents the coarse mesh. The

medium and fine volume meshes in three dimensions have 1,304,444 and 4,485,190

elements, and 7,307 and 16,259 nodes, respectively. For each mesh a set of nTr = 160

training cases and a set of nTe = 100 test cases are generated. The pressure at the nodes

used to discretise the aerofoil and wing, in two and three dimensions respectively, is

used as the output of the NN model.

To measure the accuracy of the NNs, the relative error of the pressure coefficient, de-

fined as

εr =


∫

Γ

[
Cp(x)− C?

p(x)
]2

dΓ∫
Γ

[
Cp(x)

]2 dΓ


1/2

, (4.1)

where Cp(x) denote the target pressure coefficient distribution over the surface de-

scribing the aerofoil/wing, C?
p denotes the corresponding predicted pressure coeffi-

cient and Γ is the surface of the aerofoil/wing. In addition, the accuracy on the three

106 Chapter 4. Aerodynamic predictions using flow parameters

(a) Relative error in Cp (b) Error in CL

(c) Error in CD (d) Error in CM

Figure 4.27: Mean value of the errors, measured in the test set, for the three levels of mesh
refinement in two and three dimensions.

aerodynamic quantities of interest is also considered. To offer a better comparison

between the two and three dimensional results, the moment coefficient in three di-

mensions is computed about the aerodynamic centre of each section.

Figure 4.27 shows the comparison of the mean value of the errors in the test dataset.

Every point in this figure represents the lowest error obtained by selecting the number

of hidden layers, nL, the number of hidden neurons, nN and the over-fitting parameter,

λ, as done in previous experiments. The results show that the accuracy of the networks

when predicting values of the pressure over the aerodynamic shape is almost identical

in two and three dimensions. Moreover, it is observed that the error in the prediction

increases as the mesh is refined. This behaviour is attributed to the fact that coarser

meshes tend to smooth sharp gradients in the solution, such as shocks. As shown

in previous studies of sections 4.2, NN produces more accurate predictions when the

flow field is smooth (e.g subsonic flow), compared to cases with sharp gradients, (e.g

transonic flow).

4.4. Influence of the accuracy of the CFD data on the NN predictions 107

(a) Coarse, 2D (b) Medium, 2D (c) Fine, 2D

(d) Coarse, 3D (e) Medium, 3D (f) Fine, 3D

Figure 4.28: Comparison of the pressure coefficient, Cp, obtained with the CFD solver and
the predicted Cp using NN for a transonic test case at a free stream Mach number, M∞ = 0.71
and an angle of attack, α = 9.1◦, for the meshes employed in two and three dimensions.

To further illustrate the difference between the predictions in two and three dimen-

sions, figure 4.28 shows a comparison of the pressure coefficient, Cp, obtained with

the CFD solver and the predicted Cp using NN for a test case in the transonic regime,

highlighted with a cross in figure 4.21(b). The results show how the shock is smeared

leading to a smooth variation of the pressure that is accurately predicted by the NN.

As the level of mesh refinement is increased, the shock becomes sharper and the pre-

diction made by the NN presents some overshoots and undershoots near the shock. It

can therefore be deduced that as the meshes become finer, the predicted solution from

the trained models may contain oscillations near regions of sharp gradients, such as

shocks. However this may or may not affect the results measured in the count metrics

as it is a calculated integral computed on the surface of the aerofoil or wing.

When the error is measured in the lift, drag or moment, the results of figure 4.27 show

that more accurate predictions are obtained in three dimensions. This behaviour is at-

tributed to the different flow features induced by the two dimensional NACA0012

aerofoil (equivalent to an extruded three dimensional wing) and the ONERA M6,

which is a swept wing. To confirm this hypothesis, the second level of mesh refine-

ment is considered and the NACA0012 profile is used to built an extruded wing in

three dimensions. The generated mesh maintains the same spacing over the wing to

108 Chapter 4. Aerodynamic predictions using flow parameters

Table 4.7: Mean value of the errors, measured in the test dataset, for the medium level of
mesh refinement when nTr = 160 simulations are used in the training of the third network.

Mesh εr εCL εCD εCM

2D 0.041 2.5 4.3 6.0
3D-X 0.042 2.6 4.4 6.1

3D 0.036 1.6 1.6 1.7

ensure that the results between the extruded geometry and the two dimensional case

can be compared.

Table 4.7 shows the comparison of the mean value of the errors obtained from three

meshes when the same training and test datasets, as shown in figure 4.21, are em-

ployed. The results show that the accuracy of the predictions for the two dimensional

case is almost identical to the three dimensional case with the extruded wing (3D-X).

For the three dimensional swept wing, the accuracy is higher. A further analysis of

the flow features indicates that the strength of the shock in the simulation with the

ONERA M6 wing is not as strong as in the two dimensional and three dimensional

extruded wing. In addition, the higher accuracy obtained in the ONERA M6 predic-

tions is also attributed to the fact that swept wings are known to delay the appearance

of shocks. Hence, more cases in the datasets contain smoother solutions for the wide

range of flow conditions considered in this example and thus lower mean values of

the errors in the predictions are obtained.

A summary of the findings in this chapter follows. The accuracy of the predictions

using the proposed multi-output NN has been shown to be higher when compared to

a NN where the output consists of the three aerodynamic coefficients. The results also

show the superiority when compared to a NN where only one aerodynamic coefficient

is predicted. The superior performance has been demonstrated for both two and three

dimensional examples involving free stream Mach number and the angle of attack

as the inputs of the NNs. Moreover, the performance of the proposed NN has been

compared against NNs which predict pressure at various regions in the computational

domain to defend the choice of the number of outputs in the NN. It was deduced

that the NNs predict with similar accuracies. However, the NNs which predict at

nodes other than the surface nodes are more expensive to train as more weights in the

network need to be optimised.

In addition, the proposed NN has also been compared to the POD with RBF and the

4.4. Influence of the accuracy of the CFD data on the NN predictions 109

results show the better performance of the NN, especially when predicting flows that

involve shocks. The superior accuracy of the proposed NN has been shown against

POD coupled with a NN. It was deduced that the due to the global nature of the NN,

the POD coupled with the NN is inferior to both the proposed NN and the POD with

RBF. An extensive set of numerical studies has been presented to show the effect of

the NN hyperparameters and numerical parameters of the POD on the accuracy of the

predictions. Furthermore, the effect of increasing the number of cases in the training

set on the accuracy of both the NNs and the POD has also been studied.

A NN was also trained to predict the viscous flow solutions using a database of invis-

cid flow solutions. The network considers the pressure obtained by solving the Euler

equations and defined at the mesh nodes discretising the aerofoil as the inputs. The

output consists of pressure and stresses obtained using the Favre-averaged NS solver

and also defined at the mesh nodes discretising the aerofoil surface. The trained NN

model can be employed to reduce the computational effort of solving the NS equations

as only the Euler equation need to be resolved, leading to accurate viscous predictions.

The potential of the proposed NN has also been demonstrated for three dimensional

examples involving flow conditions. The influence of the accuracy of the CFD data

on the accuracy of the NN predictions has been studied in two and three dimensions.

It was found that the higher the accuracy in the CFD data, the more challenging it is

for the NNs to perform accurate predictions. This is attributed to the stronger shocks

present in finer meshes due to the increased resolution of the flow field. The accuracy

of the predictions in two and three dimensions has also been compared. It has been

shown that for a swept wing the NN offers a greater accuracy when compared to a two

dimensional aerofoil. This is explained by the weaker shocks in three dimensions and

the delayed appearance of shocks in swept wings, leading to a greater set of training

cases containing smooth solutions.

111

Chapter 5

Aerodynamic predictions using

geometric parameters

The present chapter demonstrates the application of ROMs for the fast predictions

of aerodynamic coefficients in numerical examples involving geometric parameters.

Four examples at various levels of complexity are considered. The first example com-

pares the performance of the proposed NN against the POD coupled with RBFs by

using two dimensional inviscid compressible data at the subsonic and transonic flow

conditions in the training. The influence of the number of training examples on the

accuracy of the NN predictions is also explored. The second example shows the com-

parison of the performance of the proposed NN against existing NNs by using two

dimensional viscous compressible data in the training. Moreover, the influence of the

number of training cases on the accuracy of the NN predictions is also explored for

all the strategies. The third example performs the comparison of the proposed NN

against existing NNs for the predictions of aerodynamic coefficients on three dimen-

sional wings using the solutions of steady Euler calculations in the training. Finally,

an example on deforming wings over a wide range of flow conditions is demonstrated

to exemplify the robustness of the proposed NN method.

5.1 Comparison of NN with the POD

The first example of this chapter involves the prediction of the lift coefficient for an

aerofoil that is parametrised using the control points of the NURBS describing the

aerofoil. The base geometry corresponds to an approximation of the NACA0012 aero-

foil using two cubic B-splines with eight control points to define the top and bottom

112 Chapter 5. Aerodynamic predictions using geometric parameters

Table 5.1: Control points of the top curve of the base geometry approximating a NACA0012
aerofoil.

i 1 2 3 4 5 6 7 8
xi 0.500 0.297 −0.003 −0.317 −0.437 −0.474 −0.496 −0.500
y+i 0.000 0.030 0.061 0.062 0.040 0.030 0.013 0.000

Figure 5.1: Examples of aerofoil shapes generated with NURBS.

curves respectively, as proposed in [95]. The knot vector of both NURBS is given by

Λ = {0, 0, 0, 0, 0.615, 0.904, 0.941, 0.979, 1.019, 1.019, 1.019, 1.019} (5.1)

and the set of control points for the top curve {P+
i = (xi, y+i)}i=1,...,8 is detailed in ta-

ble 5.1. The control points for the bottom curve are symmetrically located with respect

to the x axis and are defined as, P−
i = (xi, y−i) with y−i = −y+i , for i = 1, . . . , 8.

The end control points of both curves are fixed, i.e. P−
1 = P+

1 = (0.5, 0) and P−
8 = P+

8 =

(−0.5, 0). In addition, the control point P−
2 is restricted to be aligned with P−

1 = P+
1

and P+
2 . More precisely, it is assumed that P−

2 = P+
1 + µ(P+

1 − P+
2) with µ being a

parameter defined in [0.5, 1.5]. This restriction ensures G1 continuity of the aerofoil ge-

ometry and leads to a problem with 25 independent geometric parameters. The vari-

ation of the position of the control points with respect to the base geometry, namely

(±δxi,±δyi) is considered to be the input of the NN, where (δxi, δyi) ∈ [0, 0.1c]2 and c

denotes the chord of the aerofoil. Figure 5.1 shows examples of aerofoil shapes gener-

ated by varying the positions of the control points of the NURBS in the range consid-

ered.

Two flow conditions are considered to explore the performance of the proposed NN

and the POD with RBFs for subsonic and transonic flows using inviscid data. The

subsonic case corresponds to a free-stream Mach number M∞ = 0.4 and an angle of

attack α = 2◦, whereas the transonic case corresponds to M∞ = 0.8 and α = 2◦.

As before, the trained ROM with the lowest mean value of the error, measured in

counts, in the test set is selected by performing a numerical experiment to explore the

5.1. Comparison of NN with the POD 113

accuracy of the predicted aerodynamic coefficients as a function of the hyperparame-

ters of the employed ROM. For instance, in the case of NN there is the choice of the

number of hidden neurons, nN, the number of hidden layers, nL and the overfitting

parameters, λ. The NN is trained for each combination of the three listed hyperpa-

rameters in a predefined range and, the quadratic cost function is implemented with

the regularisation term, as in equation (3.53) is employed to evaluate the errors in the

training and to avoid the need to divide the dataset into validation and training cases.

The NN is trained 10 times for each combination of hidden layer, hidden neurons and

the overfitting parameter. This is performed in an attempt to obtain a trained model

that is not stuck in a local minimum. The weights of the trained model with the lowest

value of the error measured in the test set is recorded and the next combination of hy-

perparameters is trained. The trained model with the lowest mean value of the error,

measured in counts, is selected and compare with other trained ROMs.

The number of training cases, nTr, varies from 400 to 1,600 and 200 test cases are con-

sidered. Both the training and test sets are obtained by using the latin hypercube

sampling. Following the numerical experiment performed on the number of hidden

layers and hidden neurons, the NN employs a single hidden layer with 98 neurons

and the over-fitting parameter is selected as λ = 0. For the POD approach, all the

snapshots are used in the interpolation. It has been found that, contrary to the exam-

ple involving a wide range of flow conditions, this option leads to the most accurate

results here. This is attributed to the fact that the training cases do not contain a change

of regime from subsonic to transonic flow. Additionally, the performance of the two

ROMs employed in this example is not compared against POD-NN in section 4.2, as it

was demonstrated to be inferior to both methods.

Figure 5.2 compares the performance of the proposed NN and the POD with RBFs for

both subsonic and transonic flows. The histograms compare the relative frequency of

the error, measured in lift counts, for all the test cases using the proposed NN and the

POD method. In all the experiments performed, the proposed NN outperforms the

POD with RBFs.

For the subsonic example and using nTr = 400 cases, the lift is predicted with an error

below 10 lift counts in 96% of cases with the NN and in 89% of cases with the POD.

When the number of training cases or snapshots is increased to nTr = 1, 600, the lift is

predicted with an error below 10 lift counts in 99% of cases with the NN and in 98%

114 Chapter 5. Aerodynamic predictions using geometric parameters

(a) Subsonic, nTr = 400 (b) Subsonic, nTr = 1, 600

(c) Transonic, nTr = 400 (d) Transonic, nTr = 1, 600

Figure 5.2: Relative frequency of the error on the test set, measured in lift counts, for the
proposed NN and the POD for subsonic and transonic flows and with different number of
training cases, nTr.

of cases with the POD. In both cases, the worst predictions made by both the NN and

the POD correspond to cases with an error below 20 lift counts.

The transonic example is much more challenging, as it requires an accurate prediction

of the shock position. Using nTr = 400 cases, the lift is predicted with an error below 10

lift counts in 60% of cases with the NN and in 43% of cases with the POD. The number

of cases that are predicted with an error between 10 and 30 lift counts with both the

NN and the POD are 37% and 47% respectively. The main difference between the NN

and POD approaches is that, with the NN only 6 predictions have an error higher than

30 lift counts, whereas with the POD, 20 predictions have an error higher than 30 lift

counts. In addition, the maximum error with the POD is 20 lift counts higher than the

maximum error of the NN. Using nTr = 1, 600 cases, the lift is predicted with an error

below 10 lift counts in 68% of cases with the NN and in 58% of cases with the POD.

Once more, the main difference is that the maximum error is 37 and 58 lift counts for

the NN and the POD approaches respectively.

5.1. Comparison of NN with the POD 115

(a) Subsonic, nTr = 400 (b) Subsonic, nTr = 1, 600

(c) Transonic, nTr = 400 (d) Transonic, nTr = 1, 600

Figure 5.3: Pressure coefficient over the aerofoil of figure 5.4 compared to the predictions
by the NN and the POD.

Figure 5.4: Geometry of the aerofoil chosen to compare the NN and POD prediction capa-
bility in figure 5.3. The squares denote the control points of the NURBS and the discontinu-
ous line is the control polygon.

To illustrate the performance of the NN and POD approaches, figure 5.3 compares

the predicted pressure distribution over the aerofoil configuration shown in figure 5.4

for a subsonic and a transonic case, both using the proposed NN and the POD and

for different number of training cases. The results in figures 5.3(a) and 5.3(b) clearly

show that both the NN and POD approaches are capable of producing accurate predic-

tions of the pressure coefficient in a subsonic regime. For the transonic regime, when

nTr = 400 there is a sizeable difference between the POD results and the reference re-

sults. This is particularly noticeable in the oscillatory character of the prediction near

116 Chapter 5. Aerodynamic predictions using geometric parameters

the strong shock on the upper curve. The discrepancy is also visible in the pressure

coefficient distribution over the upper curve near the leading edge. The NN is capable

of predicting the shock much better without showing oscillations and it also produces

a better approximation of the pressure coefficient distribution near the leading edge.

Both the NN and the POD show some discrepancies with respect to the reference re-

sults for the pressure coefficient distribution over the lower curve near the leading

edge. When the number of training cases is increased to nTr = 1, 600, the POD still

shows a poor approximation near the strong shock on the top curve as well as near

the weaker shock in the bottom curve, whereas the NN shows a very good agreement

with respect to the reference results.

5.1.1 Inverse shape design for a target pressure distribution

This section presents an application of the proposed NN to inverse shape design. The

goal is to show the potential and reliability of the proposed NN for the fast evaluation

of the objective function in an optimisation process.

A pressure coefficient distribution, defined over the 300 points used to discretise an

aerofoil, is considered as the target. The problem consists of finding the geometric

configuration, given by the position of the control points of a set of two NURBS de-

scribing the aerofoil, that leads to the given pressure coefficient distribution. To recall,

the two NURBS describing the aerofoil are defined as cubic B-Splines with eight con-

trol points, denoted by {P+
i } and {P−

i } for the top and bottom curve respectively and

for i = 1, . . . , 8. It is worth noting that, as described in section 5.1, P−
1 = P+

1 = (0.5, 0)

and P−
8 = P+

8 = (−0.5, 0) and P−
2 is restricted to be aligned with P−

1 = P+
1 and P+

2 .

The objective function is defined as

f ({P±
i }) =

∫ c

0

([
C+

p − C?
p({P+

i })
]2

+
[
C−

p − C?
p({P−

i })
]2
)

d`∫ c

0

([
C+

p

]2
+
[
C−

p

]2
)

d`
, (5.2)

where C+
p and C−

p denote the pressure coefficient distribution over the top and bottom

curves describing the aerofoil, respectively. Analogously, C?
p({P+

i }) and C?
p({P−

i })

denote the predicted pressure coefficient distribution over the top and bottom curves

describing the aerofoil, respectively. In this work, the NN built in section 5.1 is em-

ployed to predict the pressure distribution for a given set of control points. This is in

5.1. Comparison of NN with the POD 117

contrast with traditional approaches where, each evaluation of the objective function

requires not only the running of the CFD solver, but also the generation of a mesh for

each geometric configuration.

The minimisation problem is formally stated as

min
P+

2 ,...,P+
7 ,µ,P−

3 ,...,P−
7

f ({P±
i }i=1,...,8)

subject to P−
1 = P+

1 = (0.5, 0)

P−
8 = P+

8 = (−0.5, 0)

P−
2 = P+

1 + µ(P+
1 − P+

2)

µ ∈ [0.5, 1.5],

(5.3)

where the target pressure distribution corresponds to the RAE2822 aerofoil.

The modified cuckoo search (MCS), proposed in [75], is used to solve the optimisa-

tion problem (5.3). This method belongs to the family of gradient-free optimisation

algorithms and it has demonstrated a better performance when compared to other

optimisation algorithms, especially in the context of high dimensional problems. The

parameters selected for the MCS algorithm, taken from [75], are 0.75 for the fraction of

nests to be discarded, 0.5 for the power step size of the random walk, 1 for the number

of eggs to discard in every generation, 40 for the number of eggs in the first generation

and 200 for the total number of generations.

To study the influence of the randomness of the MCS algorithm, figure 5.5 shows the

statistics of the value for the objective function after 100 executions of the MCS optimi-

sation are performed. The minimum, maximum, mean and standard deviation of the

value of the objective function are represented for an increasing number of cases used

for training the NN. The results show that the randomness in the MCS is only relevant

for a relatively low number of training cases, nTr = 400 in this example. For nTr ≥ 800,

the influence of the randomness in the MCS is minimal and both the minimum and

maximum value of the objective function is below 0.02, meaning a discrepancy be-

low 2% between the predicted and the target pressure coefficient distribution over the

aerofoil.

Figure 5.6 shows the result of the inverse shape design. Figure 5.6(a) offers a visual

comparison of the target geometry, the initial geometry used in the MCS algorithm

118 Chapter 5. Aerodynamic predictions using geometric parameters

Figure 5.5: Value of the objective function after the minimisation problem is solved with
the MCS as a function of the number of cases used for training the NN.

(a) Geometry

(b) Pressure coefficient

Figure 5.6: Target, initial and optimised geometry and pressure coefficient obtained using
the MCS and the proposed NN to predict the values of the objective function.

and the final optimised geometry. A very good agreement is observed between the

optimised and the target geometry. Figure 5.6(b) shows the pressure coefficient, again

for the target geometry, the initial geometry used in the MCS algorithm and the fi-

nal optimised geometry. As previously mentioned, the relative error in the L2((0, c))

norm, as measured by the objective function, is below 2%. It is worth mentioning that

the optimisation process using the MCS algorithm took only 55 seconds, due to the

almost negligible cost of evaluating the objective functions using the proposed NN.

Conversely, traditional optimisation frameworks, where the optimisation algorithm is

employed directly with the CFD solver, can take several hours to obtain a solution to

5.2. Benefits of the multi-output NN for viscous flows 119

the inverse design problem.

5.2 Benefits of the multi-output NN for viscous flows

This example considers the computation of the aerodynamic coefficients of an aerofoil

that is parametrised using the control points of the NURBS describing the aerofoil.

It is an extension of section 5.1, performed in viscous flow. There are 25 geometrical

parameters used to define the NURBS curves. The variation of the position of the

control points with respect to the base geometry, namely (±δxi,±δyi)) is considered

to be the input of the NN, where (δxi, δyi) ∈ [0, 0.1c]2 and c denotes the chord of the

aerofoil.

The same design spaces defined in section 5.1 are used, namely, nTr = 1, 600 and

nTe = 200. The cases are simulated at a free stream Mach number, M∞ = 0.8, an angle

of attack, α = 2◦ and Reynolds number, Re = 2 × 106, corresponding to flows in the

transonic regime. The CFD solver uses the Favre-averaged NS solver, implemented

with the SA turbulence model to obtain the viscous compressible solutions.

Four strategies are considered and the performance are compared in terms of counts

for the three aerodynamic coefficients. All four strategies employ NNs and consider

the 25 geometric parameters as inputs. The first strategy employs one NN that pre-

dicts one aerodynamic coefficient, the lift, drag or moment, as output. The second

strategy also employs one NN and has all the three aerodynamic coefficients as out-

puts. The third strategy considers three separate NNs which predicts the pressure

coefficient Cp, and the stresses in the x and y direction, τ̃x and τ̃y, respectively, at a

user defined set of points on the aerofoil. This set of point corresponds to 300 points

used to define the aerofoil and is different to the nodes used to discretise the aerofoil

in the computational mesh. Finally, the fourth strategy considers only one network

which predicts the pressure and stresses on the aerofoil surface, leading to three times

the number of outputs compared to a NN in the third strategy.

Figure 5.7 shows the relative frequency of the error for the four strategies considered,

measured in counts on the test set. Figure 5.7(a) corresponds to the error measured in

the lift. As before, a numerical experiment is performed as a function of the number of

hidden layers and hidden neurons for different values of the overfitting parameters,

120 Chapter 5. Aerodynamic predictions using geometric parameters

(a) Lift counts (b) Drag counts (c) Moment counts

Figure 5.7: Relative frequency of the error on the test set for the four strategies employed,
measured in counts.

Table 5.2: The selected NN configurations for the predictions of lift using the four strategies
considered.

Strategy
1 2 3 4

Input P±

Output CL CL, CD, CM Cp/τ̃x/τ̃y Cp, τ̃x, τ̃y
Hidden layer, nL 2 2 1 1
Hidden neuron, nN 80 20 150 200
Overfitting, λ 0 0 0 0

and the NN configuration with the lowest error is reported. The NN in the first strat-

egy is selected to have two hidden layers and nN = 80 neurons. The second strategy

employs two hidden layers and nN = 20 neurons. The third strategy employs one hid-

den layer and nN = 150 hidden neurons, and finally, the fourth strategy employs one

hidden layer and 200 hidden neurons. The overfitting parameter is set as λ = 0 for all

four strategies. Table 5.2 shows a summary of the selected NN configurations for the

predictions of lift in the test set using the four strategies considered. The results show

that the first and second strategies predict with an error below 15 lift counts for about

42% of the test cases. The fourth strategy performs slightly better with 47%. The third

strategy provides the most accurate results, with 54% of the test cases below 15 lift

counts. The first and second strategies predict a maximum error above 75 lift counts,

compared to the multi-output strategies which predicts with a maximum error of 74

and 72 lift counts, respectively.

Figure 5.7(b) shows the relative frequency of the errors measured for the drag. The

network in the first strategy is selected to have one hidden layer and 30 hidden neu-

rons. The NNs in the other strategies maintain the same configurations. The results

show that the third strategy provides the most accurate results, with nearly 50% of

the test cases with an error below 10 drag counts, compared to 42%, 36% and 45% of

5.2. Benefits of the multi-output NN for viscous flows 121

(a) Pressure coefficient (b) Skin friction coefficient

Figure 5.8: Comparison of the pressure and stress distributions obtained with the CFD
solver and the predicted distributions from the third strategy, for an example case in the test
set.

the cases for the first, second and fourth strategies, respectively. Finally, figure 5.7(c)

shows the relative frequency of the errors measured for the moment. The first strategy

employs two hidden layers and 100 neurons. The results again show the superiority

of the third strategy with nearly 50% of the test cases producing an error below 40 lift

counts.

Figure 5.8 compares the pressure and skin friction distributions obtained with the CFD

solver and the predicted distributions from the third strategy for a test case. This ex-

ample corresponds to the aerofoil shape shown in figure 5.4. Figure 5.8(a) shows com-

parison of the predicted pressure distribution with the reference results. It is observed

that the NN predicts well with minor discrepancies over the top surface of the aero-

foil at around x/c = 0.1. NN places the shock on the top and bottom surface at the

correct position with no visible oscillation. Figure 5.8(b) compares the skin friction

distribution obtained from the NN in the third strategy against the CFD data. It is

worth noting that the skin friction is a calculated quantity from the predicted outputs

of the NNs, namely the stresses τ̃x and τ̃y. It can be observed that there are slight devi-

ations at the leading edges where NN is incapable of predicting sharp gradients in the

distribution. A small overshoot is also present near the trailing edges. Despite these

minor deviations, the NN predictions compare well in the region of the shock as there

are only a sizeable deviation from the CFD data in the range x/c ∈ [0.4, 0.5].

122 Chapter 5. Aerodynamic predictions using geometric parameters

5.2.1 Inverse shape design for a target pressure distribution

This section presents an application of the proposed NN to inverse shape design using

viscous compressible data in two dimensions. The goal is to show the potential and

reliability of the proposed NN for the fast evaluation of the objective function in an

optimisation process.

A pressure coefficient distribution, defined over the 300 points used to discretise an

aerofoil, is considered as the target. The problem consists of finding the geometric

configuration, given by the position of the control points of a set of two NURBS de-

scribing the aerofoil, that leads to the given pressure coefficient distribution. To recall,

the two NURBS describing the aerofoil are defined as cubic B-Splines with eight con-

trol points, denoted by {P+
i } and {P−

i } for the top and bottom curve respectively and

for i = 1, . . . , 8. It is important to note that, as in section 5.1, P−
1 = P+

1 = (0.5, 0) and

P−
8 = P+

8 = (−0.5, 0) and P−
2 is restricted to be aligned with P−

1 = P+
1 and P+

2 . The

objective function defined in equation (5.2) is also implemented in this example.

The minimisation problem is stated as

min
P+

2 ,...,P+
7 ,µ,P−

3 ,...,P−
7

f ({P±
i }i=1,...,8)

subject to P−
1 = P+

1 = (0.5, 0)

P−
8 = P+

8 = (−0.5, 0)

P−
2 = P+

1 + µ(P+
1 − P+

2)

µ ∈ [0.5, 1.5],

(5.4)

where the target pressure distribution corresponds to the RAE2822 aerofoil.

The MCS is used to solve the optimisation problem (5.4). The parameters selected for

the MCS algorithm, taken from [75], are 0.7 for the fraction of nests to be discarded

and 0.5 for the power step size of the random walk. Additionally, the number of eggs

to discard in every generation is set as 1, the number of eggs in the first generation is

selected as 50 and finally 100 generations are used in the MCS.

To study the influence of the randomness of the MCS algorithm, figure 5.9 shows some

statistics of the value for the objective function after 10 executions of the MCS optimi-

sation are performed. The minimum, maximum, mean and standard deviation of the

value of the objective function are represented for an increasing number of cases used

5.2. Benefits of the multi-output NN for viscous flows 123

Figure 5.9: Value of the objective function after the minimisation problem is solved with
the MCS as a function of the number of cases used for training the NN.

for training the NN. The results show that the randomness in the MCS is only relevant

for a relatively low number of training cases, nTr = 400 in this example. For nTr ≥ 800,

the influence of the randomness in the MCS is minimal and both the minimum and

maximum value of the objective function are below 0.05, meaning a discrepancy be-

low 5% between the predicted and the target pressure coefficient distribution over the

aerofoil.

Figure 5.10 shows the result of the inverse shape design. The plots corresponds to

predictions of the NN when nTr = 1600 cases are used and, two hidden layers and

190 neurons are employed. The overfitting parameter is selected to be λ = 1. Fig-

ure 5.10 offers a visual comparison of the target geometry, the initial geometry used

in the MCS algorithm and the final optimised geometry. There is a good agreement

between the optimised and the target geometry. Figure 5.10(b) shows the pressure co-

efficient, again for the target geometry, the initial geometry used in the MCS algorithm

and the final optimised geometry. As previously mentioned, the relative error in the

L2((0, c)) norm, as measured by the objective function, is below 5%. In addition to the

pressure distribution, the trained NN model also predicts the stresses. Although the

skin friction distribution was not set as the target in this minimisation problem, it is

worth comparing the predictions given the negligible cost of performing one predic-

tion of the NN. Figure 5.11 shows the skin friction coefficient distribution of the target,

initial and optimised geometry obtained using the MCS. The results again show that

the predictions of the NN are in good agreement with the skin friction distribution

of the target RAE 2822 aerofoil. It is worth mentioning that the optimisation process

using the MCS algorithm takes just over one minute due to the almost negligible cost

of evaluating the objective functions using the proposed NN.

124 Chapter 5. Aerodynamic predictions using geometric parameters

(a) Aerofoil shape

(b) Pressure prediction

Figure 5.10: Target, initial and optimised geometry and pressure coefficient obtained using
the MCS and the NN to predict the values of the objective function.

Figure 5.11: The skin friction coefficient distribution of the target, initial and optimised
geometry obtained using the MCS and the NN.

5.3 Comparison of the multi-output NN with existing NNs

This example involves the prediction of the aerodynamic coefficients on a wing that is

parametrised using the control points of the NURBS describing the surface. The base

geometry corresponds to an approximation of the ONERA M6 wing [258] and consists

of two surfaces, the top and bottom surface, each using six cubic B-splines with eight

5.3. Comparison of the multi-output NN with existing NNs 125

Table 5.3: Control points of the top curve at the root and tip aerofoil section of the base
geometry approximating the ONERA M6 wing.

i 1 2 3 4 5 6 7 8
xi,1 0.0 0.0 31.8 136.9 332.6 571.0 738.1 805.9
yi,1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
z+i,1 0.0 9.5 26.3 34.6 43.9 26.6 8.4 0.0

xi,6 690.6 690.6 708.5 767.6 877.7 1011.8 1105.8 1143.9
yi,6 1196.3 1196.3 1196.3 1196.3 1196.3 1196.3 1196.3 1196.3
z+i,6 0.0 5.3 14.8 19.4 24.7 14.9 4.7 0.0

control points to define the surface. In this example, a planar surface is considered at

the wingtip. The knot vectors of NURBS curves representing the surfaces are given by

Λu = {0, 0, 0, 0, 0.031, 0.126, 0.384, 0.749, 1, 1, 1, 1}

Λv = {0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1}
(5.5)

and the set of control points for the top curve {P+
i,j = (xi,j, yi,j, z+i,j)}i=1,...,8, j=1,6 are de-

tailed in table 5.3. The control points for the bottom surface are symmetrically located

with respect to the xy-plane and are defined as, P−
i,j = (xi,j, yi,j, z−i,j) with z−i,j = −z+i,j,

for i = 1, . . . , 8.

The control points on the leading and trailing edges are fixed, i.e. P−
1,j = P+

1,j and

P−
8,j = P+

8,j. In addition, the control point P−
2,j is restricted to be aligned with P−

1,j = P+
1,j

and P+
2,j. More precisely, it is assumed that P−

2,j = P+
1,j + µ(P+

1,j − P+
2,j) with µ being

a parameter defined in [0.5, 1.5]. This restriction ensures G1 continuity at the leading

edge of the wing and leads to a problem with 25 independent geometric parameters

in one aerofoil section. Figure 5.12 shows the 96 control points in the parametrised

geometry used to approximate the ONERA M6 wing. However, in this example, only

the control points in the root and tip chord of the wing, coloured red in figure 5.12 are

varied in the xz-plane, that is, δyi,j = 0. This amounts to a total of 50 independent

geometric parameters in the analysis. The variation of the positions of these control

points with respect to the base geometry, namely (±δxi,j,±δzi,j)), is considered to

be the input to the neural network, where (δxi,j, δzi,j) ∈ [0, 0.1c]2 and c denotes the

chord of the aerofoil. To ensure that the variation of the control points does not lead to

unrealistic geometries with very localised sudden change on the surface definition, the

control points located between the root and tip chord, coloured in blue in figure 5.12

126 Chapter 5. Aerodynamic predictions using geometric parameters

Figure 5.12: The ONERA M6 wing used as the base geometry and parametrised using the
control points of the NURBS, denoted by circles. The lines represent the control polygon.
The independent variables are coloured in red and the dependent variables in blue.

are linearly displaced and follow the relationship

x∗i,j = xi,j + δxi,1(1 −
yi,j

b
) + δxi,6

yi,j

b
, i = 1, . . . , 8, j = 1, . . . , 6 (5.6)

where xi,j denotes the coordinate vector of i-th control points in the j-th aerofoil sec-

tion, x∗i,j represents the moved coordinate vector and b is the wingspan. The surface tri-

angulation of the base geometry is generated using the advancing front method. The

Cartesian coordinates of surface mesh nodes are projected to obtain the correspond-

ing parametric coordinates of the NURBS surface. Given a new set of control points,

obtained from design of experiment [251], the same parametric coordinates are eval-

uated to obtain a new set of Cartesian coordinates for the new geometry. This allows

the designer to use the same number of nodes to discretise the geometry in the surface

mesh. The coordinates on the planar wingtip surface and the symmetry boundary

wall surface are then updated using the Laplacian smoothing technique [259]. A new

volume mesh is generated for each new surface mesh using the Delaunay meshing

scheme and the nodes are placed according to a specified background mesh and user

defined sources [125]. There are 11,283 nodes used to discretise the wing geometry in

the surface mesh and around 1.34 million elements in the volume meshes.

In this example, the training and test cases are of size nTr = 1600 and nTe = 400 re-

spectively. Both data sets are obtained by using the latin hypercube sampling. Steady

Euler calculations are performed in the transonic regime at a free-stream Mach num-

ber, M∞ = 0.84 and an angle of attack, α = 3.06◦. As before, the trained ROM with

the lowest mean value of the error, measured in counts, in the test set is selected by

performing a numerical experiment to explore the accuracy of the predicted aerody-

namic coefficients as a function of the hyperparameters of the employed ROM. For

instance, in the case of NN there is the choice of the number of hidden neurons, nN,

5.3. Comparison of the multi-output NN with existing NNs 127

the number of hidden layers, nL and the overfitting parameters, λ. The NN is trained

for each combination of the three listed hyperparameters in a predefined range and,

the quadratic cost function is implemented with the regularisation term, as in equa-

tion (3.53) is employed to evaluate the errors in the training and to avoid the need to

divide the dataset into validation and training cases. The NN is trained 10 times for

each combination of hidden layer, hidden neurons and the overfitting parameter. This

is performed in an attempt to obtain a trained model that is not stuck in a local mini-

mum. The weights of the trained model with the lowest value of the error measured

in the test set is recorded before the next combination of hyperparameters is trained.

Three types of NNs are considered and their performance is compared. The first

network considers 50 geometric parameters representing the locations of the control

points of the root and the tip aerofoil chord of the wing as inputs and one aerody-

namic coefficient, the lift, drag or moment, as output. The second network considers

50 geometric parameters as inputs and the three aerodynamic coefficients as outputs.

The third network also considers the 50 geometric parameters as the inputs and the

outputs are the pressure defined at the nodes used to discretise the wing surface in the

computational mesh. There is a total of 11,283 outputs in this network.

To illustrate the resulting performance of the three NNs employed, figure 5.13 quanti-

fies the accuracies for the three aerodynamic quantities of interest, measured in counts.

The histograms represent the relative frequency of the error for all test cases. Fig-

ure 5.13(a) shows the results measured in lift counts. The first NN employs a single

hidden layer with nN = 40 and the over-fitting parameter is selected as λ = 10. The

second NN employs a single hidden layer with 10 hidden neurons and the over-fitting

parameter is selected as λ = 1. Finally the third NN employs one hidden layer with

nN = 290 and the over-fitting parameter is set as λ = 10. Table 5.4 summarises the

selected NN configurations for the predictions of lift in the test set using the three net-

works considered in this example. The results show the first and second NN predict

only 63% and 56% of the test cases, respectively, with an error below five lift counts.

The third NN, however, provides the most accurate predictions with an error below

five lift counts for almost 85% of the test cases. This represents a significant differ-

ence of about 20%. Moreover, the third NN is observed to achieve a marginally higher

performance, with 100% of the test cases predicted with an error below 10 lift counts,

compared to almost 80% for the first and second NNs. The maximum error measured

128 Chapter 5. Aerodynamic predictions using geometric parameters

Table 5.4: The selected NN configurations for the prediction of lift using the three networks
considered.

Network
1 2 3

Input P±

Output CL CL, CD, CM Cp
Hidden layer, nL 1 1 1
Hidden neuron, nN 40 10 290
Overfitting, λ 10 1 10

(a) Lift counts (b) Drag counts (c) Moment counts

Figure 5.13: Relative frequency of the error on the test set for the three neural networks
employed, measured in counts.

in the test dataset for the three NNs is 36, 26 and 9 lift counts, respectively.

Figure 5.13(b) shows the relative frequency of the error, measured in drag counts. A

different set of hyperparameters with the best accuracy is used for first network, while

the same configuration is maintained for the second and third NN. Here, the first

network employs a single hidden layer with 20 neurons and the over-fitting parameter

is set as λ = 10. The third network produces a prediction with an error below 5 drag

counts for almost 83% of the test cases compared to the first and second network with

only 30% and 40% of the cases, respectively. This represents a significant difference of

about 40% of the cases with better predictions. The maximum drag counts achieved

for the three networks are 39, 38 and 11 drag counts, respectively.

Lastly, the histogram of figure 5.13(c) represents the relative frequency of the error,

measured in moment counts. Here, the first two NNs have similar performance with

almost 60% of the cases falling below 50 moment counts and about an additional 25-

30% of the cases below 100 moment counts. On the other hand, the third network

provides a marginally higher accuracy of almost 85% of the cases below 50 moment

counts and 100% below 100 moment counts. The maximum accuracies for the three

networks employed are, 345, 326 and 96 moment counts. This shows the robustness

5.3. Comparison of the multi-output NN with existing NNs 129

of the third network for its use as an aerodynamic predictor for highly parametrised

geometry.

Figure 5.14 shows a test case to further illustrate the comparison of the performance

of the full order model and the output of the proposed NN model. Figure 5.14(a)

shows the surface pressure contours of the full order and the corresponding NN pre-

diction. The results show that, visually, there is no significant difference between the

CFD data and the NN predictions. Figures 5.14(b), 5.14(c) and 5.14(d) show the aero-

foil cross section and their corresponding pressure distributions for the full order and

NN predictions at 20%, 50% and 80% in the spanwise direction, respectively. It can

be observed how the geometry changes across the cross section, from a comparatively

blunt leading edge and an almost symmetric trailing edge at 20% to a more rounded

leading edge, a flattened top and a comparatively higher cambered aft section at 80%,

some of which are characteristics of supercritical aerofoils [260]. Figure 5.14(b) shows

that NN predicts well and captures both shocks at the right position on the upper sur-

face. Minor discrepancies in predicting the position of the second shock are observed

in figure 5.14(c). Closer to the wingtip in figure 5.14(d), the reference result shows that

there is no shock and the NN model is capable of capturing this behaviour well.

5.3.1 Inverse shape design to maximise lift-to-drag ratio

This section presents another application of the proposed NN to inverse shape design

using inviscid compressible data in three dimensions. The goal is to show the po-

tential and reliability of the NN for the fast evaluation of the objective function in an

optimisation process in a different setting.

The problem consists of finding the geometric configuration, given by the position

of the control points of two NURBS surfaces describing the wing, that leads to the

maximum achievable lift to drag ratio within the design space used in the training

of the NN. The third network, that is the NN that was built earlier in the previous

example, is employed to predict the pressure distribution for a given set of control

points. To recall, two NURBS surfaces are considered, where the section is a cubic

B-spline with eight control points. A planar surface is considered at the wingtip. The

control points for the bottom surface are symmetrically located with respect to the

xy-plane and are defined as, P−
i,j = (xi,j, yi,j, z−i,j) with z−i,j = −z+i,j, for i = 1, . . . , 8

and j = 1, . . . , 6. The control points on the leading and trailing edges are fixed, i.e.

130 Chapter 5. Aerodynamic predictions using geometric parameters

(a) Surface pressure contour

(b) Predictions at 20% (c) Predictions at 50% (d) Predictions at 80%

Figure 5.14: Comparison of the pressure coefficients, Cp, obtained with the CFD solver and
NN predictions using the third network for a test case at different locations in the spanwise
direction of the wing.

P−
1,j = P+

1,j and P−
8,j = P+

8,j. Moreover, to ensure G1 continuity at the leading edge, it

is assumed that P−
2,j = P+

1,j + µ(P+
1,j − P+

2,j), for j = 1, . . . , 6, with µ being a geometric

parameter within [0.5, 1.5].

The objective function is defined as

f ({P±
i,j}) = −

C?
L({P±

i,j})
C?

D({P±
i,j})

, (5.7)

where C?
L and C?

D denote the lift and drag coefficients predicted by the trained NN

model, respectively. The minimisation problem is formally stated as

min f ({P±
i,j}i=1,...,8,j=1,...,6)

subject to P−
1,j = P+

1,j

P−
8,j = P+

8,j

P−
2,j = P+

1,j + µ(P+
1,j − P+

2,j)

µ ∈ [0.5, 1.5],

(5.8)

for j = 1, . . . , 6. In this example, the number of eggs in the first generation and the total

5.3. Comparison of the multi-output NN with existing NNs 131

Figure 5.15: A visual comparison of the distribution of lift and drag coefficients in the train-
ing dataset (denoted by circles) and, the optimised solutions by the first network (denoted
by diamonds) and the third network (denoted by squares) in the minimisation problem.

number of generations are set as nhn = 50 and 100, respectively. The performance of

the proposed NN, referred to as the third network in this example, is also compared

with existing NN, where only one aerodynamic coefficient, the lift, drag or moment

coefficient is predicted. The existing NN is also referred to as the first network in this

section. The NN configurations of the first and third network is reported in section 5.3.

The MCS is run 10 times in an attempt to obtain 10 geometries with different lift-to-

drag ratios in both cases.

Figure 5.15 offers a visual comparison of the optimised geometries in the lift and drag

spectrum considered in the training set when nTr = 1, 600 cases are used in the NN.

The results show that the MCS employed with the third network is capable of finding

geometries with higher lift-to-drag ratios compared to MCS employed with the first

network in all the 10 runs. Moreover, the optimised solutions of the MCS with the

third network are higher than those observed in the training dataset and above all,

within the same design space used in the training of the NN. The maximum lift-to-

drag ratio obtained with the third NN is 56 compared to 34 with the first NN, which

represents a gain of 21 with the proposed method. The superior performance of the

proposed technique is attributed to the fact that the third network attempts to find a

geometric configuration that maximises the lift-to-drag ratio in the design space of the

pressure distributions observed in the training. Conversely, the first network which

models the lift or drag coefficient directly, only sees these values in the training and

therefore cannot find a higher maximum of the lift-to-drag ratio.

132 Chapter 5. Aerodynamic predictions using geometric parameters

(a) Surface pressure contour

(b) Prediction at 10% (c) Prediction at 50% (d) Prediction at 90%

Figure 5.16: Comparison of pressure coefficients, Cp, for the initial geometry and the opti-
mised geometry as predicted by NN, and the full order solution of the optimised geometry
at various locations in the spanwise direction of the wing.

Figure 5.16 shows the results of the inverse shape design with the maximum lift-to-

drag ratio obtained with the third network and corresponds to a lift coefficient of 0.222

and drag coefficient of 0.0040. Figure 5.16(a) offers a visual comparison of the pre-

dicted pressure distributions of the initial geometry on the left and that of the opti-

mised geometry on the right. Figures 5.16(b), 5.16(c) and 5.16(d) show the comparison

of the aerofoil cross sections and their corresponding pressure distributions for the ini-

tial and optimised geometries as predicted by NN, and also the full order solution of

the optimised geometry. The results shows a good agreement between the CFD data

and the NN predictions for the optimised geometry. The difference in the lift-to-drag

ratio between the full order solution and NN predictions of the optimised geometry is

less than 6. It is worth mentioning that the MCS takes 41 minutes and NN takes less

than 2% of the total time taken in the minimisation problem. Conversely, it took more

than 400 hours to obtain the full order solution of the geometries used in the dataset

when employed on five cores and with three geometric multi-grids.

5.4. Deforming wings at various flow conditions 133

5.4 Deforming wings at various flow conditions

The last example considers the computation of the aerodynamic coefficients for a de-

forming wing at a free stream Mach number, M∞, and an angle of attack, α, in prede-

fined intervals, IM = (0.5, 0.9) and Iα = (0◦, 10◦). The ONERA M6 wing is used as the

baseline geometry and it undergoes a geometric twist along the y-axis and a wingtip

deflection in the z-axis, in predefined intervals, Iβ = (0◦, 10◦) and Iκ = (0 m, 1 m).

The range of inflow conditions considered leads to the subsonic and transonic tran-

sonic regime.

A geometric twist about the y-axis [261] can be written as

x?i = Ry(xi − xAC
i) + xAC

i , Ry =


cos β 0 − sin β

0 1 0

sin β 0 cos β

 , (5.9)

for i = 1, . . . , N, where xi represents a Cartesian coordinate on the wing, xAC
i is the

reference aerodynamic centre to which the rotation is performed and x?i is the trans-

formed coordinate. Ry denotes the rotation matrix about the y-axis, N is the total

number of points used to discretise the geometry and β is the angle of twist, measured

in degrees.

The wing is deflected from the xy-plane assuming it acts as a uniformly loaded can-

tilever beam, with one end fixed, that is the root of the wing, and a free end, here the

wingtip. The deflection [262] can be written as

δzi =
κ

3

[
y4

i
b4 −

4y3
i

b3 +
6y2

i
b2

]
, (5.10)

for i = 1, . . . , N, where δzi denotes the amplitude for i-th coordinate in the z direction,

yi is the initial length in the spanwise direction, b is the wingspan and κ is the max-

imum deflection at the wingtip. Moreover, it is ensured that for every transformed

coordinate, the length in the spanwise direction is kept constant. The formulation of

the arc length by integration is given as

b̃i =
∫ y?i

0

√
1 +

(
dz
dyi

)2

dy, (5.11)

for i = 1, . . . , N, where b̃i is the arc length of the i-th coordinate on the wing and is

134 Chapter 5. Aerodynamic predictions using geometric parameters

Figure 5.17: Illustration of the deformed ONERA M6 wing in Iβ × Iκ , scaled by an ampli-
fying factor of 10.

equal to yi in the baseline geometry. y?i represents the new y coordinate for which the

length is kept constant.

A reference volume mesh is generated around the ONERA M6 wing and the Delau-

nay graph method [263] is used to update the nodes of the transformed geometry. This

mesh morphing scheme ensures that the primary mesh topology is maintained. Large

displacements can be applied at the boundaries in a single step without mesh en-

tanglement that generally affects standard mesh movement procedures [263]. In this

example, it was found that there is no negative volume and mesh entanglement mov-

ing from the primary mesh in one single step for a geometric twist of up to β = 11◦

and a maximum deflection of κ = 1.1m at the wingtip. Figure 5.17 illustrates the de-

formation between the minimum and maximum displacement in Iβ × Iκ, scaled by an

amplifying factor of 10, using the ONERA M6 wing as the baseline geometry.

The latin hypercube sampling is used to design the training and test dataset of size

nTr = 100 and nTe = 75, respectively. The reference volume mesh consists of 1,071,457

elements and 16,240 nodes are used to discretise the wing geometry. In this exam-

ple, the three different types of NN employed consider M∞, α, β, and κ, as inputs.

The first network has one single aerodynamic output, the lift, drag or moment coeffi-

cient. The second network has three aerodynamic coefficients as outputs and finally

the third network considers the pressure defined at the 16,240 nodes used to discretise

the geometry in the volume mesh, as outputs. As in previous examples, numerical

experiment is performed to explore the accuracy of the predicted aerodynamics co-

efficients, measured in counts in the test set, as a function of the number of hidden

layers, nL, the number of hidden neurons, nN, and various values of the over-fitting

parameter, λ for the three types of NN considered.

5.4. Deforming wings at various flow conditions 135

(a) Lift counts (b) Drag counts (c) Moment counts

Figure 5.18: Relative frequency of the error on the test set for the three neural networks
employed, measured in counts.

Table 5.5: The selected NN configurations for the prediction of lift using the three networks
considered.

Network
1 2 3

Input M∞, α, β, κ

Output CL CL, CD, CM Cp
Hidden layer, nL 3 3 1
Hidden neuron, nN 140 190 270
Overfitting, λ 0.01 0.01 0.01

Figure 5.18 shows the comparison of the relative frequency of the error, measured in

counts in the test dataset for the three types of NNs employed. Figure 5.18(a) shows

the relative frequency of the error measured in the prediction of the lift. Following the

numerical experiment carried out in this example, the first network is selected to have

three hidden layers and nN = 140, the second NN has three hidden layers and 190 hid-

den neurons, and finally the third network employs one hidden layer with nN = 270.

All the selected network configurations employ an over-fitting parameter of λ = 0.01.

The same configuration is maintained in the analysis of the drag and moment for the

second and third networks. Table 5.5 summarises the selected NN configurations for

the predictions of lift in the test set using the three networks considered in this exam-

ple. The results show that both the first and second NNs achieve about 60% of the

test cases below five lift counts while the third network achieves a marginal 88% of the

test cases in the same range. The first noticeable difference is that the third network

has almost 100% of the cases with an error less than 10 lift counts in the test set and

the maximum error obtained with this NN is 11 lift counts. The second and third net-

work provide a prediction with a maximum error of 33 and 36 lift counts, respectively.

Figure 5.18(b) represents the relative frequency of the error, measured in drag counts.

The first network provides a much lower accuracy of 55% of the cases below 10 drag

136 Chapter 5. Aerodynamic predictions using geometric parameters

counts, as opposed to 70% and 82% for the second and third networks. The three NNs

have a maximum error of 98, 94 and 51 drag counts, all of which corresponds to the

same case in the test dataset. Lastly, Figure 5.18(c) describes the relative frequency of

the error in the test set, measured in the test set. The first NN achieves 46% of the

cases below 50 moment counts, which is comparatively lower to the second and third

NN, with 72% and 83% of the cases. The third network has a maximum error of 127

moment counts, while the first and second NNs provide an error of more than double

of that, 400 and 270 moment counts respectively.

Figure 5.19 illustrates the comparison between the performance of the full order model

and the output of the third network. Figure 5.19(a) shows the deformed geometry of

the test case, with an amplification factor of 10. The CFD simulation corresponds to a

free-stream Mach number, M∞ = 0.83 and an angle of attack, α = 5.4◦, which repre-

sents a transonic flow. Figure 5.19(b) shows the surface pressure contours of the full

order on the left and the corresponding NN predictions on the right. The surface con-

tour plots compare well with each other visually. Figures 5.19(c), 5.19(d) and 5.19(e)

show the comparison of the predicted surface pressure distributions by the network

with the full order solution at 20%, 50% and 80% of the wing in the spanwise direc-

tion, respectively. Figure 5.19(c) shows that the NN predicts well and captures both

shocks at the correct position on the upper surface. Minor discrepancies are observed

over the top surface, at x/c = 0.9c. More oscillations are observed in the prediction

over the top surface in both the 50% and 80% sectional pressure plots. The NN model

captures the shocks relatively well and shows good agreement with the reference CFD

results.

5.4. Deforming wings at various flow conditions 137

(a) β = 3.0◦, κ = 0.86m (b) Surface pressure contour

(c) Predictions at 20% (d) Predictions at 50% (e) Predictions at 80%

Figure 5.19: Comparison of the pressure coefficients, Cp, obtained with the CFD solver and
NN predictions using the third network for a test case with inflow conditions, M∞ = 0.83
and α = 5.4◦, at different locations in the spanwise direction of the wing.

139

Chapter 6

Concluding remarks

The present chapter concludes the thesis with a recollection of the proposed method

and the outcomes achieved during the course of the current work. A brief discussion is

also provided on the outlook of the used technologies for the progression and further

development of ideas proposed in this thesis.

6.1 Conclusions

The primary aim of the work in this thesis was to establish a fast and reliable non-

intrusive ROM that is capable of providing accurate solutions for aerodynamic appli-

cations. This would enable the routine use of the aerodynamic system during the con-

ceptual design stage. A new multi-output NN methodology has been presented for

the prediction of aerodynamic coefficients of aerofoils in two dimensions and wings

in three dimensions. The proposed multi-output NN predicts the pressure or stress

distributions on the aerodynamic surface. The dataset used to train the network is ob-

tained using inviscid and viscous compressible flow data from a vertex-centred CFD

solver. The aerodynamic coefficients are computed after the pressure and stress distri-

butions are predicted.

The accuracy of the predictions using the proposed multi-output NN has been shown

to be higher when compared to a NN where the output consists of the three aero-

dynamic coefficients. The results also show the superiority when compared to a NN

where only one aerodynamic coefficient is predicted. The superior performance has

been demonstrated for both two and three dimensional examples involving free stream

Mach number and the angle of attack as the inputs of the NNs. Moreover, the perfor-

mance of the proposed NN has been compared against NNs which predict pressure

140 Chapter 6. Concluding remarks

at various regions in the computational domain to defend the choice of the number of

outputs in the NN. It was deduced that the NNs predict with similar accuracies. How-

ever, the NNs which predict at nodes other than the surface nodes are more expensive

to train as more weights in the network need to be optimised.

In addition, the proposed NN has also been compared to the POD and the results

show the better performance of the NN, especially when predicting flows that involve

shocks. The superior accuracy of the proposed NN has been shown for problems in

which the parameters involve flow conditions and for more challenging scenarios in

which the parameters are the control points of the NURBS that describe the geometry

of the aerodynamic shape. An extensive set of numerical studies has been presented

to show the effect of the NN hyperparameters and numerical parameters of the POD

on the accuracy of the predictions. Furthermore, the effect of increasing the number

of cases in the training set on the accuracy of both the NNs and the POD has also been

studied.

A NN was also trained to predict the viscous flow solutions using a database of invis-

cid flow solutions. The network considers the pressure obtained by solving the Euler

equations and defined at the mesh nodes discretising the aerofoil as the inputs. The

output consists of pressure and stresses obtained using the Favre-averaged NS solver

and also defined at the mesh nodes discretising the aerofoil surface. The trained NN

model can be employed to reduce the computational effort of solving the NS equations

as only the Euler equation need to be resolved, leading to accurate viscous predictions.

The potential of the proposed NN has also been demonstrated for three dimensional

examples involving flow conditions and geometric parameters. It is worth noting that

examples involving up to 50 parameters have been considered in three dimensions.

The influence of the accuracy of the CFD data on the accuracy of the NN predictions

has been studied in two and three dimensions. It was found that the higher the ac-

curacy in the CFD data, the more challenging it is for the NNs to perform accurate

predictions. This is attributed to the stronger shocks present in finer meshes due to

the increased resolution of the flow field. The accuracy of the predictions in two and

three dimensions has also been compared. It has been shown that for a swept wing

the NN offers a greater accuracy when compared to a two dimensional aerofoil. This

is explained by the weaker shocks in three dimensions and the delayed appearance

of shocks in swept wings, leading to a greater set of training cases containing smooth

6.2. Recommendations for future work 141

solutions.

The proposed NN enables the fast prediction of aerodynamic quantities of interest

and can be applied to speed up the design and optimisation of aerodynamic shapes.

This work has also presented the use of the new multi-output NN in the context of

aerodynamic shape optimisation for aerofoils in two dimensions and wings in three

dimensions. The potential and reliability of the proposed NN for the fast evaluation

of the objective function is shown using a gradient-free optimisation algorithm, the

MCS.

In the first inverse design example, the predictions given by the novel NN made it

possible to perform an inverse identification of the aerofoil geometry for a given pres-

sure distribution in less than one minute for both inviscid and viscous flows. Another

example shows the application of the multi-output NN in an optimisation design con-

text. The problem consisted of maximising the lift-to-drag ratio using the predictions

of the novel NN. The MCS was capable of finding geometries with higher lift-to-drag

ratio than observed in the training set and within the same design space. Addition-

ally, the superior performance of the proposed optimisation framework was shown

against an existing framework where the more traditional NN is employed. The pro-

posed framework obtained a maximum lift-to-drag ratio of 56 while with the existing

framework, a maximum of 34 was obtained.

6.2 Recommendations for future work

There are various directions in which the proposed method or NNs in general, could

be pursued based on the work presented here. Some examples are listed below.

• Complexity of the problem. The performance of the proposed NNs has been

assessed in numerical examples involving flow or geometric parameters. How-

ever, an interesting scenario would be the inclusion of the proposed NN to pre-

dict the aerodynamic coefficients in numerical examples involving both flow

conditions and parametrised geometries. In addition, it would be compelling

to find out the number of training cases that are required to match the accuracies

obtained in the examples of this thesis where flow and geometric parameters

were considered separately. There are only a few examples in the literatures

where both flow and geometric parameters are considered. In such cases, the

142 Chapter 6. Concluding remarks

classic non-intrusive ROMs, such as the POD [31] or traditional NNs where the

aerodynamic quantities of interest are predicted directly [31], have been consid-

ered. There are also works in which the aerofoil shapes and flow conditions are

synthesised in the form of images and are considered to be the inputs to the NN,

and the aerodynamic coefficients are predicted as the outputs [61].

Another scenario is the extension of the use of the proposed NN to predict aero-

dynamic coefficient using unsteady compressible CFD data. This opens the pos-

sibility of performing a range of different analyses. One example is the predic-

tion of the dynamic responses of aerodynamic components due to gust [264, 17].

Traditional techniques involves the use of the POD [12, 23, 26]. More recently,

machine learning techniques [265, 266], as well as NNs [267, 268], have also

been employed to provide fast solutions in unsteady problems. It is therefore

reasonable to use the proposed technique to predict unsteady CFD solutions to

compare its performance with traditional methods.

• Comparison. During the course of the work presented in this thesis, the author

has noticed a large volume of research focused on the use of intrusive and non-

intrusive ROMs for aerodynamic applications. However, there is a lack of fair

comparison between the performance of the two types of ROMs in general to

show their strengths and weaknesses. Moreover, with the recent advances in

physics-informed NNs [269, 270] as a non-intrusive ROM, it will be fascinating

to see the comparison of the performance of physics-informed NNs against the

proposed non-intrusive data-driven ROMs in this thesis.

Additionally, the current work employs the multilayer perceptron and its ex-

tended variant, the deep NN. There are several other choices of NNs which are

more complex. It is therefore of interest to explore the varieties of NNs that are

available in the literature. Two popular choices are the convolutional NN [61, 62,

47] and the long-short term memory NN [271]. The performance of these more

complex NN architectures when predicting the surface pressure as formulated

in this thesis, can be compared against the proposed NN.

• Accurate shock prediction. Throughout the course of this work, the author has

noticed the difficulty of non-intrusive or data-driven ROMs to accurately predict

sharp gradients such as shocks in the flow. The authors in [7, 8] employ the POD

and domain decomposition techniques to accurately reconstruct shocks in the

6.2. Recommendations for future work 143

the pressure field. Therefore, it is relevant to employ the domain decomposition

with the proposed NN and compare the performance with similar techniques in

the literature.

• Smart geometric filtering. In an attempt to reduce the number of dimensions

used to parametrise aerofoils and wings, researchers have previously employed

dimension reduction techniques such as the POD [272] or coupled two parametri-

sation techniques [55]. More recently, there have been new applications of NNs

in geometry parametrisation, such as the use of auto-encoders [273] or generative-

adversarial networks [56]. According to the author’s knowledge, the use of

generative NNs coupled with NURBS has not been implemented before. Ad-

ditionally, this will greatly help to reduce the computational effort to train a

non-intrusive ROM, for instance the NN in general [53].

145

Appendix A

Supporting materials

The appendix provides additional supporting materials that have been employed in

this thesis and consists of three sections. The first section provides a brief description

of the non-uniform rational B-splines (NURBS). The second section describes the De-

launay graph mapping that was employed to deform a reference mesh in numerical

examples involving geometric perturbations. The third section presents an overview

of the cuckoo search algorithm with remarks on the key implementation of the modi-

fied cuckoo search algorithm.

A.1 Non-Uniform Rational B-splines (NURBS)

NURBS are industry standards employed to represent and exchange geometric infor-

mation, on which many international standards such as IGES and STEP files are based.

In addition to the capability of producing analytical shapes such as conic and quadric

surfaces, NURBS are known for representation of free-form geometries using a unified

mathematical basis [274].

A NURBS curve is a vector-valued piecewise rational function of degree r defined in

parametric form as

C(u) =

ncp

∑
i=0

wiPiNr
i (u)

ncp

∑
i=0

wiNr
i (u)

(A.1)

where Pi are the coordinates of the ncp + 1 control points in the control polygon, wi

represents the weights at each control point, and Nr
i (u) is the normalised B-spline

146 Appendix A. Supporting materials

0 0.2 0.4 0.6 0.8 1
0

1

Figure A.1: B-spline basis functions using the knot vector in .

basis function of r-th degree defined recursively as

N0
i (u) =


1, u ∈ [ui, ui+1)

0, otherwise
,

Nk
i (u) =

u − ui

ui+k − ui
Nk−1

i (u) +
ui+k+1 − u

ui+k+1 − ui+1
Nk−1

i+1 (u),

(A.2)

for k = 1, 2, ..., r and the knots, ui forming the knot vector, Λu = [u0, u1, ..unk], where nk

is defined as nk = ncp + r + 1. Therefore for non-uniform and non-periodic B-splines,

the knot vector takes the form

Λu = [0, 0, .., 0, ur+1, ..., um−r−1, 1, 1, ..., 1] (A.3)

where the end knots are repeated with multiplicity, r + 1. The basis functions defined

in (A.2) is used over the entire curve with focus in the interval [0, 1]. Using the knot

vector of equation (A.3) in (A.1) defines a Bezier-like curve which interpolates the

endpoints and is tangential to the first and last legs of the control polygon. Figure A.1

shows the basis functions for the knot vector

Λu = {0, 0, 0, 0.2, 0.4, 0.6, 0.8, 0.8, 1, 1, 1}. (A.4)

An example of a NURBS curve is illustrated in figure A.2. The knots, denoted by cir-

cles, emphasise on the discontinuous definition of the parametrisation. Figure A.2(a)

shows an untrimmed NURBS curve and figure A.2(b) depicts the corresponding trimmed

curve in the interval u ∈ [0.1, 0.8].

Similarly, the NURBS curve can be extended to describe a surface. A NURBS surface

A.1. Non-Uniform Rational B-splines (NURBS) 147

(a) Untrimmed (b) Trimmed

Figure A.2: Illustration of an untrimmed and trimmed NURBS curve. The solid black
line represents the curve, formed using knots which are denoted by ◦. The NURBS curve
is parametrised using control points, denoted by � and found within the control polygon
denoted by the blue dashed line.

of degree r in u and degree q in v, is a piecewise rational function defined in parametric

form as

S(u, v) =

nu
cp

∑
i=0

nv
cp

∑
i=0

wijPijS
r,q
i,j (u, v)

nu
cp

∑
i=0

nv
cp

∑
i=0

wijS
r,q
i,j (u, v)

, 0 ≤ u, v ≤ 1, (A.5)

where Pij are the coordinates of the (nu
cp + 1)(nv

cp + 1) control points defining the con-

trol net, wij are the corresponding weights and Sr,q
i,j (u, v) are the two dimensional B-

spline basis functions of degree r in u and q in v. The basis function in two dimensions

is defined as a tensor product of one dimensional basis functions, written as

Sr,q
i,j (u, v) := Cr

i (u)C
q
j (v). (A.6)

148 Appendix A. Supporting materials

A.2 Delaunay graph method

The Delaunay graph mapping is an interpolation-based mesh morphing scheme [263].

It maps meshes of any topology to a Delaunay graph, which can subsequently be

moved according to the geometric perturbation. The Delaunay graph method is com-

parable to the spring analogy method in terms of robustness and surpasses it in effi-

ciency [275]. Moreover, it is non-interative and uses significantly less memory. Despite

these advantages, the Delaunay graph has one major drawback. The quality of the

mesh near the boundaries may deteriorate when large deformations are performed.

To address this problem, an intermediate mesh is usually generated first to ensure a

valid mesh before obtaining the mesh with the final perturbed geometry. However,

this approach still encounters issues when the deformation involves large rotations.

The Delaunay graph may lose its topology and becomes invalid. Researchers have

combined the Delaunay graph with RBF [276] to improve the robustness of the orig-

inal method when large rotational deformations are performed. It is reported that

this approach preserves the near-wall mesh quality while maintaining the efficiency

of the original Delaunay graph method [276]. As the work in this thesis involves only

translational perturbations in the geometry, the original graph method, as formulated

in [263], is implemented.

The Delaunay graph is generated based on the original mesh and it is used as an

intermediate step where only the boundary nodes are involved. Performing mesh

deformation using this method involves four main steps. The first step generates the

Delaunay graph on the original mesh. The second step locates the mesh nodes in

the graph by means of the barycentric coordinate system. The third step involves

moving the Delaunay graph according to the boundary change due to the perturbation

in the geometry. The fourth step transforms the mesh from the barycentric coordinates

calculated in the second step, into the physical space using the new location of the

Delaunay graph.

Consider a generic tetrahedral element, defined by the vertices A, B, C and D, contain-

ing an internal node P, as shown in figure A.3. The node P can be uniquely defined by

the four relative volume coefficients ei defined by the facets ABCD and the point P as

ei =
|Ωi|
|Ω| , (A.7)

A.2. Delaunay graph method 149

Figure A.3: A tetrahedral element with the annotated relative volume coefficients around
node P.

for i = 1, 2, 3, 4. In the above expression, |Ωi| denotes the individual volumes belong-

ing to each quadrant and |Ω| is the total volume of the element. Given the calculated

relative volume coefficients, the new internal points of coordinates x?P in the volume

mesh are updated using the coordinates of the deformed Delaunay graph, x?, as

x?P = X?eT (A.8)

where X? = [x?A, x?B, x?C, x?D]. A walk-through algorithm is needed to identify the De-

launay element in which each mesh node lies and the associated relative volume coef-

ficients with that node. This has to be performed only once and represents the largest

computational cost of this mesh morphing scheme. Additionally, it is important to

note that the transformation from barycentric to the physical coordinates will remain

valid as long as the boundary movement does not cause inversion or flipping, result-

ing in negative volumes. When this occurs, the procedure needs to be performed at

an intermediate mesh movement step to ensure a valid mesh.

150 Appendix A. Supporting materials

A.3 The cuckoo search

The cuckoo search (CS) method [277] is a technique that mimics a behaviour observed

in nature. More precisely, the CS mimics the aggressive reproduction strategy of cuck-

oos. The strategy consists of laying the eggs at a nest of other birds, called hosts. When

a host bird discovers that the eggs are not its own, it either disposes of the alien eggs

or abandons the nest.

To translate this behaviour into an optimisation algorithm with an objective function

f (x), the method starts by generating a population of negg eggs, namely {xi}i=1,...,negg ,

and placing them in a set of nhn host nests. Each solution is represented by an egg in a

host nest and each new solution represents a cuckoo egg. For simplicity, it is assumed

that each nest contains only one egg, so that negg = nhn.

The eggs are ordered, such that i < j if Fi < Fj, where Fk = f (xk) is the fitness of the

egg xk. To simulate the discovery of alien eggs, the fraction pa of the negg eggs with

lowest fitness are replaced by new eggs. The generation of new solutions (i.e., eggs)

is performed by taking random walks [278] from a randomly selected nest. When the

fitness of the new eggs is higher than the fitness of another randomly selected solution,

the egg is moved to the new nest.

The original CS method [277] uses a random walk with a step length that is propor-

tional to a Lévy distribution, namely

xi,n+1 = xi,n + α ◦ ∆xi, (A.9)

where αk is a scaling factor, usually taken as a constant during the iterations, for the

k-th component of xi, ∆x is the step length of the random walk and ◦ denotes the

Hadamard product. The components of the step length are computed using Man-

tenga’s algorithm [278] as xi
r = ur/|vr|−β, where β ∈ [1, 2] and ur and vr are drawn

from normal distributions with zero mean and standard deviations

σu =

{
sin(βπ/2)Γ[1 + β]

2(β−1)/2βΓ[(β + 1)/2]

}−β

(A.10)

and σv = 1 respectively. Γ denotes the Gamma function and the value β = 1.5 is used

in this work.

A.3. The cuckoo search 151

A.3.1 Modified cuckoo search

In this work, the modified cuckoo search (MCS) method [75] is employed. The MCS

has demonstrated a better robustness when compared to other optimisation algo-

rithms, particularly in the context of high dimensional problems [75]. This technique

introduces two modifications to the original CS algorithm that increase the conver-

gence rate of the algorithm.

The first modification involves the definition of the scaling factor α. In the MCS it

is taken as αk = 1/nδ, where n is the generation number and δ is a parameter to

adjust the localisation of the search. This modification, inspired by the particle swarm

optimisation, ensures a localised search as the generation number increases.

The second modification adds a new feature to the original CS method, which involves

the exchange of information between solutions. The strategy consists of selecting a set

of elite eggs, with the best fitness, as a percentage pb of the total number of eggs. For

each egg within the elite, another egg, is selected randomly in the same set. Denot-

ing by xi the egg with best fitness and the second egg by xj, a new solution is then

generated as

xk = xi + ϕ−1 xj − xi

‖xj − xi‖2
, (A.11)

where ϕ = (1 +
√

5)/2 is the golden ratio. When the two eggs selected coincide, a

local random walk with step size 1/n2 is used to create a nest for the second egg.

In addition, when the fitness of both eggs selected is the same, the new solution is

computed as the mid-point between xi and xj.

The parameters for the MCS algorithm are taken from [75], namely pa = 0.75, pb =

1 − pa and δ = 0.5. In addition, to increase the efficiency of the method, a minimum

number of sets is defined, equal to 10, and the number of nests is decreased by one in

every generation.

153

Appendix B

Comparison of two NN

architectures

In order to defend the choice of NN architecture employed in this work, the perfor-

mance of two types of NN architectures is considered and compared using the exam-

ple described in section 4.1. The performance of the proposed NN, which employs

the extended variant of a multi-layer perceptron, termed as MLP in this example, is

compared against a more complex NN architecture, the long short term memory net-

work, termed as LSTM [279]. To recall, the example considered the computation of the

aerodynamic coefficients of a NACA0012 aerofoil at a free stream Mach number, M∞,

and an angle of attack, α, in predefined intervals IM = (0.3, 0.9) and Iα = (−5◦, 11◦),

respectively. Here, only the performance in the predictions of the lift coefficient are

compared.

The MLP considers M∞ and α as inputs and the output is the pressure at a user defined

set of points on the aerofoil. The set of points considered corresponds to the 300 mesh

nodes used to discretise the aerofoil. The LSTM also considers M∞ and α as inputs

and the pressure defined at the 300 mesh nodes as outputs. Both NNs are trained

using a dataset of nTr = 40 simulations and tested using nTe = 119 simulations. To

ensure a fair comparison in the training of the networks, the numerical parameters

in the momentum gradient descent, which includes the learning rate, the momentum

coefficient, and the cost function tolerance, are identical.

Figure B.1 shows the mean value of the error, measured in lift counts, as a function of

the number of hidden neurons, nN, and the number of hidden layers, nL. Figure B.1(a)

corresponds to the third network in section 4.1 of this thesis. The results show that

154 Appendix B. Comparison of two NN architectures

(a) MLP (b) LSTM

Figure B.1: Mean value of the error measured in lift counts, εCL , as a function of the number
of hidden neurons, nN, and the number of hidden layers, nL.

the MLP is weakly dependent on the number of neurons in the hidden layers. The

mean error has a tendency to decrease as the number of neurons is increased. The

best accuracy obtained with this network is 31 lift counts when one hidden layer and

70 hidden neurons is employed. The LSTM network in figure B.1(b) is also capable

of achieving a similar accuracy, however it can be observed to be more dependent on

the number of hidden neurons and hidden layers. The LSTM is observed to provide

more accurate results with two or three hidden layers using multiple combinations of

hidden neurons compared to when one hidden layer is employed. The highest accu-

racy obtained with the LSTM is 32 lift counts when two LSTM layers and 50 hidden

neurons are used.

Although LSTM is capable of predicting with similar accuracies to the MLP, this comes

at the cost of optimising the additional weights in the complex LSTM model. For in-

stance, the MLP obtains the highest accuracy when one hidden layer and nN = 70

hidden neurons are employed. This amounts to a total of 25, 131 weights in the net-

work. The MLP achieves this accuracy in 115, 602 iterations. Conversely, the LSTM

network optimises 48, 701 weights when two LSTM hidden layers are employed and

nN = 50 neurons are employed. The network converges to the set tolerance in 513, 414

iterations. We can therefore deduce that LSTM can achieve the same accuracy when

almost double the number of weights to the MLP are used. Additionally, it requires

more than four times the number of iterations to converge to the set tolerance. As a

result of these setbacks, the MLP is selected for the examples considered in this thesis.

155

Bibliography

[1] J. Jupp. “Wing aerodynamics and the science of compromise”. In: The Aeronau-

tical Journal 105.1053 (2001), pp. 633–641.

[2] A. Krein and G. Williams. “Flightpath 2050: Europes vision for aeronautics”.

In: Innovation for Sustainable Aviation in a Global Environment: Proceedings of the

Sixth European Aeronautics Days, Madrid 30 (2012).

[3] B. K. Perspectives for CFD. DGLR-2002-013, DGLR Jahrbuch 2002, Band III, Ger-

many, 2003.

[4] S. L. Brunton, J. N. Kutz, K. Manohar, A. Y. Aravkin, K. Morgansen, J. Klemisch,

N. Goebel, J. Buttrick, J. Poskin, A. Blom-Schieber, T. Hogan, and D. McDonald.

Data-Driven Aerospace Engineering: Reframing the Industry with Machine Learning.

2020. arXiv: 2008.10740 [cs.LG].

[5] A. Quarteroni and G. Rozza. Reduced order methods for modeling and computa-

tional reduction. Vol. 9. Springer, 2014.

[6] M. Fossati. “Evaluation of aerodynamic loads via reduced-order methodol-

ogy”. In: AIAA Journal 53.8 (2015), pp. 2389–2405.

[7] D. J. Lucia, P. I. King, and P. S. Beran. “Reduced order modeling of a two-

dimensional flow with moving shocks”. In: Computers & Fluids 32.7 (2003),

pp. 917–938.

[8] P. Constantine and G Iaccarino. “Reduced order models for parameterized hy-

perbolic conservations laws with shock reconstruction”. In: Center for Turbu-

lence Research Annual Brief (2012).

[9] C. Wales, A. Gaitonde, and D. Jones. “Reduced-order modeling of gust re-

sponses”. In: Journal of Aircraft 54.4 (2017), pp. 1350–1363.

[10] G. Berkooz, P. Holmes, and J. L. Lumley. “The proper orthogonal decomposi-

tion in the analysis of turbulent flows”. In: Annual review of fluid mechanics 25.1

(1993), pp. 539–575.

https://arxiv.org/abs/2008.10740

156 Bibliography

[11] T. Lieu, C. Farhat, and M. Lesoinne. “POD-based aeroelastic analysis of a com-

plete F-16 configuration: ROM adaptation and demonstration”. In: 46th AIAA

Structures, Structural Dynamics and Materials Conference. 2005, p. 2295.

[12] S. Walton, O. Hassan, and K. Morgan. “Reduced order modelling for unsteady

fluid flow using proper orthogonal decomposition and radial basis functions”.

In: Applied Mathematical Modelling 37.20-21 (2013), pp. 8930–8945.

[13] F. Ballarin, A. D’Amario, S. Perotto, and G. Rozza. “A POD-selective inverse

distance weighting method for fast parametrized shape morphing”. In: Inter-

national Journal for Numerical Methods in Engineering 117.8 (2019), pp. 860–884.

[14] G. Rozza, D. B. P. Huynh, and A. T. Patera. “Reduced basis approximation and

a posteriori error estimation for affinely parametrized elliptic coercive partial

differential equations”. In: Archives of Computational Methods in Engineering 15.3

(2008), pp. 229–275.

[15] J. S. Hesthaven, G. Rozza, and B. Stamm. Certified reduced basis methods for

parametrized partial differential equations. Vol. 590. Springer, 2016.

[16] A. L. Gaitonde and D. Jones. “Study of linear response identification techniques

and reduced-order model generation for a 2D CFD scheme”. In: International

journal for numerical methods in fluids 52.12 (2006), pp. 1361–1402.

[17] A. K. Bagheri, D. P. Jones, and A. L. Gaitonde. “Linear Reduced-Order Model

of Airfoil Gust Response”. In: Journal of Aircraft 56.3 (2019), pp. 1264–1271.

[18] K. Elsayed and C. Lacor. “CFD modeling and multi-objective optimization of

cyclone geometry using desirability function, artificial neural networks and

genetic algorithms”. In: Applied Mathematical Modelling 37.8 (2013), pp. 5680–

5704.

[19] R. Franke. “Scattered data interpolation: tests of some methods”. In: Mathemat-

ics of computation 38.157 (1982), pp. 181–200.

[20] D. J. Linse and R. F. Stengel. “Identification of aerodynamic coefficients using

computational neural networks”. In: Journal of Guidance, Control, and Dynamics

16.6 (1993), pp. 1018–1025.

[21] V. Tsiolakis, M. Giacomini, R. Sevilla, C. Othmer, and A. Huerta. “Nonintrusive

proper generalised decomposition for parametrised incompressible flow prob-

lems in OpenFOAM”. In: Computer physics communications 249 (2020), p. 107013.

[22] L. Sirovich. “Turbulence and the dynamics of coherent structures. I. Coherent

structures”. In: Quarterly of applied mathematics 45.3 (1987), pp. 561–571.

Bibliography 157

[23] E. Dowell, K. Hall, J. Thomas, R. Florea, B. Epureanu, and J. Heeg. “Reduced

order models in unsteady aerodynamics”. In: 40th Structures, Structural Dynam-

ics, and Materials Conference and Exhibit. 1999, p. 1261.

[24] K. Hall, J. Thomas, and E. Dowell. “Reduced-order modelling of unsteady

small-disturbance flows using a frequency-domain proper orthogonal decom-

position technique”. In: 37th Aerospace Sciences Meeting and Exhibit. 1999, p. 655.

[25] M. Romanowski. “Reduced order unsteady aerodynamic and aeroelastic mod-

els using Karhunen-Loeve eigenmodes”. In: 6th Symposium on Multidisciplinary

Analysis and Optimization. 1996, p. 3981.

[26] D. J. Lucia, P. S. Beran, and W. A. Silva. “Reduced-order modeling: new ap-

proaches for computational physics”. In: Progress in aerospace sciences 40.1-2

(2004), pp. 51–117.

[27] R. Yondo, E. Andrés, and E. Valero. “A review on design of experiments and

surrogate models in aircraft real-time and many-query aerodynamic analyses”.

In: Progress in aerospace sciences 96 (2018), pp. 23–61.

[28] P. LeGresley and J. Alonso. “Airfoil design optimization using reduced order

models based on proper orthogonal decomposition”. In: Fluids 2000 conference

and exhibit. 2000, p. 2545.

[29] L. Tang, P.-C. Chen, D. Liu, X.-W. Gao, W. Shyy, Y. Utturkar, and B.-N. Zhang.

“Proper orthogonal decomposition and response surface method for tps/rlv

structural design and optimization: X-34 case study”. In: 43rd AIAA Aerospace

Sciences Meeting and Exhibit. 2005, p. 839.

[30] S. Walton, O. Hassan, and K. Morgan. “Selected engineering applications of

gradient free optimisation using cuckoo search and proper orthogonal decom-

position”. In: Archives of Computational Methods in Engineering 20.2 (2013), pp. 123–

154.

[31] M. Mifsud, S. Shaw, and D. MacManus. “A high-fidelity low-cost aerodynamic

model using proper orthogonal decomposition”. In: International journal for nu-

merical methods in fluids 63.4 (2010), pp. 468–494.

[32] T Bui-Thanh, M. Damodaran, and K. Willcox. “Proper orthogonal decomposi-

tion extensions for parametric applications in compressible aerodynamics”. In:

21st AIAA Applied Aerodynamics Conference. 2003, p. 4213.

158 Bibliography

[33] V. Dolci and R. Arina. “Proper orthogonal decomposition as surrogate model

for aerodynamic optimization”. In: International Journal of Aerospace Engineering

2016 (2016).

[34] E. Iuliano and D. Quagliarella. “Proper orthogonal decomposition, surrogate

modelling and evolutionary optimization in aerodynamic design”. In: Comput-

ers & Fluids 84 (2013), pp. 327–350.

[35] T. Bui-Thanh, M. Damodaran, and K. E. Willcox. “Aerodynamic data recon-

struction and inverse design using proper orthogonal decomposition”. In: AIAA

journal 42.8 (2004), pp. 1505–1516.

[36] W. Chen, J. S. Hesthaven, B. Junqiang, Y. Qiu, Z. Yang, and Y. Tihao. “Greedy

nonintrusive reduced order model for fluid dynamics”. In: AIAA Journal 56.12

(2018), pp. 4927–4943.

[37] T. Braconnier, M. Ferrier, J.-C. Jouhaud, M. Montagnac, and P. Sagaut. “To-

wards an adaptive POD/SVD surrogate model for aeronautic design”. In: Com-

puters & Fluids 40.1 (2011), pp. 195–209.

[38] D. J. Lucia and P. S. Beran. “Projection methods for reduced order models of

compressible flows”. In: Journal of Computational Physics 188.1 (2003), pp. 252–

280.

[39] K. Willcox and J. Peraire. “Balanced model reduction via the proper orthogonal

decomposition”. In: AIAA journal 40.11 (2002), pp. 2323–2330.

[40] J. Degroote, J. Vierendeels, and K. Willcox. “Interpolation among reduced-order

matrices to obtain parameterized models for design, optimization and proba-

bilistic analysis”. In: International Journal for Numerical Methods in Fluids 63.2

(2010), pp. 207–230.

[41] J. Laurenceau and P Sagaut. “Building efficient response surfaces of aerody-

namic functions with kriging and cokriging”. In: AIAA journal 46.2 (2008), pp. 498–

507.

[42] B. Rosenbaum and V. Schulz. Comparing sampling strategies for aerodynamic Krig-

ing surrogate models. 2012.

[43] Y. Ju, C. Zhang, and L. Ma. “Artificial intelligence metamodel comparison and

application to wind turbine airfoil uncertainty analysis”. In: Advances in Me-

chanical Engineering 8.5 (2016), p. 1687814016647317.

Bibliography 159

[44] J. S. Anttonen, P. I. King, and P. S. Beran. “Applications of multi-POD to a pitch-

ing and plunging airfoil”. In: Mathematical and Computer Modelling 42.3-4 (2005),

pp. 245–259.

[45] M. Frank, D. Drikakis, and V. Charissis. “Machine-learning methods for com-

putational science and engineering”. In: Computation 8.1 (2020), p. 15.

[46] G. Sun and S. Wang. “A review of the artificial neural network surrogate mod-

eling in aerodynamic design”. In: Proceedings of the Institution of Mechanical En-

gineers, Part G: Journal of Aerospace Engineering 233.16 (2019), pp. 5863–5872.

[47] H. Chen, L. He, W. Qian, and S. Wang. “Multiple aerodynamic coefficient pre-

diction of airfoils using a convolutional neural network”. In: Symmetry 12.4

(2020), p. 544.

[48] H. Jihong, H Su, and X Zhao. “Aerodynamic coefficient prediction of airfoil

using BP neural network”. In: Advances in Aeronautical Science and Engineering

1.1 (2010), pp. 36–39.

[49] S Huang, L Miller, and J Steck. “An exploratory application of neural networks

to airfoil design”. In: 32nd Aerospace Sciences Meeting and Exhibit. 1994, p. 501.

[50] M. Santos, B. Mattos, and R. Girardi. “Aerodynamic coefficient prediction of

airfoils using neural networks”. In: 46th AIAA aerospace sciences meeting and ex-

hibit. 2008, p. 887.

[51] M. Khurana, H. Winarto, and A. Sinha. “Application of swarm approach and

artificial neural networks for airfoil shape optimization”. In: 12th AIAA/ISSMO

Multidisciplinary Analysis and Optimization Conference. 2008, p. 5954.

[52] G. Sun, Y. Sun, and S. Wang. “Artificial neural network based inverse design:

Airfoils and wings”. In: Aerospace Science and Technology 42 (2015), pp. 415–428.

[53] A. Kharal and A. Saleem. “Neural networks based airfoil generation for a given

Cp using Bezier–PARSEC parameterization”. In: Aerospace science and Technol-

ogy 23.1 (2012), pp. 330–344.

[54] W. Song and A. Keane. “A study of shape parameterisation methods for airfoil

optimisation”. In: 10th AIAA/ISSMO multidisciplinary analysis and optimization

conference. 2004, p. 4482.

[55] D. A. Masters, N. J. Taylor, T Rendall, C. B. Allen, and D. J. Poole. “Review of

aerofoil parameterisation methods for aerodynamic shape optimisation”. In:

53rd AIAA Aerospace Sciences Meeting. 2015, p. 0761.

160 Bibliography

[56] W. Chen, K. Chiu, and M. D. Fuge. “Airfoil Design Parameterization and Op-

timization Using Bézier Generative Adversarial Networks”. In: AIAA Journal

58.11 (2020), pp. 4723–4735.

[57] M Rai. “Three-dimensional aerodynamic design using artificial neural networks”.

In: 40th AIAA Aerospace Sciences Meeting & Exhibit. 2002, p. 987.

[58] F. Mazhar, A. M. Khan, I. A. Chaudhry, and M. Ahsan. “On using neural net-

works in UAV structural design for CFD data fitting and classification”. In:

Aerospace Science and Technology 30.1 (2013), pp. 210–225.

[59] V. Sekar, Q. Jiang, C. Shu, and B. C. Khoo. “Fast flow field prediction over air-

foils using deep learning approach”. In: Physics of Fluids 31.5 (2019), p. 057103.

[60] J. Yu and J. S. Hesthaven. “Flowfield reconstruction method using artificial

neural network”. In: Aiaa Journal 57.2 (2019), pp. 482–498.

[61] Y. Zhang, W. J. Sung, and D. N. Mavris. “Application of convolutional neural

network to predict airfoil lift coefficient”. In: 2018 AIAA/ASCE/AHS/ASC Struc-

tures, Structural Dynamics, and Materials Conference. 2018, p. 1903.

[62] E. Yilmaz and B. German. “A Convolutional Neural Network Approach to

Training Predictors for Airfoil Performance”. In: 18th AIAA/ISSMO Multidisci-

plinary Analysis and Optimization Conference. American Institute of Aeronautics

and Astronautics, 2017.

[63] S. Albawi, T. A. Mohammed, and S. Al-Zawi. “Understanding of a convolu-

tional neural network”. In: 2017 International Conference on Engineering and Tech-

nology (ICET). Ieee. 2017, pp. 1–6.

[64] W. Rawat and Z. Wang. “Deep convolutional neural networks for image classi-

fication: A comprehensive review”. In: Neural computation 29.9 (2017), pp. 2352–

2449.

[65] A. Kamilaris and F. X. Prenafeta-Boldú. “A review of the use of convolutional

neural networks in agriculture”. In: The Journal of Agricultural Science 156.3

(2018), pp. 312–322.

[66] E. Ulu, R. Zhang, and L. B. Kara. “A data-driven investigation and estima-

tion of optimal topologies under variable loading configurations”. In: Computer

Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 4.2

(2016), pp. 61–72.

Bibliography 161

[67] J. S. Hesthaven and S. Ubbiali. “Non-intrusive reduced order modeling of non-

linear problems using neural networks”. In: Journal of Computational Physics 363

(2018), pp. 55–78.

[68] R. Swischuk, L. Mainini, B. Peherstorfer, and K. Willcox. “Projection-based

model reduction: Formulations for physics-based machine learning”. In: Com-

puters & Fluids 179 (2019), pp. 704–717.

[69] Z. Han, K. Zhang, W. Song, and J. Liu. “Surrogate-based aerodynamic shape

optimization with application to wind turbine airfoils”. In: 51st AIAA aerospace

sciences meeting including the new horizons forum and aerospace exposition. 2013,

p. 1108.

[70] R. M. Hicks and P. A. Henne. “Wing design by numerical optimization”. In:

Journal of Aircraft 15.7 (1978), pp. 407–412.

[71] A. Jameson. “Aerodynamic design via control theory”. In: Journal of scientific

computing 3.3 (1988), pp. 233–260.

[72] D. W. Zingg, M. Nemec, and T. H. Pulliam. “A comparative evaluation of ge-

netic and gradient-based algorithms applied to aerodynamic optimization”.

In: European Journal of Computational Mechanics/Revue Européenne de Mécanique

Numérique 17.1-2 (2008), pp. 103–126.

[73] J. McCall. “Genetic algorithms for modelling and optimisation”. In: Journal of

Computational and Applied Mathematics 184.1 (2005), pp. 205–222.

[74] J. Kennedy and R. Eberhart. “Particle swarm optimization”. In: Proceedings of

IEEE International Conference on Neural Networks. 1995, pp. 1942–1948.

[75] S Walton, O Hassan, K Morgan, and M. Brown. “Modified cuckoo search: a

new gradient free optimisation algorithm”. In: Chaos, Solitons & Fractals 44.9

(2011), pp. 710–718.

[76] E. J. Whitney, M. Sefrioui, K. Srinivas, and J. Périaux. “Advances in hierarchi-

cal, parallel evolutionary algorithms for aerodynamic shape optimisation”. In:

JSME International Journal Series B Fluids and Thermal Engineering 45.1 (2002),

pp. 23–28.

[77] S. Mirjalili, J. S. Dong, A. Lewis, and A. S. Sadiq. “Particle swarm optimization:

theory, literature review, and application in airfoil design”. In: Nature-inspired

optimizers (2020), pp. 167–184.

162 Bibliography

[78] D. Naumann, B Evans, S Walton, and O Hassan. “A novel implementation of

computational aerodynamic shape optimisation using modified cuckoo search”.

In: Applied Mathematical Modelling 40.7-8 (2016), pp. 4543–4559.

[79] E. Iuliano and D. Quagliarella. “Aerodynamic design with physics-based sur-

rogates”. In: Springer Handbook of Computational Intelligence. Springer, 2015, pp. 1185–

1209.

[80] H. Kwon and S. Choi. “A trended Kriging model with R2 indicator and appli-

cation to design optimization”. In: Aerospace Science and Technology 43 (2015),

pp. 111–125.

[81] J. Mao, D. Hu, D. Li, R. Wang, and J. Song. “Novel adaptive surrogate model

based on LRPIM for probabilistic analysis of turbine disc”. In: Aerospace Science

and Technology 70 (2017), pp. 76–87.

[82] V. Sekar, M. Zhang, C. Shu, and B. C. Khoo. “Inverse Design of Airfoil Using

a Deep Convolutional Neural Network”. In: AIAA Journal 57.3 (2019), pp. 993–

1003.

[83] M. M. Rai and N. K. Madavan. “Aerodynamic design using neural networks”.

In: AIAA journal 38.1 (2000), pp. 173–182.

[84] L. Hu, J. Zhang, Y. Xiang, and W. Wang. “Neural networks-based aerodynamic

data modeling: A comprehensive review”. In: IEEE Access 8 (2020), pp. 90805–

90823.

[85] J. Slotnick, A. Khodadoust, J. Alonso, D. Darmofal, W. Gropp, E. Lurie, and

D. Mavriplis. CFD vision 2030 study: a path to revolutionary computational aero-

sciences. 2014.

[86] S. Suresh, S. Omkar, V. Mani, and T. G. Prakash. “Lift coefficient prediction at

high angle of attack using recurrent neural network”. In: Aerospace Science and

Technology 7.8 (2003), pp. 595–602.

[87] N. R. Secco and B. S. Mattos. “Artificial Neural Networks Applied to Airplane

Design”. In: 53rd AIAA Aerospace Sciences Meeting. 2015, p. 1013.

[88] O. Hassan, K. Morgan, and N. Weatherill. Flite system version 4 Theoretical Man-

ual. Swansea University. 2009.

[89] A. Thom. “The flow past circular cylinders at low speeds”. In: Proceedings of the

Royal Society of London. Series A, Containing Papers of a Mathematical and Physical

Character 141.845 (1933), pp. 651–669.

Bibliography 163

[90] J. M. McDonough. “Introductory lectures on turbulence: physics, mathematics

and modeling”. In: (2007).

[91] K. V. Belyaev, A. V. Garbaruk, M. L. Shur, M. K. Strelets, and P. R. Spalart.

“Experience of direct numerical simulation of turbulence on supercomputers”.

In: Russian Supercomputing Days. Springer. 2016, pp. 67–77.

[92] J. F. Wendt. Computational fluid dynamics: an introduction. Springer Science &

Business Media, 2008.

[93] K. Morgan, J. Peraire, J. Peiro, and O. Hassan. “The computation of three-

dimensional flows using unstructured grids”. In: Computer Methods in Applied

Mechanics and Engineering 87.2-3 (1991), pp. 335–352.

[94] K. A. Sørensen, O. Hassan, K. Morgan, and N. P. Weatherill. “A multigrid accel-

erated hybrid unstructured mesh method for 3D compressible turbulent flow”.

In: Computational Mechanics 31.1-2 (2003), pp. 101–114.

[95] R. Sevilla and S. Fernández-Méndez. “Numerical integration over 2D NURBS-

shaped domains with applications to NURBS-enhanced FEM”. In: Finite Ele-

ments in Analysis and Design 47.10 (2011), pp. 1209–1220.

[96] R. Sevilla, S. Fernández-Méndez, and A. Huerta. “Comparison of high-order

curved finite elements”. In: International Journal for Numerical Methods in Engi-

neering 87.8 (2011), pp. 719–734.

[97] R. Sevilla and A. Huerta. “HDG-NEFEM with degree adaptivity for Stokes

flows”. In: Journal of Scientific Computing 77.3 (2018), pp. 1953–1980.

[98] D. C. Wilcox. Turbulence modeling for CFD. Vol. 2. DCW industries La Canada,

CA, 1998.

[99] M. Wolfshtein. “Some comments on turbulence modelling”. In: International

journal of heat and mass transfer 52.17-18 (2009), pp. 4103–4107.

[100] P. R. Spalart. “Strategies for turbulence modelling and simulations”. In: Inter-

national journal of heat and fluid flow 21.3 (2000), pp. 252–263.

[101] P. Spalart, W. Jou, M Strelets, and S. Allmaras. “Comments on the feasibility of

LES for wings, and on a hybrid RANS/LES approach.” In: Conf. on DNS/LES.

1997.

[102] S. Krajnović. “Large eddy simulation of flows around ground vehicles and

other bluff bodies”. In: Philosophical Transactions of the Royal Society A: Mathe-

matical, Physical and Engineering Sciences (2009).

164 Bibliography

[103] A. Hutton. “The emerging role of large eddy simulation in industrial practice:

challenges and opportunities”. In: Philosophical Transactions of the Royal Society

A: Mathematical, Physical and Engineering Sciences (2009).

[104] O. Reynolds. “On the dynamical theory of incompressible viscous fluids andthe

determination of the criterion”. In: Proceedings of the Royal Society of London

56.336-339 (1894), pp. 40–45.

[105] A. Favre. The equations of compressible turbulent gases. Tech. rep. Aix-Marseille

Univ (France) Inst de Mecanique Statisque de la Turbulence, 1965.

[106] M. V. Morkovin. “Effects of compressibility on turbulent flows”. In: Mécanique

de la Turbulence (1962).

[107] J. Blazek. Computational fluid dynamics: principles and applications. Butterworth-

Heinemann, 2015.

[108] P Bradshaw. “Possible origin of Prandt’s mixing-length theory”. In: Nature 249.5453

(1974), pp. 135–136.

[109] A. Smith and T. Cebeci. Numerical solution of the turbulent-boundary-layer equa-

tions. Tech. rep. Douglas Aircraft Co Long Beach CA, 1967.

[110] B. Baldwin and H. Lomax. “Thin-layer approximation and algebraic model for

separated turbulentflows”. In: 16th aerospace sciences meeting. 1978, p. 257.

[111] B. Baldwin and T. Barth. “A one-equation turbulence transport model for high

Reynolds number wall-bounded flows”. In: 29th Aerospace Sciences Meeting.

1991, p. 610.

[112] P. Spalart and S. Allmaras. “A One-Equation Turbulence Model for Aerody-

namic Flows”. In: AIAA 439 (Jan. 1992).

[113] J. E. Bardina, P. G. Huang, and T. J. Coakley. “Turbulence modeling validation,

testing, and development”. In: (1997).

[114] V. A. Sai and F. M. Lutfy. “Analysis of the Baldwin-Barth and Spalart-Allmaras

one-equation turbulence model”. In: AIAA journal 33.10 (1995), pp. 1971–1974.

[115] B. E. Launder and B. Sharma. “Application of the energy-dissipation model of

turbulence to the calculation of flow near a spinning disc”. In: Letters in heat and

mass transfer 1.2 (1974), pp. 131–137.

[116] C. G. Speziale, R. Abid, and E. C. Anderson. “Critical evaluation of two-equation

models for near-wall turbulence”. In: AIAA journal 30.2 (1992), pp. 324–331.

[117] F. R. Menter. “Two-equation eddy-viscosity turbulence models for engineering

applications”. In: AIAA journal 32.8 (1994), pp. 1598–1605.

Bibliography 165

[118] F. Menter and C. Rumsey. “Assessment of two-equation turbulence models for

transonic flows”. In: Fluid Dynamics Conference. 1994, p. 2343.

[119] P. Spalart and S. Allmaras. “A one-equation turbulence model for aerodynamic

flows”. In: 30th aerospace sciences meeting and exhibit. 1992, p. 439.

[120] Y. Tamura and K. Fujii. “Conservation law for moving and transformed grids”.

In: 11th Computational Fluid Dynamics Conference. 1993, p. 3365.

[121] B. Nkonga and H. Guillard. “Godunov type method on non-structured meshes

for three-dimensional moving boundary problems”. In: Computer methods in

applied mechanics and engineering 113.1-2 (1994), pp. 183–204.

[122] V. D. Liseikin. Grid generation methods. Vol. 1. Springer, 1999.

[123] N. Weatherill. “A method for generating irregular computational grids in mul-

tiply connected planar domains”. In: International Journal for Numerical Methods

in Fluids 8.2 (1988), pp. 181–197.

[124] J. Peraire, M. Vahdati, K. Morgan, and O. C. Zienkiewicz. “Adaptive remeshing

for compressible flow computations”. In: Journal of computational physics 72.2

(1987), pp. 449–466.

[125] N. P. Weatherill and O. Hassan. “Efficient three-dimensional Delaunay trian-

gulation with automatic point creation and imposed boundary constraints”. In:

International Journal for Numerical Methods in Engineering 37.12 (1994), pp. 2005–

2039.

[126] D. Smith, M. Lowenberg, D. Jones, and M. Friswell. “Computational and ex-

perimental validation of the active morphing wing”. In: Journal of Aircraft 51.3

(2014), pp. 925–937.

[127] G. L. Dirichlet. “Über die Reduction der positiven quadratischen Formen mit

drei unbestimmten ganzen Zahlen.” In: Journal für die reine und angewandte

Mathematik 1850.40 (1850), pp. 209–227.

[128] J. F. Thompson, B. K. Soni, and N. P. Weatherill. Handbook of grid generation.

CRC press, 1998.

[129] P. J. Green and R. Sibson. “Computing Dirichlet tessellations in the plane”. In:

The computer journal 21.2 (1978), pp. 168–173.

[130] J. A. George. Computer implementation of the finite element method. Tech. rep. De-

partment of Computer Science Stanford University, 1971.

166 Bibliography

[131] J. Peraire, J. Peiro, L. Formaggia, K. Morgan, and O. C. Zienkiewicz. “Finite

element Euler computations in three dimensions”. In: International Journal for

Numerical Methods in Engineering 26.10 (1988), pp. 2135–2159.

[132] O. Hassan, E. Probert, K Morgan, and J Peraire. “Mesh generation and adaptiv-

ity for the solution of compressible viscous high speed flows”. In: International

journal for numerical methods in engineering 38.7 (1995), pp. 1123–1148.

[133] O. Hassan, K Morgan, E. Probert, and J Peraire. “Unstructured tetrahedral

mesh generation for three-dimensional viscous flows”. In: International Journal

for Numerical Methods in Engineering 39.4 (1996), pp. 549–567.

[134] R. Eymard, T. Gallouët, and R. Herbin. “Finite volume methods”. In: Handbook

of numerical analysis 7 (2000), pp. 713–1018.

[135] K Morgan and J Peraire. “Unstructured grid finite-element methods for fluid

mechanics”. In: Reports on Progress in Physics 61.6 (1998), p. 569.

[136] N. Kroll and J. K. Fassbender, eds. MEGAFLOW - Numerical Flow Simulation for

Aircraft Design. Springer Berlin Heidelberg, 2005.

[137] P. I. Crumpton, P. Moinier, and M. B. Giles. “An unstructured algorithm for

high Reynolds number flows on highly stretched grids”. In: Proceedings of the

10th International Conference on Numerical Methods for Laminar and Turbulent Flows.

Vol. 21. 1997, p. 25.

[138] T. J. Barth. “Aspects of unstructured grids and finite-volume solvers for the

Euler and Navier-Stokes equations”. In: AGARD (1992).

[139] R. Sevilla, L. M. Vieira, M. Giacomini, and A. Huerta. “A second-order face-

centred finite volume method for elliptic problems”. In: Computer Methods in

Applied Mechanics and Engineering 358 (2020), p. 112655.

[140] B. Diskin, J. L. Thomas, E. J. Nielsen, H. Nishikawa, and J. A. White. “Compar-

ison of node-centered and cell-centered unstructured finite-volume discretiza-

tions: viscous fluxes”. In: AIAA journal 48.7 (2010), pp. 1326–1338.

[141] K. Sørensen, O Hassan, K Morgan, and N. Weatherill. “A multigrid accelerated

time-accurate inviscid compressible fluid flow solution algorithm employing

mesh movement and local remeshing”. In: International journal for numerical

methods in fluids 43.5 (2003), pp. 517–536.

[142] R. Chima, E. Turkel, and S. Schaffer. “Comparison of three explicit multigrid

methods for the Euler and Navier-Stokes equations”. In: 25th AIAA Aerospace

Sciences Meeting. 1987, p. 602.

Bibliography 167

[143] A. Jameson, W. Schmidt, and E. Turkel. “Numerical solution of the Euler equa-

tions by finite volume methods using Runge Kutta time stepping schemes”. In:

14th fluid and plasma dynamics conference. 1981, p. 1259.

[144] R. Seanson and E. Turkel. Multistage schemes with multigrid for Euler and Navier-

Stokes equations. NASA, Langley Research Center, 1997.

[145] F. Chinesta, E. Cueto, and A. Huerta. “PGD for solving multidimensional and

parametric models”. In: Separated representations and PGD-based model reduction.

Vol. 554. CISM Courses and Lectures. Springer, Vienna, 2014, pp. 27–89.

[146] F. Chinesta, R. Keunings, and A. Leygue. The proper generalized decomposition

for advanced numerical simulations. A primer. Springer Briefs in Applied Sciences

and Technology. Springer, Cham, 2014, p. 117.

[147] R. Sevilla, S. Zlotnik, and A. Huerta. “Solution of geometrically parametrised

problems within a CAD environment via model order reduction”. In: Computer

Methods in Applied Mechanics and Engineering 358 (2020), p. 112631.

[148] J.-N. Juang and R. S. Pappa. “An eigensystem realization algorithm for modal

parameter identification and model reduction”. In: Journal of guidance, control,

and dynamics 8.5 (1985), pp. 620–627.

[149] F. Chinesta, A. Huerta, G. Rozza, and K. Willcox. “Model order reduction”. In:

Encyclopedia of Computational Mechanics (2016).

[150] X. Zou, M. Conti, P. Díez, and F. Auricchio. “A nonintrusive proper general-

ized decomposition scheme with application in biomechanics”. In: International

Journal for Numerical Methods in Engineering 113.2 (2018), pp. 230–251.

[151] A. Leon, S. Mueller, P. de Luca, R. Said, J.-L. Duval, and F. Chinesta. “Non-

intrusive proper generalized decomposition involving space and parameters:

application to the mechanical modeling of 3D woven fabrics”. In: Advanced

Modeling and Simulation in Engineering Sciences 6.1 (2019), p. 13.

[152] P.-E. Allier, L. Chamoin, and P. Ladevèze. “Proper generalized decomposition

computational methods on a benchmark problem: introducing a new strategy

based on constitutive relation error minimization”. In: Advanced Modeling and

Simulation in Engineering Sciences (2015).

[153] M Amabili and C. Touzé. “Reduced-order models for nonlinear vibrations of

fluid-filled circular cylindrical shells: comparison of POD and asymptotic non-

linear normal modes methods”. In: Journal of fluids and structures 23.6 (2007),

pp. 885–903.

168 Bibliography

[154] J. Burkardt, M. Gunzburger, and H.-C. Lee. “POD and CVT-based reduced-

order modeling of Navier–Stokes flows”. In: Computer methods in applied me-

chanics and engineering 196.1-3 (2006), pp. 337–355.

[155] M. I. Jordan and T. M. Mitchell. “Machine learning: Trends, perspectives, and

prospects”. In: Science 349.6245 (2015), pp. 255–260.

[156] M. J. Khoury and J. P. Ioannidis. “Big data meets public health”. In: Science

346.6213 (2014), pp. 1054–1055.

[157] T. Wuest, D. Weimer, C. Irgens, and K.-D. Thoben. “Machine learning in man-

ufacturing: advantages, challenges, and applications”. In: Production & Manu-

facturing Research 4.1 (2016), pp. 23–45.

[158] R. Baker. “Data mining for education”. In: International encyclopedia of education

7.3 (2010), pp. 112–118.

[159] L. Einav and J. Levin. “Economics in the age of big data”. In: Science 346.6210

(2014).

[160] G. Cui, M. L. Wong, and H.-K. Lui. “Machine learning for direct marketing re-

sponse models: Bayesian networks with evolutionary programming”. In: Man-

agement Science 52.4 (2006), pp. 597–612.

[161] J. E. Van Engelen and H. H. Hoos. “A survey on semi-supervised learning”. In:

Machine Learning 109.2 (2020), pp. 373–440.

[162] J. Willard, X. Jia, S. Xu, M. Steinbach, and V. Kumar. “Integrating physics-based

modeling with machine learning: A survey”. In: arXiv preprint arXiv:2003.04919

(2020).

[163] L. Breiman. “Random forests”. In: Machine learning 45.1 (2001), pp. 5–32.

[164] S. L. Brunton and J. N. Kutz. Data-driven science and engineering: Machine learn-

ing, dynamical systems, and control. Cambridge University Press, 2019.

[165] X. Wu. “Top 10 algorithms in data mining”. In: Knowledge and Information Sys-

tems (2008).

[166] S. Sharma, J. Agrawal, S. Agarwal, and S. Sharma. “Machine learning tech-

niques for data mining: A survey”. In: 2013 IEEE International Conference on

Computational Intelligence and Computing Research. IEEE. 2013, pp. 1–6.

[167] R. Gholami and N. Fakhari. “Support vector machine: principles, parameters,

and applications”. In: Handbook of Neural Computation. Elsevier, 2017, pp. 515–

535.

Bibliography 169

[168] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio. Deep learning. Vol. 1. MIT

press Cambridge, 2016.

[169] K. Hornik, M. Stinchcombe, and H. White. “Multilayer feedforward networks

are universal approximators.” In: Neural networks 2.5 (1989), pp. 359–366.

[170] L. Torrey and J. Shavlik. “Transfer learning”. In: Handbook of research on machine

learning applications and trends: algorithms, methods, and techniques. IGI global,

2010, pp. 242–264.

[171] J. Flynn and C. Giannetti. “Using Convolutional Neural Networks to Map Houses

Suitable for Electric Vehicle Home Charging”. In: AI 2.1 (2021), pp. 135–149.

[172] T. Kohonen. “The self-organizing map”. In: Proceedings of the IEEE 78.9 (1990),

pp. 1464–1480.

[173] L. Cao, K. S. Chua, W. Chong, H. Lee, and Q. Gu. “A comparison of PCA,

KPCA and ICA for dimensionality reduction in support vector machine”. In:

Neurocomputing 55.1-2 (2003), pp. 321–336.

[174] R. Rosipal, M. Girolami, L. J. Trejo, and A. Cichocki. “Kernel PCA for feature

extraction and de-noising in nonlinear regression”. In: Neural Computing & Ap-

plications 10.3 (2001), pp. 231–243.

[175] B. Schölkopf, S. Mika, A. Smola, G. Rätsch, and K.-R. Müller. “Kernel PCA

pattern reconstruction via approximate pre-images”. In: International Conference

on Artificial Neural Networks. Springer. 1998, pp. 147–152.

[176] M. A. Kramer. “Nonlinear principal component analysis using autoassociative

neural networks”. In: AIChE journal 37.2 (1991), pp. 233–243.

[177] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. “Extracting and com-

posing robust features with denoising autoencoders”. In: Proceedings of the 25th

international conference on Machine learning. 2008, pp. 1096–1103.

[178] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.

Courville, and Y. Bengio. “Generative adversarial nets”. In: Advances in neural

information processing systems. 2014, pp. 2672–2680.

[179] D. Berthelot, N. Carlini, I. Goodfellow, N. Papernot, A. Oliver, and C. Raffel.

“Mixmatch: A holistic approach to semi-supervised learning”. In: arXiv preprint

arXiv:1905.02249 (2019).

[180] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen.

“Improved techniques for training gans”. In: Advances in neural information pro-

cessing systems 29 (2016), pp. 2234–2242.

170 Bibliography

[181] D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling. “Semi-supervised

learning with deep generative models”. In: Advances in neural information pro-

cessing systems. 2014, pp. 3581–3589.

[182] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press,

2018.

[183] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A.

Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. “Human-level con-

trol through deep reinforcement learning”. In: nature 518.7540 (2015), pp. 529–

533.

[184] S. L. Brunton, B. R. Noack, and P. Koumoutsakos. “Machine Learning for Fluid

Mechanics”. In: Annual Review of Fluid Mechanics 52.1 (2020), pp. 477–508.

[185] S. Verma, G. Novati, and P. Koumoutsakos. “Efficient collective swimming by

harnessing vortices through deep reinforcement learning”. In: Proceedings of the

National Academy of Sciences 115.23 (2018), pp. 5849–5854.

[186] G. Kerschen, J.-c. Golinval, A. F. Vakakis, and L. A. Bergman. “The method

of proper orthogonal decomposition for dynamical characterization and order

reduction of mechanical systems: an overview”. In: Nonlinear dynamics 41.1-3

(2005), pp. 147–169.

[187] M. Bergmann and L. Cordier. “Optimal control of the cylinder wake in the

laminar regime by trust-region methods and POD reduced-order models”. In:

Journal of Computational Physics 227.16 (2008), pp. 7813–7840.

[188] P. Holmes, J. L. Lumley, G. Berkooz, and C. W. Rowley. Turbulence, coherent

structures, dynamical systems and symmetry. Cambridge university press, 2012.

[189] M. V. Tabib and J. B. Joshi. “Analysis of dominant flow structures and their

flow dynamics in chemical process equipment using snapshot proper orthog-

onal decomposition technique”. In: Chemical Engineering Science 63.14 (2008),

pp. 3695–3715.

[190] F. Fang, C. Pain, I. Navon, G. Gorman, M. Piggott, P. Allison, P. Farrell, and A.

Goddard. “A POD reduced order unstructured mesh ocean modelling method

for moderate Reynolds number flows”. In: Ocean Modelling 28.1-3 (2009), pp. 127–

136.

[191] J. Rambo and Y. Joshi. “Reduced-order modeling of turbulent forced convec-

tion with parametric conditions”. In: International journal of heat and mass trans-

fer 50.3-4 (2007), pp. 539–551.

Bibliography 171

[192] Y. Cao, J. Zhu, Z. Luo, and I. M. Navon. “Reduced-order modeling of the up-

per tropical pacific ocean model using proper orthogonal decomposition”. In:

Computers & mathematics with Applications 52.8-9 (2006), pp. 1373–1386.

[193] A. Iollo, S. Lanteri, and J.-A. Désidéri. “Stability properties of POD–Galerkin

approximations for the compressible Navier–Stokes equations”. In: Theoretical

and Computational Fluid Dynamics 13.6 (2000), pp. 377–396.

[194] C. Huang, W. E. Anderson, and C. Merkle. “Exploration of POD-Galerkin Tech-

niques for Developing Reduced Order Models of the Euler Equations”. In:

AIAA Modeling and Simulation Technologies Conference. 2016, p. 1917.

[195] D Xiao, F Fang, J Du, C. Pain, I. Navon, A. Buchan, A. H. Elsheikh, and G

Hu. “Non-linear Petrov–Galerkin methods for reduced order modelling of the

Navier–Stokes equations using a mixed finite element pair”. In: Computer Meth-

ods In Applied Mechanics and Engineering 255 (2013), pp. 147–157.

[196] Y. Wang, B. Yu, Z. Cao, W. Zou, and G. Yu. “A comparative study of POD

interpolation and POD projection methods for fast and accurate prediction of

heat transfer problems”. In: International Journal of Heat and Mass Transfer 55.17-

18 (2012), pp. 4827–4836.

[197] Y.-G. Wang, Z.-N. Li, B. Gong, and Q.-S. Li. “Reconstruction & prediction of

wind pressure on heliostat”. In: Kongqi Donglixue Xuebao/Acta Aerodynamica

Sinica 27.5 (2009), pp. 586–591.

[198] D Xiao, F Fang, C Pain, and G Hu. “Non-intrusive reduced-order modelling

of the Navier–Stokes equations based on RBF interpolation”. In: International

Journal for Numerical Methods in Fluids 79.11 (2015), pp. 580–595.

[199] M. D. Buhmann. Radial basis functions: theory and implementations. Vol. 12. Cam-

bridge university press, 2003.

[200] M. Sharan, E. Kansa, and S. Gupta. “Application of the multiquadric method

for numerical solution of elliptic partial differential equations”. In: (1997).

[201] W. Costin and C. Allen. “Numerical study of radial basis function interpolation

for data transfer across discontinuous mesh interfaces”. In: International Journal

for Numerical Methods in Fluids 72.10 (2013), pp. 1076–1095.

[202] A. K. Michler. “Aircraft control surface deflection using RBF-based mesh de-

formation”. In: International Journal for Numerical Methods in Engineering 88.10

(2011), pp. 986–1007.

172 Bibliography

[203] Z. Majdisova and V. Skala. “Radial basis function approximations: comparison

and applications”. In: Applied Mathematical Modelling 51 (2017), pp. 728–743.

[204] B. Fornberg and N. Flyer. “Accuracy of radial basis function interpolation and

derivative approximations on 1-D infinite grids”. In: Advances in Computational

Mathematics 23.1-2 (2005), pp. 5–20.

[205] V. Shcherbakov and E. Larsson. “Radial basis function partition of unity meth-

ods for pricing vanilla basket options”. In: Computers & Mathematics with Appli-

cations 71.1 (2016), pp. 185–200.

[206] M. D. Buhmann. “Radial functions on compact support”. In: Proceedings of the

Edinburgh Mathematical Society 41.1 (1998), pp. 33–46.

[207] M. Buhmann. “A new class of radial basis functions with compact support”.

In: Mathematics of Computation 70.233 (2001), pp. 307–318.

[208] F. C. Menandro, C. F. L. Neto, H. J. Meira, and R. P. Bastos. “Compactly sup-

ported radial basis functions for function interpolation: Comparative behaviour”.

In: Mecánica Computacional 29.47 (2010), pp. 4733–4752.

[209] D. Broomhead and D Lowe. “Multivariable functional interpolation and adap-

tive networks, complex systems, vol. 2”. In: (1988).

[210] T. Krishnamurthy. “Comparison of response surface construction methods for

derivative estimation using moving least squares, kriging and radial basis func-

tions”. In: 46th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and

materials conference. 2005, p. 1821.

[211] S. Rippa. “An algorithm for selecting a good value for the parameter c in radial

basis function interpolation”. In: Advances in Computational Mathematics 11.2-3

(1999), pp. 193–210.

[212] R. Sadiq, M. J. Rodriguez, and H. R. Mian. “Empirical models to predict disin-

fection by-products (DBPs) in drinking water: an updated review”. In: (2019).

[213] M. M. Nelson and W. T. Illingworth. A practical guide to neural nets. Reading,

MA (USA); Addison-Wesley Publishing Co., Inc., 1991.

[214] T. N. Sainath, O. Vinyals, A. Senior, and H. Sak. “Convolutional, long short-

term memory, fully connected deep neural networks”. In: 2015 IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2015,

pp. 4580–4584.

[215] M. Hagan, H. Demuth, M. Beale, and O. DeJesus. Neural network design, 2nd

edition. Martin Hagan, 2014.

Bibliography 173

[216] A. R. Zamir, T.-L. Wu, L. Sun, W. B. Shen, B. E. Shi, J. Malik, and S. Savarese.

“Feedback networks”. In: Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition. 2017, pp. 1308–1317.

[217] S. Trenn. “Multilayer perceptrons: Approximation order and necessary number

of hidden units”. In: IEEE transactions on neural networks 19.5 (2008), pp. 836–

844.

[218] P. Mazzatorta, E. Benfenati, D. Neagu, and G. Gini. “The importance of scaling

in data mining for toxicity prediction”. In: Journal of chemical information and

computer sciences 42.5 (2002), pp. 1250–1255.

[219] B. Karlik and A. V. Olgac. “Performance analysis of various activation func-

tions in generalized MLP architectures of neural networks”. In: International

Journal of Artificial Intelligence and Expert Systems 1.4 (2011), pp. 111–122.

[220] S. Wang, T. Zhou, and J. Bilmes. “Bias also matters: Bias attribution for deep

neural network explanation”. In: International Conference on Machine Learning.

2019, pp. 6659–6667.

[221] T. Amaral, L. M. Silva, L. A. Alexandre, C. Kandaswamy, J. M. Santos, and J. M.

de Sá. “Using different cost functions to train stacked auto-encoders”. In: 2013

12th Mexican international conference on artificial intelligence. IEEE. 2013, pp. 114–

120.

[222] E. Abounoori and M. Ali Heydari. “Comparison of Kullback-Leibler, Hellinger

and LINEX with Quadratic Loss Function in Bayesian Dynamic Linear Models:

Forecasting of Real Price of Oil”. In: International Journal of Business and Devel-

opment Studies 12.1 (2020), pp. 21–39.

[223] Y. Liu, H. Zhang, X. Zhang, and Y. Cao. “Investigation of Cost Function for

Supervised Monaural Speech Separation.” In: INTERSPEECH. 2019, pp. 3178–

3182.

[224] D. Pham and D. Karaboga. Intelligent optimisation techniques: genetic algorithms,

tabu search, simulated annealing and neural networks. Springer Science & Business

Media, 2012.

[225] W. Brogan. Modern control theory. 3rd Ed. Englewood cliffs,NJ: Prentice-Hall,

1991.

[226] C. A. Floudas and P. M. Pardalos. Encyclopedia of optimization. Springer Science

& Business Media, 2008.

[227] L. Scales. Introduction to non-linear optimization. Macmillan Education UK, 1985.

174 Bibliography

[228] M. Hestenes and E. Stiefel. “Methods of conjugate gradients for solving linear

systems”. In: Journal of Research of the National Bureau of Standards 49.6 (1952).

[229] I. Sutskever, J. Martens, G. Dahl, and E. Geoffrey. “On the importance of initiali-

sation and momentum in deep learning”. In: Proceedings of the 30th international

conference on machine learning (ICML-13). Vol. 28. Atlanta, 2013, pp. 1139–1147.

[230] J. L. Holi and J. Hwang. “Finite precision error analysis of neural network hard-

ware implementations”. In: IEEE Transactions on Computers 42.3 (1993), pp. 281–

290.

[231] C. M. Bishop. Pattern recognition and machine learning. springer, 2006.

[232] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdi-

nov. “Improving neural networks by preventing co-adaptation of feature de-

tectors”. In: arXiv preprint arXiv:1207.0580 (2012).

[233] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei.

“Large-scale video classification with convolutional neural networks”. In: Pro-

ceedings of the IEEE conference on Computer Vision and Pattern Recognition. 2014,

pp. 1725–1732.

[234] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-

houcke, and A. Rabinovich. “Going deeper with convolutions”. In: Proceedings

of the IEEE conference on computer vision and pattern recognition. 2015, pp. 1–9.

[235] Y. Liu, J. A. Starzyk, and Z. Zhu. “Optimized approximation algorithm in neu-

ral networks without overfitting”. In: IEEE transactions on neural networks 19.6

(2008), pp. 983–995.

[236] S. Haykin. Neural networks: a comprehensive foundation. Prentice-Hall, Inc., 2007.

[237] R. M. Zur, Y. Jiang, L. L. Pesce, and K. Drukker. “Noise injection for training ar-

tificial neural networks: A comparison with weight decay and early stopping”.

In: Medical physics 36.10 (2009), pp. 4810–4818.

[238] A. F. Murray and P. J. Edwards. “Enhanced MLP performance and fault toler-

ance resulting from synaptic weight noise during training”. In: IEEE Transac-

tions on neural networks 5.5 (1994), pp. 792–802.

[239] J. Sum and K. Ho. “SNIWD: Simultaneous weight noise injection with weight

decay for MLP training”. In: International Conference on Neural Information Pro-

cessing. Springer. 2009, pp. 494–501.

Bibliography 175

[240] A. Neelakantan, L. Vilnis, Q. V. Le, I. Sutskever, L. Kaiser, K. Kurach, and J.

Martens. “Adding gradient noise improves learning for very deep networks”.

In: arXiv preprint arXiv:1511.06807 (2015).

[241] S. Ognawala and J. Bayer. “Regularizing Recurrent Networks-On Injected Noise

and Norm-based Methods”. In: arXiv preprint arXiv:1410.5684 (2014).

[242] A. Krogh and J. A. Hertz. “A simple weight decay can improve generalization”.

In: Advances in neural information processing systems. 1992, pp. 950–957.

[243] H. Zhao, Y.-H. H. Tsai, R. R. Salakhutdinov, and G. J. Gordon. “Learning Neural

Networks with Adaptive Regularization”. In: Advances in Neural Information

Processing Systems. 2019, pp. 11389–11400.

[244] J. Chorowski and J. M. Zurada. “Learning understandable neural networks

with nonnegative weight constraints”. In: IEEE transactions on neural networks

and learning systems 26.1 (2014), pp. 62–69.

[245] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. “Learning representations by

back-propagating errors”. In: Nature 323.6088 (1986), pp. 533–536.

[246] A. Y. Ng. “Feature selection, L 1 vs. L 2 regularization, and rotational invari-

ance”. In: Proceedings of the twenty-first international conference on Machine learn-

ing. 2004, p. 78.

[247] D. J. MacKay. “Bayesian interpolation”. In: Neural computation 4.3 (1992), pp. 415–

447.

[248] X. Glorot and Y. Bengio. “Understanding the difficulty of training deep feed-

forward neural networks”. In: Proceedings of the Thirteenth International Confer-

ence on Artificial Intelligence and Statistics. Ed. by Y. W. Teh and M. Titterington.

Vol. 9. Proceedings of Machine Learning Research. 2010, pp. 249–256.

[249] T. J. Mitchell. “An algorithm for the construction of D-optimal experimental

designs”. In: Technometrics 42.1 (2000), pp. 48–54.

[250] G. Taguchi and Y. Yokoyama. Taguchi methods: design of experiments. Vol. 4. Amer

Supplier Inst, 1993.

[251] M. D. Mckay, R. J. Beckman, and W. J. Conover. “A comparison of three meth-

ods for selecting values of input variables in the analysis of output from a com-

puter code”. In: Technometrics 42.1 (2000), pp. 55–61.

[252] M. D. Shields and J. Zhang. “The generalization of Latin hypercube sampling”.

In: Reliability Engineering & System Safety 148 (2016), pp. 96–108.

176 Bibliography

[253] G. G. Wang. “Adaptive response surface method using inherited latin hyper-

cube design points”. In: J. Mech. Des. 125.2 (2003), pp. 210–220.

[254] R. Unal, R. Lepsch, and M. McMillin. “Response surface model building and

multidisciplinary optimization using D-optimal designs”. In: 7th AIAA Sympo-

sium on Multidisciplinary Analysis and Optimization. 1998, p. 4759.

[255] G. G. Wang and S. Shan. “Review of Metamodeling Techniques in Support of

Engineering Design Optimization”. In: Journal of Mechanical Design 129.4 (2006),

pp. 370–380.

[256] D. E. Bossert, S. L. Morris, W. F. Hallgren, and T. R. Yechout. Introduction to

aircraft flight mechanics: Performance, static stability, dynamic stability, and classical

feedback control. American Institute of Aeronautics and Astronautics, 2003.

[257] A. Chatterjee. “An introduction to the proper orthogonal decomposition”. In:

Current science (2000), pp. 808–817.

[258] J. Mayeur, A. Dumont, V. Gleize, and D. Destarac. “RANS simulations on TMR

3D test cases with the Onera elsA flow solver”. In: 54th AIAA Aerospace Sciences

Meeting. 2016, p. 1357.

[259] L. R. Herrmann. “Laplacian-isoparametric grid generation scheme”. In: Journal

of the Engineering Mechanics Division 102.5 (1976), pp. 749–907.

[260] C. Harris. NASA Supercritical Airfoils: A Matrix of Family-related Airfoils. NASA

technical paper. National Aeronautics, Space Administration, Office of Man-

agement, Scientific, and Technical Information Division, 1990.

[261] G. G. Slabaugh. “Computing Euler angles from a rotation matrix”. In: Retrieved

on August 6.2000 (1999), pp. 39–63.

[262] R. C. Hibbeler and S. Fan. Statics and mechanics of materials. Vol. 2. Prentice Hall

Upper Saddle River, 2004.

[263] X. Liu, N. Qin, and H. Xia. “Fast dynamic grid deformation based on Delaunay

graph mapping”. In: Journal of Computational Physics 211.2 (2006), pp. 405–423.

[264] S. Komala-Sheshachala, R. Sevilla, and O. Hassan. “A coupled HDG-FV scheme

for the simulation of transient inviscid compressible flows”. In: Computers &

Fluids 202 (2020), p. 104495.

[265] P. J. Sallis, W. Claster, and S. Hernández. “A machine-learning algorithm for

wind gust prediction”. In: Computers & geosciences 37.9 (2011), pp. 1337–1344.

Bibliography 177

[266] W. Hou, D. Darakananda, and J. D. Eldredge. “Machine-learning-based detec-

tion of aerodynamic disturbances using surface pressure measurements”. In:

AIAA Journal 57.12 (2019), pp. 5079–5093.

[267] A. T. Nguyen, J.-H. Han, and A. T. Nguyen. “Application of artificial neu-

ral networks to predict dynamic responses of wing structures due to atmo-

spheric turbulence”. In: International Journal of Aeronautical and Space Sciences

18.3 (2017), pp. 474–484.

[268] R Halder, M Damodaran, and B. Khoo. “Deep learning based reduced order

model for airfoil-gust and aeroelastic interaction”. In: AIAA Journal 58.10 (2020),

pp. 4304–4321.

[269] Z. Mao, A. D. Jagtap, and G. E. Karniadakis. “Physics-informed neural net-

works for high-speed flows”. In: Computer Methods in Applied Mechanics and

Engineering 360 (2020), p. 112789.

[270] M. Raissi, P. Perdikaris, and G. E. Karniadakis. “Physics-informed neural net-

works: A deep learning framework for solving forward and inverse problems

involving nonlinear partial differential equations”. In: Journal of Computational

Physics 378 (2019), pp. 686–707.

[271] W. Li, X. Gao, and H. Liu. “Efficient prediction of transonic flutter boundaries

for varying Mach number and angle of attack via LSTM network”. In: Aerospace

Science and Technology 110 (2021), p. 106451.

[272] D. J. Toal, N. W. Bressloff, A. J. Keane, and C. M. Holden. “Geometric filtra-

tion using proper orthogonal decomposition for aerodynamic design optimiza-

tion”. In: AIAA journal 48.5 (2010), pp. 916–928.

[273] W. Jing, L. Runze, H. Cheng, C. Haixin, R. CHENG, Z. Chen, and M. ZHANG.

“An inverse design method for supercritical airfoil based on conditional gen-

erative models”. In: Chinese Journal of Aeronautics (2021).

[274] L. Piegl and W. Tiller. The NURBS Book. Springer Berlin Heidelberg, 1995.

[275] M. Selim and R. Koomullil. “Mesh deformation approaches–a survey”. In: Jour-

nal of Physical Mathematics 7.2 (2016).

[276] Y. Wang, N. Qin, and N. Zhao. “Delaunay graph and radial basis function for

fast quality mesh deformation”. In: Journal of Computational Physics 294 (2015),

pp. 149–172.

178 Bibliography

[277] X.-S. Yang and S. Deb. “Engineering optimisation by cuckoo search”. In: Inter-

national Journal of Mathematical Modelling and Numerical Optimisation 1.4 (2010),

pp. 330–343.

[278] X.-S. Yang. Nature-inspired metaheuristic algorithms. Luniver press, 2010.

[279] A. Graves. “Long short-term memory”. In: Supervised sequence labelling with re-

current neural networks. Springer, 2012, pp. 37–45.

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation
	Non-intrusive ROMs in aerodynamic design
	The POD
	Machine learning and NNs
	Aerodynamic shape optimisation

	Scope of thesis
	Aims and objectives
	Outline

	The Full Order Model
	Introduction
	Formulation of compressible flows
	Governing equations
	Turbulence modelling
	Boundary conditions
	Computation of the aerodynamic coefficients

	Discretisation procedure
	Domain discretisation
	The vertex centred finite volume method

	Solution procedure

	Reduced Order Models
	Introduction
	Proper orthogonal decomposition
	Computation of the POD modes
	Continuous extension of the POD coefficients

	Artificial neural networks
	Neural network architecture
	Forward propagation
	Error evaluation of the NN model
	Learning algorithms
	Methods to improve generalisation

	Design of experiment
	Workflow

	Aerodynamic predictions using flow parameters
	Benefits of multi-output NN
	Comparison of NN with the POD
	Benefits of the multi-output NN for viscous flows
	Influence of the accuracy of the CFD data on the NN predictions

	Aerodynamic predictions using geometric parameters
	Comparison of NN with the POD
	Inverse shape design for a target pressure distribution

	Benefits of the multi-output NN for viscous flows
	Inverse shape design for a target pressure distribution

	Comparison of the multi-output NN with existing NNs
	Inverse shape design to maximise lift-to-drag ratio

	Deforming wings at various flow conditions

	Concluding remarks
	Conclusions
	Recommendations for future work

	Supporting materials
	Non-Uniform Rational B-splines (NURBS)
	Delaunay graph method
	The cuckoo search
	Modified cuckoo search

	Comparison of two NN architectures
	Bibliography

