Wasserstein Convergence Rate for Empirical Measures on Noncompact Manifolds *

Feng-Yu Wang ${ }^{a,, b)}$
${ }^{\text {a) }}$ Center for Applied Mathematics, Tianjin University, Tianjin 300072, China
${ }^{\text {b) }}$ Department of Mathematics, Swansea University, Bay Campus, Swansea, SA1 8EN, United Kingdom

January 16, 2021

Abstract

Let X_{t} be the (reflecting) diffusion process generated by $L:=\Delta+\nabla V$ on a complete connected Riemannian manifold M possibly with a boundary ∂M, where $V \in C^{1}(M)$ such that $\mu(\mathrm{d} x):=\mathrm{e}^{V(x)} \mathrm{d} x$ is a probability measure. We estimate the convergence rate for the empirical measure $\mu_{t}:=\frac{1}{t} \int_{0}^{t} \delta_{X_{s}} \mathrm{~d} s$ under the Wasserstein distance. As a typical example, when $M=\mathbb{R}^{d}$ and $V(x)=c_{1}-c_{2}|x|^{p}$ for some constants $c_{1} \in \mathbb{R}, c_{2}>0$ and $p>1$, the explicit upper and lower bounds are present for the convergence rate, which are of sharp order when either $d<\frac{4(p-1)}{p}$ or $d \geq 4$ and $p \rightarrow \infty$.

AMS subject Classification: 60D05, 58J65.
Keywords: Eempirical measure, diffusion process, Wasserstein distance, Riemannian manifold.

1 Introduction

Let M be a d-dimensional complete connected Riemannian manifold, possibly with a boundary ∂M. Let $V \in C^{1}(M)$ such that $Z_{V}:=\int_{M} \mathrm{e}^{V(x)} \mathrm{d} s<\infty$, where $\mathrm{d} x:=\operatorname{vol}(\mathrm{d} x)$ stands for the Riemannian volume measure. Then $\mu(\mathrm{d} x):=Z_{V}^{-1} \mathrm{e}^{V(x)} \mathrm{d} x$ is a probability measure, and the (reflecting if ∂M exists) diffusion process X_{t} generated by $L:=\Delta+\nabla V$ is reversible with stationary distribution μ. When M is compact, the convergence rate of the empirical measure

$$
\mu_{t}:=\frac{1}{t} \int_{0}^{t} \delta_{X_{s}} \mathrm{~d} s, \quad t>0
$$

[^0]under the Wasserstein distance is investigated in [17]. More precisely, let ρ be the Riemannian distance on M, and let
$$
\mathbb{W}_{2}\left(\mu_{1}, \mu_{2}\right):=\inf _{\pi \in \mathscr{C}\left(\mu_{1}, \mu_{2}\right)}\|\rho\|_{L^{2}(\pi)}
$$
be the associated L^{2}-Warsserstein distance for probability measures on M, where $\mathscr{C}\left(\mu_{1}, \mu_{2}\right)$ is the class of all couplings of μ_{1} and μ_{2}. For two positive functions ξ, η of t, we denote $\xi(t) \sim \eta(t)$ if $c^{-1} \leq \frac{\xi(t)}{\eta(t)} \leq c$ holds for some constant $c>1$ and large $t>0$. According to [17], for large $t>0$ we have
\[

\mathbb{E}\left[\mathbb{W}_{2}\left(\mu_{t}, \mu\right)^{2}\right] \sim $$
\begin{cases}t^{-1}, & \text { if } d \leq 3 \\ t^{-1} \log t, & \text { if } d=4 \\ t^{-\frac{2}{d-2}}, & \text { if } d \geq 5\end{cases}
$$
\]

where the lower bound estimate on $\mathbb{E}\left[\mathbb{W}_{2}\left(\mu_{t}, \mu\right)^{2}\right]$ for $d=4$ is only derived for a typical example that M is the 4-dimensional torus and $V=0$. Moreover, when ∂M is either convex or empty, we have

$$
\begin{equation*}
\lim _{t \rightarrow \infty} t \mathbb{E}\left[\mathbb{W}_{2}\left(\mu_{t}, \mu\right)^{2}\right]=\sum_{i=1}^{\infty} \frac{2}{\lambda_{i}^{2}}, \tag{1.1}
\end{equation*}
$$

where $\left\{\lambda_{i}\right\}_{i \geq 1}$ are all non-trivial eigenvalues of $-L$ (with Neumann boundary condition if ∂M exists) listed in the increasing order counting multiplicities. See $[15,16]$ for further studies on the conditional empirical measure of the L-diffusion process with absorbing boundary.

In this note, we investigate the convergence rate of $\mathbb{E}\left[\mathbb{W}_{2}\left(\mu_{t}, \mu\right)^{2}\right]$ for non-compact Riemannian manifold M.

1.1 Upper bound estimate

We first present a result on the upper bound estimate of $\mathbb{E}^{\nu}\left[\mathbb{W}_{2}\left(\mu_{t}, \mu\right)^{2}\right]$, where \mathbb{E}^{ν} is the expectation for the diffusion process with initial distribution ν. When $\nu=\delta_{x}$ is a Dirac measure, we simply denote $\mathbb{E}^{x}=\mathbb{E}^{\delta_{x}}$.

Let $p_{t}(x, y)$ be the heat kernel of the (Neumann) Markov semigroup P_{t} generated by L. We will assume

$$
\begin{equation*}
\gamma(t):=\int_{M} p_{t}(x, x) \mu(\mathrm{d} x)<\infty, \quad t>0 . \tag{1.2}
\end{equation*}
$$

By [10, Theorem 3.3] (see also [12, Theorem 3.3.19]) and the spectral representation of heat kernel, (1.2) holds if and only if L has discrete spectrum such that all non-trivial eigenvalues $\left\{\lambda_{i}\right\}_{i \geq 1}$ of $-L$ satisfy

$$
\sum_{i=1}^{\infty} \mathrm{e}^{-\lambda_{i} t}<\infty, \quad t>0
$$

In particular, this is true if P_{t} is ultracontractive, i.e.

$$
\sup _{x, y \in M} p_{t}(x, y)=\left\|P_{t}\right\|_{L^{1}(\mu) \rightarrow L^{\infty}(\mu)}<\infty, \quad t>0
$$

Since $\gamma(t)$ is deceasing in t, (1.2) implies

BB

$$
\begin{equation*}
\beta(\varepsilon):=1+\int_{\varepsilon}^{1} \mathrm{~d} s \int_{s}^{1} \gamma(t) \mathrm{d} t<\infty, \quad \varepsilon \in(0,1] . \tag{1.3}
\end{equation*}
$$

Moreover, let
BDO

$$
\alpha(\varepsilon):=\mathbb{E}^{\mu}\left[\rho\left(X_{0}, X_{\varepsilon}\right)^{2}\right]=\int_{M} \rho(x, y)^{2} p_{\varepsilon}(x, y) \mu(\mathrm{d} x) \mu(\mathrm{d} y), \quad \varepsilon>0 .
$$

Finally, for any $k \geq 1$, let $\mathscr{P}_{k}=\left\{\nu \in \mathscr{P}: \nu=h_{\nu} \mu,\left\|h_{\nu}\right\|_{\infty} \leq k\right\}$.
T4 Theorem 1.1. Assume (1.2).
(1) For any $k \geq 1$,

$$
\begin{equation*}
\limsup _{t \rightarrow \infty}\left\{t \sup _{\nu \in \mathscr{P}_{k}} \mathbb{E}^{\nu}\left[\mathbb{W}_{2}\left(\mu_{t}, \mu\right)^{2}\right]\right\} \leq \sum_{i=1}^{\infty} \frac{8}{\lambda_{i}^{2}} \tag{AO}
\end{equation*}
$$

If P_{t} is ultracontractive, then

$$
\begin{equation*}
\limsup _{t \rightarrow \infty}\left\{t \mathbb{E}^{\nu}\left[\mathbb{W}_{2}\left(\mu_{t}, \mu\right)^{2}\right]\right\} \leq \sum_{i=1}^{\infty} \frac{8}{\lambda_{i}^{2}} \tag{1.6}
\end{equation*}
$$

holds for $\nu \in \mathscr{P}$ satisfying
A01

$$
\begin{equation*}
\lim _{\varepsilon \downarrow 0} \int_{0}^{\varepsilon} \mathbb{E}^{\nu}\left[\mu\left(\rho\left(X_{s}, \cdot\right)^{2}\right)\right] \mathrm{d} s=0 \tag{1.7}
\end{equation*}
$$

(2) There exists a constant $c>0$ such that

$$
\begin{equation*}
\sup _{\nu \in \mathscr{P}_{k}} \mathbb{E}^{\nu} \mathbb{W}_{2}\left(\mu_{t}, \mu\right)^{2} \leq c k \inf _{\varepsilon \in(0,1]}\left\{\alpha(\varepsilon)+t^{-1} \beta(\varepsilon)\right\}, \quad t, k \geq 1 . \tag{1.8}
\end{equation*}
$$

If P_{t} is ultracontravtive, then there exists a constant $c>0$ such that for any $\nu \in \mathscr{P}$ and $t \geq 1$,

B3'

$$
\begin{equation*}
\mathbb{E}^{\nu}\left[\mathbb{W}_{2}\left(\mu_{t}, \mu\right)^{2}\right] \leq c\left\{\frac{1}{t} \int_{0}^{1} \mathbb{E}^{\nu}\left[\mu\left(\rho\left(X_{s}, \cdot\right)^{2}\right)\right] \mathrm{d} s+\inf _{\varepsilon \in(0,1]}\left\{\alpha(\varepsilon)+t^{-1} \beta(\varepsilon)\right\}\right\} \tag{1.9}
\end{equation*}
$$

Since the conditions (1.2) and (1.4) are less explicit, for the convenience of applications we present the following consequence of Theorem 1.1.
C1 Corollary 1.2. Assume that $\partial M=\emptyset$ or ∂M is convex outside a compact set. Let $V=$ $V_{1}+V_{2}$ for some functions $V_{1}, V_{2} \in C^{1}(M)$ such that

CVV2 (1.10)

$$
\operatorname{Ric}_{V_{1}}:=\operatorname{Ric}-\operatorname{Hess}_{V_{1}} \geq-K, \quad\left\|\nabla V_{2}\right\|_{\infty} \leq K
$$

holds for some constant $K>0$, where Ric is the Ricci curvature and Hess denotes the Hessian tensor. For any $t, \varepsilon>0$, let

$$
\tilde{\gamma}(t):=\int_{M} \frac{\mu(\mathrm{~d} x)}{\mu(B(x, \sqrt{t}))}, \quad \tilde{\beta}(\varepsilon):=1+\int_{\varepsilon}^{1} \mathrm{~d} s \int_{s}^{1} \tilde{\gamma}(r) \mathrm{d} r .
$$

(1) There exists a constant $c>0$ such that

$$
\begin{equation*}
\sup _{\nu \in \mathscr{P}_{k}} \mathbb{E}^{\nu}\left[\mathbb{W}_{2}\left(\mu_{t}, \mu\right)^{2}\right] \leq c k \inf _{\varepsilon \in(0,1]}\left\{\varepsilon+t^{-1} \tilde{\beta}(\varepsilon)\right\}, \quad t, k \geq 1 \tag{1.11}
\end{equation*}
$$

(2) If $\left\|P_{t} \mathrm{e}^{\lambda \rho_{o}^{2}}\right\|_{\infty}<\infty$ for $\lambda, t>0$, then for any $t \geq 1$ and $\nu \in \mathscr{P}$,
B3'''

$$
\mathbb{E}^{\nu}\left[\mathbb{W}_{2}\left(\mu_{t}, \mu\right)^{2}\right] \leq c\left[t^{-1} \nu\left(|\nabla V|^{2}\right)+\inf _{\varepsilon \in(0,1]}\left\{\varepsilon+t^{-1} \tilde{\beta}(\varepsilon)\right\}\right] .
$$

1.2 Lower bound estimate

Consider the modified L^{1}-Warsserstein distance

$$
\tilde{W}_{1}\left(\mu_{1}, \mu_{2}\right):=\sup _{\pi \in \mathscr{C}\left(\mu_{1}, \mu_{2}\right)} \int_{M \times M}\{1 \wedge \rho(x, y)\} \pi(\mathrm{d} x, \mathrm{~d} y) \leq \mathbb{W}_{2}\left(\mu_{1}, \mu_{2}\right)
$$

The operator L (with Neumann condition if ∂M exists) is said to have a spectral gap, if

$$
\begin{equation*}
\lambda_{1}:=\inf \left\{\mu\left(|\nabla f|^{2}\right): f \in C_{b}^{1}(M), \mu(f)=0, \mu\left(f^{2}\right)=1\right\}>0 \tag{1.13}
\end{equation*}
$$

We have the following result.
T 3 Theorem 1.3. (1) In general, there exists a constant $c>0$ such that

$$
\begin{equation*}
\mathbb{E}^{\mu}\left[\tilde{\mathbb{W}}_{1}\left(\mu_{t}, \mu\right)^{2}\right] \geq c t^{-1}, \quad t \geq 1 \tag{1.14}
\end{equation*}
$$

If (1.13) holds, then
A1'

$$
\begin{equation*}
\liminf _{t \rightarrow \infty}\left\{t \mathbb{E}^{\nu}\left[\tilde{\mathbb{W}}_{1}\left(\mu_{t}, \mu\right)^{2}\right]\right\}>0, \quad \nu \in \mathscr{P} \tag{1.15}
\end{equation*}
$$

(2) Let ∂M be empty or convex, and let $d \geq 3$. If $\mu(|\nabla V|)<\infty$ and

LAA

$$
\begin{equation*}
\operatorname{Ric} \geq-K, \quad V \leq K \tag{1.16}
\end{equation*}
$$

holds for some constant $K>0$, then there exists a constant $c>0$ such that

$$
\begin{equation*}
\inf _{\nu \in \mathscr{P}_{k}} \mathbb{E}^{\nu}\left[\tilde{W}_{1}\left(\mu_{t}, \mu\right)\right] \geq c(k t)^{-\frac{1}{d-2}}, \quad k, t \geq 1 \tag{1.17}
\end{equation*}
$$

and moreover

$$
\begin{equation*}
\liminf _{t \rightarrow \infty}\left\{t^{\frac{1}{d-2}} \mathbb{E}^{\nu}\left[\tilde{W}_{1}\left(\mu_{t}, \mu\right)\right]\right\}>0, \quad d \geq 4, \nu \in \mathscr{P} \tag{1.18}
\end{equation*}
$$

(3) Assume that P_{t} is ultracontractive, ∂M is either empty or convex, and $\mathrm{Ric}-\mathrm{Hess}_{V} \geq K$ for some constant $K \in \mathbb{R}$. Then

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \inf _{\nu \in \mathscr{P}}\left\{t^{-1} \mathbb{E}^{\nu}\left[W_{2}\left(\mu_{t}, \mu\right)^{2}\right]\right\} \geq \sum_{i=1}^{\infty} \frac{2}{\lambda_{i}^{2}} \tag{1.19}
\end{equation*}
$$

Remark 1.1. According to Theorem 1.1(1) and Theorem 1.3(3), when P_{t} is ultracontractive, ∂M is either empty or convex, and Ric $-\operatorname{Hess}_{V} \geq K$ for some constant $K \in \mathbb{R}$, we have

$$
\sum_{i=1}^{\infty} \frac{2}{\lambda_{i}^{2}} \leq \liminf _{t \rightarrow \infty}\left\{t^{-1} \mathbb{E}^{\nu}\left[W_{2}\left(\mu_{t}, \mu\right)^{2}\right]\right\} \leq \limsup _{t \rightarrow \infty}\left\{t^{-1} \mathbb{E}^{\nu}\left[W_{2}\left(\mu_{t}, \mu\right)^{2}\right]\right\} \leq \sum_{i=1}^{\infty} \frac{8}{\lambda_{i}^{2}}, \quad \nu \in \mathscr{P}
$$

Beacuse of (1.1) derived in [17] in the compact setting, we may hope that the same limit formula holds for the present non-compact setting. In particular, for the one-dimensional Ornstein-Uhlenck process where $M=\mathbb{R}, V(x)=-\frac{1}{2}|x|^{2}$ and $\lambda_{i}=i, i \geq 1$, we would guess

$$
\lim _{t \rightarrow \infty}\left\{t \mathbb{E}^{\mu}\left[\mathbb{W}_{2}\left(\mu_{t}, \mu\right)^{2}\right]\right\}=\sum_{i=1}^{\infty} \frac{2}{i^{2}}
$$

However, there is essential difficulty to prove the exact upper bound estimate as the corresponding calculations in [17] heavily depend on the estimate $\left\|P_{t}\right\|_{L^{1}(\mu) \rightarrow L^{\infty}(\mu)} \leq c t^{-\frac{d}{2}}$ for some constant $c>0$ and all $t \in(0,1]$, which is available only when M is compact.

1.3 Example

To illustrate Corollary 1.2 and Theorem 1.3 , we consider a class of specific models, where the convergence rate is sharp when $d<\frac{4 p-1}{p}$ as both upper and lower bounds behave as t^{-1}, and is asymptotically sharp when $d \geq 4$ and $p \rightarrow \infty$ for which both upper and lower bounds are of order $t^{-\frac{2}{d-2}}$. The assertions will be proved in Section 4.

Ex2 Example 1.4. Let $M=\mathbb{R}^{d}$ and $V(x)=-\kappa|x|^{p}+W(x)$ for some constants $\kappa>0, p>1$, and some function $W \in C^{1}(M)$ with $\|\nabla W\|_{\infty}<\infty$.
(1) There exists a constant $c>0$ such that for any $t, k \geq 1$, we have

E1

$$
\sup _{\nu \in \mathscr{P}_{k}} \mathbb{E}^{\nu}\left[\mathbb{W}_{2}\left(\mu_{t}, \mu\right)^{2}\right] \leq \begin{cases}c k t^{-\frac{2(p-1)}{(d-2) p+2}}, & \text { if } 4(p-1)<d p \tag{1.20}\\ c k t^{-1} \log (1+t), & \text { if } 4(p-1)=d p \\ c k t^{-1}, & \text { if } 4(p-1)>d p\end{cases}
$$

(2) If $p>2$, then there exists a constant $c>0$ such that for any $t \geq 1$,

$$
\sup _{x \in \mathbb{R}^{d}} \frac{\mathbb{E}^{x}\left[\mathbb{W}_{2}\left(\mu_{t}, \mu\right)^{2}\right]}{1+|x|^{2(p-1)}} \leq \begin{cases}c t^{-\frac{2(p-1)}{(d-2) p+2}}, & \text { if } 4(p-1)<d p \tag{1.21}\\ c t^{-1} \log (1+t), & \text { if } 4(p-1)=d p \\ c t^{-1}, & \text { if } 4(p-1)>d p\end{cases}
$$

(3) For any probability measure ν, there exists a constant $c>0$ such that for large $t>0$,

$$
\mathbb{E}^{\nu}\left[\mathbb{W}_{2}\left(\mu_{t}, \mu\right)^{2}\right] \geq \mathbb{E}^{\nu}\left[\tilde{\mathbb{W}}_{1}\left(\mu_{t}, \mu\right)^{2}\right] \geq c t^{-\frac{2}{2 \mathrm{~V}(d-2)}}
$$

2 Proofs of Theorem 1.1 and Corollary 1.2

By the spectral representation, the heat kernel of P_{t} is formulated as

$$
\begin{equation*}
p_{t}(x, y)=1+\sum_{i=1}^{\infty} \mathrm{e}^{-\lambda_{i} t} \phi_{i}(x) \phi_{i}(y), \quad t>0, x, y \in M \tag{2.1}
\end{equation*}
$$

where $\left\{\phi_{i}\right\}_{i \geq 1}$ are the associated unit eigenfunctions with respect to the non-trivial eigenvalues $\left\{\lambda_{i}\right\}_{i \geq 1}$ of $-L$, with the Neumann boundary condition if ∂M exists.

We will use the following inequality due to [7, Theorem 2]

$$
\begin{equation*}
\mathbb{W}_{2}(f \mu, \mu)^{2} \leq 4 \mu\left(\left|\nabla(-L)^{-1}(f-1)\right|^{2}\right), \quad f \geq 0, \mu(f)=1, \tag{2.2}
\end{equation*}
$$

which is proved using an idea due to [1], see Theorem A. 1 below for an extension to the upper bound on $\mathbb{W}_{p}\left(f_{1} \mu, f_{2} \mu\right)$. To apply (2.2), we consider the modified empirical measures

$$
\begin{equation*}
\mu_{\varepsilon, t}:=f_{\varepsilon, t} \mu, \quad \varepsilon>0, t>0 \tag{2.3}
\end{equation*}
$$

where, according to (2.1),

$$
\begin{equation*}
f_{\varepsilon, t}:=\frac{1}{t} \int_{0}^{t} p_{\varepsilon}\left(X_{s}, \cdot\right)=1+\sum_{i=1}^{\infty} \mathrm{e}^{-\lambda_{i} \varepsilon} \xi_{i}(t) \phi_{i}, \quad \xi_{i}(t):=\frac{1}{t} \int_{0}^{t} \phi_{i}\left(X_{s}\right) \mathrm{d} s . \tag{2.4}
\end{equation*}
$$

Proof of Theorem 1.1. (1) It suffices to prove for $\sum_{i=1}^{\infty} \lambda_{i}^{-2}<\infty$. In this case, by [17, (2.19)] whose proof works under the condition (1.2), we find a constant $c>0$ such that

$$
\sup _{\nu \in \mathscr{\mathscr { P }}_{k}}\left|t \mathbb{E}^{\nu}\left[\mu\left(\left|(-L)^{-\frac{1}{2}}\left(f_{\varepsilon, t}-1\right)\right|^{2}\right)\right]-\sum_{i=1}^{\infty} \frac{2}{\lambda_{i}^{2} \mathrm{e}^{2 \varepsilon \lambda_{i}}}\right| \leq \frac{c k}{t} \sum_{i=1}^{\infty} \frac{1}{\lambda_{i}^{2} \mathrm{e}^{2 \varepsilon \lambda_{i}}} .
$$

This together with (2.2) yields

$$
t \sup _{\nu \in \mathscr{\mathscr { P }}_{k}} \mathbb{E}^{\nu}\left[\mathbb{W}_{2}\left(\mu_{\varepsilon, t}, \mu\right)^{2}\right] \leq \sum_{i=1}^{\infty} \frac{8}{\lambda_{i}^{2}}+\frac{c k}{t} \sum_{i=1}^{\infty} \frac{4}{\lambda_{i}^{2}}, \quad \varepsilon>0
$$

Since $\mu_{\varepsilon, t} \rightarrow \mu_{t}$ as $\varepsilon \downarrow 0$, by Fatou's lemma we derive

$$
\begin{equation*}
t \sup _{\nu \in \mathscr{P}_{k}} \mathbb{E}^{\nu}\left[\mathbb{W}_{2}\left(\mu_{t}, \mu\right)^{2}\right] \leq \sum_{i=1}^{\infty} \frac{8}{\lambda_{i}^{2}}+\frac{c k}{t} \sum_{i=1}^{\infty} \frac{4}{\lambda_{i}^{2}}, \tag{2.5}
\end{equation*}
$$

and hence prove (1.5).
Next, when P_{t} is ultracontractive, we have

$$
\delta(\varepsilon):=\sup _{t \geq \varepsilon, x, y \in M} p_{t}(x, y)<\infty, \quad \varepsilon>0
$$

Then the distribution ν_{ε} of X_{ε} starting at ν is in the class $\mathscr{P}_{\delta(\varepsilon)}$. For any $\varepsilon \in(0,1]$, let

$$
\bar{\mu}_{\varepsilon, t}:=\frac{1}{t} \int_{\varepsilon}^{t+\varepsilon} \delta_{X_{s}} \mathrm{~d} s
$$

By the Markov property and (2.5), we obtain

$$
\limsup _{t \rightarrow \infty}\left\{t \mathbb{E}^{\nu}\left[\mathbb{W}_{2}\left(\bar{\mu}_{\varepsilon, t}, \mu\right)^{2}\right]\right\}=\limsup _{t \rightarrow \infty}\left\{t \mathbb{E}^{\nu_{\varepsilon}}\left[\mathbb{W}_{2}\left(\mu_{t}, \mu\right)^{2}\right]\right\} \leq \sum_{i=1}^{\infty} \frac{8}{\lambda_{i}^{2}}, \quad \varepsilon>0
$$

On the other hand, since

$$
\pi:=\frac{1}{t} \int_{0}^{\varepsilon} \delta_{\left(X_{s}, X_{s+t}\right)} \mathrm{d} s+\frac{1}{t} \int_{\varepsilon}^{t} \delta_{\left(X_{s}, X_{s}\right)} \mathrm{d} s \in \mathscr{C}\left(\mu_{t}, \bar{\mu}_{\varepsilon, t}\right),
$$

and since the conditional distribution of X_{s+t} given X_{s} is bounded above by $\delta(1) \mu$ for $t \geq 1$, we have

$$
\begin{aligned}
& t \mathbb{E}^{\nu}\left[\mathbb{W}_{2}\left(\mu_{t}, \bar{\mu}_{\varepsilon, t}\right)^{2}\right] \leq t \mathbb{E}^{\nu} \int_{M \times M} \rho(x, y)^{2} \pi(\mathrm{~d} x, \mathrm{~d} y) \\
& =\int_{0}^{\varepsilon} \mathbb{E}^{\nu}\left[\rho\left(X_{s}, X_{s+t}\right)^{2}\right] \mathrm{d} s \leq \delta(1) \int_{0}^{\varepsilon} \mathbb{E}^{\nu}\left[\mu\left(\rho\left(X_{s}, \cdot\right)^{2}\right)\right] \mathrm{d} s=: r_{\varepsilon} .
\end{aligned}
$$

Combining this with (1.7), (2.6), and applying the triangle inequality of \mathbb{W}_{2}, we arrive at

$$
\begin{aligned}
& \limsup _{t \rightarrow \infty}\left\{t \mathbb{E}^{\nu}\left[\mathbb{W}_{2}\left(\bar{\mu}_{t}, \mu\right)^{2}\right]\right\} \\
& \leq \lim _{\varepsilon \downarrow 0}\left(\left(1+r_{\varepsilon}^{\frac{1}{2}}\right) \limsup _{t \rightarrow \infty}\left\{t \mathbb{E}^{\nu}\left[\mathbb{W}_{2}\left(\bar{\mu}_{\varepsilon, t}, \mu\right)^{2}\right]\right\}+\left(1+r_{\varepsilon}^{-\frac{1}{2}}\right) r_{\varepsilon}\right) \\
& \leq \sum_{i=1}^{\infty} \frac{8}{\lambda_{i}^{2}} .
\end{aligned}
$$

(2) Since $\lambda_{1}>0$, we have

$$
\begin{equation*}
\int_{M}\left|P_{t} f-\mu(f)\right|^{2} \mathrm{~d} \mu \leq \mathrm{e}^{-2 \lambda_{1} t} \int_{M}|f-\mu(f)|^{2} \mathrm{~d} \mu, \quad t \geq 0, f \in L^{2}(\mu) \tag{2.7}
\end{equation*}
$$

By (2.1)-(2.3), and noting that $L \phi_{i}=-\lambda_{i} \phi_{i}$ with $\left\{\phi_{i}\right\}_{i \geq 1}$ being orthonormal in $L^{2}(\mu)$, we obtain

$$
\begin{equation*}
\mathbb{W}_{2}\left(\mu_{\varepsilon, t}, \mu\right)^{2} \leq 4 \mu\left(\left|\nabla(-L)^{-1}\left(f_{\varepsilon, t}-1\right)\right|^{2}\right)=4 \sum_{i=1}^{\infty} \lambda_{i}^{-1} \mathrm{e}^{-2 \lambda_{i} \varepsilon}\left|\xi_{i}(t)\right|^{2} \tag{2.8}
\end{equation*}
$$

Below we prove the desired assertions respectively.
Since for $\nu \in \mathscr{P}_{k}$ we have $\mathbb{E}^{\nu} \leq k \mathbb{E}^{\mu}$, it suffices to prove for $\nu=\mu$. Since μ is P_{t}-invariant and $\mu\left(\phi_{i}^{2}\right)=1$, we have

$$
\begin{equation*}
\mathbb{E}^{\mu}\left[\phi_{i}\left(X_{s_{1}}\right)^{2}\right]=\mu\left(\phi_{i}^{2}\right)=1 \tag{2.9}
\end{equation*}
$$

Next, the Markov property yields

$$
\mathbb{E}^{\mu}\left(\phi_{i}\left(X_{s_{2}}\right) \mid X_{s_{1}}\right)=P_{s_{2}-s_{1}} \phi_{i}\left(X_{s_{1}}\right)=\mathrm{e}^{-\lambda_{i}\left(s_{2}-s_{1}\right)} \phi_{i}\left(X_{s_{1}}\right), \quad s_{2}>s_{1} .
$$

Combining this with (2.9) and the definition of $\xi_{i}(t)$, we obtain

$$
\begin{aligned}
& \mathbb{E}^{\mu}\left|\xi_{i}(t)\right|^{2}=\frac{2}{t} \int_{0}^{t} \mathrm{~d} s_{1} \int_{s_{1}}^{t} \mathbb{E}\left[\phi_{i}\left(X_{s_{1}}\right) \phi_{i}\left(X_{s_{2}}\right)\right] \mathrm{d} s_{2} \\
& =\frac{2}{t} \int_{0}^{t} \mathrm{~d} s_{1} \int_{s_{1}}^{t} \mathbb{E}\left[\phi_{i}\left(X_{s_{1}}\right)^{2}\right] \mathrm{e}^{-\lambda_{i}\left(s_{2}-s_{1}\right)} \mathrm{d} s_{2} \leq \frac{2}{t \lambda_{i}}
\end{aligned}
$$

Substituting into (2.8) gives

$$
\begin{equation*}
\mathbb{E}^{\mu}\left[\mathbb{W}_{2}\left(\mu_{\varepsilon, t}, \mu\right)^{2}\right] \leq \frac{8}{t} \sum_{i=1}^{\infty} \lambda_{i}^{-2} \mathrm{e}^{-2 \lambda_{i} \varepsilon}=\frac{32}{t} \sum_{i=1}^{\infty} \int_{\varepsilon}^{\infty} \mathrm{d} s \int_{t}^{\infty} \mathrm{e}^{-2 \lambda_{i} t} \mathrm{~d} t \tag{2.10}
\end{equation*}
$$

Noting that (2.7) and the semigroup property imply

$$
\begin{aligned}
& p_{2 t}(x, x)=\int_{M}\left|p_{t}(x, y)-1\right|^{2} \mu(\mathrm{~d} y)=\int_{M}\left|P_{\frac{t}{2}} p_{\frac{t}{2}}(x, \cdot)(y)-1\right|^{2} \mu(\mathrm{~d} y) \\
& \leq \mathrm{e}^{-\lambda_{1} t} \int_{M}\left|p_{\frac{t}{2}}(x, y)-1\right|^{2} \mu(\mathrm{~d} y)=\mathrm{e}^{-\lambda_{1} t}\left\{p_{t}(x, x)-1\right\}
\end{aligned}
$$

we deduce from (2.1) that

$$
\sum_{i=1}^{\infty} \mathrm{e}^{-2 \lambda_{i} t}=\int_{M}\left\{p_{2 t}(x, x)-1\right\} \mu(\mathrm{d} x) \leq \mathrm{e}^{-\lambda_{1} t} \int_{M}\left\{p_{t}(x, x)-1\right\} \mu(\mathrm{d} x) \leq \mathrm{e}^{-\lambda_{1} t} \gamma(t)
$$

Therefore, by (2.10) and that $\gamma(t)$ is decreasing in t, we find a constant $c_{1}>0$ such that

$$
\begin{aligned}
& \mathbb{E}^{\mu}\left[\mathbb{W}_{2}\left(\mu_{\varepsilon, t}, \mu\right)^{2}\right] \leq \frac{32}{t} \int_{\varepsilon}^{\infty} \mathrm{d} s \int_{s}^{\infty} \mathrm{e}^{-\lambda_{1} t} \gamma(t) \mathrm{d} t \\
& \leq \frac{32}{t} \int_{\varepsilon}^{1}\left(\int_{s}^{1} \gamma(t) \mathrm{d} t+\gamma(1) \int_{1}^{\infty} \mathrm{e}^{-\lambda_{1} t} \mathrm{~d} t\right) \mathrm{d} s+\frac{32 \gamma(1)}{t} \int_{1}^{\infty} \mathrm{d} s \int_{s}^{\infty} \mathrm{e}^{-\lambda_{1} t} \mathrm{~d} t \\
& \leq \frac{c_{1}}{t} \beta(\varepsilon), \quad \varepsilon \in(0,1] .
\end{aligned}
$$

On the other hand, (2.3) and (2.8) imply that the measure

$$
\pi(\mathrm{d} x, \mathrm{~d} y):=\frac{1}{t} \int_{0}^{t}\left\{\delta_{X_{s}}(\mathrm{~d} x) p_{\varepsilon}\left(X_{s}, y\right) \mu(\mathrm{d} y)\right\} \mathrm{d} s
$$

is a coupling of μ_{t} and $\mu_{\varepsilon, t}$. Combining this with the fact that μ is P_{t}-invariant, we obtain

$$
\mathbb{E}^{\mu}\left[\mathbb{W}_{2}\left(\mu_{t}, \mu_{\varepsilon, t}\right)^{2}\right] \leq \frac{1}{t} \mathbb{E}^{\mu} \int_{0}^{t} \rho\left(X_{s}, y\right)^{2} p_{\varepsilon}\left(X_{s}, y\right) \mu(\mathrm{d} y)=\alpha(\varepsilon)
$$

By (2.11) and the triangle inequality of \mathbb{W}_{2}, this yields

$$
\mathbb{E}^{\mu}\left[\mathbb{W}_{2}\left(\mu_{t}, \mu\right)^{2}\right] \leq 2 \inf _{\varepsilon \in(0,1]}\left\{\alpha(\varepsilon)+c_{1} t^{-1} \beta(\varepsilon)\right\}
$$

Therefore, (1.8) holds for some constant $c>0$ and $\nu=\mu$.
Finally, let P_{t} be ultracontractive. Then there exists a constant $c_{1}>0$ such that

$$
\begin{equation*}
\sup _{t \geq 1} p_{t}(x, y) \leq c_{1}, \quad x, y \in M \tag{2.12}
\end{equation*}
$$

So, the distribution of X_{1} has a distribution $\nu_{1} \leq c_{1} \mu$. Let $\bar{\mu}_{t}=\frac{1}{t} \int_{0}^{t} \delta_{X_{1+s}} \mathrm{~d} s$. It is easy to see that

$$
\begin{equation*}
\pi:=\frac{1}{t} \int_{0}^{1} \delta_{\left(X_{s}, X_{s+t}\right)} \mathrm{d} s+\frac{1}{t} \int_{1}^{t} \delta_{\left(X_{s}, X_{s}\right)} \mathrm{d} s \in \mathscr{C}\left(\mu_{t}, \bar{\mu}_{t}\right) \tag{2.13}
\end{equation*}
$$

so that (2.12) yields

$$
\begin{equation*}
\mathbb{E}^{\nu}\left[\mathbb{W}_{2}\left(\mu_{t}, \bar{\mu}_{t}\right)^{2}\right] \leq \frac{1}{t} \mathbb{E}^{\nu} \int_{0}^{1}\left|X_{s}-X_{s+t}\right|^{2} \mathrm{~d} s \leq \frac{c_{1}}{t} \mathbb{E}^{\nu} \int_{0}^{1} \mu\left(\rho\left(X_{s}, \cdot\right)^{2}\right) \mathrm{d} s \tag{2.14}
\end{equation*}
$$

On the other hand, by the Markov property and (1.8), we find a constant $c_{2}>0$ such that

$$
\mathbb{E}^{\nu}\left[\mathbb{W}_{2}\left(\bar{\mu}_{t}, \mu\right)^{2}\right]=\mathbb{E}^{\nu_{1}}\left[\mathbb{W}_{2}\left(\mu_{t}, \mu\right)^{2}\right] \leq c_{2} \inf _{\varepsilon \in(0,1]}\left\{\alpha(\varepsilon)+t^{-1} \beta(\varepsilon)\right\}
$$

Combining this with (2.14) and using the triangle inequality of \mathbb{W}_{2}, we prove (1.9) for some constant $c>0$.

Proof of Corollary 1.2. (1) By [14, Lemma 3.5.6] and comparing P_{t} with the semigroup generated by $\Delta+\nabla V_{1}$, see for instance [4, (2.8)], (1.10) implies that the Harnack inequality

$$
\begin{equation*}
\left(P_{t} f(x)\right)^{2} \leq\left\{P_{t} f^{2}(y)\right\} \mathrm{e}^{C+C t^{-1} \rho(x, y)^{2}}, \quad x, y \in M, t \in(0,1] \tag{2.15}
\end{equation*}
$$

holds for some constant $C>0$. Therefore, by [13, Theorem 1.4.1] with $\Phi(r)=r^{2}$ and $\Psi(x, y)=C+C t^{-1} \rho(x, y)^{2}$, we obtain

$$
p_{2 t}(x, x)=\sup _{\mu\left(f^{2}\right) \leq 1}\left(P_{t} f(x)\right)^{2} \leq \frac{1}{\int_{M} \mathrm{e}^{-C-C t^{-1} \rho(x, y)^{2}} \mu(\mathrm{~d} y)} \leq \frac{\mathrm{e}^{2 C}}{\mu(B(x, \sqrt{t}))}, \quad t \in(0,1], x \in M
$$

This implies

$$
\begin{equation*}
\gamma(t) \leq \mathrm{e}^{2 C} \tilde{\gamma}(t), \quad t \in(0,1] \tag{2.16}
\end{equation*}
$$

On the other hand, by (1.10) and Itô's formula due to [5], there exists constant $C_{1}>0$ such that

$$
\mathrm{d} \rho\left(x, X_{t}\right)^{2} \leq\left[C_{1}\left(1+\rho\left(x, X_{t}\right)^{2}\right)+|\nabla V(x)|^{2}\right] \mathrm{d} t+2 \sqrt{2} \rho\left(x, X_{t}\right) \mathrm{d} b_{t}
$$

where b_{t} is a one-dimensional Brownian motion. So, there exists a constant $C_{2}>0$ such that

$$
\begin{equation*}
\mathbb{E}^{\nu}\left[\rho\left(x, X_{t}\right)^{2}\right] \leq\left(C_{1}+\nu\left(|\nabla V|^{2}\right)\right) t \mathrm{e}^{C_{1} t} \leq C_{2}\left(1+\nu\left(|\nabla V|^{2}\right)\right) t, \quad t \in[0,1], x \in M \tag{2.17}
\end{equation*}
$$

Then there exists a constant $c>0$ such that

$$
\begin{aligned}
& \alpha(\varepsilon):=\sup _{\nu \in \mathscr{P}_{k}} \int_{M} \mathbb{E}^{\nu} \rho\left(x, X_{\varepsilon}\right)^{2} \mu(\mathrm{~d} x) \leq k \int_{M} \mathbb{E}^{\mu} \rho\left(x, X_{\varepsilon}\right)^{2} \mu(\mathrm{~d} x) \\
& \leq C_{2} k\left(1+\mu\left(|\nabla V|^{2}\right)\right) \varepsilon \leq c k \varepsilon, \quad \varepsilon \in(0,1], k \geq 1 .
\end{aligned}
$$

Combining this with (2.16), we prove the first assertion by Theorem 1.1(2). The second assertion follows from (2.17) and Theorem 1.1(2), since P_{t} is ultracontractive provided $\left\|P_{t} \mathrm{e}^{\lambda \rho_{o}^{2}}\right\|_{\infty}<\infty$ for $\lambda, t>0$, see for instance [14, Theorem 3.5.5].

3 Proof of Theorem 1.3

(1) We first prove that for any $0 \neq f \in L^{2}(\mu)$,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{1}{t} \mathbb{E}^{\mu}\left[\left|\int_{0}^{t} f\left(X_{s}\right) \mathrm{d} s\right|^{2}\right]=4 \int_{0}^{\infty} \mu\left(\left(P_{s} f\right)^{2}\right) \mathrm{d} s>0 \tag{3.1}
\end{equation*}
$$

As shown in [2, Lemma 2.8] that the Markov property and the symmetry of P_{t} in $L^{2}(\mu)$ imply

IMM

$$
\begin{align*}
& \frac{1}{t} \mathbb{E}^{\mu}\left[\left|\int_{0}^{t} f\left(X_{s}\right) \mathrm{d} s\right|^{2}\right]=\frac{2}{t} \int_{0}^{t} \mathrm{~d} s_{1} \int_{s_{1}}^{t} \mathbb{E}^{\mu}\left[f\left(X_{s_{1}} P_{s_{2}-s_{1}} f\left(X_{s_{1}}\right)\right] \mathrm{d} s_{2}\right. \\
& =\frac{2}{t} \int_{0}^{t} \mathrm{~d} s_{1} \int_{s_{1}}^{t} \mu\left(\left(P_{\frac{s_{2}-s_{1}}{2}} f\right)^{2}\right) \mathrm{d} s_{2}=\frac{4}{t} \int_{0}^{t / 2} \mu\left(\left(P_{s} f\right)^{2}\right) \mathrm{d} s \int_{s}^{t-s} \mathrm{~d} r \tag{3.2}\\
& =\frac{4}{t} \int_{0}^{t / 2}(t-2 s) \mu\left(\left(P_{s} f\right)^{2}\right) \mathrm{d} s, \quad t>0
\end{align*}
$$

where we have used the variable transform $(s, r)=\left(\frac{s_{2}-s_{1}}{2}, \frac{s_{1}+s_{2}}{2}\right)$. This implies (3.1). On the other hand, we take $0 \neq f \in L^{2}(\mu)$ with $\mu(f)=0$ and $\|f\|_{\infty} \vee\|\nabla f\|_{\infty} \leq 1$. Then

$$
t \mathbb{E}^{\mu}\left[\tilde{W}_{1}\left(\mu_{t}, \mu\right)^{2}\right] \geq \frac{1}{t} \mathbb{E}^{\mu}\left[\left|\int_{0}^{t} f\left(X_{s}\right) \mathrm{d} s\right|^{2}\right]
$$

Combining this with (3.1), we prove (A.1) for some constant $c>0$.
If (1.13) holds, then

$$
\begin{equation*}
\left\|P_{t} f-\mu(f)\right\|_{L^{2}(\mu)} \leq \mathrm{e}^{-\lambda_{1} t}\|f-\mu(f)\|_{L^{2}(\mu)}, \quad t \geq 0, f \in L^{2}(\mu) \tag{3.3}
\end{equation*}
$$

Let $\nu=h_{\nu} \mu \in \mathscr{P}$ with $h_{\nu} \in L^{2}(\mu)$. Similarly to (3.2), for any $f \in L^{2}(\mu)$ with $\mu(f)=0$, we have

$$
\begin{aligned}
& \frac{1}{t}\left\{\mathbb{E}^{\nu}\left[\left|\int_{0}^{t} f\left(X_{s}\right) \mathrm{d} s\right|^{2}\right]-\mathbb{E}^{\mu}\left[\left|\int_{0}^{t} f\left(X_{s}\right) \mathrm{d} s\right|^{2}\right]\right\} \\
& =\frac{1}{t} \int_{M}\left\{h_{\nu}(x)-1\right\} \mathbb{E}^{x}\left[\left|\int_{0}^{t} f\left(X_{s}\right) \mathrm{d} s\right|^{2}\right] \mu(\mathrm{d} x) \\
& =\frac{2}{t} \int_{0}^{t} \mathrm{~d} s_{1} \int_{s_{1}}^{t} \mu\left(\left\{h_{\nu}-1\right\} P_{s_{1}}\left\{f P_{s_{2}-s_{1}} f\right\}\right) \mathrm{d} s_{2} \\
& =\frac{2}{t} \int_{0}^{t} \mathrm{~d} s_{1} \int_{s_{1}}^{t} \mu\left(\left\{P_{s_{1}}\left(h_{\nu}-1\right)\right\} \cdot\left\{f P_{s_{2}-s_{1}} f\right\}\right) \mathrm{d} s_{2} \\
& \geq-\frac{2\|f\|_{\infty}}{t} \int_{0}^{s_{1}} \mathrm{~d} s_{1} \int_{s_{1}}^{t}\left\|P_{s_{1}}\left(h_{\nu}-1\right)\right\|_{L^{2}(\mu)}\left\|P_{s_{2}-s_{1}} f\right\|_{L^{2}(\mu)} \mathrm{d} s_{2}
\end{aligned}
$$

Taking $0 \neq f \in L^{2}(\mu)$ with $\mu(f)=0$ and $\|f\|_{\infty} \vee\|\nabla f\|_{\infty} \leq 1$, by combining this with (3.1) and (3.3), we derive

$$
\begin{align*}
& \liminf _{t \rightarrow \infty}\left[t \mathbb{E}^{\nu}\left[\tilde{\mathbb{W}}_{1}\left(\mu_{t}, \mu\right)^{2}\right]\right\} \geq \liminf _{t \rightarrow \infty}\left\{\frac{1}{t} \mathbb{E}^{\nu}\left[\left|\int_{0}^{t} f\left(X_{s}\right) \mathrm{d} s\right|^{2}\right]\right\} \tag{3.4}\\
& \geq 4 \int_{0}^{\infty} \mu\left(\left|P_{s} f\right|^{2}\right) \mathrm{d} s>0, \quad \nu=h_{\nu} \mu \text { with } h_{\nu} \in L^{2}(\mu)
\end{align*}
$$

Next, let $\bar{\mu}_{t}=\frac{1}{t} \int_{1}^{t+1} \delta_{X_{s}} \mathrm{~d} s, t>0$. By (2.13) we have

$$
\tilde{\mathbb{W}}_{1}\left(\mu_{r, t}, \mu_{t}\right) \leq \int_{M \times M} 1_{\{x \neq y\}} \pi(\mathrm{d} x, \mathrm{~d} y)=\frac{1}{t}
$$

Noting that for any $x \in M$ we have $\nu_{x}:=p_{1}(x, \cdot) \mu$ with $p_{1}(x, \cdot) \in L^{2}(\mu)$, by the Markov property and (3.4), we obtain

$$
\liminf _{t \rightarrow \infty}\left\{t \mathbb{E}^{x}\left[\tilde{\mathbb{W}}_{1}\left(\bar{\mu}_{t}, \mu\right)^{2}\right]\right\}=\liminf _{t \rightarrow \infty}\left[t \mathbb{E}^{\nu_{x}}\left[\tilde{\mathbb{W}}_{1}\left(\mu_{t}, \mu\right)^{2}\right]\right\}>0 .
$$

Combining this with (3.5) and the triangle inequality leads to

$$
\liminf _{t \rightarrow \infty}\left\{t \mathbb{E}^{x}\left[\tilde{\mathbb{W}}_{1}\left(\mu_{t}, \mu\right)^{2}\right]\right\}>0, \quad x \in M
$$

Therefore, by Fatou's lemma, for any $\nu \in \mathscr{P}$ we have

$$
\begin{aligned}
& \liminf _{t \rightarrow \infty}\left\{t \mathbb{E}^{\nu}\left[\tilde{\mathbb{W}}_{1}\left(\mu_{t}, \mu\right)^{2}\right]\right\}=\liminf _{t \rightarrow \infty} \int_{M}\left\{t \mathbb{E}^{x}\left[\tilde{\mathbb{W}}_{1}\left(\mu_{t}, \mu\right)^{2}\right]\right\} \nu(\mathrm{d} x) \\
& \geq \int_{M}\left(\liminf _{t \rightarrow \infty}\left\{t \mathbb{E}^{x}\left[\tilde{\mathbb{W}}_{1}\left(\mu_{t}, \mu\right)^{2}\right]\right\}\right) \nu(\mathrm{d} x)>0
\end{aligned}
$$

which implies (1.15).
(2) Let $d \geq 3$, and let ∂M be empty or convex. By Ric $\geq-K$ in (1.16), the Laplacian comparison theorem implies

$$
\Delta \rho(x, \cdot)(y) \leq C\left\{\rho(x, y)+\rho(x, y)^{-1}\right\}, \quad(x, y) \in \hat{M}
$$

for some constant $C>0$, where $\hat{M}:=\{(x, y): x, y \in M, x \neq y, x \notin \operatorname{cut}(y)\}$, and $\operatorname{cut}(y)$ is the cut-locus of y. So,

$$
L \rho(x, \cdot)(y) \leq|\nabla V(y)|+C\left\{\rho(x, y)+\rho(x, y)^{-1}\right\}, \quad(x, y) \in \hat{M} .
$$

Combining this with the Itô's formula due to [5], we obtain

$$
\mathrm{d} \rho\left(X_{0}, X_{t}\right) \leq \sqrt{2} \mathrm{~d} b_{t}+\left\{\left|\nabla V\left(X_{t}\right)\right|+C \rho(x, y)+C \rho(x, y)^{-1}\right\} \mathrm{d} t+\mathrm{d} l_{t}
$$

where b_{t} is a one-dimensional Brownian motion, and l_{t} is the local time of X_{t} at the initial value X_{0}, which is an increasing process supported on $\left\{t \geq 0: X_{t}=X_{0}\right\}$. Thus, we find a constant $C_{1}>0$ such that

$$
\mathrm{d}\left\{\frac{\rho\left(X_{0}, X_{t}\right)^{2}}{1+\rho\left(X_{0}, X_{t}\right)^{2}}\right\} \leq C_{1}\left(1+\left|\nabla V\left(X_{t}\right)\right|\right) \mathrm{d} t+\mathrm{d} M_{t}
$$

for some martingale M_{t}. Since μ is P_{t}-invariant, this implies

$$
\mathbb{E}^{\mu}\left\{\rho\left(X_{0}, X_{t}\right) \wedge 1\right\}^{2} \leq C_{2}\{1+\mu(|\nabla V|)\} t, \quad t \geq 0, x \in M
$$

for some constant $C_{2}>0$. Therefore, for any $N \in \mathbb{N}$ and $t_{i}:=(i-1) t / N$, the probability measure

$$
\tilde{\mu}_{N}:=\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{y_{i}}}=\frac{1}{t} \sum_{i=1}^{N} \int_{t_{i}}^{t_{i+1}} \delta_{X_{t_{i}}} \mathrm{~d} s
$$

satisfies

$$
\begin{aligned}
\mathbb{E}^{\mu} \tilde{W}_{1}\left(\tilde{\mu}_{N}, \mu_{t}\right)^{2} & \leq \frac{1}{t} \sum_{i=1}^{N} \int_{t_{i}}^{t_{i+1}} \mathbb{E}^{\mu}\left(\rho\left(X_{t_{i}}, X_{s}\right) \wedge 1\right)^{2} \mathrm{~d} s \\
& \leq \frac{C_{3}}{t} \sum_{i=1}^{N} \int_{t_{i}}^{t_{i+1}}\left(s-t_{i}\right) \mathrm{d} s \leq \frac{C_{3} t}{N}
\end{aligned}
$$

for some constant $C_{3}>0$. So,

$$
\begin{equation*}
\sup _{\nu \in \mathscr{P}_{k}} \mathbb{E}^{\nu}\left[\tilde{W}_{1}\left(\tilde{\mu}_{N}, \mu_{t}\right)^{2}\right] \leq k \mathbb{E}^{\mu}\left[\tilde{W}_{1}\left(\tilde{\mu}_{N}, \mu_{t}\right)^{2}\right] \leq \frac{C_{3} k t}{N}, \quad N, k \geq 1 \tag{3.6}
\end{equation*}
$$

On the other hand, by Ric $\geq-K$ and $V \leq K$ in (1.16) and using the volume comparison theorem, we find a constant $C_{4}>1$ such that

$$
\mu(B(x, r)) \leq C_{4} r^{d}, \quad x \in M, r \in[0,1],
$$

where $B(x, r):=\{y \in M: \rho(x, y) \wedge 1 \leq r\}$. Since μ is a probability measure, this inequality holds for all $r>0$. Therefore, by [6, Proposition 4.2], there exists a constant $C_{5}>0$ such that

$$
\tilde{W}_{1}\left(\tilde{\mu}_{N}, \mu\right) \geq C_{5} N^{-\frac{1}{d}}, \quad N \geq 1
$$

Combining this with (3.6) and using the triangle inequality for \tilde{W}_{1}, we obtain

$$
\sup _{\nu \in \mathscr{P}_{k}} \mathbb{E}^{\nu}\left[\tilde{W}_{1}\left(\mu_{t}, \mu\right)\right] \geq C_{5} N^{-\frac{1}{d}}-\sqrt{C_{3} k t} N^{-\frac{1}{2}}, \quad N, k \geq 1 .
$$

maximizing in $N \geq 1$, we find a constant $c>0$ such that (1.17) holds.
Now, let $d \geq 4$. To prove (1.18) for general probability measure ν, we consider the shift empirical measure

$$
\bar{\mu}_{t}:=\frac{1}{t} \int_{1}^{t+1} \delta_{X_{s}} \mathrm{~d} s, \quad t \geq 1
$$

and the probability measures

$$
\nu_{x}:=\delta_{x} P_{1}=p_{1}(x, \cdot) \mu, \quad \nu_{x, 1}:=\frac{1_{B(x, 1)}}{\nu_{x}(B(x, 1))} \nu_{x}, \quad x \in M .
$$

By the Markov property, we obtain

$$
\mathbb{E}^{x}\left[\tilde{W}_{1}\left(\bar{\mu}_{t}, \mu\right]\right)=\mathbb{E}^{\nu_{x}}\left[\tilde{W}_{1}\left(\mu_{t}, \mu\right)\right]=\int_{M} \mathbb{E}^{y}\left[\tilde{W}_{1}\left(\mu_{t}, \mu\right)\right] p_{1}(x, y) \mu(\mathrm{d} y)
$$

$$
\geq \int_{B(x, 1)} \mathbb{E}^{y}\left[\tilde{W}_{1}\left(\mu_{t}, \mu\right)\right] p_{1}(x, y) \mu(\mathrm{d} y)=\nu_{x}(B(x, 1)) \mathbb{E}^{\nu_{x, 1}}\left[\tilde{W}_{1}\left(\bar{\mu}_{t}, \mu\right)\right] .
$$

Noting that $h(x):=\sup _{y \in B(x, 1)} p_{1}(x, y)<\infty$, this and (1.17) yield

$$
\mathbb{E}^{x}\left[\tilde{W}_{1}\left(\bar{\mu}_{t}, \mu\right)\right] \geq g(x) t^{-\frac{1}{d-2}}, \quad g(x):=c \nu_{x}(B(x, 1)) h(x)^{-\frac{1}{d-2}}, x \in M, t \geq 1 .
$$

Consequently, for any probability measure ν,

$$
\mathbb{E}^{\nu}\left[\tilde{W}_{1}\left(\bar{\mu}_{t}, \mu\right)\right]=\int_{M} \mathbb{E}^{x}\left[\tilde{W}_{1}\left(\bar{\mu}_{t}, \mu\right)\right] \nu(\mathrm{d} x) \geq \nu(g) t^{-\frac{1}{d-2}}, \quad t \geq 1
$$

Combining this with (3.5) and noting that $d \geq 4$ implies $t^{-\frac{1}{d-2}} \geq t^{-\frac{1}{2}}$ for $t \geq 1$, we find a constant $c_{\nu}>0$ such that when t is large enough,

$$
\mathbb{E}^{\nu}\left[\tilde{W}_{1}\left(\mu_{t}, \mu\right)\right] \geq \mathbb{E}^{\nu}\left[\tilde{W}_{1}\left(\bar{\mu}_{t}, \mu\right)-\tilde{\mathbb{W}}_{1}\left(\bar{\mu}_{t}, \mu_{t}\right)\right] \geq c(\nu) t^{-\frac{1}{d-2}}
$$

(3) According to [17, Theorem 2.1], for any $\varepsilon \in(0,1]$ we have

$$
\liminf _{t \rightarrow \infty}\left\{t \inf _{x \in M} \mathbb{E}^{x}\left[\mathbb{W}_{2}\left(\mu_{\varepsilon, t}, \mu\right)^{2}\right]\right\} \geq \sum_{i=1}^{\infty} \frac{2}{\lambda_{i}^{2} \mathrm{e}^{2 \varepsilon \lambda_{i}}}
$$

On the other hand, by [14, Theorem 3.3.2], the conditions that Ric $-\operatorname{Hess}_{V} \geq K$ and ∂M is empty or convex imply

$$
\mathbb{W}_{2}\left(\mu_{\varepsilon, t}, \mu\right)^{2} \leq \mathrm{e}^{-2 \varepsilon K} \mathbb{W}_{2}\left(\mu_{t}, \mu\right)^{2}, \quad \varepsilon \geq 0
$$

Combining this with (3.7), we derive

$$
\liminf _{t \rightarrow \infty}\left\{t \inf _{x \in M} \mathbb{E}^{x}\left[\mathbb{W}_{2}\left(\mu_{t}, \mu\right)^{2}\right]\right\} \geq \mathrm{e}^{2 \varepsilon K} \sum_{i=1}^{\infty} \frac{2}{\lambda_{i}^{2} \mathrm{e}^{2 \varepsilon \lambda_{i}}}, \quad \varepsilon \in(0,1]
$$

By letting $\varepsilon \downarrow 0$ we finish the proof.

4 Proof of Example 1.4

(1) Taking $V_{1} \in C^{\infty}\left(\mathbb{R}^{d}\right)$ such that $V_{1}(x)=-\kappa|x|^{p}$ for $|x| \geq 1$, and writing $V_{2}=V+W-V_{1}$, we see that (1.10) holds for some constant $K \in \mathbb{R}$. By Corollary 1.2, it suffices to estimate $\tilde{\gamma}(t)$. For any $x \in \mathbb{R}^{d}$ with $|x| \geq 1$, and any $t \in(0,1]$, let $x_{t}=\frac{x}{|x|}\left(|x|-\frac{1}{2} \sqrt{t}\right)$. We find a constant $c_{1}>0$ and some point $z \in B(x, \sqrt{t})$ such that

$$
\begin{equation*}
\mu(B(x, \sqrt{t})) \geq \int_{B\left(x_{t}, \frac{1}{4} \sqrt{t}\right)} \mathrm{e}^{-\kappa|y|^{p}+W(y)} \mathrm{d} y \geq c_{1} t^{\frac{d}{2}} \mathrm{e}^{-\kappa\left(|x|-\frac{1}{4} t^{\frac{1}{2}}\right)^{p}+W(z)} \tag{4.1}
\end{equation*}
$$

Since $|x| \geq 1, t \in(0,1]$ and $p>1$, we find a constant $c_{2}>0$ such that

BM2

$$
\begin{align*}
& |x|^{p}-\left(|x|-t^{\frac{1}{2}} / 4\right)^{p}=p \int_{|x|-\frac{1}{4} t^{\frac{1}{2}}}^{|x|} r^{p-1} \mathrm{~d} r \tag{4.2}\\
& \geq \frac{p t^{\frac{1}{2}}}{4}\left(\frac{|x|}{2}\right)^{p-1} \geq c_{2}|x|^{p-1} t^{\frac{1}{2}}
\end{align*}
$$

Moreover,

$$
|W(z)-W(x)| \leq\|\nabla W\|_{\infty}|x-z| \leq\|\nabla W\|_{\infty}, \quad t \in(0,1], z \in B\left(x, t^{\frac{1}{2}}\right)
$$

Combining this with (4.1) and (4.2), we find a $c_{3}>0$ such that

$$
\mu(B(x, \sqrt{t})) \geq c_{3} t^{\frac{d}{2}} \mathrm{e}^{-\kappa|x|^{p}+c_{2}|x|^{p-1} t^{\frac{1}{2}}+W(x)}, \quad t \in[0,1], x \in \mathbb{R}^{d} .
$$

Noting that $-\kappa|x|^{p}+2|W(x)|$ is bounded from above, we find constants $c_{4}, c_{5}>0$ such that

$$
\int_{|x| \geq 1} \frac{\mu(\mathrm{~d} x)}{\mu(B(x, \sqrt{t}))} \leq c_{4} t^{-\frac{d}{2}} \int_{1}^{\infty} r^{d-1} \mathrm{e}^{-c_{2} r^{p-1} t^{\frac{1}{2}}} \mathrm{~d} r \leq c_{5} t^{-\frac{d}{2}-\frac{d}{2(p-1)}}=c_{5} t^{-\frac{p d}{2(p-1)}}, \quad t \in(0,1] .
$$

On the other hand, there exists a constant $c_{6}>0$ such that $\mu(B(x, r)) \geq c_{6} r^{d}$ for $|x|<1$ and $r \in(0,1]$. In conclusion, there exists a constant $c_{7}>0$ such that

$$
\tilde{\gamma}(t):=\int_{\mathbb{R}^{d}} \frac{\mu(\mathrm{~d} x)}{\mu(B(x, \sqrt{t}))} \leq c_{5} t^{-\frac{p d}{2(p-1)}}+c_{6}^{-1} t^{-\frac{d}{2}} \leq c_{7} t^{-\frac{p d}{2(p-1)}}, \quad t \in(0,1] .
$$

Thus, there exists a constant $c_{8}>0$ such that for any $\varepsilon \in(0,1]$,

$$
\tilde{\beta}(\varepsilon) \leq 1+c_{6} \int_{\varepsilon}^{1} \mathrm{~d} s \int_{s}^{1} t^{-\frac{d p}{2(p-1)}} \mathrm{d} t \leq \begin{cases}c_{8} \varepsilon^{2-\frac{d p}{2(p-1)}}, & \text { if } 2<\frac{d p}{2(p-1)} \\ c_{8} \log \left(1+\varepsilon^{-1}\right), & \text { if } 2=\frac{d p}{2(p-1)} \\ c_{8}, & \text { if } 2>\frac{d p}{2(p-1)}\end{cases}
$$

By taking $\varepsilon=t^{-\frac{2(p-1)}{(d-2) p+2}}$ if $4(p-1)<d p, \varepsilon=t^{-1}$ if $4(p-1)=d p$, and $\varepsilon \downarrow 0$ if $4(p-1)>d p$, we derive

$$
\inf _{\varepsilon \in(0,1]}\left\{\varepsilon+t^{-1} \tilde{\beta}(\varepsilon)\right\} \leq \begin{cases}c t^{-\frac{2(p-1)}{(d-2) p+2}}, & \text { if } 4(p-1)<d p \tag{4.3}\\ c t^{-1} \log (1+t), & \text { if } 4(p-1)=d p \\ c t^{-1}, & \text { if } 4(p-1)>d p\end{cases}
$$

for some constant $c>0$. Therefore, (1.20) follows from Corollary 1.2(1).
(2) Next, by [8, Corollary 3.3], when $p>2$ the Markov semigroup P_{t}^{0} generated by $\Delta-\kappa \nabla|\cdot|^{p}$ is ultracontractive with

$$
\begin{equation*}
\left\|P_{t}^{0}\right\|_{L^{1}\left(\mu_{0}\right) \rightarrow L^{\infty}\left(\mu_{0}\right)} \leq \mathrm{e}^{c_{1}\left(1+t^{-p /(p-2)}\right)}, \quad t>0 \tag{4.4}
\end{equation*}
$$

for some constant $c_{1}>0$, where $\mu_{0}(\mathrm{~d} x):=Z^{-1} \mathrm{e}^{-\kappa|x|^{2}} \mathrm{~d} x$ is probability measure with normalized constant $Z>0$. According to the correspondence between the ultracontractivity and the log-Sobolev inequality, see [3], (4.4) holds if and only if there exists a constant $c_{2}>0$ such that

$$
\mu_{0}\left(f^{2} \log f^{2}\right) \leq r \mu_{0}\left(|\nabla f|^{2}\right)+c_{2}\left(1+r^{-\frac{p}{p-2}}\right), \quad r>0, \mu_{0}\left(f^{2}\right)=1 .
$$

Replacing f by $f \mathrm{e}^{\frac{W}{2}}$ and using $\|\nabla W\|_{\infty}<\infty$ which implies $\mu\left(\mathrm{e}^{c W}\right)<\infty$ for any $c>0$ due to $p>1$, we find constants c_{3} such that

$$
\begin{aligned}
& \mu\left(f^{2} \log f^{2}\right) \leq \mu\left(f^{2} W\right)+2 r \mu\left(|\nabla f|^{2}\right)+2\|\nabla W\|_{\infty}^{2}+c_{2}\left(1+r^{-\frac{p}{p-2}}\right) \\
& \leq 2 r \mu\left(|\nabla f|^{2}\right)+\frac{1}{2} \mu\left(f^{2} \log f^{2}\right)+\frac{1}{2} \log \mu\left(\mathrm{e}^{2 W}\right)+2\|\nabla W\|_{\infty}^{2}+c_{2}\left(1+r^{-\frac{p}{p-2}}\right) \\
& \leq 2 r \mu\left(|\nabla f|^{2}\right)+\frac{1}{2} \mu\left(f^{2} \log f^{2}\right)+c_{3}\left(1+r^{-\frac{p}{p-2}}\right), \quad r>0, \mu\left(f^{2}\right)=1
\end{aligned}
$$

Hence, for some constant $c_{4}>0$ we have

$$
\mu\left(f^{2} \log f^{2}\right) \leq r \mu\left(|\nabla f|^{2}\right)+c_{4}\left(1+r^{-\frac{p}{p-2}}\right), \quad r>0, \mu\left(f^{2}\right)=1 .
$$

By the above mentioned correspondence of the log-Sobolev inequality and semigroup estimate, this implies

$$
\left\|P_{t}\right\|_{L^{1}(\mu) \rightarrow L^{\infty}(\mu)} \leq \mathrm{e}^{c_{5}\left(1+t^{-p /(p-2)}\right)}, \quad t>0
$$

for some constant $c_{5}>0$. In particular, this and $\mu\left(\mathrm{e}^{\lambda|\cdot|^{2}}\right)<\infty$ imply $\left\|P_{t} \mathrm{e}^{\lambda|\cdot|^{2}}\right\|_{\infty}<\infty$ for $t, \lambda>0$, so that by Corollary $1.2(2)$, (1.21) follows from (4.3) and the fact that $|\nabla V(x)|^{2} \leq$ $c^{\prime}\left(1+|x|^{2(p-1)}\right)$ holds for some constant $c^{\prime}>0$.
(3) By [9, Corollary 1.4], the Poincaré inequality (1.13) holds for some constant $\lambda_{1}>0$. Moreover, it is trivial that the condition (1.16) holds for some constant $K \geq 0$. So, the desired lower bound estimate is implied by Theorem 1.3.

References

AMB [1] L. Ambrosio, F. Stra, D. Trevisan, A PDE approach to a 2-dimensional matching problem, Probab. Theory Relat. Fields 173(2019), 433-477.
[2] P. Cattiaux, D. Chafai, A. Guillin, Central limit theorems for additive functionals of ergodic Markov diffusions processes, ALEA Lat. Am. J. Probab. Math. Stat. 9(2012), 337-382.
[3] E. B. Davies, Heat Kernels and Spectral Theory, Cambridge University Press, 1989.
[4] F. Z. Gong, F.-Y. Wang, Heat kernel estimates with applications to compactness of manifolds, Quart J. Math. 52(2001), 1-10.
[5] W. S. Kendall, The radial part of Brownian motion on a manifold: a semimartingale property, Ann. Probab. 15(1987), 1491-1500.
[6] B. Kloeckner, Approximation by finitely supported measures, ESAIM Control Optim. Calc. Var. 18(2012), 343-359.
[7] M. Ledoux, On optimal matching of Gaussian samples, Zap. Nauchn. Sem. S.Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 457, Veroyatnost' i Statistika. 25, 226264 (2017).
[8] M. Röckner, F.-Y. Wang, Supercontractivity and ultracontractivity for (non-symmetric) diffusion semigroups on manifolds, Forum Math. 15(2003), 893-921.
[9] F.-Y. Wang, Existence of the spectral gap for elliptic operators, Arkiv för Math. 37(1999), 395-407.
[10] F.-Y. Wang, Functional inequalities, semigroup properties and spectrum estimates, Infinite Dimensional Analysis, Quantum Probability and Related Topics 3:2(2000), 263295.
[11] F.-Y. Wang, Harnack inequalities on manifolds with boundary and applications, J. Math. Pures Appl. 94(2010), 304-321.
[12] F.-Y. Wang, Functional Inequalities, Markov Semigroups and Spectral Theory, 2005 Science Press.
[13] F.-Y. Wang, Harnack Inequality for Stochastic Partial Differential Equations, Math. Brief. Springer, 2013
[14] F.-Y. Wang, Analysis for Diffusion Processes on Riemnnian Manifolds, World Sicentific, 2014.
[15] F.-Y. Wang, Precise limit in Wasserstein distance for conditional empirical measures of Dirichlet diffusion processes, arXiv:2004.07537.
[16] F.-Y. Wang, Convergence in Wasserstein distance for empirical measures of Dirichlet diffusion processes on manifolds, arXiv:2005.09290.
[17] F.-Y. Wang, J.-X. Zhu, Limit theorems in Wasserstein distance for empirical measures of diffusion processes on Riemannian manifolds, aXiv:1906.03422.

A Upper bound estimate on $\mathbb{W}_{p}\left(f_{1} \mu, f_{2} \mu\right)$

For $p \geq 1$, let \mathbb{W}_{p} be the L^{p}-Wasserstein distance induced by ρ, i.e.

$$
\mathbb{W}_{p}\left(\mu_{1}, \mu_{2}\right)=\inf _{\pi \in \mathscr{C}\left(\mu_{1}, \mu_{2}\right)}\|\rho\|_{L^{p}(\pi)} .
$$

According to [7, Theorem 2], for any probability density f of μ, we have

$$
\begin{equation*}
\mathbb{W}_{p}(f \mu, \mu)^{p} \leq p^{p} \mu\left(\left|\nabla(-L)^{-1}(f-1)\right|^{p}\right) \tag{A.1}
\end{equation*}
$$

The idea of the proof goes back to [1], in which the following estimate is presented for probability density functions f_{1}, f_{2} :

$$
\mathbb{W}_{2}\left(f_{1} \mu_{1}, f_{2} \mu_{2}\right)^{2} \leq \int_{M} \frac{\left|\nabla(-L)^{-1}\left(f_{2}-f_{1}\right)\right|^{2}}{\mathscr{M}\left(f_{1}, f_{2}\right)} \mathrm{d} \mu
$$

where $\mathscr{M}(a, b):=1_{\{a \wedge b>0\}} \frac{\log a-\log b}{a-b}$ for $a \neq b$, and $\mathscr{M}(a, a)=1_{\{a>0\}} a^{-1}$. In general, for $p \geq 1$, denote $\mathscr{M}_{p}=\mathscr{M}$ if $p=2$, and when $p \neq 2$ let

$$
\mathscr{M}_{p}(a, b)=1_{\{a \wedge b>0\}} \frac{a^{2-p}-b^{2-p}}{(2-p)(a-b)} \text { for } a \neq b, \quad \mathscr{M}_{p}(a, a)=1_{\{a>0\}} a^{1-p}
$$

In this Appendix, we extend estimates (A.1) and (A.2) as follows, which might be useful for further studies.

A1 Theorem A.1. For any probability density functions f_{1} and f_{2} with respect to μ such that $f_{1} \vee f_{2}>0$,

$$
\begin{gathered}
\mathbb{W}_{p}\left(f_{1} \mu, f_{2} \mu\right)^{p} \leq \min \left\{p^{p} 2^{p-1} \int_{M} \frac{\left|\nabla(-L)^{-1}\left(f_{2}-f_{1}\right)\right|^{p}}{\left(f_{1}+f_{2}\right)^{p-1}} \mathrm{~d} \mu, p^{p} \int_{M} \frac{\left|\nabla(-L)^{-1}\left(f_{2}-f_{1}\right)\right|^{p}}{f_{1}^{p-1}} \mathrm{~d} \mu,\right. \\
\left.\int_{M} \frac{\left|\nabla(-L)^{-1}\left(f_{2}-f_{1}\right)\right|^{2}}{\mathscr{M}_{p}\left(f_{1}, f_{2}\right)} \mathrm{d} \mu\right\} .
\end{gathered}
$$

Proof. It suffices to prove for $p>1$. Let $\operatorname{Lip}_{b}(M)$ be the set of bounded Lipschitz continuous functions on M. Consider the Hamilton-Jacobi semigroup $\left(Q_{t}\right)_{t>0}$ on $\operatorname{Lip}_{b}(M)$:

$$
Q_{t} \phi:=\inf _{x \in M}\left\{\phi(x)+\frac{1}{p t^{p-1}} \rho(x, \cdot)^{p}\right\}, \quad t>0, \phi \in \operatorname{Lip}_{b}(M)
$$

Then for any $\phi \in \operatorname{Lip}_{b}(M), Q_{0} \phi:=\lim _{t \downarrow 0} Q_{t} \phi=\phi,\left\|\nabla Q_{t} \phi\right\|_{\infty}$ is locally bounded in $t \geq 0$, and $Q_{t} \phi$ solves the Hamilton-Jacobi equation

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} Q_{t} \phi=-\frac{p-1}{p}\left|\nabla Q_{t} \phi\right|^{\frac{p}{p-1}}, \quad t>0 \tag{A.3}
\end{equation*}
$$

Let $q=\frac{p}{p-1}$. For any $f \in C_{b}^{1}(M)$, and any increasing function $\theta \in C^{1}((0,1))$ such that $\theta_{0}:=\lim _{s \rightarrow 0} \theta_{s}=0, \theta_{1}:=\lim _{s \rightarrow 1} \theta_{s}=1$, by (A.3) and the integration by parts formula, we obtain

$$
\begin{aligned}
& \mu_{1}\left(Q_{1} f\right)-\mu_{2}(f)=\int_{0}^{1}\left\{\frac{\mathrm{~d}}{\mathrm{~d} s} \mu\left(\left[f_{1}+\theta_{s}\left(f_{2}-f_{1}\right)\right] Q_{s} f\right)\right\} \mathrm{d} s \\
& =\int_{0}^{1} \mathrm{~d} s \int_{M}\left\{\theta_{s}^{\prime}\left(f_{2}-f_{1}\right) Q_{s} f-\frac{f_{1}+\theta_{s}\left(f_{2}-f_{1}\right)}{q}\left|\nabla Q_{s} f\right|^{q}\right\} \mathrm{d} \mu
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{1} \mathrm{~d} s \int_{M}\left\{\theta_{s}^{\prime}\left\langle\nabla(-L)^{-1}\left(f_{2}-f_{1}\right), \nabla Q_{s} f\right\rangle-\frac{f_{1}+\theta_{s}\left(f_{2}-f_{1}\right)}{q}\left|\nabla Q_{s} f\right|^{q}\right\} \mathrm{d} \mu \\
& \leq \frac{1}{p} \int_{M}\left|\nabla(-L)^{-1}\left(f_{2}-f_{1}\right)\right|^{p} \mathrm{~d} \mu \int_{0}^{1} \frac{\left|\theta_{s}^{\prime}\right|^{p}}{\left[f_{1}+\theta_{s}\left(f_{2}-f_{1}\right)\right]^{p-1}} \mathrm{~d} s
\end{aligned}
$$

where the last step is due to Young's inequality $a b \leq a^{p} / p+b^{q} / q$ for $a, b \geq 0$. By Kantorovich duality formula

$$
\frac{1}{p} \mathbb{W}_{p}\left(\mu_{1}, \mu_{2}\right)^{p}=\sup _{f \in C_{b}^{1}(M)}\left\{\mu_{1}\left(Q_{1} f\right)-\mu_{2}(f)\right\}
$$

and noting that

$$
\begin{aligned}
& f_{1}+\theta_{s}\left(f_{2}-f_{1}\right)=f_{1}+f_{2}-\theta_{s} f_{1}-\left(1-\theta_{s}\right) f_{2} \\
& =\left(f_{1}+f_{2}\right)\left(1-\frac{\theta_{s} f_{1}}{f_{1}+f_{2}}-\frac{\left(1-\theta_{s}\right) f_{2}}{f_{1}+f_{2}}\right) \\
& \geq\left(f_{1}+f_{2}\right) \min \left\{1-\theta_{s}, \theta_{s}\right\},
\end{aligned}
$$

we derive

$$
\begin{equation*}
\mathbb{W}_{p}\left(\mu_{1}, \mu_{2}\right)^{p} \leq \int_{0}^{1} \frac{\left|\theta_{s}^{\prime}\right|^{p}}{\min \left\{\theta_{s}, 1-\theta_{s}\right\}^{p-1}} \mathrm{~d} s \int_{M} \frac{\left|\nabla(-L)^{-1}\left(f_{1}-f_{2}\right)\right|^{p}}{\left(f_{1}+f_{2}\right)^{p-1}} \mathrm{~d} \mu \tag{A.4}
\end{equation*}
$$

By taking

$$
\theta_{s}=1_{\left[0, \frac{1}{2}\right]}(s) 2^{p-1} s^{p}+1_{\left(\frac{1}{2}, 1\right]}(s)\left\{1-2^{p-1}(1-s)^{p}\right\},
$$

which satisfies

$$
\theta_{s}^{\prime}=p 2^{p-1} \min \{s, 1-s\}^{p-1}, \quad \min \left\{\theta_{s}, 1-\theta_{s}\right\}=2^{p-1} \min \{s, 1-s\}^{p}
$$

we deduce from (A.4) that

$$
\mathbb{W}_{p}\left(f_{1} \mu, f_{2} \mu\right)^{p} \leq p^{p} 2^{p-1} \int_{M} \frac{\left|(-L)^{-\frac{1}{2}}\left(f_{2}-f_{1}\right)\right|^{p}}{\left(f_{1}+f_{2}\right)^{p-1}} \mathrm{~d} \mu
$$

Next, (A.4) with $\theta_{s}=1-(1-s)^{p}$ implies

$$
\mathbb{W}_{p}\left(f_{1} \mu, f_{2} \mu\right)^{p} \leq p^{p} \int_{M} \frac{\left|(-L)^{-\frac{1}{2}}\left(f_{2}-f_{1}\right)\right|^{p}}{f_{1}^{p-1}} \mathrm{~d} \mu
$$

Finally, with $\theta_{s}=s$ we deduce from (A.4) that

$$
\mathbb{W}_{p}\left(f_{1} \mu, f_{2} \mu\right)^{p} \leq \int_{M} \frac{\left|(-L)^{-\frac{1}{2}}\left(f_{2}-f_{1}\right)\right|^{2}}{\mathscr{M}_{p}\left(f_{1}, f_{2}\right)} \mathrm{d} \mu
$$

Then the proof is finished.

[^0]: *Supported in part by NNSFC (11771326, 11831014, 11921001).

