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Abstract 

Characterisation of viscoelastic materials through exploitation of the frequency 

independent gel point (GP) can be used to study blood clotting anomalies. Information 

regarding the sol-gel transition can be obtained for gelling systems by employing small 

amplitude oscillatory shear (SAOS) measurements over a range of oscillatory shear 

frequencies. Analysis of the fractal dimension, 𝑑𝑓, at the GP has previously been used

as a biomarker for pathologies related to thromboembolic disease. This thesis 

investigates the potential adverse clotting characteristics induced by the presence of 

exhaust particulates using rheometric techniques. 

SAOS experiments conducted using a combined motor transducer (CMT) rheometer 

are susceptible to inertial artefacts at high frequencies, leading to potentially 

significant error in the reported GP. Herein, the development and evaluation of an 

enhanced rheometer inertia correction procedure (ERIC) is shown to allow valid GP 

data to be obtained post-acquisition at previously inaccessible frequencies. The 

potential impact of soot particulates on coagulation is likely to be small due to the 

weakly elastic gelling systems being studied, thus necessitating the use of the ERIC 

procedure to remove the presence of any inertial artefacts causing miscalculation of 

the GP. 

Fibrin gels were studied as model blood clots to assess the effects of the inclusion of 

soot particulates on the GP. The impact of the inclusion of increasing concentrations 

of soot solution on the GP proved inconclusive after the application of ERIC. 

However, in whole blood clots, the post-ERIC GP 𝑑𝑓 data indicated an increase in the

density of the clot formed with increasing soot concentration, suggesting an elevated 

health risk as a possible result of interruption of the clotting cascade due to soot 

particulates.  
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Both the intrinsic and extrinsic pathways follow the common pathway (shown in 

yellow) to form a fibrin network that results in haemostasis. .................................... 33 

Figure 2-2 A simplified tri-nodular fibrinogen protein molecule with a central E 

nodule and two distal D domains. The fibrinopeptides A (FPA – blue triangles) and B 

(FPB – red circles are cleaved away from the fibrinogen molecule by the thrombin 

present, allowing the fibrinogen to bind with an A or B binding site on an alternative 

fibrinogen D nodule. .................................................................................................. 34 

Figure 2-3 The conversion of fibrinogen to a fibrin network due to the presence of 

thrombin. Initially, the FPA (blue triangles) are cleaved from the E domain of each 

fibrinogen protein. The FPB (red circles) are also split from the fibrinogen protein to 

form the fibrin network by lateral aggregation of the protofibrils. Reproduced from A. 

S. Wolberg, “Thrombin generation and fibrin clot structure,” Blood Rev., vol. 21, no. 

3, pp. 131–142, 2007 © 2007 with permission from Elsevier Ltd............................. 35 

Figure 2-4 SEM images obtain of fibrin clots from recalcified plasma at a) a low 

thrombin concentration and b) a high concentration. At low thrombin concentrations, 

the fibres formed are thick with few branch points whereas at high thrombin 

concentrations, the fibres produced are much thinner with many branch points. The 

scale bar shows 5 μm and is applicable to both images. Reprinted from J. W. Weisel, 

“The mechanical properties of fibrin for basic scientists and clinicians,” Biophys. 

Chem., vol. 112, no. 2-3 SPEC. ISS., pp. 267–276, 2004. © 2004 with permission from 

Elsevier Ltd. ............................................................................................................... 36 

Figure 3-1 The difference in (a) CMT and (b) SMT rheometer setups. The surface at 

which the torque, M, and displacement, θ, is measured are shown. .......................... 51 

Figure 3-2 An example dataset pasted into the ERIC GUI. The 'Calibrated Inertia 

Constant', ‘Geometry Stress Factor’ and ‘Geometry Strain Factor’ can be inputted for 

each specific dataset (circled in red). The lower and upper correction parameters 

(circled in green) can be altered to initially provide a coarse correction that can be 

refined to give a precise 𝐼𝑡 value. ............................................................................... 53 

Figure 3-3 shows a screenshot of the corrected dataset using a coarse search. The black 

dashed lines are the curves that have been fitted to the data using the five-parameter 

logistic equation. The 'search' region is shown by the red lines. The corrected GP is 

stated at the bottom of the plot for both the reported 𝛿 and 𝑡𝑔𝑒𝑙. ............................... 54 
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Figure 3-4 gives an example of the 'Optimisation' tab for the post-ERIC data. The 

normalised deviation of the roots is shown for both the 𝛿 and time data with 𝛥𝐼 for the 

dataset being selected from the minimum deviation in roots of the 𝛿. ...................... 54 

Figure 3-5 Example GP data for 2.5 wt% gelatin at low and high frequency decades. 

The GP shown in a) was obtained over a frequency range of 0.1-1Hz whilst b) 

illustrates data acquired at a high frequency decade of 1.2-12Hz. ............................. 59 

Figure 3-6 outlines the ERIC procedure where a) illustrates an apparent gel point prior 

to correction obtained using a frequency decade of 1-10 Hz, b) shows the optimisation 

of the gel point data using the ERIC procedure and c) shows the ERIC corrected GP 

data for the data reported in a). .................................................................................. 60 

Figure 3-7 Phase angles reported at the GP (black circles) over a range of increasing 

frequency decades along with the ERIC corrected 𝛿𝐺𝑃 for the same dataset (blue 

squares). ..................................................................................................................... 63 

Figure 3-8 The apparent and corrected GP data for the frequency study, shown with 

phase angle as a function of raw phase angle. The black circles represent the raw data 

and the blue squares the corrected data. ..................................................................... 64 

Figure 3-9 The comparison reported GP data from three AR-G2 rheometers using both 

the SIC and the developed ERIC procedure. The horizontal dashed and dotted lines 

represent the mean and standard deviation of the data obtained using an SMT 

rheometer.................................................................................................................... 65 

Figure 3-10 A previously undocumented gelatin gelation concentration dependence 

was reported. Figure 10a) plots the uncorrected data recorded in the study (black 

circles) alongside data collected by (Hawkins et al., 2008) using SAOS and FTMS 

(blue triangles) over a range of 0.2 – 3.2 Hz and data published by (Curtis et al., 2015) 

using OFR and FTMS over a range of 0.1 – 10 Hz (red squares).............................. 67 

Figure 3-11 The application of the ERIC procedure to the raw data from the present 

study (black circles). Once corrected, the data approaches the Percolation Prediction 

phase angle of 63° (blue squares). ............................................................................. 68 

Figure 4-1 A typical Schlenk Line setup for concentration of soot solution samples. 

N2 was used to disturb the surface of the sample, causing evaporation of the dispersant.

 .................................................................................................................................... 76 

Figure 4-2 Schematic diagram of an assembled LSCM slide. The hatched area shows 

the position of the tape used to create the void. Approximately 80 μl of the sample to 

be imaged was pipetted into the void (grey). ............................................................. 80 
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Figure 4-3 An example fibrin gel clot mounted onto carbon tape. The sample in this 

image was not yet sputter coated with a 15nm gold-palladium layer. ....................... 84 

Figure 4-4 The final SEM samples after sputter coating with a 15 nm layer of gold-

palladium. Examples of both (a) blood clots and (b) fibrin gel clots can be seen. .... 85 

Figure 4-5 Example fibrin-thrombin GP profiles with a fibrinogen concentration of 10 

mg ml-1 and a thrombin concentration of 0.08NIH ml-1 for a) without addition of 

Tween-20 and b) with the inclusion of 0.1% Tween-20. ........................................... 86 

Figure 4-6 Images captured using LSCM and SEM were used to analyse the effect of 

the inclusion of Tween-20 on the microstructure of the fibrin gels. Images a) and c) 

show the microstructure of the mature fibrin gel without the inclusion of Tween-20 

(using LSCM and SEM techniques respectively). Images b) and d) show the 

microstructure of a fibrin gel with the inclusion of 0.1% Tween-20 (using LSCM and 

SEM techniques respectively). ................................................................................... 87 

Figure 4-7 Example GP profiles to illustrate the effect of thrombin concentration on 

the gel time, 𝑡𝑔𝑒𝑙, reported. A thrombin concentration of 0.16 NIH ml-1 is shown in a) 

with a reported 𝑡𝑔𝑒𝑙 of 372 ± 4 s, whereas in b) the thrombin concentration was 

considerably lower at 0.04 NIH ml-1, resulting in a 𝑡𝑔𝑒𝑙 of 1030 ± 15 s. The fibrinogen 

concentration for both experiments was 12 mg ml-1with a frequency decade of 0.4-4 

Hz. .............................................................................................................................. 89 

Figure 4-8 Rheological 𝑡𝑔𝑒𝑙 data obtained for the fibrin gels thrombin concentration 

study. The fibrinogen concentration of all gels remained constant at 12 mg ml-1 whilst 

the thrombin concentration was varied between 0.04 mg ml-1 ≤ [Th] ≤ 0.16 NIH ml-1. 

The uncorrected pre-ERIC data is shown by the solid line, whereas the dashed line 

represents the data post ERIC correction. .................................................................. 90 

Figure 4-9 The rheological data obtained for 𝛿𝐺𝑃 over a range of thrombin 

concentrations. The solid line represents the uncorrected 𝛿𝐺𝑃 data obtained with the 

dashed line showing the data post-ERIC correction. The fibrinogen concentration 

remained constant at 12 mg ml-1 throughout the study. ............................................. 91 

Figure 4-10 The 𝑑𝑓 reported at the GP for each of the thrombin concentrations studied, 

with a constant fibrinogen concentration of 12 mg ml-1. The uncorrected data is 

represented by the solid line with the ERIC corrected data shown by the dashed line.
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Figure 4-11 SEM images captured of fibrin gels with a fibrinogen concentration of 6 

mg ml-1. The thrombin concentration in a) and c) is 0.02 NIH ml-1, whereas in b) and 

d) the thrombin concentration is much higher at 0.32 NIH ml-1. The magnification was 

increased from x10.0k in a) and b) to x20.0k in c) and d) to illustrate the effect of 

thrombin concentration on the mature microstructure. At the higher thrombin 

concentration in b) and d), the fibres appear to be thinner and less ordered compared 

to the lower thrombin concentration observed in a) and c).The scale bars represent 

5μm for x10.0k magnification and 2 μm at x20.0k magnification. ........................... 93 

Figure 4-12 LSCM images gather for gels with a fibrinogen concentration of 6 mg ml-

1 and thrombin concentration of a) 0.02 NIH ml-1, b) 0.08 NIH ml-1 and c) 0.32 NIH 

ml-1. Gel samples included 1.5% Alexa-488 fluorescent fibrinogen and 1% Tween-20. 

The scale bar on each image represents 5 μm. ........................................................... 94 

Figure 4-13 Example GP data for each of the fibrinogen concentrations studied. The 

thrombin concentration remained unchanged at 0.08 NIH throughout the study. The 

fibrinogen concentrations shown are a) 4 mg ml-1, b) 6 mg ml-1, c) 8 mg ml-1, d) 10 mg 

ml-1, e) 12 mg ml-1. ..................................................................................................... 96 

Figure 4-14 Uncorrected 𝑡𝑔𝑒𝑙  data obtained (solid line) for fibrin thrombin gels over a 

range of fibrinogen concentrations, 4 𝑚𝑔 𝑚𝑙−1 ≤ 𝐹𝑖𝑏𝑟𝑖𝑛𝑜𝑔𝑒𝑛 ≤ 12 𝑚𝑔 𝑚𝑙−1. The 

data was corrected (dashed line) using the ERIC procedure described in Chapter 3. The 
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Figure 7-1 Data reported using a Malvern Zetasizer Nano-ZS to assess a) the 

hydrodynamic diameter of the particles suspended in Soot G[1x] solution and b) the 

corresponding zeta potential of the solutions. The data was obtained over a period of 

two weeks, beginning on the day of manufacture. Solution were measured without 

file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543484
file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543484
file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543485
file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543485
file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543485
file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543486
file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543486
file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543486
file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543487
file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543487
file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543487
file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543488
file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543488
file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543488
file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543489
file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543489
file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543490
file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543490
file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543490
file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543491
file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543491
file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543492
file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543492
file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543492
file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543492
file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543493
file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543493
file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543493
file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543493
file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543494
file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543494
file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543494
file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543494


xx 

 

sonication prior to measurement (open squares, dashed line) and after 15 minutes of 

sonication (closed circles, solid line) at room temperature. ..................................... 160 

Figure 7-2 The effect of increasing TBS concentration on pH of Soot G[1x] solutions.

 .................................................................................................................................. 161 

Figure 7-3 Reported hydrodynamic diameters over a range of TBS concentrations. 

100% TBS refers to the physiologically relevant TBS concentration required for 

compatibility with biopolymer experiments (1x TBS). ........................................... 162 

Figure 7-4 Zeta potential reported for increasing TBS additions to Soot G[1x] 

solution. .................................................................................................................... 162 

Figure 7-5 Image of samples one hour after Zetasizer analysis. The TBS concentration 

within the sample increased (as illustrated by the arrow). At 1xTBS required for 

biological samples (100% TBS in the present study), there appeared to be a faint pink 

film present on the walls of the sample tube (circled). All other samples remained 

colourless.................................................................................................................. 163 

Figure 7-6 Effect of the inclusion of Tween-20 into the soot solution on particle size 

compared with only TBS. Both samples were prepared with 1x TBS concentration.

 .................................................................................................................................. 164 

Figure 7-7 Samples containing a) TBS and Tween-20 and b) only TBS, 12 weeks after 

Zetasizer analysis. It appears that the presence of Tween-20 prevents the aggregation 

of particles into a red film seen in b)........................................................................ 165 

 

 

file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543494
file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543494
file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543495
file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543495
file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543496
file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543496
file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543496
file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543497
file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543497
file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543498
file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543498
file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543498
file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543498
file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543498
file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543499
file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543499
file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543499
file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543500
file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543500
file:///F:/Documents/PhD/Thesis/Combined%20Chapters/Combined%20Thesis%20Chapters%2013th%20July%202020.docx%23_Toc45543500


 

 

Visual overview of experimental work conducted as part of this thesis. 

 



1 

 

 Rheology and Rheometry 

1.1 Overview 

The flow and deformation behaviour of materials has long been studied, but only in 

recent decades has the field of rheology developed into the diverse discipline it is 

today. ‘Rheology’ can be defined as the ‘study of the deformation and flow of matter’ 

(1–3). Works by both Hooke and Newton in the 17th Century present the boundaries 

of present day rheology (4). Hooke referred to ‘springs’ in his ‘Theory of Elasticity’ 

(1678), whilst Newton’s 1687 ‘Principia’ detailed ‘lack of slipperiness’ (2).  

Not all materials can be described as Newtonian fluids or as Hookean solids as these 

characteristics are displayed at the limits of the material (where the phase angle 

between the input and output waveforms is 𝛿 = 90° and 𝛿 = 0°, respectively). 

Between these limits, materials exhibit viscoelastic properties studied by rheologists 

(3).  

Many studies have been conducted on the gelation of polymer solutions (5–7) and the 

work presented herein focuses on gelatin, fibrin-thrombin gel systems and blood clots. 

The sensitivity of the rheological properties of biopolymer gels to their underlying 

microstructure lends itself to the detection of clotting anomalies as a result of the 

presence of particulate matter, specifically soot.  

1.2 Hookean solids 

For a Hookean solid, an instantaneous finite deformation response is observed upon 

the application of a shear stress, 𝜎, to an unstrained system. The deformation remains 

constant whilst the stress, 𝜎, is applied (2). Elastic materials obey Hooke’s Law which 

states that the shear stress is proportional to the applied strain. This can be represented 

mathematically as: 

 𝜎 = 𝐺𝛾 Equation 1.1 

The constant of proportionality, 𝐺, is referred to as the ‘elastic modulus’ whilst γ 

denotes strain. Upon removal of the stress, the material returns to its original state. 

1.3 Newtonian Liquids 

Newtonian fluids exhibit a linear relationship between shear stress, σ, and shear strain 

rate, 𝛾̇. The viscosity of a Newtonian fluid is dependent on the temperature and 
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pressure. Examples of Newtonian fluids are water  and glycerine (2,8). If a stress, 𝜎, 

is applied to the system, there is an instantaneous strain rate response, 𝛾̇. If zero stress 

is applied, there is a resulting zero shear strain rate. The deformation rate is 

independent of time until the applied stress is removed.  

The viscosity of the fluid is defined by the derivative of the stress-strain relationship 

and for a Newtonian fluid (which displays a shear rate independent viscosity) can be 

defined mathematically as:  

 𝜎 = 𝜇𝛾̇ Equation 1.2 

Flow occurs when adjacent layers in the fluid move relative to each other, causing the 

fluid to deform (1). Individual planes within the fluid are represented by ‘A’ in Figure 

1-1. 

 

 

 

 

 

 

 

 

 

 

 

The deformation gradient between the hypothetical layers in the fluid, the shear strain, 

𝛾, can be determined by Equation 1.3. The upper-most layer in the fluid will have the 

highest displacement, which is defined as ∆𝑥 (Figure 1-2), whilst the lowest layer 

remains stationary.  

 
𝛾 =

∆𝑥

ℎ
 

Equation 1.3 

Figure 1-1 A diagram of the hypothetical layers that allow deformation of the fluid when a stress is applied. The 

area , A, and the force, F, applied to the fluid are used to determine the stress component whilst the displacement, 

x, and  velocity, 𝑣 along with the height, h, can be used to determine the strain and strain rate respectively as shown 

in Equations 1.3 and 1.4. 

∆𝑥 
𝑣, F 
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The shear strain increases as stress is applied provided the constituent components of 

the fluids can move relative to each other (8). The velocity gradient at right angles to 

the direction of flow is called the shear strain rate (2) and is defined as 𝛾̇ in Equation 

1.4. It is the rate of change of strain within the fluid over time. If the force applied to 

the fluid is doubled, the velocity gradient also doubles (2).  

 𝛾̇ =
𝑣

ℎ
 Equation 1.4 

Shear stress can be defined as the force per unit area (1) and is represented by 𝜎 as 

shown: 

 
𝜎 =

𝐹

𝐴
 

Equation 1.5 

The viscosity of a material can be defined as its resistance to deformation (9). For 

Newtonian fluids undergoing simple shear flow, the viscosity can be defined by 

rearranging Equation 1.2 to give;  

 𝜇 =  
𝜎

𝛾̇
 Equation 1.6 

Figure 1-2 A simple shear flow diagram. The parameters presented can be used to determine the shear strain and 

shear strain rate. 

∆𝑥 

𝛽 

𝑣, F 
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1.4 Non-Newtonian Liquids 

Non-Newtonian fluids display a non-linear relationship between shear stress, 𝜎, and 

shear strain rate, 𝛾̇. The viscosity of a non-Newtonian fluid is dependent on the shear 

strain rate applied. Examples of non-Newtonian fluid behaviour include shear thinning 

and shear thickening (Figure 1-3). Shear thinning behaviour is the most commonly 

seen category of non-Newtonian fluid and is observed when the viscosity of the fluid 

decreases as the shear strain rate increases (8). An example of an everyday shear 

thinning fluid is tomato ketchup (10). Blood also demonstrates shear thinning 

properties (11). Shear thickening behaviour involves viscosity increases due to an 

increase in the applied shear strain rate. Corn starch solutions are examples of shear 

thickening systems (12). Materials may also exhibit a yield stress which must be 

overcome before viscous flow occurs. Sludges provide an example of such materials 

(13).  

 

 

 

 

 

 

 

 

 

Figure 1-3 Flow curves for Newtonian (black), shear-thinning (red), shear thickening (blue) and Bingham plastic 

(green) behaviour in fluids. The yield stress of the Bingham plastic is represented by σy. 
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1.5 Linearity  

A linear system is described by the Boltzmann superposition principle (Equation 1.7) 

such that ‘each stress applied to a material produces a strain independent of that 

produced by other stresses’ (14,15). If the stress applied to the material is increased by 

a given factor, the resulting strain response will also increase by the same factor (2). 

1.5.1 Linear Viscoelastic Region 

The linear viscoelastic region (LVR) is the region in which the dynamic processes 

within the system can be determined without compromising the microstructure of the 

sample (16). Within the LVR, it can be assumed that the storage modulus, 𝐺’, and the 

loss modulus, 𝐺’’, are independent of strain amplitude and that an oscillatory wave 

response is sinusoidal (17). The superposition principle suggests small strains, 

indicating that the linear viscoelastic limit is a few per cent (14). Hawkins et al. 

determined using harmonic analysis that for fibrin gels, the strain limit should not 

exceed 2% (18). 

In materials undergoing a sol-gel transition, it is possible to analyse the linearity of the 

data obtained by monitoring the harmonic ratios within the system. During the 

application of an oscillatory shear stress, the third harmonic contribution can be used 

to analyse the degree of the non-linear response of the sample (18,19). The third 

harmonic is typically monitored as it generally gives the most intense response with 

respect to the fundamental frequency (17). The waveform can be assumed to be 

sinusoidal without the presence of harmonics. If the shape of the reported waveform 

is no longer sinusoidal, it suggests that the data is no longer linear. 

Probing a material outside of the LVR requires additional parameters to fully describe 

the materials response, for example, the harmonic response (20) or more complex 

descriptions of non-linear viscoelastic behaviour as reviewed by Hyun et al (17). Large 

Amplitude Oscillatory Shear (LAOS) experiments can be conducted to assess the non-

linear viscoelastic response of complex fluids. The response waveform in the non-

linear regime deviates from a sinusoidal waveform as 𝐺’ and 𝐺’’ are a function of the 

strain amplitude (17) and are undefined outside of the LVR. 

 

𝜎 = ∫ 𝐺(𝑡 − 𝑡′)𝛾̇(𝑡′)𝑑𝑡′

𝑡

−∞

 Equation 1.7 
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1.6 Viscoelasticity 

Viscoelastic materials have both viscous and elastic characteristics. The linear-

viscoelastic response of a sample can give an indication as to the microstructure of the 

materials (2). The elastic component can be represented using a ‘spring’ and viscous 

behaviour can be described using a ‘dashpot’ (Figure 1-4).  

 

 

 

1.6.1 Viscoelastic Solid 

If a shear stress, 𝜎, is applied to the surface of a material, a Hookean solid is 

immediately deformed and remains deformed until the stress is removed (2).  The 

model used to describe a viscoelastic solid (VES) undergoing strain is the Kelvin-

Voigt model (Section 1.7.2). Equation 1.1 can be rewritten as Equation 1.8 to show 

the relationship between the stress and the strain is linear with 𝐺 as the constant of 

proportionality (15). The lag between the input and output waves can be determined 

as the phase angle, 𝛿. Due to the linear relationship, the lag between the sinusoidal 

input strain wave and output stress wave is said to be ‘in-phase’ and δ = 0° (Figure 1-5 

and Equation 1.9). A material displaying a phase angle of 0° is said to be purely elastic. 

 

 

𝐺 =
𝜎

𝛾
 Equation 1.8 

 
𝛿 = tan−1

𝐺′′

𝐺′
= 0 Equation 1.9 

 

 

 

 

 

 

 

Figure 1-5 Input stress waveform (red) and output strain waveform (blue) for a viscoelastic solid. 

γ0 

σ0 

Figure 1-4 Representation of a) a 'spring' used to describe an elastic element and b) a 'dashpot' used to characterize 

the viscous element in a  rheological system. 

a) b) 
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1.6.2 Viscoelastic Liquid 

For liquids displaying viscoelastic characteristics, the term ‘viscoelastic liquid’ (VEL) 

is used. Such materials can be described by the Maxwell model (Section 1.7.1). For 

Newtonian liquids, as described in Section 1.3, the stress is linearly related to the shear 

strain rate. In this case, stress and strain are 90° ‘out of phase’ as indicated by the lag 

between the input and output waves (Figure 1-6). Values of 𝛿 approaching 90° (when 

𝛿 ≤  90°) represent highly viscoelastic behaviour of a material undergoing oscillatory 

shear (15).  

 

 

 

 

 

 

 

1.7 Mechanical Models 

Simple mechanical models can be useful tools when thinking about viscoelastic 

behaviour. As discussed in Section 1.6, these models are built on the concept of 

‘springs’ and ‘dashpots’ to represent elastic and viscous behaviour of a material 

respectively.  

1.7.1 Maxwell Model 

A Maxwell model is comprised of spring and dashpot components in series 

configuration, as seen in Figure 1-7. It is commonly used to describe behaviour of 

viscoelastic liquids over a typical frequency range of 10-2 to 102 Hz (1). In a step strain 

experiment, the spring element will instantaneously respond, whereas the movement 

of the piston through the dashpot causes a reduction in the stress on the spring over 

time (15). 

Figure 1-6 Input (blue) and output (red) waveforms for a viscoelastic liquid. 

γ0 
σ0 
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If a step strain is applied to a single Maxwell element, the rate of extension can be 

established as Equation 1.10 (14). This can be rewritten for 𝑡 > 0 by integrating with 

respect to time to give Equation 1.11, which describes the stress decay over time when 

a step strain is applied (15). 

 𝑑𝛾̇

𝑑𝑡
=

1

𝐺

𝑑𝜎

𝑑𝑡
+

1

𝜇
𝜎 

Equation 1.10 

 
𝜎 = 𝐺𝛾0𝑒

−
𝐺𝑡
𝜇  

Equation 1.11 

From Equation 1.11, the relaxation time, τ, of the system is can be defined in Equation 

1.12 (14). 

 𝜏 =
𝜇

𝐺
 Equation 1.12 

The stress relaxation time of a material is the time taken for the stress to relax to 1
𝑒⁄  

of its original value (2). 

During the oscillation of a single Maxwell element, the 𝐺’ and 𝐺’’ parameters can be 

determined as Equation 1.13 and Equation 1.14, where 𝜔 represents the angular 

frequency.  

 
𝐺′ =

𝐺(𝜔𝜏)2

1 + (𝜔𝜏)2
 

Equation 1.13 

 
𝐺′′ =

𝐺𝜏𝜔

1 + (𝜔𝜏)2
 

Equation 1.14 

The behaviour described by these two equations can be seen in Figure 1-8. The 

behaviour of the storage and loss modulus for a single Maxwell model describes the 

initial sections of the viscoelastic spectrum.  

Figure 1-7 A schematic diagram of a simple Maxwell model used to describe viscoelastic behaviour. Viscosity is 

represented by µ and G refers to the elastic modulus. 

μ 

G 
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The relaxation time of a single Maxwell element can also be determined graphically 

where 𝐺′ = 𝐺′′ (Figure 1-8). The angular frequency, ω, at the cross over point is 

related to the relaxation time as shown in Equation 1.15. 

1.7.2 Kelvin-Voigt Model 

A Kelvin-Voigt model represents typical viscoelastic solid behaviour. In a Kelvin-

Voigt model, the ‘spring’ and ‘dashpot’ components are arranged in a parallel 

configuration with the fixing remaining square at all times (Figure 1-9). In this 

arrangement, the strain in the spring is always equal to the strain in the dashpot (2). 

 

 

 

 

 

 

 
𝜔 =

1

𝜏
 

Equation 1.15 

Figure 1-8 shows the behaviour of 𝐺′ (blue) and 𝐺′′ (red) in a Maxwell system under oscillatory conditions. The 

cross over frequency (dashed line) can be used to determine the relaxation time of the material. 

L
o
g

 (
G

’ 
an

d
 G

’’
) 

Log(ω) 

Figure 1-9 A schematic diagram representing a Kelvin-Voigt Model used to describe viscoelastic behaviour. The 

elastic modulus is represented by G and µ refers to the viscosity of the sample. 

μ 

G 
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The forces being applied to the spring and the dashpot can be represented in Equation 

1.16 where 𝐺𝛾 signifies the force on the spring and 𝜇
𝑑𝛾

𝑑𝑡
 the force on the dashpot (14). 

 
𝜎 = 𝐺𝛾 + 𝜇

𝑑𝛾

𝑑𝑡
 

Equation 1.16 

The strain in the system can be described by (14): 

 
𝛾 =

𝜎0

𝐺
(1 − 𝑒

−(
𝐺
𝜇

)𝑡
) 

Equation 1.17 

The retardation time, 𝜏𝑟, is defined as: 

 𝜏𝑟 =
𝜇

𝐺
 Equation 1.18 

The total stress, 𝜎𝑇, for a Kelvin model is given as the sum of the individual stress in 

each element (2), such that; 

 𝜎𝑇 = 𝜎𝐸 + 𝜎𝑉 Equation 1.19 

The strain growth within a system fitting a Kelvin model is limited by the retardation 

time (2). Figure 1-10 shows the development of the stress over time (solid) for a Kelvin 

model as well as the instantaneous response of a Hookean spring (dashed). 

 

 

 

 

 

 

 

 

 

 

 

S
tr

ai
n
 

Time 

Figure 1-10 The retarded stress growth experienced by a system described by a Kelvin model. The instantaneous 

strain response experienced by a Hookean spring is also presented (dashed). 
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1.7.3 Burgers Model 

Burgers Model is a combination of both a standard Maxwell model and Kelvin Voigt 

model in a series configuration (Figure 1-11). 

 

 

 

 

 

 

 

By combining the mathematical equations outlined for the Maxwell and Kelvin-Voigt 

model, Burgers model can be described as in Equation 1.20 (8). 

 
𝛾 = 𝜎 (

1

𝐺1
+

1

𝐺2
(1 − 𝑒

−
𝐺

𝜇1
𝑡
) +

𝑡

𝜇2
) Equation 1.20 

In a creep experiment, once a stress is applied, the Maxwellian element within the 

Burgers model exhibits an elastic response whilst the Kelvin-Voigt element displays a 

delayed response as the spring is inhibited by the dashpot (1,8).  

1.8 Stress Relaxation Experiments 

Stress relaxation experiments require the sudden application of a constant strain before 

monitoring the resultant decay in stress with time (1), as seen in Figure 1-12. Whilst 

ideal Hookean solids do not undergo stress relaxation, viscoelastic solids may display 

only partial stress relaxation (9). For viscoelastic liquids that are capable of steady-

state shearing deformation, the stress will steadily decay if the flow is suddenly 

stopped and the stress may reduce completely to zero (21). For small deformation 

within the linear range, the stress relaxation modulus can be defined as  

 
𝐺(𝑡) =

𝜎(𝑡)

𝛾
 

Equation 1.21 

 

 

Figure 1-11 A schematic diagram of a Burgers Model used to represent the viscoelastic behaviour of a material. 

The viscosity of the sample is represented by µ and the elastic modulus is shown by G.  

μ2 

μ1 

G2 

G1 
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1.9 Small Amplitude Oscillatory Shear Experiments 

Small amplitude oscillatory shear (SAOS) is a popular method for assessing the linear 

viscoelastic behaviour of a material. It involves the application of sinusoidally varying 

perturbations (either stress or strain), whereas steady shear experiments are sheared in 

one direction.  

The microstructure of materials, such as gels, can be broken down by large amplitude 

oscillations. A benefit of using SAOS is that the microstructure of the sample material 

is not compromised (22). Stress controlled SAOS using a combined motor transducer 

(CMT) rheometer involves a sinusoidal stress waveform being applied to the sample 

with the upper geometry before the deformation response waveform is analysed at the 

same plate (9). In contrast, when conducting SAOS experiments using a separate motor 

transducer (SMT) rheometer, the strain input is applied at one plate, whilst the 

deformation output is measured at a second geometry (16). It is necessary to conduct 

SAOS experiments within the linear viscoelastic range (16), whereby the strain limit 

is not exceeded (23), to ensure that the microstructure of the gelling material is not 

compromised. 

1.10 Artefacts 

Rheological data suffers from inertial artefacts that are most apparent at high 

frequencies (24–27) and sample mutation at low frequencies (28,29). In order to 

Figure 1-12 Example of a step transient experiment with the resultant stress decay observed due to stress 

relaxation. A viscoelastic solid (VES) will relax to a plateau whereas a viscoelastic liquid (VEL) may decay to zero. 
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correct for inertial influences within CMT rheometer data, the Enhanced Rheometer 

Inertia Correction procedure was developed as discussed in Chapter 3.  

1.10.1 Inertial Artefacts 

Inertia artefacts can cause erroneous data collection using CMT systems due to the 

design of the rheometer. The instrument is required to move (i) the sample under 

investigation and (ii) the rheometer motor, geometry and spindle which all contribute 

to the total torque. It is not the same case for SMT rheometers, as the torque sensing 

element does not move, resulting in no instrument inertia artefacts as the torque is 

determined independently of the motor (30).  

Low viscosity fluids, such as weak gelling systems, are particularly susceptible to 

inertial artefacts (25,26,31). Above the resonant frequency, the 𝐺’ values errors 

reported for viscoelastic gels can increase quadratically (24). In the context of gelling 

materials, inertial artefacts are most dominant when gel networks with weak structures 

are subjected to high frequencies (24–27). To avoid the exaggerated response caused 

by instrument inertia, the material torque, 𝑀𝑚, must exceed the torque required to 

operate the instrument, 𝑀𝑖, (Equation 1.22) (31). The loss modulus, 𝐺”, is unaffected 

by the presence of instrument inertia.  

 𝑀𝑚 > 𝑀𝑖 Equation 1.22 

The 𝛿𝑟𝑎𝑤 is a measure of the phase shift between the displacement and the torque 

signals measured by the instrument (32) where 𝛿𝑟𝑎𝑤 < 180° (31). It is often used as 

an indication of the extent to which the inertial artefacts pollute the raw data. 

Instrument manufacturers recommend caution where the raw phase angle exceeds 

150° (9,31,32). Since the phase angle for a viscoelastic material is in the range of 0° <

𝛿 < 90°, any reported 𝛿𝑟𝑎𝑤 > 90° must contain an inertial artefact element (31). 

To correct for the effects of inertia caused by the rheometer itself prior to each 

experiment, a standard inertia calibration (SIC) procedure is required. The procedure 

involves calibrating the system without the presence of a sample so that the geometry 

inertia and instrument inertia can be determined. The software used to control the TA 

Instruments CMT rheometers, TRIOS, uses the calibrated values to routinely apply an 

inertia correction to the reported storage modulus (𝐺’𝑟𝑎𝑤), such that 

 𝐺′ = 𝐺′𝑟𝑎𝑤 − 𝐼𝑐𝜔2𝑘𝑔 Equation 1.23 
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where 𝐼𝑐 denotes a calibrated Inertia Constant and 𝑘𝑔 a geometry factor (32). It is only 

possible to determine the inertia constant to a finite precision, resulting in some 

uncertainty regarding the accuracy of 𝐺’ extracted from the raw waveforms where a 

substantial proportion of the 𝐺’𝑟𝑎𝑤 term is dominated by a large 𝐼𝑐𝜔2𝑘𝑔 term.  

1.11 Loss and storage moduli 

1.11.1 Storage Modulus 

The storage modulus, 𝐺’, can be described as the magnitude of the stress in-phase with 

the strain (33) and is a measure of the solid like response (recoverable energy) due to 

deformation of the material (1) (Equation 1.24). When 𝛿 = 0°, 𝐺’ is equal to the 

complex modulus, 𝐺∗. 

 𝐺′ =
𝜎0

𝛾0
cos(𝜔𝑡) Equation 1.24 

1.11.2 Loss Modulus 

The loss modulus, 𝐺’’, quantifies the component of stress which is 90° out of phase 

with the applied stress waveform (33) and is defined as the measure of the energy 

dissipated by the material in a single oscillation (Equation 1.25).  

1.11.3 Complex Modulus 

The complex modulus, G*, is defined as the overall resistance of a material to 

deformation (34) and can be calculated as the ratio of peak stress, σ0, and peak strain, 

γ0.  

Alternatively, it may be calculated from real and imaginary parts of the response 

(𝐺’ and 𝐺’’ respectively) as: 

1.11.4 Loss tangent 

The loss tangent shown in Equation 1.28 can be used as a measure of the ratio of energy 

lost to energy stored in a cyclic deformation (21). From the storage and loss moduli, 

the loss tangent of a material can be defined as an alternative method for determining 

δ as seen in Equation 1.16. Previous studies (35,36) have used 𝑡𝑎𝑛𝛿 = 1 to estimate 

the GP at the point at which 𝐺’ = 𝐺’’. This is not feasible as the cross over between the 

 

 
𝐺′′ =

𝜎0

𝛾0
sin (𝜔𝑡) Equation 1.25 

 𝐺∗ =
𝜎0

𝛾0
 Equation 1.26 

 𝐺∗ = 𝐺′ + 𝑖𝐺′′ Equation 1.27 
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𝐺’(𝑡) and 𝐺”(𝑡) moduli cannot be applied to all polymer networks. For a gelling 

materials, 𝐺’ and 𝐺’’ scale as identical power laws with respect to frequency, 

𝐺′~𝐺′′~𝜔𝛼, where 0 < 𝛼 < 1 (37). 

 
tan(𝛿) =

𝐺′′

𝐺′
 Equation 1.28 

1.11.5 Viscoelastic spectrum 

 The viscoelastic master curve shown in Figure 1-13 is representative of viscoelastic 

fluid behaviour over a wide frequency range, usually in the range of 0.1 to 100 rad s-1 

(16). The regions within the plot are defined as the ‘viscous/terminal’ region, 

‘transition to flow’ region, ‘rubbery/plateau’ region, ‘leathery/transition’ region and 

the ‘glassy region’ as the frequency range increases (1). Although material specific, 

many frequency sweep experiments are conducted in the highlighted region. Though 

for most materials it is not possible to observe all of the regions in Figure 14, it is 

possible to extend the range of the viscoelastic data available using time-temperature 

superposition (TTS). TTS combines the materials viscoelastic properties (for almost 

exclusively amorphous polymer melts) obtained at varying temperatures and allows 

measurements over a wide range of frequencies by means of a scale change to build a 

master curve (38). 

 

 

 

 

 

 

 

 

 

 

Figure 1-13 The viscoelastic spectrum for non-Newtonian liquids representing both the storage, 𝐺′, (in red) and 

loss, 𝐺", (in blue) moduli through the defined regions. 



16 

 

The ‘viscous region’ is experienced by all materials as fluids exhibit viscous flow and 

solids display creep behaviour (1). Both 𝐺’ and 𝐺” initially increase with frequency 

and 𝐺’ is dominant. Due to the inverse relationship between frequency and time, at low 

frequencies (and therefore long times), liquid-like behaviour is observed (16,39). The 

viscous region of the spectrum can be described by a simple Maxwell model (15). 

Once in the ‘transition to flow region’, 𝐺” and 𝐺’ cross over. The cross over in 𝐺’ and 

𝐺” is sometimes analysed to determine the longest relaxation time (1).  

In the ‘rubbery/plateau region’, the elastic behaviour of the material is dominant as 

there is a constant increase in the 𝐺’ component whilst 𝐺” falls to a minimum before 

increasing again. The ‘plateau’ refers to the flat nature of the 𝐺’ modulus within the 

frequency range. In this region, materials exhibit a more elastic, rubbery response. 

The penultimate region in the viscoelastic spectrum is termed the ‘leathery region’. In 

this regime, a second, higher, crossover between the 𝐺’ and 𝐺” components can be 

observed. The material in question would be ‘leathery’ to touch as it displays more 

solid-like behaviour than in previous lower frequency regions. As a result of the high 

frequency relaxation and dissipation mechanisms of the material, the 𝐺” component 

increases faster than the 𝐺’ value (1).  

Finally, the moduli pass into the ‘glassy region’ where 𝐺” continues to increase further 

as frequency increases. The solid-like behaviour observed in the ‘leathery’ and ‘glassy’ 

higher frequency (and short time) regions (16,39) can be described using a Kelvin-

Voigt Model (15). At high frequencies within the glassy region, polymers begin to 

exhibit a more crystalline structure (2) and as a result ‘glassy behaviour’ is observed. 

1.12 Rheometers 

For the TA Instruments AR-2000ex, AR-G2 CMT and ARES-G2 SMT rheometers 

used throughout the work presented herein, there are a large variety of geometry set 

ups available. The geometry selected is based upon the test material properties. 

1.12.1 Combined Motor Transducer Rheometers 

For combined motor transducer (CMT) rheometers, the instrument is required to both 

accelerate the moving components of the rheometer whilst also deforming the sample 

under investigation. For the work presented herein, studies were conducted using both 

AR-2000ex and AR-G2 CMT rheometers (both TA Instruments). CMT rheometers, 
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also referred to as stress controlled rheometers, are susceptible to inertial artefacts in 

weak gel or low viscosity systems due to the design of the instrument (25), as discussed 

in Chapter 3.  

The key components are housed within the aluminium structure of the rheometer head. 

A schematic diagram of the discussed components can be seen in Figure 1-14. The 

drag cup drive motor [4] present in the TA Instruments AR-2000ex and AR-G2 

rheometers is non-contact which ensure that the torque to inertia ratio is low (39). The 

motors are capable of providing a torque range covering 0.1 μN.m to 200 mN.m (40) 

which allows analysis of a wide range of materials from low viscosity samples to solids 

(39–41). By avoiding the use of permanent magnets, errors associated with residual 

torques are eradicated (40). 
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The frictionless, porous carbon air bearings [3] in the AR 2000ex rheometer result in 

low levels of residual torque which is corrected during the Rotational Mapping 

calibration procedure (40).  To prevent error due to axial force, the AR2000ex air 

bearing is ultra-stiff (41). By comparison, the AR-G2 rheometer contains a magnetic 

bearing [3] (42). Electromagnetic actuators are positioned above and below an iron 

thrust plate and the current is varied to maintain the position of the bearing (42).  

For CMT rheometers, the angular deflection is recorded by the optical encoder [2] 

which analyses small displacements (strain output) with high resolution ensuring that 

measurements can be obtained at low and high shear rates (40,41). 

[1] – Draw rod spindle 

[2] – Optical encoder 

[3] – Air/magnetic bearings 

[4] – Drag cup motor 

[5] – Smart SwapTM base 

[6] – Normal force transducer 

2 2 

3 

1 

3 

4 4 

3 3 

5 

6 

Figure 1-14 A schematic diagram of a combined motor transducer (CMT) rheometer. The individual components 

are described by the attached key. 
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The geometry required for each experimental procedure is attached to the CMT 

rheometers via the draw rod [1]. The head of the instrument is controlled using a linear 

ball slide (39–41). It is possible to automatically set the required gap using the 

rheometer software. A vital part of the standard calibration procedure requires ‘zero 

gapping’ of the instrument. To achieve this, the normal force is monitored by the 

normal force transducer [6] with ‘zero gap’ being identified upon a sudden increase in 

the normal force (39). The desired temperature control accessory, for example, a 

Peltier plate, may be attached to the rheometer via a patented Smart Swap™ system in 

the base of the rheometer (40). 

1.12.2 Separate Motor Transducer Rheometers 

Several studies reported in this thesis required the use of a separate motor transducer 

(SMT) ARES-G2 rheometer (TA Instruments). The design and data acquisition 

methods differ from those outlined for CMT rheometers in Section 1.12.1. The 

transducer is separate from the moving components of the rheometer, as seen in Figure 

1-15. During data acquisition, the torque sensing element remains static (43) such that 

SMT rheometers are not subject to instrument inertia artefacts. 
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1.12.3 Peltier Plate 

Peltier plates are a typical temperature control system (Figure 1-16) employed with 

cone and plate, parallel plate and concentric cylinder geometries. The system uses the 

Peltier thermoelectric effect [3] to rapidly and accurately control heating and cooling 

of the plate surface (44). The direction of the current applied between the 

semiconductors results in either heating or cooling of the Peltier plate (14). Peltier 

plate systems suitable for use with AR-2000ex and AR-G2 rheometers can operate in 

the range of -20 °C up to 200 °C accurate to ± 0.1 °C (39,41). A platinum sensor [2] 

is required in the centre of the set up to ensure ease of measurement and control. The 

Figure 1-15 A schematic diagram of a separate motor transducer (SMT) rheometer. The motor and the torque 

sensing element are separate therefore eliminating inertial artefacts from the system. 
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[1] – Force rebalance and 

magnetic suspension 

[2] – Torque and normal force 

rebalance motor and electronics 

[3] – Radial air bearing 

[4] – Geometry mounts 

[5] – Thrust air bearing 

[6] – Motor 

[7] – Optical encoder 

[8] – Temperature sensor  

3 
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chrome surface [1] of the Peltier plate is ideal for use with biological samples as the 

surface is resilient and easy to clean. A separate water bath is required to ensure that 

the Peltier system does not overheat over long periods of continuous use.  

 

 

 

 

 

 

 

 

 

 

 

 

1.12.4 Loading Criteria 

1.12.4.1 ‘Gap Loading’ Criterion 

Sample inertia can be considered negligible by ensuring that the ‘gap loading’ criterion 

is met (45). The velocity gradient across the geometry is treated as uniform throughout 

the sample material if the density of the sample is small compared with 
𝐺′

𝑑2𝑓2 where d 

is the shearing gap and f is the oscillating frequency, thus satisfying the ‘gap loading’ 

criterion. (15,21,45). Shearing gaps should be 𝑑 < 2𝑚𝑚 (15). To satisfy the criteria, 

the studies presented herein used gaps that were carefully considered to ensure that an 

appropriate shearing gap was used for the materials being tested. 

1.12.4.2 ‘Surface Loading’ Criterion 

The ‘surface loading’ limit requires the volume of solution in contact with the driven 

surface to be sufficiently large in order to prevent interference from shear waves 

reflected from other boundaries (45). For viscoelastic materials, the shearing gap is 

Figure 1-16 A schematic Peltier plate set-up commonly used with combined motor transducer (CMT) rheometers. 

The individual components of the system are described in the adjoining key. 

1 – Chrome Peltier plate surface 

2 – Platinum temperature sensor 

3 – Peltier elements 

4 – Heat exchanger 

5 – Smart SwapTM base 
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required to be sufficiently large so that the amplitude of the waveform becomes 

negligible before the opposite surface is reached (21). If the ‘surface loading’ limit is 

not met, the inertial effects present within the sample are dominant (45). 

1.12.5 Geometries 

In combination with the rheometers and Peltier plate accessory systems outlined in 

Section 1.12, a well-defined sample geometry must be used for rheological tests to 

ensure shear rate and strain parameters are correctly identified. Geometries vary in size 

and material, dependent on the samples being tested. Typically, upper geometries are 

available in stainless steel, titanium, aluminium and acrylic (40) in 20 mm, 40 mm, 50 

mm and 60 mm diameters (9,39,41).  

The stress wave may be applied in the form of torque which is then converted back to 

stress by the instrument. This conversion can be seen in Equation 1.29, where 𝑀 

represents the torque input, 𝑟 the position vector from the origin and 𝐹 the force. The 

torque input is a measure of the force causing rotation within the sample material.  

 𝑀 = 𝑟 × 𝐹 Equation 1.29 

The shear stress in the system can be defined using Equation 1.30, where 𝜎 represents 

the shear stress, 𝑘𝜎 is the conversion factor, 𝑟 is the radius of the geometry and 𝑀 the 

torque element. The conversion factor is dependent on the type of geometry used (i.e. 

parallel plate and cone-and-plate). The torque conversion factor for parallel plate 

systems is geometry dependent due to the 𝑟3 term (9).  

1.12.5.1 Cone and plate 

A range of cone and plate geometries are available for use with the AR2000ex and 

AR-G2 rheometers. Typically cone geometries have small angles between 0.5° and 4° 

(41). Due to the truncation gap between the Peltier plate and the cone geometry 

(highlighted in red in Figure 1-17), the samples being tested should be single phase 

and homogenous (44). The truncation gap should be greater than or equal to ten times 

the size of the particles present (9) to avoid them becoming trapped between the 

shearing surfaces (1). As the viscosity of the test material decreases, the diameter of 

the geometry employed generally increases. The velocity profile of a cone and plate 

geometry can be seen in Figure 1-18. The velocity gradient across the sample remains 

 
𝜎 =

2

𝜋𝑟3
𝑀 = 𝑘𝜎𝑀 Equation 1.30 
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constant as a function of distance from the axis of rotation, resulting in a uniform strain 

rate (1,9).  

 

 

 

 

  

   

1.12.5.2 Parallel plate 

A parallel plate system consists of two horizontal parallel geometries of radius, 𝑟, and 

gap, 𝑑, as seen in Figure 1-19. Parallel plate geometries are typically used in 

conjunction with Peltier plates to allow temperature control of the test samples. In 

contrast to the cone and plate system described above, parallel plates can be used to 

analyse materials containing larger particles but the chosen geometry gap should be at 

least ten times larger than the size of the largest particles present to ensure that the 

microstructure of the sample is not compromised (9). For low viscosity samples, a 

large diameter plate can be used, but as the viscosity increases, the size of the plate 

should be decreased in order to work with appropriate experimental conditions. The 

sample is loaded between the plates before a stress is applied (8) and, unlike the cone 

and plate geometry system, the applied strain rate is not uniform across the diameter 

of the parallel plate geometry (44). The gap chosen should satisfy the Schrag ‘gap 

loading’ criterion (Section 1.12.4.1) to ensure the velocity gradient across the gap is 

uniform, which renders any sample inertia effects negligible (45). Benefits of parallel 

plate geometries are that a small volume of sample is required compared with 

concentric cylinder geometries and they can be used over a wide range of viscosities 

(9).  

 

Figure 1-17 A schematic diagram of a cone and plate rheometer geometry set up with radius, 𝑟, gap, 𝑑 and angle, 

𝜃. The truncation gap is highlighted in red. 

Figure 1-18 Velocity profile across a cone and plate geometry with an upper moving plate and a lower stationary 

plate (15). 
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1.12.5.3 Double gap concentric cylinders 

Double gap concentric cylinders employ a ‘bob’ and ‘cup’ design with the sample 

placed in the void between the shearing surfaces, as seen in Figure 1-20. The area of 

the shearing surface is much greater than that of the parallel plate or cone and plate 

systems and therefore the volume of test material is greater (46). This type of geometry 

is often used for very low viscosity samples that would not be retained in a parallel 

plate or cone and plate set up (16). With narrow gap concentric cylinder set ups, the 

shear rate across the sample is nearly uniform (1,46). 

 

 

 

 

 

 

 

 

 

1.13 Gelation and the Gel Point  

Applications of GP analysis for physical and chemical gels are widespread as 

discussed in many example studies (6,47–50). A material undergoing gelation passes 

through a sol-gel transition (51,52), with the specific gel point (GP) information 

Figure 1-19 Schematic diagram of a parallel plate geometry system with radius, 𝑟, and gap, 𝑑. 

Figure 1-20 Double Gap Concentric Cylinder setup. The radius of the cup is shown as 𝑟1, the radius of the geometry 

as 𝑟2 and the height of the sample as ℎ. 
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available for analysis of the evolving material microstructure (53,54). Gelation occurs 

when the number of intermolecular interactions within the polymer has exceeded the 

critical extent of reaction (55).  

A critical gel can be defined as a real sample that is arbitrarily close to the GP but is 

neither a viscoelastic liquid or viscoelastic solid by nature (56). For a critical gel, the 

viscoelastic response at the GP can be defined as the Winter-Chambon gel equation 

(36,57,58), such that: 

 
𝝉𝒔(𝑡) = 𝑆 ∫ (𝑡 − 𝑡′)−𝛼𝜸̇(𝑡′)𝑑𝑡′

𝑡

−∞

 Equation 1.31 

Where 𝜏𝑠 is the stress tensor, 𝑆 and 𝛼 are material properties and 𝛾̇ is the deformation 

rate (58). The GP cannot be defined as the crossover of the 𝐺’(𝑡) and 𝐺”(𝑡) moduli as 

it is not applicable to all polymer networks. At the GP of a gelling material, the storage 

and loss moduli scale as identical power laws with respect to frequency, such that 

𝐺′~𝐺′′~𝜔𝛼 with the conditions that 0 < 𝛼 < 1 (37). In such a circumstance, SAOS 

can be used to identify the GP from the loss tangent (53) (Equation 1.28) which is 

frequency independent and can be related to the stress relaxation component, α, at the 

GP using Equation 1.32 (59).  

 
𝛼 =

2𝛿

𝜋
 Equation 1.32 

As seen in Equation 1.32, the stress relaxation component follows a power law (56,60), 

the measurement of which is limited by sample mutation (28) and inertial artefacts. 

The gel strength is represented by S and 0 < α < 1 remains true. 

The transition between viscoelastic liquid and viscoelastic solid occurs at a critical 

time, 𝑡𝑐, or extent of cross-linking, 𝑝𝑐  (56). As seen in Figure 1-21, the conversion of 

the sol to gel increases as the relaxation modulus decreases, resulting in longer 

relaxation times. At the GP, the relaxation time diverges to infinity (56). 

 

 

 𝐺(𝑡) = 𝑆𝑡−𝛼 Equation 1.33 
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It is advantageous to obtain GP data using SAOS as it is appropriate for transient 

materials. An example of a GP obtained using a standard SAOS procedure can be seen 

in Figure 1-22. It is possible to access the stress relaxation exponent using this 

technique using the phase angle reported at the GP, 𝛿𝐺𝑃. 

 
𝛼 =

𝛿𝐺𝑃

90
 Equation 1.34 

 

 

 

 

 

 

Figure 1-21 The relaxation spectrum of a linear viscoelastic sample undergoing oscillatory shear. The GP is 

defined as the critical extent of cross linking, 𝑝𝑐, whilst the pre-gel and post-gel regimes shown in blue and red, 

respectively. 
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1.13.1 Cluster Aggregation  

1.13.1.1 Percolation Theory 

Flory and Stockmayer developed a classical theory for gelation in the early 1940’s that 

allows prediction of the point of gelation based on polymerisation of monomers and 

the model is not limited to stoichiometrically balanced conditions (55,61). This theory 

has been further developed to describe gelation of a polymer using percolation theory. 

Percolation theory can be explained by considering a lattice in which the squares are 

independently either ‘occupied’ or ‘empty’ regardless of the nature of neighbouring 

squares (62). Clusters of ‘occupied’ squares are formed based on the probability, 𝑝𝑜, 

of occupation (63). Each square can be assumed to represent a small monomer and a 

number of joined occupied squares can be assumed to be a cluster (Figure 1-23 (63)). 

The percolation threshold, 𝑝𝑐, is defined as the probability at which there is initial 

formation of an infinite cluster within an infinite lattice (64). 

 

 

 

 

 

Figure 1-22 An example 2.5 wt% gelatin GP obtained using a SAOS procedure employing four frequencies to 

determine the frequency independent GP. The reported phase angle can be used to determine the stress relaxation 

exponent. 
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The site percolation model described above defines a static model and does not 

incorporate cluster movement. Models that describe cluster-cluster aggregation are 

dynamic and allow for the movement of clusters, as discussed in the following 

sections. 

1.13.1.2 Diffusion-limited cluster aggregation  

Diffusion-limited cluster aggregation (DLCA) is based on the idea that each initial 

interaction between clusters results in the formation of a permanent bond (22) and all 

particles are simultaneously activated (53). Many studies have been conducted in the 

area of diffusion-limited aggregation and the technique has been applied to several 

materials, including colloids and biopolymers (65–69). The clusters of aggregates 

grow in size immediately after a collision occurs with an individual, randomly moving 

particle (70). When two clusters combine, they become a single mass that can associate 

with further clusters. Because of this immediate association between clusters, the 

sticking probability, 𝑝𝑠, is assumed to be equal to one (𝑝𝑠 = 1) in a DLCA regime 

(71). The immediate agglomeration of the clusters leads to an open network structure 

as the bonds formed are irreversible. The fractal dimension, 𝑑𝑓, can give an indication 

of the structure of the network with a typical 𝑑𝑓 value reported for a network formed 

by DLCA in the range of 1.7 ≤ 𝑑𝑓  ≤ 1.9 (22,71).  

1.13.1.3 Reaction-limited cluster aggregation 

If the monomers in a system do not react on the first interaction, it is possible for them 

to bond in alternative locations rather than the extremities of the growing cluster 

causing a denser network to form (22).  This model is referred to as reaction-limited 

Figure 1-23 a) shows an empty lattice where all of the squares are unoccupied and no clusters have formed and 

b) represents the formation of clusters (a presence of more than one dot in adjoining squares). Single dots 

surrounded by empty squares are not considered to be clusters. Clusters are circled in red. 

a) b) 



29 

 

cluster aggregation (RLCA). An RLCA regime is slower to form a network than 

DLCA due to a slower rate in cluster growth (66). By comparison to DLCA, the 

clusters in RLCA systems must further interact with large numbers of collisions before 

a permanent association if formed (72). As the mass of the cluster formed increases, 

the number of potential bonding sites also increases which results in larger clusters 

growing faster than smaller ones (66). The sticking probability, 𝑝𝑠, of the respective 

clusters is assumed to be much smaller than one (𝑝𝑠 ≪ 1) in an RLCA regime (71). 

The fractal dimension, 𝑑𝑓, for RLCA is ≈ 2.0 – 2.1 (22,66,71–73). 

1.13.1.4 Activation-limited aggregation 

Curtis et al. proposed an alternative aggregation model that incorporates an activation 

profile for the rod-like monomers in incipient blood clots to determine the effect on 

the fractal dimensions reported at the GP (53). This model is referred to as activation-

limited aggregation (ALA). The work was conducted to model incipient blood clot 

formation in an attempt to explain the fact that fractal dimension of incipient blood 

clots decreases with increasing gel time, conversely to that expected from a transition 

from DLCA to RLCA mechanisms. It has been shown that slower theoretical  RLCA 

models report higher 𝑑𝑓 values for the incipient gel (66), whereas previous rheological 

studies conducted reported lower 𝑑𝑓  values for whole blood (74) and fibrin gels  

(18,75). The number of active clusters in the fibrin-thrombin gels increases with the 

progression of the thrombin concentration, which is characterised by the inclusion of 

the activation profile in the model (53). 

1.14 Rheometry for Gel Point Detection 

The work presented in this thesis requires the use of standard SAOS experiments as 

described in Section 1.9. Alternative rheometric techniques for the detection of the GP 

include Fourier Transform Mechanical Spectroscopy (FTMS) and Optimal Fourier 

Rheometry (OFR).  

FTMS combines several constituent harmonic frequencies into a composite waveform, 

with resulting data being studied individually using Fourier analysis (7). The technique 

is advantageous for studying rapidly gelling systems as it dissociates the frequency 

and time dependence of the fluid characteristics to obtain data at multiple frequencies 

concurrently as the microstructure evolves with time (76). As the technique is based 

upon the Boltzmann Superposition Principle, higher stresses are observed as the stress 
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for each frequency is combined, resulting in the linear viscoelastic limit for weak 

gelling systems being exceeded (18). 

A later study conducted by Curtis et al. showed the development of the OFR technique, 

which can also be used for the characterisation of rapidly gelling systems by 

employing a frequency modulated (chirp) waveform (77). OFR results in an increased 

number of data points in comparison with FTMS, so whilst there is strong agreement 

between the two techniques, the OFR GP is determined to a greater degree of precision 

(77). The technique lends itself to biopolymers, such as collagen, undergoing gelation 

at physiologically relevant conditions. 

1.14.1 Sample Mutation Artefacts 

To assess the potential artefacts within a gelling system associated with evolving 

rheological properties, the sample mutation criterion can be employed. Winter’s 

sample mutation number, 𝑁𝑚𝑢, can be calculated using Equation 1.35 (28,78), where 

∆𝑡 refers to the acquisition time of the data point in question (28).  

Sample mutation data should be assessed and discarded if found to exceed 𝑁𝑚𝑢 >

0.15 (28). The dimensionless mutation number is calculated using the lowest 

frequency 𝐺’ response.  

 
𝑁𝑚𝑢 =

∆𝑡

𝐺′

𝑑𝐺′

𝑑𝑡
 Equation 1.35 
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 Materials 

2.1 Gelatin 

Gelatin is a natural biopolymer manufactured by the denaturation of collagen (47) from 

animal tissues by hydrolysis (79) and has common uses in the food and pharmaceutical 

industries (80,81). The viscoelastic and thermoreversible properties of gelatin are the 

result of the formation of an extensively cross-linked network (82–85). At low 

temperatures, the polymer chains form a triple helix structure (83,86,87) which 

produces a 3D gel network in line with gelation described by percolation theory (88). 

The thermoreversible nature of gelatin, due to the presence of weak hydrogen and van 

der Waals forces (86,89), has been comprehensively studied (47,48,57,84). The 

evolving viscoelastic properties of gelatin undergoing a sol-gel transition can be 

effected by temperature and concentration (90). Gelatin displays near Newtonian 

properties at temperatures exceeding the maximum gelation temperature of 33.6°C 

(84). The formation of a gel network at temperatures below the maximum gelation 

temperature makes gelatin an ideal gelling system for the validation of novel 

rheometric procedures (18,38,91). 

2.2 Blood 

Human blood is responsible for the transport and circulation of nutrients required for 

cell metabolic activities and gases, such as oxygen and carbon dioxide, around the 

body (92). Whole blood consists of red blood cells (RBCs), white blood cells (WBCs), 

platelets and other cellular elements suspended in plasma (11). It displays the 

behaviour of a non-Newtonian shear thinning fluid at the low shear rates associated 

with venous flow (< 50 s-1) (93,94). The presence of RBCs (erythrocytes) within whole 

blood are responsible for the shear thinning properties observed rheologically (93).  

RBCs are biconcave in shape with a diameter of ~ 8 μm (95) and a thickness of ~ 2 

μm (96). The fraction of the total volume of blood sample occupied by RBCs is 

referred to as the haematocrit. The haematocrit and the viscosity of the plasma are 

responsible for the overall viscosity of blood (93). Human blood has a unique 

haematocrit dependent critical stress, the yield stress, below which it will not flow. 

This is due to the stacking of the RBCs present in the blood, causing a three 

dimensional rouleaux formation (97). At low shear rates, measurement of the yield 

stress is influenced by the separation of blood into plasma and cell aggregates (98). 
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Therefore, rheological models cannot be used to accurately describe the impact of 

haematocrit on the yield stress (99). 

2.2.1 The coagulation cascade 

Haemostasis requires (i) initially stopping the bleeding at the injury site and (ii) fibrin 

network formation (100) which stabilises the clot. The coagulation cascade is triggered 

upon vascular injury which exposes blood to the extravascular tissue (101). It involves 

a series of pro- and anticoagulant enzyme activation events that result in the activation 

and subsequent polymerisation of soluble fibrinogen monomers to insoluble fibrin and 

formation of an incipient fibrin clot network (53,102). Clots are formed from soluble 

fibrinogen (also referred to as Factor I) and thrombin that is generated from 

prothrombin (Factor II) produced in the liver, to form insoluble fibrin strands that aid 

haemostasis and prevent blood loss (103,104). 

The clotting process initially follows either the extrinsic or intrinsic pathways with the 

latter stages following a common pathway that results in a blood clot (Figure 2-1). The 

extrinsic pathway, or tissue factor (TF) pathway (102), is activated by the presence of 

TF, which is discharged from endothelial cells due to vascular damage. The TF 

activates enzymes present in the blood resulting in coagulation (104). The intrinsic 

pathway, or contact pathway, is triggered without TF coming into contact with the 

blood or plasma (102). It follows a similar route to the extrinsic pathway but is initiated 

by the activation of Factor VII (105) rather than contact between TF and the enzymes 

within blood. The intrinsic pathway is not considered to be a parallel pathway in 

comparison to the extrinsic pathway. However, both converge to follow a common 

pathway, resulting in a platelet plug and eventual clot formation (104). 
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2.2.1.1 Tissue Factor 

Tissue Factor (TF) is a protein found in the subendothelial cells that initiates the 

extrinsic clotting cascade by acting as a transmembrane receptor for clotting Factors 

VII and VIIa, forming the complex TF-VIIa (106,107). The TF-VIIa complex formed 

due to vascular injury leads to the activation of further factors that convert prothrombin 

to thrombin, resulting in the formation of an insoluble fibrin network clot (108). 

2.2.1.2 Fibrinogen 

Fibrinogen (Factor I) molecules are large complex hexameric glycoproteins, with a 

mass of 340 kDa and length of 46 nm (103,109,110). Each protein is comprised of two 

sets of three different polypeptide chains (Aα, Bβ and γ) connected by 29 disulphide 

cross-links (111–113), as shown in Figure 2-2. It is the third most common protein 

found in human plasma (110).  

Figure 2-1 The clotting cascade. The clotting process follows either the extrinsic (shown in blue) or intrinsic 

pathway (shown in red) depending on the initiating stages. Both the intrinsic and extrinsic pathways follow the 

common pathway (shown in yellow) to form a fibrin network that results in haemostasis. 
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The fibrinogen concentration in plasma for healthy patients is 2 mg ml-1 ≤ [fibrinogen] 

≤ 5 mg ml-1 (110–112). Fibrinogen concentrations can be increased under pathological 

conditions such as infection (114), injury (115) and can be as high as 7 mg ml-1 due to 

acute inflammation (112). It has been reported that fibrinogen levels within the blood 

are increased during the final trimester of pregnancy (116,117). On the contrary, acute 

trauma can depress the fibrinogen concentration level present in the blood to a critical 

level of ≤ 1 mg ml-1, affecting haemostasis and increasing the risk of haemorrhage 

(118,119). 

2.2.1.3 Thrombin 

Thrombin is responsible for the conversion of fibrinogen to a fibrin network by 

proteolysis (120). The prothrombin (Factor II) zymogen present is activated to give 

thrombin (Factor IIa) (121). Small amounts of thrombin initiate the coagulation 

cascade by activating platelets, converting the fibrinogen present to fibrin and 

moderating the production of Factor XIIIa that is responsible for the cross-linking 

between the fibrin polymers to strengthen the clot (101,107,122). As the final enzyme 

in the cascade, thrombin is generated in two phases of varying magnitude, with the 

initial small spike in thrombin preparing the coagulation cascade for a greater thrombin 

burst (123). The peak volume of thrombin produced is post-fibrin clot formation 

(101,111). It is possible for thrombin to convert 105 times its own weight in fibrinogen 

to fibrin which suggests that it is catalytic in the clotting process (124). Increased 

thrombin concentrations lead to decreased clotting time as thrombin behaves as a 

modulator during fibrin gel formation (120). The immediate lysis of the clot is 

prevented due to the presence of thrombin activated inhibitors (125). 

D D 
E 

Figure 2-2 A simplified tri-nodular fibrinogen protein molecule with a central E nodule and two distal D domains. 

The fibrinopeptides A (FPA – blue triangles) and B (FPB – red circles are cleaved away from the fibrinogen 

molecule by the thrombin present, allowing the fibrinogen to bind with an A or B binding site on an alternative 

fibrinogen D nodule. 
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2.3 Fibrin Gels 

2.3.1 Fibrinogen polymerisation 

Once a clot is fully formed, the final volume of fibrin present comprises 0.25% of the 

total volume of the clot with liquid pervading the other, much larger, fraction between 

the polymer strands (126).  

Initially in fibrinogen polymerisation (Figure 2-3), fibrinopeptide A (FPA) are 

preferentially cleaved from the E domain before the fibrinopeptide B (FPB) allowing 

the D domain of alternative fibrinogen molecules to form protofibrils which support 

lateral associations that contribute to the clot network (127,128). Cleaving FPA and 

FPB from the fibrinogen monomer exposes ‘A’ and ‘B’ sites that allow the 

corresponding ‘a’ and ‘b’’ pockets on the β and γ nodules to bind, resulting in 

polymerisation (110,111). In order for polymerisation to be successful, consecutive 

fibrin ‘a’ pockets must not be defective as it has been suggested that A:a interactions 

are essential for fibrin polymerisation (128). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-3 The conversion of fibrinogen to a fibrin network due to the presence of thrombin. Initially, the FPA 

(blue triangles) are cleaved from the E domain of each fibrinogen protein. The FPB (red circles) are also split from 

the fibrinogen protein to form the fibrin network by lateral aggregation of the protofibrils. Reproduced from A. S. 

Wolberg, “Thrombin generation and fibrin clot structure,” Blood Rev., vol. 21, no. 3, pp. 131–142, 2007 © 2007 

with permission from Elsevier Ltd. 
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The cross linking between the protofibrils to form the gel network are due to 

transglutaminase (Factor VIII) activation resulting in a more stable clot (129). A high 

density of crosslinks between the fibrin protofibrils has a dramatic effect on the 

viscoelastic properties and mechanical strength of the final clot as the stiffness is 

increased, meaning that irreversible deformation is almost disregarded (126).  

At low thrombin concentrations, fibrin networks are formed from thicker fibres with 

few branch points due to the lateral aggregation between the protofibrils (130). The 

clotting time for fibrin gels with the inclusion of a low thrombin concentration is much 

slower than of those with high thrombin concentrations (75). At higher thrombin 

concentrations, the fibres are thinner with much denser branching as the conditions 

inhibit the lateral aggregation of the protofibrils, resulting in a much denser final 

network microstructure (126). Examples of fibrin networks formed for both high and 

low thrombin concentrations can be seen in Figure 2-4.  

 

 

 

 

 

 

 

 

 

 

Figure 2-4 SEM images obtain of fibrin clots from recalcified plasma at a) a low thrombin concentration and b) a 

high concentration. At low thrombin concentrations, the fibres formed are thick with few branch points whereas at 

high thrombin concentrations, the fibres produced are much thinner with many branch points. The scale bar shows 

5 μm and is applicable to both images. Reprinted from J. W. Weisel, “The mechanical properties of fibrin for basic 

scientists and clinicians,” Biophys. Chem., vol. 112, no. 2-3 SPEC. ISS., pp. 267–276, 2004. © 2004 with 

permission from Elsevier Ltd. 
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2.3.1.1 Fibrinolysis 

The fibrin clots formed during haemostasis are broken down by enzymes during 

fibrinolysis. The fibrin network is broken down by the presence of plasmin produced 

by the proteolysis of plasminogen (131). The plasminogen is activated by tissue-

plasminogen activator (tPA) (121) which is slowly discharged into the blood by the 

damaged endothelium (125). The structure of the clot formed during coagulation 

affects the susceptibility of the clot to fibrinolysis (111). Clot networks formed with 

low thrombin concentrations produce thicker fibres that are less resistant to fibrinolysis 

than thrombi formed of thinner fibres due to the 3D structure of the clot having a rate 

limiting effect on the activity of plasmin (111). Drugs such as streptokinase form a 

complex with plasminogen and can be administered in order to treat myocardial 

infarction by promoting blood clot lysis (132). 

2.3.2 Thrombosis 

In healthy patients, both blood coagulation and clot fibrinolysis are closely related and 

highly regulated to ensure that haemostasis is achieved (121). Previous studies have 

shown that an increased concentration of fibrinogen within the blood can increase the 

risk of cardiovascular disease (114,133) such as venous thromboembolism (VTE), 

myocardial infarction and stroke (134). It has been estimated that 1:100 patients will 

suffer VTE in the latter stages of life (135). Research shows that insoluble fibrin is a 

key element of both venous and arterial occlusions (136). Venous blood clots are more 

fibrin rich than arterial clots which have a tendency to be more platelet-rich (137) 

Proteins and factors present within the blood are responsible for the formation of blood 

clots through coagulation. For patients suffering from cardiovascular disease, it is 

possible for the blood clots to form in blood vessels, resulting in VTE. Deep vein 

thrombosis (DVT) and pulmonary embolisms (PE) are examples of a blood clot 

forming intravenously (138). Clots that are densely structured with small pores 

increase the risk of thrombosis resulting in altered functionality, such as resistance to 

fibrinolysis and  modified viscoelastic properties (139). Lysis due to the presence of 

plasmin is less efficient on thrombi formed of thinner fibres due to hypercoagulability 

common in patients experiencing DVT, PE, myocardial infarction and stroke (127). 

The risk of VTE is increased with ‘genetic risk factors’ (for instance, age and natural 

deficiencies in anticoagulant such as antithrombin) and ‘acquired risk factors’ (for 
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example, major surgery, obesity and oral contraceptives) (135). A prevalent ‘acquired 

risk’ is exposure to cigarette smoke, which increases the risk of thrombosis due to 

raised fibrinogen concentration and lower levels of TF pathway inhibitor (140).  

2.3.3 Fractal Analysis 

2.3.3.1 Characterisation of clot structure using fractal dimension 

A study conducted by Ariëns highlighted the difference in clot characteristics, with 

patients suffering from thrombosis forming denser, more compact clots in comparison 

to those considered healthy (141). More recent studies have employed a quantitative 

analysis of clot structure using fractal dimension, 𝑑𝑓, as a novel biomarker to assess 

the clinical implications of various health issues on coagulation (54,142–144). A 

‘healthy’ range of 𝑑𝑓 was determined from healthy patients that defines a ‘healthy 

index’ which may be used as a reference in studies of the pathologies/agonists on 

thrombosis using rheological techniques. The ‘healthy index’ value was established to 

be 1.74 ± 0.07 (𝑛 = 52) (74,145,146). 

The effects of anticoagulants, such as heparin, have been rheologically studied to 

determine the impact on the clot structure formed (74). As the heparin concentration 

is increased, the reported 𝑑𝑓  values decrease (from 𝑑𝑓 = 1.71 at 0.175 U ml-1 of heparin 

to 𝑑𝑓 = 1.57 at 0.8 U ml-1) (146). Patients with VTE are usually treated with 

anticoagulants resulting in reduced healthy 𝑑𝑓 of 1.69 ± 0.046, whilst the group of 

patients with VTE showed an increased 𝑑𝑓 value of 1.73 ± 0.055, which despite 

anticoagulants is very similar to that of the healthy index (147). Using the sensitive 

rheological techniques, it was possible to distinguish between single- and recurrent-

VTE patients as an increased 𝑑𝑓 for recurrent-VTE patients of 1.74 ± 0.049 was 

observed in comparison with the single-VTE patients of 1.71 ± 0.060 (147). Therefore, 

single-VTE patients who exhibit elevated 𝑑𝑓 values could be at risk of recurrent VTE 

(147). 

Comparison to the healthy index value has shown a significant increase in the 𝑑𝑓 

reported for patients suffering from prothrombotic illnesses. Stanford et al observed 

an increase in 𝑑𝑓 for those treated for ischaemic stroke as 1.760 ± .053 (148). 

Obstructive coronary artery disease (CAD) also resulted in a significantly increased 

𝑑𝑓 value of 𝑑𝑓 =1.748 ± 0.057 when clots were analysed rheologically (149).  
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The effect of primary percutaneous coronary intervention (pPCI) treatment of 

myocardial infarction (MI) on clotting parameters was studied by Lawrence et al (150). 

A decrease in 𝑑𝑓 was reported from 1.751 ± 0.052 pre-treatment to 1.634 ± 0.058 

immediately post-treatment. After 24 hours, the 𝑑𝑓  returned to a similar value to pre-

treatment (𝑑𝑓 = 1.742 ± 0.041) and close to the healthy index value of 𝑑𝑓 = 1.74 ± 

0.07.  

The sensitivity of the rheological techniques used results in accurate 𝑑𝑓 data being 

obtained for a range of prothrombotic illnesses. The research reported herein applied 

the GP analysis to studying the effect of soot particulate on the blood clots 

microstructure in both model blood clots and those formed from samples of whole 

blood obtained from healthy volunteers.  

These studies (54,143,148,149) used GP analysis to determine 𝑑𝑓 which is linked to 

the stress relaxation characteristic of the incipient gel network through Muthukumar’s 

Relation. 

2.3.3.2 Muthukumar Relationship 

Branching network microstructures can be examined using fractal analysis (5,151). 

The fractal dimension, 𝑑𝑓, of a branched polymer sample can be determined to give an 

insight into the internal microstructure of a gelling material at a given point in time. 

For screened polymer solutions, Muthukumar presented Equation 2.1 to show the 

relationship between stress relaxation exponent, α, and 𝑑𝑓, where 𝑑𝑒 = 3 for networks 

forming a 3D embedding space and 𝛼 =
𝛿

90
. 

 𝛼 =
𝑑𝑒(𝑑𝑒 + 2 − 2𝑑𝑓)

2(𝑑𝑒 + 2 − 𝑑𝑓)
 Equation 2.1 

To determine the fractal dimension from an observed phase angle, Equation 2.1 can 

be rearranged to isolate the 𝑑𝑓 term to give: 

 𝑑𝑓 =
10𝛼 − 15

2𝛼 − 6
 Equation 2.2 

For both screened and unscreened polymers, resulting 𝑑𝑓  values from experimental 

data can range from 1 ≤ 𝑑𝑓 ≤ 3 (22,152). Due to the relationship shown in Equation 

1.40, the 𝑑𝑓 value obtained is sensitive to the reported phase angle. More compact 

networks are associated with higher 𝑑𝑓  values, whereas low values of 𝑑𝑓 are 
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representative of more ‘open’ networks (53). For ‘open’ network structures, the stress 

relaxation is more efficient due to the inverse power law behaviour of the stress 

relaxation exponent, α, at the GP.  

2.3.4 Alternative techniques for the analysis of clot formation 

Alongside rheological procedures, alternative techniques can be used to assess the gel 

network formation. These include thromboelastography (TEG) and prothrombin time 

to assess blood coagulation, as well as microscopy techniques such as Scanning 

Electron Microscopy (SEM) and Laser Scanning Confocal Microscopy (LSCM) for 

image analysis of the fibrin network within clot structure. 

2.3.4.1 Thromboelastography 

Previously, thromboelastography (TEG) has been used as a method of measuring the 

viscoelasticity of blood (153). Developed in 1948, TEG assesses the efficiency of 

blood coagulation in a convenient manner without the need for repetition (154). A 

small volume of blood is placed into a heated (37 °C) oscillating cuvette and a torsion 

wire is suspended in the sample. As the clot begins to form, the mechanical properties 

are recorded by amplification of the motion of the torsion wire (155). Only a small 

volume of blood is required from the patient, but there are variations in how the data 

is obtained that limits the technique (156). Whilst it is possible to assess 

hypercoagulability and predict postoperative pathologies such as MI from the resulting 

thromboelastgraph (157), it is not possible to obtain information on the incipient clot 

network (158). TEG can be considered a ‘pseudo-rheometric’ technique in that it 

assesses the clot’s basic mechanical properties, but these are potentially non-linear and 

not reported in a scientifically meaningful manner. 

2.3.4.2 Prothrombin Time 

Prothrombin time is a measure of how long it takes for blood to clot via the extrinsic, 

tissue factor pathway (159). It can be used to identify factor deficiencies by measuring 

the time for plasma to clot after the addition of thromboplastin (160,161). The 

technique is quick to obtain results but the various preparation methods used to prepare 

thromboplastin reagents can result in a deviation in results, even in the same plasma 

(160).  
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2.3.4.3 Scanning Electron Microscopy 

Scanning electron microscopy (SEM) images obtained of fibrin networks within a 

blood clot can be characterised both qualitatively and quantitively due to the quality 

of the images obtained. Some studies refer to the network formed as ‘dense/open’ 

(74,141,162) or as having ‘thicker/thinner fibres’ (163). However, the structure of the 

clot can be characterised quantitatively by the ‘number of branched points’, the 

‘diameter of the fibres’ formed and the ‘size of the pores’ (128). The SEM preparation 

procedure for biological samples can be lengthy and invasive which can result in the 

disturbance of the microstructure of the clot formed. It is only possible to observe 

mature clot structures using SEM as the sample networks must be fully formed before 

being fixed and dehydrated prior to imaging. 

2.3.4.4 Laser Scanning Confocal Microscopy 

Due to the sensitivity of laser scanning confocal microscopy (LSCM), it is possible to 

observe mature structures as well as dynamic processes within biological material 

(164,165). LSCM can be used to obtain 3D images of fibrin gel networks using an ion 

laser. This is achieved by capturing a series of sequential images of the network that 

can be processed to give 3D representation of the sample (166). The sample must 

contain a fluorophore labelled fibrinogen component to provide contrast within the 

image (167). To prevent bleaching of the added label molecules, care should be taken 

during preparation and imaging to avoid excess exposure to light before using a low 

laser power to acquire images (166).  

2.3.4.5 Platelet Function 

Platelet function can be assessed by aspirating blood at high shear rates through a 

membrane coated with biochemical stimuli and measuring the time required for 

complete occlusion (168,169). The technique is quick and easy to operate and gives 

accurate results (169) but a major limitation is the inability of the technique to give 

predictive or specific information on a particular blood coagulation disorder (170). 

2.3.4.6 Evaluation of Coagulation Factor Biomarkers 

The addition of thrombin to citrated plasma samples produces a visible clot that can 

be assessed using light absorption, with the time taken for the visible clot to form being 

inversely proportional to the fibrinogen concentration (171,172). The technique is 
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quick to perform and has been employed in several studies (173,174). However, a new 

standard curve must be created for each new batch of thrombin reagent (171).  

2.4 Soot Particulate Matter  

The health risks associated with the inhalation of particulate matter (PM) have been 

extensively studied (161,175,184,176–183). It has been suggested that both long- and 

short-term exposure to air pollution PM can have a detrimental effect on health, such 

as myocardial ischemia and infarction, stroke and thromboembolism 

(179,182,185,186). It has been estimated that globally 800,000 people die prematurely 

from cardiopulmonary diseases related to air pollution per annum (185,187). Particles 

translocating into the blood can reach vulnerable areas and even a relatively low 

number of particles in the blood stream can result in potential health issues (188). 

Further research is required in order to improve understanding of the potential adverse 

impacts of PM in air pollution on human health. 

2.4.1 Origins and Classification of Particulate Matter  

PM present in the air consists primarily of dust, smoke and soot particulates from 

combustion processes (176,179,189–191), where soot is a by-product of the 

incomplete combustion of diesel fuel (192,193). Exhaust matter contains a large 

proportion of carbon in the form of graphite with diameters in the range of 10 nm to 

30 nm (194,195) with some soot PM reaching up to 1 mm in size (196,197). Typically, 

the core of combustion particles contains elemental carbon with additional 

hydrocarbons, metals and sulphates forming a coating (186,196,198). The PM 

produced during the combustion process has been shown to have acute and chronic 

adverse health effects (199–204). 

Carbon black is often used as a model compound for soot produced during the 

combustion process (205). However, carbon black has a much higher surface area than 

exhaust PM as exhaust soot consists of aggregated carbonaceous particles, combined 

by tars and resins (206). The aggregated particles, which are fractal in nature, are 

comprised of multiple near-spherical particles with much larger diameters of 60 nm to 

100 nm (195,207,208).  

Inhalable airborne PM is classified based on the aero-diameter of the particles present 

(192,209). PM with diameter in at least one dimension of < 0.1 μm can be described 

as ultrafine (177). The concentration of ultrafine particles in the air is estimated to be 
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in the range of 1-2 μg m-3 with sporadic increases up to 20-50 μg m-3 (210). Particles 

< 2.5 μm diameter are considered to be fine particulate matter (PM2.5) and particles 

with aero-diameters in the range 2.5 μm < 𝑑𝑃𝑀 ≤ 10 μm are referred to as coarse 

particulate matter, PM10 (189). The World Health Organisation has declared that PM 

with a diameter < 10 μm is the most harmful element in air pollution (178). The 

European Union states that the daily mean air quality limit for PM10 as 50 μg m-3 

(211,212) and PM2.5 as 25 μg m-3 (190). Baccarelli et al. present data representative of 

the median airborne PM10 concentration in the Lombardia Region, Italy, as in the range 

44.3 μg m-3 to 68.5 μg m-3 with the maximum value recorded in winter (161). The US 

limit for exposure to PM2.5 over a period of 24 hours was reduced in 2006 from 65 μg 

m3 to 35 μg m3 (185,213).  

Ultrafine particles can rapidly aggregate to form larger particles (176). Typically, 

particles with an aero-diameter < 2.5 μm are able to penetrate into the gas-exchange 

region of the respiratory tract (209) and can remain in circulation for several months 

(184,199). As a result, it is possible for the PM2.5 to trigger an acute cardiac event in 

patients with underlying cardiopulmonary disease such as myocardial infarction 

(180,214). Individuals with occupations that expose them to high levels of PM are also 

susceptible to increased risks of cardiovascular disease, for example, workers in the 

steel industry (175).  

2.4.2 Potential Health Risks Associated with Airborne Particulate Matter 

The components of airborne pollution can enter the lungs through inhalation and cause 

inflammation and more severe health issues. During times of peak PM concentration 

in megacities, it is possible for an adult to inhale in excess of 20,000 μg of PM 

(assuming a total volume of 20 m3 of air is inhaled) (168). Whilst some studies have 

shown that inhaling PM can increase the risk of thrombosis and altered blood 

coagulation, not all have agreed due to the biological nature of the findings (185,215). 

Coarse PM10 particles are removed from the respiratory system in the upper airway by 

the cilia (184,204), whereas fine PM2.5 can penetrate further into the terminal 

bronchioles (178,184) and ultrafine PM0.1 can translocate across the pulmonary 

epithelium into the bloodstream (179,184,185,191,199,201,210).  

Recent studies have shown that even short-term exposure to PM2.5 (in the range of two 

hours) can increase the patient’s risk of cardiopulmonary disease (168,214). It has been 
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suggested that for each 10 μg m3 daily increase in PM2.5 exposure, the risk of death 

due to cardiovascular disease increases by 1% (176,185). Smaller particles can 

penetrate further into the lungs and remain suspended for extended timescales (176). 

The subsequent inflammation of the lungs causes oxidative stress and increased blood 

coagulability (216), resulting in thrombotic diseases such as myocardial infarction and 

ischemic stroke (182). 

The translocation of the PM into the blood stream leads to the activation of platelets 

and initiation of the coagulation cascade (182,217). Coarse particles that are inhaled 

into the lungs cannot be transferred into the blood stream (185). However, ultrafine 

particles can be inhaled deep into the lungs before being translocated into the blood 

stream and organs within a matter of minutes (178,185,202). Particles with a diameter 

of ≤ 1 μm passed through the epithelial barriers from the lungs into the blood stream 

via the capillaries (218). Nemmar et al. suggest that the PM inhaled may be capable of 

rapid translocation into the bloodstream, resulting in an immediate impact on 

haemostasis (178,202).  

The mechanisms initiated by PM that are able to translocate across the gas-blood 

barrier have conventionally been thought to include oxidative stress, thrombogenesis, 

inflammatory response and elevated blood plasma viscosity that could result in 

cardiopulmonary disease (173,183,185,215,219,220). Oxidative stress is the 

disruption in the production of free radicals and antioxidants in the body (221). The 

process typically occurs if there is an excess of damaging oxidants (for example, after 

exposure to ultrafine diesel exhaust PM (179)) which develops into a tissue injury or 

inflammatory response (184,216).  

Previous research has suggested a link between the inhalation of PM and an increased 

risk of cardiovascular disease, feasibly due to hypercoagulability and thrombosis 

(175). Seaton et al. suggested that the inhaled particles were responsible for 

inflammation within the lungs that increase the coagulability of blood, leading to 

potential cardiopulmonary events in individuals (222,223). The increased levels of 

coagulation proteins, such as fibrinogen and Factor VIII which are related to 

hypercoagulability, have also been associated with exposure to PM (224). With the 

inflammation caused by the inhalation of ultrafine particles, mediators that are capable 

of increasing blood coagulability may be triggered (173,203,222). 
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Elevated fibrinogen levels present in more viscous plasma can act as a biomarker for 

cardiovascular events (225) and could account for the  increased risk of cardiovascular 

disease (173,226). Previous studies have resulted in contradictory conclusions as to 

whether fibrinogen levels are increased due to air pollution exposure. Some have 

demonstrated an increase in plasma viscosity and blood fibrinogen levels after 

exposure to airborne PM (181,185,226,227). Peters et al. suggested that the increase 

in plasma viscosity, due to elevated fibrinogen, could be because of increased exposure 

to PM with resulting inflammation of the airways (226). Schwartz et al. presented a 

study that also showed positive association between PM10 exposure and increased 

fibrinogen levels for US patients (228). Su et al. (229) demonstrated similar results to 

Seaton et al. (222), with fibrinogen levels increasing 0.71 mmol l-1 in patients with 

coronary heart disease after exposure to high levels of air pollution (216,229). 

However, a later study by Seaton et al., of 112 patients in Belfast and Edinburgh, 

presented contrary results suggesting that there was a negative association with PM10 

exposure and plasma fibrinogen levels (230). Rückerl et al. also concluded that there 

were inconsistent results with regards to plasma fibrinogen levels after exposure to ≤ 

PM2.5 (223).  

The inhalation of ultrafine PM and resultant pulmonary inflammation response may 

assist the translocation of the particles through the gas-blood barrier due to alterations 

in permeability of the alveoli (188,230). The rapid influence on mechanisms after only 

short-term exposure leads to increased thrombotic tendencies and thrombogenicity 

(215). An abundance of literature is in support of the concept that PM can increase 

cardiovascular events, such as thrombosis, ischemia and myocardial infarction 

(179,215,224,230). 

2.4.3 Animal and human studies 

Studies have previously been conducted using both animal and human models to assess 

the correlation between PM and the stimulation of haemostasis and thrombosis (182).  

2.4.3.1 Animal studies 

A vast number of animal studies have been conducted to assess the impact of PM on 

cardiopulmonary events. Miller et al. employed gold nanoparticles modelled on the 

size ranges of PM with inert biological properties to assess the effect on tissues after 

controlled exposure in mice (199). Over a size range of 2 nm to 200 nm, it was possible 
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to detect gold particles within the blood, particularly those with a smaller diameter, 

suggesting rapid translocation via a passive transport mechanism (199). 

Kim et al. employed ultrafine carbon black particles to measure the thrombotic activity 

and inflammatory responses in rats (231). At high exposure levels of 10 mg kg-1, 

carbon NP accelerated platelet-dependent haemostasis (231). Radomski et al. 

compared the effects of urban PM standard reference material and engineered carbon 

NP. The study indicated that both forms of carbon PM accelerate the time and rate of 

development of thrombosis in rats, with the engineered NP being more effective at 

inducing thrombosis than reference urban PM (232).  

Nemmar et al. have conducted numerous animal studies as to the effect of PM on the 

increased risk of cardiopulmonary events (168,201,203,233–237). Hamster studies 

were conducted using a range of 20 nm – 50 nm diesel exhaust and comparable model 

particles instilled into the blood. These investigations revealed adverse effects on 

haemostasis due to platelet activation after exposure to PM, with an increased risk of 

thromboembolic disease (168,235–237). On the other hand, rat studies were less 

conclusive as to whether PM resulted in increased risk of cardiovascular issues. 

Cardiovascular and haemostatic variations were observed along with a pulmonary 

inflammation response, without a clear conclusion as to the mechanism involved 

(201,203). 

2.4.3.2 Human studies  

Miller et al. conducted additional human studies alongside the corresponding animal 

study involving the use of gold nanoparticles of a similar size to airborne PM (199). 

Healthy volunteers were exposed through inhalation to gold nanoparticles, with 

median aerodynamic diameters of 18 nm and 52 nm, before particles of both sizes 

were detected in the blood due to translocation (199). The conclusion that inhalation 

of PM can result in vascular dysfunction, atherothrombosis and acute myocardial 

infarction is in agreement with similar studies conducted by Mills et al. (238) and 

Lucking et al. (239). 

Bind et al. detected an association between PM on plasma fibrinogen levels in a cohort 

of 704 patients. Increased particle levels were shown to increase fibrinogen levels 

present in plasma for patients without chronic medical conditions (173). The 

conclusion that airborne PM can increase the levels of biomarkers related to 
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cardiovascular disease is in agreement with research conducted by Zeka et al. (174). 

The study conducted by Zeka involved 710 male patients exposed to PM to assess the 

effects on thrombotic biomarkers, which showed increased fibrinogen levels over time 

after exposure (174).  

Several studies have been conducted to better understand the effects of exposure to 

urban PM on pregnancy and early development (240–242). Investigations into the 

possibilities of PM passing through the placental barrier have been limited to animal 

studies as well as in vitro cell cultures and ex vivo models in human studies (240). 

Exposure to PM associated with combustion processes has been linked with reduced 

weight at birth (243,244), pre-term birth (242) and intrauterine developmental issues 

(241). Lamichhane et al. presented evidence for a significant decrease in birth weight 

of 10 g and 22 g for exposure to PM10 and PM2.5 respectively (245). Pedersen et al 

showed evidence in support of lower full term birth weights when exposed to a 5 μg 

m-3 increase in PM2.5 during pregnancy (243). Ritz et al. suggest that exposure to PM 

during the first trimester and prior to delivery may be responsible for pre-term birth, 

based on a population study in Los Angeles (242). 

Some of the most comprehensive research to date into the effects of PM on 

cardiovascular disease has been conducted by Baccarelli et al. In a 2008 study of 871 

male and female patients who had suffered DVT between 1995 to 2005 and 1210 

control patients from across the Lombardy regions of Italy, the effects of PM10 on DVT 

risk was evaluated (224). Over the range of PM10 exposure studied, the relationship to 

DVT was approximately linear, with each increase in PM10 of 10 μg m-3 resulting in a 

70% increase in risk of suffering DVT (224). A consequent 2010 study by the same 

authors suggested that living in close proximity to major traffic routes was responsible 

for an increased risk of suffering DVT (246). Once again, the exposure (proximity to 

a major road) and an increased risk of DVT was approximately linear suggesting that 

high levels of airborne PM elevate the risk of thrombotic tendencies (246). The 

findings reported by Baccarelli et al. are supported by research undertaken by Dales et 

al., which showed PM2.5 to be a risk factor for VTE and PE in Santiago, Chile (247). 
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2.4.4 Previous techniques used for analysis of potential health effects of particulate 

matter 

As discussed in Section 2.3.4, it is possible to analyse the coagulation of blood samples 

using a variety of techniques. Previous studies have employed the analysis of 

prothrombin time, microscopy and the evaluation of coagulation factors to gain an 

understanding of the effects of PM on blood clotting. 

Studies by Bonzini and Baccarelli utilized prothrombin time to assess the potential 

health effects of PM10 exposure in patients living in the Lombardy region of northern 

Italy. In these cases, prothrombin time was successful in detecting a positive 

association with plasma clotting with the inclusion of PM (175,224). 

A variety of microscopy techniques have been used in several studies to determine the 

implication of exposure to PM on patient health. Miller et al. used gold nanoparticles 

to assess the extent of translocation across the gas-blood barrier with sensitive Raman 

microscopy (199). In an earlier study, it was possible for Nemmar et al. to assess 

thrombus formation in vivo using an online video camera after staining the tissue with 

Rose Bengal, to determine the size of the developing thrombus from light intensity 

(234). In 2015 Pajnič et al. observed the in vitro alteration in the membrane structure 

of blood cells when exposed to different nanomaterials, such as carbon black, through 

SEM analysis (248).  

The levels of coagulation factors present in the blood can give an indication of the 

effects of the presence of PM, as discussed by Zeka et al. and later Bind et al. 

(173,174). Fibrinogen levels can be analysed using an MDA 180 Coagulometer (171) 

to assess whether any fluctuations occur after exposure to PM. A similar light 

scattering technique of immunonephelometry was used by Rückerl et al. to determine 

the deviation in fibrinogen level as a marker of coagulation (223). 

2.4.5 Therapeutic uses for nanoscale particles 

Whilst PM produced by combustion processes appears to have a pernicious effect on 

the body, particles of a similar scale are often used for therapeutic uses. A wide range 

of nanomaterials have been extensively studied for use in the diagnosis and treatment 

of disease (249–251). Nanotechnology offers a wealth of options with regard to 

diagnosis and treatment of cardiovascular and pulmonary disorders (232,252). 
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It is possible to engineer procoagulant nanoparticles and particles with attached 

coagulation-initiating factors to treat coagulations disorders (253,254). Nanotextured 

TiO2 has been shown to have haemo-compatible characteristics that lend themselves 

to translation onto existing clinical stents with insignificant thrombi formation whilst 

promoting endothelialisation (255). In a separate study, the application of 10 μm TiO2 

nanotubes to whole blood has demonstrated an increase in the strength of the clot 

formed due to the accelerated development of fibrin, whilst also reducing the clotting 

time (256). 
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 Assessment of potential inertial artefacts 

affecting combined motor transducer rheometers 

3.1 Introduction 

To ascertain information regarding the potential impact of soot particulates on the 

weak gelling materials under investigation, it was necessary to render any possible 

inertial artefacts within the system negligible. Significant discrepancies between gel 

point (GP) data obtained using combined motor transducer (CMT) and separate motor 

transducer (SMT) rheometers prompted an investigation into the effect of inertial 

artefacts on GP measurements. By exploiting the unique properties of the GP, it was 

possible to develop an Enhanced Rheometer Inertia Correction (ERIC) procedure for 

post-data acquisition correction. Inertial artefacts can cause large deviations from the 

true gel point in samples with weak incipient gel networks when probed using a CMT  

rheometer (25). Gelatin, a well characterised biopolymer, was used as a model system 

to analyse any deviation in the expected gel point over a concentration range of 

2.5 𝑤𝑡% ≤  𝐶 ≤  30 𝑤𝑡%. The studies performed aimed to assess inertial artefacts 

that have potential to affect SAOS procedures implemented on CMT rheometers.  

3.2 Literature Review 

For CMT rheometers, the input (torque) and output (displacement) signals are 

measured at the same shearing surface (Figure 3-1) whilst for SMT rheometers the 

output signal (torque) is measured at the opposite plate to the input (displacement). 

Hence, for SMT rheometers, the torque sensing element remains stationary (43), 

making instrument inertia negligible in the system. In contrast, the CMT rheometer 

is required to both oscillate the moving components of the instrument and deform the 

sample under investigation using the input torque.  
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Figure 3-1 The difference in (a) CMT and (b) SMT rheometer setups. The surface at which the torque, M, and 

displacement, θ, is measured are shown. 

Standard experimental procedures require the instrument to be calibrated prior to 

commencing sample testing (Section 3.4.2.1). The calibration involves the 

determination of the instrument inertia parameter, which is given to a finite level of 

precision. The TRIOS software used to control the CMT rheometer routinely applies 

an inertia correction for the storage modulus reported such that 

 𝐺′ = 𝐺𝑟𝑎𝑤
′ − 𝐼𝑐𝜔2𝑘𝑔 Equation 3.1 

where 𝐺’ refers to the actual storage modulus, 𝐼𝑐 denotes the inertia constant, 

𝜔 represents the angular frequency and 𝑘𝑔 signifies a geometry factor (32). The 

accuracy of the raw waveforms used to extract the value of 𝐺’ can cause uncertainty as 

the 𝐼𝑐𝜔2𝑘𝑔 may represent a significant proportion of the 𝐺’𝑟𝑎𝑤 component due to the 

inertia constant only being defined to a finitely precise value  (31). A momentum 

balance can be used to show that the inertial contribution does not contain imaginary 

parts (24) and therefore the 𝐺’’ value reported by the rheometer is not affected by the 

presence of instrument inertia (32). The raw phase angle is used to quantify the extent 

of inertial artefacts and leading manufacturers recommend caution for data sets that 

exceed some critical value. For the AR-2000ex CMT rheometer used throughout the 

study, the raw phase angle limit is stated by the manufacturer to be 150° (9).  

The hypothesis of the work reported herein was that previously reported discrepancies 

between GP data, obtained using SMT and CMT rheometers for low concentration 

gelatin samples, were due to uncertainty in the inertia correction when using CMT 

rheometers. Furthermore, the characteristic rheological behaviour of the critical gel 

(60) could be exploited  to develop an Enhanced Rheometer Inertia Correction (ERIC) 

procedure (257) and was able to correct for the discrepancy. 
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3.3 Enhanced Rheometer Inertia Correction Data Analysis 

The ERIC procedure was designed for post-acquisition data validation and to allow 

GP acquisition at previously inaccessible frequencies. As stated in Section 3.4.2.1, a 

Standard Inertia Correction (SIC) procedure was carried out prior to commencing each 

experiment. However, with the aid of ERIC, it was possible to adjust data to reduce 

the effects of slight deviation in the calibrated inertial factors reported, resulting in the 

decrease in discrepancy of the reported gel point for CMT and SMT rheometers.  

The true inertia constant, 𝐼𝑡, that characterises the geometry-instrument assembly can 

deviate by 𝛥𝐼 from the reported 𝐼𝑐 determined during the SIC routine due to the definite 

precision and accuracy of the value recorded by the rheometer. As a result, Equation 

3.1 can be rewritten as 

 𝐺𝑡
′(𝜔) = 𝐺′(𝜔) + (𝐼𝑡 − 𝐼𝑐)𝜔2𝑘𝑔 

= 𝐺′(𝜔) + ∆𝐼𝜔2𝑘𝑔 

Equation 3.2 

Equation 3.3 

The accuracy of a GP can be indicated by the deviation of the roots where a root can 

be defined as the time and phase angle intersection of a pair of frequencies. GP with a 

large deviation in roots could be determined as less accurate than those with a small 

deviation. To monitor the change in the standard deviation of the roots of the GP, a 

MATLAB routine was developed to incrementally change ΔI. 

The ERIC procedure was coded as a MATLAB routine (258) with a five-parameter 

logistic equation fitted to the δ(t) data for each frequency.  

A five-parameter logistic equation was used to ensure the curves generated were 

appropriately fitted to the data. The intersections of the fitted frequency curve pairs 

were established as a root. The mean phase angle and mean time of the roots were 

reported at the GP with the standard deviation giving an indication of the accuracy of 

the GP. 

The ERIC code was further developed into a GUI for ease of use1. Once open, the 

software simply requires the input of the time, angular frequency, 𝐺’ and 𝐺’’ data from 

TRIOS, along with the correct parameter units (Figure 3-2). The ‘Calibrated Inertia 

 
1 The GUI was developed by Dr D. J. Curtis, College of Engineering, Swansea University. 

𝐹 = @(𝑝, 𝑥𝑑𝑎𝑡𝑎)𝑝(1) − 𝑝(2)./[1 + (𝑥𝑑𝑎𝑡𝑎 ./𝑝(3)). ^𝑝(4)]. ^ − 𝑝(5); Equation 3.4 
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Constant’, 𝐼𝑐, ‘Geometry Stress Factor’ and ‘Geometry Strain Factor’ must also be 

inputted in order to accurately convert the raw torque and displacement signals 

recorded by the rheometer into the respective stress and strain. The final step is to 

select the lower and upper correction boundaries, determine the correction increment 

and outline the ‘fit’ and ‘search’ regions. 

 

 

 

 

 

 

 

 

 

The MATLAB procedure iterates between the determined correction boundaries using 

the given interval value to ascertain the corrected GP value. The optimisation for the 

data is also available once the correction procedure is complete. The ‘Corrected Data’ 

tab in the ERIC GUI shows the adjusted frequency curves and identifies the corrected 

GP (Figure 3-3). The ‘Optimisation’ tab (Figure 3-4) shows the minimum corrected 

phase angle and time data. The normalised deviation of the roots for the 𝛿 values is 

used to determine the 𝛥𝐼 for the dataset. 

  

Figure 3-2 An example dataset pasted into the ERIC GUI. The 'Calibrated Inertia Constant', ‘Geometry Stress 

Factor’ and ‘Geometry Strain Factor’ can be inputted for each specific dataset (circled in red). The lower and 

upper correction parameters (circled in green) can be altered to initially provide a coarse correction that can be 

refined to give a precise 𝐼𝑡 value. 
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Figure 3-3 shows a screenshot of the corrected dataset using a coarse search. The black dashed lines are the 

curves that have been fitted to the data using the five-parameter logistic equation. The 'search' region is shown 

by the red lines. The corrected GP is stated at the bottom of the plot for both the reported 𝛿 and 𝑡𝑔𝑒𝑙. 

Figure 3-4 gives an example of the 'Optimisation' tab for the post-ERIC data. The normalised deviation of the 

roots is shown for both the 𝛿 and time data with 𝛥𝐼 for the dataset being selected from the minimum deviation in 

roots of the 𝛿. 
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3.4 Enhanced Rheometer Inertia Correction Inertia Study Materials 

and Methods 

3.4.1 Materials 

Gelatin samples were prepared over the range of 2.5 𝑤𝑡% ≤  [𝐺𝑒𝑙𝑎𝑡𝑖𝑛]  ≤  30 𝑤𝑡%. 

Each gelatin sample was prepared using gelatin powder (Fisher G/0150/53) and type 

(I) deionised water. Quantities of gelatin powder and water were gently combined in a 

tube with agitation for approximately one minute. Once combined, the tubes were 

heated for 45 minutes in a preheated 60°C water bath. Throughout the heating process, 

to guarantee complete dissolution of the gelatin powder, the solutions were repeatedly 

inverted for one minute approximately every ten minutes to agitate without 

incorporating excess air. Each homogenous gelatin concentration sample was heated 

initially for a period of ≤ 45 minutes in a 60 °C water bath (18) to prevent degradation. 

Aliquots of each of the gelatin solutions were stored in a refrigerator (at 4°C) for no 

longer than seven days before being melted in a preheated 60°C water bath prior to 

use for a further 45 minutes. 

3.4.2 Methods 

3.4.2.1 Standard Inertia Calibration Procedure 

A 60 mm acrylic parallel plate geometry and Peltier plate temperature control 

accessory were fitted to the stress controlled CMT rheometer (AR-2000ex, TA 

Instruments). A standard inertia calibration (SIC) procedure was carried out without a 

sample present to calibrate the value of 𝐼𝑐. This procedure involved (i) resetting the 

‘zero gap’ of the instrument each time the upper geometry was refitted (to ensure that 

the gap used during testing of the sample was accurate) and (ii) determination of the 

‘geometry inertia’ parameter. Finally, the air bearing was iteratively mapped using 

‘Precision Level 3’ to correct for any residual torque (41). All calibrated parameters 

were saved within the TRIOS software for post data acquisition analysis.  

3.4.2.2 Combined Motor Transducer Rheometer Inertial Artefact Study Procedure 

To ensure that only the effect of the instrument inertia was then analysed, the 

experimental procedure used for the studies was carefully designed to remove the 

possibility of further issues affecting the GP. Prior to experiments being conducted, an 

aliquot of gelatin was heated for 45 minutes in a preheated 60°C water bath. During 
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this time the CMT rheometer was calibrated using the SIC procedure (see Section 

3.4.2.1).  

Once the gelatin sample had been sufficiently heated and all calibrations were 

complete, 124 µl was pipetted onto the surface of the Peltier plate set to 34 °C to 

prevent gelation prior to commencement of the test. A 60 mm acrylic parallel plate 

geometry was then lowered to a gap of 150 µm and the sample slowly sheared at 100 

s-1 for 10s to ensure an even load across the parallel plate system. A gap of 150 µm 

was used to satisfy the Schrag gap loading criterion 2 (45). The loading of the sample 

was visually inspected before a small amount of low viscosity silicon oil (9.8 mPa.s 

Brookefield) was pipetted onto the free surface (i.e. circumference of the acrylic 

geometry). This precautionary measure prevented evaporation of the sample 

throughout the test. As soon as all loading steps were complete, the test was 

commenced.  

The initial stage of the test procedure involved quenching from the loading temperature 

of 34 °C to the test temperature. All experiments using 2.5 wt% gelatin were conducted 

at a temperature of 19 °C at a torque amplitude of 10 µN.m. The stress relaxation 

exponent of the incipient gelatin gel has previously been reported to be independent 

on the concentration and gelation temperature (49). At 19 °C the 𝑡𝑔𝑒𝑙 was sufficiently 

long to minimise the sample mutation effects at the gel point (259) by maintaining a 

gelation time of approximately 900 s. 

To study the effect of gradually increasing inertial contributions, gel point data was 

obtained using a variety of ‘frequency decades’. Each decade contained four discrete 

frequencies including the highest and lowest frequencies in the decade. The frequency 

decade is denoted by the highest frequency in that decade, such that the 4 Hz decade 

included frequencies in the range 0.4 Hz to 4 Hz. The frequency decades studied were 

in the range 1 Hz (i.e. 0.1 Hz – 1 Hz) to 12 Hz (i.e. 1.2 Hz – 12 Hz). Each test ran for 

3600 s which allowed the phase angle of the gel (at all frequencies) to reduce to δ < 

20° so that sufficient data in the post gel point region was obtained for further analysis.  

 
2 A small gap ensured that the sample inertia could be neglected such that a constant velocity gradient 

existed in the shearing gap. 
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3.4.2.3 Separate Motor Transducer Rheometer Inertial Artefact Study Procedure 

To allow comparison of CMT and SMT data, a series of experiments were conducted 

using an SMT rheometer (ARES-G2, TA Instruments). A Peltier plate temperature 

control system was used in conjunction with a 40 mm aluminium parallel plate 

geometry. A gap of 150 µm was used to satisfy the Schrag gap loading criterion2 (45), 

with 108 μl of 2.5 wt% gelatin being pipetted onto the Peltier plate prior to lowering 

the upper geometry. The sample was loaded at 30 °C before being quenched to a test 

temperature 20 °C during a 100 s-1 pre-shear for a duration of 10 s. The pre-shear 

ensured that the sample was evenly distributed within the geometry gap. Data was 

collected using multiple consecutive frequency sweeps over a frequency range of 0.9-

3.5 Hz. The strain amplitude was decreased by 25% from 100% where the torque 

exceeded 3 μNm to acquire valid measurements despite the transient nature of the 

gelation process. This procedure was developed to successfully report a resolvable 

torque signal at each stage of the gelation process whilst maintaining linear viscoelastic 

measurements. Harmonic analysis was conducted on torque signals to ensure linear 

viscoelastic conditions by confirming the absence of harmonic signals in the torque 

waveform.  

3.4.2.4 CMT Rheometer Concentration Study Procedure 

A separate gelatin concentration study was conducted over a range of 2.5 𝑤𝑡% ≤

 𝑐 ≤  30 𝑤𝑡% using a standard GP procedure with a fixed frequency decade of 0.3-3 

Hz and the addition of the change of the test temperature parameter. Each 

concentration of gelatin required a unique test temperature (as outlined in Table 3-1) 

as gel time is strongly dependent on both the concentration and gelation temperature. 

By increasing the temperature as the gelatin concentrations increased, the gel time of 

each experiment was maintained at approximately 900 s.  

Table 3-1 The test temperatures required for each gelatin concentration. 

 

 

 

 

Concentration /wt% Temperature /°C 

2.5 19.0 

5 22.5 

10 26.0 

15 27.5 

20 29.5 

25 31.5 

30 32.5 
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The gelatin samples were quenched from 34 °C to the test temperature (i.e. for 10 wt% 

gelatin, the sample was quenched from 34 °C to 26 °C at a rate of 5 °C/min). For all 

concentrations, a frequency decade of 0.3 to 3 Hz was employed to reduce the 

possibility of inertial artefacts within the system. A torque input parameter of 10 µN.m 

was used for all experiments. Each experiment was set to run for 3600s in order to 

ascertain valid data both pre- and post-GP. 

3.5 Results and Discussion 

3.5.1 Gel Point Analysis and Correction 

The TRIOS data for each GP was analysed using the GP Analysis software3 to 

determine the apparent gel time (𝑡𝑔𝑒𝑙), phase angle (𝛿), raw phase angle (𝛿𝑟𝑎𝑤), storage 

modulus (𝐺’) and loss modulus (𝐺’’) parameters (all at the GP). Further data analysis 

was completed using Microsoft Excel.  

Figure 3-5 shows example CMT data for GPs at the extremities of the frequency range 

used for the study of inertial artefacts. Both examples were obtained using a gelatin 

concentration of 2.5 wt%. The data shown in Figure 3-5a outlines a well-defined GP 

obtained at a low frequency decade of 0.1-1Hz. The roots of the frequencies do not 

deviate significantly from the estimated GP as the inertial artefacts affecting the system 

are minimal. For comparison, the data displayed in Figure 3-5b illustrates phase angle 

data collected for the highest frequency decade (1.2-12Hz). It is clear that using this 

higher frequency decade generates a poorly defined, hard to identify GP and that there 

are several roots (i.e. crossovers between data at each pair of frequencies). The pre-GP 

data shows classic inertial issues as 𝛿 > 90°. 

 

 

 

 

 

 
3 The previously unpublished bespoke GP Analysis Software was developed in house by Dr Dan Curtis 

and uses the 5-parameter logistic equation approach as described in Chapter 3.. 
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As discussed in Section 3.3, the ERIC procedure was applied post-acquisition to all 

experimental data collected for both the frequency and concentration studies used to 

analyse the effect of inertia artefacts. Figure 3-6 illustrates the process undertaken 

during the ERIC procedure.  

a) 

b) 

𝛿𝐺𝑃 = 66.38 ± 1.84° 

𝛿𝐺𝑃 = 65.91 ± 1.21° 

Figure 3-5 Example GP data for 2.5 wt% gelatin at low and high frequency decades. The GP shown in a) was 

obtained over a frequency range of 0.1-1Hz whilst b) illustrates data acquired at a high frequency decade of 1.2-

12Hz. 
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Figure 3-6 outlines the ERIC procedure where a) illustrates an apparent gel point prior to correction obtained 

using a frequency decade of 1-10 Hz, b) shows the optimisation of the gel point data using the ERIC procedure and 

c) shows the ERIC corrected GP data for the data reported in a). 

a) 

b) 

c) 

Apparent GP 

GP 

10 Hz 

1 Hz 

10 Hz 

1 Hz 

𝛿𝐺𝑃 = 61.8 ± 0.4° 

𝑡𝑔𝑒𝑙 = 1033 ± 5 𝑠 

𝛿𝐺𝑃 = 72.3 ± 6.6° 

𝑡𝑔𝑒𝑙 = 925 ± 83 𝑠 
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Figure 3-6a shows an example of an apparent GP, defined as the mean root position, 

for data collected over a 1.0 – 10 Hz decade. The value of the uncorrected CMT 

rheometer GP was reported as 72.3 ± 6.6° using the GP Analysis software3. For an 

identical sample and procedure, the corresponding SMT rheometer GP was 62.7 ± 

1.0°.  The high standard deviation in the CMT rheometer GP reflects the large spread 

of the roots shown by the smaller grey circles Figure 3-6a. The uncertainty of the GP 

is a consequence of the finite precision of the standard inertia correction.  

Figure 3-6b illustrates the optimisation of the inertia constant, 𝐼𝑡, using the ERIC 

procedure. The deviations of the roots, with respect to phase angle and time, were 

normalised and a value of ∆𝐼 was selected based on the minimum deviation, shown in 

the figure by the red dashed line. The ‘search region’ of the GUI was used to outline 

the area where 𝛿(𝑡) roots were considered to be relevant to the GP and was altered to 

exclude the extremities of the data that included incorrect cross-overs of the 

frequencies that may affect the GP reported.  

Figure 3-6c shows the corrected GP data once the ERIC procedure had been 

implemented. The corrected phase angle reported, 61.8 ± 0.4°, is noticeably lower 

since the optimised true inertia value of 21.5422 µNm2 was used to calculate the GP. 

The 𝐼𝑡  value used represents a 0.46% change from the instrument calibrated value 

resulting in a GP in agreement with the SMT rheometer. The corrected data maintains 

phase angles of 𝛿 ≤ 90° throughout, suggesting that there is negligible influence from 

inertial artefacts within the data. 

Due to the frequency (𝜔2) dependence of the inertia correction, it is not possible for 

the ERIC routine to falsely generate a gel point if the sample material does not exhibit 

this behaviour. For hypothetical, valid non-GP data in the vicinity of the gel point, it 

is feasible to define 𝐺’’ and 𝐺’ as separate frequency dependent power laws as in 

Equations 3.4 and 3.5 where 𝜀 ≠ 𝜑. 

 𝐺′′ = 𝑘2𝜔𝜀 Equation 3.4 

 𝐺′ = 𝑘1𝜔𝜑 Equation 3.5 

Taking into consideration the above conditions, a corrected 𝐺’ value, 𝐺’𝐶, would be 

expressed as 
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 𝐺′𝑐 = 𝑘1𝜔𝜑 + 𝑘𝑖𝜔2 𝑘𝑖 = ∆𝐼𝑘𝑔 Equation 3.6 

The above equations can be combined to give   

 𝐺′𝑐 = 𝑘1𝜔𝜑 + ∆𝐼𝑘𝑔𝜔2 Equation 3.7 

As previously discussed in Section 1.11.4, at the sol-gel transition, 

 
𝑡𝑎𝑛𝛿 =

𝐺′′

𝐺′
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Equation 1.28 

Substituting Equation 3.4 and Equation 3.7 gives a modified equation that would 

express the sol-gel transition under the conditions specified above, 

 𝐺′′(𝜔)

𝐺′
𝐶(𝜔)

=
𝑘2𝜔𝜀

𝑘1𝜔𝜑 + ∆𝐼𝑘𝑔𝜔2
 

Equation 3.8 

A pseudo-GP would similarly require the 𝑡𝑎𝑛𝛿 parameter to be frequency 

independent, resulting in  

 𝑘2𝜔𝜀

𝑘1𝜔𝜑 + ∆𝐼𝑘𝑔𝜔2
= 𝑐 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Equation 3.9 

Equation 3.9 can be rearranged to isolate the frequency independent coefficient: 

 
∆𝐼𝑘𝑔 =

𝑘2

𝑐
𝜔(ε−2) + 𝑘1𝜔(φ−2) 

Equation 3.10 

For the frequency independent conditions to be met, the exponent values 𝜀 and 

𝜑 would have to be equal to 2 to give a 𝜔0 = 1, which is not viable at the GP (since a 

GP could only exist if 0 < 𝜀 = 𝜑 < 1 ). It is also not feasible to have negligible k 

coefficients as the data would not be a valid GP if the 𝐺’ and 𝐺’’ components were zero. 

3.5.2 Study of Increasing Frequency Intervals on Gelatin Gelation 

For each frequency decade, repeat experiments were conducted using the procedure 

outlined in Section 3.4.2.2 and the average GP calculated. Error in the reported GP 

was recorded as the larger of either the standard deviation between repeats or the 

deviation of the roots reported (such that maximum uncertainty was reported). The 

data was plotted as frequency decade against phase angle before the gel points were 

corrected using the ERIC procedure (Figure 3-7). The highest frequency values are 

presented on the x-axis with the lowest frequency being a decade lower (e.g. the 

corresponding lowest frequency for 10 Hz was 1Hz). It is clearly shown that as the 

frequency decade increases, the value of the GP reported increased out of the range 
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predicted by an SMT rheometer (dashed line shows the mean SMT GP with the dotted 

lines referring to the standard deviation). As the value of the phase angle increases, the 

roots defined for the GP deviate further from the true value. Once corrected using 

ERIC, the data for all frequency decades falls back within the expected SMT limits, 

giving accurate and precise gel points. Whilst validating the previously accessible 

SAOS frequency ranges, ERIC also enables analysis of rapidly evolving strain 

sensitive gelling systems by use of higher frequency decades. Previous techniques, 

such as Fourier Transform Mechanical Spectroscopy reported by Hawkins (7) were 

shown to be inappropriate for such gelling systems. Where Nmu > 0.15, the data was 

discarded due to high sample mutation  (259). Due to the range of high frequency 

decades employed during the study, some raw phase angle data fell outside of the 150° 

limit set by the manufacturer (9). However, this was not discarded prior to analysis 

using ERIC.  

 

 

 

 

 

 

 

A comparison of phase angle as a function of raw phase angle is presented in Figure 

3-8. The validity of the data was limited by the stated raw phase angle threshold of 

150°, outlined by the manufacturer for the AR-2000ex rheometer used (9). As the raw 

phase angle approaches 180°, an increasing proportion of the applied force can be 

attributed to instrument inertia artefacts. As stated in Section 3.4.2.1, the SIC 

procedure involves calibration of the instrument inertia. The deviation in repeat 

calibration of the instrument inertia was calculated to be 0.15%, suggesting a 

systematic error in the instrument (Table 3-2). As a result, direct comparison with 

Figure 3-7 Phase angles reported at the GP (black circles) over a range of increasing frequency decades along 

with the ERIC corrected 𝛿𝐺𝑃 for the same dataset (blue squares). 
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rheometric data from other rheometers is not possible. The precision and accuracy of 

the corrected GP is a result of a 0.46% deviation from the calibrated inertia constant, 

𝐼𝑐. The effect the deviation in the determined 𝐼𝑐 has on the GP can limit the validity of 

the raw phase angle data as seen in Figure 3-7. The dashed and dotted horizontal lines 

represent the mean and standard division respectively of SMT data. Once the ERIC 

procedure was applied, data that would previously have been discarded due to 

limitations of the rheometer, fell back within the inertia free SMT rheometer 

boundaries.  

 

 

 

 

 

 

 

 

Figure 3-8 The apparent and corrected GP data for the frequency study, shown with phase angle as a function of 

raw phase angle. The black circles represent the raw data and the blue squares the corrected data. 

Table 3-2 The calibrated inertia constants reported for a CMT rheometer. The data was collected by repeatedly 

calibrating the instrument prior loading a sample. 

AR-G2(II) CMT Rheometer 

Geometry 

Inertia /µNms2 

Instrument 

Inertia /µNms2 

10.0922 18.9100 

10.2577 18.9945 

10.2139 18.9759 

10.2628 18.9604 

10.2605 18.9491 

10.2190 18.9322 
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As discussed above, uncorrected GP data obtained using different CMT rheometers 

cannot be compared due to the discrepancy in calibrated inertia constants (where 

𝛿𝑟𝑎𝑤 > 150°). To further explore the effect of inertial artefacts in driving variation 

between data obtained using different CMT rheometers, data for three AR-G2 

rheometers was collected. Two CMT rheometers, AR-G2(I) and AR-G2(II) (serial 

numbers 10D4334 and 10D4328 respectively), were purchased at the same time, April 

2010, and have identical usage and service histories. However, the third CMT 

rheometer analysed, AR-G2(III) (serial number 7A3292), purchased in February 2007, 

prior to both AR-G2(I) and AR-G2(II), has been moved between laboratories several 

times. 

The data presented in Figure 3-9 compares GP data collected using both SIC and ERIC 

procedures. The GPs were determined using a frequency decade of 1-10 Hz on all 

CMT rheometers with a gelatin concentration of 2.5 wt%. The instruments concerned 

had undergone manufacturer calibration and servicing within the 12 months prior to 

the studies being conducted. The horizontal dashed and dotted lines represent the mean 

gel point phase angle and standard deviation respectively for an SMT rheometer. 

 

 

 

 

 

 

 

 

 

The apparent GPs reported for each of the CMT rheometers were 61.5 ± 2.0° for AR-

G2(I), 69.0 ± 4.4° for AR-G2(II) and 71.3 ± 3.0 for AR-G2(III). The raw GP data was 

then corrected using the ERIC procedure and the phase angle distributions between 

Figure 3-9 The comparison reported GP data from three AR-G2 rheometers using both the SIC and the developed 

ERIC procedure. The horizontal dashed and dotted lines represent the mean and standard deviation of the data 

obtained using an SMT rheometer. 



66 

 

SIC and ERIC analysed using a Student t-test (𝑛 = 8). There was no statistically 

significant difference reported between the uncorrected and ERIC corrected GP data 

for AR-G2(I) (𝑝 = 0.39) as the corrected GP was determined to be 61.8 ± 1.2°. This 

indicates that the SIC procedure is sufficiently accurate calibration for the AR-G2(I) 

rheometer. However, both the AR-G2(II) and AR-G2(III) CMT rheometers showed a 

significant difference in the reported GPs once corrected using ERIC. The corrected 

GPs were found to be 62.5 ± 1.0° and 63.5 ± 3.4° for AR-G2(II) and AR-G2(III) 

respectively once the ERIC procedure had been applied. A statistically significant 

difference between SIC and ERIC procedures was found for AR-G2(II) and AR-

G2(III) (𝑝 = 0.003 and 𝑝 = 0.025, respectively). These 𝑝 values suggest that the SIC 

procedure was insufficient for the calibration of the inertia constants of the rheometers 

and the results require further analysis using the ERIC procedure.  

It is clear from Figure 3-9 that when using the SIC procedure, the apparent uncorrected 

GPs returned for the AR-G2(I) and AR-G2(II) rheometers showed significant variation 

using a T-Test with two-tails and equal variances (𝑝 = 0.0004). Prior to correction, 

the AR-G2(II) and AR-G2(III) rheometers appear to show some agreement in the 

reported GP. However, after the application of the ERIC procedure, the CMT data for 

all three AR-G2 rheometers shows agreements with the SMT GP data of 62.7 ± 1.0° 

for an identical 2.5 wt% gelatin system.  

As discussed, AR-G2(III) was purchased prior to AR-G2(I) and AR-G2(II) which 

could be a possible explanation for the reported GPs prior to the application of the 

ERIC procedure. AR-G2(III) was moved between several laboratories and due to the 

sensitivity of the instrument and the instrument limits approached in the study, it is 

possible that the GP accuracy was compromised. Despite being almost identical, AR-

G2(I) and AR-G2(II) report different pre-ERIC GPs due to instrument-specific 

accuracy of the SIC procedure. Both AR-G2(I) and AR-G2(II) were manufactured in 

April 2010 with similar serials numbers of 10D4334 and 10D4328 respectively. 

Interestingly, TA Instruments do not employ quality control for phase angle 

measurement, which could explain the discrepancy in the phase angles reported by the 

different instruments. Consequently, it may be possible for ERIC to form the basis of 

a new quality control procedure. 
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3.5.3 Concentration Dependence of Gelatin Gelation 

As described in Section 3.4.2.4, a study of the effect of concentration on stress 

relaxation exponent at the GP in gelatin gels was conducted. A range of concentrations, 

2.5 𝑤𝑡% ≤ [𝐺𝑒𝑙𝑎𝑡𝑖𝑛] ≤ 30 𝑤𝑡%, and a set frequency decade of 0.3-3Hz were 

employed. The experimental procedure was kept identical to that of the frequency 

study with the results obtained initially analysed with the SIC procedure. Data was 

then processed, post-acquisition, using the ERIC procedure. A previously unreported 

dependence of the stress relaxation exponent on gelatin concentration was observed 

for low concentration gelatin gels, with a limiting 𝛿𝐺𝑃 of 63° (𝛼 = 0.7). 

Figure 3-10 shows mean phase angles recorded over a range of gelatin concentrations 

using the SIC procedure (black circles) and clearly illustrates a gelatin concentration 

dependence. As the concentration of the gelatin increases, the phase angle reported 

decreases. The error bars plotted represent the standard deviation in the data.  

 

 

 

 

 

 

 

 

Previous literature published by Hawkins et al. (7) and Curtis et al. (77) was used for 

comparison of the data. Both studies used a variety of discrete gelatin concentrations 

and rheometric methods to obtain GP data that agrees with the present study. Neither 

study reported gelatin concentrations as low as 2.5 wt%. However, the ERIC procedure 

allows accurate and precise GP data to be recorded at the extended lower boundary of 

Figure 3-10 A previously undocumented gelatin gelation concentration dependence was reported. Figure 10a) 

plots the uncorrected data recorded in the study (black circles) alongside data collected by (Hawkins et al., 2008) 

using SAOS and FTMS (blue triangles) over a range of 0.2 – 3.2 Hz and data published by (Curtis et al., 2015) 

using OFR and FTMS over a range of 0.1 – 10 Hz (red squares). 
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the concentration range. Curtis et al. used an SMT rheometer with a multi-frequency 

Optimal Fourier Rheometry (OFR) technique to obtain GP data for 30 wt% gelatin up 

to 10Hz (red square). The agreement between the present study and that of Curtis et 

al. (77) is due to the significantly higher viscosity of the 30 wt% gelatin used on the 

CMT rheometer. Higher gelatin concentrations result in the higher torque that reduces 

the raw phase angle to within the acceptable manufacturer limits for the CMT data 

presented. Fourier Transform Mechanical Spectroscopy (FTMS) was employed by 

Hawkins et al. using a CMT rheometer (7). There is excellent agreement between the 

data collected and that published in the study and it is likely that by using a SIC 

procedure on a CMT rheometer, the data experienced the previously discussed 

instrument inertia artefacts.  

Figure 3-11 presents the uncorrected (black circles) and corrected data (blue squares) 

for the gelatin concentration study. The ERIC procedure uses the data provided by the 

TRIOS file to determine the true gel point. Once ERIC was applied, the data from both 

the CMT rheometer and the SMT rheometer came into agreement with the gel point 

for CMT being re-evaluated at 63.1 ± 0.6° post data-acquisition and the SMT gel point 

being given as 62.7 ± 1.0°. The agreement between the CMT and SMT provides 

validity of the ERIC procedure as the SMT rheometer is not influenced by instrument 

inertia.  

 

 

 

 

 

 

 

 

 
Figure 3-11 The application of the ERIC procedure to the raw data from the present study (black circles). Once 

corrected, the data approaches the Percolation Prediction phase angle of 63° (blue squares). 

Percolation Prediction 
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The percolation prediction illustrated on the figure highlights the limiting value of the 

gelatin based on a stress relaxation exponent (𝛼 = 𝛿
90⁄ ). The theoretical predictions 

of 3D lattice percolating systems is 𝛼 = 0.7 (52,260,261). Therefore, a maximum 

phase angle of 63° is approached as gelatin concentration is decreased. As the 

concentration of the gelatin samples tends to zero, the prediction of a stress relaxation 

exponent value of 0.7 can be expected as there is a lack of interaction and cross linking 

necessary within the gel to reach the GP (52). Numerous studies have been conducted 

on alternative biopolymer systems which support the theoretical percolation 

predictions (262–265).  

3.6 Conclusions 

The development of the Enhanced Rheometer Inertial Correction (ERIC) procedure 

and subsequent application to gelatin gelation is discussed in this chapter. The 

conclusions of the studies are as follows: 

1. Development of an Enhanced Rheometer Inertial Correction (ERIC) 

procedure. By exploiting the frequency-independent GP, it was possible to 

develop the ERIC procedure for acquisition of valid GP data at previously 

inaccessible frequencies when using a CMT rheometer, where previously the 

inertial artefacts present dominated the measurement. The development of an 

ERIC GUI has made the procedure accessible to the experimentalist for post-

data acquisition correction. 

2. Effect of increasing frequency intervals on gelatin gelation. The ERIC 

procedure reported in this chapter shows that data acquired using a CMT 

rheometer, at previously inaccessible frequencies, can be corrected post-data 

acquisition, to obtain data in agreement with SMT rheometers. The data can be 

corrected to give greater accuracy and precision for the GPs recorded by 

determining the true inertia constant using a MATLAB code. Typically, the 

apparent inertia constant reported by the instrument was correct by values of 

the order of 0.1 µNms2. A modification of this proportion is larger than the 

precision offered by the instrument as determined by carrying out repeat 

calibrations of the rheometer. The inaccuracy in the apparent inertia constants 

as calibrated appear to be instrument specific. Application of the ERIC 

procedure may explain apparent discrepancies between identical gelling 

systems measured on different CMT rheometers. By exploiting the frequency 
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independent GP of the data, the true inertia constant could be determined, 

providing validation to the data with increased accuracy and precision of the 

corrected GP recorded. By accessing previously inaccessible frequencies, the 

ERIC procedure allows experiments to be conducted at either (i) higher 

frequency decades, lending it to rapidly gelling systems with 𝑡𝑔𝑒𝑙 < 100𝑠 

and/or (ii) lower concentration systems.  

3. Concentration dependence of gelatin gelation. A previously undocumented 

concentration dependence was identified for gelatin. Over a range of 

2.5 𝑤𝑡% ≤ 𝑐 ≤ 30 𝑤𝑡%, a limiting phase angle value of 63° at low gelatin 

concentrations was observed, corresponding to a stress relaxation exponent 

value of 𝛼 = 0.7. Discrete data points extracted from published literature 

supported the evidence of a concentration dependence for the gelation of 

gelatin when plotted alongside the data obtained in the present study.  
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 Detection of exhaust particulate induced 

clotting anomalies in fibrin gels 

4.1 Introduction 

The effect of air pollution on human health has been widely studied 

(168,175,191,224,227,246). The potential for soot particulates to translocate across 

the alveolar-capillary membrane within the lungs to the blood stream may result in 

blood clotting anomalies. The fibrin network that forms the scaffolding within a whole 

blood clot can be studied using the component proteins, fibrinogen and thrombin. 

Rheological techniques can be employed to assess the sol-gel transition in fibrin gels 

to determine whether particulate matter (PM) causes anomalous clotting 

characteristics to the clot structure.  

Weak gelling systems, such a fibrin gels, are susceptible to inertial effects with the 

raw phase angle indicating the level to which inertial artefacts pollute the data. The 

instrument manufacturer (TA Instruments) state a limiting raw phase angle of 150° 

(9) for the AR-G2 CMT rheometer used, beyond which the data may not be valid. The 

raw phase angles reported by CMT rheometers in this chapter exceed the 

manufacturers limit (𝛿𝑟𝑎𝑤 > 175°), necessitating the use of the ERIC procedure 

(detailed in Chapter 3) to correct for the discrepancies in the reported GP data between 

CMT and SMT rheometers. 

The studies presented herein were conducted to assess the potential pernicious effects 

of soot PM on clotting and the microstructure of the resulting fibrin network. The 

rheological GP data obtained using CMT and SMT rheometers was further assessed 

by images obtained using Scanning Electron Microscopy (SEM) and Laser Scanning 

Confocal Microscopy (LSCM) for a range of fibrinogen and thrombin concentrations 

prior to the addition of the PM. 

4.2 Literature Review 

The polymerisation of fibrinogen by thrombin to fibrin forms the microstructural 

scaffold of a blood clot (128). In healthy individuals, fibrinogen is found at a 

concentration between 2 mg ml-1 and 5 mg ml-1 (110–112) and as such, is the third 

most common protein found in human plasma (110). Inflammation and injury can 

elevate the fibrinogen levels up to 7 mg ml-1 (112). The polymerisation of fibrinogen 
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by thrombin occurs upon initiation of the coagulation cascade and results in the 

formation of an insoluble fibrin network which allows haemostasis to be maintained 

(100). Both the intrinsic and extrinsic coagulation pathway result in thrombin 

activation and subsequent polymerisation of the fibrinogen monomers to a cross-

linked fibrin network (121).  

The formation of a fibrin network, along with platelet aggregation, can result in either 

haemostasis (a healthy result) or pathological vascular occlusion (128). Clots that are 

formed at higher thrombin concentrations are more structurally stable but are less 

susceptible to fibrinolysis resulting in possible occlusion of the blood vessels (121). 

Abnormal clots can result in vascular diseases such as DVT, VTE, PE, stroke and 

myocardial infarction (54,128,134). Cardiovascular disease is one of the leading 

causes of death across the world with approximately 30% of deaths being reported in 

relation to cardiovascular episodes (266,267). Between 2007 and 2017, total deaths 

from cardiovascular disease increased globally by 21.1% (268).  

Whilst nanoparticles have been employed in the treatment of blood disorders and 

disease (249,250,255,256), a wealth of research has indicated that diesel PM of a 

similar size, produced due to incomplete combustion, increase the likelihood of 

adverse effects on blood coagulation (161,168,192,201,224,230,235,236,269). The 

effects of particulates on coagulation has previously been monitored using techniques 

involving measurement of a clotting time, microscopy and platelet function tests 

(161,168,224,234). However, each technique has shortcomings (Section 2.3.4).  

The use of rheometric techniques for the detection of anomalous blood coagulation 

due to the presence of exhaust PM may provide robust quantitative data and provide 

additional insight into this important phenomenon. Rheometric techniques are 

advantageous as it is possible to obtain many data points for low viscosity samples 

over a large range of frequencies. The technique of oscillatory rheology has previously 

been applied to clotting (270–273) with multi-frequency SAOS procedures later being 

employed to indicate the frequency-independent GP of gelling materials (59,69). 

Studies by Curtis et al. (59) and Badiei et al. (69) validated the use of controlled stress 

parallel superposition (CSPS) on fibrin gels (and later blood) by comparison to SAOS 

procedures. It was not viable to apply CSPS to the studies presented herein as the 

microstructural modifications caused by an imposed unidirectional shear had potential 



73 

 

to conceal any deviation observed in the clot microstructure as a result the presence 

of PM. Therefore, it was necessary to conduct experiments using a standard SAOS 

GP procedure to determine the effects of soot under quiescent conditions.  

4.3 Materials  

Human fibrinogen and alpha thrombin were purchased from Enzyme Research UK. 

Tris-buffered saline 10x solution (TBS) was purchased from Sigma Aldrich UK. 

Alexa-488 labelled fluorescent fibrinogen was purchased from Thermo Fisher UK. 

4.3.1 Thrombin preparation 

Human alpha thrombin was purchased in aliquots of 1000 NIH units from Enzyme 

Research UK. In order to obtain the desired activity of 500 NIH ml-1, 2 ml of deionised 

water was added into the vacuum sealed container using a syringe. Once all the 

deionised water was added, the container was gently swirled to encourage the 

powdered thrombin to dissolve. After all the solids had dissolved, the thrombin was 

aliquoted into 10 µL volumes for use in experiments. The aliquots were stored in a 

freezer (at -80 °C) until required for testing.  

When required, an aliquot was removed from the -80 °C freezer, thawed at room 

temperature and placed on ice. A volume of 990 µl of freshly prepared 10 x diluted 

TBS was added to an Eppendorf tube which was also placed on ice. Once the TBS 

was appropriately chilled, 10 µl of thrombin was added and the container gently 

inverted to ensure the solution was completely combined. As a precaution, the 

prepared thrombin was stored on ice for the duration of the experiments and discarded 

after four hours (274) to ensure the level of thrombin activity remained consistent 

throughout all experiments. 

4.3.2 Fibrinogen preparation 

Human fibrinogen (Enzyme Research UK) was required for the preparation of fibrin-

thrombin gels. Fresh 10x TBS was diluted in deionised water prior to the 

solubilization of the fibrinogen to make a 1x TBS solution. A tube containing the 

required volume of 1x TBS (as stated by Enzyme Research UK) was heated in a 37°C 

water bath for approximately 20 minutes prior to addition to the vacuum sealed 

fibrinogen container. The full volume of warm 1x TBS was inserted into the container 

holding the fibrinogen using a syringe to pierce through the rubber seal. Once the full 

volume of 1x TBS was transferred, the glass container was very gently and carefully 
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swirled to combine the components and sealed with Parafilm. It was then replaced 

into the 37°C water bath and was gently swirled at 15-minute intervals until the 

solution became transparent, colourless and homogenous (after approximately 5 ½ 

hours). At this point, the container was removed from the water bath and the prepared 

fibrinogen aliquoted into 0.9 ml volumes before being placed into a -80 °C freezer 

until required for testing.  

Prior to preparation of the fibrin-thrombin gels, the necessary number of aliquots were 

removed from the -80 °C freezer and allowed to thaw to ambient temperature. Once 

thawed, the required volume of fibrinogen was added to the sample ready for testing. 

It was not necessary to store the fibrinogen on ice between each experiment. Any 

remaining defrosted sample was discarded after four hours if not required. 

4.3.3 Fluorescent Fibrinogen Preparation 

In order to image the microstructure of the fibrin-thrombin network across various 

LSCM studies, it was necessary to prepare Alexa-488 labelled fibrinogen. Alexa-488 

has a maximum absorption wavelength of 495 nm and a maximum emission 

wavelength of 519 nm (167). The fluorescent fibrinogen contains approximately 15 

dye molecules attached to each fibrinogen molecule (275). A 5 mg aliquot of protein 

was purchased from Thermo Fisher UK. To reconstitute, 3.33 ml 0.1 M sodium 

bicarbonate (pH 8.3) (275) was added to the bottle of solids and gently swirled to 

combine. The bottle was wrapped in foil to prevent bleaching of the fluorophore and 

kept at ambient temperature. At 15-minute intervals, the sample was visually assessed 

and swirled until complete solubilization had occurred. After approximately two 

hours, the fluorescent fibrinogen was pipetted into 200 µl aliquots and placed in the -

80 °C freezer until required for testing. 

Prior to preparation of LSCM slides, the fluorescent fibrinogen was removed from the 

freezer and immediately wrapped in foil to prevent bleaching of the fluorophores 

before thawing to ambient temperature. 

4.3.4 Soot Samples 

A soot solution sample, Soot G[1x], was provided by Dr. E Durand of Cardiff 

University. A nebuliser was used to capture soot particles produced using a graphite 

generator in ultrapure water (276). The Soot G[1x] sample was a transparent solution 

with no visible aggregation of the soot particles present. The geometric mean diameter 
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of the particles in the gaseous phase was estimated4 to be 33.0 ± 1.65 nm, with the 

concentration of the Soot G[1x] solution being 5.60 x109 particles ml-1. The solution 

was prepared in ultrapure water. The zeta potential of the particles in solution was also 

measured4 to be in the range of -20 mV to 0 mV, suggesting the solutions are unstable 

suspensions that are prone to aggregation. Further characterisation of the soot 

solutions can be found in Appendix B. 

The Soot G[1x] solution was further concentrated to allow for an increase in the 

number of particles present in each clot sample without increasing the dilution of the 

coagulation proteins. These solutions, Soot G[2x] and Soot G[10x], respectively, were 

produced at Swansea University (as described in Section 4.4.1). The concentration of 

Soot G[2x] was estimated to be 1.12 x1010 particles ml-1 and that of Soot G[10x] was 

estimated as 5.60 x1010 particles ml-1. 

4.4 Methods 

4.4.1 Concentration of the stock soot solution 

Once collected from Cardiff University, a proportion of the stock ‘Soot G[1x]’ 

solution was concentrated in order to assess the effect of an increased number of 

particles without increased dilution of the coagulation proteins in both the fibrin gel 

and blood samples. This was achieved using a Schlenk Line (Figure 4-1) which 

disturbed the surface of the solution with a jet of N2, thus increasing the rate of 

evaporation. A volume of the ultra-pure water dispersant was evaporated, leaving the 

increased number of particles suspended in the desired volume of solution. A Schlenk 

Line was used to ensure the pressure of the N2 blown onto the surface was not so great 

as to blow the solution out of the sample tube.  

 

 

 

 

 
4 By Dr E Durand 
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To double the concentration of particles ml-1 to give Sample G[2x], 2 ml of stock soot 

solution was prepared by pipetting it into a glass sample tube. A 1 ml ‘blank’ control 

was also prepared in an identical tube as a reference point for the required evaporation. 

The starting point of the 2 ml solution was indicated by marking the bottom of the 

meniscus, and by careful comparison with the sealed ‘blank’ sample, the bottom of 

the 1 ml meniscus was also marked as a guideline for the completion of the 

evaporation.  

The height of the source of the N2 from the surface of the soot solution was carefully 

monitored to ensure that the process was efficient. The sample was left for 

approximately 90 minutes before the meniscus was level with the 1 ml ‘blank’ sample, 

suggesting that half of the solvent had been evaporated. There was no visible change 

in the solution. It was estimated that the concentration of particles in the solution had 

been increased from 5.6 x109 particles ml-1 in the stock solution to approximately 1.12 

x1010 particles ml-1 in the new 2x concentrated solution. 

The stock solution was further concentrated to give Sample G[10x] which contained 

10x particles ml-1. The above process was repeated with a starting volume of 10 ml of 

stock soot solution which was reduced to 1 ml after eight hours. The resulting 

concentration of soot was estimated to be approximately 5.6x1010 particles ml-1.  

All samples were stored in glass sample tubes, sealed with a stopper and as an added 

precaution, Parafilm was used to prevent any further, unwanted, evaporation. 

Figure 4-1 A typical Schlenk Line setup for concentration of soot solution samples. N2 was used to disturb the 

surface of the sample, causing evaporation of the dispersant.  

N2 

Vacuum 
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4.4.2 Rheological studies 

A 1% TBS-Tween (TBS-T) solution was prepared by combining 0.5 g of Tween-20 

surfactant with 49.5 g of 1x TBS. The Tween-20 solution is light sensitive. Therefore, 

the solution was stored in a foil wrapped glass bottle in the 4 °C refrigerator to prevent 

degradation. 

A strict procedure was followed in order to prepare and load the fibrin-thrombin gel 

samples onto the rheometer efficiently so as not to compromise the measurement of 

the gel time parameter. For all experiments, the delay time, 𝑡𝑑, from the addition of 

thrombin to the sample, thus initiating coagulation, to commencement of the 

experiment was recorded as < 65 ± 5.0 s.  

Firstly, TBS-T was added to a 7 ml bijou tube before a further volume of 1x TBS was 

added. The two were gently mixed before the required volume of fibrinogen was 

added. Again, the solution was gently mixed to ensure that the fibrinogen was 

dispersed within the 1x TBS/TBS-T solution. For all fibrin gel samples, the desired 

concentration of CaCl2 was 0.005 M, with the required volume being added and 

combined with the fibrinogen and TBS/TBS-T. It was necessary to include CaCl2 as 

Ca2+ increases the rate and extent of lateral aggregation between fibrinogen fibres 

(128) and for the initial platelet plug formation in whole blood clots (277). Finally, 

immediately prior to testing, the necessary volume of thrombin was added before 

being gently mixed and loaded onto the rheometer. 

The samples for the CMT rheological studies were quickly prepared and loaded onto 

the temperature-controlled Peltier plate system. To perfectly fill the 400 µm shearing 

gap at 20 °C, the volume of sample required was 124 µl. The 60 mm Al parallel plate 

upper geometry was manually lowered to the sample to encourage it to ‘jump’ to the 

plate due to attractive forces between the sample and the geometry, reducing the risk 

of bubbles within the sample. Once contact was made between the sample and the 

geometry, the plate was lowered to the geometry gap to ensure an even load across 

the geometry set up. A small volume of low viscosity silicon oil (9.8 mPa.s, 

Brookfield) was placed around the free surface (the circumference of the geometry) 

to prevent evaporation during testing and the TRIOS procedure was commenced.  

All CMT experiments were conducted using an AR-G2 rheometer (TA Instruments) 

which was set to run a standard GP procedure with a constant temperature of 20 °C 
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across a frequency decade of 0.4 – 4 Hz. The procedure began with a 10 s preshear at 

a rate of 100 s-1. The torque input was 4.24 µN.m and each test ran for 1200 s in order 

to obtain sufficient data both pre- and post-GP. The frequency range selected allowed 

for an increase number of data points to be collected prior to the GP. To correct for 

inertial artefacts discussed in Chapter 3, all CMT data was analysed post-acquisition 

using the ERIC procedure. 

4.4.2.1 AR-G2 CMT Thrombin Concentration Study 

In order to determine the effect of thrombin concentration on clot structure, a series 

of gels were prepared with 0.04 𝑁𝐼𝐻 𝑚𝑙−1 ≤ [𝑇ℎ] ≤ 0.16 𝑁𝐼𝐻 𝑚𝑙−1 whilst the 

fibrinogen concentration remained constant at 12 mg ml-1. An AR-G2 rheometer (TA 

Instruments) was employed with an extended ‘test time’ of 3600 s to allow for the gel 

formed to mature, even at the low thrombin concentrations.  

4.4.2.2 AR-G2 CMT Fibrinogen Concentration Study 

To investigate the effect of fibrinogen concentration on gelation, fibrin gels were 

prepared over a range of fibrinogen concentrations in the range 4 𝑚𝑔 𝑚𝑙−1 ≤ [𝐹𝑖𝑏] ≤

12 𝑚𝑔 𝑚𝑙−1, with a thrombin concentration of 0.08 NIH ml-1. Samples were prepared 

both with and without Tween-20, which reduces surface tension artefacts, to assess 

the effect of the addition of surfactant on the mature microstructure of the fibrin gel 

formed. 

4.4.2.3 ARES-G2 SMT Fibrinogen Concentration Study 

An ARES-G2 (TA Instruments) rheometer was used to evaluate the effect of 

fibrinogen concentration on clotting parameters of fibrin gels without the presence of 

instrument inertial artefacts. Fibrinogen concentrations of 8 mg ml-1, 10 mg ml-1 and 

12 mg ml-1 were analysed in conjunction with a fixed thrombin concentration of 0.05 

NIH ml-1.  

The temperature throughout the experiment remained constant at 24 °C. Samples were 

prepared using the procedure outlined in Section 4.4.2, prior to loading directly onto 

the temperature-controlled Peltier Plate. The 50mm titanium parallel plate geometry 

was set to a shearing gap of 400 μm. Exactly 0.785 ml of each sample was rapidly 

loaded onto the rheometer prior to a small amount of low viscosity silicon oil being 

placed around the free surface of the geometry once the shearing gap was reached to 

prevent evaporation of sample material during testing. 



79 

 

Each sample was pre-sheared for 10 s at a shear rate of 100 s-1 prior to commencement 

of the multi frequency time sweep. A maximum strain of 20% was applied to the 

sample with a corresponding maximum torque of 2.0 μN.m. Four frequencies (3.2 Hz, 

1.6 Hz, 0.8 Hz and 0.4 Hz) were employed to determine the frequency independent 

GP. The third harmonic of the torque waveform was monitored to ensure the linearity 

of the data. It was not necessary to use the ERIC correction procedure on data acquired 

using an SMT rheometer as there is no influence from instrument inertia. 

4.4.2.4 AR-G2 CMT Soot Concentration Study 

Fixed fibrinogen and thrombin concentrations, of 6 mg ml-1 and 0.08 NIH ml-1 

respectively, were selected based upon the data obtained in previous studies to give 

valid data with an acceptable experimental 𝑡𝑔𝑒𝑙 in order to reduce sample mutation. 

‘Soot G’ solution of varying volumes was included in the preparation of the fibrin-

thrombin gels to determine whether there were any clotting anomalies in the data 

reported compared to fibrin-thrombin gels without the inclusion of soot. The 

preparation and testing methods outlined in Section 4.4.2 were used. The required 

volume of soot was added to the reagents prior to the addition of the proteins. In line 

with literature, the desired volume of the soot sample was sonicated for 15 minutes at 

room temperature to reduce the aggregation of the particles present (168). The 

sonicated sample was then combined with 10x TBS to form a 1x TBS soot solution 

(TBS-S).  Prepared soot samples were used immediately.  

Initially, the concentration of stock G[1x] solution was tested between 0% and 5% 

inclusion. Increased volumes of the Soot G[1x] were combined into the fibrin gels, 

with the TBS balance being altered appropriately to maintain the correct reagent 

concentrations. Each result obtained was analysed using the ERIC procedure. 

As outlined in Section 4.4.2, it was possible to increase the concentration of the soot 

solution to G[2x] and G[10x]. Volumes of the higher concentration soot solutions 

were added into the gels to give a 1% overall inclusion at fibrinogen and thrombin 

concentrations of 6 mg ml-1 and 0.08 NIH ml-1 respectively.  

4.4.3 LSCM Studies Sample Preparation  

LSCM studies were carried out to provide supporting image data for the 

microstructure of the mature F-T gels over the range of fibrinogen, thrombin and soot 

concentrations. The gels were prepared using 1.5% fluorescent fibrinogen (1.5 mg ml-



80 

 

1 stock solution (275), produced as detailed by the manufacturer) labelled with Alexa-

488 fluorophore to allow images to be obtained using a Zeiss LSM 710 confocal 

microscope.  

Glass slides were assembled prior to the preparation of the gels to ensure rapid 

preparation of each sample. Two layers of double-sided tape were used to create a 

void between the glass slide and the coverslip (278), as shown in Figure 4-2. The edge 

of the coverslip was firmly pressed onto the tape to prevent any sample evaporation 

whilst the sample was gelling and being imaged. Care was taken to avoid debris and 

dust on the area enclosed by the coverslip, along with the coverslip itself, to ensure 

that good quality images were obtained using the confocal microscope. Gel samples 

were prepared individually with only a small total volume of sample required as 

approximately 80µl of solution filled the void in the slide. The samples were left to 

gel for 40x 𝑡𝑔𝑒𝑙 (75) to produce sufficiently mature gels so that the microstructure 

could be analysed. 

 

 

 

 

 

 

A Zeiss LSM 710 confocal microscope was used to obtain image data using Zen Black 

Software. A 40x oil immersion objective was used to capture images of the mature gel 

network of all the prepared gel samples. A small amount of oil (Zeiss, Immersol 518 

F) was placed onto the objective before loading the sample slide. Images were 

obtained 20 µm from the cover slip (279,280). For each sample, an image was 

captured of the network before a 4.2x zoom was applied to take a more detailed image 

of the gel microstructure. Three sites on each slide were imaged to ensure that the 

images captured were representative of the whole gel network. A 3D z-stack was also 

captured for each sample to give an understanding of the 3D structure of the gel 

network. A total of 44 slices were imaged to give a 49.97 x 49.97 x 25.60 µm network 

Figure 4-2 Schematic diagram of an assembled LSCM slide. The hatched area shows the position of the tape used 

to create the void. Approximately 80 μl of the sample to be imaged was pipetted into the void (grey). 

Sample 

chamber 
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structure. The initial image was captured 20 µm from the coverslip to avoid fibrinogen 

adsorbed onto the glass surface (280) with a further 25.60 µm being imaged beyond 

it.  

All fibrin gel slides were immediately disposed of using the appropriate waste removal 

routes after imaging. 

4.4.3.1 Thrombin concentration study 

To study the effects of thrombin on the fibrin gel microstructure, gel samples were 

prepared to image using the sample procedure as outlined in Section 4.4.2.1. Samples 

were prepared at 12 mg ml-1 (fixed) fibrinogen concentration with thrombin 

concentrations of 0.02 NIH ml-1, 0.04 NIH ml-1, 0.08 NIH ml-1, 0.16 NIH ml-1 and 

0.32 NIH ml-1. The thrombin concentration range was expanded from that of the 

rheological study (Section 4.4.2.1) as only the mature gel microstructure was of 

importance for the LSCM studies. Samples were once again prepared with both the 

inclusion and exclusion of Tween-20 to further determine the potential effect on the 

mature gel microstructure. For each thrombin concentration, sample slides were 

prepared in triplicate with three images taken at different locations on the slide to 

ensure that the acquired images were representative of the global network structure. 

4.4.3.2 Fibrinogen concentration study 

Gels were prepared, as with the rheological study in Section 4.4.2.2, both including 

and excluding Tween-20 surfactant, to allow for observations on the potential effect 

of fibrinogen concentration on the microstructure of the mature gel. In the case of no 

addition of Tween-20 (TBS-T), 1x TBS was used to complete the volume. The 

components of the gels were added as discussed in Section 4.4.2. Once the thrombin 

was added, the sample was immediately pipetted into the void between the glass slide 

and the cover slip. Care was taken to avoid sample spilling onto the coverslip outside 

of the desired area. After approx. 30 mins, a layer of clear varnish was painted around 

the edges of the coverslip to completely enclose the sample in the void. This prevented 

sampled evaporation throughout the gel network formation and contamination of the 

microscope objective during imaging. 

The fibrin gel samples were left to gel for >40x 𝑡𝑔𝑒𝑙 determined from the rheological 

experiments to ensure the microstructure had reached maturity across the sample (75). 

A tent of foil was placed over the samples to prevent the fluorophores bleaching in the 
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light. The samples were transported to the confocal microscope in darkness to 

continue to prevent bleaching of the fluorescent fibrinogen. Images were obtained in 

a darkened room to ensure the best quality images were captured. Triplicate slides of 

each sample were prepared to ensure reproducibility. 

4.4.3.3 Soot concentration study 

The final LSCM study conducted involved the inclusion of soot solutions into the 

fibrin gels. G[1x], G[2x], G[10x] were used in the preparation of gel samples and 

imaged using the procedures described in Sections 4.4.2 and 4.4.2.4. As with the 

rheological study, the soot solutions were sonicated for 15 minutes prior to the 

addition of 10x TBS to form a 1x TBS-S solution. The sample preparation was 

repeated in triplicate. Fixed concentrations of fibrinogen and thrombin of 6 mg ml-1 

and 0.08 NIH ml-1 respectively with 1% soot inclusion were used throughout the 

study.  

4.4.4 Scanning Electron Microscopy Studies Sample Preparation  

SEM images were obtained using a Hitachi S4800 Scanning Electron Microscope. 

The images were used to further analyse the effect of the fibrinogen concentration, 

thrombin concentration and soot inclusion on the mature clot microstructure. Whilst 

SEM images do not require the addition of fluorescently labelled fibrinogen, the 

preparation procedure is invasive, therefore care must be taken to avoid disrupting the 

mature clot microstructure. 

4.4.4.1 Fibrin gel clot preparation (for Scanning Electron Microscopy) 

A total of 200 μl of fibrin gel sample was prepared for each clot over a range of 

fibrinogen, thrombin and soot concentrations. As with fibrin gel samples prepared for 

LSCM analysis, gels were allowed to gel for 40x 𝑡𝑔𝑒𝑙. 

Initially, fibrin gels were prepared at set concentrations of 10 mg ml-1 fibrinogen and 

0.08 NIH ml-1 thrombin, both with and without the addition of Tween-20, to visually 

assess the effect of the addition of the surfactant on the mature microstructure of the 

gel network. Gels were prepared using an identical procedure (outlined in Section 

4.4.2) with one including 0.1% Tween-20 and the other containing no Tween-20.  

The thrombin concentration SEM study involved all gel samples being prepared with 

fibrinogen concentrations of 6 mg ml-1 and 10 mg ml-1, whilst the extremes of the 

thrombin concentration range were added to give concentrations of 0.02 NIH ml-1 and 
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0.32 NIH ml-1 respectively. Samples were prepared in line with the method discussed 

for the rheological study presented in Section 4.4.2.1.  

In a third SEM study, to analyse the effect of fibrinogen concentration on the network 

formed in the gel, fibrinogen concentration was varied over the range 4 𝑚𝑔 𝑚𝑙−1 ≤

[𝐹𝑖𝑏] ≤ 12 𝑚𝑔 𝑚𝑙−1 with a constant thrombin concentration of 0.08 NIH ml-1. Each 

concentration sample contained 0.1% Tween-20. Preparation was consistent with the 

gels prepared for the rheological study reported in Section 4.4.2.2.  

The final study conducted using the SEM aimed to image the fibrin networks with the 

inclusion of the ‘Soot G’ solutions. All fibrin-thrombin gel samples for the final SEM 

study, involving soot concentrations of 1% of the total volume of G[1x], G[2x] and 

G[10x], were prepared using a fibrinogen concentration of 6 mg ml-1
 and a thrombin 

concentration of 0.08 NIH ml-1. Prior to the addition of the soot to the fibrin gels, each 

soot sample was sonicated for 15 minutes to prevent the aggregation of the soot 

particles present (168). A 1x TBS-S solution was formed by diluting the 10x TBS 

solution with the sonicated soot solution. As with all SEM sample preparation, an 

identical procedure was employed to that used in the rheological studies (Section 

4.4.2.4). 

4.4.4.2 Washing and dehydration of clot samples 

4.4.4.2.1 Preparation of cacodylate buffer 

A total volume of 1000 ml of 0.05 M cacodylate buffer was prepared using sodium 

cacodylate trihydrate (C2H6AsNaO2.3H2O) dissolved deionised water. The buffer 

solution was then refrigerated at 4 °C until required for SEM sample preparation.  

4.4.4.2.2 Preparation of glutaraldehyde solution 

An integral part of the SEM sample preparation requires washing the samples in 

glutaraldehyde to fix the gel networks that had formed, preventing any further 

development or decay of the gel structure. The glutaraldehyde solution was prepared 

by diluting 25 % glutaraldehyde solution (Sigma Aldrich UK) to 2 % using the 

prepared cacodylate buffer (Section 4.4.4.2.1).  

4.4.4.3 Preparation of the fibrin clots 

Once the fibrin-thrombin clots had reached maturity, each sample was washed using 

0.05 M sodium cacodylate buffer to remove excess salt (281). The cacodylate buffer 
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was removed and replaced at 10-minute intervals with care taken to avoid 

contamination between samples. The process was repeated three times before the 

cacodylate buffer was removed and replaced with 2 % glutaraldehyde solution. The 

samples were left in the 2 % glutaraldehyde solution overnight (approximately 16 

hours) in a fume hood to prevent any further gelation in the clots. 

After the samples had been fixed in glutaraldehyde overnight, the clots were washed 

with graduated concentrations of ethanol between 30% to 100%. The final stages of 

preparation involved transitioning from 100% ethanol to hexamethyldisilazane 

(HDMS) using a 50:50 ethanol and HDMS mixture. After washing with the combined 

ethanol and HDMS, pure HDMS was used to rinse the clots three before the remaining 

HDMS left to evaporate in a fume hood overnight to dry the clot samples fully.  

The dry samples were mounted onto stubs suitable for the SEM assembly using carbon 

tape. The samples were individually removed from the wells and gently pressed onto 

the tape to minimise damage to the clot structure (Figure 4-3). The fibrin-thrombin 

clots were easily adhered to the tape.  

 

 

 

 

Once all the samples were mounted, the surface of the samples was sputter coated 

with a 15 nm layer of gold-palladium, using a Polaron Instruments Inc. E5100 at 2.2 

kV and 20 mA for 90 s, to improve the quality of the images obtained using the SEM 

(Figure 4-4). The sputter coated fibrin-thrombin gel samples were stored and imaged 

as soon as possible.  

 

 

 

Figure 4-3 An example fibrin gel clot mounted onto carbon tape. The sample in this image was not yet sputter 

coated with a 15nm gold-palladium layer. 
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4.5 Results and Discussion 

4.5.1 Analysis of the addition of Tween-20 to fibrin gels 

The effect of the inclusion of Tween-20 on the gel microstructure was analysed, both 

rheometrically and using imaging techniques, prior to the commencement of the main 

fibrin gel studies. For low viscosity weak gelling systems, surface tension artefacts 

can appear as a 𝐺’ plateau in oscillatory measurements (31), resulting in an anomalous 

GP being reported since 𝑡𝑎𝑛𝛿 = 𝐺′′
𝐺′

⁄ . To avoid poor quality data, the surface 

tension of the sample was reduced by inclusion of a surfactant, Tween-20. 

The addition of 0.1 % Tween-20 to the fibrin gels had a substantial impact on the 

quality of the rheological gel point data. The addition of the surfactant reduces the 

surface tension within the system which allows for a more defined GP to be recorded. 

Without the addition of 0.1 % Tween-20 to the gel, it was not possible to obtain a 

defined GP (Figure 4-5a). The frequency pairs do not intersect to give a definite GP 

as the material transitioned from viscoelastic liquid to viscoelastic solid. Initially, the 

four frequencies order as a viscoelastic solid. This was the case for multiple 

experiments over a range of thrombin (0.05 𝑁𝐼𝐻 𝑚𝑙−1 ≤ [𝑡ℎ𝑟𝑜𝑚𝑏𝑖𝑛] ≤

0.1 𝑁𝐼𝐻 𝑚𝑙−1) and fibrinogen (4 𝑚𝑔 𝑚𝑙−1 ≤ [𝑓𝑖𝑏𝑟𝑖𝑛𝑜𝑔𝑒𝑛] ≤ 12 𝑚𝑔 𝑚𝑙−1) 

concentrations. However, when Tween-20 was incorporated into the gel, the GPs 

reported were not only more defined but also had a suitable experimental 𝑡𝑔𝑒𝑙, as seen 

in Figure 4-5b. The inclusion of Tween-20 can shorten the apparent 𝑡𝑔𝑒𝑙 as the 

surfactant reduces the possibility of an artificial 𝐺’ plateau as a result of dominant 

Figure 4-4 The final SEM samples after sputter coating with a 15 nm layer of gold-palladium. Examples of both 

(a) blood clots and (b) fibrin gel clots can be seen. 

a b
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surface tension effects, allowing 𝑡𝑎𝑛𝛿 and the corresponding 𝑡𝑔𝑒𝑙 to be accurately 

determined at the GP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Whilst GPs were not reported for every experiment, even with the inclusion of Tween-

20, due to the weak structural nature of the fibrin gels, it was possible to obtain valid 

data over a range of thrombin and fibrinogen concentrations. As the concentration of 

both thrombin and fibrinogen increased, the reported GP became easier to obtain and 

better defined.  

a) 

b) 

𝛿𝐺𝑃,𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡 = 65.9 ± 1.28° 

No Tween-20 

Tween-20 

Figure 4-5 Example fibrin-thrombin GP profiles with a fibrinogen concentration of 10 mg ml-1 and a thrombin 

concentration of 0.08NIH ml-1 for a) without addition of Tween-20 and b) with the inclusion of 0.1% Tween-20.  

No GP 
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To further understand the effect of the addition of Tween-20 to fibrin-gels, images 

were captured using LSCM and SEM to assess the mature gel microstructure. The 

LSCM images show that the addition of Tween-20 has a negligible impact on the 

mature network. For samples with no addition of Tween-20 (Figure 4-6a) and gels 

including Tween-20 (Figure 4-6b) no variance in the microstructure was visually 

observed. The same can be said for the SEM images captured of fibrin gels without 

the inclusion of Tween-20 (Figure 4-6c) and with the inclusion of Tween-20 (Figure 

4-6d). The images obtained using LSCM are more reliable than those of SEM as the 

clot network remains in its native, hydrated state. 

The inclusion of Tween-20 surfactant into fibrin gels aids the reduction of surface 

tension effects by ensuring that there are minimal deviation and migration in the 

contact line of the sample (31). By lowering the surface tension, the surface tension 

torque is reduced, ensuring that the reported torque does not detrimentally impact the 

Figure 4-6 Images captured using LSCM and SEM were used to analyse the effect of the inclusion of Tween-20 on 

the microstructure of the fibrin gels. Images a) and c) show the microstructure of the mature fibrin gel without the 

inclusion of Tween-20 (using LSCM and SEM techniques respectively). Images b) and d) show the microstructure 

of a fibrin gel with the inclusion of 0.1% Tween-20 (using LSCM and SEM techniques respectively). 

a) b) 

c) d) 
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data obtained, even in low viscosity weak gelling systems (31). With a reduction in 

surface tension achieved by the inclusion of Tween-20 into the fibrin gels, the 

rheological data obtained is greatly improved with minimal effects on the mature gel 

microstructure. As a result, all further rheological studies were conducted with the 

inclusion of Tween-20 to ensure valid GP data was accessible.  

4.5.2 Thrombin Concentration Study 

A thrombin concentration study was conducted using an AR-G2 rheometer to 

determine the ideal thrombin concentration to employ in future studies as well as 

assess the microstructure of the gel networks formed. The fibrinogen concentration 

remained constant throughout the study at 12 mg ml-1, with the inclusion of Tween-

20 in the gel sample. 

As stated in Section 4.4.2.1, rheological data was obtained over a thrombin range of 

0.04 𝑁𝐼𝐻 𝑚𝑙−1 ≤ [𝑇ℎ] ≤ 0.16 𝑁𝐼𝐻 𝑚𝑙−1. An example GP for the highest (0.16 NIH 

ml-1) and lowest (0.04 NIH ml-1) thrombin concentrations studied can be seen in 

Figure 4-7. Both GP show signs of inertial artefacts as the initial phase angles reported 

were > 90°, necessitating the application of ERIC post-data acquisition. 
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As the thrombin concentration present in the fibrin gel increases, the 𝑡𝑔𝑒𝑙 decreases 

significantly due to faster formation of the fibrin network. The pre- and post-ERIC 

data obtained throughout the study show strong agreement (Figure 4-8). It was not 

possible to obtain rheological data at a thrombin concentration higher than 0.16 NIH 

ml-1, such as 0.32 NIH ml-1, due to the speed at which the gel network forms. The rate 

of gelation was too fast for valid rheometric data to be obtained pre-GP, with large 

Nmu being recorded. At thrombin concentrations of less than 0.04 NIH ml-1 valid GP 

data could not be obtained due to resolution issues. The GP measurement in fibrin gels 

Figure 4-7 Example GP profiles to illustrate the effect of thrombin concentration on the gel time, 𝑡𝑔𝑒𝑙, reported. 

A thrombin concentration of 0.16 NIH ml-1 is shown in a) with a reported 𝑡𝑔𝑒𝑙 of 372 ± 4 s, whereas in b) the 

thrombin concentration was considerably lower at 0.04 NIH ml-1, resulting in a 𝑡𝑔𝑒𝑙 of 1030 ± 15 s. The fibrinogen 

concentration for both experiments was 12 mg ml-1with a frequency decade of 0.4-4 Hz. 

a) 

b) 

0.16 NIH ml-1 

0.04 NIH ml-1 

𝑡𝑔𝑒𝑙 = 1030 ± 15 𝑠 

𝑡𝑔𝑒𝑙 = 372 ± 4 𝑠 
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and blood pushes the rheometer’s capabilities due to the very weak incipient gel 

microstructure. 

  

 

 

 

 

 

As the thrombin concentration was increased, the phase angles reported slightly 

decreased (Figure 4-9). The decreased phase angles reported lead to higher 𝑑𝑓 values 

(Figure 4-10). The gel networks associated with the 𝑑𝑓 values reported at the highest 

thrombin concentrations of 0.16 NIH ml-1 suggests a more dense microstructure, 

whilst the decreased 𝑑𝑓 values reported for the lowest concentration of  0.04 NIH ml-

1 imply a more open microstructure (128,282,283).  

 

 

 

 

 

 

Figure 4-8 Rheological 𝑡𝑔𝑒𝑙 data obtained for the fibrin gels thrombin concentration study. The fibrinogen 

concentration of all gels remained constant at 12 mg ml-1 whilst the thrombin concentration was varied between 

0.04 mg ml-1 ≤ [Th] ≤ 0.16 NIH ml-1. The uncorrected pre-ERIC data is shown by the solid line, whereas the dashed 

line represents the data post ERIC correction. 
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No statistically significant deviation in the uncorrected 𝑑𝑓  values was reported for 

limiting thrombin concentrations of 0.04 NIH ml-1 and 0.16 NIH ml-1 when using a T-

Test (𝑝 = 0.4206). However, the post-ERIC data shows a statistically significant 

increase (𝑝 = 0.0081) in the corrected 𝑑𝑓 values reported between the highest and 

lowest thrombin concentrations.  

Figure 4-10 The 𝑑𝑓 reported at the GP for each of the thrombin concentrations studied, with a constant fibrinogen 

concentration of 12 mg ml-1. The uncorrected data is represented by the solid line with the ERIC corrected data 

shown by the dashed line. 

Figure 4-9 The rheological data obtained for 𝛿𝐺𝑃 over a range of thrombin concentrations. The solid line 

represents the uncorrected 𝛿𝐺𝑃 data obtained with the dashed line showing the data post-ERIC correction. The 

fibrinogen concentration remained constant at 12 mg ml-1 throughout the study. 
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Bateman et al. (279) noted an increase in 𝑑𝑓  reported with increased thrombin 

concentrations between 0.01 NIH ml-1 and 0.1 NIH ml-1. As the thrombin 

concentration within the fibrin gel samples increased, the value of 𝑑𝑓 increased rapidly 

to a plateau at 0.1 NH ml-1, suggesting that the clot structure stabilised at the highest 

thrombin concentration tested in the study (279). The values reported by Bateman et 

al. for 0.1 NIH ml-1 are in agreement with the data obtained at a similar thrombin 

concentration of 0.08 NIH ml-1 in the present study, with 𝑑𝑓 recorded as approximately 

1.6 to 1.7. On the other hand, Takahashi et al. (280) observed a decrease in the 𝑑𝑓 

values with increased thrombin concentration reported using dynamic light scattering 

and LSCM at thrombin concentrations of 0.00125 NIH ml-1 and 0.02 NIH ml-1. The 

reported 𝑑𝑓  values of 1.46 ± 0.01 at a thrombin concentration of 0.02 NIH ml-1 and 

1.54 ± 0.02 at 0.00125 NIH ml-1 are substantially lower than the values reported in the 

present work. The discrepancy in the discussed studies could be as a result of the use 

of human clotting factor samples (Bateman et al. and the studies presented in this 

thesis) in comparison with bovine factors (Takahasi et al.). 

Further LSCM and SEM studies were conducted to gather images of the mature gel 

microstructures, as described in Section 4.4.3 and Section 4.4.4, respectively. 

Comparing the rheological and imaging data indicates agreement between the 

rheologically reported 𝑑𝑓 values and the network structure observed. As expected 

from the rheologically determined 𝑑𝑓  values, the SEM images (Figure 4-11) show a 

more closely packed structure for the higher thrombin concentration though the fibres 

present are thinner. Studies by Wolberg (111), Weisel (126) and Bateman (279) 

observe higher thrombin concentrations resulting in thinner fibres that are closely 

packed together using SEM and LSCM techniques respectively. Similar fibre 

thickness was observed at several magnifications across each of thrombin 

concentrations with fixed fibrinogen concentrations of 6 mg ml-1.  
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The images obtained using LSCM are also in agreement with the rheological data 

suggesting an increased 𝑑𝑓 value as the thrombin concentration increases. As seen in 

Figure 4-12, as the thrombin concentration increases from a) 0.02 NIH ml-1, b) 0.08 

NIH ml-1 to c) 0.32 NIH ml-1, the quantity of the fluorescent fibres present increases.  

a) b) 

c) d) 

Figure 4-11 SEM images captured of fibrin gels with a fibrinogen concentration of 6 mg ml -1. The thrombin 

concentration in a) and c) is 0.02 NIH ml-1, whereas in b) and d) the thrombin concentration is much higher at 0.32 

NIH ml-1. The magnification was increased from x10.0k in a) and b) to x20.0k in c) and d) to illustrate the effect of 

thrombin concentration on the mature microstructure. At the higher thrombin concentration in b) and d), the fibres 

appear to be thinner and less ordered compared to the lower thrombin concentration observed in a) and c).The 

scale bars represent 5μm for x10.0k magnification and 2 μm at x20.0k magnification. 
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a) b) c) 

Figure 4-12 LSCM images gathered for gels with a fibrinogen concentration of 6 mg ml-1 and thrombin concentration of a) 0.02 NIH ml-1, b) 0.08 NIH ml-1 and c) 0.32 NIH ml-1. Gel samples included 

1.5% Alexa-488 fluorescent fibrinogen and 1% Tween-20. The scale bar on each image represents 5 μm. 
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As a result of the thrombin concentration study, further studies were conducted with a 

fixed thrombin concentration of 0.08 NIH ml-1 to ensure that the gel time was 

sufficiently long to allow valid GP data to be obtained within a reasonable 

experimental time frame.  

4.5.3 Fibrinogen Concentration Studies  

4.5.3.1 AR-G2 Combined Motor Transducer Rheometer Study 

In order to ascertain the necessary fibrinogen concentration for future studies, both GP 

and image data were obtained over a fibrinogen range of 4 𝑚𝑔 𝑚𝑙−1 ≤ [𝐹𝑖𝑏] ≤

12 𝑚𝑔 𝑚𝑙−1 at a constant thrombin concentration of 0.08 NIH ml-1. The procedures 

used to prepare and test the fibrin gel samples are detailed in Sections 4.4.2.2. The raw 

TRIOS GP data files for each experiment were processed using GP Analysis 

Software3. The ERIC procedure (detailed in Chapter 3) was used for post-acquisition 

correction of inertial artefacts present within the raw data.  

Examples of the uncorrected GP data for each of the fibrinogen concentrations can be 

seen in Figure 4-13. The discrete frequency sweep used frequencies of 0.4 Hz, 1.6 Hz, 

3.2 Hz and 4.0 Hz. Due to the weak gel nature of the incipient fibrin gels, there is a lot 

of noise in the pre-GP data which is shown by the erratic behaviour of the higher 

frequencies, especially at lower fibrinogen concentrations. Inertial artefacts are clearly 

present as initial phase angles are in excess of 90°. 
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Figure 4-13 Example GP data for each of the fibrinogen concentrations studied. The thrombin concentration 

remained unchanged at 0.08 NIH throughout the study. The fibrinogen concentrations shown are a) 4 mg ml -1, b) 

6 mg ml-1, c) 8 mg ml-1, d) 10 mg ml-1, e) 12 mg ml-1.  

a) 

c) 

d) 

e) 

b) 

4 mg ml-1 

12 mg ml-1 

10 mg ml-1 

8 mg ml-1 

6 mg ml-1 

𝛿𝐺𝑃,𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡 = 69.6 ± 5.57° 

𝛿𝐺𝑃,𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡 = 69.6 ± 4.29° 

𝛿𝐺𝑃,𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡 = 70.1 ± 3.49° 

𝛿𝐺𝑃,𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡 = 69.7 ± 2.38° 

𝛿𝐺𝑃,𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡 = 60.6 ± 1.85° 
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From the data obtained through the rheological study, it is clear that the 𝑡𝑔𝑒𝑙 of the 

fibrin gels is closely related to the concentration of the fibrinogen in the sample as seen 

in Figure 4-14. As the concentration of the fibrinogen present in the gel increases, the 

𝑡𝑔𝑒𝑙 increases, suggesting that a diffusion limitation rather than a reaction limitation 

dominates the kinetics of the gelation process, as previously explored for gelling 

systems (284). The dependence of 𝑡𝑔𝑒𝑙  on concentration is counterintuitive yet 

consistent with the relatively constant 𝑑𝑓 values observed (within experiment error) 

over the concentration range.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4-14 Uncorrected 𝑡𝑔𝑒𝑙 data obtained (solid line) for fibrin thrombin gels over a range of fibrinogen 

concentrations, 4 𝑚𝑔 𝑚𝑙−1 ≤ [𝐹𝑖𝑏𝑟𝑖𝑛𝑜𝑔𝑒𝑛] ≤ 12 𝑚𝑔 𝑚𝑙−1. The data was corrected (dashed line) using the 

ERIC procedure described in Chapter 3. The thrombin concentration remained constant at 0.08 NIH ml-1. 

As discussed in Chapter 3, the ERIC procedure can be employed to correct the data 

for instrument inertial artefacts, even at raw phase angles higher than the limit stated 

by the manufacturer of 150° (9). The raw phase angle at the GP over the frequency 

range all exceed the manufacturers limit and were found to be 𝛿𝑟𝑎𝑤 > 175°. As noted 

in Chapter 3, Figure 3-8, at very high raw phase angles, it is challenging for the ERIC 

procedure to correct the acquired CMT data back within the SMT range. However, the 

ERIC corrected data shows strong agreement with the uncorrected 𝑡𝑔𝑒𝑙 data. 

Data for the fractal dimension of the fibrin gel at the gel point was calculated using the 

Muthukumar relationship (152) between phase angle and fractal dimension. 
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𝛼 =

𝑑(𝑑 + 2 − 2𝑑𝑓)

2(𝑑 + 2 − 𝑑𝑓)
 

Equation 4.1 

Where 𝑑𝑓 refers to the fractal dimension, d the space dimension and α, the stress 

relaxation exponent, 𝛼 =
𝛿

90
 (where δ is the phase angle at the GP). Equation 4.1 can 

be simplified by selecting  𝑑 = 3 (152) to give  

 
𝑑𝑓 =

10𝛼 − 15

2𝛼 − 6
 

Equation 4.2 

The 𝑑𝑓 values reported appear to show that the fractal dimension is independent of the 

fibrinogen concentration in the incipient gel system (Figure 4-15). The application of 

the ERIC procedure to the data presented little deviation between the raw data reported 

(solid line) and the data corrected using the ERIC procedure (dashed line). The validity 

of the data was examined using both analysis of the third harmonic ratio (to assess 

linearity of the measurement) for each experiment and calculation of the mutation 

number, Nmu.  

 

 

 

 

 

 

 

 

At the GP, there appears to be no relationship between the concentration of fibrinogen 

present and the fractal dimension recorded. It is possible that this is a result of an excess 

of fibrinogen present that has not formed part of the branched network in the time, 

𝑡𝑔𝑒𝑙.  

Figure 4-15 The calculated 𝑑𝑓 values for each fibrinogen concentration in the range 4 𝑚𝑔 𝑚𝑙−1 ≤

[𝐹𝑖𝑏𝑟𝑖𝑛𝑜𝑔𝑒𝑛] ≤ 12 𝑚𝑔 𝑚𝑙−1, with a fixed thrombin concentration of 0.08 NIH ml-1. The pre-ERIC uncorrected 

data is shown by the solid line and the post-ERIC corrected data is shown by the dashed line. 
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In order to further assess the effects of fibrinogen concentration on the gel 

microstructure, confocal microscopy images were obtained of the mature gels over the 

fibrinogen range of 4 𝑚𝑔 𝑚𝑙−1 ≤ [𝐹𝑖𝑏] ≤ 12 𝑚𝑔 𝑚𝑙−1 with a fixed thrombin 

concentration of 0.08 NIH ml-1. Gels were prepared in an identical manner to those of 

the rheological study with the addition of 1.5% Alexa-488 labelled fluorescent 

fibrinogen (Section 4.4.3.2). All samples for rheological analysis were prepared with 

Tween-20 in order to obtain a defined GP, whereas LSCM samples were prepared both 

with and without the surfactant to further assess the potential of its inclusion to affect 

the network microstructure.  Representative images captured for each of the samples 

can be seen in Figure 4-16.  
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Figure 4-16 Images captured using LSCM over a range of fibrinogen concentrations with the inclusion of 1.5% Alexa-488 labelled fluorescent fibrinogen. Samples are shown with and without the addition of Tween-20 surfactant, at a fixed thrombin 

concentration of 0.08 NIH ml-1. 

4 mg ml-1 No Tween-20 

4 mg ml-1 Tween-20 

6 mg ml-1 No Tween-20 8 mg ml-1 No Tween-20 10 mg ml-1 No Tween-20 12 mg ml-1 No Tween-20 

6 mg ml-1 Tween-20 8 mg ml-1 Tween-20 10 mg ml-1 Tween-20 12 mg ml-1 Tween-20 
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For the mature gels observed using LSCM (shown in Figure 4-16), it is clear that as 

the fibrinogen concentration increases, the density of the network microstructure also 

increases, despite the same behaviour not being observed rheologically in the incipient 

gels. Clots observed using LSCM are in their native hydrated state. The network 

formed at a low fibrinogen concentration of 4 mg ml-1 appears much more ‘open’ than 

the microstructure formed at the other end of the concentration range assessed at 12 

mg ml-1. The uncorrected 𝑑𝑓 values (obtained from rheology) for 4 mg ml-1 and 12 

mg ml-1 fibrinogen concentration show no statistical significance (𝑝 = 0.5206) at 

1.59 ± 0.034 and 1.57 ± 0.026 respectively. Previous studies have been conducted to 

analyse the effect of thrombin concentration on the incipient and mature gel structures 

(75,279,280). By comparison, the fibrinogen concentration study produced far more 

subtle variance of the mature gel network that those observed in thrombin studies. 

There is no visual variance in the network structures reported for each concentration 

regardless of the inclusion of Tween-20 into the gel. The data further supports 

conclusion that the inclusion of Tween-20 into the gel does not influence the mature 

microstructure of the network formed. 

The SEM images captured of the mature gels over the same concentration range 

(4 𝑚𝑔 𝑚𝑙−1 ≤ [𝐹𝑖𝑏] ≤ 12 𝑚𝑔 𝑚𝑙−1) with a fixed thrombin concentration of 0.08 

NIH ml-1 show little deviation in the density of the network formed (Figure 4-17). 

Whilst a variation in thrombin concentration has previously been shown to have a 

considerable effect the width of the fibres, this is not apparent for a range of fibrinogen 

concentrations. This is consistent with the 𝑡𝑔𝑒𝑙 reported for the concentration range, 

with higher fibrinogen concentrations gelling slower than low fibrinogen 

concentrations. For example, 12 mg ml-1 fibrinogen concentration reported a 𝑡𝑔𝑒𝑙 of 

457 ± 6.4 s, whereas at the lowest fibrinogen concentration of 4 mg ml-1, the 𝑡𝑔𝑒𝑙 was 

considerably faster at 190.2 ± 10.2 s (all samples were prepared with 0.08 NIH ml-1 

thrombin). 



1 0 2  

 

 

 

   

a) b) c) 

Figure 4-17 SEM images obtained for fibrin gels prepared with fibrinogen concentrations of a) 4 mg ml-1, b) 8 mg ml-1 and c) 12 mg ml-1. All samples contain 1% Tween-20 and a thrombin 

concentration of 0.08 NIH ml-1. 
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As previously shown in Figure 4-14, the 𝑡𝑔𝑒𝑙 appears to be fibrinogen concentration 

dependent. However, the deviation in the 𝑡𝑔𝑒𝑙 over the concentration range is 

significantly lower than that of the 𝑡𝑔𝑒𝑙 reported for the thrombin concentration range. 

Using SEM to view the clots formed, it appears that the fibres formed across the 

fibrinogen range are thicker than those formed at high thrombin concentrations with 

little deviation in the structure of the clot over the fibrinogen concentration range 

which is consistent with the rheologically determined 𝑑𝑓  values.  

The effect of fibrinogen concentration on the mature gel microstructure is much less 

drastic that that of the thrombin concentration. As seen in Figure 2-4, Weisel showed 

that at low thrombin concentrations (A), the fibres that form the mature clot network 

are thicker with few branch points, whereas at higher thrombin concentrations (B) 

there are many branch points between thinner fibres (126). This does not appear to be 

the case for the varying fibrinogen concentration as shown in Figure 4-17. 

 

 

 

 

 

 

 

 

 

 

Figure 2-4 SEM images obtain of fibrin clots from recalcified plasma at a) a low thrombin concentration and b) 

a high concentration. The scale bar shows 5μm. Reprinted from J. W. Weisel, “The mechanical properties of fibrin 

for basic scientists and clinicians,” Biophys. Chem., vol. 112, no. 2-3 SPEC. ISS., pp. 267–276, 2004. © 2004 

with permission from Elsevier Ltd. 
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Based on the results obtained in the fibrinogen and thrombin CMT rheometer studies, 

a fibrinogen concentration of 6 mg ml-1 and thrombin concentration of 0.08 NIH ml-1 

was selected for analysis of the inclusion of soot. The fibrinogen concentration in 

plasma of healthy patients can range between 2 𝑚𝑔 𝑚𝑙−1 ≤ [𝑓𝑖𝑏𝑟𝑖𝑛𝑜𝑔𝑒𝑛] ≤

5 𝑚𝑔 𝑚𝑙−1 (110–112), with pathological conditions such as inflammation increasing 

the concentration up to 7 mg ml-1 (112). Therefore, the chosen concentration of 6 mg 

ml-1 is within a physiologically pertinent range. 

4.5.3.2 ARES-G2 Separate Motor Transducer Rheometer Study 

Discrepancies between the CMT data reported above and published data by Sabra et 

al. (144) on the effect of fibrinogen concentration on the GP required further 

investigation using a strain controlled (SMT) rheometer, as outlined in Section 4.4.2.3.  

The application of ERIC to the CMT data obtained over a range of fibrinogen 

concentrations at a thrombin concentration fixed at 0.08 NIH ml-1 implies that any 

potential influences from instrument inertia have been corrected. Therefore, a direct 

comparison can be drawn between the corrected CMT data and data ascertained using 

an SMT rheometer. Since SMT rheometers do not suffer from instrument inertial 

artefacts, the GP data reported can be assumed to be more accurate. Figure 4-18 shows 

the reported 𝑡𝑔𝑒𝑙 obtained using a CMT rheometer in the present study and SMT data 

reported by Sabra et al., over the fibrinogen range 4 𝑚𝑔 𝑚𝑙−1 ≤ [𝐹𝑖𝑏] ≤

12 𝑚𝑔 𝑚𝑙−1. Whilst both datasets show an apparent increase in the 𝑡𝑔𝑒𝑙 as the 

fibrinogen concentration increases, the data presented by Sabra et al. for 8 mg ml-1 

and 12 mg ml-1 are significantly higher than those reported using a CMT rheometer in 

the present work. This could be as a result of variation in thrombin activity between 

the two studies, despite the minor discrepancy in the thrombin concentrations used. 
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The reported 𝑑𝑓 at the GP for CMT (present study) and SMT (Sabra et al.) rheometers 

can be seen in Figure 4-19. By comparing the ERIC corrected CMT data obtained in 

the present work with SMT data obtained by Sabra et al, it is possible to see a 

discrepancy between the values reported at high fibrinogen concentrations. Whilst 

some agreement is shown between the 8 mg ml-1 fibrinogen 𝑑𝑓 values reported for 

each of the studies, at 12 mg ml-1 the values do not conform. The data collected using 

a CMT rheometer shows no significant difference, whilst the two concentration values 

obtained by Sabra et al. suggest a potential increase in 𝑑𝑓 as fibrinogen concentration 

increases.   

 

 

 

 

 

 

Figure 4-18 The reported 𝑡𝑔𝑒𝑙 as a function of fibrinogen concentration. The ERIC corrected CMT data from the 

present study is shown (×) alongside data reported by Sabra et al. (●). The thrombin concentration of the respective 

studies was 0.08 NIH ml-1 for the present work and 0.05 NIH ml-1 for the study conducted by Sabra et al. 



106 

 

 

 

 

 

 

 

The paper by Sabra et al. reports no assessment of linearity, mutation artefacts or 

sample inertia. The GPs appear to be visually assessed, with no suggestion that the 

third harmonic was monitored throughout sample testing. On the contrary, the 

waveforms reported in the present study were monitored to ensure they remained 

sinusoidal for the duration of the experiment. An example of the input and response 

waveform observed throughout the present study can be seen in Figure 4-20. Whilst 

noise is seen in the output stress waveform because of the weak gel structure, the shape 

is characteristically sinusoidal suggesting that the system is linear. 

 

 

 

 

 

 

 

 

Figure 4-19 Fractal dimension data reported over a range of fibrinogen concentrations by a CMT rheometer after 

the application of the ERIC procedure (×) and by Sabra et al. using an SMT rheometer (●). The thrombin 

concentrations for the reported data are 0.08 NIH ml-1 in the current work and 0.05 NIH ml-1for the study conducted 

by Sabra et al. 
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The data presented by Sabra et al. reports that as the fibrinogen concentration increases 

at a fixed thrombin concentration, the 𝑑𝑓 values recorded also increase. The study also 

suggests that as the fibrinogen concentration increases, the 𝑡𝑔𝑒𝑙 is prolonged, contrary 

to the effect observed when thrombin concentration is increased. The conclusion 

drawn from the study by Sabra et al is that the manipulation of fibrinogen and 

thrombin concentrations used in the formation of fibrin networks can be detected by 

the reported 𝑡𝑔𝑒𝑙 and 𝑑𝑓 at the GP.  

In an attempt to verify the results of Sabra et al., a similar study was conducted as part 

of the present work using an ARES-G2 SMT rheometer. In the 12 months prior to the 

study, the ARES-G2 rheometer used had undergone transducer, normal force, torque 

and motor calibration with ± 5% agreement with the standards outlined by the 

instrument manufacturer, TA Instruments. The procedure used throughout the SMT 

study in the present work was formatted based on the published method of Sabra et 

al. (144). Without the inclusion of Tween-20 to the fibrin gel sample, it was not 

possible to obtain a GP as the resulting data reported only a viscoelastic solid response. 

The addition of Tween-20 reduced the surface tension of the sample during testing 

making it possible to determine the frequency independent GP. 

In line with the results published by Sabra et al. (144), the 𝑡𝑔𝑒𝑙 reported for fibrin gels 

prepared with 0.05 NIH ml-1 thrombin concentration over a range of fibrinogen 

concentrations of 8  𝑚𝑔 𝑚𝑙−1 ≤ [𝐹𝑖𝑏𝑟𝑖𝑛𝑜𝑔𝑒𝑛] ≤ 12 𝑚𝑔 𝑚𝑙−1, show agreement that 

as the fibrinogen concentration increases, the reported 𝑡𝑔𝑒𝑙 increases (Figure 4-21). It 

is only possible to directly compare the data reported at 8 mg ml-1 and 12 mg ml-1 as 

no further fibrinogen concentrations were studied by Sabra et al (144). At these two 

Figure 4-20 An example of the input and response waveforms observed during the SMT fibrin gels study. Both 

waveforms display sinusoidal behaviour, indicating that the linearity of the test is not compromised. 
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fibrinogen concentrations, the standard deviations calculated by Sabra et al. appear to 

be large compared to the 𝑡𝑔𝑒𝑙 obtained in the present study. The quality of the GPs 

reported in the published work could be questioned as the roots are not well defined 

and they appear to be visually assessed. There is also evidence of sample inertia in the 

work by Sabra et al. as the initial phase angles reported are 𝛿 > 90°. 

 

 

 

 

 

 

The 𝑑𝑓 data reported at the GP by Sabra et al. can be directly compared to the SMT 

𝑑𝑓 data acquired at the GP in the present study (Figure 4-22). Whilst the data obtained 

for 8 mg ml-1 fibrinogen concentration shows strong agreement between both studies, 

there is a large discrepancy between the data reported for each of the studies at 12 mg 

ml-1. Without the presence of a third data point, it is not possible to draw a clear 

conclusion as to the effect of fibrinogen concentration on the 𝑑𝑓 values reported by 

Sabra et al. (144). However, in the present study, results were produced in triplicate 

over three concentrations which show a clear correlation between all data points 

reported and displaying a moderate decrease in 𝑑𝑓 as fibrinogen concentration 

increased. The increase in 𝑑𝑓 reported by Sabra et al. (144) could be an indication of 

strain stiffening with an increase in the reported 𝐺’. It is unclear whether the linearity 

of the experiments conducted by Sabra et al. was considered as it is not described 

adequately within the publication. 

Figure 4-21 SMT data showing the effect on 𝑡𝑔𝑒𝑙 as fibrinogen concentration was increased from 8  𝑚𝑔 𝑚𝑙−1 ≤

[𝐹𝑖𝑏𝑟𝑖𝑛𝑜𝑔𝑒𝑛] ≤ 12 𝑚𝑔 𝑚𝑙−1. The data reported in the present work (×) and that published by Sabra et al. (●) 

remained at a fixed thrombin concentration of 0.05 NIH ml-1. 
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Data was obtained using CMT and SMT rheometers in the present study at a fixed 

thrombin concentrations of 0.08 NIH ml-1 and 0.05 NIH ml-1, respectively, over a 

range of fibrinogen concentrations 4  𝑚𝑔 𝑚𝑙−1 ≤ [𝐹𝑖𝑏𝑟𝑖𝑛𝑜𝑔𝑒𝑛] ≤ 12 𝑚𝑔 𝑚𝑙−1. As 

seen in Figure 4-23, after the application of the ERIC procedure, the CMT data shows 

agreement with the SMT data that as the fibrinogen concentration increases, the 𝑡𝑔𝑒𝑙 

also increases. This is in agreement with the work conducted by Sabra et al. (144).  

 

 

 

 

 

 

Figure 4-22 The reported 𝑑𝑓 values over a range of fibrinogen concentrations using SMT rheometers. The 

thrombin concentration in both the present study (×) and data reported by Sabra et al. (●) remained constant at 

0.05 NIH ml-1. 

Figure 4-23 Effect of fibrinogen concentration on 𝑡𝑔𝑒𝑙 for studies conducted using CMT and SMT rheometers. The 

CMT data (▲) obtained at thrombin concentration of 0.08 NIH ml-1 and the SMT data (×) reported for thrombin 

concentration of 0.05 NIH ml-1, were conducted as part of the present work. 
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A comparison can be drawn between the 𝑑𝑓 data obtained using the ARES-G2 strain-

controlled rheometer and the AR-G2 stress-controlled rheometer after the application 

of the ERIC procedure. The results obtained for 𝑑𝑓 using both CMT and SMT 

rheometers in the present work can be seen in Figure 4-24. Both the ERIC corrected 

CMT and SMT data shows strong agreement at higher fibrinogen concentrations, with 

the thrombin concentrations remaining constant at 0.08 NIH ml-1 and 0.05 NIH ml-1, 

respectively. The data acquired using a strain-controlled rheometer can be considered 

more accurate due to the absence of instrument inertia.   

 

 

 

 

 

 

To further understand the effect of fibrinogen and thrombin concentration on the 

microstructure of the incipient gel network, the 𝑑𝑓 values obtained in the present SMT 

study are presented as a function of fibrinogen to thrombin ratio (F/T) in Figure 4-25. 

As F/T increases, the 𝑑𝑓  values reported in the present SMT study decrease. This 

appears to be due to the drastic effect that thrombin concentration has on the 

microstructure of the gel network formed in comparison to the effect of fibrinogen 

concentration (75,144).  

 

 

Figure 4-24 The reported 𝑑𝑓 values obtained using a CMT and SMT rheometer over a range of fibrinogen 

concentrations between 4  𝑚𝑔 𝑚𝑙−1 ≤ [𝐹𝑖𝑏𝑟𝑖𝑛𝑜𝑔𝑒𝑛] ≤ 12 𝑚𝑔 𝑚𝑙−1.. In the present work, the CMT data (▲) 

was obtained at a fixed thrombin concentration of 0.08 NIH ml-1, whilst the SMT data (×) was obtained at 0.05 

NIH ml-1. 



111 

 

 

 

 

 

 

 

4.5.4 Soot Concentration Study 

4.5.4.1 G[1x] Concentration Study 

As discussed in Section 4.4.2.4, initial soot experiments were conducted using a CMT 

rheometer by increasing the volume of sample G[1x] included in the fibrin-thrombin 

gels to increase the number of particles present. The concentration of Soot G[1x] was 

estimated to be 5.6 x109 particles ml-1. A volume of  0% ≤ 𝐺[1𝑥] ≤ 5% of the total 

volume was included in the fibrin gel samples prepared. The number of particles 

present in the gels over this range was between 2.80 x109 particles ml-1 at 0.5% G[1x] 

and 2.8 x1010 particles ml-1 at 5% G[1x] inclusion. The dilution of the gel reagents 

was not influenced during the process as the TBS balance was altered to accommodate 

the soot solutions. As the G[1x] soot inclusion increased, it became more challenging 

to obtain GP data, resulting in an increased number of experiments required to achieve 

the desired number of repeats. The fibrinogen and thrombin concentrations remained 

constant throughout the study at 6 mg ml-1 and 0.08 NIH ml-1 respectively. 

The 𝛿𝐺𝑃 reported for each of the soot G[1x] concentrations within the fibrin-thrombin 

gels do not appear to show a dependence on the number of particles present (Figure 

4-26). The uncorrected data shown in Figure 4-26a) indicates no statistical 

significance between the TBS control samples (0% inclusion) and the highest 

inclusion of the G[1x] at 5% inclusion (𝑝 = 0.8296). The TBS control sample 

reported a mean phase angle at the GP of 69.4 ± 4.2° whereas the 5% soot inclusion 

Figure 4-25 The effect of fibrinogen to thrombin ratio (F/T) is seen in the 𝑑𝑓 values reported for the present SMT 

rheometer study. 
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samples reported at phase angle of 69.0 ± 4.9°. The ERIC corrected data, reported in 

Figure 4-26b), shows a slight increase in 𝛿𝐺𝑃 as a function of concentration. However, 

there is no statistical significance between the highest and lowest reported 𝛿𝐺𝑃 values 

although there is a large reduction in the p-value (𝑝 > 0.228).  

 

 

 

 

 

 

 

 

 

 

 

 

The corresponding 𝑑𝑓  values calculated for each soot G[1x] inclusion (0% to 5%) 

further suggest a lack of soot concentration dependence shown by the 𝛿𝐺𝑃 data (Figure 

4-27). The uncorrected data in Figure 4-27a) shows a slight decrease in the reported 

𝑑𝑓 values for gels prepared with increasing inclusions of soot G[1x]. No statistical 

significance is reported for (0.2528 ≤ 𝑝 ≤ 0.8630) between the uncorrected soot 

inclusion data sets (0.5% to 5%) and the TBS control samples (0%). The data reported 

Figure 4-26 The effect of increased soot particle concentration on 𝛿𝐺𝑃. Shown in a) is the uncorrected 𝛿𝐺𝑃 data 

and b) the data ERIC corrected data. The fibrinogen and thrombin concentrations remained constant throughout 

the study 6 mg ml-1 and 0.08 NIH ml-1, respectively. 
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in Figure 4-27b) represents the ERIC corrected 𝑑𝑓 data for increasing G[1x] 

inclusions. Once again, there appears to be no significant variation in the corrected 𝑑𝑓 

values, with 𝑝 > 0.2339 for all samples across the range of 0.5% to 5% Soot G[1x] 

inclusion in comparison with the TBS control samples. 

 

 

 

 

 

 

 

 

 

 

 

 

The 𝑡𝑔𝑒𝑙 reported over the soot inclusion range once again showed little deviation as 

the volume of Soot G[1x] solution increased (Figure 4-28). Neither the uncorrected or 

ERIC corrected data shows clear dependence on concentration with 0.235 ≤ 𝑝 ≤

0.975 reported between the control sample (0%) and the samples with a soot inclusion 

(0.5% to 5%). The mean 𝑡𝑔𝑒𝑙 reported for the control sample was 345.7 ± 58.4 s, 

Figure 4-27 The 𝑑𝑓 data obtained over a range of soot particle concentrations between 0.5 % and 5% inclusion 

alongside a TBS control. The pre-ERIC data is shown in a), whilst the post-ERIC application data is Represented 

in b). The fibrinogen and thrombin concentrations remained constant at 6 mg ml-1 and 0.08 NIH ml-1, respectively. 
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resulting in an acceptable Nmu value of 0.097 (Table 4-1). Despite the shortest 𝑡𝑔𝑒𝑙 of 

294.7 ± 9.7 s reported for 1% soot G[1x] inclusion, the Nmu calculation still satisfies 

Nmu < 0.15 (259) with a value of 0.135.  

 

 

 

 

 

 

 

Table 4-1 presents the gel time data (mean ± standard deviation) over a range of low soot concentrations.  

  Pre-ERIC 

  tgel /s Nmu 

S
o
o
t 

G
[1

x
] 

in
c
lu

si
o
n

 0% 345.7 ± 58.4 0.097 

0.5% 391.7 ± 38.0 0.141 

1% 294.7 ± 24.0 0.135 

2% 347.0 ± 35.5 0.118 

3% 341.7 ± 38.0 0.129 

5% 331.5± 25.0 0.138 

 

The ERIC corrected 𝑡𝑔𝑒𝑙 data shows similar behaviour to the uncorrected data with 

only minor alterations for each soot G[1x] concentration. Again, no statistical 

significance between the control samples and the soot samples was determined using 

t-tests with 0.148 ≤ 𝑝 ≤ 0.905 for the post-ERIC data over 0% to 5% soot G[1x] 

Figure 4-28 The 𝑡𝑔𝑒𝑙 data for the inclusion of 0.5-5% volume Soot G[1x] solution study for fibrin gels with 

fibrinogen and thrombin concentrations of 6 mg ml-1 and 0.08 NIH ml-1, respectively.. There appears to be no 

conclusive effect on the 𝑡𝑔𝑒𝑙 with increasing soot concentration for either the pre- (solid line) or the post-ERIC 

(dashed line) data. 
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inclusion. The deviation between repeated GP experiments is represented by the 

standard deviation error bars on Figure 4-26, which are similar for both the corrected 

and uncorrected data. 

Volumes of low concentration Soot G[1x] appear to have little impact on the GP 

reported over a range of 0% to 5% soot inclusion. Based on the results obtained 

through the inclusion of increasing volumes of Soot G[1x], highly concentrated soot 

solutions were prepared (as discussed in Section 4.4.1) in order to study the effects on 

fibrin gel clotting. Soot G[2x] and G[10x]) were concentrated to give particle 

concentrations of 1.12 x1010 and 5.6 x1010 particles ml-1 respectively. The further 

study was carried out to assess whether higher numbers of particles had an increased 

effect on the GP of the fibrin gels without compromising the quality of the GP. 

4.5.4.2 Highly Concentrated Soot Study 

The final study conducted as part of the research to determine the effect of the 

inclusion of soot on fibrin gel clots involved the use of highly concentrated soot 

solutions. Using the procedure in Section 4.4.1, the soot G[1x] sample was 

concentrated to give G[2x] and G[10x] samples that were then added to the F-T gels 

to analyse the effects on the gel microstructure. The concentrations of the new, more 

concentrated G[2x] and G[10x] samples were estimated to be 1.12 x1010 and 5.60 

x1010 particles ml-1 respectively. A rheological study was conducted using a CMT 

rheometer and the procedure outlined in Section 4.4.2.4 before supporting LSCM and 

SEM images were obtained as detailed in Section 4.4.3.3 and Section 4.4.4.3. The 

fibrinogen and thrombin concentrations remained constant at 6 mg ml-1 and 0.08 NIH 

ml-1 respectively, with 1% soot inclusion (of the total sample volume) being added to 

the gel. 

The 𝑑𝑓 data for the fibrin gels with the inclusion of 1% of the total volume of 

concentrated soot solutions can be seen in Figure 4-29. There does not appear to be a 

convincing overall effect on the reported 𝑑𝑓  values as the soot concentration is 

increased. There is a significant decrease in the uncorrected 𝑑𝑓 values calculated for 

the G[2x] and G[10x] as 1.57 ± 0.09 (𝑝 = 0.011) and 1.58 ± 0.11 (𝑝 = 0.033) 

respectively compared to the reported 𝑑𝑓 value for the TBS control sample of 1.67 ± 

0.06. Once corrected using the ERIC procedure, no statistical significance is reported 
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with T-Tests determining that data corrected for all soot solutions have 𝑝 ≥ 0.069 

compared to the control samples. 

 

 

 

 

 

 

 

Figure 4-29 The corresponding 𝑑𝑓 values reported at the GP for each soot concentration. Pre-ERIC data is shown 

with a solid line and post-ERIC data is shown by a dashed line. A TBS control set was included for comparison of 

data obtained with the inclusion of soot solutions G[1x], G[2x] and G[10x]. 

For samples containing G[1x], no statistical significance was reported between the 

uncorrected and ERIC corrected 𝑑𝑓 data (𝑝 = 0.388). However, for the TBS control 

and higher soot concentration samples, the ERIC corrected data is significantly 

different to that of the uncorrected 𝑑𝑓 data with T-Test returning all values of 𝑝 ≤

0.003 between the two datasets, thus demonstrating that the ERIC correction 

procedure is crucial in performing GP analysis in weak gelling systems. 

Dixon’s Outlier Q-Tests (285) were employed to identify the presence any outliers in 

the rheological dataset. Using a confidence interval of 90% with a total of five runs 

for each soot concentration, any values returned as Q > 0.642 using Eq. 4.3 were 

classed as an outlier (286). It was only acceptable to reject one outlier per dataset 

(286). An example calculation is shown in Eq 4.4 for the lowest value of 𝑑𝑓  using 

sample G[1x] pre-ERIC. The calculated 0.143 << 0.642, meaning the result is not an 

outlier for the 𝑑𝑓 dataset. 

 𝑄 = |
𝑔𝑎𝑝

𝑟𝑎𝑛𝑔𝑒
| Eq 4.3 

TBS Control 
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𝑄 = |

(1.57 − 1.53)

(1.81 − 1.53)
| = 0.143 

Eq 4.4 

Two outliers were found and discarded across the data. For the data discarded, 

experiments were replicated, with further Q-Tests completed to ensure that the new 

dataset was valid.  

Figure 4-30 shows that the inclusion of any soot concentration results in a decrease in 

the 𝑡𝑔𝑒𝑙 at the GP compared to the TBS control samples. Using a T-test to analyse the 

connotations of the reported 𝑡𝑔𝑒𝑙, there is a significant difference reported between the 

uncorrected 𝑡𝑔𝑒𝑙 control sample data and data for each of the gels with the inclusion 

of concentrated soot solutions, with 𝑝 ≤ 0.032. The ERIC corrected control sample 

reported a 𝑡𝑔𝑒𝑙 of 375.0 ± 18.0 s whereas all gels with the addition of the soot solutions 

reported 𝑡𝑔𝑒𝑙 of 312.6 ± 26.7 s to 317.0 ± 35.3 s. The corrected data also shows 

statistical significance as all calculated 𝑝 values for the samples with the inclusion of 

soot solutions were 𝑝 ≤ 0.021 compared to the TBS control samples.  

 

 

 

 

 

 

It is possible for carbon based particles to have an effect on the activity of the thrombin 

present due to protein surface interactions (253). The inclusion of the soot solution in 

the gel samples could increase the coagulability of the clot, thus reducing the clotting 

time observed. 

Figure 4-30 The 𝑡𝑔𝑒𝑙 recorded for each of the soot solutions, G[1x], G[2x] and G[10x]. By comparison with the 

TBS control samples (0%), the inclusion of soot decreases the gel time of the fibrin thrombin gels. Both the 

uncorrected (solid line) and ERIC corrected (dashed line) show agreement. 



118 

 

Whilst statistical significance was identified for high soot concentrations in 

comparison with the TBS control sample in terms of 𝑡𝑔𝑒𝑙 data, it is less clear for the 

reported 𝛿𝐺𝑃 data. As the soot concentration increases, there appears to be a slight 

increase in the uncorrected 𝛿𝐺𝑃 reported Figure 4-31. The uncorrected 𝛿𝐺𝑃 data (solid 

line) shows a significant increase for the concentrated soot solutions, G[2x] and 

G[10x] compared to the control sample, where 𝑝 = 0.009 and 𝑝 = 0.026 

respectively. No significance was reported between the uncorrected 𝛿𝐺𝑃 saline control 

sample and soot solution G[1x] (stock solution) where 𝑝 = 0.569. Once the ERIC 

procedure was applied to the 𝛿𝐺𝑃 data (dashed line), no significance between the soot 

solutions and the control samples as 𝑝 ≥ 0.069 was calculated for all concentrations. 

 

 

 

 

 

 

 

Figure 4-31 The reported 𝛿𝐺𝑃 for the soot solutions G[1x], G[2x] and G[10x] alongside a TBS control. The 

uncorrected data is shown by the solid line and the ERIC corrected data represented by the dashed line. 

Comparison between the uncorrected and ERIC corrected 𝛿𝐺𝑃 data shows there is a 

significant decrease in all cases except G[1x] after the application of the correction 

procedure. For the higher soot concentrations of G[2x] and G[10x], the 𝑝 values were 

determined to be 𝑝 = 0.0029 and 𝑝 = 0.0012 respectively between the uncorrected 

and ERIC corrected 𝛿𝐺𝑃 data. The phase angles in these cases were reduced from 73.3 

± 5.05 ° to 60.1 ± 6.73 ° for the G[2x] data and 72.5 ± 6.36 ° to 60.7 ± 6.73 ° for the 

G[10x] data GP once the ERIC correction was applied suggesting the correction has 

a significant effect on the GP reported. 
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To visually assess the mature microstructure of the fibrin gels, LSCM images were 

obtained for 1% inclusion of each of the soot concentration solutions (Figure 4-32). 

The gels were prepared as discussed in Section 4.4.3.3. 

  

  

 

 

 

The LSCM data appears to agree with the rheological data with very little variation in 

the mature microstructure observed as the number of soot particles increased. 

Compared with the TBS control sample in (Figure 4-32a), the gels with the inclusion 

of soot solutions show similar fibre distribution (Figure 4-32b to Figure 4-32d). Due 

to the requirement of a fluorescent label to examine the fibres present in the 

microstructure, it was not possible to directly observe the soot particles present as they 

were unlabelled and did not fluoresce. In order to assess the soot particles within the 

gel network, SEM images were gathered of identically prepared mature clot structures 

with the inclusion of 1% soot concentration samples. 

Figure 4-32 LSCM images obtained for each of the soot solutions (G[1x], G[2x] and G[10x]) alongside a TBS 

control sample. The fibrinogen concentration of all samples was 6 mg ml-1 and a thrombin concentration of 0.08 

NIH ml-1. The images show a) TBS control, b) 1% Soot G[1x] inclusion, c) 1% Soot G[2x] inclusion and d) 1% 

Soot G[10x] inclusion. The scale bar shows 5 μm. 

a) b) 

c) d) 
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It was possible to observe the soot particles (circled in red) within the mature gel 

network (Figure 4-33). The soot particles appear to be randomly distributed 

throughout the mature gel and even at high soot concentrations, they are sparsely 

dispersed throughout the fibrin gel network.  

 

 

 

 

 

 

 

 

 

 

 

SEM images were obtained for all soot solutions, as well as a TBS control sample. 

The 1% inclusion of each soot solution into the fibrin gels can be seen in Figure 4-34. 

Fibrin gels were prepared with a fibrinogen concentration of 6 mg ml-1 and thrombin 

concentration of 0.08 NIH ml-1. The SEM images can be used to view the structure of 

the network as well as the arrangement of individual fibres. It appears that the addition 

of the soot solutions to the fibrin causes little deviation fibre network compared to the 

saline control network, which shows some agreement with the 𝑑𝑓  reported for the 

incipient gel at the GP. It is possible to see that as the soot solution included becomes 

more concentrated, there are a larger number of visible soot particles present within 

the fibrin gel sample. 

 

Figure 4-33 SEM image of a mature fibrin gel with the inclusion of 1% G[10x] soot solution. The presence of 

soot particles can be seen in the image with an example circled in red. The fibrin gel had a fibrinogen 

concentration of 6 mg ml-1 and thrombin concentration of 0.08 NIH ml-1. 
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Combining the data obtained for both low and high soot solution concentration studies 

gives an overview of the effect of soot PM on fibrin gel formation as the number of 

particles increases. The data shown in Figure 4-35 represents a) the 𝛿𝐺𝑃 data and b) 

the 𝑑𝑓 data reported as the number of particles included in the sample was increased 

across the soot solution range. The uncorrected phase angles appear to suggest a slight 

decrease initially, followed by an increase in 𝛿𝐺𝑃 as the particle concentration 

increases with a corresponding increase, then decrease in the 𝑑𝑓 values reported. 

However, once the ERIC procedure is applied, the 𝑑𝑓  values indicate a slight increase 

from 3.4 x109 particles ml-1, commensurate with literature for alternative pathologies 

(148,149). 

 

Figure 4-34 SEM images gathered for each of the soot concentrations a) TBS control, b) 1% inclusion G[1x] 

solution, c) 1% inclusion G[2x] solution, d) 1% inclusion G[10x] solution. The fibrinogen concentration for all 

gels was 6 mg ml-1, with a thrombin concentration of 0.08 NIH ml-1. 

a) b) 

d) c) 
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As seen in Figure 4-36, as the number of particles present in the gel samples increased, 

it appears that the 𝑡𝑔𝑒𝑙  decreases, with an anomalous data point at 1.1 x109 particles 

ml-1. Assuming a confidence interval of 10%, both the pre- and post-ERIC data show 

a significant decrease in the  𝑡𝑔𝑒𝑙 across the number of particles included between 5.6 

x108 particles ml-1 to 1.1 x1010 particles ml-1 (𝑝 = 0.0183 and 𝑝 = 0.0571 for pre- 

and post-ERIC analysis, respectively). This decrease in clot time has also been 

observed in patient suffering from vascular illness such as ischaemic stroke (148) and 

could act as a potential biomarker. 

Figure 4-35 Reported GP data for the combined low and high soot concentration inclusions into fibrin gels. The 

data for a) the 𝛿𝐺𝑃 as a function of particle number and b) the corresponding 𝑑𝑓 values are presented. 
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The inclusion of concentrated soot solutions appears to have little effect on the 

rheological data reported at the GP. The 𝑑𝑓 and phase angle data reported does not 

show a convincing association with the increased presence of soot particles. There 

appears to be a dependence on the gel time reported as the soot concentration 

increased, in agreement with the previous studies, The LSCM and SEM images 

captured of the fibrin gels over the soot concentration range appear to support the 

notion that the inclusion of soot particles does not have a steric effect on the fibrin gel 

network formation, at least at the number concentration studied herein. 

Figure 4-36 The resultant 𝑡𝑔𝑒𝑙 as particle number inclusion within the fibrin gel sample was increased. The 

uncorrected data is represented by closed circles (●) and the ERIC corrected data is shown by crosses (×). 



 

 

4.6 Conclusions 

Several studies concerning fibrin-thrombin gels and the effect of soot particulates on 

the resulting network architecture were detailed in this chapter. The conclusions are 

given as follows: 

1. Effect of the addition of surfactant (Tween-20) on the microstructure of the 

fibrin gels. The quality of the GP data was found to be greatly improved upon 

inclusion of Tween-20. The addition of the surfactant into the fibrin gels 

reduces the impact of surface tension on the torque produced, allowing valid 

rheological measurements to be obtained, even in a low viscosity weak gelling 

system (31). Supporting image analysis appears to show that the addition of 

Tween-20 has little effect on the microstructure of the mature fibrin gel. All 

subsequent studies were conducted in the presence of Tween-20 to reduce the 

influence of surface tension artefacts.  

2. Effect of thrombin concentration on gel architecture. A strong association 

between thrombin concentration and 𝑡𝑔𝑒𝑙 was observed, with high thrombin 

concentration gels undergoing gelation much faster than low thrombin 

concentration samples. A small dependency was observed between the 𝑑𝑓 and 

thrombin concentration which was enhanced by the use of the ERIC procedure. 

Images obtained using LSCM and SEM techniques showed an increase in the 

density of fibres present in clots as the thrombin concentration increased. It 

was not possible to obtain valid rheological data outside of the experimental 

range due to the rapid network formation at high thrombin concentrations and 

low thrombin concentrations forming weak gels that were beyond the 

rheometer’s capabilities. From the data obtained, the thrombin concentration 

for studies concerning soot inclusion was determined to be 0.08 NIH ml-1, 

within the physiologically relevant range (287). 

3. Effect of fibrinogen concentration on fibrin gel formation. The increase in 𝑡𝑔𝑒𝑙 

as the concentration of fibrinogen present in the fibrin gels increases appears 

to suggest that the kinetics of the gelation process are dominated by a possible 

diffusion limitation rather than expected reaction limitation. The 𝑑𝑓 data 

obtained at the GP shows little deviation across the fibrinogen range employed. 

The rheological and image data acquired over the fibrinogen concentration 

CMT study resulted in the use of 6 mg ml-1 for further CMT studies. At this 
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concentration, it was possible to obtain valid GP data within a physiologically 

accurate range. 

4. Effect of low concentrations of soot particulates on fibrin gels. Low 

concentrations of soot solutions appeared to have little effect on the GPs 

reported for fibrin gels with fibrinogen concentration of 6 mg ml-1 and 

thrombin concentration of 0.08 NIH ml-1. Inclusions of Soot G[1x] over a range 

of 0.5% to 5% show little evidence of deviation in the incipient gel rheological 

data or the mature gel microstructure, imaged using LSCM and SEM. The Soot 

G[1x] solution was concentrated to produce two- and ten-times concentrated 

solutions (Soot G[2x] and Soot G[10x], respectively). 

5. Effect of highly concentrated soot particulates on fibrin gels. The final study 

conducted to assess the potential adverse effects caused by the inclusion of soot 

in fibrin gel clots was performed using concentrated soot solutions Soot G[2x] 

and Soot G[10x]. Little deviation was observed in the reported 𝛿𝐺𝑃 and 𝑑𝑓 with 

the inclusion of increasing soot concentrations, which was supported by the 

images of the mature gel structures captured using LSCM and SEM. The 𝑡𝑔𝑒𝑙 

was decreased with the inclusion of soot, perhaps as an altered activation 

pathway of the thrombin present in the fibrin gels. 

The inclusion of soot into fibrin gels does not appear to have a steric effect, with the 

effect on GP parameters and the mature microstructure formed being inconclusive. 

However, it was possible that the soot particulates could have a biochemical effect on 

the incipient blood clot formed due to the presence of platelets and the resulting clot 

microstructure. This is the focus of Chapter 5. 
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 Detection of exhaust particulate induced 

clotting anomalies in whole blood 

5.1 Introduction 

Understanding the health implications associated with inhalation of particulate matter 

is of upmost importance as it has been suggested that the coagulability of the blood is 

affected by the presence of such particulates, thus enhancing the risk of cardio-

pulmonary disease. Fine particulate matter has been shown to penetrate deep into the 

lung where it can translocate across the gas-blood barrier into the blood stream. The 

translocation of particles has conventionally been thought to trigger an inflammatory 

response, initiate an oxidative stress mechanism, or cause increased plasma viscosity 

due to increased coagulation proteins present in the blood (181,226). Rheological 

techniques can be employed to assess the impact of particulates on the incipient gel 

network. 

The soot particles introduced to the whole blood clots in the present study are estimated 

to be of a similar size to the fibrinogen monomers that form the structural scaffold of 

the clot. In Chapter 4, analysis of fibrin gel clots found no evidence that a steric effect 

was apparent in the clots formed with the inclusion of soot particles. Therefore, a study 

of whole blood clots with the inclusion of particulate matter was conducted to ascertain 

whether the presence of blood cells and platelets resulted in a biochemical response 

that leads to potentially dangerous alterations to the incipient clot.  

The research contained within the following chapter was conducted in order to further 

understand the potential soot particulate induced blood clotting anomalies using 

rheological techniques. Previously published human and animal studies into the effects 

of exhaust PM on blood clot formation have suggested that platelet activation may be 

responsible for the increased coagulability of blood after exposure to soot particles 

(236,239). A rheological approach was applied in the present study of whole blood 

samples, with a 5% haemodilution to assess whether the presence of RBCs and 

platelets resulted in a biochemical effect that lead to anomalous clot formation. 

The stock Soot G solution was obtained from Cardiff University, with the higher 

concentration soot solutions being prepared at Swansea University as discussed in 

Section 4.4.1. Whole blood samples were obtained from 20 eligible volunteers for 



127 

 

rheological assessment of clotting characteristics with the inclusion of 5% ‘Soot G’ 

solutions alongside a TBS control. Supporting SEM clot samples were prepared in an 

identical manner to aid the assessment of the effects of the soot particles on the clot 

microstructure. All rheological data was obtained using an AR-G2 CMT rheometer.  

5.2 Literature Review 

Until recently, the study of blood using rheological techniques was focussed on the 

diagnosis and monitoring of infection and disease (288) using TEG, free oscillation 

rheometry and oscillatory shear (74,142,153,157). However, more recent studies have 

developed sophisticated techniques that allow for the analysis of blood clotting 

anomalies such as VTE by using a novel biomarker of clot microstructure 

(54,74,147,289,290).  

The flow of blood has been comprehensively studied (291–294). Blood flow occurs in 

a shear rate range of 100 to 103 s-1 (1) but can be disrupted by large proteins and 

erythrocytes (295). The flow conditions at the blood vessel wall are responsible for the 

speed at which the necessary factors are distributed to the injury site during blood 

coagulation (296). The clot sustains more permanent deformation due to blood flow if 

it displays a large viscous component, whereas clots with a greater elastic element 

return to their initial conformation if the stress is relieved (130). Barnes speculated that 

the permanently altered shape of some blood clots with large viscous components 

resulted in the thrombus being pressed against the blood vessel wall, becoming less 

obstructive (1). 

The environment surrounding clot formation can impact on the rheological properties 

observed for different types of venous clot (297). The viscoelastic and mechanical 

properties of a mature blood clot can be used to determine the strength of the clot 

structure under flow conditions and the likelihood of the clot rupturing (158). This can 

be achieved by applying a stress and measuring the resulting strain before calculating 

the elastic modulus of the fibrin polymer network (126). Strong blood clots are 

responsible for a blockage within the blood vessel that can cause thrombosis or 

ischemia (298). The complex modulus observed can give an indication as to the 

possibility of clot rupture, resulting in an embolism (158).  

Previous studies have exposed limitations in the rheometric techniques used. For 

example, FTMS can be used in GP identification for transient systems. Since FTMS 
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is based on the Boltzmann Superposition Principle, the stresses are additive meaning 

that the linear viscoelastic limit can be exceeded and the microstructure of the weak 

gelling system compromised (18). 

Sensitive SAOS GP experiments can be employed to extract valuable data regarding 

the formation of the fibrin network within a blood clot, from viscoelastic liquid to 

viscoelastic solid. SAOS can be used to investigate the viscoelastic behaviour of the 

gelling material within the linear region without compromising the microstructure of 

the sample being tested (299). The frequency independent GP offers data relating to 

the incipient gel network which is established during coagulation, as well as the 

clotting time (153). The GP typically occurs quite rapidly in the polymerisation 

process when between 15-20 % of the fibrinogen within the sample has been 

incorporated into the gel structure (128,163). Once the GP has occurred, the stiffness 

of the clot network increases (300) as the fibrin polymers formed post-GP are 

integrated into the microstructure of the existing gel network (120).  

A ‘healthy index’ was established by Evans et al (74) for characterisation of the 

incipient blood using rheological techniques to analyse the fractal dimension of the 

whole blood clot. For healthy individuals, the ‘healthy’ 𝑑𝑓 value was determined to be 

1.74 ± 0.07 (74). Pathologies can cause abnormality in the development of the 

microstructure of the whole blood clot which act as a biomarker for diagnosis and 

monitoring of disease. Studies conducted on patients suffering from prothrombotic 

disease have shown an increase in the 𝑑𝑓 values reported in comparison to the ‘healthy 

index’ (148,149). 

Research into the effects of air pollution on health have been conducted in both animal 

and human cohorts. A large-scale human study conducted by Baccarelli et al. 

concluded that proximity to major roads resulted in an approximately linear increase 

in the risk of thrombotic tendencies such as DVT (246). Whilst some studies have 

suggested elevated fibrinogen levels as a response to the presence of soot particles 

(173,174), others have concluded that the initiation of abnormal clots may be as a result 

of platelet dependent haemostasis (168,231,235–237).  

It is possible for PM to enter the body through the airways and penetrate deep into the 

lungs (178,184). Smaller particles, with a diameter of < 2.5 μm can reach the alveoli 

and translocate across the gas-blood barrier into the blood stream 
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(179,184,185,191,199,201). Literature has shown that both long- and short-term 

exposure to PM increases the risk of death due to cardiovascular disease (176,185) 

because of increased blood coagulability as a result of inflammation of the lungs 

(176,216). 

Platelet activation has been discussed as a possible mechanism for increased risk of 

thromboembolic disease. The interaction between a stimulus, such as fibrinogen and 

thrombin, and the surface of platelets initiate platelet activation (301). Platelets are 

responsible for binding to the damaged blood vessel and forming a thrombi to promote 

haemostasis, with activated platelets resulting in potential thrombus formation leading 

to thromboembolic disease (302). Initially, studies were carried out in hamsters with 

Nemmar et al. concluding that the thrombotic events experienced after exposure to PM 

was consistent with the kinetics of platelet activation (168). A further study by Lucking 

et al. applied similar theories to determine that the inhalation of PM was responsible 

for an increased risk of thrombus development in humans as a result of platelet 

activation (239).   

5.3 Whole Blood Study Materials and Methods 

5.3.1 Ethical Approval 

Ethical approval (2019-002) was obtained from the College of Engineering Research 

Ethics Committee to cover the project entitled ‘The detection of particulate matter 

induced blood clotting anomalies using rheometric techniques’. The Ethical Approval 

application can be seen in Appendix C. 

The study was conducted using blood samples from healthy blood donors. Prior to the 

collection of blood samples, the aims of the project were explained, along with the 

Eligibility Guidelines for participation in the study. The risks of a blood draw were 

outlined by the phlebotomist prior to consent being given. Each patient was required 

to check their own eligibility for the study and give informed consent to participate in 

the rheological and SEM studies. A copy of the consent form signed by both the 

participant and the researcher was held within a locked cabinet with the Patient Room 

for the duration of the study. A further copy was given to the patient for their records. 

Patient information was immediately anonymised with results being stored on a 

password protected computer. Personal patient information was only contained on the 
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consent form and each volunteer was immediately given a unique numerical code that 

was used for further records. 

5.3.2 Materials 

5.3.2.1 Blood 

Blood was obtained from healthy volunteers by a trained phlebotomist in the Patient 

Room adjoining the Rheology Laboratory in the Centre for Nanohealth at Swansea 

University. The blood sample was drawn from the volunteer’s median cubital vein 

using a 21-gauge butterfly needle (Greiner Bio-One GmbH, Austria) into two 

Vacuette® containers (Greiner Bio-One GmbH, Austria). The tube containing the 

initial 3 ml of blood was immediately discarded as increased levels of TF are present 

in the initial draw due to the insertion of the needle. A further 3 ml was drawn from 

each patient into an additive-free Vacuette® container (Greiner Bio-One GmbH, 

Austria). Blood samples were utilised immediately, with the appropriate volume of 

additive free blood being removed from the tube for testing. The majority of blood 

samples were required for rheological testing with only a few samples needed to 

prepare SEM samples of the blood clots. Any blood sample remaining after 

preparation was disposed of immediately using appropriate waste disposal procedures. 

No blood samples were stored at any point throughout the studies. 

5.3.2.2 Soot Solutions 

As discussed in Section 4.4.1, Soot G[1x] was further concentrated to give solutions 

with two and ten times the original concentration of soot particles, Soot G[2x] and 

Soot G[10x] respectively. Soot samples G[1x], G[2x] and G[10x] were prepared 

identically to the fibrin gels study, prior to the addition to blood. A small volume of 

required soot solution was sonicated for 15 minutes at ambient temperature to reduce 

aggregation of the particles. Immediately prior to the addition of the soot solution to 

the whole blood sample, a volume of 10x TBS was combined with the sonicated soot 

solution to achieve a 1x TBS-S solution compatible with the whole blood. Prepared 

soot samples were used without delay. Any waste containing soot solutions was 

disposed of using the appropriate disposal procedures.  
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5.3.3 Methods 

5.3.3.1 Rheometry 

Rheological studies were conducted using an AR-G2 CMT rheometer (TA 

Instruments) using TRIOS software. A standard inertia correction (SIC) procedure was 

carried out before each experiment as described in Section 3.4.2.1. A standard SAOS 

GP procedure was employed with a parallel plate geometry. It was preferable to select 

a parallel plate geometry over a cone and plate due to cellular matter present within 

the whole blood samples (69). 

Blood samples were prepared with the inclusion of a range of soot particle 

concentrations. The soot solutions were prepared as described in Section 5.3.2.2 

above. By using a range of concentrated soot samples, it was possible to assess the 

effect of soot on the blood clots formed without altering the blood dilution. The study 

was conducted using additive free whole blood to allow for the inclusion of soot 

solutions without exceeding the dilution threshold of 20% observed by Lawrence et 

al. At 20% haemodilution, a significant decrease in the reported 𝑑𝑓  values was detected 

(143), therefore a dilution of 5% was employed within the present study to ensure the 

clot characteristics observed were not compromised by sample preparation.  

The volume of soot solution required was prepared in advance of the blood draw to 

allow for a quick preparation and loading of the blood-soot sample onto the rheometer. 

Each sample was sonicated for 15 minutes before 10x TBS was combined with the 

soot solution to for the required volume of 1x TBS-S. To obtain an accurate 𝑡𝑔𝑒𝑙, the 

required volume of whole blood was immediately added to the soot solutions before 

being gently combined and loaded onto the rheometer. The delay time for all 

experiments was recorded as < 65 ± 5 s from blood draw to commencement of the 

TRIOS procedure.  

A volume of 122 μl of the combined blood-soot was loaded onto the rheometer Peltier 

plate, set to 37 °C, before the upper 60 mm aluminium parallel plate geometry was 

manually lowered to within a few microns of the blood-soot sample, in line with the 

fibrin gels procedure used. Manually performing this procedure enabled the blood 

sample to ‘jump’ to the plate therefore reducing the risk of bubbles being trapped in 

the sample between the plates. Once contact had been made between the sample and 

the upper geometry, the gap was set to 380 μm using the TRIOS software command.  
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The temperature of the experiments was maintained at 37°C throughout loading and 

testing. 

An initial pre-shear was conducted for 10 s at 100 s-1 shear rate to prevent settling of 

the blood cells present before a standard SAOS GP procedure commenced. A torque 

of 6.0 μN.m was applied to the sample over four discrete frequencies of 2.1 Hz, 1.7 

Hz, 0.9 Hz and 0.4 Hz. The third harmonic and stress/strain waveforms were 

monitored throughout testing to ensure the experiment was conducted under linear 

conditions. Each experiment ran for a duration of 1500 s to ensure sufficient data was 

obtained both pre- and post-GP. 

Blood samples were disposed of immediately after testing using the appropriate 

disposal systems. The clot formed during testing was cleared from the Peltier plate. 

The rheometer components that were in contact with the blood were cleaned using a 

soap and water solution and rinsed with water prior to having 70% ethanol applied to 

sanitise the surfaces. 

5.3.3.2 SEM Sample Preparation 

SEM Samples were prepared to visually analyse the mature clot microstructure formed 

with the inclusion of increasing concentrations of soot particles. Whole blood from 

three healthy donors was combined with soot to give a 5% Soot G solution inclusion 

over a range of sample concentrations (G[1x], G[2x] and G[10x], along with a saline 

control). A volume of 200 μl of the blood-soot was immediately pipetted into a 12-

well plate where the clot was left to gel to a mature clot. Clots were left for 40 x 𝑡𝑔𝑒𝑙 

determined in the rheological study (approximately 3.5 hours) to ensure the gel 

network had reached maturity (75). The clots were further treated with glutaraldehyde, 

ethanol and HDMS in an identical manner to the fibrin-thrombin gel clots as outlined 

in Section 4.4.4 prior to imaging. The dried clots were mounted onto carbon tape on 

SEM compatible stubs before each sample was sputter coated with a 15 nm layer of 

gold-palladium to enhance the conductivity of the sample and therefore the quality of 

the images obtained.  

Images were captured using a Hitachi S4800 Scanning Electron Microscope. The 

magnification was increased over each sample to give an idea of the overall network 

structure as well as the local microstructure. All blood clot samples were imaged 

immediately after sputter coating as storage was not possible due to Human Tissue Act 
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restrictions. The entirety of the samples was disposed of immediately following 

imaging through the appropriate waste disposal methods. 

5.4 Results and Discussion 

5.4.1 Rheometry 

Blood-soot experiments were conducted as outlined in Section 5.3.3.1 using an AR-

G2 CMT rheometer (TA Instruments). The data acquired was assessed using the GP 

Analysis Software3 to determine the uncorrected GP before application of the ERIC 

correction procedure (Chapter 3). The linearity of the experiments was monitored 

throughout testing through analysis of the reported waveforms and the third harmonic. 

An example uncorrected GP for each of the soot solutions can be seen in Figure 5-1.  
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Figure 5-1 Uncorrected GP for individual experiments at each soot concentration in whole blood. The reported 

phase angle at the GP for a) a TBS control experiment, b) 5% dilution with G[1x], c) 5% dilution with G[2x] and 

d) 5% dilution G[10x].  

𝛿𝐺𝑃 = 57.9 ± 2.95° 

𝛿𝐺𝑃 = 63.9 ± 2.18° 

𝛿𝐺𝑃 = 63.5 ± 0.82° 

𝛿𝐺𝑃 = 60.4 ± 1.28° 
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The frequencies employed to ascertain the frequency independent GP were 2.1 Hz, 1.7 

Hz, 0.9 Hz and 0.4 Hz, shown by the blue, red, yellow and green curves. With the 

inclusion of an increased number of soot particles, the total number of individual 

experiments required to produce valid quintuplicate data for each concentration 

increased. Repeating the experiments five-fold ensured that the results obtained were 

reproducible given the biological nature of the whole blood samples.  

As the number of soot particles included within the blood clot increases, it became 

increasingly challenging to obtain valid GP data. The deviation between the pairs of 

roots became more spread out as the soot sample concentration increased, implying 

the reported GP data became less accurate. The increased deviation in the roots 

necessitated the use of the ERIC procedure to determine the corrected GP for the whole 

blood clots with the inclusion of soot PM.  

In order to establish understanding of the characteristics of the whole blood clot, 

parameters ascertained at the GP were analysed. The phase angle at the GP, 𝛿𝐺𝑃, was 

monitored as the soot concentration included within the whole blood samples was 

increased from a TBS control to 5% Soot G[10x] solution. As the number of soot 

particles included in the samples was increased, the uncorrected 𝛿𝐺𝑃 shows an increase 

in phase angle at the GP (Figure 5-2).  

 

 

 
 

 

 

 

 

 

 

There is statistical significance reported (assuming a 10% confidence interval) for the 

uncorrected 𝛿𝐺𝑃 with t-Tests reporting 𝑝 > 0.05692 for all soot solutions in 

Figure 5-2 The effect of soot particulate matter at a range of concentrations in whole blood on the phase angle at 

the GP. The pre-ERIC (solid line) and post-ERIC (dashed line) are shown. 

TBS Control 
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comparison with the TBS control samples. After the application of ERIC, the corrected 

data appears to suggest a decrease in the 𝛿𝐺𝑃 with increasing soot concentration. Whilst 

the data for Soot G[1x] and Soot G[2x] do not show a significant decrease in 

comparison to the saline control data, with the inclusion of Soot G[10x] a significantly 

lower 𝛿𝐺𝑃 was confirmed using a t-Test (𝑝 = 0.00243). For Soot G[10x] samples 

there is a statistically significant correction in the data once the ERIC procedure is 

applied to the uncorrected data (𝑝 = 0.00058). A decrease in 𝛿𝐺𝑃, as seen in the ERIC 

corrected data, suggests that the clot formed is denser which is consistent with the 

potential occlusions within blood vessels observed in patients suffering from 

cardiopulmonary diseases.  

Using Muthukumar’s relationship (Equation 2.2), it is possible to determine the 𝑑𝑓 

value from the 𝛿𝐺𝑃 for each of the soot concentrations. Without the ERIC correction, 

the conclusion for the uncorrected data shown in Figure 5-3 (solid line) would have 

been that as the soot concentration within the clot increased, the reported 𝑑𝑓 values at 

the GP decreased from 1.79 ± 0.05 for the TBS control sample to 1.70 ± 0.08 for the 

highest soot concentration of 5% Soot G[10x].  

 

 

 

 

 

 

 

 

 

 

However, the 𝛿𝑟𝑎𝑤 at the GP were reported to be 𝛿𝑟𝑎𝑤 > 173.1° for all blood samples, 

suggesting a large inertial influence on the data obtained. As the 𝛿𝑟𝑎𝑤 exceeds the 

limiting 𝛿𝑟𝑎𝑤 stated by the instrument manufacturer to be 150° (9), it was necessary 

Figure 5-3 The effect of soot particulate matter in whole blood on the reported fractal dimension, 𝑑𝑓. The pre-

ERIC (solid line) and post-ERIC (dashed line) are shown. 

TBS Control 
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to apply the ERIC procedure to the data. An example of an ERIC corrected GP with 

5% inclusion of Soot G[10x] can be seen in Figure 5-4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Applying the ERIC procedure to the data obtained using an AR-G2 CMT rheometer 

shows an increase in the corrected 𝑑𝑓 values as the soot concentration included in the 

clot samples increases (Figure 5-3, dashed line). The G[10x] corrected 𝑑𝑓 data was 

determined to be 1.90 ± 0.03 which is a statistically significant increase compared to 

the TBS control (𝑝 = 0.00272) and is significantly increased compared to the 

uncorrected G[10x] data reported as 1.70 ± 0.08 (𝑝 = 0.00066). The TBS control 

samples both record similar values to the ‘healthy index’ stated as 1.74 ± 0.07 (5), with 

increased deviation from this healthy value as the soot inclusion increases. The 

increase in 𝑑𝑓 suggested by the ERIC corrected data corresponds to a denser 

𝛿𝐺𝑃,𝐴𝑃𝑃𝐴𝑅𝐸𝑁𝑇 = 58.1 ± 3.87° 

𝛿𝐺𝑃,𝑇𝑅𝑈𝐸 = 54.2 ± 1.63° 

Figure 5-4 Examples of a) an uncorrected blood GP and b) an ERIC corrected blood GP. The blood sample was 

prepared with the inclusion of 5% G[10x] soot solution. 
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microstructure and stronger clot which has previously been reported in literature for 

the analysis of pathologies such as ischemic strokes (148), coronary artery disease 

(149) and lung cancer (290).  

The clotting time, 𝑡𝑔𝑒𝑙 , of the whole blood samples was reported at the GP for each 

clot. The mean 𝑡𝑔𝑒𝑙 for each soot sample concentration are plotted in Figure 5-5.  

 

 

 

 

 

 

 

 

 

The inclusion of the soot particles does not appear to have a substantial impact on the 

reported 𝑡𝑔𝑒𝑙 at any soot particle concentration. Initially, the uncorrected data and the 

ERIC corrected data show correlation such that the TBS control sample is corrected 

from 393 ± 21 s to 393 ± 20 s after the application of the ERIC procedure. However, 

the reported 𝑡𝑔𝑒𝑙 values for the corrected and uncorrected data at G[10x] show the same 

deviation. It appears that the ERIC correction procedure has more of an influence on 

the reported 𝑡𝑔𝑒𝑙 at G[10x] compared to the uncorrected data, possibly due to the 

decrease in definition of the raw GP data recorded as the inclusion of soot particles 

increased. Despite the difference in the uncorrected and ERIC corrected 𝑡𝑔𝑒𝑙 values at 

G[10x], the correction was not statistically significant as 𝑝 = 0.3856. With the 

inclusion of 5% G[10x] soot solution, the 𝑡𝑔𝑒𝑙 was corrected from 334 ± 21 s to 371 ± 

42 s after ERIC correction. There is a slight decrease in the uncorrected and ERIC 

corrected 𝑡𝑔𝑒𝑙 data, with statistical significance reported in the 𝑝 values reported 

Figure 5-5 The 𝑡𝑔𝑒𝑙 reported over a range of soot concentrations as a 5% dilution of whole blood. The pre-ERIC 

(solid line) and post-ERIC (dashed line) are shown. 

TBS Control 
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(assuming a 10% confidence interval) when comparing each soot solution with the 

TBS control (𝑝 < 0.0600) for both datasets using t-Tests.  

Whilst time-only techniques such as prothrombin time give an indication of the 

clotting characteristics, it is necessary to employ alternative rheologically reported 

indicators alongside the 𝑡𝑔𝑒𝑙 of the sample in order to ascertain understanding of the 

effect of pathologies on the clot microstructure. Previous studies have hypothesised 

the use of 𝑡𝑔𝑒𝑙 as a biomarker for clotting characteristics (54,290). However, the data 

presented in the current study suggests that it is not possible to solely rely on the 𝑡𝑔𝑒𝑙 

of the whole blood clot with the inclusion of soot to determine whether there is an 

increased likelihood of thrombotic tendencies. This is supported by the study 

conducted by Lawrence et al. which showed that 𝑡𝑔𝑒𝑙 cannot be used as an independent 

biomarker as there was no significant difference reported between a healthy cohort and 

those suffering from VTE (54).  

The increase in clot density suggested by the corrected 𝑑𝑓 appears to be as a result of 

platelet activation in the whole blood sample due to the inclusion of soot particles. The 

platelets in the whole blood sample stimulate the generation of thrombin, with the 

thrombin present acting as a powerful agonist in platelet activation (303). The platelet 

activation and aggregation in humans is as a result of coagulation factors (232). The 

fibrin network formed from polymerisation of fibrinogen monomers creates the 

structure of a blood clot and is responsible for the stability of the initial platelet plug. 

It has been suggested that platelets respond to the presence of PM (168,239) which 

results in a disrupted process for the generation of thrombin. The modified timing of 

the thrombin burst through the coagulation cascade results in an alternative 

microstructure of the clot formed. As thrombin is also responsible for the formation of 

the fibrin network, it is plausible that the fibrin promotes the procoagulant activity of 

the activated platelets (303). The enhanced disruption caused by an increase in soot 

PM appears to lead to a denser clot that could trigger thromboembolic events. 

5.4.2 SEM Study 

Whereas it was possible to employ LSCM techniques for image analysis of fibrin gels, 

whole blood clots could only be assessed using SEM imaging due to the presence of 

blood cells and platelets. To support the data obtained in the rheological blood study, 

SEM images were captured to visually assess the effects of soot particles in whole 
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blood clots. Clot samples were produced in triplicate for numerous donors with the 

images presented herein being from a single healthy donor for each of the figures to 

give a representative image of the clots observed. Due to the delicate and fragile nature 

of the blood clots once washed and dehydrated, it was more challenging to mount the 

mature clots onto the carbon tape than the equivalent fibrin gel clots. An example 

blood clot prior to sputter coating can be seen in Figure 5-6. 

 

 

 

 

Despite multiple attempts, it was not possible to obtain high-magnification images of 

the soot within whole blood clots as a result of the sample ‘charging’. This resulted in 

blurred, low-quality images. Therefore, it was not feasible to observe the soot particles 

within the blood clots as a significantly high magnification could not be reached. 

Representative images of the whole blood clots appear to show a progressive increase 

in fibre density as the soot concentration increases, as seen in Figure 5-7. Image a) was 

obtained as a TBS control sample, with b)-d) containing 5% G[1x], G[2x] and G[10x], 

respectively. 

 

 

 

 

 

 

Figure 5-6 A prepared blood clot for SEM imaging prior to sputter coating. The clots were mounted to the SEM 

stubs using carbon tape once the washing and drying process was completed. The blood clots were left to develop 

for 40x 𝑡𝑔𝑒𝑙  to ensure the mature microstructure was observed once dehydrated and sputter coated.  
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The increase in fibre density with the increase in the number of soot particles is 

consistent with the ERIC corrected 𝑑𝑓 values. At the highest soot concentration, 

G[10x], 𝑑𝑓 was reported by ERIC to be 1.90 ± 0.03 which is considerably higher than 

the TBS control ERIC deterined 𝑑𝑓 value of 1.79 ± 0.05. The 𝑑𝑓 reported for blood 

clots with the inclusion of G[10x] is substantially higher than the ‘healthy index’ 

reported by Evans et al of 1.74 ± 0.07 (5), whereas the TBS control 𝑑𝑓 is much closer 

to the ‘healthy’ value. This increase in fibre density and the rheologically obtained 𝑑𝑓 

has been observed in previous studies where 𝑑𝑓 has been investigated for use as a 

biomarker for cardiopulmonary disease (148,149,290). 

A selection of the RBCs in the samples presented in Figure 5-7 show some signs of 

distortion. Some genetic and pathological conditions can affect the shape of the RBCs 

(304), causing them to exhibit ‘spiky’ cell surface behaviour (305,306). The eligible 

volunteers assembled as part of the present study were considered healthy individuals, 

therefore, it is likely that the increased number of ‘spiky’ RBCs is as a result of 

increased soot particles in the higher soot concentration samples rather than genetic 

conditions. Pajnič et al. observed NP agglomeration between RBCs dosed with carbon 

Figure 5-7 SEM images of whole blood clots with 10% inclusion of a) TBS control,  b) Soot G[1x] c) Soot G[2x] 

and d) Soot G[10x]. The whole blood clot sample was obtained from one patient, with each of the clots prepared 

from the same blood draw. 

a) b) 

c) d) 
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black and echinocytes were observed using SEM in samples of washed erythrocytes 

with the addition of ZnO nanomaterial (248), resulting in similar modifications to the 

cell membrane as seen in Figure 5-7 b)-d).  

It is also possible for this phenomenon to be observed as a result of the SEM clot 

sample preparation conditions such as extracellular ionic strength and pH (307). Each 

SEM sample was prepared simultaneously in an identical manner, using the procedure 

discussed in Section 4.4.4. It is possible that the solutions used to fix and dehydrate 

the samples have distorted the cell membranes. However, only a small sample of the 

RBCs present within the saline control sample display ‘spiky’ characteristics with an 

increased number present in the clot including 5% G[10x], as observed across all blood 

SEM samples. 

5.5 Conclusions 

The results of work presented in this chapter appear to support previously published 

conclusions, drawn from both animal and human studies, that PM can behave as a 

powerful agonist in the progression of the clotting cascade. The size of the particles 

that can translocate across the gas-blood barrier are similar to those of the monomers 

that form the fibrin microstructure within the whole blood clot, causing potential 

disruption to the formation of the clot. The sensitive haemorheological techniques 

provide a platform for analysis of the formation of the structural fibrin network in the 

early stages of clot development. This proves advantageous compared to previous, 

simpler techniques that rely solely on a single parameter such as clotting time to 

behave as a biomarker. The concluding remarks from this chapter are summarised as 

follows: 

1. Evaluation of PM induced blood clotting abnormalities using rheometric 

techniques. The present study appears to suggest that at high soot 

concentrations, abnormalities in clotting characteristics are detected using 

rheological techniques. Whilst the 𝑡𝑔𝑒𝑙 does not appear to behave as an 

independent biomarker, the 𝑑𝑓 reported at the ERIC corrected GP for each of 

the soot concentrations appears to indicate an increase in the density of the 

clots formed as the soot concentration increases. The increase in clot density 

could elevate the risk of thromboembolic disease, such as MI, DVT and PE. 

The increase in microstructure density suggested by the rheological data is 
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supported by the SEM images obtained of the whole blood clots with the 

inclusion of soot solutions. The fibrin network appears to increase in density 

as the soot concentration increases, with an increased presence of ‘spiky’ red 

blood cells.  

2. The biochemical effect of PM on blood coagulation. Whole blood appears to 

show a biochemical effect that is not observed in fibrin gels. It is likely that 

platelet activation is responsible for the clotting anomalies observed with the 

inclusion of high concentrations of soot particles in whole blood clots, which 

it is not possible to observe in fibrin gel clots formed of the component clotting 

factors, fibrinogen and thrombin. The interruption to the clotting cascade 

caused by the presence of soot PM within the whole blood sample results in 

abnormal thrombin generation which ultimately has adverse effects on the 

microstructure of the incipient clot. The increased density of the clot after 

exposure to highly concentrated soot solutions could cause potential 

exacerbation of thrombotic disease. 
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 Conclusions and Recommendations 

The research presented in this thesis shows that rheometric techniques can be 

employed to detect blood clotting anomalies induced due to the inclusion of soot 

particulates. A biochemical effect is observed in whole blood samples that was not 

detected in fibrin gels, suggesting that high concentrations of soot particulates could 

cause platelet activation that is responsible for the clotting anomalies observed in 

whole blood. 

Development of the Enhanced Rheometer Inertia Correction (ERIC) procedure allows 

the experimentalist to obtain valid GP data using a CMT rheometer at previously 

inaccessible frequencies. The application of the ERIC procedure post-data acquisition 

to CMT GPs results in agreement with GP data obtained using an SMT rheometer. The 

inaccurate inertia constant, 𝐼𝑐, reported by the instrument appears to be instrument 

specific and is routinely corrected by the ERIC procedure in the order of 0.1 µNms2, 

which is larger than the precision reported by the instrument during repeat calibrations. 

Modifications to 𝐼𝑐 reported by the rheometer through a SIC procedure were corrected 

using a MATLAB code to determine the true inertia constant, 𝐼𝑡. Exploitation of the 

frequency independent GP combined with 𝐼𝑡, made it possible to obtain valid data with 

enhanced accuracy and precision of the GP determined after the application of the 

ERIC procedure.  

For weak gelling systems, the 𝛿𝑟𝑎𝑤 < 150° limit outlined by the manufacturers for the 

AR series CMT rheometers used in this thesis has routinely been exceeded, indicating 

that inertial artefacts are dominant within the system and data may not be valid (9). 

Application of the ERIC procedure now allows the experimentalist to obtain valid GP 

data at either higher frequency decades (for rapidly gelling systems with 𝑡𝑔𝑒𝑙 < 100𝑠) 

or lower concentration systems.  

As a result, a previously undocumented concentration dependence was established 

over a range of gelatin concentrations between 2.5 𝑤𝑡% ≤ 𝑐 ≤ 30 𝑤𝑡%. The ERIC 

procedure was applied to the GP data obtained and agreement was shown between the 

corrected CMT data and GP data ascertained using an SMT rheometer. At low gelatin 

concentrations, a limiting phase angle of 63° was observed, which is in agreement with 

a stress relaxation exponent of 𝛼 = 0.7, comparable with theoretical predictions for 
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percolating systems. Previous studies validated the suggestion of a concentration 

dependence for the gelation of gelatin (7,77). 

For low viscosity fibrin gels, with low fibrinogen and thrombin concentration as 

studied in this thesis, it was necessary to include Tween-20 surfactant into the GP in 

order to obtain valid GP data by reducing the surface tension of the sample. The 

inclusion of Tween-20 greatly improved the quality of the rheological GP data 

obtained without compromising the microstructure of the gel formed. As a result of 

the inclusion of Tween-20 into the fibrin gels, it was possible to determine the effect 

of thrombin and fibrinogen concentration on the incipient gel, as well as analyse any 

modifications to the gel formation due to the inclusion of soot particulates.  

From the studies conducted, it became clear that thrombin concentration had a more 

dramatic effect on the gel formed than fibrinogen concentration. Thrombin 

concentration has a strong association with the 𝑡𝑔𝑒𝑙, with high thrombin concentrations 

gelling much more rapidly and forming a denser clot than lower concentrations. A 

slight increase in 𝑡𝑔𝑒𝑙 was observed as fibrinogen concentration increased, suggesting 

a possible diffusion limitation rather than reaction limitation to describe the kinetics 

of the gelation process. Application of ERIC to fibrin gels allowed for direct 

comparison with SMT data previously reported (144). In order to assess the effects of 

the inclusion of soot particulates into fibrin gels, fixed fibrinogen and thrombin 

concentrations were employed of 6 mg ml-1
 and 0.08 NIH ml-1 respectively.  

Initially, low concentrations of soot particulates (<5% Soot G[1x]) were included 

within the fibrin gels with the resulting GP data returning inconclusive. As a result, 

the Soot G[1x] solution was further concentrated to give a two- and ten-times 

concentration (Soot G[2x] and Soot G[10x], respectively) to increase the number of 

particles present within the fibrin gel without increasing the dilution. The application 

of the ERIC procedure to the fibrin gels with the inclusion of soot particulates allowed 

for any modifications to the GP data reported to be because of the presence of PM and 

not due to inertial artefacts. The reported 𝛿𝐺𝑃 and 𝑑𝑓 at high soot concentrations 

showed little deviation as the number of particles increased. However, the 𝑡𝑔𝑒𝑙 

decreased as the soot concentration within the fibrin gel increased suggesting a 

possible altered activation pathway of thrombin present in the gel samples. There is no 
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suggestion of a steric effect with the inclusion of soot particulates into fibrin gels as 

much of the data obtained was inconclusive. 

Finally, the soot particulates were included within additive-free whole blood samples. 

Whole blood samples were drawn from healthy volunteers by a trained phlebotomist. 

As with the fibrin gels, the application of ERIC to blood GP data obtained allowed for 

any potential adverse alterations to the coagulation characteristics to be analysed 

without inertial artefacts dominating the data. 

Using rheometric techniques, it was possible to demonstrate potentially harmful 

alterations to clotting responses in whole blood samples due to the presence of soot 

particulate matter. As the concentration of soot particulates increased in the clot 

samples, the resulting GP data appears to suggest that both the microstructure and the 

clotting time is affected. The 𝑡𝑔𝑒𝑙 parameter does not appear to behave as an 

independent biomarker for modified clotting response. However, the ERIC corrected 

GP 𝑑𝑓 data appears to suggest an increase in the clot density as the soot concentration 

within the clot increases. Elevated 𝑑𝑓 values have been associated with increased risk 

of thromboembolic disease, such as MI, DVT and PE. The presence of soot PM within 

the whole blood clot could cause a disturbance in the clotting cascade, resulting in 

abnormal thrombin generation and potentially adverse effects on the clotting 

characteristics of the sample. 

6.1 Recommendation for future work 

In order to gain a clearer understanding of the effects of fibrinogen concentration on 

the GP, further rheometric studies are required using both CMT and SMT rheometers. 

From the CMT data, it is clear that there is little deviation in 𝑑𝑓 values reported at the 

GP, yet the SMT data appears to show an increase in 𝑑𝑓 as fibrinogen concentration 

increases. The size of the standard deviations reported at each fibrinogen concentration 

for the CMT rheometer is much greater than those reported by the SMT data. As a 

result, a further SMT study with a wider range of fibrinogen and thrombin 

concentrations would give a clearer conclusion on the effects of fibrinogen and 

thrombin concentration on the incipient clot microstructure. Furthermore, employing 

an SMT rheometer to study the effects of soot particles on fibrin clot formation should 

be considered as the instrument appears to allow more accurate GP data to be obtained. 
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The research within this study was conducted using a model soot solution produced 

by Cardiff University using a generator to simulate the resultant soot particulate matter 

from incomplete combustion. Employing well characterised nanoparticles, such as 

carbon black, alongside the unique soot solutions would give a greater understanding 

of the potential adverse effects of particulate matter on blood clotting. Furthermore, 

clotting anomalies have been observed in humans and animals using alternative 

techniques, so it would be advantageous to apply rheometric techniques to samples of 

soot produced by combustion engines to ascertain sensitive information on the 

potential pernicious effects caused by the presence of particulate matter in whole 

blood.  

Due to time constraints, it was not possible to undertake a whole blood study over a 

broader range of soot concentrations. From the data obtained, it is clear that there is a 

critical soot concentration at which anomalous clotting responses are observed using 

rheological techniques with the precise concentration yet to be determined. This could 

be rectified by carrying out experiments at soot concentrations between G[2x] and 

G[10x] to determine at which point there is a critical effect on the clotting. 

Further analysis of platelet activation throughout the clotting process would allow for 

a better understanding of the kinetics of the coagulation cascade. This could be 

achieved by running a study using a platelet analyser alongside the rheological study. 

It was not possible to achieve this during the given timeframe due to equipment 

training requirements and the increased number of donors required to complete a 

further study. 
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7. Appendices 

A. Published work 

1.  Hudson RE, Holder AJ, Hawkins KM, Williams PR, Curtis DJ. An enhanced 

rheometer inertia correction procedure (ERIC) for the study of gelling systems 

using combined motor-transducer rheometers. Phys Fluids. 2017;29(12).  
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B. Soot solution characterisation 

Soot Characterisation Study 

Soot G[1x] was produced at Cardiff University using a graphite generator (276). The 

particles present in the soot solution were estimated4 to have geometric mean diameter 

of 33 ± 1.65 nm in the gas phase (276).  

A previous study by Anderlohr and Schaber showed that transfer of flame-synthesized 

aerosols of silica nanoparticles between phases was possible with negligible influence 

on the particles size distribution (308). Initially, particle size was measured as an 

aerosol using a scanning mobility particle sizer before dynamic light scattering was 

employed to measure the size of the same particles in the liquid phase. Finally, a liquid 

nanoparticle sizer determined the diameter of the particles within droplets in a re-

atomised aerosol. The size of the particles measured in aerosol prior to and post-

suspension in liquid showed strong agreement with geometric mean diameters of 

approx. 60 nm compared to the diameter for the same particles in liquid suspension 

being determined to be in the range of 160-180 nm (308). The study concluded that 

the discrepancies in the reported particles diameter in the gas and liquid phase was as 

a result of the techniques used, rather than aggregation of particles in a liquid 

suspension (308). 

To gain understanding of the particles in the Soot G[1x] solution, a Malvern Zetasizer 

Nano-ZS was used to analyse the hydrodynamic diameter and zeta potential (ZP). The 

hydrodynamic diameter is a measure of not only the core particle size, but also any 

surface structure (309). The particles were suspended in ultra-pure water. Disposable 

folded capillary cells were used to obtain data on both the particle size and the zeta 

potential (ZP). Data was obtained to assess the effect of i) time, ii) salinity and iii) the 

addition of Tween-20 surfactant on size and ZP of the particles in the solution.  

To evaluate the size and ZP of the particles suspended in the stock solution, the 

refractive index (RI) of the solution and the type of carbon particles present were used 

to create standard operating procedures (SOP). The respective SOP were used for each 

experiment (size and ZP). The RI of the dispersant, water, was set as 1.330 with a 

viscosity of 0.8872 cP at 25 °C (310). The viscosity of the dispersant was assumed to 

be the viscosity of the sample. For the particle material, carbon, the RI was set as 2.420 

with an absorption of 0.900 (310). During the evaluation of the effect of salinity on the 
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particles, along with the effect of Tween-20, the RI of the dispersant was input as 1.335 

due to the addition of TBS to the soot solution (310). All TBS and Tween-20 study 

samples were sonicated for 15 minutes prior the addition of the required volume of 

TBS and testing (168). 

From each sample, data was obtained for the size and the ZP. A Z-Average from a 

total of 10 runs were completed for each size experiment, whilst average ZP data was 

obtained using a maximum of 100 runs with no delay between the measurements. The 

first measurement of each run was discarded as the instrument temperature stabilised, 

with guidance being taken on the quality of later runs from the software. Any data that 

was deemed below quality by the software was removed from analysis. The 

predominant issue raised by the instrument software was a high polydispersity index 

(PDI) for individual runs. The PDI gives dimensionless analysis of the broadness of 

the size distribution determined from the cumulant analysis (309). If the PDI 

coefficient data was > 0.07 and therefore not agreeable with a monodispersed sample, 

as outlined in ISO 22412:2017 (311), it was discarded.  

Prior to loading the sample into the cell, the cell was wet using deionised (DI) water 

to prevent bubbles being trapped in the sample. Any excess DI water was shaken out 

of the cell. Samples were loaded into the folded capillary cells using a syringe. 

Initially, the cell was held upside down as the sample was loaded until it reached the 

‘U’, at which point, the cell was righted, and the rest of the sample injected to ensure 

that no bubbles were caused in the cell. Stoppers were inserted into the cell to prevent 

sample evaporation during testing. 

The cell containing the sample was loaded into the Zetasizer and the required SOP was 

run to obtain the data. Size data and ZP data were collected in consecutive experiments 

before a new sample was loaded.  

Time study 

Throughout the time study conducted over 15 days, fresh samples were prepared each 

day with one being sonicated for 15 minutes (168) and another being the Soot G[1x] 

solution without any ultrasonication. This was done to assess whether the sonication 

of the sample affected the particle size by breaking up any potential aggregation of the 

particles in the stock solution over time. 1 ml of sample was prepared each time with 

the sonicated sample being sonicated immediately prior to testing.  
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The data in Figure 7-1a shows the mean hydrodynamic diameter of the particles in 

stock soot (G[1x]) solution over a study period of 15 days, beginning with the day of 

manufacture of the solution, day zero. There are large fluctuations in the size recorded 

on consecutive days due to the fractal shape of the particles dispersed within the 

solution. The fractal nature of the particles resulted in the diameter reported to be 

overestimated. Even at the extremes from the initial values recorded for the sonicated 

and unsonicated data, there is no statistical significance as 𝑝 >> 0.05. There effect of 

time of particles size appears to be inconclusive, with no clear suggestion of particle 

agglomeration. A large proportion of the data sits within the range of 400-600 nm, 

significantly increased from the 33 nm mobility diameter measured for particles in the 

gas phase4, possibly as a result of the low iconic concentration of the solvent. A low 

iconic concentrations, the thickness of the electric double layer is increased which 

reduces the diffusion speed, resulting in an overestimated hydrodynamic diameter 

(312). Three days after manufacture, the ZP of the sample appears to become more 

steady, perhaps as a result of particle stabilisation (Figure 7-1b).  

 

 

 

 

 

 

 

 

 

 

 

 

 



160 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solutions can be considered unstable when the ZP reported is in the range −30 𝑚𝑉 ≤

 𝑍𝑃 ≤  30 𝑚𝑉 (313). As Figure 7-1b shows, the ZP data obtained over the time study 

all lie within the stated range, suggesting that the solution is unstable and could be 

subject to particle aggregation. There were no visible signs of aggregation or 

sedimentation over the course of the study involving only G[1x]. The erratic 

hydrodynamic diameters recorded support the lack of evidence of particle aggregation. 

However, as a precaution in studies of clots containing soot particulates, all soot 

solutions were sonicated for 15 minutes prior to addition to ensure that aggregation of 

particles was at a minimum. 

a) 

b) 

Figure 7-1 Data reported using a Malvern Zetasizer Nano-ZS to assess a) the hydrodynamic diameter of the 

particles suspended in Soot G[1x] solution and b) the corresponding zeta potential of the solutions. The data was 

obtained over a period of two weeks, beginning on the day of manufacture. Solution were measured without 

sonication prior to measurement (open squares, dashed line) and after 15 minutes of sonication (closed circles, 

solid line) at room temperature. 
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Salinity study 

As the core study involved the inclusion of the soot solutions into fibrin gels and whole 

blood clots, it was imperative to assess the effect of salinity on the samples. Required 

volumes of 10x TBS were added to the stock solution to analyse the effect of the 

increased salinity over particle hydrodynamic diameter and ZP. For the salinity of the 

soot solutions to be compatible with fibrin-thrombin gels and blood, the 10x TBS 

needed diluting to 1x TBS using the stock soot solution. As a result, the upper limit of 

TBS added was to dilute to 1x TBS (100%) and the lower limit was set as no TBS in 

the stock soot solution (0%). Several samples were prepared in between these limits at 

20% intervals. Previous work has shown that ZP can be significantly reduced in high 

salt concentrations (313) as the pH of the solution is altered. Whilst the concentrations 

of TBS could not be worked with in later studies, it was possible to establish the 

increase in pH as the saline content increased (Figure 7-2).  

 

 

 

 

 

 

 

 

 

With the increased salinity, the pH of the solution increased over a range from pH5 at 

0% TBS up to pH8 at 100% TBS. The results on the effect of pH on particle size 

appears to be inconclusive (Figure 7-3) with little deviation in the reported 

hydrodynamic diameters as the concentration of TBS approached the desired 

concentration. All samples were sonicated prior to assessment using the Zetasizer and 

therefore the fluctuations in the size could be as a result of the fractal nature of the soot 

particles present in the solutions.  

Figure 7-2 The effect of increasing TBS concentration on pH of Soot G[1x] solutions. 
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The ZP of the soot solutions over the saline concentration range tested appears to 

fluctuate with an overall decrease in ZP as the TBS within the sample increased, up to 

the physiologically relevant 1x TBS (100%) sample (Figure 7-4). The reduction in ZP 

as the salinity increased suggests that the solutions became less stable and more likely 

to aggregate as the amount of TBS within the sample increased. 

 

 

 

 

 

 

 

 

Alongside the Zetasizer data, the samples were visibly inspected and approximately 

one hour after testing, a film appeared to coat the sample tube containing 1x TBS 

(100% TBS content). An example of this can be seen in Figure 7-5 where a sample 

Figure 7-3 Reported hydrodynamic diameters over a range of TBS concentrations. 100% TBS refers to the 

physiologically relevant TBS concentration required for compatibility with biopolymer experiments (1x TBS). 

Figure 7-4 Zeta potential reported for increasing TBS additions to Soot G[1x] solution. 
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from each saline concentration was lined up, with the only visible observation being a 

colour change from a colourless solution to very faint pink film on the tube (circled). 

Rheological experiments require a duration of approximately 25 minutes to obtain the 

desired measurements, and during that time frame, there were no visible alterations 

observed in the soot solution. However, the final study conducted using the Zetasizer 

to acquire size and ZP data involved the addition of Tween-20 surfactant to improve 

the quality of the rheologically reported GP data.  

 

 

 

 

 

Tween-20 study 

The inclusion of Tween-20 into the fibrin gel samples is necessary for rheological 

measurements in order to obtain valid GP data. The addition of Tween-20 surfactant 

to the soot solutions was conducted under 1x TBS saline conditions. Tween-20 was 

incorporated to have a 1 % concentration so as to be consistent with rheological data 

collection. Three separate soot samples with the inclusion of were prepared and tested 

with the data being shown in Figure 7-6.  

Figure 7-5 Image of samples one hour after Zetasizer analysis. The TBS concentration within the sample increased 

(as illustrated by the arrow). At 1xTBS required for biological samples (100% TBS in the present study), there 

appeared to be a faint pink film present on the walls of the sample tube (circled). All other samples remained 

colourless. 
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With the inclusion of Tween-20 into the Soot G[1x] solution, the size reported is 

significantly reduced in comparison to the samples containing only 1x TBS (𝑝 =

0.0213). The size reported for each run are lower than of those reported in the saline 

and time studies with the TBS-T particle sizes being in a much smaller range of 468 

nm to 511 nm compared to the TBS size range of 500 nm to 851nm. The range of the 

data is dramatically reduced with the inclusion of Tween-20.   

The ZP data collected for the samples with the addition of Tween-20 show a significant 

decrease in the ZP reported compared to the TBS only samples (𝑝 = 0.0188). For the 

1x TBS only samples, there is a large range of ZP reported between -17.19 mV and -

7.97 mV, whereas the TBS-T results reported a greatly reduced range of -4.64 mV to 

-6.43 mV.  

Neither the numerical data nor the visual assessment of the samples suggests 

aggregation of the particles in the solution. There were no visible signs of aggregation 

and sedimentation documented in the TBS-T samples and after one hour. Despite the 

1x TBS concentration present, the samples still appeared to be colourless with no film 

on the sample tubes. After 12 weeks, the solution containing 1x TBS with Tween-20 

remained colourless with no signs of aggregation, yet the sample with 1x TBS only 

had fully coated the sample tube with film as seen in Figure 7-7. 

 

Figure 7-6 Effect of the inclusion of Tween-20 into the soot solution on particle size compared with only TBS. Both 

samples were prepared with 1x TBS concentration. 
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As discussed in Section 4.4.1, the Soot G[1x] solution obtained from Cardiff 

University was further concentrated at Swansea University to give two- and ten-times 

particle concentration (Soot G[2x] and Soot G[10x] solutions respectively). It was not 

possible to obtain DLS data for the latter two samples as the volume of concentrated 

solution produced was no sufficient.  

SEM samples were prepared to image the individual soot particles within the solutions. 

Unfortunately, it was not possible to obtain images of the soot particles for each of the 

solutions due to sample charging. However, it was possible to view the soot particles 

within the fibrin clots, as indicated in Figure 4-33.  

The size of the reported particles using SEM is in agreement with the diameter 

measured in the gas phase suggested by Cardiff University for the particles suspended 

in Soot G[1x] solution. As a result, it is possible to be confident in the suggested size 

of the particles during manufacturing, despite the transfer of particles between phases. 

Therefore, the particles suspended in the soot solutions included into fibrin gels and 

whole blood clots within this thesis can be assumed to be of a similar size to the 

fibrinogen monomers.  

  

Figure 7-7 Samples containing a) TBS and Tween-20 and b) only TBS, 12 weeks after Zetasizer analysis. It appears 

that the presence of Tween-20 prevents the aggregation of particles into a red film seen in b). 

a) b) 
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C. Ethical Approval Application 

Ethical approval was granted by Swansea University College of Engineering Research 

Ethics Committee for the project entitled ‘Detection of exhaust particulate induced 

blood clotting anomalies using rheometric techniques’. The application was approved 

on 5th February 2019 (2019-002). A copy of the application approved by the committee 

is appended below. 
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D. Nomenclature 

Symbol Definition Unit 

𝛼 Stress relaxation exponent - 

𝐴 Area  m2 

𝛽 Angle of displacement ° 

𝑐 Concentration wt% 

𝑑𝑓 Fractal Dimension - 

𝛿 Phase angle ° 

𝛿𝐺𝑃 Phase angle at the GP ° 

𝛿𝑟𝑎𝑤 Raw phase angle ° 

𝑑 Shearing gap µm 

𝑑𝑒 Embedding Space - 

𝑓 Frequency Hz 

𝐹 Force N 

𝐺 Elastic modulus Pa 

𝐺’ Storage Modulus Pa 

𝐺′𝑟𝑎𝑤 Calibrated storage modulus Pa 

𝐺′𝐶 Corrected storage modulus Pa 

𝐺’’ Loss Modulus Pa 

𝐺∗ Complex Modulus  Pa 

𝐺(𝑡) Relaxation Modulus Pa 

𝛾 Shear strain - 

𝛾̇ Shear strain rate s-1 

𝛾0 Strain amplitude - 

ℎ Height m 

𝐼𝑐 Calibrated inertia constant µN m s2 

𝐼𝑡 True inertia constant  µN m s2 

𝑘𝑔 Geometry factor - 

𝑘𝜎 Conversion factor - 

𝑀 Torque N m 

𝑀𝑚 Material torque N m 

𝑀𝑖 Instrument torque N m 
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µ Viscosity Pa s 

𝑁𝑚𝑢 Mutation Number - 

𝑝𝑐 Percolation threshold - 

𝑝𝑠 Sticking probability - 

𝑟 Radius m 

𝜎 Shear Stress Pa 

𝜎0 Stress amplitude Pa 

𝜎𝐸 Elastic stress Pa 

𝜎𝑉 Viscous stress Pa 

𝜎𝑇 Total stress Pa 

𝑆 Gel strength Pa s1/2 

𝜃 Angular displacement rad 

𝑡 Time s 

𝑡𝑐 Critical time s 

𝑡𝑑 Delay time  s 

𝑡𝑔𝑒𝑙 Gel time s 

𝑡𝑎𝑛𝛿 Loss tangent ° 

𝜏 Relaxation time s 

𝜏𝑟 Retardation time s 

𝜏𝑠 Stress tensor Pa 

𝑣 Velocity m s-1 

𝜔 Angular frequency rad s-1 

𝑥 Displacement m 
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