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The development of the Internet of Things (IoT) stimulates many research works related to Multimedia Communication Systems
(MCS), such as human face detection and tracking. This trend drives numerous progressive methods. Among these methods, the
deep learning-based methods can spot face patch in an image effectively and accurately. Many people consider face tracking as
face detection, but they are two different techniques. Face detection focuses on a single image, whose shortcoming is obvious,
such as unstable and unsmooth face position when adopted on a sequence of continuous images; computing is expensive due
to its heavy reliance on Convolutional Neural Networks (CNNs) and limited detection performance on the edge device. To
overcome these defects, this paper proposes a novel face tracking strategy by combining CNN and optical flow, namely, C-OF,
which achieves an extremely fast, stable, and long-term face tracking system. Two key things for commercial applications are
the stability and smoothness of face positions in a sequence of image frames, which can provide more probability for face
biological signal extraction, silent face antispoofing, and facial expression analysis in the fields of IoT-based MCS. Our method
captures face patterns in every two consequent frames via optical flow to get rid of the unstable and unsmooth problems.
Moreover, an innovative metric for measuring the stability and smoothness of face motion is designed and adopted in our
experiments. The experimental results illustrate that our proposed C-OF outperforms both face detection and object tracking
methods.

1. Introduction

With the development of AI technology [1-3], IoT [4-7] is
receiving more and more attention from academia. It empha-
sizes that all objects connected to the internet (including peo-
ple and machines) have unique addresses and communicate
through wired and wireless networks and have been deeply
integrated into humans’ daily life. For example, a doctor
can conduct the diagnosis remotely or even complete the sur-
gery via a telemedical system [8, 9]; by collecting personal

information, smart devices may provide personal recom-
mendations which are most suitable for him/her [3, 10];
and even the satellite in the universe can be utilized more effi-
ciently for better serving mankind [11]. However, the smar-
ter the humans’ life is, the more dangerous the privacy is.
Every smart device is “monitoring” you, so personal data
protection and privacy-preserved problems should be paid
more attention to. Especially the release of GDPR in EU
and EEA in 2016, more and more researchers have been dig-
ging into privacy-related works [12-19].
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The development of IoT-based MCS drives a sharp
increase of human face-related techniques, such as face
detection, face tracking, and face recognition. Applications
of beauty cameras, security access, surveillance and tracking
suspect, etc., have been widely used around people’s life, for
example, smart city and smart campus. It is with no doubt
that accurately detecting and tracking faces are essential
steps for the aforementioned missions. Additionally, stably
and smoothly tracking face bounding boxes from a sequence
of continuous images is also required for some special mis-
sions in the field of IoT-based MCS, e.g., face biological sig-
nal extraction, silent face antispoofing, and facial expression
analysis, as stable and smooth face bounding boxes captured
along frames can reduce the signal noise significantly.

Regarding the traditional visual methods, a lot of prior
face tracking methods [20-25] take tremendous spirits on
feature engineering and color spaces. For the long-term
tracking of human faces in the unconstrained video, face
tracking has been generally treated as common object track-
ing, e.g., [26] is a typical method which comes from TLD
[27, 28] and also is one of the earliest attempts to apply
the tracking-by-detection diagram for the face tracking task.
Although common TLD can also deal with face tracking
work, [26] upgraded it to be more robust even when view-
points change. In detail, it adapted a frontal face detector
from [29] which is the state-of-the-art method at that time.
A validator was deployed on the top of the detector outputting
confidence that is how the current image patch corresponds to
a face. [30] proposed a face tracking approach where optical
flow information is incorporated into the Viola-Jones face
detection algorithm [31]. Its outputs proceed to build a likeli-
hood map where face bounding boxes are extracted. FT-
RCNN [32] is an efficient face tracking method based on Fas-
ter R-CNN [33]. A tracking branch is conducted into Faster R-
CNN and jointly performs face detection and tracking, but its
running time cost is expensive.

Face detection methods are eligible to do face tracking.
However, face tracking turns to more concentrate on
frame-wise face pattern connection. Thus, as for face track-
ing, the relationships of the patterns between frames are
taken into consideration rather than detecting faces in each
individual frame naively. In this paper, we present a novel
method for super real-time and long-term face tracking by
combining CNN and optical flow (see Figure 1). There are
three principal components: a cascade lightweight face
detector that takes responsibility for generating an initial face
bounding box, a face tracker based on optical flow [28], and
a face identifier (a very shallow FCN) who provides face con-
fidence for binary classification. The face identifier guarantees
that the face tracker does not focus on nonface patch. The
optical flow field is always continuous and uniform; the face
bounding boxes generated from our method are extraordi-
narily stable and smooth. Additionally, C-OF can be easily
transferred to any other missions which meet the stable track-
ing requirement, such as object tracking and person reidenti-
fication. Overall, we make five main contributions:

(i) We novelly combine lightweight deep CNN with
the optical flow to substantially reduce the running
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time cost, which achieves stable, smooth, super
real-time, and long-term face tracking on both
CPU and edge computing devices

(ii) Compared with the deep CNN face detection
method, C-OF output fairly stable and smooth
bounding boxes and enhance the performance of
many applications, such as face biological signal
extraction, silent face antispoofing, and facial
expression analysis

(iii) A lightweight FCN which only contains five convo-
lutional layers is designed for face identification to
guarantee the tracking accuracy

(iv) We innovatively design a metric to quantify bound-
ing box stability and smoothness regarding the scale
and position changing of bounding boxes. The
experimental results illustrate that our proposed
C-OF outperforms both face detection and object
tracking methods

(v) The implementation of C-OF is released on GitHub
(https://github.com/HandsomeHans/C-OF) for
those who are interested in further research work
and application on the commercial product

The rest of the paper is organised as follows: in the next
section, related work on face detection and object tracking is
presented. Our method of how to combine optical flow on a
CNN face detection method and insert a lightweight FCN to
identify the face box is described in Proposed Method. The
details of the experiment and discussion on the results are
provided in Experiment and Discussion followed by
Conclusion.

2. Related Work

2.1. Face Detection. As the huge success of deep learning, tra-
ditional methods face a tough situation in some particular
missions. However, they still matter and have many advan-
tages that are worth to be learnt from. Commonly, they
extract hand-crafted features to train a classifier and then
deploy a kind of sliding-window method to locate the face.
For example, with the combination of Haar features and
AdaBoost [34], Viola and Jones [35] deployed a cascaded
face detector, which performs high recognition accuracy
and fast running time. Benefitting from [34], many excellent
methods [36-38] are proposed afterwards. Felzenszwalb
et al. [39] used mixtures of multiscale models to detect an
object, which inspires many face detection approaches, e.g.,
[40-42]. As the aforementioned methods use hand-crafted
features, they all have bad generalization. That is to say, in
complex scenarios, the performance of those methods
slumps sharply.

Since Krizhevsky et al. [43] won the ILSVRC, deep learn-
ing and CNN have had explosive progress on vision mis-
sions. CMS-RCNN [44], Face R-CNN [45], and FDNet
[46] adopt many novel strategies with regard to face detec-
tion based on Faster R-CNN [33]. SSD [47] is another com-
monly used way of face detection. Methods based on SSD


https://github.com/HandsomeHans/C-OF

Wireless Communications and Mobile Computing

First frame

Face detector

=

Face tracker

Face patch

&

! Face tracker
Third frame

E

Face patch

%ﬁ - -

Face identifier

C

Face identifier

0.30
Background

5

FiGure 1: The overall architecture of C-OF.

usually lead to high accuracy and efficiency, e.g., a tiny net-
work is designed in FaceBoxes [48], which attain real-time
performance on CPU; FANet [49] uses FPN [50] and merges
high-level and low-level features in a low computing cost to
train a face detector. On the other hand, cascade CNN
methods also show their superiority on the face detection
mission. MTCNN [51] consists of three lightweight cascade
CNN models to jointly detect face and landmark. PCN [52]
upgrades MTCNN by adding an orientation branch to be
able to output the face rotated angle. Deng and Xie [53] pro-
posed a nested CNN-cascade learning algorithm that adopts
shallow CNN architectures. All these are face detection
methods, which all focus on single image representation
only. That is why on a continuous video, bounding boxes
generated by them are unstable and unsmooth.

2.2. Object Tracking. Face tracking can be considered to be a
special category of object tracking. Most scientists imple-
ment object tracking methods for face tracking as control
experiments. In the beginning, an initial state such as a
bounding box of a target object is given, and then, feature
extracting and pattern matching methods are conducted in
all the subsequent frames. Object tracking has been pro-
gressing all the time, as the release of many benchmark
datasets and competitions including RGB-T [54], MOT16
[55], and Lasot [56], as well as the development of deep
learning. CF [57] has been widely used and inspired a lot
of good work in tracking missions. It proved, for the first
time, that there is a connection between ridge regression
and classical correlation filters. The work accelerated the
cost expensive matrix algebra to fast Fourier transforms
with O(nlogn) computational complexity. In the mean-
time, the KCF was first presented and a solution of com-
puting kernels on shifts was proposed as well based on
radial basis and dot product. [58] proposed MOSSE which

greatly improved the performance of tracking methods with
respect to CF. It reduced the computational complexity,
and the accuracy increased at the same time. However, it
only concerned gray-scale features that this kind of low
dimension feature space does not have a good representa-
tion. On the other hand, it is unable to adapt object scale
variance as it concentrates on translational motion of the
center point of the target object between frames and does
not take into consideration the scale change of the target
object reflected on the screen in the process of moving scale
variance. To this end, Danelljan et al. proposed DSST [59]
making an improvement on MOSSE by deploying fHOG
[39] features instead of gray-scale features to increase the
dimension of features from 2 to 28. What is more, the
object scale variance is concerned in DSST.

Apart from traditional object tracking methods, CNN-
based methods have had great progress and outperform tra-
ditional methods a lot on the public benchmarks. [60] intro-
duced a generic object tracking network using a regression
mechanism by watching videos oftline of objects moving in
the world. To be specific, the regression-based tracking net-
work only requires a single feed-forward pass through the
network to directly regress the location of the target object.
Zhu et al. [61] made progress on Siamese networks, which
conduct tracking through similarity comparison strategy,
by learning distractor-aware Siamese networks for accurate
and long-term tracking. MDNet [62] is one of the most suc-
cessful generic object tracking methods. It consists of a
shared CNN, which is trained on a large set of videos with
tracking ground truths, for feature representation extraction.
After training, all the branches of domain binary classifica-
tion layers are replaced. Then, the model was fine-tuned
online during tracking to adapt to the new domain. Regard-
ing bounding box regression, they set up an online training
linear model to generate the final bounding box.
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FIGURE 2: The proposed C-OF face tracking system.

TABLE 1: Architectures of cascade convolutional networks. “k”

stands for kernel size, “s” means stride, and “p” is padding number.

Stage 1

Input Color-scale image
Convolution Outputs: 10, k: 3x3,s: 1, p: 1
MaxPooling k:3x3,s:2
Convolution Outputs: 16, k: 3x 3, s: 1, p: 1
Convolution Outputs: 32, k: 3x3,s: 1, p: 1
Convolution Outputs: 6, k: 1 x1,s: 1, p: 1
Stage 2

Input Color-scale image
Convolution Outputs: 28, k: 3x3,s: 1, p: 1
MaxPooling k:3x3,s:2
Convolution Outputs: 48, k: 3x3,s: 1, p: 1
MaxPooling k:3x3,s5:2
Convolution Outputs: 64, k: 2x2,s: 1, p: 1
Dense Outputs: 128

Dense Outputs: 6

Stage 3

Input Color-scale image
Convolution Outputs: 32, k: 3x3,s: 1, p: 1
MaxPooling k:3x3,s 2
Convolution Outputs: 64, k: 3x3,s: 1, p: 1
MaxPooling k:2x2,s2
Convolution Outputs: 128, k: 2x2,s: 1, p: 1
Dense Outputs: 256

Dense Outputs: 6

3. Proposed Method

The details of the proposed C-OF face tracking method are
shown in Figure 2. It consists of three principal components:
face detector, face tracker, and face identifier. In the following
parts of this section, the first part presents the lightweight face

detector. In the second part, the implementation logistics of
optical flow are given. The face identifier is provided in the
last part.

3.1. Lightweight Face Detector. Same with other face tracking
methods, a face detector is essential to figure out an initial
face bounding box. We adopt a cascade CNN referring to
[51], which is only for face detection without facial landmark
prediction. In the first stage, a FCN [63] is deployed to
obtain the candidate face bounding boxes. As the networks
output not only vast bounding boxes but also confidence
density for binary classes of face and background, we prede-
fine a threshold to filter some boxes which have low confi-
dence. Then, highly overlapped boxes are merged by NMS.
In stage two, the candidate faces cropped from the input
image are fed into the second CNN. Abundant false positive
faces are dropped out, and NMS is conducted again. In the
last stage, the output is generated the same way as stage
two. After NMS, we have the final face box. In our face
detector, each part takes its own attention on tackling the
detection problem. The first part more focuses on outputting
vast face candidates. Then, for the second part, it has to filter
false positive faces which means this part is concentrated on
face identification. The last part not only focuses on face
identification but also puts a lot of attention on box regres-
sion. More details of the three CNNs are shown in Table 1.

3.2. Optical Flow Face Tracker. Once the initial face bound-
ing box is obtained, it comes into the tracking part. For the
general face detection methods, every frame is handled sep-
arately, and there is no more temporal information taken
considered, so face bounding boxes perform to be very
unstable. The sharp shaking of face bounding boxes makes
it more difficult to tackle the problem of critical face analysis
missions. To this end, a Median-Flow tracker is deployed
and collaborates with a bounding box regression module to
locate the position of the face in the current frame with
respect to the last frame. Basically, a grid of 10 x 10 points

is uniformly selected from the last face patch, namely, P'.
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TaBLE 2: Architectures of face identifier. “k” stands for kernel size,

« » «, »

s” means stride, and “p” is padding number.

Input Color-scale image
Convolution Outputs: 28, k: 3x3,s: 1, p: 1
MaxPooling k:3x3,s: 2
Convolution Outputs: 48, k: 3x3,s: 1, p: 1
MaxPooling k:3x3,s:2
Convolution Outputs: 64, k: 2x2,s: 1, p: 1
Convolution Outputs: 128, k: 1 x 1, s: 1, p: 1
Convolution Outputs: 2, k: 1 x1,s: 1, p: 1

TaBLE 3: Stability values with respect to Equation (3) for MDNet,
MTCNN, and C-OF on aforementioned four videos with different
conditions.

Active camera

Method Clipl Clip2 Clip3 Clip4 Clips
MDNet 4106844 4387077 5088164 5704352 4.977256
MTCNN 6679212 6.522255 6.166027 8.261213 9.037096

C-OF (ours) 2.936315 3.350025 3.372295 3.907079 3.864539

Active human

Method . . . . .
Clip 1 Clip 2 Clip 3 Clip4 Clip5

MDNet 3.045595 2.81129 3.305667 3.098207 3.322302

MTCNN 4.064902 3.55413 3.513855 4.050621 3.746015

C-OF (ours) 0.851283 0.993135 0.728653 1.208135 1.403328

Static human

Method . . . . .
Clip 1 Clip2 Clip3 Clip4 Clip5

MDNet 1.425355 1.47768 1.453236 1.518395 2.260055

MTCNN 1.994141 2.51177 2.318275 2.333235 2.237117

C-OF (ours) 0.310882 0.308686 0.295996 0.245097 0.321575

Active illumination
Method

Clip 1 Clip 2 Clip 3 Clip4 Clip5
MDNet 1.961921 2.130076 2.3661 3.036336 2.243076
MTCNN 2.831262 2.758897 3.116406 4.073383 2.963807

C-OF (ours) 0.452622 0.579371 0.696979 1.006401 0.392867

Then, the motions of these points between the current frame
and last frame are estimated by the pyramidal Lucas-Kanade

tracker [64] in two directions. P/ = [pf, p/ A p]f\,] and P’ =

b p5, -+, p%], where ﬂ and p® represent the predicted
points in forward (from last to current fame) and backward
(from current to last frame) directions, respectively, from
pyramidal Lucas-Kanade tracker, where N is the number
of points. In other words, the forward predicted points P/
is calculated from the last frame, current frame, and last
frame’s uniformly selected points P’; the backward predicted
points P’ are from the two frames and the current frame’s
uniformly selected points P°. As for the pyramidal Lucas-
Kanade tracker, we set the size of the search window at each
pyramid level to be 4 by 4, and two pyramid levels are used.
The termination criteria of the iterative search algorithm are
set to have a 20 maximum iteration number and 0.03 con-

TaBLE 4: Smoothness values with respect to Equation (5) for
MDNet, MTCNN, and C-OF on four videos with different
conditions.

Active camera

Method Clipl Clip2 Clip3 Clip4 Clip5s
MDNet 0152312 0.146476 0.303847 0270567 0.088137
MTCNN 1071629 0.683341 0.650429 0.581538 0.656829

C-OF (ours) 0.005137 0.011361 0.010636 0.005119 0.009432

Active human

Method . . . . .
Clip 1 Clip2 Clip3 Clip4 Clip5s

MDNet 0.678967 0.491966 0.586164 0.699405 0.402297

MTCNN 1.145627 0.847167 0.93854 0.977966 0.971969

C-OF (ours) 0.001103 0.003444 0.001304 0.004872 0.021336

Static human

Method . ) . . .
Clip 1 Clip2 Clip3 Clip4 Clip5s

MDNet 0.393428 0.43518 0.444789 0.521464 0.612867

MTCNN 0.5484 0.673217 0.729767 0.625556 0.566896

C-OF (ours) 0.004908 0.000072 0.0 0.000008 0.0

Active illumination
Method

Clip 1 Clip 2 Clip 3 Clip4 Clip5
MDNet 0.417814 0.3991 0.564509 0.531881 0.48117
MTCNN 1.020253 0.616373 0.805697 1.110985 1.045736

C-OF (ours) 0.010921 0.000995 0.0 0.007117 0.000901

vergence threshold. In order to filter the points P! and P/
to estimate the offset of face patch, normalization cross-
correlation between last and current frames is performed
firstly. Any point whose value is smaller than the median
similarity value is dropped out. Then, the median value of
P is used to further filter points in sets P' and P/. The point
whose value is larger than the median value is dropped out.

While having the filtered points P and P/, the coordinate
offset of the current face box against the last face box is the

median Euclidean distance between ﬁln and f){l:
offset(lsl, Pf) = median(‘ ‘f)lm —T){n‘ D;Vm eM,M<N. (1)

Hence, from the last face box and coordinate offsets, we
have the current face box. In this way, face boxes are signif-
icantly stable and smooth along with frames than those gen-
erated from the common face detection method.

3.3. Face Identifier. Face recognition is in general brought
into vast focus by the success of CNN on vision missions,
and various methods have been presented already. In order
to filter the representation in the bounding box generated
by the optical flow face tracker, we show a very simple face
identifier that works very well in distinguishing the back-
ground. Table 2 shows the architecture of the proposed face
identifier which has a minor difference against the second
part of the aforementioned face detector. The second part
of the face detector outputs six values, four for face box coor-
dinate and two for face and background probabilities. We



Wireless Communications and Mobile Computing

MTCNN, active camera sub-video 1

MDNet, active camera sub-video 1

e
Ay
oA

N

%
B

S

(s
Y
(NSRS
,_ .,.

0.4
(b)
MDNet, active human sub

0.6 0.8 1.0

0.4

()

COF, active camera sub-video 1

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

video 1

(c)

MTCNN, active human sub

COF, active human sub-video 1

-video 1

Ficure 3: Continued.



Wireless Communications and Mobile Computing

MDNet, static human sub-video 1

>~
0.0 0.2 0.4 0.6 0.8 1.0
X
(®
COF, static human sub-video 1
S
0.0 0.2 0.4 0.6 0.8 1.0
X
()
MTCNN, active illumination sub-video 1
>

0.0 0.2 0.4 0.6 0.8 1.0

(k)

MTCNN, static human sub-video 1

0.0 0.2 0.4 0.6 0.8 1.0

(h)

MDNet, active illumination sub-video 1

0)

COF active illumination sub-video 1

1.0 4

0.8

0.6

0.4 4

0.2

0.0 4

0.0 0.2 0.4 0.6 0.8 1.0

o

FIGURE 3: Selected visualization for the motion tracking of center point in the bounding box.

change the output layer to only generate binary probabilities.
As the face in a sequence of frames may vary a lot, the face
tracker may fail in tracking the face and output a wrong
object. So, the face identifier is essential; the main goal of it
is to filter the false positive candidates to fit well with its

motivation. Therefore, we change the number of output
values to two, and the probability distribution for face and
background is obtained by a Softmax layer which follows
the last convolutional layer. In order to make the face iden-
tifier capable of dealing with different sizes of face bounding



Wireless Communications and Mobile Computing

Normalized center point track on active camera videos
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FIGURE 4: Center point motion tracking on active camera videos.

boxes, we replace two fully connected layers with two convo-
lutional layers to make the model be a FCN [63]. FCN is a
specially designed neural network for semantic segmenta-
tion. By replacing all the fully connected layers with convo-
lutional layers, FCN breaks the limitation of fixed input size.
That is because a fully connected layer needs an input with a
fixed dimension to fit with its weights, while a convolutional
layer with a 1 by 1 kernel size has no need of fixing the
input’s dimension. Let the kernel number in a convolutional
layer be the same as the hidden node number in a fully con-
nected layer; then, this convolutional layer can replace the
fully connected layer directly and break the limitation of
fixed input size. Its ability to deal with the arbitrary scale
of input images has been spread to other vision missions,
such as object classification and detection.

4. Experiment and Discussion

4.1. Experimental Setting and Dataset. A number of experi-
ments on face tracking were conducted to evaluate our pro-
posed C-OF. Other than C-OF, we reproduced MTCNN
[51] and MDNet [62] for comparing the tracking perfor-
mance. For Python implementation, all neural network
models are implemented using PyTorch [65] framework,
and the source code has been made publicly available
(https://github.com/HandsomeHans/C-OF) for reproducing
the results. The hyperparameters for MDNet and MTCNN
are the same as their official implementation. We also imple-
ment C-OF via C++ with ncnn (https://github.com/
Tencent/ncnn) which is a high-performance neural network
inference computing framework optimized for mobile


https://github.com/HandsomeHans/C-OF
https://github.com/Tencent/ncnn
https://github.com/Tencent/ncnn

Wireless Communications and Mobile Computing

Normalized center point track on active human videos
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F1GURE 5: Center point motion tracking on active human videos.

platforms. The devices we used in the experiments are Intel
Core i7-8700K and Nvidia GTX TITAN X. Details of running
time using Python and C++ implementations are presented
in Running Time.

In terms of the dataset, four long-term videos are
recorded for the experiments, as there are no public bench-
mark aims for stable face tracking. The four videos are
recorded via different conditions: active camera, active
human, static human, and active illumination, respectively.
As for the active camera and illumination, we let the actor
be static and randomly move the camera and light source
in front of the face. And for the active and static human,
we first ask the actor to talk to the cameraman and act in a
freestyle. Then, we ask the actor to stop acting and sit stati-
cally in front of the camera. We split each video into five

clips, each clip is about one-minute long. The recording
device is iPhone X with a 12-megapixel rear camera. We
resize each frame to 1080 * 608 resolution. The three differ-
ent methods can detect and track faces all the time in each
clip. So, the only difference is the scale and position changes
of bounding boxes frame by frame. The download link of
this testing dataset can be found in the GitHub repository
as well.

4.2. Result Discussion

4.2.1. Stability. In the perspective of evaluating the stability
and smoothness of face boxes from a frame sequence, com-
paring with ground truth is not the principal aspect. Besides,
to the best of our knowledge, there is no general metric to
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Normalized center point track on static human videos
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F1GURE 6: Center point motion tracking on static human videos.

quantificate the stability and smoothness of the bounding box.
Hence, we naively consider the moving route of the bounding
box’s corner and center points to evaluate how the bounding
box changes along with frames regarding scale and position.
We first quantificate the stability by judging the change of
width and height and position of the center point:

o=l =+ 05 ) @

1 N
Stability = Y(lwy—w, | + by =k | +75),  (3)
n=0

where x¢ and y¢ are the x, y coordinate of the center point,
respectively, r¢ is the absolute moving route of the center

point, N is the total number of frames, and w and h are width
and height of the bounding box, respectively. The summation
offsets of width, height, and center point illustrate the change
of scale and position of bounding box collaboratively. A
smaller value means the box moves a short distance or has a
little change of width or height. Table 3 gives all the results
of stability for MDNet, MTCNN, and C-OF, respectively, on
aforementioned four videos with different conditions. It can
be viewed that our proposed C-OF significantly outperforms
the other two methods in all experiments. Faces in static
human videos are the more stable, where the minimum values
take in place; for example, MDNet gains its minimum value of
1.425355, MTCNN’s is 1.994141, and C-OF’s is 0.245097
which is the global minimum value as well. Also, the maxi-
mum value of C-OF, which is 0.321575, on static human
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Normalized center point track on active illumination videos
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F1GURE 7: Center point motion tracking on active illumination videos.

videos is even smaller than the minimum values of MDNet
and MTCNN, which are 1.425355 and 1.994141, respectively.

4.2.2. Smoothness. On the other hand, to further quantify the
smoothness, we design another function, which mostly
focuses on the scale change of the bounding box:

R - e S U (4)
n 4 >
1 & el
Smoothness= — » In [ — |, (5)
N s
n=0 e

where rt, 7, 7", and ! are the absolute moving route of top
left, top right, bottom right, and bottom left points, respec-

tively. In this function, we empirically consider the ratio of
corner and center points’ absolute moving routes. By obser-
vation, we found that a bounding box that moves a long dis-
tance usually comes with a change of its scale. In Equations
(4) and (5), €" is larger than 1, as r is a nonnegative value.
The mean route of corner point R, is larger than the route
of center point r¢, so logarithm of the ratio of ef+ and e
is always a nonnegative value. In conclusion, we say that
the box that moves a short distance without or with little
scale change may gain a smaller value. We report the
smoothness values in Table 4, where our proposed C-OF is
superior to MDNet and MTCNN all the time.

4.2.3. Motion Tracking. The stability and smoothness can be
observed clearly on the image sequence, but it is not
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TaBLE 5: Approximate running time for MDNet, MTCNN, and C-OF on different computing devices and resolutions. CPU refers to Intel

Core i7-8700K; GPU is Nvidia GTX TITAN X.

Method Language & framework 320 * 240 Y 640 * 480 320 * 240 o 640 * 480
MDNet 1362 ms 1334 ms 269 ms 270 ms
MTCNN Python & PyTorch 15ms 32ms 17 ms 22 ms
C-OF (ours) 10 ms 11 ms 11 ms 11 ms
MDNet — — — —
MTCNN C++ & ncnn 10 ms 31 ms — —
C-OF (ours) 2 ms 3 ms — —

convenient to show out the image sequence in a paper. To
this end, visualizing the motion tracking of any specific
point from the bounding box is a feasible way. Figure 3
shows some visualization examples for the motion tracking
of the center point in the bounding box from three methods.
It is obvious that the proposed C-OF has far more smooth
lines than MDNet and MTCNN, which illustrates that
motion tracking of face boxes generated by C-OF is more
smooth. In graphs (k) and (1), the outlier means a wrong face
box is taken in place. All of the visualization examples are
presented in Figures 4-7 for your reference.

4.2.4. Running Time. Running time is another principal
aspect that commercial applications mostly take into
account. Benefitting from lightweight models and optical
flow method, our proposed C-OF is super real-time even
on CPU, while the typical deep learning model commonly
depends on GPU to attain a sufficient performance.
Table 5 shows all the experimental results of approximate
running time for MDNet, MTCNN, and C-OF on different
computing devices and resolutions. The input image is
resized to 320 * 240 resolution. Regarding Python imple-
mentations, as MDNet needs to fine-tune the model online,
its running time is far slower than the other two methods.
Our proposed C-OF is super real-time of approximately
200 FPS and spends 5ms and 6 ms less than MTCNN on
CPU and GPU, respectively. Note that both MTCNN and
C-OF have no massively parallel computing, in which case
PyTorch using GPU performs worse than using CPU. That
is why the running time of MTCNN and C-OF conducted
on CPU (15ms and 10ms) is faster than GPU (17 ms and
11ms). Typically, C++ implementation is more common
than Python implementation in the industry field, so we also
provide a C++ version of C-OF, which is also publicly avail-
able. We say C-OF is hyper real-time when using C++ and
ncnn. Although benefitting from C++ and ncnn, MTCNN
has a speedup from 15 ms to 10 ms on CPU; C-OF has a five
times progress from 10 ms to 2 ms and achieves 500 FPS. If
we change the input resolution from 320 * 240 to 640 * 480
, MDNet and C-OF have little running time increment or
even a reduction. For MDNet, all the candidate face boxes
are cut off, resized to a fixed resolution, and then fed into
the model for fine-tuning. So the size of the input image does
not matter, cause the number and the size of the candidate
face boxes are predefined. In terms of C-OF, the resolution
increment definitely may slow down the detector part; how-

ever, it only runs very limited times in one experiment.
Other than the detector, optical flow is insensitive to the size
of the image, and the identifier is too light to present out the
performance loss. On the other hand, MTCNN has a normal
running time increment from 15ms to 32ms on CPU and
17ms to 22ms on GPU as the input image’s resolution
changes. For the C++ version, MTCNN has a normal run-
ning time increment as well from 10ms to 31 ms. Same as
the Python version, C-OF runs 1 ms more than 320 * 240
resolution (3ms vs. 2ms). Overall, no matter what imple-
mentation language or computing devices we use, our pro-
posed C-OF is the fastest one, and the running time is
more than sufficient for the commercial application.

5. Conclusion

In this paper, we proposed a stable, smooth, super real-time,
and long-term face tracking system using lightweight CNN
and optical flow, namely, C-OF, which consists of a face
detector, face tracker, and face identifier. The method is
aimed at solving the bounding box shaking problem, which
commonly occurs in deep learning methods. We also opti-
mize the system to make it run faster than most face detec-
tion and tracking methods. The experimental results show
that C-OF can produce stable and smooth face boxes on a
long-term face sequence with super even hyper real time.
We design two functions to quantificate the stability and
smoothness individually, and C-OF is superior to both
MDNet and MTCNN. Meanwhile, we visualize the center
point motion tracking of face boxes to observe the path the
box goes and conclude that C-OF has a far more stable
and smooth path line with a little crook. In the end, we make
the Python and C++ implementations of C-OF public avail-
able for people who are interested in the work.

Data Availability

The testing data (20 mp4 files) used to support the findings
of this study are included within the article, which also can
be downloaded from  https://www.dropbox.com/sh/
fcks3k219xs36ze/ AABIXm3FY3pMzStNrPktYKdRa?dl=0.
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