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Abstract

Let Xt be the (reflecting) diffusion process generated by L := ∆+∇V on a complete
connected Riemannian manifold M possibly with a boundary ∂M , where V ∈ C1(M)
such that µ(dx) := eV (x)dx is a probability measure. We estimate the convergence rate
for the empirical measure µt := 1

t

∫ t
0 δXsds under the Wasserstein distance. As a typical

example, when M = Rd and V (x) = c1 − c2|x|p for some constants c1 ∈ R, c2 > 0 and
p > 1, the explicit upper and lower bounds are present for the convergence rate, which
are of sharp order when either d < 4(p−1)

p or d ≥ 4 and p→∞.
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fold.

1 Introduction

Let M be a d-dimensional complete connected Riemannian manifold, possibly with a bound-
ary ∂M . Let V ∈ C1(M) such that ZV :=

∫
M

eV (x)ds <∞, where dx := vol(dx) stands for

the Riemannian volume measure. Then µ(dx) := Z−1V eV (x)dx is a probability measure, and
the (reflecting if ∂M exists) diffusion process Xt generated by L := ∆ + ∇V is reversible
with stationary distribution µ. When M is compact, the convergence rate of the empirical
measure

µt :=
1

t

∫ t

0

δXsds, t > 0

∗Supported in part by NNSFC (11771326, 11831014, 11921001).
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under the Wasserstein distance is investigated in [17]. More precisely, let ρ be the Riemannian
distance on M , and let

W2(µ1, µ2) := inf
π∈C (µ1,µ2)

‖ρ‖L2(π)

be the associated L2-Warsserstein distance for probability measures on M , where C (µ1, µ2)
is the class of all couplings of µ1 and µ2. For two positive functions ξ, η of t, we denote
ξ(t) ∼ η(t) if c−1 ≤ ξ(t)

η(t)
≤ c holds for some constant c > 1 and large t > 0. According to

[17], for large t > 0 we have

E[W2(µt, µ)2] ∼


t−1, if d ≤ 3,

t−1 log t, if d = 4,

t−
2

d−2 , if d ≥ 5,

where the lower bound estimate on E[W2(µt, µ)2] for d = 4 is only derived for a typical
example that M is the 4-dimensional torus and V = 0. Moreover, when ∂M is either convex
or empty, we have

CMCM (1.1) lim
t→∞

tE[W2(µt, µ)2] =
∞∑
i=1

2

λ2i
,

where {λi}i≥1 are all non-trivial eigenvalues of −L (with Neumann boundary condition if ∂M
exists) listed in the increasing order counting multiplicities. See [15, 16] for further studies
on the conditional empirical measure of the L-diffusion process with absorbing boundary.

In this note, we investigate the convergence rate of E[W2(µt, µ)2] for non-compact Rie-
mannian manifold M .

1.1 Upper bound estimate

We first present a result on the upper bound estimate of Eν [W2(µt, µ)2], where Eν is the
expectation for the diffusion process with initial distribution ν. When ν = δx is a Dirac
measure, we simply denote Ex = Eδx .

Let pt(x, y) be the heat kernel of the (Neumann) Markov semigroup Pt generated by L.
We will assume

B1B1 (1.2) γ(t) :=

∫
M

pt(x, x)µ(dx) <∞, t > 0.

By [10, Theorem 3.3] (see also [12, Theorem 3.3.19]) and the spectral representation of heat
kernel, (1.2) holds if and only if L has discrete spectrum such that all non-trivial eigenvalues
{λi}i≥1 of −L satisfy

∞∑
i=1

e−λit <∞, t > 0.

In particular, this is true if Pt is ultracontractive, i.e.

sup
x,y∈M

pt(x, y) = ‖Pt‖L1(µ)→L∞(µ) <∞, t > 0.
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Since γ(t) is deceasing in t, (1.2) implies

BBBB (1.3) β(ε) := 1 +

∫ 1

ε

ds

∫ 1

s

γ(t)dt <∞, ε ∈ (0, 1].

Moreover, let

BD0BD0 (1.4) α(ε) := Eµ[ρ(X0, Xε)
2] =

∫
M

ρ(x, y)2pε(x, y)µ(dx)µ(dy), ε > 0.

Finally, for any k ≥ 1, let Pk = {ν ∈P : ν = hνµ, ‖hν‖∞ ≤ k}.

T4 Theorem 1.1. Assume (1.2).

(1) For any k ≥ 1,

A0A0 (1.5) lim sup
t→∞

{
t sup
ν∈Pk

Eν [W2(µt, µ)2]
}
≤

∞∑
i=1

8

λ2i
.

If Pt is ultracontractive, then

A0’A0’ (1.6) lim sup
t→∞

{
tEν [W2(µt, µ)2]

}
≤

∞∑
i=1

8

λ2i

holds for ν ∈P satisfying

A01A01 (1.7) lim
ε↓0

∫ ε

0

Eν
[
µ
(
ρ(Xs, ·)2

)]
ds = 0.

(2) There exists a constant c > 0 such that

B3B3 (1.8) sup
ν∈Pk

EνW2(µt, µ)2 ≤ ck inf
ε∈(0,1]

{
α(ε) + t−1β(ε)

}
, t, k ≥ 1.

If Pt is ultracontravtive, then there exists a constant c > 0 such that for any ν ∈ P
and t ≥ 1,

Eν [W2(µt, µ)2] ≤ c

{
1

t

∫ 1

0

Eν
[
µ
(
ρ(Xs, ·)2

)]
ds+ inf

ε∈(0,1]

{
α(ε) + t−1β(ε)

}}
.B3’B3’ (1.9)

Since the conditions (1.2) and (1.4) are less explicit, for the convenience of applications
we present the following consequence of Theorem 1.1.

C1 Corollary 1.2. Assume that ∂M = ∅ or ∂M is convex outside a compact set. Let V =
V1 + V2 for some functions V1, V2 ∈ C1(M) such that

CVV2CVV2 (1.10) RicV1 := Ric− HessV1 ≥ −K, ‖∇V2‖∞ ≤ K

holds for some constant K > 0, where Ric is the Ricci curvature and Hess denotes the
Hessian tensor. For any t, ε > 0, let

γ̃(t) :=

∫
M

µ(dx)

µ(B(x,
√
t))
, β̃(ε) := 1 +

∫ 1

ε

ds

∫ 1

s

γ̃(r)dr.
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(1) There exists a constant c > 0 such that

B3’’B3’’ (1.11) sup
ν∈Pk

Eν [W2(µt, µ)2] ≤ ck inf
ε∈(0,1]

{
ε+ t−1β̃(ε)

}
, t, k ≥ 1.

(2) If ‖Pteλρ
2
o‖∞ <∞ for λ, t > 0, then for any t ≥ 1 and ν ∈P,

B3’’’B3’’’ (1.12) Eν [W2(µt, µ)2] ≤ c
[
t−1ν(|∇V |2) + inf

ε∈(0,1]

{
ε+ t−1β̃(ε)

}]
.

1.2 Lower bound estimate

Consider the modified L1-Warsserstein distance

W̃1(µ1, µ2) := sup
π∈C (µ1,µ2)

∫
M×M

{1 ∧ ρ(x, y)}π(dx, dy) ≤W2(µ1, µ2).

The operator L (with Neumann condition if ∂M exists) is said to have a spectral gap, if

PIPI (1.13) λ1 := inf
{
µ(|∇f |2) : f ∈ C1

b (M), µ(f) = 0, µ(f 2) = 1
}
> 0.

We have the following result.

T3 Theorem 1.3. (1) In general, there exists a constant c > 0 such that

A1A1 (1.14) Eµ[W̃1(µt, µ)2] ≥ ct−1, t ≥ 1.

If (1.13) holds, then

A1’A1’ (1.15) lim inf
t→∞

{
tEν [W̃1(µt, µ)2]

}
> 0, ν ∈P.

(2) Let ∂M be empty or convex, and let d ≥ 3. If µ(|∇V |) <∞ and

LAALAA (1.16) Ric ≥ −K, V ≤ K

holds for some constant K > 0, then there exists a constant c > 0 such that

A2A2 (1.17) inf
ν∈Pk

Eν [W̃1(µt, µ)] ≥ c(kt)−
1

d−2 , k, t ≥ 1,

and moreover

A3A3 (1.18) lim inf
t→∞

{
t

1
d−2Eν [W̃1(µt, µ)]

}
> 0, d ≥ 4, ν ∈P.

(3) Assume that Pt is ultracontractive, ∂M is either empty or convex, and Ric−HessV ≥ K
for some constant K ∈ R. Then

A4A4 (1.19) lim inf
t→∞

inf
ν∈P

{
t−1Eν [W2(µt, µ)2]

}
≥

∞∑
i=1

2

λ2i
.
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Remark 1.1. According to Theorem 1.1(1) and Theorem 1.3(3), when Pt is ultracontrac-
tive, ∂M is either empty or convex, and Ric − HessV ≥ K for some constant K ∈ R, we
have

∞∑
i=1

2

λ2i
≤ lim inf

t→∞

{
t−1Eν [W2(µt, µ)2]

}
≤ lim sup

t→∞

{
t−1Eν [W2(µt, µ)2]

}
≤

∞∑
i=1

8

λ2i
, ν ∈P.

Beacuse of (1.1) derived in [17] in the compact setting, we may hope that the same limit
formula holds for the present non-compact setting. In particular, for the one-dimensional
Ornstein-Uhlenck process where M = R, V (x) = −1

2
|x|2 and λi = i, i ≥ 1, we would guess

lim
t→∞

{
tEµ[W2(µt, µ)2]

}
=
∞∑
i=1

2

i2
.

However, there is essential difficulty to prove the exact upper bound estimate as the cor-
responding calculations in [17] heavily depend on the estimate ‖Pt‖L1(µ)→L∞(µ) ≤ ct−

d
2 for

some constant c > 0 and all t ∈ (0, 1], which is available only when M is compact.

1.3 Example

To illustrate Corollary 1.2 and Theorem 1.3, we consider a class of specific models, where
the convergence rate is sharp when d < 4p−1

p
as both upper and lower bounds behave as t−1,

and is asymptotically sharp when d ≥ 4 and p→∞ for which both upper and lower bounds

are of order t−
2

d−2 . The assertions will be proved in Section 4.

Ex2 Example 1.4. Let M = Rd and V (x) = −κ|x|p + W (x) for some constants κ > 0, p > 1,
and some function W ∈ C1(M) with ‖∇W‖∞ <∞.

(1) There exists a constant c > 0 such that for any t, k ≥ 1, we have

E1E1 (1.20) sup
ν∈Pk

Eν [W2(µt, µ)2] ≤


ckt−

2(p−1)
(d−2)p+2 , if 4(p− 1) < dp,

ckt−1 log(1 + t), if 4(p− 1) = dp,

ckt−1, if 4(p− 1) > dp.

(2) If p > 2, then there exists a constant c > 0 such that for any t ≥ 1,

E2E2 (1.21) sup
x∈Rd

Ex[W2(µt, µ)2]

1 + |x|2(p−1)
≤


ct−

2(p−1)
(d−2)p+2 , if 4(p− 1) < dp,

ct−1 log(1 + t), if 4(p− 1) = dp,

ct−1, if 4(p− 1) > dp.

(3) For any probability measure ν, there exists a constant c > 0 such that for large t > 0,

Eν [W2(µt, µ)2] ≥ Eν [W̃1(µt, µ)2] ≥ ct−
2

2∨(d−2) .
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2 Proofs of Theorem 1.1 and Corollary 1.2

By the spectral representation, the heat kernel of Pt is formulated as

B4B4 (2.1) pt(x, y) = 1 +
∞∑
i=1

e−λitφi(x)φi(y), t > 0, x, y ∈M,

where {φi}i≥1 are the associated unit eigenfunctions with respect to the non-trivial eigen-
values {λi}i≥1 of −L, with the Neumann boundary condition if ∂M exists.

We will use the following inequality due to [7, Theorem 2]

LedouxLedoux (2.2) W2(fµ, µ)2 ≤ 4µ(|∇(−L)−1(f − 1)|2), f ≥ 0, µ(f) = 1,

which is proved using an idea due to [1], see Theorem A.1 below for an extension to the
upper bound on Wp(f1µ, f2µ). To apply (2.2), we consider the modified empirical measures

B5B5 (2.3) µε,t := fε,tµ, ε > 0, t > 0,

where, according to (2.1),

B6B6 (2.4) fε,t :=
1

t

∫ t

0

pε(Xs, ·) = 1 +
∞∑
i=1

e−λiεξi(t)φi, ξi(t) :=
1

t

∫ t

0

φi(Xs)ds.

Proof of Theorem 1.1. (1) It suffices to prove for
∑∞

i=1 λ
−2
i <∞. In this case, by [17, (2.19)]

whose proof works under the condition (1.2), we find a constant c > 0 such that

sup
ν∈Pk

∣∣∣∣tEν [µ(|(−L)−
1
2 (fε,t − 1)|2)]−

∞∑
i=1

2

λ2i e
2ελi

∣∣∣∣ ≤ ck

t

∞∑
i=1

1

λ2i e
2ελi

.

This together with (2.2) yields

t sup
ν∈Pk

Eν [W2(µε,t, µ)2] ≤
∞∑
i=1

8

λ2i
+
ck

t

∞∑
i=1

4

λ2i
, ε > 0.

Since µε,t → µt as ε ↓ 0, by Fatou’s lemma we derive

XJ0XJ0 (2.5) t sup
ν∈Pk

Eν [W2(µt, µ)2] ≤
∞∑
i=1

8

λ2i
+
ck

t

∞∑
i=1

4

λ2i
,

and hence prove (1.5).
Next, when Pt is ultracontractive, we have

δ(ε) := sup
t≥ε,x,y∈M

pt(x, y) <∞, ε > 0.

Then the distribution νε of Xε starting at ν is in the class Pδ(ε). For any ε ∈ (0, 1], let

µ̄ε,t :=
1

t

∫ t+ε

ε

δXsds.
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By the Markov property and (2.5), we obtain

XJ1XJ1 (2.6) lim sup
t→∞

{
tEν [W2(µ̄ε,t, µ)2]

}
= lim sup

t→∞

{
tEνε [W2(µt, µ)2]

}
≤

∞∑
i=1

8

λ2i
, ε > 0.

On the other hand, since

π :=
1

t

∫ ε

0

δ(Xs,Xs+t)ds+
1

t

∫ t

ε

δ(Xs,Xs)ds ∈ C (µt, µ̄ε,t),

and since the conditional distribution of Xs+t given Xs is bounded above by δ(1)µ for t ≥ 1,
we have

tEν [W2(µt, µ̄ε,t)
2] ≤ tEν

∫
M×M

ρ(x, y)2π(dx, dy)

=

∫ ε

0

Eν [ρ(Xs, Xs+t)
2]ds ≤ δ(1)

∫ ε

0

Eν
[
µ
(
ρ(Xs, ·)2

)]
ds =: rε.

Combining this with (1.7), (2.6), and applying the triangle inequality of W2, we arrive at

lim sup
t→∞

{
tEν [W2(µ̄t, µ)2]

}
≤ lim

ε↓0

(
(1 + r

1
2
ε ) lim sup

t→∞

{
tEν [W2(µ̄ε,t, µ)2]

}
+ (1 + r

− 1
2

ε )rε

)
≤

∞∑
i=1

8

λ2i
.

(2) Since λ1 > 0, we have

SPSP (2.7)

∫
M

|Ptf − µ(f)|2dµ ≤ e−2λ1t
∫
M

|f − µ(f)|2dµ, t ≥ 0, f ∈ L2(µ).

By (2.1)-(2.3), and noting that Lφi = −λiφi with {φi}i≥1 being orthonormal in L2(µ), we
obtain

B6B6 (2.8) W2(µε,t, µ)2 ≤ 4µ(|∇(−L)−1(fε,t − 1)|2) = 4
∞∑
i=1

λ−1i e−2λiε|ξi(t)|2.

Below we prove the desired assertions respectively.
Since for ν ∈Pk we have Eν ≤ kEµ, it suffices to prove for ν = µ. Since µ is Pt-invariant

and µ(φ2
i ) = 1, we have

B7B7 (2.9) Eµ[φi(Xs1)
2] = µ(φ2

i ) = 1.

Next, the Markov property yields

Eµ(φi(Xs2)|Xs1) = Ps2−s1φi(Xs1) = e−λi(s2−s1)φi(Xs1), s2 > s1.
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Combining this with (2.9) and the definition of ξi(t), we obtain

Eµ|ξi(t)|2 =
2

t

∫ t

0

ds1

∫ t

s1

E[φi(Xs1)φi(Xs2)]ds2

=
2

t

∫ t

0

ds1

∫ t

s1

E[φi(Xs1)
2]e−λi(s2−s1)ds2 ≤

2

tλi
.

Substituting into (2.8) gives

B8B8 (2.10) Eµ[W2(µε,t, µ)2] ≤ 8

t

∞∑
i=1

λ−2i e−2λiε =
32

t

∞∑
i=1

∫ ∞
ε

ds

∫ ∞
t

e−2λitdt.

Noting that (2.7) and the semigroup property imply

p2t(x, x) =

∫
M

|pt(x, y)− 1|2µ(dy) =

∫
M

|P t
2
p t

2
(x, ·)(y)− 1|2µ(dy)

≤ e−λ1t
∫
M

|p t
2
(x, y)− 1|2µ(dy) = e−λ1t{pt(x, x)− 1},

we deduce from (2.1) that

∞∑
i=1

e−2λit =

∫
M

{
p2t(x, x)− 1

}
µ(dx) ≤ e−λ1t

∫
M

{pt(x, x)− 1}µ(dx) ≤ e−λ1tγ(t).

Therefore, by (2.10) and that γ(t) is decreasing in t, we find a constant c1 > 0 such that

Eµ[W2(µε,t, µ)2] ≤ 32

t

∫ ∞
ε

ds

∫ ∞
s

e−λ1tγ(t)dt

≤ 32

t

∫ 1

ε

(∫ 1

s

γ(t)dt+ γ(1)

∫ ∞
1

e−λ1tdt

)
ds+

32γ(1)

t

∫ ∞
1

ds

∫ ∞
s

e−λ1tdt

≤ c1
t
β(ε), ε ∈ (0, 1].

B9B9 (2.11)

On the other hand, (2.3) and (2.8) imply that the measure

π(dx, dy) :=
1

t

∫ t

0

{
δXs(dx)pε(Xs, y)µ(dy)

}
ds

is a coupling of µt and µε,t. Combining this with the fact that µ is Pt-invariant, we obtain

Eµ[W2(µt, µε,t)
2] ≤ 1

t
Eµ
∫ t

0

ρ(Xs, y)2pε(Xs, y)µ(dy) = α(ε).

By (2.11) and the triangle inequality of W2, this yields

Eµ[W2(µt, µ)2] ≤ 2 inf
ε∈(0,1]

{
α(ε) + c1t

−1β(ε)
}
.
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Therefore, (1.8) holds for some constant c > 0 and ν = µ.
Finally, let Pt be ultracontractive. Then there exists a constant c1 > 0 such that

*N*N (2.12) sup
t≥1

pt(x, y) ≤ c1, x, y ∈M.

So, the distribution of X1 has a distribution ν1 ≤ c1µ. Let µ̄t = 1
t

∫ t
0
δX1+sds. It is easy to

see that

CPPCPP (2.13) π :=
1

t

∫ 1

0

δ(Xs,Xs+t)ds+
1

t

∫ t

1

δ(Xs,Xs)ds ∈ C (µt, µ̄t),

so that (2.12) yields

Eν [W2(µt, µ̄t)
2] ≤ 1

t
Eν
∫ 1

0

|Xs −Xs+t|2ds ≤
c1
t
Eν
∫ 1

0

µ
(
ρ(Xs, ·)2

)
ds.N1N1 (2.14)

On the other hand, by the Markov property and (1.8), we find a constant c2 > 0 such that

Eν [W2(µ̄t, µ)2] = Eν1 [W2(µt, µ)2] ≤ c2 inf
ε∈(0,1]

{
α(ε) + t−1β(ε)

}
.

Combining this with (2.14) and using the triangle inequality of W2, we prove (1.9) for some
constant c > 0.

Proof of Corollary 1.2. (1) By [14, Lemma 3.5.6] and comparing Pt with the semigroup
generated by ∆ +∇V1, see for instance [4, (2.8)], (1.10) implies that the Harnack inequality

HIHI (2.15) (Ptf(x))2 ≤ {Ptf 2(y)}eC+Ct−1ρ(x,y)2 , x, y ∈M, t ∈ (0, 1]

holds for some constant C > 0. Therefore, by [13, Theorem 1.4.1] with Φ(r) = r2 and
Ψ(x, y) = C + Ct−1ρ(x, y)2, we obtain

p2t(x, x) = sup
µ(f2)≤1

(Ptf(x))2 ≤ 1∫
M

e−C−Ct−1ρ(x,y)2µ(dy)
≤ e2C

µ(B(x,
√
t))
, t ∈ (0, 1], x ∈M.

This implies

OBSOBS (2.16) γ(t) ≤ e2C γ̃(t), t ∈ (0, 1].

On the other hand, by (1.10) and Itô’s formula due to [5], there exists constant C1 > 0
such that

dρ(x,Xt)
2 ≤

[
C1

(
1 + ρ(x,Xt)

2
)

+ |∇V (x)|2
]
dt+ 2

√
2ρ(x,Xt)dbt,

where bt is a one-dimensional Brownian motion. So, there exists a constant C2 > 0 such that

*D*D (2.17) Eν [ρ(x,Xt)
2] ≤ (C1 + ν(|∇V |2))teC1t ≤ C2(1 + ν(|∇V |2))t, t ∈ [0, 1], x ∈M.

Then there exists a constant c > 0 such that

α(ε) := sup
ν∈Pk

∫
M

Eνρ(x,Xε)
2µ(dx) ≤ k

∫
M

Eµρ(x,Xε)
2µ(dx)

≤ C2k(1 + µ(|∇V |2))ε ≤ ckε, ε ∈ (0, 1], k ≥ 1.

Combining this with (2.16), we prove the first assertion by Theorem 1.1(2). The second
assertion follows from (2.17) and Theorem 1.1(2), since Pt is ultracontractive provided
‖Pteλρ

2
o‖∞ <∞ for λ, t > 0, see for instance [14, Theorem 3.5.5].
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3 Proof of Theorem 1.3

(1) We first prove that for any 0 6= f ∈ L2(µ),

BB0BB0 (3.1) lim
t→∞

1

t
Eµ
[∣∣∣∣ ∫ t

0

f(Xs)ds

∣∣∣∣2] = 4

∫ ∞
0

µ
(
(Psf)2

)
ds > 0.

As shown in [2, Lemma 2.8] that the Markov property and the symmetry of Pt in L2(µ)
imply

1

t
Eµ
[∣∣∣∣ ∫ t

0

f(Xs)ds

∣∣∣∣2] =
2

t

∫ t

0

ds1

∫ t

s1

Eµ[f(Xs1Ps2−s1f(Xs1)]ds2

=
2

t

∫ t

0

ds1

∫ t

s1

µ
(
(P s2−s1

2
f)2
)
ds2 =

4

t

∫ t/2

0

µ
(
(Psf)2

)
ds

∫ t−s

s

dr

=
4

t

∫ t/2

0

(t− 2s)µ
(
(Psf)2

)
ds, t > 0,

IMMIMM (3.2)

where we have used the variable transform (s, r) = ( s2−s1
2
, s1+s2

2
). This implies (3.1). On the

other hand, we take 0 6= f ∈ L2(µ) with µ(f) = 0 and ‖f‖∞ ∨ ‖∇f‖∞ ≤ 1. Then

tEµ[W̃1(µt, µ)2] ≥ 1

t
Eµ
[∣∣∣∣ ∫ t

0

f(Xs)ds

∣∣∣∣2].
Combining this with (3.1), we prove (A.1) for some constant c > 0.

If (1.13) holds, then

EXPEXP (3.3) ‖Ptf − µ(f)‖L2(µ) ≤ e−λ1t‖f − µ(f)‖L2(µ), t ≥ 0, f ∈ L2(µ).

Let ν = hνµ ∈P with hν ∈ L2(µ). Similarly to (3.2), for any f ∈ L2(µ) with µ(f) = 0, we
have

1

t

{
Eν
[∣∣∣∣ ∫ t

0

f(Xs)ds

∣∣∣∣2]− Eµ
[∣∣∣∣ ∫ t

0

f(Xs)ds

∣∣∣∣2]}
=

1

t

∫
M

{hν(x)− 1}Ex
[∣∣∣∣ ∫ t

0

f(Xs)ds

∣∣∣∣2]µ(dx)

=
2

t

∫ t

0

ds1

∫ t

s1

µ
(
{hν − 1}Ps1{fPs2−s1f}

)
ds2

=
2

t

∫ t

0

ds1

∫ t

s1

µ
({
Ps1(hν − 1)

}
·
{
fPs2−s1f

})
ds2

≥ −2‖f‖∞
t

∫ s1

0

ds1

∫ t

s1

‖Ps1(hν − 1)‖L2(µ)‖Ps2−s1f‖L2(µ)ds2.

Taking 0 6= f ∈ L2(µ) with µ(f) = 0 and ‖f‖∞ ∨ ‖∇f ||∞ ≤ 1, by combining this with (3.1)
and (3.3), we derive

lim inf
t→∞

[
tEν [W̃1(µt, µ)2]

}
≥ lim inf

t→∞

{
1

t
Eν
[∣∣∣∣ ∫ t

0

f(Xs)ds

∣∣∣∣2]}
≥ 4

∫ ∞
0

µ
(
|Psf |2

)
ds > 0, ν = hνµ with hν ∈ L2(µ).

EX4EX4 (3.4)

10



Next, let µ̄t = 1
t

∫ t+1

1
δXsds, t > 0. By (2.13) we have

EXP2EXP2 (3.5) W̃1(µr,t, µt) ≤
∫
M×M

1{x 6=y}π(dx, dy) =
1

t
.

Noting that for any x ∈ M we have νx := p1(x, ·)µ with p1(x, ·) ∈ L2(µ), by the Markov
property and (3.4), we obtain

lim inf
t→∞

{
tEx[W̃1(µ̄t, µ)2]

}
= lim inf

t→∞

[
tEνx [W̃1(µt, µ)2]

}
> 0.

Combining this with (3.5) and the triangle inequality leads to

lim inf
t→∞

{
tEx[W̃1(µt, µ)2]

}
> 0, x ∈M.

Therefore, by Fatou’s lemma, for any ν ∈P we have

lim inf
t→∞

{
tEν [W̃1(µt, µ)2]

}
= lim inf

t→∞

∫
M

{
tEx[W̃1(µt, µ)2]

}
ν(dx)

≥
∫
M

(
lim inf
t→∞

{
tEx[W̃1(µt, µ)2]

})
ν(dx) > 0,

which implies (1.15).
(2) Let d ≥ 3, and let ∂M be empty or convex. By Ric ≥ −K in (1.16), the Laplacian

comparison theorem implies

∆ρ(x, ·)(y) ≤ C
{
ρ(x, y) + ρ(x, y)−1

}
, (x, y) ∈ M̂

for some constant C > 0, where M̂ := {(x, y) : x, y ∈ M,x 6= y, x /∈ cut(y)}, and cut(y) is
the cut-locus of y. So,

Lρ(x, ·)(y) ≤ |∇V (y)|+ C
{
ρ(x, y) + ρ(x, y)−1

}
, (x, y) ∈ M̂.

Combining this with the Itô’s formula due to [5], we obtain

dρ(X0, Xt) ≤
√

2dbt +
{
|∇V (Xt)|+ Cρ(x, y) + Cρ(x, y)−1

}
dt+ dlt,

where bt is a one-dimensional Brownian motion, and lt is the local time of Xt at the initial
value X0, which is an increasing process supported on {t ≥ 0 : Xt = X0}. Thus, we find a
constant C1 > 0 such that

d
{ ρ(X0, Xt)

2

1 + ρ(X0, Xt)2

}
≤ C1(1 + |∇V (Xt)|)dt+ dMt

for some martingale Mt. Since µ is Pt-invariant, this implies

Eµ
{
ρ(X0, Xt) ∧ 1

}2 ≤ C2

{
1 + µ(|∇V |)

}
t, t ≥ 0, x ∈M

11



for some constant C2 > 0. Therefore, for any N ∈ N and ti := (i − 1)t/N , the probability
measure

µ̃N :=
1

N

N∑
i=1

δXyi
=

1

t

N∑
i=1

∫ ti+1

ti

δXti
ds

satisfies

EµW̃1(µ̃N , µt)
2 ≤ 1

t

N∑
i=1

∫ ti+1

ti

Eµ(ρ(Xti , Xs) ∧ 1)2ds

≤ C3

t

N∑
i=1

∫ ti+1

ti

(s− ti)ds ≤
C3t

N

for some constant C3 > 0. So,

DD2DD2 (3.6) sup
ν∈Pk

Eν [W̃1(µ̃N , µt)
2] ≤ kEµ[W̃1(µ̃N , µt)

2] ≤ C3kt

N
, N, k ≥ 1.

On the other hand, by Ric ≥ −K and V ≤ K in (1.16) and using the volume comparison
theorem, we find a constant C4 > 1 such that

µ(B(x, r)) ≤ C4r
d, x ∈M, r ∈ [0, 1],

where B(x, r) := {y ∈M : ρ(x, y)∧ 1 ≤ r}. Since µ is a probability measure, this inequality
holds for all r > 0. Therefore, by [6, Proposition 4.2], there exists a constant C5 > 0 such
that

W̃1(µ̃N , µ) ≥ C5N
− 1

d , N ≥ 1.

Combining this with (3.6) and using the triangle inequality for W̃1, we obtain

sup
ν∈Pk

Eν [W̃1(µt, µ)] ≥ C5N
− 1

d −
√
C3ktN

− 1
2 , N, k ≥ 1.

maximizing in N ≥ 1, we find a constant c > 0 such that (1.17) holds.
Now, let d ≥ 4. To prove (1.18) for general probability measure ν, we consider the shift

empirical measure

µ̄t :=
1

t

∫ t+1

1

δXsds, t ≥ 1,

and the probability measures

νx := δxP1 = p1(x, ·)µ, νx,1 :=
1B(x,1)

νx(B(x, 1))
νx, x ∈M.

By the Markov property, we obtain

Ex[W̃1(µ̄t, µ]) = Eνx [W̃1(µt, µ)] =

∫
M

Ey[W̃1(µt, µ)]p1(x, y)µ(dy)

12



≥
∫
B(x,1)

Ey[W̃1(µt, µ)]p1(x, y)µ(dy) = νx(B(x, 1))Eνx,1 [W̃1(µ̄t, µ)].

Noting that h(x) := supy∈B(x,1) p1(x, y) <∞, this and (1.17) yield

Ex[W̃1(µ̄t, µ)] ≥ g(x)t−
1

d−2 , g(x) := cνx(B(x, 1))h(x)−
1

d−2 , x ∈M, t ≥ 1.

Consequently, for any probability measure ν,

Eν [W̃1(µ̄t, µ)] =

∫
M

Ex[W̃1(µ̄t, µ)]ν(dx) ≥ ν(g)t−
1

d−2 , t ≥ 1.

Combining this with (3.5) and noting that d ≥ 4 implies t−
1

d−2 ≥ t−
1
2 for t ≥ 1, we find a

constant cν > 0 such that when t is large enough,

Eν [W̃1(µt, µ)] ≥ Eν
[
W̃1(µ̄t, µ)− W̃1(µ̄t, µt)

]
≥ c(ν)t−

1
d−2 .

(3) According to [17, Theorem 2.1], for any ε ∈ (0, 1] we have

*Q1*Q1 (3.7) lim inf
t→∞

{
t inf
x∈M

Ex[W2(µε,t, µ)2]
}
≥

∞∑
i=1

2

λ2i e
2ελi

.

On the other hand, by [14, Theorem 3.3.2], the conditions that Ric − HessV ≥ K and ∂M
is empty or convex imply

W2(µε,t, µ)2 ≤ e−2εKW2(µt, µ)2, ε ≥ 0.

Combining this with (3.7), we derive

lim inf
t→∞

{
t inf
x∈M

Ex[W2(µt, µ)2]
}
≥ e2εK

∞∑
i=1

2

λ2i e
2ελi

, ε ∈ (0, 1].

By letting ε ↓ 0 we finish the proof.

4 Proof of Example 1.4

(1) Taking V1 ∈ C∞(Rd) such that V1(x) = −κ|x|p for |x| ≥ 1, and writing V2 = V +W −V1,
we see that (1.10) holds for some constant K ∈ R. By Corollary 1.2, it suffices to estimate
γ̃(t). For any x ∈ Rd with |x| ≥ 1, and any t ∈ (0, 1], let xt = x

|x|

(
|x| − 1

2

√
t
)
. We find a

constant c1 > 0 and some point z ∈ B(x,
√
t) such that

BM1BM1 (4.1) µ
(
B(x,

√
t)
)
≥
∫
B(xt,

1
4

√
t)

e−κ|y|
p+W (y)dy ≥ c1t

d
2 e−κ(|x|−

1
4
t
1
2 )p+W (z).

13



Since |x| ≥ 1, t ∈ (0, 1] and p > 1, we find a constant c2 > 0 such that

|x|p −
(
|x| − t

1
2/4
)p

= p

∫ |x|
|x|− 1

4
t
1
2

rp−1dr

≥ pt
1
2

4

( |x|
2

)p−1
≥ c2|x|p−1t

1
2 .

BM2BM2 (4.2)

Moreover,

|W (z)−W (x)| ≤ ‖∇W‖∞|x− z| ≤ ‖∇W‖∞, t ∈ (0, 1], z ∈ B(x, t
1
2 ).

Combining this with (4.1) and (4.2), we find a c3 > 0 such that

µ
(
B(x,

√
t)
)
≥ c3t

d
2 e−κ|x|

p+c2|x|p−1t
1
2+W (x), t ∈ [0, 1], x ∈ Rd.

Noting that −κ|x|p + 2|W (x)| is bounded from above, we find constants c4, c5 > 0 such that∫
|x|≥1

µ(dx)

µ(B(x,
√
t))
≤ c4t

− d
2

∫ ∞
1

rd−1e−c2r
p−1t

1
2 dr ≤ c5t

− d
2
− d

2(p−1) = c5t
− pd

2(p−1) , t ∈ (0, 1].

On the other hand, there exists a constant c6 > 0 such that µ(B(x, r)) ≥ c6r
d for |x| < 1

and r ∈ (0, 1]. In conclusion, there exists a constant c7 > 0 such that

γ̃(t) :=

∫
Rd

µ(dx)

µ(B(x,
√
t))
≤ c5t

− pd
2(p−1) + c−16 t−

d
2 ≤ c7t

− pd
2(p−1) , t ∈ (0, 1].

Thus, there exists a constant c8 > 0 such that for any ε ∈ (0, 1],

β̃(ε) ≤ 1 + c6

∫ 1

ε

ds

∫ 1

s

t−
dp

2(p−1) dt ≤


c8ε

2− dp
2(p−1) , if 2 < dp

2(p−1) ,

c8 log(1 + ε−1), if 2 = dp
2(p−1) ,

c8, if 2 > dp
2(p−1) .

By taking ε = t−
2(p−1)

(d−2)p+2 if 4(p− 1) < dp, ε = t−1 if 4(p− 1) = dp, and ε ↓ 0 if 4(p− 1) > dp,
we derive

AC0AC0 (4.3) inf
ε∈(0,1]

{
ε+ t−1β̃(ε)

}
≤


ct−

2(p−1)
(d−2)p+2 , if 4(p− 1) < dp,

ct−1 log(1 + t), if 4(p− 1) = dp,

ct−1, if 4(p− 1) > dp

for some constant c > 0. Therefore, (1.20) follows from Corollary 1.2(1).
(2) Next, by [8, Corollary 3.3], when p > 2 the Markov semigroup P 0

t generated by
∆− κ∇| · |p is ultracontractive with

ACAC (4.4) ‖P 0
t ‖L1(µ0)→L∞(µ0) ≤ ec1(1+t

−p/(p−2)), t > 0
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for some constant c1 > 0, where µ0(dx) := Z−1e−κ|x|
2
dx is probability measure with normal-

ized constant Z > 0. According to the correspondence between the ultracontractivity and
the log-Sobolev inequality, see [3], (4.4) holds if and only if there exists a constant c2 > 0
such that

µ0(f
2 log f 2) ≤ rµ0(|∇f |2) + c2(1 + r−

p
p−2 ), r > 0, µ0(f

2) = 1.

Replacing f by fe
W
2 and using ‖∇W‖∞ <∞ which implies µ(ecW ) <∞ for any c > 0 due

to p > 1, we find constants c3 such that

µ(f 2 log f 2) ≤ µ(f 2W ) + 2rµ(|∇f |2) + 2‖∇W‖2∞ + c2(1 + r−
p

p−2 )

≤ 2rµ(|∇f |2) +
1

2
µ(f 2 log f 2) +

1

2
log µ(e2W ) + 2‖∇W‖2∞ + c2(1 + r−

p
p−2 )

≤ 2rµ(|∇f |2) +
1

2
µ(f 2 log f 2) + c3(1 + r−

p
p−2 ), r > 0, µ(f 2) = 1.

Hence, for some constant c4 > 0 we have

µ(f 2 log f 2) ≤ rµ(|∇f |2) + c4(1 + r−
p

p−2 ), r > 0, µ(f 2) = 1.

By the above mentioned correspondence of the log-Sobolev inequality and semigroup esti-
mate, this implies

‖Pt‖L1(µ)→L∞(µ) ≤ ec5(1+t
−p/(p−2)), t > 0

for some constant c5 > 0. In particular, this and µ(eλ|·|
2
) < ∞ imply ‖Pteλ|·|

2‖∞ < ∞ for
t, λ > 0, so that by Corollary 1.2(2), (1.21) follows from (4.3) and the fact that |∇V (x)|2 ≤
c′(1 + |x|2(p−1)) holds for some constant c′ > 0.

(3) By [9, Corollary 1.4], the Poincaré inequality (1.13) holds for some constant λ1 > 0.
Moreover, it is trivial that the condition (1.16) holds for some constant K ≥ 0. So, the
desired lower bound estimate is implied by Theorem 1.3.
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A Upper bound estimate on Wp(f1µ, f2µ)

For p ≥ 1, let Wp be the Lp-Wasserstein distance induced by ρ, i.e.

Wp(µ1, µ2) = inf
π∈C (µ1,µ2)

‖ρ‖Lp(π).
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According to [7, Theorem 2], for any probability density f of µ, we have

APP1APP1 (A.1) Wp(fµ, µ)p ≤ ppµ
(
|∇(−L)−1(f − 1)|p

)
.

The idea of the proof goes back to [1], in which the following estimate is presented for
probability density functions f1, f2:

APP2APP2 (A.2) W2(f1µ1, f2µ2)
2 ≤

∫
M

|∇(−L)−1(f2 − f1)|2

M (f1, f2)
dµ,

where M (a, b) := 1{a∧b>0}
log a−log b

a−b for a 6= b, and M (a, a) = 1{a>0}a
−1. In general, for p ≥ 1,

denote Mp = M if p = 2, and when p 6= 2 let

Mp(a, b) = 1{a∧b>0}
a2−p − b2−p

(2− p)(a− b)
for a 6= b, Mp(a, a) = 1{a>0}a

1−p.

In this Appendix, we extend estimates (A.1) and (A.2) as follows, which might be useful for
further studies.

A1 Theorem A.1. For any probability density functions f1 and f2 with respect to µ such that
f1 ∨ f2 > 0,

Wp(f1µ, f2µ)p ≤ min

{
pp2p−1

∫
M

|∇(−L)−1(f2 − f1)|p

(f1 + f2)p−1
dµ, pp

∫
M

|∇(−L)−1(f2 − f1)|p

fp−11

dµ,∫
M

|∇(−L)−1(f2 − f1)|2

Mp(f1, f2)
dµ

}
.

Proof. It suffices to prove for p > 1. Let Lipb(M) be the set of bounded Lipschitz continuous
functions on M . Consider the Hamilton-Jacobi semigroup (Qt)t>0 on Lipb(M):

Qtφ := inf
x∈M

{
φ(x) +

1

ptp−1
ρ(x, ·)p

}
, t > 0, φ ∈ Lipb(M).

Then for any φ ∈ Lipb(M), Q0φ := limt↓0Qtφ = φ, ‖∇Qtφ‖∞ is locally bounded in t ≥ 0,
and Qtφ solves the Hamilton-Jacobi equation

HK0HK0 (A.3)
d

dt
Qtφ = −p− 1

p
|∇Qtφ|

p
p−1 , t > 0.

Let q = p
p−1 . For any f ∈ C1

b (M), and any increasing function θ ∈ C1((0, 1)) such that

θ0 := lims→0 θs = 0, θ1 := lims→1 θs = 1, by (A.3) and the integration by parts formula, we
obtain

µ1(Q1f)− µ2(f) =

∫ 1

0

{ d

ds
µ
(
[f1 + θs(f2 − f1)]Qsf

)}
ds

=

∫ 1

0

ds

∫
M

{
θ′s(f2 − f1)Qsf −

f1 + θs(f2 − f1)
q

|∇Qsf |q
}

dµ
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=

∫ 1

0

ds

∫
M

{
θ′s〈∇(−L)−1(f2 − f1),∇Qsf〉 −

f1 + θs(f2 − f1)
q

|∇Qsf |q
}

dµ

≤ 1

p

∫
M

|∇(−L)−1(f2 − f1)|pdµ
∫ 1

0

|θ′s|p

[f1 + θs(f2 − f1)]p−1
ds,

where the last step is due to Young’s inequality ab ≤ ap/p+bq/q for a, b ≥ 0. By Kantorovich
duality formula

1

p
Wp(µ1, µ2)

p = sup
f∈C1

b (M)

{
µ1(Q1f)− µ2(f)

}
,

and noting that

f1 + θs(f2 − f1) = f1 + f2 − θsf1 − (1− θs)f2

= (f1 + f2)
(

1− θsf1
f1 + f2

− (1− θs)f2
f1 + f2

)
≥ (f1 + f2) min{1− θs, θs},

we derive

ECCECC (A.4) Wp(µ1, µ2)
p ≤

∫ 1

0

|θ′s|p

min{θs, 1− θs}p−1
ds

∫
M

|∇(−L)−1(f1 − f2)|p

(f1 + f2)p−1
dµ.

By taking
θs = 1[0, 1

2
](s)2

p−1sp + 1( 1
2
,1](s)

{
1− 2p−1(1− s)p

}
,

which satisfies

θ′s = p2p−1 min{s, 1− s}p−1, min{θs, 1− θs} = 2p−1 min{s, 1− s}p,

we deduce from (A.4) that

Wp(f1µ, f2µ)p ≤ pp2p−1
∫
M

|(−L)−
1
2 (f2 − f1)|p

(f1 + f2)p−1
dµ.

Next, (A.4) with θs = 1− (1− s)p implies

Wp(f1µ, f2µ)p ≤ pp
∫
M

|(−L)−
1
2 (f2 − f1)|p

fp−11

dµ.

Finally, with θs = s we deduce from (A.4) that

Wp(f1µ, f2µ)p ≤
∫
M

|(−L)−
1
2 (f2 − f1)|2

Mp(f1, f2)
dµ.

Then the proof is finished.
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