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Abstract

This paper analyses the viscoelastic up-scaling effects in electro-active polymers endowed with a
micro-structure architecture in the form of a rank-one laminate. The principles of rank-n homogeneisa-
tion and thermodynamical consistency are combined in the context of extremely deformable dielectric
elastomers actuated well beyond the onset of geometrical instabilities. To ensure the robustness of the
resulting methodology, Convex Multi-Variable (CMV) energy density functionals enriched with a non-
linear continuum viscoelastic description are used to describe the physics of the individual microscopic
constituents. The high nonlinearity of the visco-electro-mechanical problem is resolved via a monolithic
multi-scale Newton-Raphson scheme with a Backward-Euler (implicit) time integration scheme. A tensor
cross product operation between vectors and tensors and an additive decomposition of the micro-scale
deformation gradient (in terms of macro-scale and fluctuation components) are used to considerably
reduce the complexity of the algebra. The resulting computational framework permits to explore the
time-dependent in-silico analysis of rank-one electro-active polymer composites exhibiting extremely
complex deformation patterns, paying particular attention to viscoelastic up-scaling effects. A com-
prehensive series of numerical examples is presented, where specially revealing conclusions about the
rate-dependency of the composite electro-active polymer are observed as a function of its microstructure
orientation and viscoelastic content. In a rectangular film subjected to extreme bending deformation,
two different deformation modes are observed with one prevailing mode depending on the laminate com-
position. For the case of a square membrane where extreme deformation induces buckling, it is shown
that the viscoelastic contribution leads to larger values of (stable) deformation, due to the regularisation
that viscoelasticity inherently provides.

Keywords: viscoelasticity, finite element method, nonlinear electro-elasticity, rank-one laminates,
electro-active polymer

1. Introduction

Electro-Active Polymers (EAPs) emerged as a class of smart materials capable of displaying signifi-
cant change in shape in response to electrical stimuli. Among them, dielectric elastomers (DEs) are one
of the most popular [52, 71, 72] due to their outstanding actuation capabilities (e.g. light weight, fast
response time, flexibility, low stiffness properties). Among the numerous applications that they have,
their use as soft robots [6, 7, 12, 15, 16, 49, 55, 66, 79] or flexible energy generators [50, 59] could be
highlighted. Their potential drawback is that they generally require a large value of electric field to reach
a significant deformation, which makes them susceptible to electromechanical instabilities or electrical
breakdown [8].
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In order to reduce the necessary voltage applied to these DEs, composite designs have been intro-
duced [30, 43, 44, 53, 65, 106] whose constituents are materials with distinct electromechanical properties;
generally, one constituent is a soft elastomer with low permittivity whilst the other has opposite prop-
erties, so that it acts as a reinforcement [36, 74]. The improvement in the coupling performance of DE
composites has been proved in [43, 90] experimentally, i.e., a smaller operational voltage is required in
order to get the same actuation. Notwithstanding, in some cases the heterogeneous material may result
weaker with respect to electric breakdown [51, 76].

A type of DE composites who has had an outstanding development in the past years is that of
multi-layered DE laminated composites, specially due to the improvement in layer-by-layer fabrication
techniques. To name but a few, Li et al. [53, 54] developed models which depict the strong non-linearity
present in this kind of materials; deBotton [25] remarked the importance of the contrast betweeen
properties of the constituents; Tian et al. [92] established the amplification that the performance of a
composite can experiment while subjected to plane strain in the case of small deformations and electric
fields; and Gei et al. [32] extended the work to the moderate strain regime, with an optimisation
analysis in terms of the contrast and volume fractions of the constituents. Some authors study the
onset of instabilities, e.g., Bertoldi and Gei [8] and Rudykh et al. [77, 78, 80] in rank-one DE laminated
composites. A common feature of all of the above modelling studies lies in the search for closed-form
solutions, which are achieved for the case of simple in-plane stretching deformation scenarios, primarily
described by plane strain and exact incompressibility, in conjunction with the use of ideal dielectric
neo-Hookean phases.

Nowadays, computational methods constructed on the basis of variational principles are used to
simulate more complex deformation scenarios. From the theory stated in the early works of Toupin
[93, 94] and the development performed by works such as [26, 27, 60, 91], there have been computa-
tional mechanics works developing it [28, 46, 96–99]. They all work with a single-phase material whose
behaviour is modeled within a (phenomenologically) defined energy functional which depends upon ap-
propriate strain measures, a Lagrangian electric variable and, if dissipative effects are considered, an
electromechanical internal variable [56]. Other works important to mention are [47, 86, 88]. In previous
publications [34, 67, 69, 70, 75], the authors put forward a new computational framework for single-
phase reversible electro-mechanics, where the existence of solution is always ensured via the selection of
objective (frame-invariant) and Convex Multi-Variable (CMV) energy functionals, that is, convex with
respect to the minors of the deformation gradient tensor {F ,H, J}, the Lagrangian electric displacement
D0, and the spatial electric displacement d = FD0. CMV energy functionals (generally referred to as
polyconvex [89]) guarantee ellipticity [34] in the quasi-static case and hyperbolicity in the dynamic case
[67], thus precluding anomalous mesh dependency effects. In [58], the work was extended to laminated
DE composites, where the individual constituents were modeled with CMV energy functionals.

All the works commented above are restricted to (reversible) hyperelastic material behaviour. How-
ever, dielectric elastomers can be rate dependent, and this can affect their coupling efficiency. The
theory considering viscoelastic properties was first developed in [18, 37], and afterwards by [17, 73, 83].
In the past years, there have been works that consider a time-dependent behaviour in the deformation
of DEs, both numerical [3, 13, 39, 62, 63, 87, 101, 102] and experimental [41, 42, 61, 63, 102, 104] stud-
ies. Restricted to finite strains, some works consider the electro-viscoelastic behaviour of the materials
[2, 95, 100]: in [2], the numerical solution of some boundary value problems for a polyurethane-based
dielectric elastomer; Vogel et al. [95] construct a general framework to model and simulate viscous
electro-active materials, restricted also to finite strains; the author in [100] investigated creep and cyclic
behaviours for a spring-connected dielectric actuator via a non-linear three-element viscoelastic model.
Furthermore, Zhao et al. [107] and Hong [40] developed models for the electro-viscoelastic behaviour
of dielectric elastomers at large deformations based on non-equilibrium thermodynamics. In [9], au-
thors developed a coupled electro-viscoelastic model implemented into a commercial software. With
respect to the characterization of the widely used dielectric elastomer VHB 4910, some studies show
results under pure mechanical loading [1, 41] and electromechanical loading [9, 42, 63]. Other works
calibrate some viscoelastic parameters [48, 102–104]. Out of the scope of this paper, some works study
the electro-magneto-viscoelastic properties of some magnetorheological elastomers (MREs), for instance
[31, 81, 82, 105]. In particular, Saxena et al. [81, 82] presented a general framework of finite deformation
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magneto-vistoelasticity. Garcia [31] introduced a new framework to model time-dependent behaviour of
MREs based on the multiplicative decomposition of deformation gradient tensor into elastic and viscous
parts. To analyse thermo-electro-viscoelasticity of dielectrics, Mehnert et al. [62] developed a mathemat-
ical framework decomposing the free energy function into four parts: elastic, electric, time-dependent
and thermal parts.

As a result, this paper will apply the principles of rank-n homogenisation of CMV phases in the
context of extremely deformable dielectric elastomers actuated well beyond the onset of geometrical
instabilities, with the consideration of viscoelasticity in the materials of the composite, adding further
complexity and realism to that of the standard hyperelastic (reversible) incompressible ideal dielectric
elastomer. From the numerical standpoint, a new computational framework takes into account the
viscoelastic properties of the phases, and analyses their effect in the delayed response of deformation of
the material. This contributes to a more realistic modeling of the materials, taking into account the
effect of historic loading effects. Likewise, it facilitates numerical modelling, since viscous terms provide
a regularising contribution. With this consideration, a next step could be to approach optimisation
problems with realistic controls.

The outline of this paper is as follows. Section 2 describes the necessary elements of nonlinear
continuum electro-mechanics. Section 3 revisits the concept of Multi-Variable Convexity as a basis for
the constitutive models for the description of the individual microscopic components in multi-layered
DE composites, and studies in depth the extension to the viscoelastic models. Section 4 presents the
homogenisation theory applied to rank-one viscoelectro-mechanical laminates and demonstrates the nec-
essary conditions of existence for the microscopic and macroscopic problems to be solved. Section
5 succinctly describes the variational principles and the finite element implementation method used
in this work. Section 6 presents a series of numerical examples in order to assess the capabilities of
the new computational framework. Specifically, in a first example, a local analysis is conducted at a
quadrature (Gauss point) level where the effect of laminate orientation upon purely mechanical and
electro-mechanical relaxation and loading/unloading tests is presented. In a second example, complex
three-dimensional bending/torsion/stretching combined modes of deformation are studied for a soft
robot actuator, monitoring macroscopic stability, and observing the effect that viscoelasticity has in the
predominance of a deformation mode against others. This will be observed only when the material is
subjected to extreme deformation as it is the case of the three-dimensional bending of a laminate. In a
third example, the onset of first and second order buckling is explored in a prototypical laboratory config-
uration. In this, it is observed the regularising contribution provided by the time-dependent viscoelastic
term, which allows to attain a much higher deformation without reaching the instabilities present in the
hyperelastic case. Eventually, Section 7 provides some concluding remarks about the paper.

2. Nonlinear continuum electro-mechanics

2.1. Kinematics: motion and deformation

Let us consider the motion of an Electro-Active Polymer (EAP) with reference configuration given
by the open bounded set B0 ⊂ R3 with boundary ∂B0 and unit outward normal N . After the motion,
the EAP occupies a deformed configuration given by the open bounded set B ⊂ R3 with boundary ∂B
and unit outward normal n. The motion of the EAP is defined by a deformation mapping φ linking
material particles X ∈ B0 to the deformed configuration x ∈ B as

φ : B0 ⊂ R3 × [0, T ]→ B ⊂ R3

X 7→ x = φ (X, t) .
(1)

This motion is represented in Figure 1. Associated with φ (X), the deformation gradient tensor F
[11, 21, 35] is defined as5

F = ∇0φ (X) ; FiI =
∂φi
∂XI

= ∂XI
(φi). (2)

5Lower case indices {i, j, k} will be used to represent the spatial configuration, whereas capital case indices {I, J,K} will
be used to represent the material description.
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Associated with F , its co-factor H and its Jacobian J [10, 20] are defined as

H =
1

2
F F ; J =

1

3
H : F , (3)

with (A B)iI = EijkEIJKAjJBkK , ∀A,B ∈ R3×3, where Eijk (or EIJK) symbolises the third-order
alternating tensor components and the use of repeated indices implies summation6.

Figure 1: Deformation mapping φ (X, t).

The directional derivative of the deformation gradient tensor F with respect to vector fields δx ∈ R3

can be obtained as
DF [δx] = ∇0δx. (4)

Using the notation δF := DF [δx], the directional derivative of the co-factor matrix H = H(F ) and
of the determinant J = J(F ) with respect to tensor fields δF ∈ R3×3 follow from their definitions in (3),
i.e.,

DH[δF ] = F δF ; DJ [δF ] = H : δF . (5)

Similarly, second directional derivatives of both H and J with respect to tensor fields δF ∈ R3×3

yield
D2H[δF ; δF ] = δF δF ; D2J [δF ; δF ] = F : (δF δF ) . (6)

2.2. Governing equations in nonlinear electromechanics

In the absence of inertia7 and magnetic effects, the system of partial differential equations governing
the behaviour of the EAP comprises the conservation of linear momentum and the compatibility equation
(2)a along with the quasi-static version of the Gauss’s and Faraday’s laws. The complete Initial Boundary
Value problem can be recast in a Total Lagrangian formalism as

F = ∇0φ; in B0 × [0, T ] ;

DIVP + f0 = 0; in B0 × [0, T ] ;

PN = t0; on ∂tB0 × [0, T ] ;

φ = φ̄; on ∂φB0 × [0, T ] ;︸ ︷︷ ︸
Conservation of linear momentum and kinematics

E0 = −∇0ϕ; in B0 × [0, T ] ;

DIVD0 − ρ0 = 0; in B0 × [0, T ] ;

D0 ·N = −ω0; on ∂ωB0 × [0, T ] ;

ϕ = ϕ̄; on ∂ϕB0 × [0, T ] ,︸ ︷︷ ︸
Gauss and Faraday laws

(7)

where f0 represents a body force per unit undeformed volume B0; t0, the traction force per unit un-
deformed area on ∂tB0 ⊂ ∂B0; φ̄, the value of the Dirichlet boundary condition on ∂φB0 ⊂ ∂B0, with
∂tB0 ∪ ∂φB0 = ∂B0 and ∂tB0 ∩ ∂φB0 = ∅. Furthermore, ρ0 represents an electric volume charge per unit

6In addition, throughout the paper, the symbol (·) indicates the scalar product or contraction of a single index a·b = aibi;
the symbol (:), double contraction of two indices A : B = AijBij ; the symbol (×), the cross product between vectors
(a× b)i = Eijkajbk; and the symbol (⊗), the outer or dyadic product (a⊗ b)ij = aibj .

7Although other time-dependent effects, such as viscoelasticity, will be present.
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of undeformed volume B0; and ω0, an electric surface charge per unit of undeformed area ∂ωB0 ⊂ ∂B0. In
addition, E0 is the Lagrangian electric field vector; ϕ : B0× [0, T ]→ R, the scalar electric potential; and
∂ϕB0, the part of the boundary ∂B0 where essential electric potential boundary conditions are applied
so that ∂ωB0 ∪ ∂ϕB0 = ∂B0 and ∂ωB0 ∩ ∂ϕB0 = ∅. Finally, P and D0 represent the first Piola-Kirchhoff
stress tensor and the Lagrangian electric displacement field, respectively, which, in the reversible case,
depend upon F and E0.

3. Constitutive equations in nonlinear electro-visco-elasticity: phenomenological macro-
scopic models

The scope of this paper is on analytical homogenisation of layered EAP composites. However, we de-
vote the current section to the simpler case where a macroscopic phenomenological visco-electromechanical
model is available, in order to introduce some key concepts which will be exploited in subsequent sections.

3.1. Constitutive framework in visco-electro-elasticity

In the case of visco-electro-elasticity, the internal energy density e per unit of undeformed volume
can be defined in terms of the deformation, the electric displacement field and the strain-like tensorial
internal variables, namely e = e(F ,D0,A), where A = {A1, . . . ,AnMaxw} represent the collection of
internal variables Ai, i = 1, · · · , nMaxw, and nMaxw the number of Maxwell branches used to model the
viscoelastic behaviour of the material [57, 64]8. Furthermore, an additive decomposition of the energy
density e(F ,D0,A) into a hyperelastic and a viscoelastic contribution is considered, as

e (F ,D0,A) = eh (F ,D0) + ev (F ,A) . (9)

In this work, as in others (e.g., [9, 57]), the viscous part of the internal energy is considered inde-
pendent on the electric displacement field D0, as it can be deduced from equation (9). Using thermody-
namical principles, the dissipation inequality D in the context of visco-electro-elasticity can be written
as

D = P : Ḟ +E0 · Ḋ0︸ ︷︷ ︸
Dint

−ė ≥ 0, (10)

where the time derivative of the energy density function e(F ,D0,A) is computed as

ė = ∂F e : Ḟ + ∂D0e
h · Ḋ0 + ∂Ae

v • Ȧ, (11)

where (•̇) denotes the time derivative of (•); ∂B(•), the partial derivative of (•) with respect to the
field B; and given B = {B1, · · · ,Bn}, C = {C1, · · · ,Cn}, the inner product B • C is defined as
B • C =

∑n
i=1Bi : Ci. Use of the Coleman and Noll procedure in (10) and (11) (see [19]) yields the

following standard constitutive equations,

P (F ,D0,A) = ∂F e
h(F ,D0)︸ ︷︷ ︸

P h(F ,D0)

+ ∂F e
v(F ,A)︸ ︷︷ ︸

P v(F ,A)

; E0(F ,D0) = ∂D0e
h(F ,D0),

(12)

with the dissipation inequality given by

D(F ,A, Ȧ) = −∂Aev(F ,A) • Ȧ ≥ 0. (13)

In addition to the strain energy density e (F ,D0,A) in equation (9), the constitutive model must
be endowed with a suitable definition of evolution equations, typically, first-order ordinary differential
equations that determine the time evolution of the internal variables Ai as an implicit function of the

8The requirement of objectivity implies that the internal energy density e(F ,D0,A) can be re-expressed in terms of a
set of objective arguments (namely, D0 and C = F TF ) as

e (F ,D0,A) = ẽ (C,D0,A) , (8)

where e and ẽ denote alternative representations of the same internal energy density.
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deformation F at each material point X and at any time instant t (namely, Ai = Ai(F (X, t))), whilst
complying with the dissipation inequality in equation (13) . Mathematically, these evolution equations
can be generically recast as

F i : R3×3 × R3×3 × R3×3 → R3×3; i = 1, . . . , nMaxw;

Ȧi = F i (F (X, t),Ai) ;

Ai = I; t = 0.

(14)

3.2. Tangent operator

Linearisation of Dint with respect to δF and δD0 in (10) yields the high order constitutive tensors,
necessary for any Newton-Raphson type of computational implementation. With that in mind, the time
derivatives Ḟ and Ḋ0 are first replaced with virtual variations δF and δD0, respectively, and Dint is
further decomposed into its hyperelastic and viscous contribution, Dhint and Dvint, respectively, as

Dint(F ,D0,A, δF , δD0) = Dhint(F ,D0, δF , δD0) +Dvint(F ,A, δF ), (15)

where Dhint and Dvint are expressed as

Dhint(F ,D0, δF , δD0) = Deh(F ,D0)[δF , δD0] = P h(F ,D0) : δF +E0(F ,D0) · δD0;

Dvint (F ,A, δF ) = P v(F ,A) : δF .
(16)

It is important to notice that the hyperelastic contribution Dhint(F ,D0, δF , δD0) is equivalent to
the linearisation of the hyperelastic energy density functional eh (F ,D0) with respect to δF and δD0,
whereas Dvint (F ,A, δF ) cannot be analogously understood due to the presence of the internal variables
A (irreversibility), which gives an implicit relationships between A and F . Indeed, the linearisation of
both Dhint (F ,D0, δF , δD0) and Dvint (F ,A, δF ) in (16) can be expressed as

DDhint[δF , δD0] = D
(
P h(F ,D0) : δF +E0(F ,D0) · δD0

)
[δF , δD0];

DDvint[δF , δD0] = D
(
P v
(
F ,A(F )

)
: δF

)
[δF , δD0],

(17)

where the implicit dependence of A and F is stated. Thus,

DDhint[δF , δD0] = δF : ∂FP
h : δF︸ ︷︷ ︸

DP h[δF ]

+δF : ∂D0P
h · δD0︸ ︷︷ ︸

DP h[δD0]

+δD0 · ∂FE0 : δF︸ ︷︷ ︸
DE0[δF ]

+δD0 · ∂D0E0δD0︸ ︷︷ ︸
DE0[δD0]

;

DDvint[δF , δD0] = δF :
(
∂FP

v + ∂AP
v • ∂FA

)
: δF︸ ︷︷ ︸

DP v [δF ]

(18)

Above equations in (18) can be carefully re-written in the following equivalent form

DDhint[δF , δD0] = [δF : δD0·] [Hhe ]

[
: δF
δD0

]
; [Hhe ] =

[
Che QT

Q θ

]
;

(
QT
)
jJI

= (Q)IjJ ;

DDvint[δF , δD0] = [δF : δD0·] [Hve ]
[
: δF
δD0

]
; [Hve ] =

[
Cve 0
0 0

]
,

(19)

where [Hhe ] includes the hyperelastic high order constitutive tensors, namely the fourth order elasticity
tensor Che ∈ R3×3×3×3, the third order piezoelectric tensor Q ∈ R3×3×3 and the inverse of the dielectric
tensor θ ∈ R3×3, whilst [Hve ] includes the viscous contribution in the elasticity tensor Cve ∈ R3×3×3×3,
being all of them defined as

Che (F ,D0) := ∂FP
h = ∂2

FF e
h; Cve(F ,A) := ∂FP

v + ∂AP
v • ∂FA = ∂2

FF e
v + ∂2

FAe
v • ∂FA;

Q(F ,D0) := ∂FE0 = ∂2
D0F e

h; θ(F ,D0) := ∂D0E0 = ∂2
D0D0

eh,
(20)

Finally, addition of both DDhint[δF , δD0] and DDvint[δF , δD0] in (19), permits to obtain the lineari-
sation of the dissipation inequality DDint[δF , δD0] as

DDint[δF , δD0] = [δF : δD0·] [He]
[
: δF
δD0

]
; [He] = [Hhe ] + [Hve ]. (21)
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3.3. Specific form of the hyperelastic and viscous contributions and of the evolution laws for internal
variables

In order to ensure existence of solutions for problem (7) in the vicinity of the origin, namely when
F ≈ I (with I the second order identity matrix), D0 ≈ 0 and A ≈ I9, the directional derivative
DDint[δF , δD0] in (21) must be strictly positive, namely

DDint[δF , δD0]|F=I,D0=0,A=I > 0; ∀ δF , δD0, (22)

which requires positive definiteness of [He]. However, positive definiteness of [He] (entailing uniqueness
of such solutions) is not a physical restriction away from the origin as it precludes buckling, inherent
to soft dielectric materials. Therefore, more physically realistic restrictions than that in (22) need to
be imposed on the constitutive model of viscoelastic electro-active materials. Working on this idea, but
in the context of reversible nonlinear electro-mechanics (i.e., no viscoelastic behaviour considered), Gil
and Ortigosa [34, 67, 68, 70], motivated by considerations of material stability, extended the concept of
polyconvexity [4, 5, 45, 84, 85] from elasticity to electro-magneto-elasticity and proposed new convexity
restrictions on the (hyperelastic) internal energy density eh(F ,D0), postulating a Convex Multi-Variable
(CMV) definition as

eh (F ,D0) = W h (V) ; V = {F ,H, J,D0,d} ; d = FD0, (23)

where W h must be a convex function with respect to the extended set V . The new extended set of
convex restrictions proved to be a sufficient condition for the satisfaction of the ellipticity condition [34].
Shortly after the work in [34], Šilhavý [89] proved that multi-variable convexity, or A-polyconvexity, as
he denoted it in his work, in conjunction with suitable growth conditions, ensures existence of minimisers
in (reversible) nonlinear electro-magneto-elasticity.

In this work, we advocate for a convex multi-variable definition of the hyperelastic contribution
eh (F ,D0), additively decomposed into its purely mechanical and electromechanical contributions [14, 45,
96], ehm (F ) and ehem (F ,D0), respectively, both complying with the definition of multi-variable convexity,
namely

eh (F ,D0) = ehm (F ) + ehem (F ,D0) ; ehm(F ) = W h
m(F ,H, J); ehem(F ,D0) = W h

em(V), (24)

where W h
m(F ,H, J) and W h

em(V) are convex functions with respect to their arguments. For the purely
mechanical contribution em(F ), different models can be considered. A possible example includes the
polyconvex Mooney-Rivlin model, i.e.,

ehm (F ) = W h
m(F ,H, J) =

µ1

2
IIF +

µ2

2
IIH + U(J); U(J) = − (µ1 + 2µ2) lnJ +

λ

2
(J − 1)2 ,

(25)
where {µ1, µ2, λ} are material parameters, with units of stress, related to the shear modulus µ0 and the
bulk modulus λ0 in the origin as µ0 = µ1 +µ2 and λ0 = λ+ 2µ2. With regards to the electro-mechanical
contribution eem (F ,D0), the simplest expression corresponds with that of an ideal dielectric elastomer,
convex with respect to {J,d}, defined as

ehem (F ,D0) = Wh
em (J,d) =

1

2εrε0J
IId; IId = d · d, (26)

where ε0 represents the vacuum permittivity, with ε0 = 8.8541 × 10−12 C2N−1m−2 and εr, the relative
permittivity. An alternative convex multi-variable electro-mechanical contribution, convex with respect
to {J,D0,d}, can be defined as

ehem (F ,D0) = W h
em (J,d,D0) =

1

2ε1Jα
IId +

1

2ε2Jα
IID0 ; α ∈ (0, 1], (27)

9Strictly speaking, the condition on A in the origin is correctly written as A = {A1,A2, . . . ,AnMaxw} = {I, I, . . . , I}.
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with {ε1, ε2} material parameters with units of electric permittivity. Finally, with regards to the viscous
contribution ev (F ,A), the model followed in this paper is that in References [38, 57]:

ev (F ,A) =

nMaxw∑
i=1

µvi
2

(
Ĉ : Ai − 3− ln (det (Ai))

)
; Ĉ = J−2/3F TF ; i = 1, · · · , nMaxw, (28)

where
{
µv1, · · · , µvnMaxw

}
represent the viscous shear moduli associated with the viscous Maxwell branches.

The specific form of the evolution equations of the strain-like internal variables [38, 57] in (14) is:

Ȧi = F i(F (X, t),Ai); F i =
1

τvi

(
Ĉ
−1 −Ai

)
, i = 1, . . . , nMaxw;

Ai = I; t = 0,

(29)

with
{
τv1 , · · · , τvnMaxw

}
being the relaxation times of the different Maxwell branches. Appendix 8.1 shows

that the evolution equations in (29) for the internal variables A, in conjunction with the definition of
the viscous contribution ev (F ,A) in (28), are thermodynamically consistent, as they comply with the
dissipation inequality in (13).

3.4. Numerical solution of thermodynamically consistent evolution laws for internal variables

Consider the time interval [tn, t] with ∆t = t− tn. The time integration of the ordinary differential
equations in (29) permits to obtain the internal variables at time t, namely Ai, in terms of a second

order tensor Di,n ∈ R3×3 and the current value of Ĉ
−1

, as

Ai = Di,n

(
Ai,n, Ĉ

−1
n , t

)
+ βiĈ

−1
; βi ∈ R, (30)

where the tensor Di,n is a function of the current time t and the values of Ai and Ĉ
−1

at time step

tn, i.e., Ai,n and Ĉ
−1
n , respectively. In the present paper, for the numerical experiments presented, we

have made use of the Backward-Euler (implicit) time integration scheme. However, it is still interesting
to study some relevant additional time integrators, since useful information with regards to ellipticity of
the boundary value problem in (7) can be inferred.

Backward-Euler (implicit) scheme: the numerical integration of (29) yields

Ai −Ai,n

∆t
= F i(F (X, t),Ai); F i =

1

τvi

(
Ĉ
−1 −Ai

)
. (31)

Equation (31) permits to identify matrix Di,n and the coefficient βi of the general solution of Ai in
(30), as

Di,n =
1

1 + αi
Ai,n; βi =

αi
1 + αi

; αi =
∆t

τvi
. (32)

Crank-Nicolson (implicit) scheme: this numerical integration scheme can be written as

Ai −Ai,n

∆t
=

1

2
(F i(F (X, t),Ai) + F i(F (X, tn),Ai,n)) (33)

yielding the following values for Di,n and βi in (30)

Di,n =
2− αi
2 + αi

Ai,n + βiĈ
−1
n ; βi =

αi
2 + αi

; (34)

Semi-analytical time integration scheme: the analytical solution of the ordinary differential equation in
(29) yields

Ai = Ki(t)e
−t/τvi ; K̇i(t) =

1

τvi
et/τ

v
i Ĉ
−1

(X, t) (35)
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The numerical integration of the ordinary differential equation for Ki(t) over the interval [tn, t] can
be approximated as

Ki(t)−Ki,n ≈
( 1

τvi

∫ t

tn

es/τ
v
i ds

)
Ĉ
−1

(X, t) = (et/τ
v
i − etn/τvi )Ĉ

−1
, (36)

yielding
Di,n = Ki,ne

−t/τvi ; βi = 1− e−∆t/τvi , (37)

with
Ki,0 = I; Ki,n = Ki,n−1 + Ĉ

−1
n etn/τ

v
i

(
1− e−∆t/τvi

)
(38)

Forward-Euler (explicit) scheme: the numerical integration of (29) according to this scheme entails:

Ai −Ai,n

∆t
= F i(F (X, tn),Ai,n), (39)

which yields

Di,n =

(
1− ∆t

τvi

)
Ai,n +

∆t

τvi
Ĉ
−1
n ; βi = 0. (40)

The results for the matrix Di,n and the coefficient βi for the general solution of the internal variables
according to equation (30) can be summarised in Table 1.

Time integration scheme Di,n (always positive definite) βi (always positive)

Backward-Euler 1
1+αi

Ai,n
αi

1+αi
> 0

Crank-Nicholson 2−αi
2+αi

Ai,n + βiĈ
−1
n (αi < 2) αi

2+αi
> 0

Semi-Analytical Ki,ne
−t/τvi 1− e−αi > 0

Forward-Euler (1− αi)Ai,n + αiĈ
−1
n 0

Table 1: Time integration schemes and their respective quantities Di,n and βi (see (30)).

Remark 1. Some authors advocate for formulations where a multiplicative decomposition of the de-
formation gradient is made into elastic and viscous contributions. In that context, it is customary to
use isochoric-preserving time integrators for the ODE associated with the viscous deformation gradient
tensor. These have not been explored in our work.

3.5. Ellipticity of the visco-electro-mechanical constitutive model

In order to determine the ellipticity of the underlying system of partial differential equations in (7), we
introduce the following quantities Dhint,E := Dhint(F ,D0,u⊗V ,V ⊥) and Dvint,E := Dvint(F ,A(F ),u⊗V )

by replacing in (15) δF with u ⊗ V (u,V ∈ R3, i.e., δF is replaced with a rank-one tensor) and δD0

with V ⊥ (with V ⊥ · V = 0), yielding

Dhint,E = Deh(F ,D0)[u⊗ V ,V ⊥] = P h : DF [u⊗ V ] +E0 ·DD0[V ⊥];

Dvint,E = P v : DF [u⊗ V ].
(41)

As it was stated in [58], the hyperelastic contribution complies with a strict positiveness, i.e.,

D
(
Dhint,E

)
[u⊗ V ,V ⊥] > 0. (42)
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For the viscous contribution, particularisation of (41)b yields

Dvint,E = ∂F e
v : (u⊗ V ) =

nMaxw∑
i=1

µvi
2
D(J−2/3C)[u⊗ V ] : Ai. (43)

In equation (30), we showed that the numerical integration of the evolution equations for the different
internal variables Ai in (29) permits to express Ai in the current time step according to the following
additive decomposition

Ai = Di,n + βiĈ
−1

= Di,n + βi

(
J2/3C−1

)
. (44)

Introduction of (44) into (43) yields

Dvint,E =

nMaxw∑
i=1

µvi
2
D(J−2/3C)[u⊗ V ] :

(
Di,n + βiJ

2/3C−1
)
. (45)

We can compute the directional derivative of Dvint,E , i.e., D(Dvint)[u⊗ V ], included in Appendix 8.2,
and then conclude that

D(Dvint,E)[u⊗ V ] =

nMaxw∑
i=1

µvi
J8/3

((1

2
MTM +

1

9
δJ2C

)
: Di,n

)
︸ ︷︷ ︸

Viscous regularisation contribution

> 0⇔ a ·Di,na > 0; ∀a ∈ R3,a � 0,

(46)
where positiveness of D(Dvint,E)[u ⊗ V ] is ensured provided that Di,n is positive definite. As shown
in Table 1, this is guaranteed unconditionally for the Backward-Euler, the semi-analytical method and
Forward-Euler integration schemes considered. For the Crank-Nicholson scheme, this is ensured provided
that the constant αi = ∆t

τvi
complies with αi < 2, which is a reasonable condition, entailing that the time

step used ∆t for the numerical integration of the evolution equation (29) should be smaller than twice
the minimum of the relaxation times for the different internal variables considered in the model, namely

∆t ≤ 2 min{τv1 , τv2 , . . . , τvnMaxw
}. (47)

The result shown in equation (47) is in fact in agreement with the literature, since visco-elasticity has
a regularising effect that can even balance the loss or lack of ellipticity of the hyperelastic contribution
of the energy density of the material. For instance, this has been reported in the context of materials
with negative hardening modulus, where the use of visco-elasticity has a regularising effect restoring the
well-posedness of the boundary value problem. In the context of homogenisation, we will see that the
visco-elastic contribution can also have a similar beneficial effect.

3.6. The Helmholtz energy function

Alternatively to the internal energy density function e(F ,D0,A), electro-mechanical constitutive
models can be formulated in terms of a Helmholtz energy functional Ψ (F ,E0,A), defined as

Ψ (F ,E0,A) = Ψh (F ,E0) + Ψv (F ,A) ; Ψh(F ,E0) = Ψh
m (F ) + Ψh

em (F ,E0) , (48)

where an additive decomposition of the hyperelastic contribution Ψh (F ,E0) into its mechanical and
electro-mechanical contributions is adopted. The relation between the Helmholtz energy density function
and its internal energy counterpart is obtained through the following Legendre transformation

Ψh
m (F ) = ehm (F ) ; Ψh

em (F ,E0) = − sup
D0

{
E0 ·D0 − ehem (F ,E0)

}
; Ψv (F ,A) = ev (F ,A) . (49)

Using thermodynamical principles, the dissipation inequality D can be written as

D = P : Ḟ −D0 · Ė0︸ ︷︷ ︸
DΨint

−Ψ̇ ≥ 0, (50)
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where the time derivative of the energy density function Ψ(F ,E0,A) is computed as

Ψ̇ = ∂FΨ : Ḟ + ∂E0Ψh · Ė0 + ∂AΨv • Ȧ. (51)

Use of the Coleman and Noll procedure in (50) and (51) (see [19]) yields the following standard
constitutive equations,

P (F ,E0,A) = ∂FΨh(F ,E0)︸ ︷︷ ︸
P h(F ,E0)

+ ∂FΨv(F ,A)︸ ︷︷ ︸
P v(F ,A)

; D0(F ,E0) = −∂E0Ψh(F ,E0), (52)

with the dissipation inequality given by

D(F ,A, Ȧ) = −∂AΨv(F ,A) • Ȧ ≥ 0. (53)

Replacing the time derivatives Ḟ and Ė0 in (50) with virtual fields δF and δE0, respectively, and
splitting DΨint into hyperelastic and viscous contributions, it yields

DΨint(F ,E0,A, δF , δE0) = DhΨint
(F ,E0,A, δF , δE0) +DvΨint

(F ,A, δF ), (54)

where
DhΨint

(F ,E0,A, δF , δE0) = P h(F ,E0) : δF −D0(F ,E0) · δE0;

DvΨint
(F ,A, δF ) = P v(F ,A(F )) : δF .

(55)

It is possible to show that the directional derivative of both terms in equation (55) with respect to
δF and δE0 yields

DDhΨint
[δF , δE0] = [δF : δE0·] [HhΨ]

[
: δF
δE0

]
; [HhΨ] =

[
ChΨ −PT

−P −ε

]
;

(
PT
)
jJI

= (P)IjJ ;

DDvΨint
[δF , δE0] = [δF : δE0·] [HvΨ]

[
: δF
δE0

]
; [HvΨ] =

[
CvΨ 0
0 0

]
,

(56)

where [HhΨ] includes the hyperelastic high order constitutive tensors, namely the fourth order elasticity
tensor ChΨ ∈ R3×3×3×3, the third order piezoelectric tensor P ∈ R3×3×3 and the dielectric tensor ε ∈ R3×3,
whilst [HvΨ] includes the viscous contribution in the elasticity tensor CvΨ ∈ R3×3×3×3, being all of them
defined as

ChΨ(F ,E0) := ∂FP
h = ∂2

FFΨh; CvΨ(F ,A) := ∂FP
v + ∂AP

v • ∂FA = ∂2
FFΨv + ∂2

FAΨv : ∂FA;

P(F ,E0) := ∂FD0 = −∂2
E0FΨh; ε(F ,E0) := ∂E0D0 = −∂2

E0E0
Ψh.

(57)
The tensors in (57) can be related with those emerging from the internal energy density in (20) as

(see [70])

ε = (θ)−1 ; PT = −Q · ε; ChΨ = Che + QT ·P ; CvΨ = Cve , (58)

where the inner product · above indicates contraction of the indices placed immediately before and after.
It is now interesting to compute the second directional derivative of the internal energy e with respect
to arguments F and E0 (instead of the natural D0). With that in mind, it is necessary to consider D0

expressed (implicitly) as a function of F and E0, namely D0 = D̃0(F ,E0), to obtain

DD̃0[δF , δE0] = ∂F D̃0 : δF + ∂E0D̃0 δE0 = −∂2
E0FΨ : δF − ∂2

E0E0
ΨδE0 = P : δF + ε δE0, (59)

where we have made use of equation (57) in the last line of above equation. Making now use of (58) and
(59), we can express, after some algebraic manipulation, the second directional derivative of the internal
energy e with respect to F and E0 in terms of the second derivatives of the Helmholtz functional
Ψ(F ,E0) as

DDΨint(F , D̃0)[δF , DD̃0[δF , δE0]] = δF :
(
ChΨ + CvΨ

)
: δF + δE0 · ε δE0. (60)

Therefore, the ellipticity condition in terms of the Helmholtz energy density function taking δF =
u⊗ V , and then DD̃0[δF , δE0] = V ⊥ ⇒ δE0 = ε−1(V ⊥ −P · u⊗ V )) yields

DDΨint(F , D̃0)[u⊗ V ,V ⊥] > 0⇒ u⊗ V :
(
ChΨ + CvΨ

)
: u⊗ V > 0; δE0 · ε δE0 > 0. (61)
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4. Constitutive equations in nonlinear electro-visco-elasticity: Application to Rank-One
layered EAPs

4.1. Effective or macroscopic internal energy functional

In this paper we study the homogenised behaviour of rank-one layered EAPs. The resulting biphasic
layered structure is comprised of constituents or phases a and b with volume fractions ca = ha0/

(
ha0 + hb0

)
and cb = 1 − ca, respectively, where ha0 and hb0 denote the thickness of phases a and b in the un-
deformed configuration B0, with ha0, h

b
0 << 1 to comply with homogenisation theory. The interface

between both phases is characterised by the normal vector N10, spherically parametrised as N =[
sin β̄ cos ᾱ, sin β̄ sin ᾱ, cos β̄

]T
. A scheme illustrating the structure of the rank-one layered compos-

ite is shown in Figure 2.

(a) (b)

Figure 2: Description of a 3-D rank-one laminated composite material: (a) general case, (b) particularisation for ᾱ =
0◦, β̄ = 0◦, for visualisation purposes.

Under the assumption of a homogeneous response in each phase, the macroscopic deformation gra-
dient F and the macroscopic electric displacement field D0 are defined as the weighted sum of those in
each phase [23, 24], namely

F = caF a + cbF b; D0 = caDa
0 + cbDb

0, (62)

where the upper indices a and b are used to indicate the respective microscale phases. In addition, we
enforce strong continuity of the tangential and normal components of the deformation gradient and the
electric displacement, respectively, across the laminate interface, that is,

JF K N = 0; JD0K ·N = 0, (63)

where J•K denotes the standard jump operator across the interface, defined as J•K = (•)a − (•)b. Above
jump conditions (63) can alternatively be written in a more convenient form as

JF K = α⊗N ; JD0K = TN β, (64)

where α ∈ R3 denotes the microscale deformation gradient amplitude vector [24] ; β ∈ R2, the microscale
electric displacement amplitude vector; and TN ∈ R3×2, a projection operator onto the plane normal to
the unit vector N defined as TN = T 1 ⊗E1 + T 2 ⊗E2, where T 1 and T 2 are two linearly independent
unit vectors contained within the laminate plane, and E1 = [1 0]T and E2 = [0 1]T .

10Throughout this Section, this unit normal is not to be confused with the outward unit normal to the boundary presented
in Section 2.
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Combination of equations (62) and (64) permits to obtain the microscale deformation gradient F a,b

and electric displacement Da,b
0 as

F a(F ,α) = F + cbα⊗N ; Da
0(D0,β) = D0 + cbTNβ; (65a)

F b(F ,α) = F − caα⊗N ; Db
0(D0,β) = D0 − caTNβ, (65b)

from where their time derivatives can be computed as

Ḟ
a

= Ḟ + cbα̇⊗N ; Ḟ
b

= Ḟ − caα̇⊗N ; (66a)

Ḋ
a
0 = Ḋ0 + cbTN β̇; Ḋ

b
0 = Ḋ0 − caTN β̇. (66b)

Remark 2. The expression for the microscopic deformation gradient tensors {F a,F b} in terms of the
macroscopic deformation gradient tensor F and the spatial amplitude vector α in equation (65) follows
an unconventional additive decomposition. Although it has been previously used in [58], a multiplicative
decomposition [8, 24] has been traditionally preferred, whereby {F a,F b} are defined in terms of a
material amplitude vector α̃ as

F a = F
(
I + cbα̃⊗N

)
; F b = F (I − caα̃⊗N) . (67)

Notice that both additive and multiplicative decompositions are equivalent, with the relationship
between the material amplitude vector α̃ in (67) and its Eulerian or spatial counterpart α, associated
with the additive decomposition, in (65) is given as α = Fα̃.

This choice of the additive decomposition entails a considerable simplification from the algebraic
standpoint, due to the lower degree of nonlinearity associated. Specifically, this reflects in a higher
tractability of the second directional derivatives of the effective internal energy functional e(F ,D0), and
hence of the effective constitutive tensors associated with it, namely {Ce,Q,θ}.

The homogenised or effective internal energy density functional of the composite e (F ,D0,A) can
be postulated as11

e (F ,D0,A) =


ê(F ,D0,A,α,β),

s.t.


Da ≥ 0; (Dissipation inequality in micro phase a)

Db ≥ 0; (Dissipation inequality in micro phase b)

D ≥ 0; (Dissipation inequality at the macro level)

(68)

with

ê(F ,D0,A,α,β) = caea (F a (F ,α) ,Da
0 (D0,β) ,Aa) + cbeb

(
F b (F ,α) ,Db

0 (D0,β) ,Ab
)

;

ea(F a,Da
0,Aa) = ea,h(F a,Da

0) + ea,v(F a,Aa);

eb(F b,Db
0,Ab) = eb,h(F b,Db

0) + eb,v(F b,Ab),

(69)

where ea = ea (F a,Da
0,Aa) and eb = eb

(
F b,Db

0,Ab
)

are the microscale internal energy density functions
expressed in terms of their respective microscale fields, additively decomposed into their hyperelastic
contributions {ea,h, eb,h} and their visco-elastic contributions {ea,v, eb,v}. With regards to the constraints
that the effective internal energy density functional e (F ,D0,A) must satisfy in (68), the first two,
namely Da and Db, represent the dissipation inequalities in the microscopic phases a and b, respectively.
Dissipation in phase a (analogously in phase b)

Da = P a : Ḟ
a

+Ea
0 · Ḋ

a
0︸ ︷︷ ︸

Da
int

−ėa ≥ 0,
(70)

11Note that ’s.t.’ stands for ’subject to’.
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where the time derivative of the internal energy density function in phase a (analogously in phase b) is

ėa = ∂F aea : Ḟ
a

+ ∂Da
0
ea,h · Ḋa

0 + ∂Aaea,v : Ȧa
. (71)

Introduction of (71) into the dissipation inequality Da (70) yields the final form of the microscopic
dissipation inequality as (analogously for phase b)

Da = (P a − ∂F aea) : Ḟ
a

+
(
Ea

0 − ∂Da
0
ea,h

)
· Ḋa

0 − ∂Aaea,v : Ȧa
(72)

Application of the Coleman-Noll procedure in (72) permits to obtain the following constitutive equa-
tions at phase a (analogously for phase b)

P a(F a,Da
0,Aa) = ∂F aea,h(F a,Da

0)︸ ︷︷ ︸
P a,h(F a,Da

0)

+ ∂F aea,v(F a,Aa)︸ ︷︷ ︸
P a,v(F a,A)

; Ea
0(F a,Da

0,Aa) = ∂Da
0
ea,h(F a,Da

0,Aa),

(73)
with the dissipation inequality at phase a (analogously for phase b)

Da(F a,Aa, Ȧa
) = −∂Aaea,v(F a,Aa) • Ȧa ≥ 0. (74)

The constraint D in equation (68) represents the dissipation inequality in the macroscopic level. This
can be written exactly as in the case of a single phase material, and hence, as in equation (10), namely

D = P : Ḟ +E0 · Ḋ0︸ ︷︷ ︸
Dint

−ė ≥ 0.
(75)

The time derivative of the macroscopic internal energy density e(F ,D0,A,α,β) can be computed
by differentiating with respect to time the right-hand side on equation (69), yielding

ė(F ,D0,A,α,β) = ca
(
∂F aea : Ḟ

a
+ ∂Da

0
ea · Ḋa,h

0 + ∂Aaea,v • Ȧa
)

+ cb
(
∂F beb : Ḟ

b
+ ∂Db

0
eb · Ḋb,h

0 + ∂Abeb,v • Ȧb
)
.

(76)

Making use of the time derivatives of the microscopic field {F a,F b,Da
0,D

b
0} in (66) permits to

conveniently re-write ė(F ,D0,A,α,β) in (76) in terms of the time derivatives of its arguments, namely
{F ,D0,A,α,β}, as

ė(F ,D0,A,α,β) =
(
ca∂F aea + cb∂F beb

)
: Ḟ +

(
ca∂Da

0
ea,h + cb∂Db

0
eb,h
)
· Ḋ0

+ cacb
(
∂F aea − ∂F beb

)
: α̇⊗N + cacb

(
∂Da

0
ea,h − ∂Db

0
eb,h
)
· TN β̇

+ ca∂Aaea,v • Ȧa
+ cb∂Abeb,v • Ȧb

.

(77)

Introduction of the constitutive relationships obtained in equations (73) permits to re-write (77) as

ė(F ,D0,A,α,β) =
(
caP a + cbP b

)
: Ḟ +

(
caEa

0 + cbEb
0

)
· Ḋ0

+ cacb
(
P a − P b

)
: α̇⊗N + cacb

(
Ea

0 −Eb
0

)
· TN β̇

+ ca∂Aaea,v • Ȧa
+ cb∂Abeb,v • Ȧb

.

(78)

Introduction of (78) into the macroscopic dissipation inequality D in (75) yields

D =
(
P −

(
caP a + cbP b

))
: Ḟ +

(
E0 −

(
caEa

0 + cbEb
0

))
· Ḋ0

−
(
ca∂Aaev,a • Ȧa

+ cb∂Abev,b • Ȧb
)
≥ 0.

(79)
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Application of the Coleman-Noll procedure yields the following constitutive relationships

P (F ,D0,A) = caP a + cbP b; E0 = caEa
0 + cbEb

0;

fP = JP KN = 0; fE0
= TNT JE0K = 0 ⇐⇒ JE0K×N = 0;

D = ca∂Aaev,a • Ȧa
+ cb∂Abev,b • Ȧb ≥ 0.

(80)
Crucially, equation (80)a yields the macroscopic expressions for the first Piola-Kirchhoff stress tensor

P and the electric field E0 in terms of their microscopic counterparts. Furthermore, equation (80)b
represents the strong enforcement of the normal and tangential components of the traction vector and
the electric field vector, respectively. Finally, it must be noticed that the dissipation inequality D in
(80)c is automatically fulfilled if the dissipation inequalities in the micro-structural phases, namely Da
and Db are satisfied. Thus, above homogenised energy functional e(F ,D0,A) in (68) can be re-written
as

e (F ,D0,A) =



ê(F ,D0,A,α,β),

s.t.



P = caP a + cbP b; (First Piola-Kirchoff in macro and micro scales)

E0 = caEa
0 + cbEb

0; (Electric field in macro and micro scales)

fP = JP KN = 0; (Traction jump across microscopic interface)

fE0
= TNT JE0K = 0; (Electric field jump across microscopic interface)

Da ≥ 0; (Dissipation inequality at micro phase a)

Db ≥ 0; (Dissipation inequality at micro phase b)

(81)

4.2. Solution of the amplitude vectors α and β

The equivalent jump conditions in equation (80)b represent a system of nonlinear equations where
the microscale amplitude vectors {α,β} can be resolved in terms of the macroscale homogenised fields
F ,D0 and the set of internal variables A = {Aa,Ab}. To ensure existence of solutions for {α,β}, the

Jacobian matrix of the vector of nonlinear equations given by
[
fTP fTE0

]T
must be positive definite,

which is equivalent to the following condition[
δα· δβ·

] [DfP [δα, δβ]
DfE0

[δα, δβ]

]
> 0. (82)

Following a similar procedure to that described in [58] for the hyperelastic case, we can reach the
following expression:[

δα· δβ·
] [DfP [δα, δβ]
DfE0

[δα, δβ]

]
=
[
δα⊗N : N⊥·

] [
Ĥe
] [: δα⊗N

N⊥

]
> 0 (83)

where TNδβ has been renamed as N⊥ by noticing that it represents a vector contained within the
laminate plane, and

[Ĥe] =

[
Ĉe Q̂T

Q̂ θ̂

]
, (84)

with the symbol (•̂) representing an average term of the form: (•̂) = cb (•a) + ca
(
•b
)

. The main
difference with respect to the hyperelastic case described in [58] is that the constitutive tensor includes
a viscoelastic contribution for the purely mechanical component, in the following way, for phase a:

Ca,he (F ,D0) := ∂2
FF e

a,h; Ca,ve (F ,A) := ∂2
FF e

a,v + ∂2
FAe

a,v • ∂FAa (85)

and similarly for those in phase b, namely

Cb,he (F ,D0) := ∂2
FF e

b,h; Cb,ve (F ,A) := ∂2
FF e

b,v + ∂2
FAe

b,v • ∂FAb (86)

As it is immediate to see, the right-hand side of above equation (83) is (strictly) positive provided
that microscale internal energy functionals ea and eb are individually elliptic. Thus, provided that the
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hyperelastic contributions of the energy density functions of each phase ea,h and eb,h are defined via CMV
functions and that positive definiteness condition in (46) is satisfied, above inequality (83) is fulfilled,
and thus existence of solution α,β is always guaranteed.

Once the existence of solution α,β is shown, its computation can be carried out via a k-iterative
Newton-Raphson algorithm, namely

[
δα· δβ·

] [ fkP
fkE0

]
+
[
δα· δβ·

] [DfkP [∆α]

DfkE0
[∆β]

]
= 0; αk+1 = αk + ∆α; βk+1 = βk + ∆β, (87)

which can alternatively be written as[
∆α
∆β

]
= −[ĤNe ]−1

k

[
JP KN

TNT JE0K

]
k

, (88)

which involves an iterative scheme where microscale amplitude vectors are iterated until convergence
(strong satisfaction of jump conditions) is fulfilled.

4.3. Sensitivity of the microscale amplitude vectors with respect to macroscale fields

Let us recall the jump conditions fP and fD0
in equation (80), and let us introduce the following

scalar functions
RF = δα · fP ; RD0 = δβ · fD0

. (89)

From the definition of the jump conditions in (80), and the dependence of F a and F b with respect
to F and α (see (65)) and that of Da

0 and Db
0 with respect to D0 and β (see (65)), (89) can be written

then as

RF (F ,D0) = (δα⊗N) :

(
P a
(
F a(F ,α),Da

0(D0,β),Aa (F a(F ,α))
)

(90a)

− P b
(
F b(F ,α),Db

0(D0,β),Ab
(
F b(F ,α)

)))
= 0; ∀δα; (90b)

RD0(F ,D0) = (TNδβ) ·
(
Ea

0

(
F a(F ,α),Da

0(D0,β),Aa (F a(F ,α))
)

(90c)

−Eb
0

(
F b(F ,α),Db

0(D0,β),Ab
(
F b(F ,α)

)))
= 0; ∀δβ, (90d)

which provides a set of equations where the microscale amplitude vectors α and β can be expressed in
an implicit manner in terms of the macroscale deformation gradient F and electric displacement D0.
Computation of the sensitivities of {α,β} with respect to {F ,D0} can be accomplished therefore by
taking advantage of the implicit function theorem. As a result, computation of the directional derivatives
DRF [δF ], DRD0 [δF ], DRF [δD0] and DRD0 [δD0] permits to obtain the desired sensitivities as follows[

Dα[δF ]
Dβ[δF ]

]
= −[ĤNe ]−1

[
JCe,N•K
TNT JQK

]
[: δF ] ;

[
Dα[δD0]
Dβ[δD0]

]
= −[ĤNe ]−1

[
N · JQKT

TNT JθK

]
[δD0] , (91)

where (Ce,N•)ijJ = (Ce)iIjJNI . The reader is referred to Reference [58] for the derivation of the result
in (91). The computation of the sensitivities in (91) is always well-defined due to the invertibility of the
tangent operator [ĤNe ]. Notice that these sensitivities not only are interesting in order to analyse the
effect that macroscale fields have on microscale fields, but also are instrumental in order to compute the
effective constitutive tensors, as it will be shown in the following section.

4.4. Effective constitutive tensors

Let us recall the term Dint in the macroscopic dissipation inequality D in equation (75), i.e.,

Dint = P : δF +E0 · δD0. (92)
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Making use of the relation between the first Piola-Kirchhoff stress tensor and the electric displacement
fields in the microscale and the macroscale in equation (80)a, Dint can be expressed as

Dint =
(
caP a + cbP b

)
: δF +

(
caEa

0 + cbEb
0

)
· δD0;

=
(
ca
(
P a,h + P a,v

)
+ cb

(
P b,h + P b,v

))
: δF +

(
caEa

0 + cbEb
0

)
· δD0.

(93)

Careful re-arrangement of (93) yields

Dint = ca
(
P a,h : δF +Ea

0 · δD0︸ ︷︷ ︸
D̃a,h

int

+P a,v : δF︸ ︷︷ ︸
D̃a,v

int

)
+ cb

(
P b,h : δF +Eb

0 · δD0︸ ︷︷ ︸
D̃b,h

int

+P b,v : δF︸ ︷︷ ︸
D̃b,v

int

)
,

(94)

where in above equation we have used the notation {D̃a,hint , D̃
a,v
int , D̃

b,h
int , D̃

b,v
int} to distinguish them from

{Daint,Dbint} in (70). The directional derivative of Dint in (94) adopts the form, after careful computation
following the idea of [58]:

DDint[δF , δD0] =
[
δF : δD0·

]
([H̄e]− [H̃e])

[
: δF
δD0

]
, (95)

with [H̄e] and [H̃e] given by [H̄e] = ca[H̄ae ] + cb[H̄be] and

[H̃e] =

[
JCe,•N K JQKTTN
JQKN JθKTN

]
[ȞNe ]−1

[
JCe,N•K N · JQKT

TNT JQK TNT JθK

]
; [Ȟe] =

1

ca
[Hae ]+

1

cb
[Hbe] =

[
Čhe + Čve Q̌T

Q̌ θ̌

]
,

(96)
where (Ce,•N )ijJ = (Ce)iIjJNJ .

Hence, equation (95) reveals that the effective constitutive tensors {Ce,Q,θ} can be additively de-
composed into two distinct contributions: a simple average of the individual phases in the microscale,
and an additional term associated with the sensitivities of the (micro) amplitude vectors {α,β} with
respect to the macroscopic deformation gradient tensor F and electric displacement field D0. We will
demonstrate that the first contribution (simple averaging of micro-constituents) complies with the el-
lipticity condition provided that the hyperelastic contribution of the internal energy density functions
ea,h(F a,Da

0) and eb,h(F b,Db
0) are CMV compliant, since the viscous contribution of the energy density

adds an unconditionally elliptic (regularising) contribution for the Backward-Euler, semi-analytical inte-
gration, and Forward-Euler methods discussed in Section 3.4. However, for the Crank-Nicolson scheme,
the viscous contribution has a regularisation effect provided that condition in equation (47) is satisfied.
However, the second term, related with [H̃e] can potentially induce loss of ellipticity of the homogenised
tangent operator. Specifically,

Ce = C̄eh(ca, cb,F a,F b,Da
0,D

b
0) + C̄ev(ca, cb,F a,F b,Aa,Ab)︸ ︷︷ ︸

(Average) ellipticity-preserving contr.

−
(
C̃e

h
(ca, cb,F a,F b,Da

0,D
b
0) + C̃e

v
(ca, cb,F a,F bAa,Ab)

)
︸ ︷︷ ︸

Macro ellipticity-breaking contr.

;

Q = Q̄(ca, cb,F a,F b,Da
0,D

b
0)︸ ︷︷ ︸

(Average) ellipticity-preserving contr.

− Q̃(ca, cb,F a,F b,Da
0,D

b
0)︸ ︷︷ ︸

Macro ellipticity-breaking contr.

;

θ = θ̄(ca, cb,F a,F b,Da
0,D

b
0)︸ ︷︷ ︸

(Average) ellipticity-preserving contr.

− θ̃(ca, cb,F a,F b,Da
0,D

b
0)︸ ︷︷ ︸

Macro ellipticity-breaking contr.

.

(97)

As for the average-type term in (95), adopting δF = u⊗V and δD0 = V ⊥, it is immediate to realise
that

[u⊗ V : V ⊥·] [H̄e]
[
: u⊗ V
V ⊥

]
> 0; ∀u,V ,V ⊥, (98)
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provided that the the hyperelastic contribution of the internal energy density function, namely ea,h and
eb,h are CMV. Proceeding in an analogous manner with the jump-type contribution, it results in

[u⊗ V : V ⊥·] [H̃e]
[
: u⊗ V
V ⊥

]
= −

[
u· v·

] [ JCe,V N K V · JQKTTN
TV T JQKN TV T JθKTN

]
︸ ︷︷ ︸[

a· b·
]

[ȞNe ]−1

[
JCe,NV K N · JQKTTV

TNT JQKV TNT JθKTV

] [
u
v

]
︸ ︷︷ ︸a

b


= −

[
a· b·

]
[ȞNe ]−1

[
a
b

]
< 0; ∀u,V ,V ⊥,

(99)
where use of the projection operator TV (i.e., V ⊥ = TV v) has been made in the equation above, and
vectors a and b have been introduced. It is immediate to realise that above term is negative due to the
positive definiteness of the Hessian [ȞNe ]. It is at this juncture when it is important to emphasise the use
that we have made of [58, Remark 4] in order to drastically simplify the algebra associated with above
computation. In summary,

(a) the consideration of CMV (and thus elliptic) constitutive models for the microscale constituents in
both phases guarantees that the analytical homogenisation (computation of the micro-amplitude
vectors {α,β}) can be accomplished for any value of the macroscopic fields {F ,D0}. This is
also favoured by the viscous contribution of the energy density, which adds an unconditionally
elliptic (regularising) contribution when using the Backward-Euler, semi-analytical integration,
and Forward-Euler methods discussed in Section 3.4. However, for the Crank-Nicolson scheme,
the viscous contribution has a regularisation effect provided that condition in equation (47) is
satisfied.

(b) the high nonlinearity associated with the microscopic problem can result in an intricate dependence
of both {α,β} upon {F ,D0}, permitting the contributions {C̃e, Q̃, θ̃} in (97) to potentially induce
an overall loss of ellipticity (or rank-one convexity condition) of the effective tensors {Ce,Q,θ}, by
neutralising, and even counterbalancing, the unconditionally elliptic contribution resulting from
the averaging of the micro-constituents {C̄e, Q̄, θ̄}.

The mathematical connotations associated with point (b) above imply that the homogenisation
procedure can eventually jeopardise the well-posedness of the system in (7). From a physical standpoint,
as shown in [8], the onset of loss of ellipticity corresponds with the development of localised deformations,
and it is an expected phenomenon related to the development of long wavelength diffuse modes in the
microscale. Indeed, loss of ellipticity can occur in the solely mechanical case, even when (polyconvex)
Neo-Hookean strain energies are considered for the constitutive models of the micro-constituents of
layered composites (see Reference [29]). In the numerical examples considered in this paper, loss of
ellipticity has not been observed.

Finally, it is interesting to observe that the viscous contribution is present not only in the ellipticity-
preserving term [H̄e] in (95) but also in the ellipticity-breaking contribution associated with [Ȟe]. This
entails that, although the viscous contribution adds a regularising effect in the first term, i.e., [H̄e], it
also adds a non-elliptic contribution to the second term. Nonetheless, it is expected that the regularising
contribution in the simple averaged term [H̄e] will help to delay the ellipticity breaking effect of the
homogenisation (second term [Ȟe]) and that therefore, the onset of loss of ellipticity when considering
visco-elastic effects will occur, in principle, later than in the reversible case (no viscous effects considered).
The latter will be explored in the numerical examples section.

5. Variational formulation and finite element implementation

We introduce the functional spaces for the fields {φ, ϕ} ∈ Vφ×Vϕ and the test functions {δφ, δϕ} ∈
Vφ0 × V

ϕ
0 , namely.

Vφ =
{
φ : B0 → R3; (φ)i ∈ H

1 (B0) | J > 0
}

; Vϕ =
{
ϕ : B0 → R1; ϕ ∈ H1 (B0)

}
;

Vφ0 =
{
∀φ ∈ Vφ; φ = 0 on ∂φB0

}
; Vϕ0 = {∀ϕ ∈ Vϕ; ϕ = 0 on ∂ϕB0} .

(100)
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The weak forms associated with the PDEs in equation (7) can then be recast as

Wφ =

∫
B0

P : DF [δφ] dV −
∫
B0

f0 · δφ dV −
∫
∂tB0

t0 · δφ dA = 0;

Wϕ =

∫
B0

D0 ·∇0δϕ dV +

∫
B0

ρe0δϕ dV +

∫
∂ωB0

ωe0δϕ dA = 0,

(101)

with D0 obtained making use of equation (80), namely

E0 = −∇0ϕ = ca∂Da
0
ea
(
F a,Da

0,Aa(F a)
)

+ cb∂Db
0
eb
(
F b,Db

0,Ab(F b)
)
, (102)

by means of the consideration of the relationships in (65) between {F a,F b,Da
0,D

b
0} with {F ,D0}, and

after solving the amplitude vectors according to Section 4.2. Then, solution of macroscopic field D0

permits to determine the macroscopic first Piola-Kirchhoff stress tensor P according to equation (80),
namely

P = ca∂F aea
(
F a,Da

0,Aa(F a)
)

+ cb∂F beb
(
F b,Db

0,Ab(F b)
)
. (103)

A Newton-Raphson scheme can be used for the solution of the weak forms in (101), which implies

the following linearisation with respect to incremental fields ∆φ ∈ Vφ0 and ∆ϕ ∈ Vϕ0

0 =Wφ +Wϕ +DWφ[∆φ] +DWφ[∆ϕ] +DWϕ[∆φ] +DWϕ[∆ϕ], (104)

with

DWφ[∆φ] =

∫
B0

∇0δφ : C : ∇0∆φ dV ; DWφ[∆ϕ] =

∫
B0

(
∇0δφ : PT

)
·∇0∆ϕdV ;

DWϕ[∆φ] =

∫
B0

∇0δϕ · (P : ∇0∆φ) dV ; DWϕ[∆ϕ] = −
∫
B0

∇0δϕ · (ε∇0∆ϕ) dV,

(105)

with the homogenised tensors {C,P , ε} related to their homogenised internal energy-based counterparts
{Ce,Q,θ} in (97) through the relationship in equation (57). Equation (104) permits the update of the
solution fields φ ∈ Vφ and ϕ ∈ Vϕ at a given Newton-Raphson iteration k + 1 as

φk+1 = φk + ∆φ; ϕk+1 = ϕk + ∆ϕ. (106)

As standard in finite elements, the domain B0 described in Section 2.1, representing the EAP, is
sub-divided into a finite set of non-overlapping elements e ∈ E as follows

B0 ≈ Bh0 =
⋃
e∈E
Be0. (107)

The unknown fields {φ, ϕ}, and the test functions {δφ, δϕ} featuring in (101), are discretised using

the functional spaces Vφh × Vϕh
and Vφ

h

0 × V
ϕh

0 , respectively, defined as

Vφ
h

=

φ ∈ Vφ; φh
∣∣∣
Be0

=

nφnode∑
a=1

Nφ
a φa

 ; Vϕ
h

=

ϕ ∈ Vϕ; ϕh
∣∣∣
Be0

=

nϕ
node∑
a=1

Nϕ
a ϕa

 ;

Vφ
h

0 =
{
∀φ ∈ Vφ

h

; φ = 0 on ∂φB0

}
; Vϕ

h

0 =
{
∀ϕ ∈ Vϕh

; ϕ = 0 on ∂ϕB0

}
,

(108)

where, for any field Y ∈ {φ, ϕ}, nYnode denotes the number of nodes per element of the discretisation
associated with the field Y ; and NYa : Be0 → R, the ath shape function used for the interpolation of Y . In
addition, Ya represents the value of the field Y at the ath node of a given finite element. Consideration
of the functional spaces in (108) enables the weak formsWφ, Wϕ in (101) to be written in terms of their
associated elemental residual contributions, namely

Wφ =

N∑
e=1

δφa ·Rφa,e; Wϕ =

N∑
e=1

δϕaR
ϕ
a,e, (109)
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where N denotes the number of elements for the underlying discretisation, and where each of the residual
contributions Rφa,e and Rϕa,e can be expressed as12

Rφa,e =

∫
Be0
P∇0N

φ
a dV +

∫
Be0
Nφ
a f0 dV ; Rϕa,e =

∫
Be0
D0 ·∇0N

ϕ
a dV +

∫
Be0
Nϕ
a ρ

e dV. (110)

Discretisation of the test functions and incremental fields permits equation (105) to be written in
terms of their associated elemental stiffness contributions, namely

DWφ[∆φ] =

N∑
e=1

δφa ·K
φφ
ab,e∆φb; DWφ[∆ϕ] =

N∑
e=1

δφa ·K
φϕ
ab,e∆ϕb;

DWϕ[∆φ] =

N∑
e=1

δϕa ·Kϕφ
ab,e∆φb; DWϕ[∆ϕ] =

N∑
e=1

δϕaK
ϕϕ
ab,e∆ϕb,

(111)

where each of the stiffness contributions is expressed as(
Kφφ

ab,e

)
ij

=

∫
Be0

(
∇0N

φ
a

)
I

(
∇0N

φ
b

)
J
CiIjJ dV ;

(
Kφϕ

ab,e

)
i

=

∫
Be0

(
∇0N

φ
a

)
I

(
∇0N

ϕ
b

)
J

(P)TiIJ dV ;

Kϕφ
ab,e =

(
Kϕφ

ab,e

)T
; Kϕϕ

ab,e = −
∫
Be0

∇0N
ϕ
a · ε∇0N

ϕ
b dV.

(112)

6. Numerical examples

In this Section, three numerical examples will be presented in order to assess the capability and
robustness of the proposed computational framework. The structure of the numerical examples has been
chosen similar to that in [58] in order to facilitate the understanding of the effects that the consideration
of time-dependent viscoelastic effects in the material has with respect to the hyperelastic case. The
first numerical example, restricted to the case of homogeneous deformation, studies the behaviour of the
homogenised constitutive model without the need to resort to a finite element discretisation. The rate-
dependent response of the material is observed in terms of the orientation of the laminate, with a loading-
unloading and a loading-relaxation tests, both of them studied for purely mechanical (no electric effect)
and electro-mechanical cases. The second example abandons the assumption of uniform deformation and
explores the use of finite elements in the context of a rectangular flexible DE composite film displaying
complex actuation patterns through application of electrical stimuli. In addition, a thorough study will
be conducted, where different microscopic arrangements will be shown to lead to potentially very different
actuating configurations (namely bending, torsion, stretching), and the viscoelastic effects will produce
a different response to the (reversible) hyperelastic material, magnifying one mode of deformation with
respect to others. Finally, the third numerical example explores the onset of buckling-type instabilities
in DE composites, and this will be studied for a square membrane configuration. In this case, the viscous
contribution acts as a regularising term that allows the material to reach a larger deformation overcoming
some instabilities that happen in the hyperelastic case. The three numerical examples help understand
the complex deformation patterns that occur when laminated composites are subjected to electric fields
and the effect that introduces the consideration of viscoelasticity.

The hyperelastic properties of the materials considered for all numerical examples are listed in Table
2, being the properties of a widely used dielectric elastomer, VHB-4910. The viscoelastic properties are
modelled through Maxwell branches with properties listed in Table 3, following the characterisation in
[9].

12For simplicity, the external contributions on the boundary of the continuum associated with t0 and ωe
0 have not been

included in (110).
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Properties Phase a Phase b Units

Mechanical parameters µa1 1.4× 104 µb1 5.7× 104 Pa

µa2 0 µb2 0 Pa

λa 4.2× 104 λb 1.7× 105 Pa

Electrical parameters εar 4.8 εbr 22.6 -

Concentration ca 0.5 cb 0.5 -

Table 2: Numerical examples. Material parameters of the model for each phase (see (25), (26)).

Branch µv (Pa) τv (s)

1 5.8× 104 6.2× 10−1

2 2.1× 104 1.4× 101

3 1.3× 104 2.0× 102

Table 3: Numerical examples. Properties of Maxwell branches (see (28), (29)).

6.1. Numerical example 1: homogeneous electro-deformation of a multi-layered DE composite with con-
sideration of viscoelastic effects

Through this example we aim to:

� Study the hysteresis effect in rank-one laminated composite materials with the consideration of
viscoelastic effects, both for purely mechanical and electromechanical loading, in terms of the
properties of the composite material.

� Observe that after a relaxation period the rank-one laminated composite material converges to the
hyperelastic response.

First, we consider the prototypical set-up similar to that explored by [9, 41, 42], where no electrical
effects are considered. This consists of a rank-one DE laminated film, such as the one depicted in Figure
6, which is subjected to a homogeneous state of deformation.

Figure 3: Numerical example 1: First configuration. Experimental set-up. The DE laminated composite material is
subjected to a stretch along OX1 direction.

Maintaining stress-free conditions, there is a state of uniform deformation across the film. This
uniform state of deformation is exploited in order to study the response of the DE rank-one laminate
from a local point of view, without the need to resort to a finite element discretisation. As a result, in
the absence of any further loads, the homogeneous solution to this problem corresponds to the stationary
point {F ∗} of the energy functional defined as

Π (F ∗) = inf
F
{e (F )} . (113)
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Thus, the stationary condition of above functional arises as

RF (F ) = ∂F e = 0. (114)

The above nonlinear stationary condition (114) is solved in terms of unknown F ∗. Specifically, F is
formulated as

F =

λ 0 0
0 1 0
0 0 F33

 . (115)

First, a loading-unloading experiment is carried out. This experiment is usually used to calibrate the
material properties by comparing the result against a real experiment in the lab. The E11 component
of the Green-Lagrange strain tensor E = 1

2(C − I) is defined as

E11 =
1

2
(λ2 − 1)⇒ Ė11 = λλ̇ ≈ λ

(
λ− λn

∆t

)
, (116)

where λn represents the stretch in the previous time step and ∆t the time step used. Re-arrangement
of terms in (116) permits to obtain the following second degree equation for the stretch λ in the current
time step as

λ2 − λnλ− Ė11∆t = 0, (117)

whose admissible solution is

λ =
λn
2

1 +

√
1 +

4Ė11∆t

λ2
n

 . (118)

In this example, Ė11 = 0.1s−1 is selected, and the loading is applied until the deformation reaches a
maximum stretch of λmax = 3, being then unloaded at the same rate.

In Figure 4, it is shown how the orientation of the laminate affects the deformation of the composite
material, for both the change in β̄ (Figure 4a) and ᾱ (Figure 4b). The nominal stress is represented
in terms of the stretch. It is observed how, the larger the angle of orientation of the laminate β̄, the
smaller the stress attained is. On the contrary, an increase in the ᾱ angle for fixed β̄ is translated into
an increase in the stretch.
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(a) (b)

Figure 4: Numerical example 1. Mechanical case. Loading-unloading test for maximum stretch λmax = 3, strain rate
Ė11 = 0.1s−1, and orientation of the laminated composite given by angles: (a) ᾱ = 0◦ and β̄ let to vary. (b) β̄ = 75◦ and
ᾱ let to vary.

Next, a relaxation experiment is carried out. The material is subjected to a mechanical load until
it reaches its maximum value of stretch λmax = 3, at a strain rate of Ė11 = 0.1s−1. Then, the load is
kept for enough time for the nominal stress to reach a stationary point. In Figure 5, the effect of the
orientation of the laminate is observed, for both the change in β̄ (Figure 5a) and ᾱ (Figure 5b). After
the loading time, the stress starts to slowly decay until it reaches a convergent value.
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Figure 5: Numerical example 1. Mechanical case. Loading-relaxation analysis for maximum stretch λmax = 3, strain rate
Ė11 = 0.1s−1, and orientation of the laminated composite given by angles: (a) ᾱ = 0◦ and β̄ let to vary. (b) β̄ = 75◦ and
ᾱ let to vary. The vertical dashed line indicates the time in which the loading is finished and the relaxation period starts.

In the following, the rank-one DE laminated film material is subjected to a homogeneous state of
deformation and electric field (see Figure 6). Two electrodes are placed at opposite faces of the film and
an externally controlled Lagrangian electric field E0 is applied across and orientated along the OX3 axis,
whilst maintaining stress free conditions, in turn, generating a state of uniform deformation and electric
displacement across the film. In the absence of any further loads and electric charges, the homogeneous
solution to this problem corresponds to the stationary points {F ∗,D∗0} of the Helmholtz’s free energy
functional defined as

Π(F ∗,D∗0,E0) = inf
F

inf
D0

{e(F ,D0)−E0 ·D0} , (119)

where E0 is the externally controlled electric field. Thus, the stationary conditions of above functional
arise as

RF (F ,D0) = ∂F e = 0; RD0(F ,D0) = ∂D0e−E0 = 0. (120)

The above nonlinear stationary conditions (120) are solved in terms of unknowns F ∗ and D∗0 dependent
upon the externally controlled electric field E0. Specifically, F and E0 are formulated as

F =

F11 0 F13

0 F22 F23

0 0 F33

 ; E0 =

 0
0
E0

 , (121)

where F11 and F22 represent in-plane stretching; F13 and F23, possible shearing effects; and F33, the out-
of-plane stretching. As in [58], although adding the time-dependent viscoelastic effects, the nonlinear
stationary conditions (120) are solved by an iterative Newton-Raphson method.

First, the electric field is applied at an electric field rate of Ė0 = 2 · 104V m−1s−1 until it reaches the
maximum value of E0 = 107V m−1. Then, this electric field is decreased at the same rate. In Figure 7,
it is observed how the angle of lamination affects the hysteresis effect. On the one hand, for an angle
ᾱ = 0◦ fixed, an increase in the angle of orientation β̄ tends to translate into a larger stretch, specially for
large values of β̄. On the other hand, the effect of the variation of the angle ᾱ is much less significative,
being slightly larger the deformation in the case of large values of it.

Next, a loading-relaxation experiment is performed. The electric field is applied at an electric field
rate of Ė = 2 · 105V m−1s−1, until it reaches the maximum value E0 = 107V m−1 in 50 seconds. Then,
that value of eletric field is kept fixed for 2.7 hours (10, 000 seconds), until the deformation reaches a
stationary point. In Figure 8, the effect of the angle of lamination is observed.
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Figure 6: Numerical example 1: Second configuration. Experimental set-up. The application of a uniform electric field
along the OX3 direction causes a stretch of the DE laminated composite along OX1 direction.

(a) (b)

Figure 7: Numerical example 1. Electromechanical case. Loading-unloading test for voltage E0 = 107V m−1 applied at a
rate Ė = 2 · 104V m−1s−1 in 500 seconds in a DE laminated composite material with an orientation given by angles: (a)
ᾱ = 0◦ and β̄ left to vary. (b) β̄ = 75◦ and ᾱ left to vary.

(a) (b)

Figure 8: Numerical example 1. Electromechanical case. Loading-relaxation test for voltage E0 = 107V m−1 applied at a
rate Ė = 2 · 105V m−1s−1 in 50 seconds in a material with angles of lamination: (a) ᾱ = 0◦ and β̄ left to vary. (b) β̄ = 75◦

and ᾱ left to vary.
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6.2. Numerical example 2: complex deformation of a rectangular multi-layered DE film with viscoelastic
effects

We consider a rectangular DE rank-one laminate film of dimensions 0.1 m × 0.03 m × 0.001 m,
fully clamped at face X1 = 0 and free everywhere else, as depicted in Figure 9. The geometrical and
simulation parameters for this example are collected in Table 4. The domain is discretised using a
40× 16× 4 hexahedral structured mesh, with Q2 finite elements used to interpolate both displacement
and electric potential, being 96, 228 the total number of degrees of freedom of the problem. The solver
coupling strategy is monolithic, with a tolerance for the Newton-Raphson method of 10−6 in Euclidean
norm. Two electrodes are placed at the bottom and mid surfaces of the specimen and a voltage is applied
across, which is increased linearly along the time until it reaches a voltage difference of ∆V = 4× 103 V.

Figure 9: Numerical example 3. Geometry and boundary conditions.

Geometrical parameters a 0.1 m Simulation parameters Nx 40
b 0.03 m Ny 16
c 0.001 m Nz 4

Voltage applied ∆V 4 kV Newton tolerance 10−6

Table 4: Numerical example 2. Geometrical and simulation parameters.

The materials are the ones described at the beginning of Section 6, whose electromechanical and
viscoelastic properties are collected in Tables 2 and 3, respectively.

6.2.1. Effect of the laminate orientation

In this example we aim to:

� Capture the various deformation modes that a rank-one DE laminated composite, in the form of a
rectangular film, can undergo in response to electric stimuli, with the consideration of viscoelasticity
in the material.

� Compare the response of the composite for different orientations of the laminate and provide some
simple strain metrics to distinguish actuation deformation modes.

Figure 10 displays the evolution of the deformation along time and for various laminate orientations
defined by angles {ᾱ, β̄}. In all the sub-Figures, the final deformation of the hyperelastic case (disre-
garding viscoelastic effects on the materials) is shown shaded along with the evolution of the viscoelastic
material. Notice that the voltage gradient ∆V = 4 kV has been applied according to a linear ramp
spanning 100 seconds. The following important conclusions can be extracted from these figures:

� For β̄ = 0◦, Figure 10a displays a clear evolution of the viscous material to a bending type
deformation mode denoted as mode 1. The final configuration adopted by the viscous material
coincides perfectly at t→∞ with that of the hyperelastic material, hence, the overlapping between
the two.
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� For β̄ = 90◦, Figure 10d displays a clear evolution of the viscous material to a completely different
type of bending deformation with a pronounced bending around the longitudinal axis and denoted
as mode 2. The final configuration adopted by the viscous material coincides perfectly at t→∞
with that of the hyperelastic material, hence, the overlapping between the two.

� For β̄ = 20◦, Figure 10b displays an evolution of the deformed configuration of the viscous material
which initially, resembles that of mode 2. However, as time evolves, a switch into a mode 1 type
deformation is obtained, coinciding perfectly at t → ∞ with that of the hyperelastic material,
hence, the overlapping between the two.

� For β̄ = 40◦, Figure 10c shows a situation which is far from being intuitively anticipated. The
viscoelastic material starts deforming according to mode 2. However, unlike the case with β̄ = 20◦,
the expected switch into mode 1 is never obtained irrespectively of the time t. Therefore, for this
specific loading scenario (linear ramp over a time of 50 seconds), the expected coincidence between
the deformed configurations for both viscoelastic and hyperelastic materials is never achieved. As
it will be seen in next section, using a different loading scenario could provide the hyperelastic
solution if it includes enough time for the material to relax during the loading.

(a) (b)

(c) (d)

Figure 10: Numerical example 3. Deformation evolution for different orientation of the laminates given by ᾱ = 0◦ and β̄
left to vary: (a) β̄ = 0◦ (mode 1 for both hyperelastic and viscoelastic behaviours at t = ∞.), (b) β̄ = 20◦ (mode 1 for
both hyperelastic and viscoelastic behaviours at t =∞.), (c) β̄ = 40◦ (mode 1 for hyperelastic behaviour and mode 2 for
viscoelastic behaviour at t = ∞.), (d) β̄ = 90◦ (mode 2 for both hyperelastic and viscoelastic behaviours at t = ∞.). A
ramp of maximum 4 kV has been applied over a time of t = 100 seconds.
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In order to provide a simple metric for comparison of the two aforementioned deformation modes,
namely, the normalised integral value of the Green-Lagrange strain tensor ε is defined as

ε =
1

|V |

∫
V
EdV ; E =

1

2

(
F TF − I

)
. (122)

Figure 11a displays the evolution of components ε11 and ε22 of ε along time for various laminate
orientations defined by angle ᾱ = 0◦ and β̄ left to vary. Crucially, for angles β̄ = 20◦, 30◦, 33◦ metric
ε11 takes a considerably large period of time during which a progressive switch into a larger value of the
metric ε11 is obtained. The opposite occurs for metric ε22, as an extremely prolonged over time decay
is observed before a stationary solution is obtained. Specifically, for β̄ = 33◦, around 8 × 104 seconds
are needed in order to obtain a stationary solution for both metrics ε11 and ε22. On the contrary, a
stationary solution is attained much faster for values of β̄ which are far below and above a value of
β̄ = 33.2◦. This result is also appreciated in Figure 11b, displaying the following quantity

λ̄ =

∫
B0
λ1 dV

|B0|
; λ1 = max(eig(A1)), (123)

where λ1
13 represents the maximum eigenvalue of the internal variable A1. Clearly, for angles β̄ =

20◦, 30◦, 33◦, λ1 takes a considerably large period of time before a stationary value is obtained.
A more insightful interpretation of these results can be obtained from Figure 11c-d. In these figures,

for small values of β̄ (below approximately β̄ = 13.8◦), the response of the viscoelastic material is
extremely fast. This can be deduced from the fact that irrespectively of the time considered t =
{103, 5×103, 104, 105}, the value of both metrics ε11 and ε22 barely changes, hence displaying a stationary
condition before t = 103 seconds. Moreover, the actuation mode displayed by all the configurations in
this region (β̄ ≤ 13.8◦) corresponds with that denoted as mode 1.

However, in the approximate interval 13.8◦ ≤ β̄ ≤ 33.2◦, the curve for both ε11 and ε22 suddenly
bifurcates, indicating that the initial trend (for small values of time) of the material is to develop an
electrically induced deformation compatible with that of mode 2. However, as time evolves, for a fixed
value of β̄, the deformed configuration of the material develops a radical morphological change evolving
into a shape compatible with that of mode 1. As it can be seen, the mode switching behaviour over time
described delays the fast response of the material initially observed in the region β̄ ≤ 13.8◦, and around
105 seconds can be needed before a finally converged deformation compatible with mode 1 is obtained.
Crucially, this mode switching behaviour over time is restricted to this region 13.8◦ ≤ β̄ ≤ 33◦, and
does not occur beyond the critical value of β̄ = 33◦. Indeed, beyond this region (β̄ > 33◦), the material
develops a deformed configuration which is compatible with actuation mode 2 irrespectively of the time
considered, yielding again a fast response to the electrical excitation. This is in clear contrast with the
response yielded by the hyperelastic material, for which a deformation compatible with that of mode
2 is obtained only in the case β̄ ≥ 46.7◦. Therefore, the critical value β̄cr for which a finally converged
solution compatible with mode 2 is obtained differs between the viscoelastic and hyperelastic cases,
yielding β̄vcr = 33◦ and β̄hcr = 46.7◦, respectively. Remarkably, this indicates, contrary to intuition, that
the stationary solution reached by the viscoelastic material (i.e., at t =∞) will differ from that obtained
by the hyperelastic material when the angle β̄ lies within the interval 33◦ < β̄ ≤ 46.7◦.

Figure 12 shreds some information corroborating the previous findings. Specifically, for time steps
t = {50, 103, 5×103, 104, 105,∞}, the deformed configuration for various values of the angle β̄ is presented,
confirming qualitatively the numerical conclusions inferred from Figure 11.

13Note that providing a physical meaning for λ1 quantity is not necessary in this context, since the aim pursued is to
monitor a magnitude related to the internal variables, in order to corroborate if a stationary regime is reached. Other
options, such as the L2-norm of the internal variable A1, could be equally used with the exact purpose.
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Figure 11: Numerical example 2. Evolution of: (a) components ε11 and ε22 of the normalised integral value of the Green-
Lagrange strain tensor ε (122), (b) quantity λ̄ (123) representing the spatial integral of the maximum eigenvalue of the
internal variable A1, for ᾱ = 0◦ and β̄ left to vary. Components (c) ε11 and (d) ε22 against angle β̄ (for ᾱ = 0◦ fixed) at
different time stamps and for the hyperelastic case (without considering viscous effects).
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Time = 50 s Time = 103 s

Time = 5× 103 s Time = 104 s

Time = 105 s Time →∞

Figure 12: Numerical example 3. Deformation of the laminate at different times, for different values of orientation angle
β̄ = {0◦, 20◦, 30◦, 33◦, 40◦, 60◦, 90◦}, keeping ᾱ = 0◦.
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6.2.2. Effect of different time dependent electrical loading

Furthermore, we intend to shred more insightful information regarding the example analysed in
Section 6.2.1. In this case, we will focus on different aspects with the aim of:

� Studying the response of the composite when subjected to different time dependent electrical
loadings.

� Analysing the possible local loss of macroscopic ellipticity in order to ensure that spurious mesh
dependent effects are not developed in the finite element analysis.

Alternatively to the loading condition in Section 6.2.1, where a voltage gradient ∆V = 4 kV was
applied according to a linear ramp over a time of 50 seconds, now we explore different loading scenarios
and its potential impact on the deformation of the composite. Specifically, we use the different loading
scenarios collected in Table 5 and graphically represented in Figure 13, which are characterised by a
larger time of application of the final voltage during which a combination of short time periods of load
increase with larger time periods of relaxation (load is kept at the same value) is used. We recall from the
previous section that, see Figure 11, in terms of the orientation angle β̄, we can classify the response of
the material in three categories: fast response, for 0◦ ≤ β̄ ≤ 13.8◦, slow response, for 13.8◦ < β̄ < 46.7◦,
and again fast response for 46.7◦ ≤ β̄ ≤ 90◦. In particular, our interest in this section focuses on
the intermediate area of slow response, i.e., 13.8◦ < β̄ < 46.7◦. In turn, this area is divided into two
sub-areas: a) angles 13.8◦ ≤ β̄ ≤ 33◦ for which the material initially seems to deform to mode 2, but
when the time increases, there is a switch of mode to mode 1, to reach the hyperelastic solution; and
b) angles 33◦ ≤ β̄ ≤ 46.7◦, for which the material goes to a different deformation mode 2 and never
reaches the hyperelastic solution. To study this two sub-regions, we take a particular value of each of
them, in concrete, β̄ = 20◦ and β̄ = 34◦, keeping ᾱ = 0◦ fixed.

The revealing results from this study can be found in Figures 14 and 15. For the first case, Figure 14,
it is observed that, using multi-step loading scenarios A and B, a converged solution for both metrics ε11

and ε22 is obtained after around 3000 and 2000 seconds for both loading conditions, respectively. This is
in clear contrast with the approximately 8000 seconds needed to reach a stationary solution for the single-
step linear ramp considered in the previous study. Therefore, it seems that the consideration of slower
multi-step loading conditions accelerate the response of the composite material with respect to a faster
loading scenario, as that characterised by the linear ramp over 50 seconds considered in the previous
section. The underlying reason is that, fast loading scenarios can potentially induce deformations in the
initial time steps which are compatible with deformation mode 2, even when the stationary solution for
the hyperelastic counterpart is still compatible with mode 1. Recovering from mode 2 and switching to
mode 1 can take an extraordinary amount of time and can even be irreversible. The latter is confirmed
in the case for β̄ = 34 (Figure 15). In this case, it is observed that a quite slow multi-step loading
scenario is needed (scenario E), being scenarios C and D insufficient to reach the hyperelastic solution
(mode 2 deformation). Of course, A and B and single-step modes are very far away too.

Therefore, slow loading scenarios preventing the material from undergoing initial deformations com-
patible with mode 2 (for the case β̄ ≤ 46.8) can ultimately accelerate the response of the composite, as
corroborated by Figure 14.

In order to conclude this experiment, a brief study on the variation of the orientation ᾱ is also
carried out. In Figure 17, the evolution of the deformation of the composite for two different laminate
orientations is shown. Specifically, angle ᾱ is responsible for the torsional electrically-induced shown in
Figure 17. With regards to the loading scenario, the fast linear ramp of the previous section has been
applied.

Taking advantage of this study with respect to the additional angular field ᾱ, we then analyse the
possible loss of macroscale ellipticity and convexity of the homogenised response of the material. For the
sake of simplicity, we present the results for a specific orientation of the laminate, namely ᾱ = 15◦ and
β̄ = 90◦, and two states of deformation. To study loss of ellipticity, we compute the field distribution of
the smallest of the minors of the acoustic tensor for any possible orientation ν, namely

Iellip = min
ν

q, (124)
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Figure 13: Numerical example 2. Different loading scenarios. The load percentage is represented along time for all the
loading scenarios (see Table 5), making zoom in a particular time to observe how the load increases in a multi-step way.
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Figure 14: Numerical example 2. Comparation of the evolution of deformation quantities: (a) ε11, (b) ε22; for the cases of
single-step and multistep loading. The orientation of the laminate is given by angles ᾱ = 0◦, β̄ = 20◦.
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Figure 15: Numerical example 2. Comparation of the evolution of deformation quantities: (a) ε11, (b) ε22; for the cases of
single-step and multistep loading. The orientation of the laminate is given by angles ᾱ = 0◦, β̄ = 34◦.
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Figure 16: Numerical example 2. Evolution pattern to reach the hyperelastic deformation mode with loading given by: (a)
single-step, (b) multi-step type B. The orientation of the laminate is given by ᾱ = 0◦, β̄ = 20◦.

(a) (b)

Figure 17: Numerical example 3. Deformation evolution for different orientations of the laminates given by β̄ = 90◦ and ᾱ
left to vary: (a) ᾱ = 15◦, (b) ᾱ = 75◦.
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Number of Time per step (s) Total time(s)

Scenario steps Loading Relaxation (approx.)

Single-step 1 50 0 50

Multi-step A 20 1 9 200

Multi-step B 20 1 99 2000

Multi-step C 100 0.5 1500 1.5× 105

Multi-step D 200 0.5 2000 4× 105

Multi-step E 300 0.5 2700 8.1× 105

Table 5: Numerical example 2. Different loading scenarios.

where q is defined as

q = q ν; q = min

(
Q11

µ̄
,
Q11Q22 −Q12Q21

µ̄2
,
detQ

µ̄3

)
, (125)

with µ̄ = caµa + cbµb. and the electro-mechanical acoustic tensor Q given by [67]

Q = Cνν −Qν
Tθ−1

(
I −

(
ν ⊗ θ−1ν

)
ν · θ−1ν

)
Qν , (126)

and
(Cνν)ij = CiIjJνIνJ , (Qν)Ij = QIjJνJ . (127)

The quantity Iellip in (124) is plotted in Figure 18. It is observed that no areas of macroscale loss
of ellipticity arise, indicating that no spurious mesh dependency effects arise. Similar conclusions were
observed for the rest of the simulations presented in this section and thus are not included. In addition,
a metric is defined in order to measure the potential loss of convexity of the homogenised model, defined
as the smallest eigenvalue of the Hessian operator of the homogenised internal energy, namely

Iconv =
1

µ̄
min eig([He]), (128)

with µ̄ = caµa + cbµb. This quantity is represented in Figure 19. In this case, some negative values are
observed, indicating that local loss of convexity is potentially observed, yet with no impact in the loss
of ellipticity.

2.5e+00 2.8e+002.6 2.7 2.5e+00 2.8e+002.6 2.7 8.4e-01 1.2e+001 1.1

(a) (b) (c)

Figure 18: Numerical example 2. Contour plot of Iellip (124) for three time stamps: (a) T ime = 33s, (b) T ime = 47s, (c)
T ime = 61s. The orientation of the laminate is given by ᾱ = 15◦ and β̄ = 90◦.
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Figure 19: Numerical example 2. Contour plot of Iconv (128) for three time stamps: (a) T ime = 33s, (b) T ime = 47s, (c)
T ime = 61s. The orientation of the laminate is given by ᾱ = 15◦ and β̄ = 90◦.
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6.3. Numerical example 3: buckling on a multi-layered DE square membrane with viscoelastic effects

The objectives of this example are to:

� Detect the onset of instabilities on a rank-one DE laminated composite square membrane, with
the consideration of viscoelastic properties of the materials.

� Observe the different patterns of buckling in terms of the microscale configuration.

� Observe the evolution of the deformation in terms of the loading rate, due to the viscoelastic effects.

� Analyse possible local loss of ellipticity and convexity and demonstrate the superior numerical
stability properties of the viscoelastic case with respect to the hyperelastic case.

The geometry for this numerical example is given by a square membrane of side l = 0.06 m and
thickness h = 0.001 m, clamped along all its side faces, as represented in Figure 20. The membrane is
subjected to a prescribed electric surface charge on its base, while it is grounded to zero potential on
its topside. Geometrical and finite element simulation parameters are presented in Table 6. Q2 finite
elements are used to interpolate both displacement and electric potential, being 104188 the total number
of degrees of freedom, and the surface charge is applied incrementally along time.

Figure 20: Numerical example 4. Geometry and boundary conditions.

Geometrical parameters l 0.06 m Simulation parameters Nx 60
h 0.001 m Ny 60

Nz 2
Electric charge ω0 0.004 C/m2 Newton tolerance 10−6

Table 6: Numerical example 4. Geometrical and simulation parameters.

The constituents of the laminated composite material are those described at the beginning of Section
6, whose properties are collected in Tables 2 and 3. In the analysis performed in [58], the viscoelastic
properties of the material were not considered. In this work, however, we explore their effect in the
change of deformation pattern as well as on the numerical stability of the simulations.

Since the square membrane is subjected to an increasing electric potential, it starts to slowly bend
upwards until it reaches a point where it develops some initial buckling, marking a drastic change in
stiffness. In Figure 21, the equilibrium paths are displayed for different orientations of the laminate,
keeping the angle ᾱ = 0◦ fixed and varying the angle β̄ from 0◦ to 90◦. The vertical displacement along
the X3 axis (u3) is plotted for two sample points on the membrane: test point 1, which corresponds to
the centre of the square, and test point 2, which is one close to the boundary. In Figure 21(a), the onset
of a first order buckling is captured at approximately a value of the averaged scaled electric potential
Ē0 < 10−5, with

Ē0 =
ϕ̄√
µ̄/ε̄

; ϕ̄ =

∫
∂B?0

ϕdA∫
∂B?0

dA
; µ̄ = ca(µa1 + µa2) + cb(µb1 + µb2); ε̄ = ε0

(
caεa + cbεb

)
, (129)
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where ∂B?0 represents the boundary located at min(X3), namely, where the surface charge is applied.
In Figure 21(b), a second-order buckling starting around Ē0 = 5 × 10−4 is observed. In this case, it is
demonstrated that the orientation of the laminate does affect significantly the buckling pattern, being
the deformation for angles 0◦ < β̄ < 30◦ larger than for higher values of the angle β̄, after a third-order
buckling is developed. The results are similar to those of the hyperelastic case analysed in [58], with
small changes in the slope of the curves and some oscillating behaviour for some angles at the very last
part (see for instance case β̄ = 15).
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Figure 21: Numerical example 3. Vertical displacement along the X3 axis of two test points: (a) the centre of the square;
(b) a point near the border. The orientation of the laminate is given by ᾱ = 0◦ and β̄ left to vary.

A similar analysis is performed for the variation of the angle ᾱ, whilst keeping the angle β̄ = 75◦

fixed. In figures 22, the electric field is represented against the vertical displacement for the same two
test points on the square membrane. In this case, it is observed a similar behaviour in terms of the
center of the square, but a very different one of the point near the border. For instance, in the case
ᾱ = 90◦, β̄ = 75◦, the test point 2 starts moving upwards, until approximately E0 = 1.2 × 10−3, and
then moves downwards when the electric field gets higher.
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Figure 22: Numerical example 3. Vertical displacement along the X3 axis of two test points: (a) the centre of the square;
(b) a point near the border. The orientation of the laminate is given by β̄ = 75◦ and ᾱ left to vary.

In Figure 23, some snapshots of the deformation evolution of the membrane are represented, for the
composite with laminate orientation given by ᾱ = 0◦, β̄ = 60◦. It is observed how the membrane buckles
initially around its centre, and then initially small wrinkles get much more pronounced as Ē0 increases.
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Figure 23: Numerical example 3. Evolution of deformation with the load factor for the case ᾱ = 0◦, β̄ = 60◦. From left to
right and from top to bottom, the snapshots correspond to the following time stamps: (a) t = 30s, (b) t = 40s, (c) t = 45s,
(d) t = 50s, (e) t = 80s, (f) t = 200s.
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In Figures 24 and 25, the final aspect of the square membrane after deformation is shown for different
laminate orientations of the composite. Figure 24 analyses the effect of the change in orientation angle β̄
whilst keeping ᾱ = 0◦, whereas Figure 25 focuses on the variation of ᾱ whilst keeping β̄ = 60◦. It can be
observed that some configurations have a symmetry pattern, as for instance the case ᾱ = 0◦, β̄ = 0◦ which
is symmetric with respect to both axes X2 and X3. When the angle of orientation of the composite is
changed, the symmetry over some axes disappears, and a larger density of instabilities seems to happen.

β̄ = 0◦ β̄ = 30◦ β̄ = 45◦

β̄ = 60◦ β̄ = 75◦ β̄ = 90◦

Figure 24: Numerical example 4. Different patterns of buckling for various values of β̄ = [0◦, 30◦, 45◦, 60◦, 75◦, 90◦] and
ᾱ = 0◦. The time is t = 290s.

6.3.1. Stabilisation effect of the visco-elastic contribution

It is important to remark that the consideration of viscoelasticity in the material contributes to
stabilise the deformation under the electric charge. In Figure 26, both hyperelastic and viscoelastic
responses are compared. Clearly, the viscoelastic material is able to reach a higher value of the applied
electric charge ω0 before numerical instabilities develop. Specifically, the hyperelastic case is only able
to reach a value of ω0 = 2 × 10−3 C/m, after which the simulation becomes unstable. However, the
viscoelastic case we were able to carry out the numerical simulation even for a value of ω0 = 4 × 10−3

without any numerical instability, being able to reach a finally stationary solution (horizontal line in
Figure 26).

These findings are corroborated by Figure 27, where the deformed configuration of the hyperelastic
material at the onset of numerical instability (i.e. ω0 = 2 × 10−3 C/m), and that of the viscoelastic
material for a value of ω0 = 4 × 10−3 are shown. Clearly, that wrinkles developed over the viscoelastic
material are much more pronounced due to the ability to perform the simulations at considerably larger
values of the externally applied surface charge ω0.

The superior numerical stability of the viscoelastic material confirms the analytical findings obtained
in Section 3.5, and specifically, in equation (46). In this equation we proved that the mathematical
expression for the ellipticity condition (i.e. DDint,E [u ⊗ V ,V ⊥]) in the visco-elastic case, adds an
additional unconditionally positive term with respect to the exclusively hyperelastic response. The
effect of this positive viscoelastic regularisation contribution is translated into the numerics into the
superior numerical stability observed.
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ᾱ = 60◦ ᾱ = 75◦ ᾱ = 90◦

ᾱ = 15◦ ᾱ = 30◦ ᾱ = 45◦

Figure 25: Numerical example 4. Different patterns of buckling for various values of ᾱ = [15◦, 30◦, 45◦, 60◦, 75◦, 90◦] and
β̄ = 0◦. The time is t = 290s.
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Figure 26: Numerical example 3. Increase of electric charge represented against the displacement achived by the central
point of the square membrane, for the hyperelastic and viscoelastic material. The orientation of the laminate is given by
β̄ = 75◦ and ᾱ = 30◦.
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(a) (b)

Figure 27: Numerical example 3. Final deformation state for: (a) hyperelastic , (b) viscoelastic material. The orientation
of the laminate is given by β̄ = 75◦ and ᾱ = 30◦.
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6.3.2. Study of loss of ellipticity and convexity

Finally, a study of the possible loss of ellipticity and convexity is conducted. Figure 28 illustrates the
spatial distribution of the smallest of the minors of the acoustic tensor for any unit normal orientation,
namely Iellip (124), for the deformation states correspondent to three different time instances. It is ascer-
tained that no areas of loss of ellipticity are observed, indicating that no anomalous mesh dependency
effects can take place. Notwithstanding, it is observed that there are more areas with low values of the
quantity Iellip when the time passes, which are formed near the corners of the square membrane.

(a) (b) (c)

Figure 28: Numerical example 3. Contour plot of Iellip (124) for (a) T ime = 36s, (b) T ime = 390s, (c) T ime = 3, 000s.
The orientation of the laminate is given by ᾱ = 30◦, β̄ = 75◦.

Likewise, Figure 29 shows a contour plot of the minimum eigenvalue of the homogenised Hessian
operator of the internal energy density, Iconv (128), for the same deformation states. In this case, some
negative values are observed near the edges of the square membrane, indicating that loss of convexity is
potentially developed, yet with no impact in the loss of ellipticity.

(a) (b) (c)

Figure 29: Numerical example 3. Contour plot of Iconv (128) for (a) T ime = 36s, (b) T ime = 390s, (c) T ime = 3, 000s.
The orientation of the laminate is given by ᾱ = 30◦, β̄ = 75◦.

7. Conclusions

In this paper, a new finite element based computational framework for the numerical simulation of
rank-one multi-layered electro-active polymers undergoing large deformations and electric fields, with the
consideration of viscoelastic effects, has been introduced. Following the well-established homogenisation
strategy for rank-n laminates [22, 23], the paper exploits the use of Convex Multi-Variable (CMV)
energy density functionals [34] for each of the individual material phase components in order to ensure
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the existence of solutions of the microstructure problem, defined in terms of the so-called deformation
gradient and electric displacement amplitude vectors {α,β}. The viscoelastic properties are proved
to have a regularising contribution which helps to numerically study the deformation behaviour of the
rank-one laminated composite materials.

The computational strategy presented enables the exploration of very complex deformation patterns
(e.g., combined bending/torsion/stretching), way beyond the onset of geometrical instabilities and with-
out the need to assume any simplifications in the kinematics, such as plane strain or exact incompress-
ibility. The paper includes a series of challenging numerical examples seeking to explore the performance
of these composite materials at both micro and macro scales. The effect that the micro-structure compo-
sition (specifically, the orientation of the laminate) can potentially have in the response of the composite
at different levels of deformation (or electric field) is studied. The effect of the viscoelasticity consid-
eration in the material is compared in all the examples with respect to a hyperelastic (reversible) case.
With this in mind, our future lines of work will include the extension of this computational framework to
laminated composites of higher order as well as the consideration of possible thermal or magneto effects
upon the response of the material.

8. Appendix

8.1. Thermodynamical consistency of the model

Consideration of the evolution equations in (29), in conjunction with the definition of the viscoelastic
contribution ev (F ,A) in (28), permits to write the dissipation inequality D(F ,A) in (13) as

D(F ,A, Ȧ) = −∂Aev • Ȧ =

nMaxw∑
i=1

µvi
2τvi

tr
((
A−1
i − Ĉ

)(
Ĉ
−1 −Ai

))
=

nMaxw∑
i=1

µvi
2τvi

tr
(
(I −M i)

(
M−1

i − I
))

; M i = AiĈ.

(130)

Since Ĉ is a positive definite tensor, and so is the identity tensor I, the initial value problem in (29)
yields positive definite internal variables Ai for every time t ∈ [0,∞). Furthermore, since the product
of two positive definite tensors yields a positive definite tensor, this entails that both tensors M i and
its inverse M−1

i are positive definite and therefore, admit the following decomposition in terms of their
respective eigenvalues λ2

i,α and eigenvectors N i,α (α = {1, 2, 3})

M i = λ2
i,αN i,α ⊗N i,α; (M i)

−1 =
1

λ2
i,α

N i,α ⊗N i,α; N i,α ·N i,β = δαβ. (131)

Making use of the decomposition of the identity tensor in terms of the eigenvectors N i,α, namely
I = N i,α ⊗N i,α and of the orthonormality condition in (131), the dissipation inequality can be finally
written as

D(F ,A, Ȧ) =

nMaxw∑
i=1

µvi
2τvi

(
1− λ2

i,α

λi,α

)2

≥ 0, (132)

which proves the thermodynamical consistency of the model.

8.2. Directional derivative of the internal viscous contribution

The directional derivative of Dvint,E (45) with respect to rank-one tensors u⊗ V yields the following
additive decomposition

D
(
Dvint,E

)
[u⊗ V ] = D

(
nMaxw∑
i=1

µvi
2
D(J−2/3C)[u⊗ V ] : Di,n

)
︸ ︷︷ ︸

D1

[u⊗ V ]+

+D

(
nMaxw∑
i=1

µvi
2
D(J−2/3C)[u⊗ V ] : βiJ

2/3C−1

)
︸ ︷︷ ︸

D2

[u⊗ V ].

(133)
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The term D1 in (133) can be computed as

D1 =

nMaxw∑
i=1

µvi
2
D(J−2/3C)[u⊗V ] : Di,n =

nMaxw∑
i=1

µvi
2

(
− 2

3
J−5/3CDJ [u⊗V ] + J−2/3DC[u⊗V ]

)
: Di,n,

(134)
from which its directional derivative DD1[u⊗ V ] is obtained as

DD1[u⊗ V ] =

nMaxw∑
i=1

µvi
2

(
10

9
J−8/3C (DJ [u⊗ V ])2 − 4

3
J−5/3DC[u⊗ V ]DJ [u⊗ V ]

+ J−2/3D2C[u⊗ V ;u⊗ V ]

)
: Di,n.

(135)

Introducing in (135) the following notation

δJ = DJ [u⊗ V ]; DC[u⊗ V ] = δF TF + F T δF ;

D2C[u⊗ V ;u⊗ V ] = 2δF T δF ; δF := u⊗ V
(136)

permits to re-write (135) as

DD1[u⊗ V ] =

nMaxw∑
i=1

µvi
2

(
10

9
J−8/3CδJ2 − 4

3
J−5/3δJ

(
δF TF + F T δF

)
+ 2J−2/3δF T δF

)
: Di,n.

(137)
Careful manipulation of (137) permits to re-write it as

DD1[u⊗ V ] =

nMaxw∑
i=1

µvi
J8/3

(
1

2

(
MTM : Di,n

)
+

1

9
δJ2 (C : Di,n)

)
, (138)

where M is the second-order tensor defined as

M =
2
√

2

3
δJF −

√
2JδF (139)

With regards to the term D2 in (133), this yields

D2 =

nMaxw∑
i=1

µvi
2
D(J−2/3C)[u⊗ V ] : βiJ

2/3C−1 =

nMaxw∑
i=1

µvi βi
2

(
− 2

3
J−5/3CδJ + J−2/3DC[u⊗ V ]
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: J2/3C−1

=

nMaxw∑
i=1

µvi βi
2

(
− 2J−1δJ +DC[u⊗ V ] : C−1

)
.

(140)
The second term on the right-hand side of (140) can be equivalently expressed as (see equation (5))

DC[u⊗ V ] : C−1 = detC−1DC[u⊗ V ] : CofC = J−2DdetC[u⊗ V ]. (141)

Since detC = J2, above equation (141) yields

DC[u⊗ V ] : C−1 = J−2DJ2[u⊗ V ] = 2J−1DJ [u⊗ V ]. (142)

Introduction of the result in (142) into equation (140) permits to conclude that

D2 = 0, ∀F ;⇒ DD2[u⊗ V ] = 0. (143)
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[89] M. Šilhavý. A variational approach to nonlinear electro-magneto-elasticity: Convexity conditions
and existence theorems. Mathematics and Mechanics of Solids, 23(6):907–928, 2017.

[90] H. Stoyanov, M. Kollosche, S. Risse, D. N. McCarthy, and G. Kofod. Elastic block copolymer
nanocomposites with controlled interfacial interactions for artificial muscles with direct voltage
control. Soft Matter, 7(1):194–202, 2011.

[91] Z. Suo, X. Zhao, and W. Greene. A nonlinear field theory of deformable dielectrics. J Mech Phys
Solids, 56(2):467–486, 2008.

[92] L. Tian, L. Tevet-Deree, G. deBotton, and K. Bhattacharya. Dielectric elastomer composites. J
Mech Phys Solids, 60(1):181–198, 2012.

[93] R. A. Toupin. Stress tensors in elastic dielectrics. Arch Ration Mech Anal, 5(1):440–452, 1960.

[94] R. Toupin. The elastic dielectric. Indiana Univ. Math. J., 5:849–915, 1956. ISSN 0022-2518.

[95] F. Vogel, S. Göktepe, P. Steinmann, and E. Kuhl. Modeling and simulation of viscous electro-active
polymers. European Journal of Mechanics - A/Solids, 48:112–128, 2014.

[96] D. K. Vu, P. Steinmann, and G. Possart. Numerical modelling of non-linear electroelasticity. Int
J Numer Methods Eng, 70(6):685–704, 2007.

[97] D. Vu and P. Steinmann. Material and spatial motion problems in nonlinear electro- and magneto-
elastostatics. Mathematics and Mechanics of Solids, 15(2):239–257, 2009.

[98] D. Vu and P. Steinmann. On 3-d coupled BEM–FEM simulation of nonlinear electro-elastostatics.
Comput Methods Appl Mech Eng, 201-204:82–90, 2012.

[99] D. Vu and P. Steinmann. On the spatial and material motion problems in nonlinear electro-
elastostatics with consideration of free space. Mathematics and Mechanics of Solids, 17(8):803–823,
2012.

[100] H. Wang. Viscoelastic analysis of a spring-connected dielectric elastomer actuator undergoing large
inhomogeneous deformation. International Journal of Mechanical Sciences, 136:17–23, 2018.

[101] S. Wang, M. Decker, D. L. Henann, and S. A. Chester. Modeling of dielectric viscoelastomers with
application to electromechanical instabilities. Journal of the Mechanics and Physics of Solids, 95:
213–229, 2016.

[102] M. Wissler and E. Mazza. Modeling and simulation of dielectric elastomer actuators. Smart
Materials and Structures, 14(6):1396–1402, 2005.

[103] M. Wissler and E. Mazza. Mechanical behavior of an acrylic elastomer used in dielectric elastomer
actuators. Sensors and Actuators A: Physical, 134(2):494–504, 2007.

49



[104] T. Wissler. Modeling dielectric elastomer actuators. PhD thesis, Swiss Federal Institute of Tech-
nology in Zurich, 2007.

[105] E. Yarali, M. Baniasadi, M. Bodaghi, and M. Baghani. 3d constitutive modeling of electro-magneto-
visco-hyperelastic elastomers: a semi-analytical solution for cylinders under large torsion–extension
deformation. Smart Materials and Structures, 29(8):085031, 2020.

[106] Q. M. Zhang, H. Li, M. Poh, F. Xia, Z.-Y. Cheng, H. Xu, and C. Huang. An all-organic composite
actuator material with a high dielectric constant. Nature, 419(6904):284–287, 2002.

[107] X. Zhao, S. J. A. Koh, and Z. Suo. Nonequilibrium Thermodynamics of dielectric elastomers.
International Journal of Applied Mechanics, 03(02):203–217, 2011.

50


	1 Introduction
	2 Nonlinear continuum electro-mechanics
	2.1 Kinematics: motion and deformation
	2.2 Governing equations in nonlinear electromechanics

	3 Constitutive equations in nonlinear electro-visco-elasticity: phenomenological macroscopic models
	3.1 Constitutive framework in visco-electro-elasticity
	3.2 Tangent operator
	3.3 Specific form of the hyperelastic and viscous contributions and of the evolution laws for internal variables
	3.4 Numerical solution of thermodynamically consistent evolution laws for internal variables
	3.5 Ellipticity of the visco-electro-mechanical constitutive model
	3.6 The Helmholtz energy function

	4 Constitutive equations in nonlinear electro-visco-elasticity: Application to Rank-One layered EAPs
	4.1 Effective or macroscopic internal energy functional
	4.2 Solution of the amplitude vectors bold0mu mumu  and bold0mu mumu 
	4.3 Sensitivity of the microscale amplitude vectors with respect to macroscale fields
	4.4 Effective constitutive tensors

	5 Variational formulation and finite element implementation
	6 Numerical examples
	6.1 Numerical example 1: homogeneous electro-deformation of a multi-layered DE composite with consideration of viscoelastic effects
	6.2 Numerical example 2: complex deformation of a rectangular multi-layered DE film with viscoelastic effects
	6.2.1 Effect of the laminate orientation
	6.2.2 Effect of different time dependent electrical loading

	6.3 Numerical example 3: buckling on a multi-layered DE square membrane with viscoelastic effects
	6.3.1 Stabilisation effect of the visco-elastic contribution
	6.3.2 Study of loss of ellipticity and convexity


	7 Conclusions
	8 Appendix
	8.1 Thermodynamical consistency of the model
	8.2 Directional derivative of the internal viscous contribution

	9 Acknowledgements

