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Abstract 

Physical vapour deposition (PVD) of zinc alloy coatings was investigated as a potential 

substitute process for commercially available hot dip galvanising (HDG) of strip steel. 

Therefore, zinc alloy coatings deposited by PVD were systematically compared with 

traditional sacrificial HDG zinc alloy coatings, in terms of bare metal corrosion 

resistance and resistance to corrosion-driven delamination of an organic overcoat, to 

establish the effects of magnesium content, microstructure and surface treatment. The 

effectiveness of modern corrosion inhibitor pigments, of known volume fraction, on 

HDG and PVD zinc coatings was also explored. 

All PVD coatings and commercially available HDG coatings were characterised using 

microscopy techniques and x-ray diffraction to identify the microstructure and phases 

present as a function of magnesium content. It was confirmed that the PVD coatings 

were significantly thinner than the HDG coatings. The pure zinc PVD coating was 

comprised of hexagonal microplates, whereas the HDG counterpart contained grains 5-

10 time larger. The PVD coating containing 4 wt% magnesium exhibited a discrete 

structure, a binary system of zinc-rich and Mg2Zn11-rich phases, much finer than the 

HDG Zn-Mg-Al (ZMA) coating. The PVD coatings containing 10 wt% and 20 wt% 

magnesium were studied using transmission electron microscopy as they possessed 

nanostructures containing Mg2Zn11 and MgZn2 phases respectively.  

Open circuit potential (OCP) measurements in chloride-containing solution established 

that an increase in magnesium content in PVD coating resulted in a decrease in the 

initial immersion open circuit potential. Additionally, increased magnesium content in 

the PVD layers also correlated with an increase in corrosion resistance, as made evident 

by reduced Ecorr and Icorr values during potentiodynamic studies. Electrochemical 

impedance spectroscopy (EIS) comparative studies suggested an improvement in 
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corrosion resistance exhibited by PVD0 compared to HDG, both zinc-only coatings, 

attributed to the finer and more compact surface morphology.  

Bare metal corrosion response for all coatings was studied using a novel augmentation 

of the scanning vibrating electrode technique (SVET), known as SVET-TLI (time-lapse 

imaging). The combination of electrochemical mapping and photographic imagery 

revealed  a potential optimum magnesium content within the PVD coatings. PVD4 

exhibited the lowest anodic current density over a 24 hour study compared to the HDG, 

ZMA and other PVD coatings. Furthermore, the characteristic black staining attributed 

to magnesium corrosion was observed on the magnesium-containing PVD coatings. 

However, on the PVD Zn-Mg coatings the staining was observed in the regions 

established as net cathodes, which is contrary to association of staining with magnesium 

dissolution which takes place in local anodes.  

Using the scanning vibrating kelvin probe (SKP) method, PVD4 was identified as the 

optimum magnesium composition as it was found to be resistant of both corrosion-

driven cathodic delamination and anodic undermining. Cathodic delamination was 

observed on the zinc-only coatings, PVD0 and HDG, as well as PVD10 (although at a 

much slower rate). ZMA and PVD20, both MgZn2-containing systems, showed 

resistance to cathodic delamination and evidence of anodic undermining.  

Exploring several modern inhibitive pigments incorporated in the organic overcoat 

allowed the identification of a commercial pigment “PAM” to provide the greatest 

improvement in delamination resistance for the zinc-only metallic coatings. 
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Chapter 1. Introduction and literature review 

1.1 Introduction 

In the last two decades there has been a focus on the potential for physical vapour 

deposition (PVD) technology to replace current galvanising techniques in the 

automotive industry [1–8]. The literature that currently exists explores the various PVD 

processes, their potential for in-line scale up and the quality of the coatings. PVD 

processes are inherently low temperature (<250 °C), and produce metallic coatings 

which are thinner and more homogeneous than those deposited using hot dip 

galvanising. Furthermore, PVD is considered a cleaner method for coating steel when 

compared with wet bath methods due to the lack of waste and limited pollution [2]. It 

is for these reasons that major steelmaking companies such as Tata Steel and POSCO 

have invested in research and development into PVD as a possible alternative coating 

method for strip steel. 

The potential for scale-up of PVD processes to a continuous strip line has been 

established; multiple air-to-air strip pilot lines exist [5,6,9,10]. However, although the 

finishing costs of traditional methods, such as hot dip galvanising and electroplating, 

exceed those estimated for lines utilising PVD technology, the initial investment cost 

and complex management requirement discourages any change to pre-existing 

galvanising lines. It is clear that the end product benefits of PVD coatings must be 

revolutionary in the field of corrosion protection for the industry to consider the steep 

initial investment worthwhile for the long term.  

However, there currently exists a gap in the catalogues of steelmakers; advanced high 

strength steels (AHSS) and ultra-high strength steels (UHSS) are currently not 

compatible with galvanising processes [10]. The parameters of the galvanising process 

and nature of the coating deposition have a significant effect on the local compositions 
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and microstructure of advanced steels, which rely heavily on chemical distribution and 

grain morphology (designed through thermal cycling). For example, transformation 

induced plasticity (TRIP) steels have a relatively high Si content which negatively 

affects the wetting of the strip surface by the molten zinc [11]. Additionally, the 

relatively high temperature iso-thermal soaking of the substrate required for the hot dip 

galvanising process has been found to negatively influence mechanical properties [12]. 

Thus, numerous research and development projects have arisen in the attempt to 

overcome the incompatibility issue of AHSS grades and galvanising. One approach is 

to alter the composition of the steels to make them suitable for galvanising; however, 

this sacrifices the mechanical properties of the steel. A recent example of this was the 

addition of tin to the steel composition, which improved the wettability and adhesion 

of the galvanised layer [13], however tin is considered a tramp element which adversely 

effects the properties of steel [14]. Electroplating offers a lower temperature process, 

however it is well understood that high strength steels suffer from severe hydrogen 

embrittlement from the electroplating process [15–17]. 

The method adopted by Tata Steel involves the application of Zn-Mg PVD coatings to 

these tailored steels as a low temperature alternative. The collection of work set out in 

this thesis serves to provide evidence in support of the PVD coating process as a viable 

alternative to hot dip galvanising. Previous preliminary work has shown the potential 

for Zn-Mg PVD coatings in terms of their processability, corrosion resistance and 

resistance to organic coating failure [2, 5, 7,18–22]. Therefore the aim of this thesis is 

to expand on the pre-existing work with a systematic evaluation of PVD Zn and Zn-Mg 

coatings. This includes a full microstructural and electrochemical evaluation of pre-

existing commercial Zn alloy coatings and a selection of novel PVD Zn-Mg coatings 

containing a range of magnesium concentrations. Investigating the microstructural 
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properties of the metallic coatings provides potential explanations for the differences in 

corrosion response exhibited by the different coatings.  

The localised bare metal corrosion behaviour of the commercial galvanised coatings 

and PVD coatings when immersed in corrosive electrolyte is characterised by using a 

novel combination method of a scanning vibrating electrode technique (SVET) and 

time-lapse imaging.  

The compatibility of PVD Zn coatings with state of the inhibitive pigments is also 

investigated using the scanning kelvin probe (SKP) for a model coating system and 

compared with pigment-free control systems for PVD coatings and the well-established 

commercial galvanised coatings. 

 

1.2 Corrosion theory 

1.2.1 Aqueous corrosion 

Corrosion is a deteriorative mechanism which occurs between a metal and its 

environment resulting in impairment of the properties of the metal component [23]. The 

process is a result of metals possessing inherently higher free energy, G, than their 

corrosion products; in order to extract a metal from its ore, energy must be absorbed by 

the metal making it thermodynamically unstable. Therefore, the metal will tend to 

corrode to achieve stability (see Figure 1.1) and the free energy change from metal to 

corrosion products, ΔG, will be negative. Hence corrosion can be considered as “the 

thermodynamic process by which metals revert to their natural form as ores” [24]. 

However, an activation energy barrier, ΔG*, prevents metals from spontaneously 

corroding in air and determines the rate of corrosion; the larger this barrier the slower 

the corrosion process. 
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Figure 1.1: The thermodynamic cycle for steel [24]. 

 

Figure 1.2 presents a graphical profile of free energy in a metal system; the input of 

thermodynamic energy during metal extraction is shown as a positive change in free 

energy, +ΔG, followed by the metastable state of an extracted metal. The tendency for 

a metal to corrode is shown by a decrease in free energy, -ΔG; the greater this value, 

the higher the driving force of corrosion. 

 

 
Figure 1.2: A thermodynamic energy profile for metals and their compounds [25]. 
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In electrochemical terms, during the corrosion process, two or more reactions take place 

simultaneously, and each reaction will have a different potential. Current will flow from 

high to low potential within the presence of an electrolyte, creating an electrochemical 

cell. The anode of the cell (the metal) discharges electrons, which are used up in the 

reaction(s) at the cathode (the same metal, or another). A basic example of this process 

is shown in Figure 1.3; a “voltaic” or “galvanic” cell comprised of two different metal 

species, zinc and copper, submerged within solutions of equivalent ions (zinc sulphate 

solution and copper sulphate solution respectively). The metals are connected 

electrically via a wire and the solutions are separated by a semi-permeable membrane 

to prevent the copper ions from reaching the zinc electrode.  

 
Figure 1.3: Diagram of the Daniell cell. 

 

The zinc metal corrodes, producing zinc ions and electrons: 

 

 Zn → Zn2+ + 2e- 
 
 (1.1) 

 

The free electrons pass along the connecting wire and into the copper electrode where 

they combine with copper ions at the surface to create copper metal: 

 

Cathode Anode 

e- 

Cu Zn 

Zn2+ Cu2+ 

e- 
e- 

ZnSO4 CuSO4 

SO4
2- 
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 Cu2+ + 2e- → Cu  (1.2) 

 

The sulphate ions are permitted through the semi-permeable membrane in order to 

balance the charge. The complete cell reaction is both half cells combined: 

 

 Zn + Cu2+ → Zn2+ + Cu  (1.3) 

 

By convention, the half-cell containing the reduced species is considered the left-hand 

side equation, LHE, and therefore the half-cell containing the oxidised species is the 

right-hand side equation, RHE [26].  

The driving force of the cell is created by the difference between the two standard 

electrode potentials of each half-cell. The change in Gibbs free energy can be expressed 

in volts as per the following relationship: 

 

 ΔG = -nFE  (1.4) 

  

Where n is the number of electrons transferred in the equation, F is the Faraday constant 

(96,485 C.mol-1) and E is the EMF in volts [27]. Due to the negative operator in the 

equation, the more positive the value of E, the greater the tendency for the reaction to 

take place. The EMF value of a full cell, Ecell, is calculated by subtracting the EMF of 

the LHE from the EMF of the RHE: 

 

 Ecell = E0
RHE – E0

LHE  (1.5) 
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E0 is the standard electrode potential of a half-cell and most values can be found in 

literature. 

In order to take into consideration the concentration of reactants and products of a half-

cell, the Nernst Equation, derived elsewhere [27], can  be applied to calculate the exact 

EMF: 

 

 E = E0- 
RT

nF
ln

[reduced]

[oxidised]
  (1.6) 

  

The standard electrode potentials, E0, of most half-cell reactions are ranked in the EMF 

series (Figure 1.4); the values are in reference to the standard hydrogen electrode 

(SHE) and are displayed as reduction reactions, with the reduction of hydrogen defined 

as zero potential.  

 
Figure 1.4: Electromotive force series [28]. 
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For corrosion of a single metal in electrolyte the anodic reaction is always the oxidation 

of the metal into its respective ions. There are multiple cathodic reactions that can take 

place on the metal surface depending on the environment: 

 

 O2 + 2H+ + 4e- → 2H2O  (1.7) 

  

 O2 + 2H2O + 4e- → 4OH-  (1.8) 

  

 2H+ + 2e- → H2  (1.9) 

  

Equations 1.7 and 1.8 represent the reduction of oxygen; a common cathodic process 

in real life applications as dissolved O2 is highly likely to be present. In acidic media, 

equation 1.7 dominates due to the abundance of H+ ions. Neutral and basic media 

promotes equation 1.8. In acid or neutral environments where oxygen availability is 

limited, equation 1.9, the evolution of hydrogen, takes place. 

 

1.2.2 Pourbaix Diagrams 

Pourbaix diagrams, or potential/pH diagrams, display the domains for stability of an 

electrochemical system, with respect to the voltage potential (vs. SHE) and pH, under 

equilibrium conditions. The diagrams were named after Marcel Pourbaix, a Belgian 

corrosion scientist who invented them and was first to publish a compendium of 

diagrams for numerous species [29]. 

The domain boundaries are calculated using the Nernst Equation (equation 1.6) if they 

represent redox equilibria; there are four reactants in equilibria with metallic Zn when 

immersed in water, which are represented by the following equations: 
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 Zn2+ + 2e- ↔ Zn (1.10) 

 

 Zn(OH)2 + 2H+ + 2e- ↔ Zn + 2H2O (1.11) 

 

 HZnO2
- + 3H+ + 2e- ↔ Zn + 2H2O (1.12) 

 

 ZnO2
2- + 4H+ + 2e- ↔ Zn + 2H2O (1.13) 

 

The dissolution of zinc to its respective ions (equation 1.10) is independent of pH and 

therefore corresponds to a horizontal line on the Pourbaix diagram (Figure 1.5). The 

reactions shown in equations 1.11-1.13 vary linearly with pH. It is important to note 

that the construction of a Pourbaix diagram relies on the selection of an arbitrary 

concentration of the Zn2+ ions, which in this case is 10-6 M.  

Purely chemical equilibria (non-redox) are electrode potential independent and take 

place at a specific pH, which is identified by first calculating the equilibrium constant 

[29]. In the case of zinc, the following equilibria exist:  

 

 Zn2+ + 2H2O ↔ Zn(OH)2 + 2H+ (1.14) 

 

 Zn(OH)2 ↔ HZnO2
- + H+ (1.15) 

 

 HZnO2
- ↔ ZnO2

2- + H+ (1.16) 
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The calculated pH values for equations 1.14-1.16 are 8.48, 10.67 and 13.11 respectively 

and are plotted as vertical lines in Figure 1.5. 

 

 
Figure 1.5: Potential/pH equilibrium diagram for zinc in water at room temperature; 

adapted from the original in Pourbaix’s work [29]. 

  

Pourbaix diagrams serve the purpose to provide guidelines for the stability of a species. 

One key limitation of a potential-pH plot is the lack of rate information; Pourbaix 

diagrams are based solely on thermodynamic data and can therefore be inapplicable to 

real life systems. For example, the formation of a protective film, for a species, at a 

certain pH may only occur after a significantly long period of time which would allow 

further attack of the species in its absence. The Pourbaix diagrams are also restricted to 

wet corrosion and do not account for localised corrosive attack. Moreover, the existing 

atlas of Pourbaix diagrams [29] only contains plots for pure metals which is highly 

unrealistic to real world scenarios.  
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Nevertheless, a Pourbaix diagram can indicate conditions where a species is active, 

passive and immune which is highly useful in the field of corrosion control. They 

provide the fundamental stability behaviour of species under certain conditions, which 

can be considered invaluable when approaching a corrosion problem. Indeed, the 

diagrams are a useful starting tool even for the study of alloys as one can study both the 

constituent species separately to form a logical starting point.  For example, the 

Pourbaix diagram shown in Figure 1.6 suggests that magnesium is only stable in water, 

at room temperature, above pH 11.5 due to the formation of a protective passive film. 

This could imply that a Zn-Mg alloy would theoretically always be freely corroding, as 

one or both of the species would be active at any given pH. On the other hand, the 

combination of the diagrams could also suggest that within the zinc passive region the 

developed Zn(OH)2 prevents both species from attack, and, likewise, in the magnesium 

passive region the amphoteric zinc is protected by Mg(OH)2. The latter explanation is 

closer to what is seen in reality. 

 
Figure 1.6: Potential/pH equilibrium diagram for magnesium in water at room 

temperature; adapted from the original in Pourbaix’s work [29]. 
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1.2.3 Corrosion Kinetics 

A key property of sacrificial metals and alloys in industry is the rate at which they 

corrode. Corrosion is an inevitable process for metals as explained in 1.2.1. Whilst the 

thermodynamics of a system recognise the tendency for a material to corrode, the 

kinetics of the system detail the rate at which corrosion occurs. However, kinetic 

equations must reduce to thermodynamic equations under equilibrium conditions; in 

the case of corrosion rate theory, the equilibrium state is defined by the Nernst Equation 

previously mentioned (equation 1.6). Under non-equilibrium conditions, current flow 

is dependent on electrode potential. To maintain current flow, an overpotential (η) must 

be applied: 

 

 η = E - Eeq  (1.17) 

  

where Eeq is the equilibrium potential of an electrode and E is the actual potential of the 

electrode. In 1905, Julius Tafel published two papers containing a significant amount 

of data which he summarised to show the logarithmic relationship between 

overpotential and current, i: 

 

 η = a ± b ln i  (1.18) 

  

where a and b were constants, and the signage of the equation depended on whether it 

was anodic or cathodic [30,31].  

Butler and Velmer’s approach to electrochemical rate also relied on the relationship 

between electrode current and overpotential; they assumed that the anodic and cathodic 

reactions were taking place on the same electrode: 
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 j = j0 ∙ { exp [
αanFη

RT
] – exp [

αcnFη

RT
] }  (1.19) 

  

where j is the electrode current density, j0 is the exchange current density, αa is the 

anodic charge transfer coefficient, αc is the cathodic charge transfer coefficient, n is the 

valency, F is Faraday’s constant, η is the activation overpotential (as defined by 

equation 1.17), R is the gas constant and T is the absolute temperature. At sufficiently 

large anodic overpotentials, ηa, the Butler-Velmer equation can be simplified to: 

 

 j = j0 ∙ exp [
αnFη

a

RT
]  (1.20) 

  

Rearranging this results in a form of the Tafel equation for anodic polarisation: 

 

 ηa = ba log (j/j0)  (1.21) 

  

where ba is the anodic Tafel slope. The same equation can be used when substituting 

cathodic overpotential values, with bc as the corresponding cathodic Tafel slope: 

 

 ηa = -bc log (|j|/j0)  (1.22) 

  

The key milestone for theoretical corrosion kinetics was a German paper published by 

Wagner and Traud in 1938 [32]. An important concept first established in this paper 

was the “mixed potential theory”. A mixed electrode is an electrode which is in contact 

with one or more redox reactions; the reactions take place at the phase boundary 
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between the metal and electrolyte, as stated in the 1938 paper. The theory assumes that 

redox reactions can be divided into two or more partial reactions and that there is a 

conservation of charge as these reactions take place.  

 

 ∑ianodic = -∑icathodic = icorr  (1.23) 

  

Thus, the total current of all anodic partial reactions (ianodic) must equal the total current 

density of all cathodic partial reactions (icathodic), and both combined give the rate of 

corrosion, icorr. Under conditions where icorr = 0, corroding species can be characterised 

by a free corrosion potential, Ecorr.  

Based on the previously established theory, Stern and Geary were able to derive the 

following equation in their 1957 paper [33]: 

 

 icorr = 
ba|bc|

(ba+|bc|2.3Rp)
  (1.24) 

  

where Rp is the polarisation resistance. Simplification of equation 1.24 results in the 

relationship icorr = B/Rp, where B is a proportionality constant. If ba and bc are unequal, 

as is generally the case in practical electrochemistry, B becomes dominated by the 

smaller of the two values (e.g. under conditions of cathodic mass transport control, B = 

ba/2.3) [34].  

A Tafel plot can be drawn by plotting the individual electrode potential, E, against the 

log of the current, i. An Evans diagram is the depiction of two electrode reactions which 

intersect at the point of the free corrosion current density, icorr = 0 (as defined by 

equation 1.23), where the free corrosion potential, Ecorr, can be extrapolated as seen in 

Figure 1.7. 
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Figure 1.7: Basic elements of an Evans diagram. 

 

1.2.4 The Electrochemical Double Layer 

An electrochemical double layer (EDL) is the formation of two layers of opposing 

charge built up on the surface of a metal in the presence of electrolyte. Helmholtz 

initially discovered that charged electrodes, submerged in electrolyte, would repel ions 

of like charge and attract ions of opposing charge. Furthermore, he elucidated the nature 

of this double layer as a molecular dielectric by showing that the surface of the electrode 

and plane of attracted ions act as parallel plates of opposite charge (much like a 

capacitor) [35]. Figure 1.8 is a schematic of this early model, demonstrating the 

potential shift from the electrode into bulk solution. 
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Figure 1.8: Helmholtz model of the double layer. 

 

This early model neglects the influence of potential or ionic concentration on the 

capacitance, a flaw which Gouy and Chapman identified and remedied in their works 

[36,37]. However, they made assumptions in their work also which limited any 

quantitative applications; they assumed that ions act as point charges and there was no 

physical restriction for ions to reach the electrode surface. Thus, further improvements 

were made to the double layer theory by Stern to help form the more modern model 

[38]. However, in terms of corrosion kinetics, the Helmholtz model suffices to 

demonstrate the potential barrier required for the movement of ions near the interface.  

Corrosion is an electrochemical process. In terms of the chemical reaction(s) taking 

place on the surface of a corroding metal, the kinetics are defined by the Arrhenius 

relationship: 
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 k = k0 exp (
-ΔG

RT
)  (1.25) 

  

where k is the rate of the reaction and k0 is the rate constant (ΔG, R and T keep the 

definitions given previously). ΔG is the driving force for chemical reactions. However, 

as corrosion is considered partly electrical, the driving force becomes the overpotential 

(the difference between the applied potential and equilibrium potential, defined by 

equation 1.17). Therefore, it is concluded that the chemical driving force, ΔG, and the 

electrical driving force, E, are equivalent (equation 1.4).  

The EDL is an energy barrier that must be overcome by metallic ions in order for a 

metal to corrode and must be taken into consideration when performing electrical 

studies such as impedance spectroscopy. 

 

1.3 Forms of aqueous corrosion 

1.3.1 General corrosion 

Corrosion will occur in environments where it is thermodynamically favourable; the 

specific type of corrosion which takes place also relies on the environment, as well as 

the metal properties and physical design. General corrosion, also known as “uniform 

corrosion”, occurs evenly over the surface of a material with equal intensity at each 

anodic site. It is the most common, least aggressive forms of corrosion and the easiest 

to manage, however, it is also the most destructive forms of corrosion in terms of 

amount of metal attacked [39,40]. Consider the generic mechanism of an anode on the 

surface of a metal in Figure 1.9.  
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Figure 1.9: Schematic representation of a single, localised corrosion cell on a metal 

surface immersed in aggressive electrolyte. 

 

The schematic assumes a metal surface, in contact with aerated water, releases metal 

ions into solution which combine with hydroxyl ions for form metal hydroxide 

corrosion products. General corrosion is the formation of many anodic sites, uniformly 

across a metal surface, which progress at the same, low rate as each other. The anodic 

sites are co-located with the cathodic sites and can therefore not be spatially resolved. 

 

1.3.2 Galvanic Corrosion 

Galvanic corrosion, or “bimetallic corrosion”, is the preferential attack of one species 

over the other, when put in electrical contact, in the presence of electrolyte. Specifically, 

the species that is more electro active will become the anode and the more noble species 

will become the cathode, driving corrosive attack on the former [41]. Corrosion 

reactions take place as they would on a single metal; however, the rate is significantly 

increased. The EMF series in Figure 1.4 can be used to predict which species will 

corrode in a bimetallic couple; the more negative the half-cell electrode potential for a 

species, the more active it is. Thus, for example, zinc (E0 = -0.763) will preferentially 
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corrode when coupled with iron (E0 = -0.440). The EMF series contains absolute half-

cell values for metals only, calculated from thermodynamics, under strict theoretical 

conditions; therefore, the use of these potentials is restricted to theoretical work only. 

On the other hand, the galvanic series, shown in Figure 1.10, provides measured free 

corrosion potentials of metals and alloys in a defined environment (flowing sea water 

at ambient temperature) compared to a reference electrode (saturated calomel electrode, 

SCE). The further left in the chart, the more positive the rest potential and therefore the 

nobler the metal. Conversely, metals found on the right of the chart have more negative 

rest potentials and would therefore be more active [42]. As the values are measured, the 

galvanic series has a more practical use when comparing bimetallic couples in real 

world applications. In the case of both the EMF series and the galvanic series, the 

greater the difference between the potentials of the two species, the greater the driving 

force and rate of corrosion.  

In this mechanism of corrosion, anode to cathode size ratio is particularly important. 

Pairing a relatively small anodic metal with a significantly larger cathodic metal will 

result in a much larger current density on the anodic material and therefore a much 

higher corrosion rate. Conversely where the anodic metal is much larger than the 

cathodic metal, there will be much less, if any, corrosion that takes place. For example, 

if aluminium rivets were used to connect steel sheets together and fully exposed to 

electrolyte, the rivets would rapidly dissolve.  

On the other hand, stainless steel fasteners are frequently used for connecting 

aluminium sheets (note: partial wetting of the joined metals will alter the size ratio). 

The galvanic corrosion mechanism is exploited in the corrosion prevention industry; a 

more anodic metal is coated onto a more noble substrate to provide galvanic protection. 
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Zinc is typically coated onto steel in the galvanising process as zinc will preferentially 

corrode if both the coating and the steel substrate are exposed. 

 

1.3.3 Differential aeration 

Oxygen is a key factor in corrosion; literature typically shows a linear relationship 

between the oxygen presence in electrolyte and corrosion rates of submerged metals 

[43,44]. Differential aeration refers to an inconsistency of oxygen over the surface of a 

corroding material. The depletion of oxygen over a portion of a metal surface exposed 

 

Figure 1.10: Galvanic series; corrosion potentials are exhibited in flowing sea water 

at ambient temperature. The further left the material in the chart, the more noble and 

would be protected by a material found placed to the right [42]. 
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to electrolyte leads to preferential anodic attack, whereas the remainder of the surface 

that has free access to oxygen becomes the cathodic site. Localised metal dissolution is 

considered more dangerous in industry as localised degradation of a component is more 

likely to lead to catastrophic failure. Furthermore, differential aeration can be difficult 

to design against as an oxygen gradient is likely to occur in many real-life instances. 

Consider the Evans droplet in Figure 1.11: 

 

Figure 1.11: Adaption of the Evans droplet diagram [45]. 

 

The outer edges of the droplet are saturated in oxygen due to the proximity to the open 

air. This permits the cathodic processes to take place on the metal surface adjacent to 

these outer edges. As a result, the anodic attack takes place on the substrate toward the 

centre of the droplet.  

This mechanism is an important consideration when studying underfilm corrosion and 

organic layer delamination as the diffusion or restriction of oxygen can exacerbate 

corrosion processes already taking place.  
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1.4 Corrosion protection – metallic coatings 

1.4.1 Overview 

The application of a metal coating to a substrate is widely used as a form of corrosion 

prevention. There are two mechanisms by which metallic coatings can limit corrosion 

of a substrate: barrier and sacrificial. For corrosion to take place there must be electron 

transfer (the metal), ion transfer (liquid) and oxygen. To protect metals from corrosion, 

one of the three key components must be eliminated. In the case of barrier metallic 

coatings, current flow is prevented between the anodic and cathodic sites due to the 

insulating nature of oxides formed on the metallic coatings. Moreover, the barrier also 

limits access of electrolyte to the substrate, with limited access for oxygen also. 

However, coatings which provide only barrier properties cannot prevent corrosion if 

the coating is damaged and the undermining of the protective coating is in fact more 

damaging due to the differential aeration environment created.  

Sacrificial coatings, such as zinc, provide continued cathodic protection if the coating 

itself is penetrated. The coating is comprised of a more electroactive material, therefore 

if both the substrate and coating are exposed at a given time, the coating will become 

active preferentially over the substrate. Consequently, sacrificial metal coatings require 

an additional overcoat to prevent continuous atmospheric attack to the coating alone. 

Figure 1.12 shows the stages of protection when a defect exposes the substrate and 

coating. Initially a corrosion cell is setup whereby the steel, being the more noble 

material, becomes cathodic and subsequently the zinc becomes active. Attack on the 

zinc coating produces corrosion products which are precipitated within the defect, 

passivating the area and providing barrier protection to the steel. 
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Figure 1.12: Schematic representation of the galvanic protection provided by a zinc layer 

on steel substrate. The defect extends through the sacrificial coating and into the substrate. 

 

1.4.2 Zinc-aluminium coatings 

Zinc is the most common metal applied via the hot-dipping method. This is due to its 

relatively low melting point (420 °C) and its ability to alloy with steel. Hot-dip 

galvanising is the process by which a substrate is immersed in a bath of the molten zinc, 

during which a spontaneous reaction occurs between the substrate and molten metal to 

form alloy layers.  

When the steel substrate is submerged in molten zinc, the surface reacts with zinc to 

produce several iron-zinc alloy phases, shown in Figure 1.13. 

 

   

Figure 1.13: Intermetallic phases formed from the diffusion of zinc and iron during 

traditional hot-dip galvanising. 

 

The uncontrolled formation of these phases improves the adhesion of the zinc coating 

at a cost of reduced formability and increased coating weight. In modern galvanising 

lines, a small amount of aluminium (<0.2 %) is added to the zinc bath to control the 

intermetallic phases formed. Iron will preferentially react with aluminium to form a 

thin, compact intermetallic layer between the steel substrate and zinc coating (Figure 
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1.14), which prevents further iron-zinc reaction diffusion, and therefore the brittle 

phases are not formed [46]. Good adhesion is maintained whilst formability and weight 

control are improved.  

 

   

Figure 1.14: Aluminium intermetallic formed to prevent further reaction diffusion 

of zinc and iron. 

 

The thickness of a HDG coating depends on the gauge of the steel substrate. In BS EN 

ISO 1461:2009 [47], the galvanising standards for the European industry, HDG 

coatings can range from 45-85 μm for steel gauges of <1.5 mm to >6 mm respectively 

for infrastructural galvanised steel. In the automotive industry, hot dip galvanised layers 

typically range from 7-12 μm, such as the GI coating in this work. 

Tata Steel produce zinc coatings with aluminium additions beyond the minimum 

amount to retard the growth of Zn-Fe intermetallics: 5 wt% Al (Galfan) and 55 wt% Al 

(Galvalume).  

 

1.4.3 Zn-Mg-Al  coatings 

Magizinc is an iteration of hot-dip zinc coatings developed by Tata Steel, a Zn-Mg-Al 

alloy coating. The drive for improvement of the traditional pure zinc coating comes 

from the limitations of conventional zinc coatings within the automotive industry. Pure 

zinc coatings generally have restricted formability [48] and frequently cause process 

stability issues during forming; zinc flakes, from the coating, abrade forming tools 

which results in higher maintenance and cleaning costs [49]. Moreover, the desire for 

weight reduction and resource conservation in the automotive industry inspired 

Al2O3 
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research into new alloy additions for zinc coatings. The addition of a small amount of 

magnesium to the coating resulted in a significant increase in corrosion protection of 

the steel substrate, allowing the reduction of coating thickness whilst maintaining 

adequate environmental protection [4,50–58]. Furthermore, Magizinc shows negligible 

zinc flaking in the forming processes, which reduces galling considerably.  

However, the addition of magnesium to the galvanising bath results in an oxide crust 

forming on the liquid metal that reduces adhesion and corrosion protection due to the 

presence of oxides; this problem is overcome by adding aluminium to the melt in an 

equal or higher amount to magnesium. 

  

   

Figure 1.15: Cross-sectional microstructure of Zn-Mg-Al Magizinc coating. 

 

The coating contains three phases: Zn rich dendrites, a binary eutectic structure 

(lamellar of MgZn2 and Zn) and a ternary eutectic structure (lamellar of MgZn2, Zn and 

Al-rich nodules), shown in Figure 1.15. The Al-rich phases are generally understood 

to be the more stable component of zinc-alloy coatings, including Zn-Mg-Al 

[53,59,60]. On the other hand, the magnesium-containing phases, such as MgZn2 and 

Mg2Zn11, have been well documented to act as preferential sites for anodic attack 

[53,58–63]. The improved corrosion resistance exhibited by alloying magnesium and 

aluminium in zinc coatings has been shown in a significant number of accelerated 

testing works [4, 51–54, 58,59,64,65], and more recently long term exposure studies in 

the field have confirmed the benefits for real world applications [62,66,67]. Thierry et 

al. most recently showing a two to three times reduction in corrosion-driven mass loss 
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from Zn-Mg-Al coated steel over four years exposure at various worldwide locations 

[62]. 

There is much debate as to the exact mechanisms that take place on Zn-Mg-Al coated 

steel to provide the improved corrosion resistance. Volovitch et al. proposed that the 

improved anti-corrosion properties of Zn-Mg alloys, compared to Zn, are a result of an 

increased stability of the highly compact simonkolleite (Zn5(OH)8Cl2·H2O) [68]. The 

preferential anodic dissolution of magnesium phases results in the formation of Mg2+ 

ions, these ions were then suggested to buffer the pH of the system by forming 

Mg(OH)2. Moreover, the affinity for carbonate to react with Mg2+ ions over Zn2+ also 

enhances the stabilisation of Zn-based corrosion products, such as simonkolleite. In a 

similar vein, the preferential formation of Mg(OH)2, over Zn(OH)2, is also thought to 

hinder the oxygen reduction reaction (ORR) [60,69]. Prosek et al. have also observed 

the influence of Mg2+ on the corrosion products formed at the cathodic sites, most 

notably the suppression of zinc oxide formation [60]. However, Krieg et al. believe that 

a greater influence on corrosion resistance comes from the microstructure, rather than 

the composition of the coating (for lower alloying contents) [55].  

However, it is argued that discrepancies seen between literature is due to the difference 

between methods for corrosion testing [70]. 

 

1.5 Physical vapour deposition 

1.5.1 Overview 

PVD is the collective name for multiple methods of thin film deposition with the key 

elements being: evaporation, transportation and condensation. It is the process of 

depositing thin films onto a substrate under vacuum conditions. The coating material is 

vaporised from solid or liquid form and transported via vacuum or plasma to the surface 
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of a substrate material where it condenses to create the coating [71]. PVD layer 

thickness generally ranges from a few nanometres to a few microns, with deposition 

rates of up to 10 µm/s using the jet-evaporation technique [9].  

PVD coatings have been applied for a range of purposes since the 1980s: to improve 

the hardness and lifetime of tooling steels [72,73], protection from corrosion product 

contamination in the food packaging industry [74] and fabrication of microelectronics 

[75]. The use of the PVD process to provide an alternative to traditional HDG coatings 

in the automotive industry has only recently been studied due to the demand for 

“cleaner” technologies and increased fuel efficiency via weight reduction. Research 

into this area has been positive, showing potential for PVD thin films to sufficiently 

replace traditional galvanic or barrier-type coatings on an industrial scale [2,3,9].  

PVD possess several significant advantages over HDG and/or EZ: 

• Many more elements can be deposited 

• Low melting point substrates 

• Alloy coatings 

• Multi-layer coatings 

• AHSS and UHSS grades can be coated 

The properties of a thin film produced by any PVD process are governed by four key 

parameters: substrate surface condition (e.g. morphology, composition), deposition 

process and geometry (e.g. deposition rate, temperature), film growth mechanics (e.g. 

nucleation, surface mobility) and post-deposition processes (e.g. thermal treatment) 

[76].  

 

1.5.2 Process Parameters 

The method currently employed at Tata Ijmuiden using a Von Ardenne roll-to-roll 

vacuum pilot line. The schematic of the EMELY line is shown in Figure 1.16. While 
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the chamber is open a steel coil can be loaded onto W1 and the end of the strip is fed 

through the line and attached to W2. Tension is put on the line to prevent the strip from 

coming into direct contact with the vapour distribution box (VDB) and to ensure a 

consistent coat along the width of the strip. The chamber is then closed and pumped 

down to 10-4mbar. EMELY is designed for multiple passes to take place without the 

need to re-open the chamber: there are two material sources (VDB1 and VDB2) and 

two reverse magnetron sputters that prepare the strip immediately before deposition (E1 

and E2). During the first pass, the strip is decoiled from W1 and recoiled on W2 after 

passing E1 and VDB1. The line is then reversed, after a period of cooling, and the strip 

passes E2 and VDB2. 

The system for the introduction of source material has changed since first installation. 

Initially the coating metal or alloy was wire-fed into an induction coil setup which 

would heat the material to the necessary temperature for evaporation. The speed at each 

wire source was fed into the coil would control the weight percentage of each material 

within the coating and was inspired by the potential for continuous production. More 

recently, the source material is placed into the vacuum chamber within a ceramic 

crucible prior to the run. This allows accurate weight measurements and greater control 

over the final coating composition. Once evaporated, the coating material rises through 

a VDB which is pre-heated to a temperature sufficiency higher than that of the vapour 

to prevent premature condensation within the equipment itself. The VDB is positioned 

close to the steel strip to prevent wastage of the evaporated material. The design of the 

VDB is such that the evaporated material is evenly distributed over the surface of the 

steel. 
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Figure 1.16: Schematic of the EMELY pilot line. 

 

 

1.5.3 Film growth 

At the substrate surface, during PVD, the impinging atoms either reflect, re-evaporate 

or condense. A successful PVD process will be adjusted to ensure that the ratio of 

condensing atoms to impinging atoms (known as the sticking coefficient) is high. In 

order to condense on the substrate surface the sputtered atoms must lose energy by 

bonding to the surface atoms. If the sputtered atoms do not immediately react with the 

surface atoms due to weak interactivity, they are called adatoms. They are mobile on 

the surface and will instead nucleate at preferential sites which are typically inclusions, 

steps or defects in the substrate surface. On the other hand, if the interaction between a 

sputtered atom and surface atom is strong, the surface mobility is low and thus every 

surface atom can act as a nucleation point [76]. In this case, surface contamination can 

be a highly influencing factor on the heterogeneity of the film which is why reverse 

magnetron sputtering has been used in the EMELY system. To prevent pinholing and 

porosity the nucleation density should be high, which is dependent on the composition 
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of the substrate and deposited material. The PVD Zn-Mg coatings in this thesis are 

notably deposited as a dual coating system. It was previously found that the adhesion 

of the Zn-Mg film was dependant on the presence of the zinc base layer [20]. 

Growth of the nuclei occurs as subsequent atoms impinge on the already deposited 

atoms. There are three previously established mechanisms for growth, as shown in 

Figure 1.17.  

 

 
Figure 1.17: Thin film growth mechanisms: a) Volmer-Weber island growth, b) 

Frank-vander Merwe layer growth and c) Stranski-Krastanov layer plus island 

growth [77]. 

 

For zinc and magnesium in a low temperature deposited process, such as that in this 

work, the surface atom mobilities are expected to be low and therefore the Stranski-

Krastanov mechanism for nucleation is likely [76]. Initially, complete films of atoms 

are growth layer by layer on the substrate, permitting limited growth and resulting in 

relatively small grains. Beyond the critical layer thickness the island growth mechanism 

takes over [78,79].  
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Film growth is a result of the continuous deposition of sputtered material onto the 

existing nuclei on the substrate surface. By the nature of this process, PVD film growth 

is typically columnar. Unlike the commonly described columnar grains of cold 

hardened metals, the columnar features of a PVD film are polycrystalline.  

 

 
Figure 1.18: Structure Zone Model (SZM) of PVD films, adapted by Mattox [71] 

from Thornton [80]. 

 

The growth mode of a PVD film is not established until a reasonable distance away 

from the substrate interface. Figure 1.18 shows the basic Structure Zone Model that 

dictates the film morphology in relation to the chamber pressure and substrate 

temperature. It is understood that additional process parameters also have an influence 

on morphology, such as deposition rate and the angle-of-incidence, however the model 

does present a basic variety of morphology expected to form via the PVD process. In 

addition to this, low mobility adatoms, such as zinc, are susceptible to geometric 

shadowing during deposition; this results in a globular surface morphology which 

becomes more exaggerated as deposition continues [71].  
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1.5.4 Coating characteristics 

The superior corrosion resistance of magnesium containing HDG coatings, such as 

Magizinc, prompted research into Zn-Mg alloy PVD coatings. Pure Zn PVD coatings 

have not been considered for commercial use as it is well understood the corrosion 

performance of Zn coatings is directly related to the thickness of said coating [81,82]. 

Figure 1.19 shows a cross-section of a dual layer Zn Zn-Mg coating produced using 

EMELY. The pure Zn layer applied first serves the purpose of improving wetting and 

adhesion between the topcoat and the substrate [22]. The Zn-Mg coating applied during 

the second pass has a globular micro surface topography characteristic of this PVD 

process.  

   

Figure 1.19: Typical Zn-Mg PVD coated steel showing the pure Zn adhesion layer 

and Zn-Mg topcoat [19]. 

 

As early as 1991, zinc PVD binary systems such as Zn-Mg, Zn-Al, Zn-Cr, Zn-Ni and 

Zn-Ti were compared for their capability of limiting rest rust formation [83]. It was 

found that the Zn-Mg system exhibited up to 24 times better corrosion resistance in salt 

spray testing compared to electrogalvanised steel. In a similar vein, the incorporation 

of magnesium into an electroplated zinc coating has also been previously observed to 

improve corrosion resistance in salt spray tests by 5 times at room temperature, and 10 

times for 10 °C increased temperature [84–86]. More recently, Prosek et al. explored a 

systematic approach in varying the magnesium content within a zinc alloy, finding that 
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between 4-8 % there was a 10-fold decrease in mass loss compared to zinc alone, under 

atmospheric conditions and in the presence of chloride [64]. Although this work was 

conducted on cast metals, a key advantage of the PVD method for coating deposition 

is the potential for increased alloy content in the zinc coating. It was proposed by 

Thébault et al. that superior cut edge corrosion resistance exhibited by Zn-5.8Mg and 

Zn-15.5Mg was due to two protective mechanisms acting in the humid environments: 

the zinc cations acted to inhibit cathodic reactions on the steel surface close to the 

coating itself, but the magnesium cations provide protection over the entire steel surface 

as the magnesium hydroxides maintain stability at higher pH. Thus during the drying 

phase, when zinc can no longer provide galvanic protection, the magnesium hydroxides 

previously formed continue to provide protect to the steel and limit formation of red 

rust [8]. 

Although research into the potential substitution of hot dip galvanising with PVD is 

still ongoing, it would not be the first time an existing industry has been successfully 

replaced by a sputtering equivalent. Navinšek et al. previously highlight the potential 

for further fine tuning of the process, however, initial tests showed that sputtered nickel 

could replace electroplated nickel on an aluminium heat sink, without the need for an 

intermediate adhesion layer, with a much thinner coating that provided equal corrosion 

resistance [2].  

Another key factor when considering PVD zinc alloy coatings as substitutes for hot dip 

galvanising is the compatibility within a full coating system. This has recently been 

explored by Davies et al., with the optimum magnesium content having been identified 

as 10 wt% to resist both cathodic delamination and anodic undermining [19]. It was 

shown that magnesium contents higher than 10 wt% caused significant depression in 
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the intact potential for delamination tests initiated with chloride which, as previously 

deduced by Hausbrand et al. [69], limits the driving force for delamination. 

 

1.6 Corrosion protection – organic coatings 

1.6.1 Overview 

Organic coatings include: paints, lacquers and temporary coatings such as wax or oil. 

For the long-term corrosion protection of metal components, the most widely used 

organic coating is paint.  Paint can be easily applied to metal substrates; however, the 

adhesion and continuity of the coating is crucial in maintaining the barrier protection. 

Metal substrates with inherent corrosion resistance, such as aluminium, are typically 

painted for aesthetic purposes only. In contrast to this, steel and zinc-based metallic 

coatings benefit from the additional barrier to the environment as water, oxygen and 

aggressive ion specie mobility is significantly hindered through the organic layer. This 

is necessary for components exposed to relatively aggressive environments where their 

natural oxide layer is continuously broken down, allowing the exposure of the metal to 

corrosive attack [87].  

Zinc-coated steels further over-coated with an organic layer are termed “duplex” 

coatings, creating a synergistic effect whereby the lifetime of a duplex system is greater 

compared to the sum of the expected lifetimes of a zinc coating or organic coating 

applied alone to a steel substrate [88].  

 

1.6.2 Automotive coating systems 

In order to ensure a complete barrier between a metallic substrate and its environment, 

a multilayer paint system is applied to galvanised steel with each layer formulated to 

serve an individual purpose in a specific anticipated service environment (Figure 1.20). 
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Firstly, surface pre-treatment is essential to maximise adhesion and limit defects. For 

automotive coating systems, a galvanised steel substrate is typically cleaned, to remove 

oils and oxides (which have been shown to be the cause of many coating failures [89]), 

and then “phosphated” to form a corrosion resistant, insoluble phosphate layer. 

Phosphating is the process by which zinc coated steel strip is treated with diluted 

phosphoric acid in order to improve the adhesion of a subsequent primer organic 

coating to the zinc [90]. The primer layer is applied to the phosphate steel substrate and 

contains pigments that serve the purpose of UV and corrosion protection. The top coat 

is applied directly to the primer layer and it is typically designed for the aesthetics of a 

product (colour, finish) as well as an initial barrier to the environment. 

 

Figure 1.20: Schematic showing the component layers of an automotive paint 

system. 

 

1.6.3 Failure 

There are several different mechanisms by which organic coating disbondment can 

occur [90,91], those relevant to this thesis are cathodic disbondment and anodic 

undermining. Cathodic disbondment is the delamination of the paint from the substrate 

due to the reduction of oxygen (equations 1.7 and 1.8) at the interface between the 

Steel Substrate 
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organic coating and metal substrate, as shown in Figure 1.21, and is the most common 

mechanism for coating failure on galvanised steel [87]. The cathodic reaction at the 

coating interface causes a rise in pH (alkalisation) which rapidly degrades the organic 

layer and also dissolves any zinc hydroxide present [92,93]. Without a defect, oxygen 

and water can diffuse slowly through the organic coating (which can cause cathodic 

blistering); however, a defect allows the reactants to rapidly reach the disbondment 

interface. For an unpigmented coating undergoing cathodic disbondment, the rate-

limiting step has previously be identified as ion migration through the underfilm 

electrolyte from the defect [94]. In contrast to this, a pigmenting coating may instead 

be limited by the rate of oxygen diffusion as the pigment itself may hinder the path 

through the coating [95]. 

 

Figure 1.21: Basic mechanism of cathodic delamination. 

 

In order to quantitatively study this method of coating disbondment, Stratmann et al. 

were the first to utilise the Scanning Kelvin Probe (SKP) to map the free corrosion 

potential of a metal surface, Ecorr, over the distance from the defect, x [92, 94,96]. In 

order to study cathodic delamination, Stratmann et al. developed a novel sample 

preparation technique now known as a “Stratmann cell” whereby an artificial defect is 

created, by peeling back the organic coating to expose the metallic layer beneath, and 

put in contact with the selected electrolyte [97]. The SKP then measures an Ecorr profile 

Organic layer 

Metal 
Substrate 
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perpendicular to the artificial defect repeatedly over time, such that time-dependent 

profiles can be overlaid to show the kinetics of delamination.  

 

As shown in Figure 1.22, there are five distinct segments of an SKP profile: 

• Defect: artificial defect area of exposed metallic substrate where anodic 

dissolution takes place, as such the Ecorr value corresponds to the free corrosion 

potential of the metal substrate. 

• (I) Defect edge: noted as the end point of the defect preceding the delaminated 

area. 

• (II) Delaminated area: a gradual increase in Ecorr from (I) to (III) represents the 

ohmic resistance generated by ionic transfer through the underfilm electrolyte 

in this section. 

• (III) Delamination front: a sharp and usually distinct increase from Ecorr to the 

intact potential value, Eintact, indicating the progressive front of disbondment. 

• (IV) Intact coating: a second plateau of more positive corrosion potential 

representing the un-delaminated coating. 

 

It was observed by Hausbrand et al. that MgZn2, a predominant phase found in 

commercial Zn-Mg-Al coatings [58,59], resists cathodic delamination due to a 

 

Figure 1.22: A schematic diagram to illustrate the five distinct regions of a 

delamination cell as they correlate to a typical Ecorr profile from a SKP study [93]. 
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depression in the intact potential and subsequent reduction in the driving force for 

underfilm disbondment [69,98,99]. However, it was discovered that MgZn2 instead had 

a vulnerability to anodic undermining. 

Anodic undermining is the dissolution of the metal below the paint film initiated by an 

aggressive corrosive media reaching the metal via diffusion through the paint or an 

invasive defect. Filiform corrosion, FFC, is a type of anodic undermining and is 

considered the primary mechanism for coating failure on multiple organically coated 

metal systems [100]. Most relevant to this work is the occurrence of FFC on magnesium 

[101] and magnesium-containing zinc coatings [19,102] following the exposure of 

penetrative defects in the organic coating to particularly aggressive electrolytes, such 

as HCl. It is generally presumed that a droplet of aggressive electrolyte propagates 

beneath an organic coating via anodic attack of the metal substrate at the head of the 

droplet, coupled with cathodic oxygen reduction at the tail of the droplet (Figure 1.23). 

FFC has not previously been seen on zinc coatings. The recent work by Davies et al. 

indicated a correlation between magnesium content and susceptibility to anodic 

undermining for zinc PVD coatings. Indeed, a magnesium content greater than 10 wt% 

resulted in a vulnerability to FFC which was not seen on coating systems containing 

less than 10 wt% magnesium. 

 
Figure 1.23: Basic mechanism of filiform corrosion. 
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Wint et al. proposed a schematic diagram (Figure 1.24) correlating the FFC mechanism 

to a typical SKP profile, identifying the head of the propagating filament and the dry, 

porous tail following. The head is characterised in the SKP profile as a region of lower 

potential, corresponding to the free corrosion potential of the metallic surface, and the 

tail is identified by a gradual increase in potential.  

 

 
Figure 1.24: A schematic diagram to illustrate the three regions of a FFC cell as they 

correlate to a typical Ecorr profile from a SKP study, measured along the filiform 

axis [102]. 

 

 

1.6.4 Corrosion inhibitor pigments 

Corrosion inhibitor pigments are often included in the primer layer of an organic 

coating system. They are separated into three main categories based on the method by 

which they inhibit corrosion of the coating: anodic, cathodic or mixed inhibitors.  

Anodic inhibitors are further classed as either precipitating or oxidising. Precipitating 

anodic inhibitors, such as phosphates (PO4
3-), chromates (CrO4

2-) or molybdates 

(MoO4
2) [103], form an insoluble salt in the defect region which physically stops ionic 

flow between the anodic and cathodic reactions (as shown in Figure 1.25). 
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Figure 1.25: Schematic representation of phosphate ions forming with metal ions 

from the defect to form an insoluble salt and prevent ionic transport between the 

defect and delamination front during cathodic delamination. 

 

Oxidising anodic inhibitors shift the free corrosion potential of the system by increasing 

the rate of oxygen reduction which lowers the corrosion current but increases the free 

corrosion potential, as shown via the Evans diagram in Figure 1.26. For certain metals, 

such as steel, increasing the free corrosion potential will shift the corrosion reaction 

into the passive region of the Pourbaix diagram and reinforce the formation of the 

passive film [104]. However, without careful control of the amount of inhibitor in the 

system, the increase in potential can instead accelerate corrosion. 
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Figure 1.26: Evans diagram showing the influence on the anodic reaction Tafel 

plot by an anodic inhibitor. 

 

Cathodic precipitation inhibitors work in a similar way to their anodic counterparts; 

though the insoluble salts are instead deposited in the cathodic region of the system. 

Work by Powell et al. demonstrated the highly efficient cathodic inhibition of HDG in 

the presence of rare earth metals [105]. Other common cathodic precipitates include 

CaCO3, MgCO3 or zinc sulphates [105]. Cathodic poisoning inhibitors, such as 

sulphides, selenides, arsenates, bismuth and antimony [105], decrease the rate of 

hydrogen evolution via deposition on the metal surface. However, consequently a 

cathodic poison can increase the susceptibility of the metal to hydrogen embrittlement 

from the non-recombined hydrogen. Oxygen scavengers, such as sulphite and 

hydrazine [105], are another form of cathodic inhibitor which react with the dissolved 

oxygen in the electrolyte, thus restricting the amount reduced at the surface of the metal. 

The Evans diagram in Figure 1.27 demonstrates the effect of reducing the rate of the 



42 

 

cathodic reaction via cathodic inhibition. Both the corrosion potential and current are 

reduced, making cathodic inhibitors safer to use than anodic. 

 

 

Figure 1.27: Evans diagram showing the influence on the cathodic reaction Tafel 

plot by a cathodic inhibitor. 

 

1.7 Accelerated electrochemical scanning techniques 

1.7.1 Scanning Vibrating Electrode Technique (SVET) theory 

The SVET is an advanced electrochemical scanning method derived from the pre-

existing scanning reference electrode technique (SRET) [105]. The SVET spatially and 

temporally monitors electrochemical behaviour in electrolyte directly above a 

corroding surface and has been used extensively to study the localised corrosion of bare 

metal surfaces under full immersion [106–114]. Specifically, the vibrating probe tip 

detects potential gradients in solution generated by the ionic flow between the anodic 
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and cathodic sites of an actively corroding surface (Figure 1.28). The peak-to-peak 

voltage, Vpp, detected can be converted to current density in the axis of vibration, jz, 

with the following relationship: 

 

 Vpp = jz(app/κ) (1.26) 

 

Where app is the peak-to-peak amplitude of vibration and κ is the conductivity of the 

solution. Full calibration of the SVET is described in section 2.4.2. The spatial 

resolution of the SVET is limited by the experimental probe height and the diameter of 

the probe electrode (for a scan height of 100 µm, the theoretical width at half maximum, 

whm, has been previously identified as 0.26 mm [109]). This limits the applications for 

the SVET as electrochemical features smaller than the whm cannot be resolved, such 

would be the case for general corrosion or preferential attack of micro phases. An 

example of this would be the de-alloying of the lamellar phases within a ZMA coating 

microstructure; the anodic attack of the more susceptible phase, MgZn2, which has an 

inter-lamellar spacing of <10 µm, is not resolved with the SVET. Previous work by 

Sullivan et al. utilised optical microscopy to confirm  the preferential attack on the 

MgZn2 phase present in Zn-Mg-Al coatings [58] whereas SVET was used to compare 

mass loss between different magnesium-containing alloy coatings [59,115]. 
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Figure 1.28: Schematic of the potential and current distribution in the electrolyte 

directly above a corroding surface. 

 

Nevertheless, the SVET has been a vital tool in numerous works, such as the 

identification of Zn(PP) salt formations on anodic sites recorded by Glover et al. [116], 

the characteristic narrow anodic ring expansion and correlation of an intense internal 

cathode with visual black staining on freely corroding magnesium observed by 

Williams and McMurray [112] and the increased lateral anodic spreading of anodes on 

Zn-Mg-Al coatings compared to the through-coating depth penetration as a function of 

coating cooling rate identified by Wint et al. [117]. 

The SVET used in this thesis was designed and assembled at Swansea University; its 

components are fully described in previous work [108, 110,118]. 

 

1.7.2 Scanning Kelvin Probe (SKP) theory 

The SKP is a non-perturbing technique than can measure the electrochemical potential 

of surfaces beneath a thin layer of electrolyte or electrically resistive coatings. Unlike 

the SVET, the SKP does not require immersion in electrolyte and instead measures 

corrosion phenomena in response to atmospheric conditions. As previously mentioned, 
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it was first applied by Stratmann et al. [92, 94,96] to study corrosion-driven 

delamination under organic coatings applied to metallic substrate, the technique has 

been extensively used to compare the organic coating disbondment, as well as 

determine the underlying mechanisms, as a function of substrate [19, 64,119], organic 

coating composition [93,120,121] and surface preparation [122].  

Figure 1.29 illustrates the principle theory behind the SKP method. The gold wire 

Kelvin probe is positioned at distance d above the metallic sample, such that the cross-

section of the tip is parallel to the sample surface (Figure 1.29a). Due to the difference 

in work functions (Φt and Φs for the tip and sample respectively), once electrical contact 

is made between the tip and the sample, they form a parallel plate capacitor, where the 

air gap between them is the capacitor dielectric (in delamination studies, the organic 

coating also contributes toward this insulating layer). Additionally, the Fermi levels of 

tip, Eft, and sample, Efs, equilibrate with a corresponding drop the in vacuum energy 

level of the sample, Evac, and a Volta potential, ΔѰ, is established. The Kelvin probe 

vibrates in the plane perpendicular to the sample surface, thus creating a variance in the 

plate separation, and therefore the Volta potential, over time. The variance of the Volta 

potential results in an alternating current in the circuit, iac (Figure 1.29b). The SKP 

cannot directly measure this alternating current; instead a bias potential, VDC, is applied 

to nullify iac (Figure 1.29c). Under null-current conditions, the measured Kelvin 

potential, EKP, is equal to -VDC and is therefore equal to ΔѰ when VDC = 0. 

The Kelvin probe scans over the surface of a sample, indirectly measuring and mapping 

the Volta potential across the surface. Section 2.5 describes the method for monitoring 

the rate of delamination of an organic coating on a metal substrate using the SKP 

apparatus.  

 



46 

 

 

Figure 1.29: Electronic energy levels and the principle of SKP operation: (a) the 

SKP probe tip (work function = Φt) vibrates at frequency ω above the metallic 

sample (work function = Φs) separated by distance d with no electrical contact, (b) 

electrical contact is established between the tip and sample (a Volta potential, ΔѰ, 

forms as the vacuum energy level of the sample, Evac, drops and the Fermi level of 

the sample, Efs, equilibrates with the Fermi level of the probe, Eft), and (c) an 

external bias, VDC, is applied to nullify ΔѰ. 
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Chapter 2. Experimental Methods 

2.1 Materials 

2.1.1 Metallic Coatings 

All metallic coated steel samples in this thesis were produced by Tata Steel 

Netherlands. Two zinc alloy coatings were applied using the traditional hot dip method 

and are commercially available: hot dip galvanised “GI” coating (HDG) and 

Magizinc® (ZMA). 

Four PVD zinc alloy coatings were produced using a Von Ardenne roll-to-roll “Electro 

Magnetic Evaporation Line IJmuiden”, EMELY. It is now a batch process, under 10-4 

bar pressure, which utilizes thermal evaporation to deposit pure or alloy coatings onto 

steel strip. The EMELY line produces the Zn-Mg coatings via bi-layer co-deposition: 

an initial pure zinc layer (referred to as the basecoat) is deposited in one “pass” and, 

when the line direction is reversed, zinc and magnesium are deposited simultaneously 

in the second pass to form the topcoat. These are single-sided coatings all deposited on 

0.2 mm gauge blackplate steel. Due to the nature of the process, the PVD coatings vary 

in thickness as strict control of the line speed and melt temperature must be maintained.  

The properties of all samples are summarized in Table 2.1. 
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Table 2.1: Properties for all metallic coated strip steel samples analysed in this thesis. 

Sample I.D. Details Supplier 

HDG Commercial coating “GI” 

Process: hot-dip galvanising 

Coating composition: Zn-0.2 wt% Al 

Coating thickness: 20 µm 

Mean surface roughness: 1.30 µm 

Tata Steel IJmuiden 

ZMA Commercial coating “Magizinc®” 

Process: hot-dip galvanising 

Coating composition: Zn-1.6 wt% Al-

1.6 wt% Mg 

Coating thickness: 10 µm 

Mean surface roughness: 1.00 µm 

Tata Steel IJmuiden 

PVD0 Pilot line sample  

Process: physical vapour deposition 

Coating composition: Zn 

Coating thickness: 3.30 µm 

Mean surface roughness: 300 nm 

Tata Steel IJmuiden 

PVD4 Pilot line sample  

Process: physical vapour deposition 

(dual layer) 

Base coat composition: Zn 

Base coat thickness: 2.10 µm 

Top coat composition: Zn-4 wt% Mg 

Top coat thickness: 4.10 µm 

Mean surface roughness: 390 nm 

Tata Steel IJmuiden 

PVD10 Pilot line sample  

Process: physical vapour deposition 

(dual layer) 

Base coat composition: Zn 

Base coat thickness: 0.95 µm 

Top coat composition: Zn-10 wt% Mg 

Top coat thickness: 3.80 µm 

Mean surface roughness: 270 nm 

Tata Steel IJmuiden 

PVD20 Pilot line sample  

Process: physical vapour deposition 

(dual layer) 

Base coat composition: Zn 

Base coat thickness: 1.10 µm 

Top coat composition: Zn- 20 wt% Mg 

Top coat thickness: 4.10 µm 

Mean surface roughness: 290 nm 

Tata Steel IJmuiden 

 

2.1.2 Organic Coatings 

Poly(vinyl butyral-co-vinyl alcohol-co-vinyl acetate) (PVB) powder (Mw 70,000-

100,000) supplied by Merck (Sigma-Aldrich) was dissolved in Ethanol (≥99 % purity) 
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supplied by Merck (Sigma-Aldrich) for use as a model organic coating in all 

delamination tests. The standard coating solution used in this work was 15.5 % w/w of 

PVB power in ethanol made up using an IKA high shear mixer, with the PVB powder 

added slowly and incrementally to avoid agglomeration. The PVB solution was 

degassed in an ultrasonic bath for at least an hour (the bath and PVB solutions were 

maintained below room temperature during degassing by the replacement of the sonic 

bath DI water). Once bar coated to a metal substrate, the model PVB coating air dries 

completely within 20 minutes and provides good adhesion to the substrate. 

Furthermore, exposure to salt solution causes the model PVB coating to delaminate 

within a reasonable timeframe during accelerated testing. 

For the identification of compatible corrosion inhibitor pigments, a selection of 

phosphate-based pigments were supplied by Société Nouvelle des Couleurs Zincique 

(SNCZ), and designated as shown in  

Table 2.2. 

 

Table 2.2: List of pigments selected for delamination resistance compatibility testing, 

compositions are taken from the company MSDS files. 

Pigment I.D. Composition Density, ρpig (g.cm-3) 

PZ20 94 % Zn3(PO4)2.xH2O 

6 % ZnO 

3.30 

NOVINOX PAT15 ~100 % MgHPO4.xH2O 

<2.5 % Zn3(PO4)2.xH2O 

2.20 

NOVINOX ePAZ 63 % AlH2P3O10.2H2O 

37 % ZnO 

<2.5 % Zn3(PO4)2.xH2O 

2.90 

NOVINOX PAM 70 % AlH2P3O10.2H2O 

30 % “Non-hazardous 

substance” 

<2.5 % ZnO 

2.60 

 

In order to appropriately compare the compatibility and effectiveness of the corrosion 

inhibitor pigments, PVB pigment formulations were calculated using equation 2.1: 
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 Mpig = 
∅. Mpol.ρpig 

(1-∅). ρpol

 2.1 

 

where Mpig is the calculated mass of pigment required to formulate the desired volume 

fraction, ∅. Mpol is the mass of the polymer (PVB), ρpig is the density of the pigment 

(given in Table 2.2) and ρpol is the density of the polymer (~0.8 g.cm-3 [1]). It is 

important to note that Mpol refers to the mass of the PVB powder; the 15.5 wt% PVB 

solution of mass Mpolsol would be (equation 2.2): 

 

 Mpolsol = 
Mpol.100 

15.5
 2.2 

 

which is more practically relevant as the pigment-free PVB is formulated prior to the 

addition of the pigment powder. Likewise, ρpol is the density of the PVB powder before 

it is added to ethanol. 

 

2.1.3 Electrolytes 

All electrolyte solutions were prepared from de-ionised (DI) water of 99.998 % purity. 

Table 2.3 lists the salts used in this work to create solutions for electrochemical study. 

The specific concentration of the solutions are listed in the associated chapters. 
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Table 2.3: List of salts dissolved in deionised water to form electrolytes in the 

electrochemical studies. 

Material Details Supplier 

NaCl ≥99.0 % purity Merck (Sigma-Aldrich) 

NaOH ≥98.0 % purity Merck (Sigma-Aldrich) 

ZnCl ≥98.0 % purity Merck (Sigma-Aldrich) 

MgCl ≥98.0 % purity Merck (Sigma-Aldrich) 

CsCl ≥99.0 % purity Merck (Sigma-Aldrich) 

 

2.1.4 Consumables 

The general consumables used in this work are listed in Table 2.4 (glassware excluded). 

Table 2.4: List of laboratory consumables used. 

Material Details Supplier 

PTFE tape 25 mm wide RS 

Scotch tape 19 mm wide RS 

Electrical tape 19 mm wide, 30 µm thick, blue RS 

Carbon tape 10 mm wide RS 

Silicon Rubber Non-corrosive, white RS 

Acetone ≥99 % purity Merck (Sigma-Aldrich) 

Ethanol ≥99 % purity Merck (Sigma-Aldrich) 

 

2.2 Surface and Compositional Characterisation 

2.2.1 Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray 

Spectroscopy (EDX) 

The majority of SEM images were captured using a Hitachi TM 3000 electron 

microscopy using 5 kV or 15 kV accelerating voltage and a working distance of 10 mm. 

All EDX maps were generated using Quantax 70 software, in combination with the 

Hitachi TM 3000 electron microscope, with scan times of 5 min minimum. 
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2.2.2 Transmission Electron Microscopy (TEM) 

Gallium focused ion beam (FIB) milling was achieved using a FEI Helios UC G4 

system combined with a JEOL 7800F field emission gun scanning electron microscope 

(FEGSEM). A gas injector system (GIS) attachment for the FEI Helios was used for 

sample control and transport. Transmission electron microscopy was conducted using 

a FEI Titan TEM on samples sectioned to 10 µm x 10 µm x 50 nm. These TEM and 

associated imaging studies were conducted at the University of Virginia by expert 

operator Helge Heinrich. 

 

2.2.3 X-Ray Powder Diffraction (XRD) 

XRD analysis was undertaken using a Bruker D8 Discover, with Davinci design, and 

Cu Kα radiation with a wavelength of 1.5418 Å. All scans used an applied voltage of 

40 kV and a current of 40 mA. The scanning range varied between 5 and 70 ° in Bragg-

Brentano geometry and a 0.3 mm slit size. Data was assessed using the diffract.eva 

program with reference data from Crystallographic Open Database. The XRD was 

operated by Dr Thomas Dunlop of Swansea University. 

 

2.3 Electrochemical Characterisation 

2.3.1 Potentiodynamic Testing and Electrochemical Impedance Spectrosxopy 

(EIS) 

Potentiodynamic polarisation, open circuit potential (OCP) and electrochemical 

impedance spectroscopy (EIS) analyses were all carried out in a three-electrode cell 

setup using a Bio-Logic SP2001 potentiostat at the University of Virginia with 

assistance from Gregory Kubacki. The coated steel samples acted as working electrodes 
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(WE) with a 1 cm2 area exposed, a platinum-niobium mesh was the counter electrode 

(CE) and a saturated calomel electrode (SCE) was used as the reference (0.241 V vs. 

SHE). 

 

2.3.2 Rotating Disk Electrode (RDE) 

The RDE method was used in this work to characterise facilitation of the oxygen 

reduction reaction (ORR) on the bare metal surface of the coatings via a series of quasi 

potentiostatic polarisation experiments. The equipment used was an RDE-2 rotating 

disk electrode system supplied by Sycopel Scientific (shown in Figure 2.1). A 

Solartron 1280 potentiostat and standard desktop PC were used for data capture and 

processing. In the RDE experiments, a Gamry mercury/mercurous sulphate reference 

electrode and a platinum gauze counter electrode were used. 

 
Figure 2.1: RDE apparatus. 
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2.4 Scanning Vibrating Electrode Technique 

2.4.1 Apparatus 

The SVET in this thesis was assembled in Swansea University laboratories and has 

been extensively used previously to study electrochemistry of bare metal coatings under 

immersion conditions [2–10]. The probe assembly unique to Swansea University is 

shown schematically in Figure 2.2. It consists of a 125 µm platinum wire sealed within 

a capillary glass sheath resulting in a total cross-sectional diameter of 250 µm. The tip 

of the glass-encased platinum wire was polished flat using 1200 grit SiC paper, 

exposing the full diameter of the platinum wire. The probe tip glass casing was 

connected to another glass capillary tube, termed the “push rod”, via a PTFE connector 

and sealed with super glue. The push rod was encased within an aluminium cylindrical 

screen, fed out the top into a µ-metal enclosure that housed the electromechanical driver 

to which the push rod is connected. The reference electrode (a 2.5 cm x 2.5 cm low-

impedance silver chloride sheet) was secured directly to the aluminium cylindrical 

screen.  

The platinum wire tip was connected to a coaxial cable into a Perkin Elmer model 7260 

lock-in amplifier which detects and digitises the signal potential. The vibration of the 

electrochemical driver is determined by a lock-in oscillator. The probe assembly 

positioning was controlled by stepper motors which drive three orthogonal linear 

bearings arrangement (Time and Precision Ltd.). 
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Figure 2.2: Schematic of the Swansea University SVET probe assembly (adapted 

from Williams and McMurray, 2008 [8]). 

 

SVET experiments were conducted on samples affixed to the interior base of 3.5 L 

crystallisation dish filled with the selected electrolyte. The samples would typically be 

cut to 10 mm by 10 mm, rinsed with ethanol and an area of 6 mm by 6 mm would be 

isolated using PTFE tape which would also fix the coupons to the bottom of the 

crystallisation dish. 

 

2.4.2 Calibration and setup 

For every SVET experiment, the SVET probe tip was first cleaned via immersion in a 

tailored PTFE well containing 2 M HCl solution for 15 minutes and subsequently rinsed 

with DI water. Following the cleaning procedure, the SVET was also calibrated using 

a previously devised two-part calibration cell, shown in Figure 2.3. 
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Figure 2.3: Schematic of the standard calibration cell used in this work [8]. 

 

The calibration cell was comprised of a nylon beaker both immersed in the electrolyte 

(within a 3.5 L crystallisation dish) and containing the electrolyte; the bodies of solution 

were separated by a vertically oriented glass tube (with an internal diameter of 0.5 cm). 

Platinum gauze electrodes were fitted on the inside and the outside of the beaker and 

were each connected to the positive and negative terminals of a nano-galvanostat to 

allow the passing of a set current into the solution and purposefully through the vertical 

glass tube.  

During calibration, the SVET probe tip was inserted approximately 5mm into the 

vertical glass tube and the SVET reference electrode was immersed in the exterior 

electrolyte. When current was passed between the two platinum gauze electrodes, the 

current flux in the glass tube was aligned vertically and thus parallel with the probe axis 

of vibration. Moreover, the current flux density across the tube was constant and equal 

to the cell current divided by the internal cross-sectional area of the glass tube.  

Crystallisation dish 
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A systematic variance in current was passed through the calibration cell in order to 

record the measured potential in a calibration plot; the calibration factor was the 

gradient of the plot of E (nV) vs. Jz (A.m-2). 

The measured potential in solution during the SVET experiment over a corroding bare 

metal surface can be converted to current density via equation 1.20. The calibration step 

allows the determination of the calibration factor, G, which is the combination of both 

app and κ: 

 

 G = κ/app (2.3) 

 

Thus, the current density for all SVET experiments was calculated by dividing the 

measured peak-to-peak voltage by the predetermined calibration factor. 

Table 2.5 provides the standard parameters used for the initial automatic height scan 

(which maps out the 3 dimensional location of the sample for the software) and the data 

scanning. The importance of maintaining a consistent probe-to-specimen distance due 

to the inverse square relationship of field strength vs. probe height was previously 

explored by Searle et al. [11]. The samples analysed in this thesis were all relatively 

flat and required no additional height scan mapping. The scan dimensions correlate to 

the exposed sample area, which was selected as the maximum size visible for a 

submerged camera in the SVET time-lapse work described in chapter 5. The scan 

resolution was a compromise between the resolution of the data and the time taken to 

fully scan a rapidly corroding sample area. 
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Table 2.5: SVET software parameters. 

Parameter Value for Height Scan Value for Data Scan 

Amplitude (V) 0.020 0.015 

Frequency (Hz) 900 140 

Sensitivity (mV) 10 0.50 

AC gain (dB) 40 40 

Time constant (ms) 50 50 

Scan dimensions (mm) - 6.0 x 6.0 

Scan resolution (mm) - 0.20 

Scan time interval (min) - 10 

Scan rest distance (mm) - 40 

Total number of scans - 144 (24 hours) 

 

2.5 Scanning Kelvin Probe 

2.5.1 Apparatus 

The SKP apparatus is shown schematically in Figure 2.4. All SKP experiments were 

conducted under 95 % relative humidity (R.H.) conditions; this was achieved with a 

sealed steel chamber humidified using two petri dishes of 0.86 M NaCl. The steel 

chamber also acted as a faraday cage to limit any outside electrical noise interference.  

The SKP probe tip was a 125 µm diameter gold wire vibrated normal to the sample 

surface to create the parallel plate setup described in section 1.7.2. The gold wire was 

attached to a glass push rod connecting it to an electromechanical driver (like the SVET 

the electromechanical driver was housed in a µ-metal box). 

Sample preparation methods are explained fully in section 2.5.3, however all samples 

intended for SKP analysis were adhered to an M8 nut which allowed the sample to be 

screw-mounted onto the SKP stage. Electrical contact was made between the back of 

the sample and the transconductance amplifier via a stainless steel spring through the 

nut.   

As with the SVET, SKP tip vibration was controlled by a lock-in oscillator and 

positioning was controlled by stepper motors which drive three orthogonal linear 
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bearings arrangement (Time and Precision Ltd.), however, unlike the SVET the SKP 

probe remained stationary and the sample stage moves. 

As stated in section 1.7.2, the vibration of the SKP results in a variance in the parallel 

plate capacitance and thus generates an alternating current. The dc-biased 

transconductance amplifier converted the current to an a.c. voltage which was detected 

by a Perkin Elmer 7620 lock-in amplifier. An integrator-based feedback system within 

the lock-in amplifier measured the corresponding d.c. output voltage and adjusted the 

bias voltage, Ekp, applied to the sample to automatically nullify the detected current. 

Ekp was recorded by the SKP software and was converted to Ecorr using the standard 

calibration procedure in section 2.5.2. 

 
Figure 2.4: Full schematic of the Swansea University SKP. 

 

2.5.2 Calibration and setup 

For every SKP experiment, the SKP gold wire probe tip was first cleaned via immersion 

in a tailored PTFE well containing 2 M HCl solution for 15 minutes, followed by 

immersion in a well containing DI water. 
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Ecorr can be calculated from the measured Ekp via the application of a constant which, 

when acquired via a calibration procedure, considers the specific environment in which 

the experiment is taking place (relative humidity, temperature etc.): 

 

 Ecorr = Ekp + constant (2.4) 

 

 Calibration of the SKP in this work was carried out using a copper well (15 mm internal 

diameter, 5 mm depth) containing 0.5 M CuSO4 solution. The SKP tip was vibrated 

approximately 100 µm above the surface of the copper sulphate and the Ekp value was 

recorded. The Cu/Cu2+ redox couple has a known Ecorr value of 298 mV vs. SHE 

(previously established by inserting a saturated calomel reference electrode into the 

electrolyte filled well and measuring OCP using a potentiostat [12]), therefore if the Ekp 

of the copper well is measured to be 300 mV, equation 2.4, gives a constant of 598 mV. 

However, during delamination experiments, a previously calculated offset [12] of -220 

mV must also be applied to the constant to reflect the presence of PVB, thus the final 

calibration constant in this instance would be 378 mV. Prior to every SKP experiment 

the Ekp of the Cu/Cu2+ calibration well was measured to eliminate any differences in 

environment or surface oxides. The SKP constant was then applied to the corresponding 

recorded Ekp values from the experiment. 

Standard SKP delamination studies monitor the propagation of a steep difference in 

Ecorr, which represents the movement of the delamination front. Table 2.6 lists the 

standard parameters used (adaptations to procedure are noted in the relevant chapter). 

The probe tip was scanned along four 12 mm parallel lines at 100 µm above the surface 

of the sample. 
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Table 2.6: SKP software parameters. 

Parameter Value for Data Scan 

Amplitude (V) 0.04 

Frequency (Hz) 280 

Sensitivity (mV) 10 

AC gain (dB) 0 

Time constant (ms) 50 

Scan dimensions (mm) 12.0 x 1.0 

Scan resolution (mm) 0.05 

Scan time interval (min) 60 

Total number of scans 24 (24 hours) 

 

Data from SKP experiments was plotted using Microsoft Excel as Ecorr vs. distance for 

all four scan lines. 

 

2.5.3 Sample preparation 

There were two general methods of sample preparation used in this work depending on 

the delamination mechanism being measured. Figure 2.5 depicts the process of making 

a “Stratmann cell” (as explored in section 1.6.2); the sample configuration designed to 

monitor cathodic delamination.  

As-received samples were cut to 50 mm x 50 mm square coupons, cleaned with ethanol 

and dried using nitrogen gas. Two strips of electrical tapes were applied parallel to the 

PVD/HDG coating direction and masked 10 mm x 50 mm of the coupon on either side. 

Scotch tape was applied normal to the electrical tape, masking 12 mm x 50 mm of one 

end of the coupon and overlapping the electrical tape. PVB coating solution was 

dropped onto the masking tape and bar coated over the bare surface of the sample using 

a glass stirring rod and the electrical tape as height guides. The wet coating was then 

left to dry in air at room temperature (18 °C) for 20 minutes, creating a dry coating 

thickness of ~20 µm. A scalpel was used to cut the masking tape along the interface 

between the masking tape and electrical tape only.   
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Figure 2.5: Method for preparing a "Stratmann cell" sample for cathodic 

delamination study. 

 

This allowed the sectioned masking tape to be peeled away from the bare metal surface 

and trimmed down to form a 3-4 mm lip height and the manmade organic coating 

defect. The back of a scalpel blade was used to fully separate the masking tape from 

the metal surface at the defect to ensure exposure of the PVB-metal interface. Silicon 

rubber was deposited along the electrical tape adjacent to the exposed sample surface 

and along the coupon edge to form the electrolyte well and support the lip. The 

Stratmann cell would then be left to dry in air at room temperature overnight.  

For anodic undermining studies, sample preparation was similar to that of a Stratmann 

cell with the exclusion of the well formation. Therefore no masking tape was applied. 

After the PVB was bar coated and dried, a scalpel was used to make a 10 mm scribe in 

As-received substrate, 

rinsed with ethanol 

Electrical tape applied 

as coating height guide 

Scotch tape applied for 

well defect 

PVB solution deposited 

on top of the scotch tape 

Glass rod used to bar coat 

PVB along the sample 

Scotch tape cut to form 

defect and expose substrate 

White silicon rubber 

applied as well wall  

h) 

Electrolyte added to 

well  

a) b) c) 

d) e) f) 

g) 
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the centre of the coupon, parallel to the electrical tape, exposing both the zinc alloy 

coating and the steel substrate.  

For both sample cell configurations, an M8 nut would be adhered to the back of the 

sample using a 2-part epoxy system (Loctite Double Bubble). The samples would then 

be mounted and sealed inside the SKP to equalise within the chamber and reduce the 

charging of the surface built up during manufacture of the cell. After the calibration 

procedure outlined in section 2.5.2, the sample cells would be returned to the chamber 

and balanced using the micro tilt control and systematic measurements of the SKP 

height signal along the scan area. Immediately before the start of the experiment, the 

required electrolyte would be added via a Pasteur pipette to the well of the Stratmann 

cell, or via micro syringe to the centre of the scribe on an anodic cell. 

 

2.5.4 Time-lapse delamination 

 

 

 

 

Figure 2.6: Setup for time-lapse photography of cathodic delamination. 

 

Y002 camera 

Enclosed petri dish 
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To capture time-lapse photographs of cathodic disbondment or anodic undermining, the 

prepared sample was placed inside a sealed petri dish containing 0.86 M NaCl solution 

to create the 95% R.H. atmosphere. There was no contact between the sample coupon 

and the NaCl bath. A Y002 microscope endoscope camera was positioned directly 

above the petri dish for image capture (Figure 2.6). Automatic photograph capture was 

managed by Sky Studio at intervals of 1 min. 
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Chapter 3. Compositional analysis and characterisation of PVD Zn-Mg coatings 

on strip steel 

3.1 Introduction 

The coating of strip steel with zinc for sacrificial protection is well established in 

industry. Zinc is a less noble metal and will therefore act sacrificially if both zinc and 

steel are exposed to an environment where corrosion will take place [1], the formation 

of compact zinc corrosion products further improves the protection of steel. Research 

into zinc alloy coatings was prompted by the susceptibility of zinc to corrode more 

rapidly in aggressive environments. One of the more recent iterations of hot dip zinc 

alloy coatings is Zn-Mg-Al (ZMA), with commercial coatings such as Magizinc® (Zn-

1.6 wt% Mg-1.6 wt% Al) from Tata Steel, Magnelis® (Zn-3 wt% Mg-3.5 wt% Al) from 

ArcelorMittal and SuperDyma® (Zn-3 wt% Mg-11 wt% Al) from Nippon Steel & 

Sumitomo Metal. These, and other compositions of ZMA coatings, have been 

extensively studied and established to provide superior corrosion protection compared 

to traditional pure zinc coatings [2–11]; improved corrosion resistance allows for much 

thinner coatings which are highly desirable in the automotive industry.  

The limited solubility of magnesium in the zinc bath and rapid dross formation restricts 

the maximum magnesium content for galvanized ZMA coatings. Therefore, other 

technologies such as PVD have been suggested as alternative coating methods for the 

automotive industry [12]. The thermal evaporation PVD method first established in 

2003 by Corus Technology B.V. (now Tata Steel Europe) utilised a unique vapour 

generation and transport system: the source metal was heated and levitated within an 

induction coil then guided through a vapour distribution box to the steel substrate while 

under continuous vacuum [13]. This process permitted the co-deposition of Zn-Mg onto 



76 

 

 

strip steel, with composition being controlled accurately by source metal feed rate and 

temperature. The technology has evolved significantly over the last decade; multiple 

papers have been published on the adhesion properties of these PVD coatings [14–18], 

and a full air-to-air scale-up of the method was accomplished by POSCO in 

collaboration with Tata Steel Europe in 2011 [19]. Previous publications highlight the 

potential for improved corrosion resistance, however there is limited characterisation 

of the precise structure and composition of the studied coatings. 

For zinc alloy coatings, it has been previously established that the microstructure plays 

a significant role in corrosion rate and mechanism [8,20–22], the same is true for 

aluminium and magnesium alloys [23–25]. Wint et al. recently reported the effect of 

microstructural refinement on localised corrosion and overall kinetics; much coarser 

structures limited the lateral anodic spreading, whereas grain refinement resulted in the 

opposite. It was proposed that increasing the size of cathodes, local to anodic sites, 

creates a much larger diffusion distance for the aggressive species within the 

electrolyte, thus reducing lateral spreading and consequently increasing the rate of 

coating depth penetration. Grain refinement reduces the diffusion distance and 

therefore shifts the affinity for coating penetration to lateral spread across the surface, 

reducing the time for substrate exposure [26]. 

This chapter aims to fully characterise the PVD Zn-Mg coatings and subsequently 

compare their microstructures to the commercially available HDG and ZMA hot dip 

galvanising coatings. Knowledge of the composition and heterogeneity of phase 

distribution will be necessary to assist in the explanation of corrosion behaviour in the 

following chapters. Due to the nature of the PVD method, the structure of the coatings 

required the use of the TEM in order to resolve the nanoscale features. In addition, the 

use of XRD was necessary to accurately confirm the phases present. 
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3.2 Experimental details 

3.2.1 Materials 

In this chapter the PVD coated steel samples listed in Table 2.1 are studied and 

compared to the commercially available HDG and ZMA coating strip steel. 

 

3.2.2 Methods 

The surface of all coatings was viewed, as received, by a JEOL 7800F field emission 

gun scanning electron microscope (FEGSEM). Cross-sectional samples for 

transmission electron microscopy of the PVD4, PVD10 and PVD20 coated steel strip 

samples were prepared in a FEI Helios UC G4 system with a gallium focused ion beam 

(FIB) to obtain slices of 50-100 nm thickness. The ZMA and PVD4 microstructures 

were imaged by the FEGSEM. The phases present in PVD4 were identified using a FEI 

Titan transmission electron microscope (TEM) at the University of Virginia; the FIB 

cross sections were studied in the TEM using imaging, energy-dispersive X-ray 

spectroscopy, and selected area electron diffraction (SAED). The PVD10 and PVD20 

nanostructures were also imaged using the FEI Titan TEM after FIB milling. 

Phase compositional data was also acquired using XRD using the method and 

parameters outlined in section 2.2.3. All magnesium-containing PVD coatings were 

further studied using EDX; cross-sections were mounted in epoxy resin and element 

wt.% was acquired in five separate locations along the Zn-Mg top coat cross-section. 

Surface roughness was measured using White Light Interferometry.  
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3.3 Results and discussion 

3.3.1 HDG and ZMA 

Commercial HDG and ZMA coating samples were characterised to establish the 

baseline industry standard for zinc-alloy coated strip steel as a reference for subsequent 

electrochemical analysis. In Figure 3.1a, the imaged surface shows a heterogeneous 

surface morphology. The cross-sectional microstructure shown in Figure 3.1b exhibits 

the eta phase zinc grains, ranging from 5-8 µm in diameter, separated from the steel 

substrate by a 0.1 µm thick aluminium intermetallic layer. The images adhere to 

previous evidence of HDG structure [27], and also support the commercially quoted 

thickness of 20 µm. 

 
Figure 3.1: (a) The surface of the HDG coating observed using the FEGSEM, (b) the 

microstructure of HDG sectioned using a focused gallium ion beam and imaged by 

the FEGSEM.  

 

In Figure 3.2a, the surface of the ZMA coating appears more homogeneous compared 

to HDG, with evidence of the rolling direction and possible scratches caused by roll 

slippage during galvanising. The microstructure presented by ZMA in Figure 3.2b is 

typical of Zn-Mg-Al coatings [11, 20,28,29], with primary zinc dendrites situated in a 

matrix of both the binary eutectic (zinc and MgZn2 lamellae) and tertiary eutectic (zinc 

and MgZn2 lamellar with aluminium-rich globules interspersed).  

(a) (b) 
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Figure 3.2: (a) The surface of the ZMA coating observed using the FEGSEM, (b) 

the microstructure of ZMA sectioned using a focused gallium ion beam and imaged 

by the FEGSEM. 

 

Additionally, the ZMA coating is significantly thinner compared to HDG as it is fully 

accepted in industry that the addition of magnesium to a zinc coating permits a 

reduction in coating thickness owning to the superior corrosion resistance [27]. 

 

3.3.2 PVD coatings 

 

Figure 3.3: (a) The surface of the PVD0 coating observed using the FEGSEM, (b) 

the microstructure of PVD0 sectioned using a focused gallium ion beam and imaged 

by the FEGSEM. 

 

The surface of PVD0 observed in Figure 3.3a appears to be comprised of hexagonal 

microplates, ranging from 1.0-3.0 µm in diameter. The loose packing of the plates to 

(a) (b) 

(a) (b) 



80 

 

 

each other has resulted in an overall porosity of the coating, which is further supported 

by the holes observed in the cross-sectional image in Figure 3.3b. The size of the plates 

being approximately equal to the thickness of the zinc layer causes significantly sized 

gaps between the plates, however it does not appear that the steel substrate is exposed.  

 
Figure 3.4: The surface of the PVD4 coating observed using the FEGSEM. 

 

The surface of PVD4 in Figure 3.4 demonstrates the influence of magnesium on the 

overall morphology of the coating. The coating has a more globular texture and the 

globules are significantly smaller (0.5-1.0 µm) than the zinc crystals observed in the 

PVD0 coating. It is proposed that, at the processing temperature, the vapour pressure 

of magnesium is greater than zinc [30], therefore the driving force for condensation is 

greater than for pure zinc. This creates more nucleation points on the steel substrate and 

consequently limits the growth of the Zn-Mg globules. Additionally, as described in 

section 1.5.3, the low mobility of zinc and magnesium exacerbate the geometric 

shadowing, causing pinholing at the interconnections between islands of deposited 

material.  
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Figure 3.5: (a) Microstructure of PVD4 sectioned using a focused gallium ion beam 

and imaged by the FEGSEM. The two phases present have been labelled after 

identification via SAED in the TEM; the TEM pattern shown in (b) corresponds to a 

[100] beam direction for zinc with measured lattice parameters of a = 2.659 Å and c 

= 4.86 Å, while (c) yields a measured lattice parameter of 8.487 Å, in [110] beam 

direction, which corresponds to Mg2Zn11. 

 

The microstructure of the PVD4 topcoat seen in Figure 3.5a is discrete and 

significantly finer than that of ZMA. The microconstituents of ZMA are in the order of 

several microns in diameter, whereas the features of PVD4 are 1 µm maximum. As 

indicated in the figure, there are two distinct phases present: zinc-rich and Mg2Zn11. 

These were identified using electron diffraction performed in the TEM; the patterns 

observed are shown in Figure 3.5b and Figure 3.5c.  

The PVD4 Zn-Mg coating exhibits two different microstructures; a fine and equal 

distribution of equiaxed grains adjacent to the previously-deposited zinc layer, and a 

Zinc 

Steel 



82 

 

 

columnar growth structure on top. It is expected that during the PVD process, zinc and 

magnesium vapours rapidly condensed on top of the zinc adhesion layer, creating more 

sites for the nucleation with little growth. This results in a small amount of porosity at 

the zinc adhesion layer interface, followed by a region of densely packed, fine grains 

and finally columnar growth toward the top of the coating. As predicted by the SZM in 

Figure 1.19 in section 1.5.3, the increase in temperature that accompanies the 

deposition process alters the growth mode of the coating. 

In Figure 3.6a the surface of PVD10 is also globular, but appears smoother than PVD4 

which suggests an increase in mobility of the surface atoms during the final surface 

deposition, compared to the situation when less magnesium is present in the vapour 

phase. The cross-sectional structure of PVD10 was not resolvable using SEM, therefore 

the TEM method was applied to identify the nanostructure exhibited by PVD10 (Figure 

3.6). The sub-micron grains of PVD10 have similar characteristics to that of PVD4. 

The grains closest to the zinc adhesion layer appear equiaxed, and the grains further 

away from the zinc layer appear to have undergone columnar growth during 

solidification. 

 
Figure 3.6: (a) The surface of the PVD10 coating observed using the FEGSEM, (b) 

the microstructure of PVD10 sectioned using a focused gallium ion beam and imaged 

by the TEM. 

 

(a) (b) 
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Figure 3.7a shows a more planar surface morphology for PVD20 compared to the 

previous PVD coatings. It is therefore suggested that the magnesium content is an 

influencing factor in determining surface morphology. The cross-section of PVD20 in 

Figure 3.7b reveals a nanostructure which is significantly finer than both PVD10 and 

PVD4. Indeed, the grains are, on average, 100 nm in diameter. 

 
Figure 3.7: (a) The surface of the PVD20 coating observed using the FEGSEM, (b) 

the microstructure of PVD20 sectioned using a focused gallium ion beam and imaged 

by the TEM. 

 

Moreover, the nanostructure of PVD20 toward the top of the Zn-Mg layer contains 

regions of concentrated zinc only 5 nm in diameter, as shown in Figure 3.8. To confirm 

the quantity of magnesium in the PVD4, PVD10 and PVD20 topcoats, cross-sections 

were mounted in epoxy resin and quantitatively studied using EDX. Area scans were 

conducted over five separate locations along the cross-sections of the Zn-Mg PVD 

topcoats, the results are shown in Table 3.1. The average magnesium content values 

found using EDX are satisfactorily similar to the supplied compositions by Tata. 

  

(a) (b) 
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Figure 3.8: (a) TEM image of the finer PVD20 structure with reference arrow for 

the (b) STEM scan profile showing a spike in zinc concentration. 

 

Table 3.1: Magnesium content of PVD4, PVD10 and PVD20 identified using EDX 

cross-sectional study. 

Sample I.D. Average magnesium content (wt.%) Standard Deviation (wt.%) 

PVD4 4.4 ± 0.2 

PVD10 10.1 ± 0.4 

PVD20 19.7 ± 0.9 

 

XRD was used to accurately identify the phases present in the PVD coatings. The 

spectra for all PVD coatings studied are shown in Figure 3.9. PVD0 was confirmed to 

contain solely zinc, with a large characteristic peak at 36 °. The aforementioned zinc 

(a) 

(b) 
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and Mg2Zn11 phases identified in PVD4 via TEM diffraction, in Figure 3.5b, were 

confirmed with this data as peak matching software locates the characteristic peaks for 

the phase. Furthermore, the spectrum for PVD10 also established the presence of the 

Mg2Zn11 phase, as the peaks are in identical positions to those of PVD4. PVD20 did 

not appear to be comprised of Mg2Zn11 phase, instead the characteristic triple peak 

features for MgZn2 were detected between 19 ° and 22 ° and between 40 ° and 43 °. 

This confirms that the greater magnesium content alters the affinity for phase growth 

from the Mg2Zn11 phase to MgZn2, the phase that is notably present in ZMA [11,28]. 

 

 
Figure 3.9: XRD spectra of all PVD coatings. 

 

3.3.3 Surface roughness 

A white light interferometer was used to obtain the vales for surface area roughness, 

shown in Table 3.2. It is clear that the PVD coatings are considerably smoother than 
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commercial hot dip galvanised coatings. Moreover, the pinholing observed on PVD4 

in Figure 3.4 appears to increase the roughness of the surface notably compared to the 

other three PVD coatings. This difference in coating morphology and roughness is 

likely more related to the processing parameters than the magnesium content as there 

is no statistically significant trend between the magnesium content and the surface 

properties.  

 

Table 3.2: Mean surface roughness, Sa, of all PVD coatings and reference galvanised 

coatings with standard deviation. 

Sample I.D. Mean Surface Roughness, Sa (nm) Standard Deviation (nm) 

HDG 1336 ± 102.0 

ZMA 984.6 ± 98.80 

PVD0 296.7 ± 20.66 

PVD4 385.3 ± 10.93 

PVD10 269.6 ± 12.50 

PVD20 285.9 ± 30.29 

 

3.4 Conclusions 

This initial work served the purpose of characterising the morphology, microstructures 

and phases present in the novel PVD coatings, to compare to traditional hot dip 

galvanised zinc and Zn-Mg-Al coatings. It was evident that the deposition process had 

a significant effect on the coating growth and structure. The PVD0 zero coating was 

notably thinner than the HDG coating, with a compact structure comprised of hexagonal 

zinc microplates. The HDG grains, on the other hand, were in the order of 5-8 µm. The 

ZMA coating exhibited the well-established structure containing primary zinc 

dendrites, a binary eutectic lamellar structure of zinc and MgZn2 and the ternary 

eutectic structure with the zinc and MgZn2 lamellar with aluminium-rich nodules. 

Similarly to this, the PVD4 coating had a discrete structure, although much finer than 

ZMA. Additionally, the magnesium phase present in PVD4 was Mg2Zn11, as confirmed 
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by both XRD and SAED-TEM. PVD10 and PVD20 both had nanostructures of zinc 

crystallites and magnesium-containing crystallites. However, for PVD10 the 

magnesium phase was Mg2Zn11 and for PVD20 the magnesium phase was MgZn2 (as 

determined by XRD), owing to the sufficient amount of magnesium in the melt. EDX 

analysis confirmed the magnesium contents of the Zn-Mg PVD topcoats, all within a 5 

% tolerance of the expected wt%. Finally, it was evident that the PVD process produces 

much smoother coatings compared to the commercial hot dip galvanised. 
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Chapter 4. Electrochemical characterisation of PVD Zn-Mg coatings using DC 

electrochemistry and EIS 

4.1 Introduction 

Zinc and zinc alloy coatings applied to strip steel exist to prevent or hinder corrosive 

attack of the steel substrate, extending the service life of the component significantly. 

These coatings act as a barrier to corrosive media (barring contact with aggressive 

specie and eliminating the capacity for ionic transport) and offer sacrificial protection 

if the underlying steel is exposed (see section 1.3.2 on galvanic corrosion). The 

preferential attack of zinc in the presence of steel leads to the formation of protective 

corrosion products, ZnO and Zn(OH)2 [1–6], which provide more substantial barrier 

protection. In pursuit of the advancement in zinc alloy coatings, it is crucial to be able 

to establish key quantitative base-lines for corrosion resistance for comparison for 

future novel systems. One of the most basic methods for comparing the corrosion 

resistance of a material is gravimetric analysis (the measure of mass loss before and 

after exposure), however the data attained via this method is highly open to 

interpretation and requires many assumptions to be made to begin to describe corrosion 

behaviour (e.g. constant corrosion rate during exposure and equal distribution of anodic 

attack). Electrochemical techniques can provide more data to elucidate mechanistic 

information [7]. They can be split into the following categories: direct current (DC) 

methods, alternating current (AC) methods and localised corrosion mapping 

techniques, such as SVET and SKP. 

Open circuit potential (OCP) measurements are a standard starting point for 

electrochemical analysis. In the case of galvanised steel, monitoring OCP with time in 

a corrosive test solution can show you when sacrificial protection has been lost; i.e. the 
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Ecorr value for an intact galvanised layer will reflect the OCP of zinc, exposure of the 

underlying steel would tend toward the Ecorr of iron. The OCP is the equilibrium 

potential of an electrode (i.e. the equilibrium between the oxidation and reduction 

reaction), similar to the standard electrode potential (E0) and the free corrosion potential 

(Ecorr), under zero current conditions. OCP is typically measured in a two electrode 

setup; the working electrode (sample) and a reference electrode. The OCP is a 

reasonable estimate for the Ecorr of a material which relates back to the galvanic series 

in Figure 1.11 (or the electromotive series, Figure 1.4, depending on the reference 

electrode). Measuring the OCP of a material is essential prior to polarisation studies, to 

know the point of zero current to vary the applied voltage around, and it is also essential 

for electrochemical impedance spectroscopy (EIS) to monitor stability. 

Polarisation resistance studies are widely used [8–12] three electrode DC 

electrochemical methods that allow the identification of corrosion properties of 

materials, such as Ecorr and the kinetics of the anode and cathode of a corroding system. 

A potentiostat controls the applied potential and therefore the driving force of 

electrochemical activity, which in turn dictates the rate of the anodic and cathodic 

reactions. As explained in chapter 1, dissolution of metal and (typically) reduction of 

oxygen are the reactions that take place at the anode and cathode respectively, however 

it is essential to have a full understanding of the corrosion processes taking place to 

correctly interpret data. During a polarisation study, the potential (i.e. the driving force) 

is varied between two values either side of the OCP at a set rate, and the net change in 

reaction rate (i.e. the current) is measured. The reaction rate is controlled by two forms 

of kinetic phenomena: charge transfer or mass transfer. During the charge transfer 

mechanism, reaction rate increases as the inputted driving force (potential) is increased. 

When the mass transfer mechanism takes over, the reaction rate is instead controlled by 
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the diffusion of specie through the electrolyte to the surface of the electrode, such as 

oxygen. The current reaches a plateau, limited by the concentration and diffusivity of 

the reactant, thus further increases in potential do not increase the current [13]. 

Impedance is the AC theory equivalent of resistance in DC theory, thus Ohm’s law: 

 

 E = IR (4.1) 

 

where E is the potential, I is the current and R is resistance, becomes: 

 

 Ê = ÎZ (4.2) 

 

where Ê is the amplitude of the potential waveform, Î is the amplitude of the current 

waveform and Z is the impedance (Figure 4.1). Full explanations and derivations of 

EIS can be found in literature [14,15]. In brief, EIS involves the application of an AC 

potential and the measurement of the electrochemical system response (AC current 

signal), over a broad range of frequencies, ω, in order to determine to impedance of the 

system as a function of frequency. The capacitance, C, and resistance, R, of a system 

can then be established by observation of the in-phase and out-of-phase current 

responses.  
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Figure 4.1: Applied potential waveform, E, and the response current waveform of 

equal frequency, i, with a phase shift Φ. 

 

Characteristic impedance plots generated by EIS measurements can be fitted against 

equivalent circuit models to identify the components of an electrochemical system. In 

this work, the type of plot used is the Nyquist plot where the imaginary impedance (Z’’) 

is plotted against the real impedance (Z’) at each frequency (it is worth noting that Z’’ 

is conventionally plotted as –Z’’, such that capacitive impedances appear above the 

origin and negative impedances below). Examples of the relevant simple circuit 

components are shown in Figure 4.2. 
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Figure 4.2: Nyquist plot profiles for simple circuit components. 

 

The simple circuit component models can be recognised at an electrode-solution 

interface, thus impedance plots measured during EIS are subsequently fitted to similar 

simple circuit profiles. As shown in Figure 4.3, the basic equivalent circuit for a metal 

electrode in solution is comprised of the solution resistance, Rs, in series with the 

parallel combination of a polarisation resistance, Rp, and the double-layer capacitance, 

CDL, at the interface. In real world experiments, a perfect CDL does not exist, instead it 

is referred to as a constant phase element (CPE) which is an imperfect capacitor, such 

as ionic double-layers on the surface of a corroding metal. Non-uniform current 

distribution and surface morphology contribute toward the flaws of a surface capacitor, 

as such the Nyquist semi-circle is generally depressed below the Z’ axis. 
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Figure 4.3: Schematic and equivalent circuit of a metal electrode in solution (left) 

with the corresponding Nyquist model plot (right). 

 

The Rp value identified in the Nyquist plot can be used to calculate icorr, and 

subsequently mass loss, using the Stern Geary equation discussed previously in chapter 

1 (equation 1.18).  

Rotating disk electrode (RDE) is an additional electrochemical technique that induces 

laminar flow towards and cross the working electrode. It has been used previously to 

study the oxygen reduction reaction (ORR) on zinc alloy coatings [16–18]. Zinc 

coatings offer sacrificial protection of the steel substrate which leads to the formation 

of zinc hydr(oxide) formation on the surface. This hydr(oxide) corrosion product  

subsequently inhibits the reduction of oxygen and therefore the overall electrochemical 

activity on the surface. Moreover, hindering the ORR has a greater benefit for metallic-

organic coating systems, as cathodic delamination is driven by the oxygen reduction 

and subsequent alkalinisation of the delamination front [19].  

This chapter will utilise all aforementioned electrochemical analysis techniques to 

characterise the behaviour of PVD coatings in corrosive electrolyte. 
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4.2 Experimental details 

4.2.1 Materials 

In this chapter the PVD coated steel samples listed in Table 2.1 are studied and 

compared to the commercially available HDG and ZMA coating strip steel, as received, 

supplied by Tata Steel.  

 

4.2.2 Methods 

OCP monitoring, polarisation and EIS studies in this chapter were conducted at the 

University of Virginia at 20 °C. All samples were first cut to 1.2 cm by 1.2 cm and 

rinsed with ethanol before being mounted into a specialised Perspex electrochemical 

assessment chamber (EAC) shown in Figure 4.4. The EAC consisted of a cylindrical 

electrolyte chamber with an end plate and sealing plate at each end. The end plates were 

securely adhered to the cylinder, making it watertight aside from two 1cm2 holes on 

each end plate, concentric to the cross-section of the cylinder. Sealing plates were 

connected to the end plates with four bolt and wing nut fixtures. The platinum mesh 

counter electrode and the working electrode (specimen to be studied) were positioned 

between the end plates and sealing plates, at opposite ends of the cylinder. O-rings were 

used with each 1 cm2 hole to form a watertight seal between the electrodes and the 

electrolyte chamber. The EAC chamber was subsequently filled with 0.17 M NaCl 

solution. A luggin capillary saturated calomel reference electrode was inserted into the 

top spout of the EAC, such that the tip of the reference electrode was within a 10mm 

distance to the working electrode. The three electrodes were connected to a Bio-Logic 

VMP3 mutli-channel potentiostat for polarisation and an SP-150 for OCP and EIS. 
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Separate potentiodynamic measurements were performed at 0.2 mV/s scan rate in the 

cathodic going (0.1 V to -1.4 V) and anodic going (-0.1 V to 0.5 V) directions about 

the OCP (obtained via a 30 minute OCP stabilisation step). EIS measurements were 

carried out every hour over 24 hours with an AC signal amplitude of 10 mV over the 

frequency range 100 kHz to 10 mHz with zero DC bias. OCP stabilisation was 

conducted over approximately 50 minutes prior to each scheduled EIS measurement 

step. Potentiodynamic and OCP data plotting was conducted using EC-Lab software by 

Bio-Logic, then transferred to Microsoft Excel. EIS Nyquist plots were created with Z 

Plot software from Scribner Associates.  

For RDE, 18 mm diameter circular samples of each coating were punched out and 

rinsed with ethanol. All electrochemical studies using the RDE method were conducted 

at 20 °C in aerated 0.5 M NaSO4 buffered to pH 9.2 using 0.05 M Na2B4O7·10H2O and 

 

Figure 4.4: Schematic of the Perspex electrochemical analysis chamber used by the 

University of Virginia.  
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0.07 M NaOH. Specimen disks were mounted into the PTFE sample holder of an 

Oxford Instruments RDE-2 (Figure 4.5), exposing only a 16 mm area of the sample 

coating to electrolyte. A mercury/mercurous sulphate reference electrode was used in 

combination with a platinum gauze counter electrode. Quasi-steady state polarisation 

analysis was conducted using a linear potential sweep rate of 3.3 x 10-4 V.s-1 

systematically over a range of angular velocities: 55, 108, 163, 217 and 314 rad.s-1 as 

per previous work [17]. 

 

Figure 4.5: Schematic of the RDE setup: WE is the working electrode, CE is the 

counter electrode, RE1 is the first reference electrode and RE2 is the second reference 

electrode. 
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4.3 Results and discussion 

4.3.1 OCP 

 
Figure 4.6: Time-dependent variation of the open circuit potential of all coatings 

immersed in 0.17 M NaCl solution. OCP values were monitored in the periods 

between EIS measurements over 24 hours. 

 

The OCP stabilisation was recorded prior to each EIS sweep and plotted to monitor 

variance in OCP over 24 hours. Figure 4.6 shows a clear difference between the starting 

OCP for the coatings in relation to the magnesium content. The HDG and PVD0 

samples (both absent of magnesium) initially had an OCP value of -1.00 V which 

decreased and stabilised to -1.06 V over the 24 hour period. Both values are within the 

expected range of OCP for pure zinc vs SCE (Figure 1.11). ZMA was similar to the 

pure zinc coatings, however the small depression (30 mV) in the initial OCP value could 

be attributed to the 1.6 wt% magnesium content of the ZMA coating.  
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The magnesium containing PVD coatings exhibit a negative trend of the initial OCP 

and 24 hour stabilised OCP in relation to the increasing magnesium content, as shown 

in Table 4.1. Initial OCP values become progressively more negative with increasing 

magnesium content. 

 

Table 4.1: Initial OCP and 24 hour averaged stabilised OCP values for magnesium 

containing PVD coatings in 0.17M NaCl solution. 

Coating I.D. Initial OCP (V) Stabilised OCP (V) 

PVD4 -1.12 -1.08 

PVD10 -1.21 -1.09 

PVD20 -1.50 -1.11* 

*stabilised OCP for PVD20 temporarily dropped to -1.18 between 12 and 14 hours 

 

The galvanic series in Figure 1.11 identifies magnesium to have a corrosion potential 

of -1.6 V vs SCE, thus it can be presumed that the significant depression in initial OCP 

value for the PVD coatings is a result of the preferential attack of magnesium-

containing phases. This can further be supported by previous work by Kwak et al. [20] 

which demonstrated a free-potential shift, for an alloy comprised of both MgZn2 (OCP 

-1.5 V vs SCE) and Mg2Zn11 (OCP -1.1 V vs SCE) phase when immersed in aqueous 

NaCl. In the case of PVD20, it was shown in chapter 3 that corrosion initiated at the 

MgZn2 phase. Following two hours of immersion, the OCP was shifted positively 

which indicates a change in preferential attack from MgZn2 de-alloying to (possible) 

Mg2Zn11 de-alloying and finally zinc dissolution (a period of depressed OCP between 

12 and 14 hours may indicate further exposure of Mg2Zn11 and subsequent depletion). 

This suggests that the preferential de-alloying on MgZn2 is only predominant in the first 

hour immersion, following this the dissolution of zinc becomes the major anodic 

reaction. The effect was less pronounced in PVD4 and PVD10, however the initial OCP 

value indicates preferential dissolution of Mg2Zn11 phase before stabilisation.  
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4.3.2 Potentiodynamic 

 
Figure 4.7: Cathodic going polarisation of all coatings in 0.17 M NaCl solution from 

0.10 V to -1.40 V about the stabilised OCP value. Note: Current drops observed > -

1.00 V are assumed to be artefacts as zinc are Zn-Mg alloys should not show 

passivation at these potentials. 

 

Figure 4.7 and Figure 4.8 show the typical responses of all coatings to cathodic and 

anodic polarisation experiments. There is a noticeable depression in Ecorr in relation 

to the increase in magnesium content. Furthermore, the magnesium-containing 

coatings exhibit much lower Icorr values, suggesting improved corrosion resistance. 

Indeed, the ZMA coating shows a factor of 10 reduction in current density compared 

to the HDG coating. However, the decreasing trend in current density exhibited by 

the PVD coatings is more modest, indicating a greater influence of the Al in ZMA, 

on the deactivation of the surface to cathodic oxygen reduction, as opposed to Mg. 

This is supported by previous work which reports Al as a poorer electrode for oxygen 

reduction [17]. The cathodic branches in Figure 4.7 for ZMA and PVD4 

demonstrate notable current peaks which may be attributed to the reduction of surface 
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oxides grown electrochemically from zinc dissolution [17]. The absence of the peak 

from the HDG plot can be explained by the Al-containing surface oxide, 

characteristic of the GI coating (Figure 1.14). Dafydd et al. have previously 

expressed the featureless voltammograms obtained from pure aluminium [17], thus 

it may logically follow that, within the timeframe of the potentiodynamic experiment 

in this work, the dissolution of aluminium suppressed the deviation from the cathodic 

slope. It is not presently clear why the PVD0, PVD10 and PVD20 coatings lack the 

aforementioned deviation, although this may be tentatively attributed to the rapid 

formation of insoluble simonkolleite. 

 

Figure 4.8: Anodic going polarisation of all coatings in 0.17 M NaCl solution from     

-0.10 V to 0.50 V about the stabilised OCP value. Note: Current drops observed > -

1.00 V are assumed to be artefacts as zinc are Zn-Mg alloys should not show 

passivation at these potentials 

 

The cathodic branches displayed in both figures also suggest that the magnesium-

containing coatings are less efficient oxygen cathodes, notably the ZMA coating is a 

significantly less effective cathode than HDG, identified by the much shallower slope 

-1.20

-1.10

-1.00

-0.90

-0.80

-0.70

-0.60

-5 -4 -3 -2 -1 0 1

E
 v

s.
 S

C
E

 (
V

)

Log I (mA)

HDG ZMA PVD0 PVD4 PVD10 PVD20



104 

 

 

of the cathodic branch. Moreover, PVD0 shows a steep slope similar to HDG, whereas 

the Mg-containing PVD coatings demonstrate poorer facilitation of the oxygen 

reduction reaction than ZMA. Additionally, the highest magnesium-containing coating, 

PVD20, shows evidence of anodic activation, unlike the pure zinc PVD coating, PVD0.  

However, the interpretation of polarisation data is difficult for non-steady-state 

systems, and it was made clear by the results from the OCP measurements in Figure 

4.6 that the OCP fluctuates over time, considerably within the first hour.  

 

4.3.3 EIS 

 
Figure 4.9: EIS Nyquist plots for HDG measured at ●) 1 hour, ■) 6 hours, ▲) 12 

hours, ♦) 18 hours and X) 24 hours in 0.17 M NaCl solution. 

 

The EIS data for HDG in Figure 4.9 indicated two time constants; one depressed semi-

circle and the appearance of a low frequency (LF) arc. The first semi-circle is attributed 

to charge transfer and characteristic of ionic double-layer capacitance that occurs at the 

interface between the corroding metal and solution [12]. The incomplete LF arc could 

be evidence of a more complex diffusion process associated with oxygen reduction on 

the surface [21]. The Rp value consistently decreased over the period of 24 hours, 
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suggesting a progressive decrease in the barrier properties of the corrosion product 

films with time as resistance to corrosive attack appears to decrease. This may be related 

to a localised alkalinisation of the coating surface as a result of oxygen reduction; zinc 

is an amphoteric metal, passivating with the formation of Zn(OH)2 between pH 8.5 and 

pH 11 (Figure 1.5) at high pH, soluble ZnO2 is formed. Previous work by Sziraki et al, 

using Na2SO4 as the electrolyte, states that localised oxide and hydroxide precipitation 

causes rapid and uneven distribution of white rust, increasing the activity of the surface 

perpetually [22].  

 
Figure 4.10: EIS Nyquist plots for ZMA measured at ●) 1 hour, ■) 6 hours, ▲) 12 

hours, ♦) 18 hours and X) 24 hours in 0.17 M NaCl solution. 

 

EIS analysis of the ZMA coating (Figure 4.10) showed the characteristic model for 

the ionic double layer of a corroding metal and solution interface. In contrast to the 

HDG coating, the Rp values over the 24 hour period for ZMA increased significantly, 

indicating the formation of stable and protective corrosion products. Moreover, the 

polarisation resistance of ZMA after 6 hours immersion time was over double that 

for HDG, which is in agreement with previous observations of ZMA’s improved 

corrosion resistance, compared to HDG, in chloride-containing media [3,23–31].  
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Figure 4.11: EIS Nyquist plots for PVD0 measured at i) 1 hour, ii) 6 hours, iii) 12 

hours, iv) 18 hours and v) 20 hours in 0.17 M NaCl solution. 

 

The EIS data presented for PVD0 in Figure 4.11 showed greater polarisation resistance 

compared to HDG and a consistent increase in resistance over the 24 hour immersion. 

As with the ZMA coating, the increase in polarisation resistance suggests the formation 

of a stable corrosion product, which is unexpectedly opposite to the behaviour observed 

for HDG. One explanation could be the homogeneity of the PVD layer may play an 

important role in the nature of metal dissolution and subsequent oxide/hydroxide 

deposition. A commercial HDG coating is susceptible to morphological and 

compositional inconsistencies, such as alloyed aluminium and iron impurities, owing 

to the nature of the hot dip process [32], therefore it is possible that localised attack 

may have limited the overall polarisation resistance of the HDG coating. PVD0 also 

depicts an inductive loop or “low frequency hook” [33] which has not been previously 

observed for zinc or zinc coatings [34,35]. An inductive loop has, however, been 

observed consistently for high purity magnesium in chloride solution at OCP and 

anodic potentials in work conducted by King et al. [36]. In their work, the inductive 

loop was attributed to the accelerating anodic dissolution of magnesium, which 

cathodically activates the surface and subsequently results in a rise in anodic current. It 
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is tentatively proposed that the observance of an inductive loop for the zinc PVD 

coating in this work, PVD0, the pores on the surface created by the rapid condensing 

of zinc vapour may act as sites for anodic initiation, driving the formation of many local 

anodes and thus increasing the overall anodic current. 

 

 
Figure 4.12: EIS Nyquist plots for PVD4 measured at ●) 1 hour, ■) 6 hours, ▲) 12 

hours, ♦) 18 hours and X) 24 hours in 0.17 M NaCl solution. 

 

In Figure 4.12, it is clear that after 1 hour the polarisation resistance of PVD4 increases, 

however there is a significant drop within the first 6 hours which is then comparable to 

that seen for HDG. This suggests an instability in the passive film which is a 

characteristic of pure zinc coatings. The relatively high polarisation resistance followed 

by a stabilisation of low resistance may be explained by the depletion of magnesium 

from the coating during the initial few hours of immersion; thus the stabilised behaviour 

reflects that of a pure zinc coating rather than an alloy. 
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Figure 4.13: EIS Nyquist plots for PVD10 measured at ●) 1 hour, ■) 6 hours, ▲) 12 

hours, ♦) 18 hours and X) 24 hours in 0.17 M NaCl solution. 

 

At 1 hour, PVD10 (Figure 4.13) showed two time constants: the characteristic double-

layer capacitance response in the high frequency domain, and a complex diffusion-

based response in the low frequency domain. Beyond 6 hours, there was only one time 

constant visible, thus the corrosion process became dominated by the double-layer 

mechanism. Moreover, the polarisation resistance increased two-fold after 6 hours and 

was comparable with PVD0 and ZMA. 

 
Figure 4.14: EIS Nyquist plots for PVD20 measured at ●) 1 hour, ■) 6 hours, ▲) 12 

hours, ♦) 18 hours and X) 24 hours in 0.17 M NaCl solution. 
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The EIS response for PVD20, shown in Figure 4.14: EIS Nyquist plots for PVD20 

measured at ●) 1 hour, ■) 6 hours, ▲) 12 hours, ♦) 18 hours and X) 24 hours in 0.17 M 

NaCl solution., suggested a significant drop polarisation resistance over the 24 hour test 

period, similar to PVD4. Furthermore, unlike PVD4 and PVD10 the system maintained 

a presence of two time constants over the 24 hour period, indicating a continuous 

influence of a finite layer diffusivity effect.  

 

Figure 4.15: Inverse of Rp values (relative corrosion rate) for all coatings immersed 

in 0.17 M NaCl plotted over time. 

The Rp values for all coatings were extracted and plotted as the reciprocal of Rp (which 

is proportionate to the corrosion rate) in Figure 4.15 to show the trend in corrosion rate 

over time. The behaviour of the PVD4 coating seems anomalous across multiple repeats 

of the EIS analysis; the data indicates a susceptibility of the zinc alloy coating to the 

extent that it performs worse than a “pure” zinc coating (HDG). Moreover, PVD0 

appears to show a similar corrosion resistance to that of ZMA and PVD10. 
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Figure 4.16: Anodic going polarisation curves obtained in aerated 0.5 M Na2SO4 buffered to pH 9.2, potential sweep rate 3.3 × 10−4 V.s−1 at angular 

velocities i) 55, ii) 108, iii) 163, iv.) 217, v.) 271 and vi) 314 rad.s−1 for a) PVD0, b) PVD4, c) PVD10 and d) PVD20. 
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4.3.4 RDE 

Figure 4.16 shows that for all coatings there was rotating speed dependence, which is 

indicative of a diffusion controlled process, which are therefore predictable using the 

Levich equation [37]: 

 

 iL = -0.62nFcD2/3v-1/6ω1/2 (4.3) 

 

where iL is the limiting current density (A.cm-2), n is the number of electrons transferred 

per molecule of oxygen reduced, F is the Faraday constant (96485 C.mol-1), c is the 

bulk concentration of dissolved oxygen (mol.cm-3), D is the oxygen diffusion 

coefficient (cm2.s-1), v is the kinematic viscosity (cm2.s-1) and ω is the angular velocity 

(rad.s-1). Values for c, D and v at 20°C were obtained from previous work [38] and are 

2×10−7 mol.cm−3, 1.74 × 10−5 cm2.s−1 and 10−2 cm2.s−1 respectively. The I vs ω1/2 plots 

shown in Figure 4.17 are derived from the data in Figure 4.16, also displayed are the 

theoretical Levich plots for the 4e- (equation 1.8) and 2e- (equation 4.4) oxygen 

reduction reactions, with theoretical slopes of 69.3x10-6 A.cm-2.s-1/2 and 34.7x10-6 

A.cm-2.s-1/2 respectively. Typically, the 4e- ORR is observed on bare metal surfaces, 

whereas the 2e- ORR is observed on oxide covered surfaces [17]. 

 

 O2 + H2O + 2e- → HO2
- + OH- (4.4) 

 

The offset of the plotted sample data from theoretical values for the ORR is a result of 

the currents used not being wholly diffusion limited [39]. In previous work, the Levich 

slopes obtained for pure zinc, Zn-0.1Al and Zn-4.3Al correlated well with the 
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theoretical slope for 4e- [17]. However, all plateaus observed in Figure 4.16 are still 

consistent with diffusion controlled 4e- oxygen reduction to OH- via equation 1.8, 

which indicates that the presence of magnesium has relatively little influence on the 

cathodic oxygen reduction kinetic behaviour. This is inconsistent with previous work 

that ascribed the increased resistance of MgZn2 to cathodic disbondment to the poor 

electrocatalytic properties of a magnesium-rich oxide layer [40,41]. 

 
Figure 4.17: Levich slope obtained from anodic going potentiodynamic experiments 

for ● PVD0, ■ PVD4, ▲ PVD10 and ♦ PVD20 alongside theoretical values for 4e− 

oxygen reduction in aerated 0.5 M Na2SO4 buffered to pH 9.3. 

 

4.4 Conclusions 

The aim of this chapter was to provide the electrochemical characteristics of the novel 

PVD zinc magnesium coatings. The deposition and subsequent micro/nanostructures 

identified in Chapter 3 have undoubtedly influenced the unique behaviours highlighted 

in this work: 
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• The addition of magnesium to zinc coatings significantly depresses the initial 

immersion OCP, both for traditional galvanised layers and PVD deposited 

coatings. However, the stabilised OCP value for ZMA was equivalent to the 

pure zinc coatings, HDG and PVD0, whereas the magnesium containing PVD 

coatings exhibited correlative decreases in stabilised OCP. 

• Potentiodynamic scans show a depression in Ecorr and Icorr in relation to 

increasing Mg content, which indicates reduced corrosion rate overall in the 

systems. 

• The EIS response for PVD0 in comparison to HDG suggests an improvement 

in corrosion resistance in relation to the improved surface uniformity. PVD0, as 

with ZMA, showed increased polarisation resistance over time, which is 

attributed to the precipitation of stable corrosion products.  

• A key takeaway from the RDE study is the lack of ORR facilitation on PVD4, 

which would suggest improved cathodic delamination resistance in a complete 

coating system. 
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Chapter 5. A study into the influence of Mg content on the localised corrosion 

behaviour of PVD Zn-Mg coatings using SVET-TLI 

5.1 Introduction 

Scale-up research produced by POSCO discovered that Zn-Mg coatings containing 9.2 

wt% magnesium provided superior corrosion resistance compared to electrogalvanised 

or hot dig galvanised (HDG) reference samples when subjected to standard salt spray 

testing [1]. Aside from this instance, there has been no other research conducted into 

the bare metal corrosion of Zn-Mg PVD coatings. Therefore, the primary intention of 

this chapter is to characterise the localised bare metal corrosion of Zn-Mg PVD coatings 

by using the novel combination of a scanning vibrating electrode technique and in-situ 

time-lapse imaging (henceforth referred to as SVET-TLI). The scanning vibrating 

electrode technique (SVET) is an advanced method for spatially and temporally 

monitoring electrochemical behaviour and has been used extensively for the in-situ 

study of localised corrosion behaviour of metal surfaces under immersion conditions 

[2–10]. It detects potential gradients in solution above an actively corroding surface 

which are a result of ionic flow between anodic and cathodic sites. By converting the 

potential to current density values, via a calibration procedure [8], 2D and 3D maps can 

be generated to display the local electrochemical activity qualitatively. Furthermore, 

SVET-derived data can be utilised quantitatively to study the kinetics of anodic and 

cathodic propagation. An in-depth review of the SVET and its applications in 

electrochemistry has recently been published [11]. 

The resolution of the SVET is limited by the probe diameter and scan height, with a 

practical width at half maximum (whm) previously stated as 0.26 mm [5] for a scan 

height of 100 μm; simply put, if two or more electrochemical events are positioned 
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within 0.26 mm of each other they will not be detected as individual instances but as a 

net effect. In terms of corrosion mechanisms, this limitation prevents the detection of 

general corrosion [12] or any corrosion cells with current pathways less than the whm. 

This poses an issue for alloys and alloy coatings that possess fine microstructural 

features which influence corrosion behaviour. This is particularly problematic in the 

study of ZMA coatings, when attempting to electrochemically determine the 

mechanisms responsible for the superior corrosion resistance, due to their 

heterogeneous microstructure. Hausbrand et al. overcame this issue by studying the 

MgZn2 intermetallic, a common constituent in most ZMA coatings, in a pure cast form. 

Their initial work showed the superior delamination resistance of MgZn2 compared to 

zinc as a result of a difference in defect and intact potentials stemming from the 

preferential formation of surface oxides [13]. The predominant formation of 

magnesium hydroxide (MgOH)2 inhibited oxygen reduction and depressed the intact 

potential to a point where cathodic delamination was completely suppressed on the 

MgZn2. However, with a potential gradient still present, MgZn2 was instead found to 

be susceptible to anodic-type delamination. Moreover, MgZn2 was found to corrode 

faster than zinc and at a lower potential, suggesting a possible sacrificial mechanism 

exhibited by MgZn2 to protect zinc at the onset of corrosion. Therefore, it was stipulated 

that an optimum composition of zinc and MgZn2, within a ZMA coating, could be 

achieved to eliminate the potential gradient and prevent both cathodic and anodic 

delamination behaviour [14,15]. Sullivan et al. were able to definitively prove the 

previously theorised preferential de-alloying of the MgZn2 phase, within the binary and 

ternary eutectic structures in ZMA coatings, by devising an in-situ time-lapse 

microscopy method for monitoring microstructural attack [16].  
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It is therefore proposed that photographic images captured sequentially during an 

SVET-TLI study can be used as complementary data to confirm unresolved 

electrochemical events. In the Powell et al. SRET study, on the influence of corrosion 

inhibitors on galvanised sheet steel surface corrosion, photographic evidence is 

captured only at the end of the study and used to aid in the explanation of corrosion 

mechanisms [17]. Similarly, Glover and Williams, in a study of the inhibition of 

corrosion on hot dip galvanised coatings using phenylphosphonic acid, use photographs 

captured at the end of each SVET study to aid in the identification of corrosion products 

and mechanisms [18]. In both cases, there are assumptions made to correlate the 

photographic and electrochemical data and further relate the results to theoretical 

predictions. It can be said that these visual data do not provide strong evidence for or 

against the theoretical model; rather the known theory is applied as a “best fit” for the 

visual corrosion products and possible attack mechanisms. Furthermore, the majority 

of localised electrochemical studies on galvanised steel cut edge corrosion completely 

lack the inclusion of correlative visual data [19–22]. 

The technique presented in this work is a necessary evolution for the SVET. As such, 

this chapter first establishes the improved capability of SVET-TLI by investigating the 

corrosion behaviour of a hot dip galvanised coating, which has been extensively studied 

previously. This is then compared to a pure zinc PVD coating to determine the influence 

of the coating method and purity on localised corrosion mechanisms. A hot dip ZMA 

coating is analysed as a comparison for the Zn-Mg PVD coatings. The PVD coatings 

are systematically characterised to determine the influence of magnesium content on 

the microstructure and associated localised corrosion behaviour. 
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5.2 Experimental 

5.2.1 Materials 

This chapter studies the surface corrosion behaviour of HDG, ZMA, PVD0, PVD4, 

PVD10 and PVD20, all of which are fully described in Table 2.1. 

 

5.2.2 Methods 

For SVET-TLI study, the coating surfaces were rinsed with ethanol and sectioned into 

10 mm by 10 mm square coupons, upon which a 6 mm by 6 mm scan area was isolated 

using PTFE tape. Following SVET-TLI immersion studies, X-Ray powder diffraction 

(XRD) was undertaken via the procedure outlined in 2.2.3. 

SVET calibration was carried out under standard procedure described in 2.4.2. Each 

sample was immersed in 0.17 M NaCl for the duration of each experiment; the surface 

of the electrolyte was approximately 2 cm above the surface of the sample and in 

contact with room air in a controlled 19 °C environment. The scan area was defined as 

6 mm by 6 mm in the SVET software with 31 data point locations in both the x and y 

directions, giving a total of 961 data points separated by equal spaces of 0.2 mm. The 

SVET probe was positioned 100 µm above the sample surface and began scanning 

immediately after sample immersion. A scan took place every 10 minutes thereafter 

giving a total of 144 scans over 24 hours, with an average scan duration of 4 minutes 

and 20 seconds. The SVET-derived current density data were plotted as 2D false-colour 

surface plots using Golden Software’s Surfer 8; the anodic current is presented as red, 

cathodic current blue and points where current density is zero are white. 

The adaption of a scanning vibrating electrode technique, to include simultaneous 

visual data capture, was achieved by affixing a Supereyes Y002 waterproof microscope 
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endoscope camera to the probe assembly. This camera is lightweight and waterproof, 

allowing prolonged immersion in salt solution without interfering with the functionality 

of the SVET probe assembly or motor control. The camera was attached using a custom, 

3D-printed articulated arm and friction clamp which held the camera parallel to the 

vibrating tip of the SVET (Figure 5.1). A rest setting was added to the SVET scan 

setup, instructing the SVET probe assembly to move 40 mm in the x direction to align 

the camera at the end of each scan. The SVET would remain in the rest position until 

the start of the next scan. 

 

 

Figure 5.1: Schematic diagram of the SVET probe assembly with Supereyes Y002 

waterproof microscope endoscope camera attached via 3D-printed articulated arm 

and friction clamp. 

 

Automatic photograph capturing was managed by basic time-lapse freeware, Sky 

Studio, scheduled to capture images of the scan area every minute, ensuring a 

relationship of 30 seconds between the start or end of a scan and a corresponding 
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photograph of the surface. To prevent distortion from the electrolyte-air interface, the 

camera was immersed for the entirety of the 24 hour study of each sample. 

For each coating, three SVET-TLI experiments were conducted to confirm consistency 

in the observed behaviour. Only one experiment per sample was selected for the 

presentation of the photographic images and electrochemical false colour maps as 

reliable representatives. 

 

5.3 Results and Discussion 

5.3.1 HDG and PVD0 

Figure 5.2 displays false colour surface plots showing current density distributions, 

presented adjacent to the associated close up in-situ photographic images, for HDG, 

taken at different holding times while immersed in 0.17 M NaCl solution. The 

electrochemical surface plots show the formation and stabilisation of several focal 

anodes which are, in this instance, the dissolution of zinc as shown in equation 5.1. 

 

 Zn (s) + 2e
-
 →  Zn     (aq)

2+  (5.1) 

 

Localised anodic features that remain constant on the surface of the HDG is a behaviour 

previously observed [18]; the corresponding photographic images in this work further 

reinforce this mechanism by displaying the associated surface roughening. White 

corrosion product was also shown to be deposited in the cathodic regions, separated 

from the anodes by areas of zero current density. The sample remained fully immersed 

in NaCl solution for the entire duration of the 24 hour experiment. Therefore, it can be 

assumed that the initial, stable corrosion product was zinc hydroxide (Zn(OH)2), formed 



123 

 

 

via equation 5.2, as opposed to zincite (ZnO) due to the abundance of OH- ions, 

generated by oxygen reduction (equation 5.3) at the cathodes. The Pourbaix diagram 

for zinc also demonstrates that the conditions of the experiment satisfy the stability 

domain for Zn(OH)2 [23]. 

 

 Zn     (aq)
2+  + 2OH  (aq)

-
 → Zn(OH)

2 (s)
 (5.2) 

 O2 (g) + 2H2O (l) + 4e- → 4OH  (aq)
-

 (5.3)
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Figure 5.2: SVET-derived false colour surface plots showing the distribution of normal current density (top) with associated photographic 

images (bottom) above freely corroding HDG in aerated 0.17 M NaCl at (a) 4, (b) 8, (c) 16 and (d) 24 hours immersion time (a red dashed arrow 

has been added to indicate the location of the selected SVET profile extracted for Figure 5.4a).
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After 16 hours immersion, the SVET plots show anodic activation of a previously 

cathodic region, resulting in a new net anodic area (labelled in Figure 5.2c and Figure 

5.2d as feature 1). This event was supported by the growth of dark features in the 

corresponding photographic images. Zinc hydroxide is an amphoteric material; 

therefore, it will dissolve in solutions of elevated pH to form zincate (ZnO2
2-) and 

bizincate (HZnO2
-) via the reactions in equation 5.4 and equation 5.5 respectively. 

 

 Zn(OH)
2 (s)

 + 2OH   (aq)
-

 → ZnO2    (aq)
  2-

 + 2H2O (l) (5.4) 

 

 Zn(OH)
2 (s)

 + OH   (aq)
-

 → HZnO2  (aq)
  -

 + H2O (l)  (5.5) 

 

PVD0 can theoretically be compared to HDG in terms of corrosion resistance as both 

coatings are >99 wt% zinc. However, PVD0 coatings are disregarded in terms of 

potential to substitute commercial hot dip galvanising coatings as it is well understood 

that the corrosion protection offered by pure zinc coatings is proportional to the coating 

thickness [24,25]. Still, PVD0 offers insight into the influence of coating deposition 

method as it is considered a pure homogenous layer of zinc metal. HDG, on the other 

hand, is susceptible to inclusions that can negatively affect the coating properties, 

following the pickup of tramp elements during the hot dip process [26].  
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Figure 5.3: SVET-derived false colour surface plots showing the distribution of normal current density (top) with associated photographic 

images (bottom) above freely corroding PVD0 in aerated 0.17 M NaCl at (a) 4, (b) 8, (c) 16 and (d) 24 hours immersion time (a red dashed 

arrow has been added to indicate the location of the selected SVET profile extracted for Figure 5.4b).



127 

 

 

Figure 5.3 shows the SVET-TLI results taken at different holding times for PVD0 over 

the 24 hour immersion analysis. PVD0 appeared to exhibit the features of general 

corrosion with many anodic features too small to be resolved by the SVET and are only 

recognised with the complementary visual data. The SVET-derived maps display an 

anodic front which swept over the surface of the coating and the post-corroded areas 

became new cathodic sites for oxygen reduction. The photographic images show a 

mechanism of many anodic activation events that initiated en masse over the coating 

followed by corrosion product deposition on each site. There was no clear evidence of 

re-activation of the surface.  

Wint et al. observed localised corrosion behaviour on the surface of pure zinc foil under 

similar testing conditions [27], which is highly comparable with the features seen on 

HDG, not PVD0. As there was no visual breakthrough to the steel substrate, nor the 

corresponding characteristic enhancement of cathodic activity in the post-corroded 

regions, it is proposed that the fine globular surface topography of these PVD coatings, 

previously reported [28,29], is the influencing factor as opposed to metal purity. The 

micro-crevices formed between joining globules are evenly spaced over the surface of 

the PVD coatings, serving as preferential initiation points for corrosion. Conversely, 

HDG coatings are well understood to exhibit relatively large (>1 mm) characteristic 

spangles [30]. Furthermore, the mean surface roughness value for PVD0, reported in 

Table 3.1, is 300 nm; for HDG the mean surface roughness value was 1.3µm as stated 

previously. Osório et al. [31] conducted a systematic study on the macrostructural 

morphology and grain size of HDG and zinc castings which revealed the positive 

correlation between grain size and corrosion resistance. The influence of grain 

morphology on corrosion resistance was attributed to the increased energy levels at 

grain boundaries caused by the accumulation of defects, impurities and plastic 
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deformation. Therefore, it can be said that the grain boundaries are the preferential 

initiation sites for anodic attack. 

 

 

Figure 5.4: SVET-derived current density line profiles for (a) HDG taken from y = 

0.4 mm in Figure 5.2 at (i) 4, (ii) 8, (iii) 16 and (iv) 24 hours immersion time, and 

(b) PVD0 taken from x = 5.6 mm in Figure 5.3 at (i) 4, (ii) 8, (iii) 12 and (iv) 16 

hours immersion time in 0.17 M NaCl. 

 

The contrasting nature of anodic activity for both coatings was best visualised by 

extracting line profile data from the SVET maps, at different immersion times, and 

plotting the current density against distance over the sample as shown in Figure 5.4 

(Figure 5.2 and Figure 5.3 indicate the selected line data location, for Figure 5.4a and 

Figure 5.4b respectively, with red dashed arrows). The anodic event on HDG (Figure 

5.4a) is shown to have activated within the first 4 hours of immersion, displaying two 

anodic peaks which suggests the presence of two separate anodic sites that are only 
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partially resolved by the SVET. Over the course of the experiment the spacing between 

the two peaks lessened, resulting in an overall current density peak of 3.06 A.m-2 at 12 

hours. However, it is clear that this anodic area remained in a fixed location and kept a 

constant overall width of 2.2 mm. In contrast, Figure 5.4b emphasises the progression 

of a characteristic anodic front on the surface of the PVD0 coating over the 24 hour 

study. The anodic activity of PVD0 was much broader, compared to HDG, during the 

first 8 hours (3.2 mm). As the ratio of uncorroded to corroded zinc became smaller, the 

anodic area became correspondingly narrower. 

 

5.3.2 ZMA 

The SVET-TLI maps and photographs for ZMA, immersed in 0.17 M NaCl for 24 

hours, show the formation of localised anodic events in Figure 5.5. After 8 hours 

immersion, the focal anodes began to radially expand across the surface of the coating. 

The photographic images accurately corroborate this behaviour, showing the formation 

and growth of dark circles. As stated before, the MgZn2 phase has previously been 

shown to corrode preferentially to zinc and the more electrochemically active element, 

magnesium, is de-alloyed via the reaction in equation 5.6 [13–16]. 

 

 Mg
 (s)

 + 2e
-
 → Mg

      (aq)

2+  (5.6) 
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Figure 5.5: SVET-derived false colour surface plots showing the distribution of normal current density (top) with associated photographic 

images (bottom) above freely corroding ZMA in aerated 0.17 M NaCl at (a) 4, (b) 8, (c) 16 and (d) 24 hours immersion time.
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In response to the dissolution of the coating, corrosion products were visually observed 

in the photographs to form a “halo” around the anodic sites, in the regions of zero 

current density displayed by the corresponding SVET maps. Literature suggests that, 

as in the case of Zn(OH)2 for pure zinc corrosion, magnesium hydroxide (Mg(OH)2) 

formation is more thermodynamically favourable than MgO in the presence of water, 

thus a method involving complete and continuous immersion would promote Mg(OH)2 

over MgO [32] via equation 5.7. 

 

 Mg
      (aq)

2+  + OH  (aq)
-

 → Mg(OH)
2 (aq)

 (5.7) 

 

Mg(OH)2 is electrochemically inert at high pH [23], therefore the breakthrough 

behaviour seen in the HDG coating is not observed for ZMA. 

Hosking et al. [33] state that Mg(OH)2 formation takes place at the net cathodic regions 

due to the presence of OH- ions, which is possibly recognised in Figure 5.5 by a visual 

dulling of the surface known to be occupied by cathodic activity. This proposed 

suppression of the oxygen reduction reaction (equation 5.3) and consequent moderation 

of pH plays a key role in the stabilisation of the compact corrosion product 

simonkolleite (Zn5Cl2(OH)8·H2O). The formation of simonkolleite from ZnO occurs in 

the presence of Cl- via equation 5.8, according to Falk et al. [34]. Mg(OH)2 deposits on 

cathode sites shift the equilibrium in favour of simonkolleite formation, which inhibits 

further corrosion by trapping Cl- ions and acting as a compact mass transport barrier. 

Further evidence of the improved corrosion resistance attributed to simonkolleite 

formation can be found elsewhere [35–38]. 
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 5ZnO (s) + 2Cl  (aq)
-

 + 6H2O
 (l)

 → Zn5Cl2(OH)
8
·H2O (s) +  2OH  (aq)

-
 (5.8) 

 

The white “halos” of corrosion product correlate well with the formation of 

simonkolleite as they appeared to restrict the expansion of the anodic rings on the 

surface of the ZMA; the expansion of the supplementary anodes formed after 8 hours 

appear to have been retarded in the directions of the pre-existing corrosion product. 

Furthermore, the anode labelled as feature 1 is completely de-activated after 24 hours 

immersion time. Subsequent XRD analysis conducted on the ring of corrosion products 

adjacent to the anodic event confirmed the presence of the compact simonkolleite 

corrosion product (Figure 5.6). 

 

 

Figure 5.6: XRD spectra of the corrosion products visible on the ZMA coating after 

24 hours immersion in 0.17 M NaCl. 

 

5.3.3 Zn-Mg PVD 

The Mg2Zn11 phase present in the PVD4 coating has previously been acknowledged to 

have superior corrosion resistance compared to the MgZn2 phase found in ZMA [39]. 
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Figure 5.7 shows that the addition of magnesium to zinc PVD coatings had a dramatic 

effect on nature of corrosion in the NaCl solution compared to PVD0. Indeed, visually 

the coating appeared to exhibit behaviour characteristic of pure magnesium as the 

surface is “stained” black, as has been previously reported [8, 35,40]. However, unlike 

pure magnesium, the SVET-derived maps with correlating photographs suggest the 

staining of the surface occurred in the net cathodic regions, which appears to contradict 

the theory that the blackening is a result of magnesium dissolution [41]. The limited 

resolution of the SVET is a possible explanation for this phenomenon; anodic 

magnesium dissolution may have occurred evenly over the surface of the coating, but 

the fine distribution of zinc and Mg2Zn11 limited the ionic pathways of the galvanic 

effect to a scale not resolvable by the SVET. Światowska et al. have previously 

observed the dissolution of magnesium despite the application of a relatively large 

cathodic current (-80 µA.cm-2 minimum value) in 0.01 M NaCl [42]. This was also 

shown in the recent work of Han and Ogle, where persistent and significant anodic 

dissolution of magnesium occurred while the working electrode was cathodically 

polarised [43].  
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Figure 5.7: SVET-derived false colour surface plots showing the distribution of normal current density (top) with associated photographic 

images (bottom) above freely corroding PVD4 in aerated 0.17 M NaCl at (a) 4, (b) 8, (c) 16 and (d) 24 hours immersion time (a red dashed 

arrow has been added to indicate the location of the selected SVET profile extracted for Figure 5.9a). Note: the intense cathodic features visible 

in (c) and (d) are artefacts cause by corrosion product impingement on the SVET tip and are to be disregarded.
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The fine structure present in PVD4 (chapter 3) also appears to have influenced the 

formation of the anodic sites identified in the SVET maps. When compared with ZMA, 

which showed a maximum of 10 individual anodic events, the PVD4 coating displays 

approximately 20 active sites. The scale of the microstructure found in PVD4 does not 

suggest a direct correlation between the distribution of phases and stable anodic events 

observed in Figure 5.7. In a previous study by Sullivan et al. [44], the in-situ 

microscope images of ZMA coatings freely corroding in 1 % NaCl suggest that, during 

the hours immediately following submersion, there are multiple sites of preferential 

attack on the magnesium-containing eutectic phase. These initial anodic events are 

approximately 50 µm in diameter at 4 hours in and are clustered together within a net 

anodic area of 200-300 µm. As stated before, the SVET used in this study is not capable 

of resolving features within 0.26 mm of each other. It is therefore proposed that the fine 

distribution of Mg2Zn11 phase in PVD4 influences the preferential locations for anodic 

initiation, with many small anodic events formed in the early hours of immersion. The 

stabilisation of the visible anodic events in Figure 5.7 may be attributed to individual 

stabilisation of the microscopic anodes, unresolvable by the SVET, or by their merging. 

What is evident however, is that once localised corrosion becomes established (within 

the first 4 hours), no further anodic events initiate presumably because of elevated pH 

over the net cathodic regions which inhibits further magnesium dissolution from the 

Mg2Zn11 phase. 

The expansion of the anodes on PVD4 was less apparent than that of the anodes on 

ZMA. The white corrosion product “halos” observed on ZMA were also present on 

PVD4, similarly constricting each anodic site. Contrary to ZMA, the white corrosion 

products on PVD4 were also formed directly on top of each anode; the persistence of 
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each anodic site following initiation over the 24 hour immersion period suggests that 

these deposits do not serve to impede interfacial electron transfer or ionic current to or 

from these sites. It is important to also note the regions of cathodic activity directly 

adjacent to the “halos” that appear in the early stages of immersion; it is proposed that 

these are localised deposition sites for Mg(OH)2 which formed rapidly in the 

experiment and prevented further de-alloying of magnesium by passivating the surface. 

PVD10 shows more of a resemblance to pure magnesium corrosion [8] with the 

characteristic staining and the development of a distinctive anodic ring in Figure 5.8. 

However, contrary to the behaviour of pure magnesium, the expanding ring was not 

driven by a strong cathodic interior. The corroded area left in the wake of the expanding 

anodic ring was deactivated by the development of corrosion products which can be 

seen in the images as white deposits. This contrasts with the PVD4 coating, which 

displayed many smaller anodic features that did not appear to have a passivated centre. 

It is therefore suggested that the nanostructure of PVD10 (Figure 3.6b) results in a finer 

distribution of magnesium in the coating, consequently exhibiting a more homogeneous 

response with relatively larger anodic events. As with PVD4, the cathodic region 

directly adjacent to the anodic ring shows no evidence of magnesium de-alloying, but 

a slight discolouration suggests that there was instead a rapid formation of corrosion 

product. It is interesting to note that the area of this protected zone appears to be related 

to the size of the corresponding anodic event. 
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Figure 5.8: SVET-derived false colour surface plots showing the distribution of normal current density (top) with associated photographic 

images (bottom) above freely corroding PVD10 in aerated 0.17 M NaCl at (a) 4, (b) 8, (c) 16 and (d) 24 hours immersion time (a red dashed 

arrow has been added to indicate the location of the selected SVET profile extracted for Figure 5.9b).
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Figure 5.9a provides further evidence of the limited size and growth of focal anodes 

on the surface of PVD4 by displaying the current density line profiles identified in 

Figure 5.7 for different immersion times. A small drop in current density in the centre 

of feature 2 indicates possible de-activation. This significantly differs to the nature of 

the anodic ring on PVD10, shown in Figure 5.9b via current density line profiles, 

identified by Figure 5.8, at different immersion times. Figure 5.9c demonstrates the 

larger rate and size of the expanding anodic features on PVD10 compared to PVD4. 

Between 4 and 24 hours immersion time the diameter of the anodic ring on PVD10 

grows by 1.2 mm which is significantly greater than the 0.4 mm growth shown by the 

anodic event on PVD4 during the same immersion period. This again relates to the fine 

nanostructure identified on PVD10 (Figure 3.6b), in contrast to the coarser discrete 

structure of PVD4 (Figure 3.5a), favours radial spreading of anodic events. This is 

consistent with recent work by Wint et al. [45] where lateral anodic spreading was 

shown to be disfavoured on discrete microstructures due to the hindrance of aggressive 

anodic electrolyte diffusion over the more noble zinc phase. On grain refined 

specimens, the more noble phases are finer and therefore the electrolyte could easily 

diffuse over and activate adjacent magnesium-rich phases. 
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Figure 5.9: SVET-derived current density line profiles of (a) PVD4 taken from y = 

2.0 mm in Figure 5.7 and (b) PVD10 taken from y = 4.0 mm in Figure 5.8 after (i) 

4, (ii) 8, (iii) 16 and (iv) 24 hours freely corroding in 0.17 M NaCl. Using the peak 

anodic values, the diameters of the anodic rings observed on PVD4 and PVD10 are 

plotted over time in (c). 

 

Figure 5.9 also emphasises the difference in intensity between the anodic events 

observed on PVD4 and the anodic ring on PVD10. This suggests a correlation between 

the intensity and number density of anodic events, which is assumed to be a 

consequence of the magnesium content. The greater anodic current density of the 

anodic event on PVD10 measured at 4 hours into the experiment (approximately 5 A.m-

2) serves as possible evidence for the reduced number of anodic events: the free 

corrosion potential, Ecorr, will correspondingly drop, in response to the emergence of a 
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significant anodic current, to preserve electroneutrality. This in turn makes it less likely 

for further anodic events to initiate. This behaviour has previously been reported for the 

localised corrosion of commercial purity magnesium [8]. 

Figure 5.10 shows a series of typical current density distribution maps, along with 

associated close up photographic images obtained for the highest magnesium 

composition used in this investigation (PVD20). As with the PVD4 and PVD10 

samples, significant black staining is produced in the cathodic regions of the PVD20 

surface. The photographic monitoring of the corroding surfaces reveals that the staining 

is correlated to the magnesium content, as the intensity of the staining was noticeably 

greater on PVD20 compared to PVD4 and PVD10. Additionally, PVD20 exhibits the 

characteristic anodic ring expansion shown by PVD10. However, in this case the 

expansion was significantly limited, and the anodic ring appeared to de-activate toward 

the final hours of immersion. 
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Figure 5.10: SVET-derived false colour surface plots showing the distribution of normal current density (top) with associated photographic 

images (bottom) above freely corroding PVD20 in aerated 0.17 M NaCl at (a) 4, (b) 8, (c) 16 and (d) 24 hours immersion time.
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The XRD patterns identified for regions of white corrosion product on all four PVD 

samples are compared in Figure 5.11. The aforementioned phases present in PVD4 

were confirmed as zinc and Mg2Zn11; PVD10 appeared to be comprised of these phases 

also. In contrast, PVD20 appeared to contain zinc and MgZn2. Simonkolleite was 

identified on all four samples following the 24 hour immersion studies, suggesting a 

possible link between the formation of this particular corrosion product and the mobility 

of anodic events observed on ZMA and the PVD coatings. 

 

 

Figure 5.11: XRD spectra of the corrosion products visible on the PVD coatings 

after 24 hours immersion in 0.17 M NaCl. 
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Figure 5.12: Percentage area coverage of anodic events, calculated from individual 

SVET current density maps for (i) HDG, (ii) PVD0, (iii) ZMA, (iv) PVD4, (v) 

PVD10 and (vi) PVD20 at 2 hour intervals during 24 hour immersion in 0.17 M 

NaCl solution. 

 

Figure 5.12 displays the percentage planar coverage of local anodes for all coatings 

over the period of immersion. The pure zinc coatings, HDG and PVD0, were 

susceptible to greater anodic coverage. However, as previously addressed, many anodic 

initiation events and subsequent de-activation caused lateral spreading of the anodic 

attack, increasing the overall anodic area to a point before reducing again as the 

uncorroded coating was depleted. The HDG anodic area increased to 50 % and appears 

to have maintained this area average for the remaining immersion time. The magnesium 

containing coatings showed more consistent and reduced anodic coverage during 

immersion. This suggests that the greatest local anode areas are observed in the absence 

of magnesium, therefore implying that the alloyed magnesium inhibits anodic area 

growth via the moderation of pH and subsequent stabilisation of simonkolleite over a 

greater distance across the surface. The PVD20 coating is of significance in this data as 
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it demonstrated a clear drop in anodic coverage after 15 hours immersion, which in turn 

is directly related to the de-activation observed in Figure 5.10. 

 

Figure 5.13: SVET-derived area-averaged anodic current density plotted against 

immersion time in 0.17 M NaCl for (a) (i) HDG, (ii) PVD0 and (iii) ZMA. In (b) 

ZMA is used as a reference, (i), for (ii) PVD4, (iii) PVD10 and (iv) PVD20. 

 

The area-averaged total current density plotted as a function of immersion time is 

demonstrated in Figure 5.13. HDG, PVD0 and ZMA are compared in Figure 5.13a to 

demonstrate a notable influence of magnesium and aluminium in hot dip coatings, as 

ZMA demonstrated consistently lower integrated anodic current density throughout 

immersion compared to HDG and PVD0. ZMA was used as a reference in Figure 5.13b 

for the Zn-Mg PVD coatings. PVD4 and PVD10 exhibited similar time-dependent 

anodic current profiles to ZMA, but the current density values were slightly reduced for 

PVD4. This suggests that increasing the number of anodic sites may result in a more 
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widespread coverage of corrosion product that then limits the overall anodic activity 

over the coating surface. The PVD20 current totals increased for the first 4 hours to a 

level above that of ZMA, before dropping abruptly at 16 hours immersion to values 

similar to PVD4, suggesting that the increased presence of magnesium in the PVD20 

presented more aggressive anodic attack during the staining period where magnesium 

was de-alloyed from the coating. The drop in anodic current signifies the deactivation 

of the surface attack, as evident by the maps in Figure 5.10 c and d. 

Table 5.1: Average anodic area coverage and total accumulated anodic current 

density after 24 hours immersion for all coatings. 

 

A summary of the key electrochemical characteristics discussed in this work is given 

in Table 5.1. Quantitative analysis of corrosion on all coatings during all 24 hour 

immersion tests and repeated tests suggests a correlation between magnesium content 

and anodic current density. A relatively small addition of magnesium to a zinc coating 

(<4 wt%) appears to restrict anodic attack, however, there exists a critical level of 

magnesium beyond which the magnesium content hinders corrosion resistance. This 

may be attributed to the refinement of the phase distribution or the increased reactivity 

exhibited by magnesium. 

Coating I.D. Average Anodic  

Area Coverage 

(%) 

Total Accumulated Anodic 

Current Density 

(A.m-2) 

HDG 43.9 ± 14 38.0 ± 6 

PVD0 39.0 ± 13 36.3 ± 8 

ZMA 27.4 ± 6 21.1 ± 4 

PVD4 28.1 ± 3 20.1 ± 3 

PVD10 28.5 ± 6 25.2 ± 3 

PVD20 19.8 ± 8 27.9 ± 5 
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5.4 Conclusions 

The work presented in this chapter has demonstrated the benefits of the combination 

method of SVET-TLI. Within one 24 hour immersion, the technique is able to 

simultaneously acquire spatially and temporally resolved electrochemical current 

density and rate data, with photographic evidence that can corroborate the 

electrochemical data with mechanistic information. For example, this work has 

concluded that the staining that occurs on the magnesium-containing zinc PVD coatings 

originates in net cathodic regions (Figure 5.7, Figure 5.8 and Figure 5.10), whilst 

previous work attributed the staining to the anodic dissolution of magnesium [8, 35,41]. 

The resolution limitation of the SVET is partially remedied by collecting visual 

evidence for validation. 

It has been shown that the deposition method and subsequent surface morphology of 

zinc coatings is more influential on the initiation of anodic events as the globular 

topography exhibited by PVD acts similarly to a fine grain structure. The finer the 

microstructure, the greater the number of initiation points.  

The presence of magnesium and aluminium in ZMA significantly alters the corrosion 

behaviour that is observed electrochemically and visually. These alloying elements 

reduced the total anodic current density during 24 hour immersion and it is proposed in 

this work that this is a result of simonkolleite formation which retards the progression 

of anodic attack and also de-activates sites altogether. This is further echoed in the 

results for PVD10 and PVD20; the nanostructure observed for these coatings appears 

to have no influence over the relatively large anodic events that take place. However, it 

is proposed that the fine distribution of magnesium within these coatings is the cause 
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for staining at the cathodes because there was a clear correlation between magnesium 

content and staining intensity.  

The PVD coating containing 4 wt% magnesium is of particular interest as it appears 

that the combination of magnesium content and microstructure formation resulted in 

the lowest total anodic current density. Further study must be conducted into the exact 

cause for the improved behaviour. 

  



148 

 

 

5.5 References 

1. T.-Y. Kim, M. Goodenough, Corros. Sci. Technol. 10 (2011) 194–198. 

2. H.S. Isaacs, Corros. Sci. 28 (1988) 547–558. 

3. H.S. Isaacs, A.J. Aldykiewicz, D. Thierry, T.C. Simpson, Corros. 52 (1996) 

163–168. 

4. D.A. Worsley, H.N. McMurray, A. Belghazi, Chem. Commun. 36 (1997) 2369–

2370. 

5. S. Böhm, H.N. McMurray, S.M. Powell, D.A. Worsley, Electrochim. Acta. 45 

(2000) 2165–2174. 

6. H.N. McMurray, S.M. Powell, D.A. Worsley, Br. Corros. J. 36 (2001) 42–48. 

7. R.M. Souto, Y. González-García, A.C. Bastos, A.M. Simões, Corros. Sci. 49 

(2007) 4568–4580. 

8. G. Williams, H.N. McMurray, Electrochem. Soc. 155 (2008) C340–C349. 

9. G. Williams, H.A.L. Dafydd, R. Grace, Electrochim. Acta. 109 (2013) 489–501. 

10. B. Łosiewicz, M. Popczyk, M. Szklarska, A. Smołka, P. Osak, Solid State 

Phenom. 228 (2015) 353–368. 

11. A.C. Bastos, M.C. Quevedo, O. V Karavai, M.G.S. Ferreira, J. Electrochem. 

Soc. 164 (2017) C973–C990. 

12. H.S. Isaacs, "Paper 28", in: NACE Corros., New Orleans, (1989) pp. 17–21. 

13. R. Hausbrand, M. Stratmann, M. Rohwerder, Steel Res. Int. 74 (2003) 453–458. 

14. R. Hausbrand, M. Stratmann, M. Rohwerder, J. Electrochem. Soc. 155 (2008) 

C369. 

15. R. Hausbrand, M. Stratmann, M. Rohwerder, Corros. Sci. 51 (2009) 2107–2114. 

16. J. Sullivan, S. Mehraban, J. Elvins, Corros. Sci. 53 (2011) 2208–2215. 



149 

 

 

17. S.M. Powell, H.N. McMurray, D.A. Worsley, Corrosion. 55 (1999) 1040–1051.  

18. C.F. Glover, G. Williams, J. Electrochem. Soc. 164 (2017) C407–C417. 

19. K. Ogle, V. Baudu, L. Garrigues, X. Philippe, J. Electrochem. Soc. 147 (2000) 

3654. 

20. H. Dafydd, D.A. Worsley, H.N. McMurray, Corros. Sci. 47 (2005) 3006–3018. 

21. J. Elvins, J.A. Spittle, J.H. Sullivan, D.A. Worsley, Corros. Sci. 50 (2008) 1650–

1658. 

22. J. Sullivan, C. Weirman, J. Kennedy, D. Penney, Corros. Sci. 52 (2010) 1853–

1862. 

23. M. Pourbaix, Atlas of electrochemical equilibria in aqueous solutions (English 

edition), Pergamon Press, Oxford, (1966). 

24. M.S.N. Idora, M.M. Rahman, M. Ismail, W.S.W. Nik, Appl. Mech. Mater. 554 

(2014) 213–217. 

25. A. Sen, M.S.H. Tareq, Sci. Eng. Investig. 5 (2016) 134–137. 

26. J. Gerdenitsch, R. Raucher, B. Schmitz, B. Schuhmacher, T. Koll, Influence of 

segregated tramp elements on the surface of cold-rolled steel sheet with regard 

to the metallic coating processes and application properties, Brussels, (2002). 

27. N. Wint, K. Khan, J.H. Sullivan, H.N. McMurray, J. Electrochem. Soc. 166 

(2019) C3028–C3038. 

28. E. Zoestbergen, J. van de Langkruis, T.F.J. Maalman, E. Batyrev, Surf. Coatings 

Technol. 309 (2016) 904–910. 

29. J.L. Davies, C.F. Glover, J. van de Langkruis, E. Zoestbergen, G. Williams, 

Corros. Sci. 100 (2015) 607–618. 

30. A.R. Marder, Prog. Mater. Sci. 45 (2000) 191–271. 

31. W.R. Osório, C.M. Freire, A. Garcia, Mater. Sci. Eng. A. 402 (2005) 22–32. 



150 

 

 

32. V. Fournier, P. Marcus, I. Olefjord, Surf. Interface Anal. 34 (2002) 494–497. 

33. N.C. Hosking, M.A. Ström, P.H. Shipway, C.D. Rudd, Corros. Sci. 49 (2007) 

3669–3695. 

34. T. Falk, J. ‐E. Svensson, L. ‐G. Johansson, J. Electrochem. Soc. 145 (1998) 39–

44. 

35. P. Volovitch, T.N.N. Vu, C. Allély, A. Abdel Aal, K. Ogle, Corros. Sci. 53 

(2011) 2437–2445. 

36. P. Volovitch, C. Allely, K. Ogle, Corros. Sci. 51 (2009) 1251–1262. 

37. T. Prosek, D. Persson, J. Stoulil, D. Thierry, Corros. Sci. 86 (2014) 231–238. 

38. C. Yao, H. Lv, T. Zhu, W. Zheng, X. Yuan, W. Gao, J. Alloys Compd. 670 

(2016) 239–248. 

39. J.M. Byun, J.M. Yu, D.K. Kim, T.-Y. Kim, W.-S. Jung, Y. Do Kim, J. Korean 

Inst. Met. Mater. 51 (2013) 413–419. 

40. M. Curioni, Electrochim. Acta. 120 (2014) 284–292. 

41. M.E. Straumanis, B.K. Bhatia, J. Electrochem. Soc. 110 (1963) 357–360. 

42. J. Światowska, P. Volovitch, K. Ogle, Corros. Sci. 52 (2010) 2372–2378. 

43. J. Han, K. Ogle, J. Electrochem. Soc. 164 (2017) C952–C961. 

44. J. Sullivan, N. Cooze, C. Gallagher, T. Lewis, T. Prosek, D. Thierry, Faraday 

Discuss. 180 (2015) 361–379. 

45. N. Wint, N. Cooze, J.R. Searle, J.H. Sullivan, G. Williams, H.N. McMurray, G. 

Luckeneder, C. Riener, J. Electrochem. Soc. 166 (2019) C3147–C3158. 

 



151 

 

 

Chapter 6. Organic coating delamination resistance of PVD Zn-Mg coatings as a 

function of Mg content and surface treatment 

6.1 Introduction 

PVD zinc magnesium coatings are of particular interest in the automotive industry as a 

low weight alternative to traditional galvanising [1–3]. Sacrificial zinc coatings in the 

automotive industry are a single component of a multi-layered paint system, therefore 

understanding organic coating failure from a defect in the organic layer down to the 

bare metal, and cut-edges, of galvanised steel is of much interest [4–8]. In particular, 

the influence of alloying elements in the improvement of disbondment resistance is a 

natural next step in the optimisation of these coating systems.  

There is significant evidence in literature to support the alloying of zinc with 

magnesium for improved corrosion resistance for bare metal [9–18] as previously 

explored in chapter 5. Likewise, it has been previously established that the alloying of 

magnesium in zinc coatings provides a marked improvement to the delamination 

resistance of applied organic coatings [19–23]. Hausbrand et al. proposed that the 

intermetallic MgZn2 found in Zn-Mg coatings promoted the formation of stable passive 

layers which inhibit oxygen reduction, subsequently preventing the progression of 

cathodic delamination [19]. Further study established the importance of magnitude and 

direction of a potential gradient setup between a defect and intact paint interface; the 

reversal in polarity of a potential gradient observed between an intact organic coating 

on the MgZn2 intermetallic and a defect resulted in the complete hinderance of cathodic 

delamination and susceptibility to anodic undermining [20]. It was proposed that by 

adjusting the magnesium content and distribution of formed intermetallics within a zinc 

coating, it would be possible to create a system with no cathodic driving force and 
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limited susceptibility to anodic attack. Previous work also introduced the benefits of 

magnesium for improved disbondment resistance of organic layers on PVD zinc 

coatings, suggesting that an optimum magnesium content exists at approximately 10 

wt% [7].  

Alkaline degreasing of zinc alloy coated steel is standard industry practice for surface 

treatment prior to painting [24]; it typically serves the purpose of removing traces of 

surface contamination to promote better adhesion to the primer coating. Further study 

into surface treatment of hot dip galvanised steel suggests that more aggressive alkaline 

treatment can etch the available aluminium surface oxides (for galvanised coatings with 

a significant aluminium presence), enriching the organic coating interface with zinc and 

thus improving the surface activity and uniformity prior to painting [25–27].  

This work systematically investigates the influence of magnesium content on the mode 

and rate of delamination of a model organic coating, used in multiple previous works 

successfully to provide mechanistic information of corrosion driven cathodic 

disbondment on galvanised steel [4, 6,28–32] and also for anodic undermining on Zn-

Mg-Al coatings [33], on the novel Zn-Mg PVD layers. The microstructure and present 

phases within the novel coatings were elucidated in chapter 3 and can provide potential 

cause for the delamination behaviour outlined in this work. Additionally, alkaline 

surface treatment will be explored as a method for tuning the interface between metallic 

and organic coatings.  
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6.2 Experimental details 

6.2.1 Materials 

In this chapter the PVD coated steel samples listed in Table 2.1 were studied and 

compared to the commercially available HDG and ZMA coating strip steel, as received 

and ethanol rinsed. 

 

6.2.2 Methods 

All samples were prepared via the Stratmann method described in section 2.5.3 for 

cathodic delamination inducing SKP experiments, using a model organic coating 

(15.5% w/w PVB in ethanol) prepared as described in section 2.1.2. Cathodic 

disbondment was initiated using 0.86 M NaCl. For anodic undermining tests, a 10 mm 

long artificial defect was scribed into the PVB coated samples using a scalpel such that 

the steel substrate and zinc alloy coating was exposed to 2 µL of 1 M HCl electrolyte 

(Figure 6.1).  

 

Figure 6.1: Diagram of sample design for anodic undermining SKP studies.  

 

For the alkaline surface cleaning study, the samples were dipped in a 70°C pH 13 NaOH 

solution for a set amount of time, after which they were removed and rinsed with DI 

water followed by ethanol and dried with nitrogen gas. These samples were then 

prepared as Stratmann “double-cells” (Figure 2.5); data accumulation for time-lapse 
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experiments was doubled by creating two artificial defects on the same coupon. The 

method for time-lapse capture is described in section 2.5.4. 

 

                      

 

 

            

 

 

             

 

 

Figure 6.2: Method for preparing a Stratmann double-cell sample for time-lapse 

cathodic delamination studies. 
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6.3 Results and discussion 

6.3.1 Cathodic delamination 

 

Figure 6.3: Typical Ecorr vs. distance (x) profiles for a HDG layer on strip steel 

overcoated with model PVB in 95 % R.H over 44 hours. Underfilm corrosion was 

initiated by 0.86 M NaCl (aq). 

 

The HDG SKP profiles in Figure 6.3 show that initiation occurred within the first two 

hours of the experiment. Ecorr values over the intact PVB coated surface (Eintact) 

remained constant at ca. -0.4 V vs. SHE and mostly uniform. It is noted that the values 

for Eintact in this study were different to those found in previous papers with similar 

experimental parameters; Eintact for pure Zn coatings, similar to HDG, has been 

documented as ca. -0.3 V vs. SHE [4, 6,7,34]. The difference between the values can 

be attributed to the surface preparation; in previous literature, Zn coatings are typically 

polished with alumina to remove surface dirt and oxides. In this work, the samples are 

rinsed with ethanol only prior to PVB application, therefore it is assumed the surface 

oxides remain and alter Eintact. This theory supported by the profiles in Figure 6.4 for a 

sample of HDG has been prepared using alumina polishing. It is also clear that the rate 
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of PVB disbondment is significantly increased, to ca. 2 mm every two hours, when the 

oxides are removed. A possible explanation for this is that the thicker layer of 

amphoteric oxide would require significantly more charge to be passed in the 

delamination cell in order for it to dissolve and product coating disbondment, thus if 

equal charge is passed in both experiments, the unpolished sample exhibits much slower 

delamination. The PVD samples cannot be alumina polished due to their limited coating 

thickness, thus all coatings have been studied as received with an ethanol rinse only.  

 

 

The profiles in Figure 6.3 show distinctive delamination fronts, separating the Eintact 

region and the Ecorr bare metal zone (where Ecorr reflects the potential of HDG freely 

corroding in the presence of chloride-containing solution). During underfilm corrosion 

of the cell, the anodic and cathodic processes are linked via a thin layer of electrolyte 

which ingresses beneath the disbonded PVB and allows the ionic current. The rate of 

delamination is controlled by the migration of cations (Na+) from the electrolyte well, 

 
Figure 6.4: Typical Ecorr vs. distance (x) profiles for an alumina polished HDG layer 

on strip steel overcoated with model PVB in 95 % R.H over 12 hours. Underfilm 

corrosion was initiated by 0.86 M NaCl (aq). 
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where they are readily available, to the progressing delamination front. Therefore it has 

been previously deduced that the sharp potential drop in the SKP profiles is thought to 

be a result of ion ingression, disbondment of the PVB coating and the oxygen reduction 

reaction [6].  

 

Figure 6.5: Typical Ecorr vs. distance (x) profiles for a ZMA layer on strip steel 

overcoated with model PVB in 95 % R.H over 96 hours. Underfilm corrosion was 

initiated by 0.86 M NaCl (aq). 

 

The presence of magnesium and aluminium in the ZMA coating significantly increased 

the initiation time and rate of disbondment (0.6 mm every 24 hours), as shown in Figure 

6.5. There is a well-defined front separating the Eintact region, which has a mean value 

of -0.83 V vs. SHE (0.33 V lower than the Eintact for HDG), and the bare metal zone 

which appears to have potentials approaching the open circuit potential (OCP) expected 

for ZMA coatings [18]. The similarity between Eintact and Ecorr, attributed to the alloying 

aluminium and magnesium, reduced the driving force for cathodic disbondment 

significantly, as previously seen by Hausbrand et al. when studying MgZn2 [19]. Zn-

Mg-Al coatings and Zn-MG intermetallics have previously been shown to resist 
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cathodic delamination [19,20, 22,35] and recently been explored in their susceptibility 

for filiform corrosion (FFC) [33]. The SKP profiles shown in Figure 6.5 do not 

correlate with those seen in work by Wint et al., therefore it is presumed that in this 

work, owing to the omission of surface polishing, the prevailing mechanism is cathodic 

disbondment, albeit at a much reduced rate compared to HDG. 

 

Figure 6.6: Typical Ecorr vs. distance (x) profiles for a PVD0 layer on strip steel 

overcoated with model PVB in 95 % R.H over 44 hours. Underfilm corrosion was 

initiated by 0.86 M NaCl (aq). 
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gradient between the defect and the delamination front. The profiles for PVD0 display 
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a much shallower delamination front gradient compared to HDG, which indicates 

greater ingress of cations (here Na+) prior to actual delamination for PVD0. This could 

be explained by the surface morphology of PVD, previously found to have a mean 

surface roughness (Sa) four times lower than HDG (chapter 3), providing a less 

turbulent ionic pathway. The rate of delamination is high at ca. 1 mm every four hours, 

with an initial rapid disbondment of 3 mm in the first four hours. The 44 hour profile 

was compared with a photographic image captured of the sample surface in Figure 6.7 

this establishes the correlation between visible delamination and the SKP-derived data. 

The visible delamination (identified as a darker/tarnished region on the metallic surface 

caused by the increased alkalinity of the underfilm electrolyte due to the ORR) appears 

to stop at approximately 5000 µm, however the SKP data profile shows evidence of 

further ion ingress beneath the “intact” region.  

 

Figure 6.7: Ecorr vs. distance (x) profile at 44 hours for PVD0 comparison with a 

surface photograph taken immediately after the scan. 
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The addition of 4 wt% Mg to the PVD coating resulted in a depression of the average 

Eintact value by 0.35 V to ca. -0.75 V vs. SHE, as shown in Figure 6.8. There is also no 

evidence of cathodic delamination susceptibility for PVD4, which was supported by a 

post-experiment physical examination which confirmed the PVB coating was still 

adhered to the PVD Zn-Mg layer. This is possibly due to the similarity between the 

intact potential and the OCP for Zn, which has been previously observed by Hausbrand 

et al. when studying the delamination behaviour on the MgZn2 intermetallic [19]. It is 

also possible that the segregation of the Zn and Mg2Zn11 phases observed in chapter 3 

(Figure 3.5) prevents the formation of a stable delamination front and the confinement 

of Mg to the Mg2Zn11 phase prevents the underfilm anodic activity. It is important to 

note that the results seen in this work disagree with Davies et al. study on a ~5 wt% Mg 

Zn PVD coatings [7]; although the PVD coating in that work was also produced using 

the EMELY line at Tata Steel IJmuiden, they were deposited using a wire-fed  

 

Figure 6.8: Typical Ecorr vs. distance (x) profiles for a PVD4 layer on strip steel 

overcoated with model PVB in 95 % R.H over 72 hours. Underfilm corrosion was 

initiated by 0.86 M NaCl (aq). 
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mechanism as opposed to the crucible melt method use for the samples studied in this  

thesis. 

It can be assumed that the phase distribution in the wire-fed samples was significantly 

finer, therefore a continuous cathodic front was able to stabilise and propagate through 

the intact region. Conversely, it can be postulated that the discontinuous phase 

distribution in PVD4 observed in chapter 3 may have served to disrupt the formation 

of the delamination front, similar to the mechanism described in the work by Wint et 

al. [36]. 

 

The potential vs. distance profiles for PVD10 (Figure 6.9) show an average intact 

potential value of -0.68 V vs SHE, which is 0.07 V different from the potential of the 

disbonded region. The increase in Mg content has therefore depressed the intact 

potential but not to the same extent as PVD4, despite the increased magnesium content. 

 

Figure 6.9: Typical Ecorr vs. distance (x) profiles for a PVD10 layer on strip steel 

overcoated with model PVB in 95 % R.H over 144 hours. Underfilm corrosion was 

initiated by 0.86 M NaCl (aq). 
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The rate at which the delamination front progressed is substantially lower than the 

PVD0 coating (1.2 mm every 24 hours), which is understood to be a result of the 

reduced potential difference between the intact and disbonded regions.  

Similarly to PVD4, the PVD20 profiles in Figure 6.10 show no evidence of cathodic 

disbondment and a significantly depressed intact potential (ca. -0.9 V vs. SHE). This 

was expected and supported by the previous work by Davies et al. [7]. 

 shows that the coatings which exhibited clear cathodic delamination (HDG, HDG 

polished, PVD0 and PVD10) progressed under parabolic kinetics, which suggests the 

rate controlling step is ion migration through the underfilm electrolyte as previously 

observed [37]. As the delamination front migrates further from the electrolyte well, the 

mass transport length for cations becomes longer and thus the rate of disbondment 

decreases [6]. Additionally, the figure shows a clear ranking for the coatings; the 

polished HDG coating delaminated at a significantly higher rate than the unpolished 

 

Figure 6.10: Typical Ecorr vs. distance (x) profiles for a PVD20 layer on strip steel 

overcoated with model PVB in 95 % R.H over 72 hours. Underfilm corrosion was 

initiated by 0.86 M NaCl (aq). 
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HDG, PVD10 delaminated at a much lower rate than both PVD0 and HDG. 

Interestingly, in the first 20 hours PVD0 delaminated at a rate greater than HDG, 

however beyond 20 hours the rate dropped significantly, believed to be a result of 

simonkolleite deposition (chapter 5) which is less facilitative of the ORR. The 

susceptibility of HDG and PVD0 to cathodic delamination shown in this SKP work is 

supported by the steep cathodic branches shown in the potentiodynamic data in chapter 

4 (Figure 4.8), indicating the facilitation of the ORR on the zinc surfaces. Likewise, 

the shallow cathodic branches in Figure 4.8 for ZMA, PVD4 and PVD20 correlate with 

the resistance to cathodic disbondment as they indicate poor oxygen cathodes. PVD10 

was also found to be a poor oxygen cathode, however the SKP data shows long term 

cathodic delamination. 

 

Figure 6.11: Plots of delamination distance (xdel) versus (tdel-ti)
1/2 for all samples 

overcoated with model PVB in 95% R.H.. Underfilm corrosion was initiated by 0.86 

M NaCl (aq). 
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6.3.2 Anodic delamination 

 

Figure 6.12: Typical Ecorr vs. distance (x) profiles for a PVD4 layer on strip steel 

overcoated with model PVB in 95 % R.H. over 24 hours. Underfilm corrosion was 

initiated by 1 M HCl (aq). 

 

1 µL of 1 M HCl was used to initiate an anodic response beneath the organic coating, 

which has previously been used as a technique to study filiform corrosion on 

magnesium alloys [33,38,39] and anodic undermining for organic layers on PVD 

aluminium alloy metallic coatings [40]. PVD0 did not show any evidence of anodic 

undermining during a time-lapse anodic experiment and is therefore not included in this 

section. PVD4 also did not exhibit a predisposition toward anodic undermining (Figure 

6.12), although a consistent rise in the intact potential (ca. -1.2 V to -1.0 V vs. SHE) 

along the scan profile over the 24 hours can be tentatively attributed to the formation 

of oxides over time at the PVD-PVB interface, as a result of oxygen permeation through 

the coating. This was not seen on the Stratmann cell variants, possibly due to oxygen 

more readily diffusing through the well to the defect.  
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Alternatively, the initiating media in the anodic study was HCl which, although diluted, 

can be volatile and cause atmospheric corrosion of a normally intact PVB coated 

surface when gaseous HCl permeates through the organic layer. Photographic images 

captured over 72 hours (Figure 6.13), and a subsequent physical adhesion inspection, 

confirm resistance to the anodic undermining delamination mechanism on PVD4. 

PVD20 SKP scans given in Figure 6.14 show the progression of an active anodic zone 

adjacent to the delamination front between -0.9 V and -1.0 V vs. SHE. The intact region 

    

Figure 6.13: Photographic images of the scribe defect on PVD4 at a) 0, b) 24, c) 48 

and d) 72 hours into an anodic undermining study, taken in-situ. 2 µL of 1 M HCl 

(aq) was applied to the centre of the defect. 95 % R.H. was maintained. 

  

 

Figure 6.14: Typical Ecorr vs. distance (x) profiles for a PVD20 layer on strip steel 

overcoated with model PVB in 95 % R.H. over 24 hours. Underfilm corrosion was 

initiated by 1 M HCl (aq). 
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remained more negative compared to the delaminated zone and, similar to PVD4, 

showed a gradual increase from ca. -1.3 V to -1.1 V vs. SHE. It is understood that a 

more negative intact region, compared to the delaminated zone, is caused by an 

enrichment of the PVB-PVD interface by Mg oxides [19,20,41]. The Ecorr value in the 

disbonded region is relatively similar to Eintact, therefore it is difficult to resolve the 

precise location of the delamination front. However, it can be said that the more positive 

value of Ecorr corresponds to freely corroding magnesium, thus can be attributed to the 

preferential de-alloying of magnesium from MgZn2. This is further evident in Figure 

6.15 as the characteristic black staining occurred visibly under the organic layer. 

 

6.3.3 Alkaline cleaning 

Photographic monitoring of the HDG samples in Figure 6.16 indicated a significant 

increase in delamination rate as a result of alkaline surface treatment. This suggests 

that, whilst the activation of the surface via alkaline degreasing is beneficial in terms of 

surface activity [27] for paint application, the metallic-organic interface becomes more 

facilitative of cathodic delamination. 

    

Figure 6.15: Photographic images of the scribe defect on PVD20 at a) 0, b) 24, c) 48 

and d) 72 hours into an anodic undermining study, taken in-situ. 2 µL of 1 M HCl 

(aq) was applied to the centre of the defect. 95 % R.H. was maintained. 
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Figure 6.16: Photographic images of the HDG Stratmann double-cells in-situ: a) 

control, b) 1 min pH 13 dip clean and c) 2 min pH 13 dip clean taken at i) 0, ii) 24, 

iii) 48 and iv) 72 hours for each. Underfilm corrosion was initiated by 0.86 M NaCl 

(aq). 95 % R.H. was maintained. 

 

Likewise, PVD0 appeared to become more susceptible to cathodic delamination as a 

result of the alkaline degreasing treatment (Figure 6.17) as a function of cleaning 

duration.  
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Figure 6.17: Photographic images of the PVD0 Stratmann double-cells in-situ: a) 

control, b) 1 min pH 13 dip clean and c) 2 min pH 13 dip clean taken at i) 0, ii) 24, 

iii) 48 and iv) 72 hours for each. Underfilm corrosion was initiated by 0.86 M NaCl 

(aq). 95 % R.H was maintained. 

 

Figure 6.18 shows evidence that a 2 minute alkaline degreasing treatment is beneficial 

for the PVD10 coating system. Moreover, the 1 minute treatment gives indication of a 

change in delamination mechanism as a speckled pattern was observed in the 

delaminated region. Black staining is associated with anodic attack of magnesium [42]; 

therefore, it can be tentatively assumed that the activation of the surface by alkaline 

treatment etched away the zinc present in the coating, leaving the surface enriched in 

magnesium. This enrichment shifted the mechanism of disbondment for PVD10 from 

cathodic to anodic, as indicated by the dark filiform-like threads originating from the 

defect region.   
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Figure 6.18: Photographic images of the PVD10 Stratmann double-cells in-situ: a) 

control, b) 1 min pH 13 dip clean and c) 2 min pH 13 dip clean taken at i) 0, ii) 24, 

iii) 48, iv) 72 and v) 96 hours for each. Underfilm corrosion was initiated by 0.86 M 

NaCl (aq). 95 % R.H. 

 

6.4 Conclusions 

The evaluation of commercial galvanised coating and the novel PVD coatings in this 

work has provided several key conclusions regarding the influence of magnesium 

content, microstructure and surface preparation: 

• Surface abrasion (standard SKP practice) has a significant effect on 

delamination response: as-received, the PVB coated HDG sample underwent 

cathodic delamination at a rate of ca. 0.5 mm per 2 hours,  conversely the 

alumina prepared HDG sample coated with PVB delaminated at a rate of 2 mm 

per 2 hours. 
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• Previous literature identified 10 wt% as an optimum magnesium content in PVD 

Zn-Mg novel coatings. The evidence in this work confirms that PVD10 is 

susceptible to cathodic delamination, although at a significantly reduced rate 

compared to PVD0 and HDG. 

• PVD4 has been identified as resistant to cathodic delamination and anodic 

undermining failure mechanisms, as a combined result of magnesium content 

and microstructure. 

• Alkaline degreasing in this work had a negative effect on the delamination 

resistance of HDG and PVD0, however it appeared to further reduce the 

cathodic delamination rate of PVD10. 
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Chapter 7. Selection of corrosion resistant, chromate-free pigment technology 

compatible with PVD coatings 

7.1 Introduction 

Zinc-based metallic coatings provide sacrificial protection for strip steel, as described 

in the previous chapters. In the automotive and construction industry, these zinc alloy 

coatings are utilised in conjunction with several organic/inorganic layers, as previous 

addressed in section 1.6.2. The layer of interest in this work is the primer coating which 

is directly applied to the zinc alloy layer and contains corrosion inhibitor pigments, 

which are designed to complement the sacrificial function of the zinc alloy. 

Traditionally, chromate-based pigments have been selected to enhance the 

delamination resistance of the primer layer. However, recent European legislation [1] 

prohibits the use of chromate-base pigments due to their toxic and carcinogenic nature 

[2–4]. As such, research into safe, environmentally-friendly alternatives is of great 

interest [5–12]. 

Zinc phosphate has been established as a suitable alternative for strontium chromate 

due to its non-toxicity and low cost [13, 14]. It is understood that zinc phosphate 

pigment systems do not perform as well as chromates on galvanised steel in neutral and 

alkaline conditions [13, 15, 16], although Bethencourt et al. suggest that first and second 

generation zinc phosphates are more effective in acidic media than chromate [13]. 

There exists multiple theories regarding the mechanism by which zinc phosphate acts 

as a corrosion inhibitor, all of which are listed in Knudsen and Forgren’s Corrosion 

Control through Organic Coatings [17]. A significant number of previous work suggest 

a phosphatisation mechanism and the formation of complex compounds on the metallic 

surface [18–21].  
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It has previously been seen that the poor solubility of zinc phosphate limits its 

effectiveness as a corrosion inhibitor [15, 22, 23], as such there have been significant 

developments made to improve the solubility of zinc phosphate via chemical or 

physical modification [24–30]. Zinc aluminium polyphosphate (known as ZAPP) has 

shown promising results in literature [26, 29, 31] owing to the improvement of 

solubility therefore increase in release of the inhibiting species.  

However, pigments based on zinc phosphates were classed as environmentally 

hazardous in 2004 following European Directive 2004/73/EC. Thus, further research 

has been on-going into “zinc-free” inhibitors, aluminium dihydrogen tripolyphosphate 

(ADTP) is among the more promising contender for corrosion-resistant coatings [32–

36]. Improved performance was also seen with the synergistic modification of ADTP 

with MgO [36].   

Magnesium hydrogen phosphate (newberyite) has not previously been studied as an 

anti-corrosion pigment, it is typically applied to steel in a phosphating step to form a 

continuous inorganic coating [37–40]. In the work of Fouladi and Amadeh, it was seen 

that the novel newberyite coatings exhibited improved corrosion resistance compared 

to a standard zinc phosphating treatment, although this may have been attributed to the 

increased thickness of the phosphate layer [39]. 

This work aims to test the efficiency of chromate-free pigments with PVD coatings at 

a fixed volume fraction, using HDG as a comparison. The efficiency of the pigments 

will be determined by measuring the rate of corrosion-driven cathodic disbondment 

using a combination of SKP and time-lapse photography. Furthermore, with 

environmental impact in mind, only one pigment is zinc phosphate based (PZ20), the 

additional three pigments explore more novel compositions: newberyite-based 

(PAT15), ADTP modified with ZnO (ePAZ) and ADTP modified with MgO (PAM).  
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7.2 Experimental details 

7.2.1 Materials 

Coupons of HDG, PVD0, PVD10 and PVD20 were selected for this work as each 

coating showed a predisposition to organic coating failure within a reasonable 

timeframe. As previously established in chapter 6, PVD4 overcoated with the model 

PVB layer does not exhibit susceptibility to cathodic delamination or anodic 

undermining within a reasonable timeframe. Phosphate-based pigments were supplied 

by Société Nouvelle des Couleurs Zincique (SNCZ) and are listed in Table 2.2. 

Polyvinyl butyral-co-vinyl alcohol-co-vinyl acetate (PVB) powder and additional 

chemicals used in this work were supplied by Merck (Sigma-Aldrich).  

 

7.2.2 Methods 

To analyse the cathodic delamination resistance, the coupons were as-received, ethanol 

rinsed and prepared as Stratmann cells as described in section 2.5.3. The organic 

coatings applied in this chapter were model 15.5 % w/w PVB in ethanol formulated 

with 0.10 volume fraction (V.F.), calculated and formulated using the methods in 

section 2.1.2, of corrosion inhibitor pigments listed in Table 2.2. SKP calibration, setup 

and analysis are fully described in chapter 2. Cathodic disbondment was initiated with 

0.86 M and measured over 44 hours. Time-lapse photography was used to monitor 

cathodic delamination on PVD10 and anodic undermining on PVD20. 
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7.3 Results and discussion 

7.3.1 Pigment characterisation 

   

   

Figure 7.1: SEM images of PZ20, PAT15, ePAZ and PAM pigment powders. 

 

Table 7.1: Particle size of each pigment type, measured using SEM. 

SEM imaging (Figure 7.1), combined with calibrated measuring software, provided the 

average particle sizes for the four inhibitor pigments used in this work, shown in Table 

7.1. The full compositions of the pigments are given in Table 2.2, with the exception 

of PAM. SNCZ do not provide information on 30 % of the pigment composition in the 

MSDS due to the non-toxic nature of the omitted compound. Subsequent EDX analysis, 

shown in Figure 7.2, suggests this unknown compound is MgO.  

Pigment I.D. Average Particle Size (µm) 

Zinc Phosphate PZ20 9.62(3) 

NOVINOX PAT15 9.61(3) 

NOVINOX ePAZ 4.46(1) 

NOVINOX PAM 7.93(2) 

  

a) 
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Figure 7.2: EDX analyses of PAM pigment: a phosphorous and oxygen map (left) 

and a magnesium map (right).  

 

7.3.2 PZ20 

The time-dependent SKP profiles shown in Figure 7.3 correspond to a coupon of HDG, 

overcoated with PVB containing 0.10 V.F. PZ20, where cathodic disbondment has been 

initiated with 0.86 M NaCl. The intact region potential, Eintact, was measured at ca. -

0.60 V vs. SHE with a drop of 0.30 V to the defect potential, Edefect. Eintact appears to 

have been depressed with the presence of PZ20 when compared with the unpigmented 

experiment results (Figure 6.3). For the first 28 hours of the experiment delamination 

rate was maintained at ca. 0.40 mm per 2 hours before slowing to 0.10 mm per 2 hours 

to a total delamination distance of 5.4 mm. Within this timeframe, it is suggested that 

0.10 V.F. of PZ20 dispersed in the PVB layer had a small influence on the rate and 

overall delamination distance on HDG. The inhibitive influence of PZ20 in this work 

is less than previously observed for the same volume fraction [11], however this 

inconsistency can be attributed to the difference in surface preparation, addressed in 

chapter 6.  
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Figure 7.3: Typical Ecorr vs. distance (x) profiles for a HDG overcoated with 0.10 

V.F. PZ20 inhibitor pigment containing PVB in 95 % R.H. over 44 hours. Underfilm 

corrosion was initiated by 0.86 M NaCl. 

 

Figure 7.4 shows the time-dependent SKP profiles for PVD0 coated with PVB 

containing 0.1 V.F. PZ20 inhibitor pigment. Eintact values remained constant at ca. -0.50 

V vs. SHE. The Eintact values were ca. -0.90 V vs. SHE, similar to those measured on 

the HDG defect in Figure 7.3, which is lower than the open circuit potential of zinc (-

0.70 V vs. SHE) [41–43]. However, the Ecorr measured adjacent to the delamination 

front remains at ca. -0.69 V vs. SHE which suggests the active corrosion of zinc 

progresses with the ingress of electrolyte. There is a notable reduction in the final length 

of delamination after 44 hours (9 mm) compared to the final length of delamination 

observed in the uninhibited system shown in Figure 6.6 (11 mm). An important 

distinction between the uninhibited and PZ20 inhibited system disbondment rates 

measured was within the initial 4 hours of the experiment; the uninhibited system 

delaminated by ca. 3 mm in that time, whereas the inhibited system delaminated by ca. 

2 mm. Moreover, the slope of the Ecorr vs. distance plot is much greater for the PZ20 

experiment compared to the control study in chapter 6, which indicates an increase in 
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resistivity in the underfilm electrolyte caused by the release of inhibitor species. 

However, it is important to note that although the rate of delamination is reduced, the 

kinetics of delamination remained parabolic for both HDG and PVD0, which Wint et 

al. have also previously observed [11]. Parabolic disbondment has been previously 

attributed to the mobility of cations (Na+) through the ingressed underfilm electrolyte 

for the rate determining step [44, 45]. As the mechanism for disbondment did not 

change, the marginal reduction in delamination rate can be attributed to either an 

increase in underfilm electrolyte resistance or a change in the interfacial chemistry. It 

has been previously noted [6, 9, 11, 16, 20, 22] that a significant shortcoming of zinc 

phosphate as a corrosion inhibitor is its limited solubility in water (Ksp 9x10-33 mol5dm-

15 [46]). 

 

Figure 7.4: Typical Ecorr vs. distance (x) profiles for a PVD0 overcoated with 0.10 

V.F. PZ20 inhibitor pigment containing PVB in 95 % R.H. over 44 hours. Underfilm 

corrosion was initiated by 0.86 M NaCl. 

 

In chapter 6 it was found that PVD10 exhibited cathodic delamination at a significantly 

slower rate that all other samples following the same mechanism. The incorporation of 
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PZ20 inhibitor pigment reduced the rate of disbondment to the extent where it was no 

longer reasonably measurable in the lab environment, and any comparison was beyond 

the scale of other cathodic disbondment tests. Figure 7.5 shows photographic images 

taken over a week of visual study; characteristic black staining was observed in the 

defect area as a bare metal response, however no disbondment was visible nor evident 

during post-experimental physical inspection.  

        

Figure 7.5: Photographic images of the PVD10 Stratmann cell coated with 0.10 V.F. 

PZ20 PVB taken in-situ at a) 0, b) 24, c) 48, d) 72, e) 96, f) 120, g) 144 and h) 168 

hours. Underfilm corrosion was initiated by 0.86 M NaCl (aq). 95 % R.H maintained. 

 

The influence of PZ20 on the anodic undermining on PVD20 is evident in Figure 7.6 

when compared to Figure 6.14; there was an overall reduction in disbondment area. 

     

Figure 7.6: Photographic images of the scribe defect on PVD20 coated with 0.10 

V.F. PZ20 PVB taken in-situ at a) 0, b) 24, c) 48, d) 72 and e) 96 hours. Underfilm 

corrosion was initiated by 1 M HCl (aq). 95 % R.H maintained. 

 

7.3.3 PAT15 

Figure 7.7 shows a marked improvement in delamination resistance on HDG with the 

incorporation of the PAT15 inhibitor pigment. Eintact remained relatively constant at ca. 

-0.55 V vs. SHE during the experiment and Edefect was equal to the potential measured 

at the delamination front (ca. -0.80 V vs. SHE). There was also a shift in delamination 

kinetics from parabolic to linear (when comparing unpigmented and PAT15 pigmented 
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coating delamination), indicating a change in the rate-controlling step from ion 

diffusion through the underfilm electrolyte to interfacial electron transfer. This effect 

has been previously observed for organic coatings containing inhibitor pigments such 

as graphene nano-platelets [47] and benzotriazole modified zinc phosphate inhibitor 

pigments [11]. 

 

Figure 7.7: Typical Ecorr vs. distance (x) profiles for a HDG overcoated with 0.10 

V.F. PAT15 inhibitor pigment containing PVB in 95 % R.H. over 44 hours. 

Underfilm corrosion was initiated by 0.86 M NaCl. 

 

The SKP profiles displayed in Figure 7.8 indicate rapid underfilm disbondment of 2.5 

mm within the initial 4 hours of the experiment (similar to the unpigmented PVD0 

response), followed by a significant rate drop and subsequent complete stop in 

delamination progress after 12 hours at 4.3 mm. The Eintact value remained at -0.40 V 

vs. SHE and the Edefect was ca. -0.80 V vs. SHE. It can be seen that the cease in 

delamination coincides with a stark increase in the delamination front gradient, 

suggesting the formation of insoluble corrosion products which provided a physical 

barrier to ion migration within the electrolyte. PAT15 is a majority newberyite 
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(MgHPO4.3H2O) commercial pigment, as such the improved resistance observed on 

HDG and PZ20 compared to PZ20 (a majority Zn3(PO4)2 commercial pigment) may be 

attributed to the improved solubility of MgHPO4.3H2O in water (Ksp 1.67x10-6 mol2dm-

2 [48]). Solubility of the pigment plays an important role in its inhibitive power; the 

higher the solubility in the electrolyte, the more kinetically available the inhibitor 

species [20].  

 

Figure 7.8: Typical Ecorr vs. distance (x) profiles for a PVD0 overcoated with 0.10 

V.F. PAT15 inhibitor pigment containing PVB in 95 % R.H. over 44 hours. 

Underfilm corrosion was initiated by 0.86 M NaCl. 

 

The time-lapse results for PVD20 in Figure 7.9 suggest a similar response with PAT15 

present as seen for PZ20; there is little underfilm attack visible. It is difficult to resolve 

differences in inhibitive effect due to the significantly reduced rate of underfilm attack. 
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Figure 7.9: Photographic images of the scribe defect on PVD20 coated with 0.10 

V.F. PAT15 PVB taken in-situ at a) 0, b) 24, c) 48, d) 72 and e) 96 hours. Underfilm 

corrosion was initiated by 1 M HCl (aq). 95 % R.H maintained. Note: the dark circle 

visible in b-e was caused by direct attack through the organic coating, as such does 

not represent underfilm progression from the defect. 

 

7.3.4 ePAZ 

Figure 7.10 shows an Eintact value maintained at ca. -0.50 V vs. SHE for HDG 

overcoated with PVB containing 0.10 V.F. ePAZ. However, the Edefect shows an 

increase from -0.80 V vs. SHE to -0.75 V vs. SHE at 36 hours and a further increase to 

-0.70 V vs. SHE at 40 hours. The first increase in Edefect coincides with a significant 

decrease in rate from the initial 1.2 mm per 4 hours to 0.50 mm per 4 hours. As with 

PAT15, the inclusion of the inhibitor pigment has altered the delamination kinetics from 

parabolic (unpigmented) to linear, which, in this case, has resulted in a poor inhibitive 

power. The coatings delaminated by 9.5 mm over the 44 hours experiment, a notable 

decrease in disbondment resistance compared to the uninhibited coating.  

Conversely, 0.10 V.F. of ePAZ in the model PVB coating applied to PVD0 showed a 

significant inhibitive effect (Figure 7.11). Indeed, the maximum delamination distance 

reached during the 44 hour experiment was 3.2 mm. Moreover, it is evident that the 

delamination kinetics remained parabolic, as with the unpigmented study. Eintact 

remained constant at ca. -0.37 V vs. SHE and Edefect at -0.80 V vs. SHE. 
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Figure 7.10: Typical Ecorr vs. distance (x) profiles for a HDG overcoated with 0.10 

V.F. ePAZ inhibitor pigment containing PVB in 95 % R.H. over 44 hours. Underfilm 

corrosion was initiated by 0.86 M NaCl. 

 

 

 

Figure 7.11: Typical Ecorr vs. distance (x) profiles for a PVD0 overcoated with 0.10 

V.F. ePAZ inhibitor pigment containing PVB in 95 % R.H. over 44 hours. Underfilm 

corrosion was initiated by 0.86 M NaCl. 
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Figure 7.12 shows little difference in the influence of ePAZ on PVD20 anodic 

undermining compared to the previous two pigments, however there was a noticeable 

reduction in visible delamination compared to the unpigmented study. 

 

     

Figure 7.12: Photographic images of the scribe defect on PVD20 coated with 0.10 

V.F. ePAZ PVB taken in-situ at i) 0, ii) 24, iii) 48, iv) 72 and v) 96 hours. Underfilm 

corrosion was initiated by 1 M HCl (aq). 95 % R.H maintained. 

 

7.3.5 PAM 

PVB containing 0.10 V.F. PAM pigment demonstrated the greatest reduction in 

cathodic delamination for HDG; the maximum delamination distance was 4.35 mm 

during the 44 hour experiment. The disbondment kinetics were linear, maintaining a 

rate of ca. 0.65 mm per 4 hours. Eintact was much lower for this coating system compared 

to previous samples, measured at ca. -0.65 V vs. SHE, with Edefect increasing from -0.81 

V vs. SHE to -0.75 V vs. SHE over the 44 hour experiment. It is likely that the lower 

Eintact value contributed toward the decrease in delamination rate as the difference in 

Eintact and Edefect represents the driving force for disbondment.  

Similarly to HDG, the 0.10 V.F. PAM PVB coating on PVD0 (Figure 7.14) provided 

the greatest reduction in maximum delamination distance (2.5 mm), which implies it 

was the most effective inhibitor. The delamination kinetics remained parabolic, as with 

unpigmented. Eintact was maintained at -0.55 V vs. SHE and Edefect was -0.96 V vs. SHE.  

 

1
0

 m
m

 a) b) d) e) c) 



188 

 

 

 

Figure 7.13: Typical Ecorr vs. distance (x) profiles for a HDG overcoated with 0.10 

V.F. PAM inhibitor pigment containing PVB in 95 % R.H. over 44 hours. Underfilm 

corrosion was initiated by 0.86 M NaCl. 

 

 

 

Figure 7.14: Typical Ecorr vs. distance (x) profiles for a PVD0 overcoated with 0.10 

V.F. PAM inhibitor pigment containing PVB in 95 % R.H. over 44 hours. Underfilm 

corrosion was initiated by 0.86 M NaCl. 
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There appeared to be greater anodic undermining on the PVD20 sample overcoated 

with 0.10 V.F. PAM PVB (Figure 7.15) compared to the previous pigments 

investigated.  

 

     

Figure 7.15: Photographic images of the scribe defect on PVD20 coated with 0.10 

V.F. PAM PVB taken in-situ at i) 0, ii) 24, iii) 48, iv) 72 and v) 96 hours. Underfilm 

corrosion was initiated by 1 M HCl (aq). 95 % R.H maintained. 

 

The performances of all pigments are summarised and compared to data for the 

unpigmented studies in Figure 7.16. The collection of plots confirm linear kinetics for 

all pigments on HDG, a shift from the parabolic behaviour shown for the unpigmented 

experiment in chapter 6. Similarly, most pigments on PVD0 (PZ20, ePAZ and PAM) 

also show linear kinetics in corrosion-driven cathodic disbondment. Interestingly, there 

was a clear three part process that occurred for the PAT15-containing PVD0 system; 

exhibiting linear kinetics in the first 12 hours as the pigment was released into the 

underfilm electrolyte, followed by a 20 hour pause in underfilm progression. In the final 

14 hours it appears there was a shift back to parabolic kinetics as the pigment was 

exhausted. For both HDG and PVD0, PAM showed the greatest overall reduction in 

disbondment rate, which is most likely due to the presence of MgO in the pigment 

composition, providing Mg2+ cations as the MgO was hydrated. The incorporation of 

Mg2+ to the system via the pigment may have afforded the zinc coatings resistance to 

corrosion-driven cathodic disbondment in the similar way to magnesium-containing 

alloy coatings; by promoting the formation of stable passive layers which inhibit 

oxygen reduction. [49] 

1
0

 m
m

 

a) b) d) e) c) 



190 

 

 

 

 

 

Figure 7.16: Plots of mean distance of underfilm corrosion advance vs. post-

initiation holding time for HDG (top) and PVD0 (bottom). Underfilm corrosion was 

initiated with 0.86 M NaCl.  
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7.4 Conclusions 

A systematic examination of chromate-free pigment performance in PVB overcoated 

on PVD Zn, PVD Zn-Mg and HDG metallic coatings has been reported. PVD4 was 

omitted from this work as laboratory delamination studies extended beyond a 

reasonable timeframe, and thus should be considered for long-term salt spray analysis 

in future. PVD10 exhibited exceptional performance with the presence of the zinc 

phosphate pigment, PZ20, showing no evidence of delamination (including post-

experimental examination) during the 168 hour study. PVD20 showed noticeable 

reduction in anodic undermining for all pigments compared to the unpigmented 

experiment.  

The SKP analysis for pigment compatibility on HDG and PVD0 provided the following 

key conclusions: 

• All pigments used in combination with HDG resulted in a kinetics shift from 

parabolic (unpigmented) to linear. 

• PZ20 had little effect on the delamination rate and overall delamination 

advancement on HDG, whereas PAM and PAT15 appear to have reduced the 

overall advancement marginally. 

• For PVD0, there is a clear order of inhibitive power for the studied pigments: 

PAM > ePAZ > PAT15 > PZ20. Suggesting that the novel ADTP complex 

pigment, modified with ZnO or MgO, is highly compatible with PVD0 and 

should be considered for further longer term studies on PVD coatings. 
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Chapter 8. Conclusions and Future Work 

8.1 Conclusions 

This body of work established numerous key findings essential for further progress in 

the field of physical vapour deposited zinc and Zn-Mg coatings, summarised below: 

• A pure zinc PVD coating (PVD0) was confirmed to be significantly thinner than 

the commercial HDG zinc layer and comprised of hexagonal microplates. The 

Zn- 4 wt% Mg (PVD4) coating was comprised of discrete structure of zinc and 

Mg2Zn11 phases, considerably finer than commercial Zn-Mg-Al (ZMA). PVD 

Zn- 10 wt% Mg and PVD Zn- 20 wt% Mg possessed nanostructures of zinc 

with Mg2Zn11 and MgZn2 respectively. All PVD coatings were found to be 

approximately five times smoother than the commercial galvanised coatings. 

• Electrochemical analysis established a trend in decreasing initial OCP and 

stabilised OCP values as a function of magnesium content for the PVD coatings. 

Potentiodynamic studies also showed a decrease in Ecorr and Icorr related to the 

increase in magnesium content, suggesting a correlation of increased corrosion 

resistance with increased magnesium content. The improved homogeneity of 

PVD0 correlated with an improvement in polarisation resistance compared to 

HDG during electrochemical impedance spectroscopy analysis. PVD4 was also 

identified as a poor cathodic surface during rotating disk electrode campaigns, 

suggesting an innate resistance to cathodic disbondment. 

• The novel augmentation of the scanning vibrating electrode technique (SVET) 

explored in chapter 5 established a strong benefit to simultaneous photographic 

image capture during the electrochemical SVET study. SVET-TLI (scanning 
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vibrating electrode technique time-lapse imaging) was utilised to correlate the 

characteristic staining of Zn-Mg PVD coatings to the net cathodic regions, 

which contrasts the staining of anodic regions on ZMA and pure magnesium. 

Moreover, the microstructures of the PVD coatings was attributed to the 

localised anodic events observed electrochemically and visually. There was a 

distinct correlation between the increase in magnesium content of the PVD 

coatings and a reduction in average anodic area coverage and accumulated 

anodic current density, with an optimum magnesium content identified as 

PVD4. 

• Scanning kelvin probe (SKP) studies identified HDG, PVD0, ZMA and PVD10 

as susceptible to cathodic disbondment, though the disbondment observed on 

ZMA and PVD10 having a significantly slower rate to the magnesium-free zinc 

coatings HDG and PVD0. PVD20 showed a resistance to cathodic delamination 

but a susceptibility to anodic undermining. PVD4 showed no susceptibility to 

delamination of any kind within reasonable laboratory timeframes. Alkaline 

cleaning proved detrimental for the zinc coatings HDG and PVD0 but provided 

further resistance to cathodic delamination for PVD10 via surface activation of 

the magnesium.  

• The inclusion of commercial pigments to the organic overcoat of HDG and 

PVD0 shifted delamination kinetics from parabolic to linear, suggesting a 

resistive effect imposed by the pigments as they leach into the underfilm 

electrolyte. The novel aluminium dihydrogen tripolyphosphate (ADTP) 

pigment in combination with MgO had the most beneficial impact on 
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delamination resistance for both HDG and PVD0, owing to the release of 

magnesium cations into the underfilm electrolyte.  

This work highlights the positive influence of alloying zinc coatings with magnesium, 

in terms of overall reduction in corrosion rate on the bare alloy surface and also an 

increase in delamination resistance. Indeed, the galvanic coupling of magnesium and 

zinc works to depress the intact potential of an organic overcoat to eliminate the driving 

force for film disbondment. Moreover, the discrete microstructures formed specifically 

by the physical vapour deposition process also contribute significantly in the 

breakdown of ionic pathways. The systematic variance of magnesium content worked 

to identify an optimum amount to produce a metallic coating highly resistant to both 

anodic and cathodic disbondment, indicating a real opportunity for much thinner 

sacrificial zinc coatings, which would result in greater fuel efficiency and less demand 

on our finite zinc resources. 

 

8.2 Future Work 

This thesis has provided a significant contribution to the area of PVD Zn-Mg coatings, 

however there is still much more research to be done to deepen the understanding of 

the PVD process and unlock the potential for PVD coatings to emerge into industry.  

Primarily there needs to be a systematic study into the influence of PVD process 

parameters and the resulting microstructure of the PVD coatings. The PVD pilot line in 

IJmuiden has already undergone the change from wire-feeding to batch crucible 

evaporation which is assumed to have a major effect on the structure of the deposited 

coatings. Furthermore, there is room for optimisation of the melt and strip temperatures 

to further control the output coating characteristics. In this work, the microstructure of 
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PVD4 emerged as a successful combination of processing parameters, however the 

precise correlation between the parameters used and resulting structure is not fully 

understood. 

As a starting point, the PVD4 coating in this work has shown highly promising evidence 

as an optimum Zn-Mg alloy coating. As such, further production of this coating should 

be undertaken, and additional corrosion testing should be conducted. This work focused 

solely on accelerated testing for corrosion study, and it is well debated whether these 

methods are comparable to real life application. Therefore, long term exposure testing 

should be done and compared to the current commercial Zn-Mg alloy coatings (salt 

spray, long term exposure outdoors, environmental chamber studies). 

Furthermore, in this work a model polyvinyl butyral coating was used in delamination 

studies for the sole purpose of accelerated results. Moving forward, commercial organic 

coatings should be applied to the optimum PVD Zn-Mg metallic coating formulation 

for further delamination study. Additionally, this work has offered a range of corrosion 

inhibitor pigments which should be considered for primer layer addition.
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