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Abstract

In the present thesis, we explore certain aspects of superstring and supersymmetric gauge
field theory, independently as well as in the context of the holographic duality.

The first part of the thesis is devoted to classical integrability and, in particular, to certain
methods of analytic non-integrability, which are employed on various supergravity vacua. In
Chapter 1, we introduce those tools of non-integrability, which consist of choosing an appro-
priate string embedding and using differential Galois theory on the associated Hamiltonian
system. The arena of all this, for the first chapter, is two classes of vacua in massive Type IIA
supergravity, all of which are proven to be non-integrable, up to the trivial cases where the
vacuum reduces to the Abelian and non-Abelian T-dual of known integrable backgrounds.
Differential Galois theory, in this context, reduces to an algebraic form through Kovacic’s
theorem, the proper use of which, on parametrized differential equations, is clarified in this
application.

In Chapter 2, we study integrability on the supergravity vacuum dual to the field-
theoretical Ω-deformation of super Yang-Mills theory. The deformation manifests itself as
turning on a Kalb-Ramond field on the dual supergravity vacuum and, by constructing
appropriate string embeddings, we show that this space exhibits non-integrable dynamics.
This, in turn, suggests that the Ω-deformation does not preserve classical integrability.

In Chapter 3, we explore integrability on vacua in massive Type IIA supergravity, dual
to six-dimensional superconformal quiver field theories. Analytic non-integrability illustrates
that all vacua with a warped geometry, between Anti-de-Sitter space and the internal man-
ifold, exhibit complete non-integrability, while in the special case of the unwarped space we
prove the opposite to be true. In particular, we show that, besides the integrable dynamics
on the symmetric Anti-de-Sitter subspace of the unwarped geometry, the σ-model on the
internal manifold is an integrable deformation of the same model on the symmetric three-
sphere, ultimately implying classical integrability of bosonic string theory on this special
vacuum.

The second part of the thesis is devoted to holography and, in particular, the AdS/CFT
duality, which we exploit to study features of certain supersymmetric quantum field theories
in two spacetime dimensions. More precisely, in Chapter 4, the final chapter, we study the
duality between massive Type IIA supergravity vacua and two-dimensional quiver structures.
After categorizing all kinds of gravity solutions, we demystify the ones that seem to reflect
anomalous gauge theories. In particular, we prove that there are bound states of D-branes
on the boundary of the space which provide the dual quiver theory with exactly the correct
amount of matter in order to cancel its gauge anomalies. We also propose that the structure
of the field theory should be complemented with additional bifundamental matter and, finally,
we construct a BPS string configuration and use the old and new supersymmetric matter to
build its dual ultraviolet operator.
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Prologue

Quantum field theory has been an outstanding framework in understanding particle physics,

its agreement with experiment reaching an accuracy of sixteen decimal places. Nonetheless,

while there has been much success with quantizing the fields of electromagnetic, strong and

weak interactions, gravity still eludes a consistent quantum description. The problem does

not occur in quantizing the gravitational field, since an effective field theory of interacting

spin-2 particles is perfectly reasonable in larger scales, but in trying to perturbatively renor-

malize quantum gravity itself [5]. An intuitive way to understand this is through the coupling

constant of gravity − that is Newton’s constant, GN − which is dimensionful in more than

two spacetime dimensions and, by definition, becomes strong in high energies, when pertur-

bation theory is utilized around flat space. Non-renormalizability implies that there should

be a replacement theory in small scales − in this case, smaller than Planck’s scale, lP −
where the quantum effects of gravity are important and the theory is most interesting.

Such a replacement theory is superstring theory [6, 7]. The physics of the string shines

upon the two-dimensional conformal field theory (CFT) on its worldsheet, which is inherently

realized in perturbative terms of the string coupling constant, gs. Strings have tension and,

hence, string theory has an intrinsic scale in it, the string length ls, which is assumed to

be of the order of the Plack length, lP . String tension, T = 1/4πα′ with α′ = l2s , defines

worldsheet quantum effects as perturbations along the order of α′, while the gs expansion

describes the way strings couple or split. In perturbative string theory, the fundamental

vibrational states that come out off the string perturbation series are the massless particles

corresponding to gauge bosons, fermions charged under them and, most notably, gravitons

whose equations of motion are the Einstein equations. Along with those massless modes,

there is also a dilaton field, φ, whose vacuum expectation value (VEV) practically adjusts the

string coupling constant as gs = e〈φ〉. Moreover, boundary conditions of open superstrings

yield the existence of spatially-extended, higher-dimensional objects in the theory, on which

the open superstrings should end [8]. Those objects are called D-branes and the low-energy

limit of the string fluctuations on their worldvolume decouples from gravity and produces

gauge field theory.

On the other hand, the full quantum theory demands, also, a complete non-perturbative

3



4 Prologue

definition, whose expansion would equal the string perturbation series. A key development

in this direction is the discovery of certain dualities, symmetries which relate the strong and

weak-coupling limits of apparently different superstring theories [9]. Such dualities are the

S-duality [10] and the AdS/CFT duality.

The AdS/CFT duality [11–13] is a certain realization of the holographic principle [14–16].

The holographic principle was first inspired by black-hole thermodynamics, where it was

shown that the entropy is proportional to the area of the event horizon [17, 18], implying

that information of a theory in a space may be encoded on its lower-dimensional boundary.

The AdS/CFT duality realizes exactly this kind of situation, while its conceptual grounds

gradually emerged from different corners of superstring theory, mainly in an effort to under-

stand the quantum mechanics of black holes [19] and along the physics of N D-branes, which

had long been believed to resemble gauge field theory with SU(N) gauge group at large

N [20]. This holographic duality relates the low-energy limit of ten-dimensional superstring

theory, that is supergravity, living on (d + 1)-dimensional Anti-de-Sitter (AdS) space times

a compact manifoldM, with a (supersymmetric) CFT living in its d-dimensional conformal

boundary. In this image, the isometries and supersymmetries on the AdS vacuum are seen

as the superconformal group of the CFT, while the isometries of M are translated into an

R-symmetry which rotates the supercharges of the dual supersymmetric field theory. String

states and their energies are dual to CFT operators and their conformal dimensions, respec-

tively. Additionally, local gauge symmetry of string theory is identified with a global (flavor)

symmetry of the CFT at the conformal boundary.

The prime example of the AdS/CFT holography is the duality between the maximally

supersymmetric Type IIB supergravity on AdS5×S5 − a vacuum which emerges as the

near-horizon limit of N D3-branes in flat space − and the four-dimensional supersymmetric

Yang-Mills (SYM) theory with SU(N) gauge group and N = 4 supersymmetry.

In order to stay within the supergravity limit of string theory, the radius R of the vac-

uum has to be large compared to the string length, so that worldsheet quantum effects are

suppressed and classical (supergravity) fields dominate the dynamics. This means

R =
√
α′ (4πgsN)

1
4 �

√
α′ = ls ⇒ 4πgsN � 1 ,

where R is the AdS radius. In terms of the field theory coupling constant, g2
SYMN � 1. Of

course, in the same time, quantum string-loop corrections have to be also suppressed in the

supergravity approximation, that is gs → 0, which means N → ∞. In this limit, the large

N limit, SU(N) gauge theory has as its expansion parameters the effective, t’Hooft coupling

λ = g2
SYMN = 4πgsN and 1/N , where planar Feynman diagrams dominate the interactions.

In this vacuum, string tension is effectively T = R2/2πα′, which means that the expansion
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parameters between string and gauge theory are related as

λ = 4π2T 2 ,
1

N
=

gs
4π2T 2

.

In the end, since gs → 0 and λ � 1, the AdS/CFT duality is a correspondence between

weakly-coupled string theory, that is supergravity, and strongly-coupled CFT.

The AdS5×S5 vacuum is one of the three maximally supersymmetric vacua of Type IIB

superstring theory, along with its flat-space and plane-wave limits [21]. AdS5×S5 and its

plane-wave (or ‘Penrose’) limit, together with their dual field theory, have both been the

playground for numerous tests on the validity of the AdS/CFT duality, one of the most

successful possibly being the work of Berenstein, Maldacena and Nastase (BMN) [22]. The

first reason for this kind of interest and success in calculations is obviously the large amount

of symmetry: lots of geometric isometries and maximal supersymmetry. Maximal super-

symmetry reflects cancellation between spinor and bosonic worldsheet effects, yielding an

exact vacuum solution; the low-energy equations of motion are exact, receiving no further

α′-corrections. The second reason, which intertwines with the first, is less popular and it

is called integrability. Integrability, more or less, is the feature of string and gauge field

theory that permits to calculate observables as functions of the coupling constant and, in

principle, solve the theory exactly. Planar N = 4 SYM theory is such an example [23], where

integrability leads to an exact dependence of the scaling dimension ∆O, of some operator O,

in the effective coupling λ as ∆O = f(λ). Computational means at arbitrary λ are related,

through the AdS/CFT duality, to the regime of free superstrings of arbitrary tension and,

hence, a connection is achieved between the perturbative regimes of string and gauge field

theory [24]. Of course, this connection due to integrability, as well as integrability itself, is

confined to the planar limit, where superstring theory resembles gauge field theory.

Classical, Liouvillian integrability [25, 26] is, in general, the ability of a set of differen-

tial equations to be solved exactly, by integration. In the context of dynamical systems, in

particular, integrability is the kind of situation where the number of first integrals − that

is, its conserved quantities − equals the degrees of freedom in the theory; it is those con-

served quantities that may be, in principle, used to integrate the differential equations of

motion down to an algebraic and solvable form. In field theory, the degrees of freedom are

infinite and, for an integrable structure, the same must hold for its conserved quantities,

which, moreover, have to be independent and in involution between them, meaning that

their Poisson brackets have to vanish.

Despite its exceptionally rich structure, though, integrability is hard to spot throughout

the vast variety of superstring vacua or field theories. This is because its presence relies on

the existence of a flat Lax connection on the cotangent bundle (phase space) of the theory,
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while, as of yet, there is no standard recipe that provides such a construction. In fact, there

is not even an a priori reason to believe that such a connection does exist. Hence, integrable

structures are mainly obtained as structure-preserving deformations of known integrable

theories, [27–30].

Plan of the Thesis

Through those strict limitations of classical integrability, analytic non-integrability brings

new hope into the struggle of finding novel integrable structures. This is the subject of Part

I of this thesis. In Chapter 1 of this first part, based on [2], we introduce and employ a

particular method that is able to spot non-integrable subsectors in a dynamical system. Of

course, this suffices in the analysis of integrability, since a non-integrable subsector is enough

to declare a theory as non-integrable; integrability is a feature that should be felt throughout

the entirety of the dynamical sectors in a system. The method begins by picking a particular

bosonic string soliton that is a point-particle along the infinite spatial dimensions of the

vacuum and wraps around the compact ones. Such a semi-classical string exhibits second-

order, ordinary, differential equations of motion, instead of partial-differential ones coming

from the full dynamics of the bosonic string. This is an important dynamical reduction, since

it is this kind of differential equations that may be exploited by differential Galois theory,

which can, in turn, decide whether there are Liouvillian solutions or not. After illustrating

the method, we apply it on a family of Type IIA supergravity vacua with an AdS3 factor,

dual to two-dimensional superconformal field theories (SCFTs) that flow to quiver theories

with N = (0, 4) supersymmetry in the ultraviolet (UV), where we deduce that all vacua are

non-integrable except a couple of trivial, limiting cases.

In Chapter 2, based on [3], we employ the same method of non-integrability on the

supergravity vacuum dual to the field theoretical Ω-deformation of N = 4 SYM theory.

In this case, life is simpler and we do not have to use differential Galois theory, since we

find exact solutions for the equations of motion, in a straightforward manner, which are not

Liouvillian. Subsequently, we deduce that the vacuum and, thus, its dual Ω-deformation are

classically non-integrable structures.

In Chapter 3, based on [1], analytic non-integrability is applied on a family of Type IIA

supergravity vacua with an AdS7 factor, dual to six-dimensional SCFTs that flow to quiver

field theories with N = (0, 1) supersymmetry in the infrared (IR). The whole family is shown

to be non-integrable, except one special case where the AdS part of the geometry unwarps

from the internal manifold. In this special case, the internal manifold is proven to be an

integrable deformation of S3, where the bosonic string is classically integrable. Using the

fact that AdS is also a symmetric space − hence exhibiting integrable string dynamics − a

Lax connection is produced for the dynamical system and the special vacuum is ultimately

declared to be integrable.
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Finally, Part II of this thesis, based on [4], is devoted to certain aspects of the AdS/CFT

duality. In particular, we bring again the AdS3 supergravity family of Chapter 1 back on

the table and focus on some classes of vacua that seem to reflect anomalous gauge theories.

We then study those cases in their dual gravity backgrounds and show that their gauge

anomalies, in fact, cancel and that the construction is, thus, perfectly consistent, while

we test holography by proposing some dual operators for a particular state of the bosonic

string. As a side-tool for Part II, an Appendix is provided in the end of the thesis, where

supersymmetry for two-dimensional gauge theory is reviewed.
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Part I preface

In this first part, we employ our tools of analytic non-integrability on a variety of vacua

in string theory. The part is divided into three chapters, each dedicated to one of the

publications [1–3].

In Chapter 1, following [2], we investigate classical integrability on two classes of AdS3

backgrounds in massive Type IIA supergravity, [31–34]. Those vacua are of the form AdS3×S2

×R×CY2, they preserve smallN = (0, 4) supersymmetry and are associated with D8−D6−D4

−D2 Hanany-Witten brane set-ups. We choose an appropriate string embedding and use

differential Galois theory on its associated Hamiltonian system, intending to produce the

conditions under which Liouvillian solutions may occur. By constraining the parameters

of the system according to the consistency of the associate brane set-ups we prove that no

such conditions exist, yielding the complete non-integrability of those vacua. That is, up to

the trivial cases where the background reduces to the Abelian and non-Abelian T-dual of

AdS3×S3×T4.

In Chapter 2, following [3], we study classical integrability on the supergravity vacuum

dual to the field theoretical Ω-deformation of N = 4 SYM theory, [35]. The deformation

manifests itself as turning on a Kalb-Ramond field on the (Euclidean) AdS5×S5, while the

associated H3 flux ignores half of the geometric isometries. By constructing appropriate

string embeddings that incorporate the essential H3 flux contribution on this background,

we study their fluctuations through the associated Hamiltonian systems. Each and every

case demonstrates that the string exhibits non-integrable dynamics, which in turn suggests

that the Ω-deformation does not preserve classical integrability.

In Chapter 3, following [1], we explore classical integrability on a family of AdS7 vacua

in massive Type IIA supergravity, [36–43]. Those vacua consist of a warped AdS7 × M3

geometry, where M3 is isomorphic to S3, they are associated with D8-D6 Hanany-Witten

brane set-ups and are dual to a class of six-dimensional superconformal quiver field theories

with N = (1, 0) supersymmetry. While the study of a particular bosonic string soliton

illustrates that all vacua with a warped geometry exhibit complete non-integrability, in the

special case of the unwarped AdS7 × M3 space we prove the opposite to be true. That is,

we observe that the Wess-Zumino-Witten model on M3 is an (integrable) λ-deformation of

the same model on S3, ultimately showing that the Neveu-Schwarz (NS) sector of the string

σ-model on this special vacuum is classically integrable.





Chapter 1

Non-integrability on AdS3 vacua

1.1 Introduction

Integrability possesses an essential role in modern field theory. Not only it reveals a rich

structure of conserved quantities that shape the physics of the system, but it also states

that the theory is solvable for any choice of the coupling constant. Since holography relates

the worldsheet theory of the superstring to a quantum field theory, integrable structures in

string theory have won a prominent role in leading the way to new integrable gauge theories,

[24,26,44]. Even the most successful calculations on the standard AdS/CFT correspondence,

between AdS5× S5 supergravity and N = 4 super Yang-Mills theory, rely on the complete

integrability in the planar limit of the system.

However, spotting integrable structures can prove to be quite a challenging task. In-

tegrability depends on the existence of a Lax connection on the cotangent bundle of the

theory, while no standard recipe is provided to acquire such a construction. In fact, there is

not even an a priori reason to decide whether such a connection does exist. That is, unless

we acknowledge the theory to be non-integrable. Therefore, integrable systems are mainly

obtained as structure-preserving deformations of known integrable theories, [27–30].

Through the limitations of the classic methods of integrability, analytic non-integrability

manifests itself in a dialectic way. Considering Hamiltonian systems of equations, analytic

non-integrability makes use of Galois theory on differential equations to produce a statement

on the structure of these systems. The arguments of differential Galois theory on second

order, ordinary, linear differential equations were brought to an algebraic form by Kovacic

[45], who also provided an explicit algorithm that produces the Liouvillian solutions of such

equations, if any.

In terms of supergravity, we choose a string embedding that produces the kind of differ-

ential equations of motion that can be examined under Kovacic’s theorem, [1, 46–62]. Since

an integrable theory has all of its dynamical sectors integrable, then every possible string

configuration must echo integrable dynamics. That is, in the planar limit of the effective

parameters in the theory. Even a single sector exhibiting non-integrable behavior is enough

15
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to declare a supergravity vacuum as non-integrable. Therefore, we choose an embedding

complicated enough to provoke the possibly non-integrable structure of the background but,

at the same time, simple enough to produce the kind of differential equations we can examine

under differential Galois theory.

On another approach, S-matrix factorization on the worldsheet theory of the string was

used to provide certain conditions of non-integrability, [63–66], while very recently a recon-

ciliation began to arise between both non-integrability tools, [67].

The present section, which employs differential Galois theory, comes as advertised and

proves a recently discovered AdS3 supergravity vacua family, [31–34], to be classically non-

integrable. That is, up to the trivial cases where the background reduces to the Abelian

and non-Abelian T-dual of AdS3×S3×T4. These massive IIA vacua are classified in [31]

in two distinct classes of backgrounds, from which we consider certain solutions of the form

AdS3×S2 × R×CY2 as in [33]. The solutions preserve small N = (0, 4) supersymmetry

and are associated with D8−D6−D4−D2 Hanany-Witten brane set-ups, [68]. Holography

suggests these backgrounds to be dual to two-dimensional quiver quantum field theories.

Special holographic features of the AdS3/CFT2 duality over the solutions we consider were

studied in [69]. Other warped massive IIA AdS3 supergravities, associated with similar brane

set-ups, were introduced in [70, 71], while an extensive study of two-dimensional N = (0, 4)

quiver gauge theories was performed in [72].

At the same time, this section also aims to clarify the proper use of Kovacic’s theorem

on parametrized differential equations. In particular, we emphasize that failure of Kovacic’s

algorithm − which is implemented in every algebra software − on a parametrized equation

does not imply absence of Liouvillian solutions. It just states that not all choices of the

parameters lead to an integrable equation. It does certainly not say that there are no

particular selections among them that lead to integrability. Hence, if full generality on

the parameters is demanded, then failure of Kovacic’s algorithm indeed declares the non-

integrability of the system. On the other hand, if the problem allows its parameters to be

adjustable, no such statement can be made.

In the latter case, we must enforce the full power of Kovacic’s theorem and go over

its analytic algorithm by hand. If special parameter selections (that lead to an integrable

structure) exist, then Kovacic’s analytic algorithm will find them all, along with their asso-

ciated solutions. If there are no such selections, then we can safely declare our system as

non-integrable.

This is exactly what happens in our case. The AdS3 supergravity family we consider

is defined on general parameters whose adjustment equals picking different supergravity

backgrounds. Therefore, the failure of Kovacic’s algorithm here just states that not all

possible backgrounds are integrable. It does not say that there are no integrable ones,

among the whole family. But this is to be expected. It is the possible special combinations
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of these parameters, i.e. the particular supergravity backgrounds, that we are interested in.

By demanding consistency on the supergravity brane set-ups, we show that the parameters

are constrained in such a way that no integrable backgrounds of this supergravity family

can exist. That is, as restated, up to the trivial cases where the background reduces to the

Abelian and non-Abelian T-dual of AdS3×S3×T4.

The plan of this section is as follows. In Section 1.2, we present the backgrounds of the

form AdS3×S2×R×CY2 in a general manner and give a qualitative picture of their features.

In Section 1.3, we construct our string embedding and produce its equations of motion. By

choosing a simple solution of these equations, we find the dynamical fluctuations around it.

In Sections 1.4 and 1.5, we independently study the two classes of the AdS3 backgrounds, by

applying differential Galois theory on their associated fluctuations. Each class corresponds

to a different kind of brane set-ups and, thus, exhibits different restrictions on its background

parameters. By employing Kovacic’s analytic algorithm, we show that in both supergravity

classes these restrictions forbid integrability for all the possible backgrounds. Finally, in

Section 1.6, we summarize our results and give a review of our method as a concrete non-

integrability tool.

1.2 AdS3×S2 × R×CY2 vacua

Let us outline the supergravity vacua that we are about to consider. It is essential to

understand the basic aspects of these backgrounds, since it is the physical restrictions on

their parameters that will ultimately decide the fate of their (non-) integrability.

The massive IIA supergravity vacua first constructed in [31] split in two distinct classes,

Class I and II. From each class, we pick the solutions of the form AdS3×S2 × R×CY2 as

in [33]. From now on, Class I and II will indicate this particular choice. Both classes have

NS-NS sector, in string frame,

ds2 = f1 ds2
AdS3

+ f2 ds2
S2 +

dρ2

f1
+ f3 ds2

CY2
,

B2 = f4 volS2 , e−Φ = f5, fi = fi (u, h4, h8) ,

(1.1)

where u, h4, h8 are functions of the coordinates {ρ,CY2}, left to be defined. The RR sector,

consisting of F0, F2 and F4, will not be needed here. These backgrounds enjoy a bosonic

SL(2) × SU(2) isometry, they have eight supercharges and were proposed to be dual to

N = (0, 4) CFTs in two dimensions. Here we will consider the solutions on which the

symmetries of CY2 are globally respected. This restricts the internal Calabi-Yau manifold

to be either
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CY2 = T4 or CY2 = K3 (1.2)

and the warp factors to be fi = fi(ρ), i.e. u = u(ρ), h4 = h4(ρ) and h8 = h8(ρ). The warp

factor dependence on these functions will be specified for each supergravity class accordingly

in the sections to follow. Preservation of the N = (0, 4) supersymmetry and the Bianchi

identities imply

u′′(ρ) = 0, h′′4(ρ) = h′′8(ρ) = 0, (1.3)

respectively. Therefore, all the defining functions are linear in ρ and we parametrize them

as

u(ρ) = c2 + c3ρ, h4(ρ) = c4 + c5ρ, h8(ρ) = c1 + F0ρ, (1.4)

where all ci are real. For the new solutions to be associated with Hanany-Witten brane

set-ups, these funtions are defined piecewise on the intervals ρ ∈ [2πk, 2π(k + 1)], k ∈ Z.

Imposing that the functions vanish at ρ = 0 where the space begins, we get

h4(ρ) = Υ


c05
2πρ 0 ≤ ρ ≤ 2π

ck4 +
ck5
2π (ρ− 2πk) 2πk ≤ ρ ≤ 2π(k + 1)

cP4 +
cP5
2π (ρ− 2πP ) 2πP ≤ ρ ≤ 2π(P + 1)

(1.5)

h8(ρ) =


F 0

0
2π ρ 0 ≤ ρ ≤ 2π

ck1 +
Fk0
2π (ρ− 2πk) 2πk ≤ ρ ≤ 2π(k + 1)

cP1 +
FP0
2π (ρ− 2πP ) 2πP ≤ ρ ≤ 2π(P + 1)

(1.6)

and u(ρ) = c3
2πρ. Υ is just a constant that may be normalized conveniently. The first

derivatives of h4, h8 present discontinuities at ρ = 2kπ where D4 and D8 branes are located1,

while u′′ = 0 across all intervals as dictated by global supersymmetry. The discontinuities in

the RR sector, that are interpreted as localized branes along ρ, modify the Bianchi identities

appropriately with delta functions. Note that in order for supergravity to be trustable,

{c1, .., c5, F0, P} have to be large.

Continuity of the NS-NS sector implies continuity of the h4, h8 functions across the ρ

1We omit to present the explicit dependence of the RR sector to h4,h8 (which, like the NS sector, differs
for each class of vacua) to avoid unnecessary formulas. However, the restless reader is prompted to [31] for
details or to [33] for a clearer review.



AdS3×S2 × R×CY2 vacua 19

intervals. This leads to

ck+1
4 = ck4 + ck5, ck+1

1 = ck1 + F k0 , (1.7)

which in turn gives

ck+1
4 =

k∑
j=0

cj5, ck+1
1 =

k∑
j=0

F j0 . (1.8)

Page charges

In order to gain a better feel on the parameters {c1, .., c5, F0} we consider, as an example,

the RR Page charges of Class I supergravity vacua, in the intervals [2πk, 2π(k + 1)].

As opposed to other kinds of D-brane charges, the Page charge is not gauge invariant but

is localized, conserved and quantized [73]. Hence, through those virtues, the Page charge

informs us of the number of D-branes we are dealing with in a situation. A Dp-brane is

charged under

QDp = (2π)p−7gsα
′ p−7

2

∫
Σ8−p

F̂8−p ,

where F̂ = e−B2 ∧ F is the Page flux, gs is the string coupling constant and α′ is associated

to the squared length of the string. Σ8−p is a (8 − p)-dimensional compact manifold which

envelops the Page charge. In our set-up, for α′ = gs = 1, the Page charges read2

QD8 = F k0 , QD6 =
1

2π

∫
S2
F̂2 ∼ ck1,

QD4 =
1

8π3

∫
CY2

F̂4 ∼ ck5, QD2 =
1

32π5

∫
CY2×S2

F̂6 ∼ ck4

(1.9)

and QNS = 1
4π2

∫
ρ×S2 H3 = P + 1. Therefore, the quantities in the right hand side of the

above equations must be integers.

A study of the Bianchi identities reveals that no explicit D2 and D6 branes are present

in the geometry, just their fluxes3. This associates their amount, ck4 and ck1 respectively,

with the ranks of the (color) gauge groups in the dual field theory. On the other hand,

as restated, D8 and D4 branes do exist in the geometry and modify the Bianchi identities

2F k0 is F0 in the k-th interval. Whenever we loose the k subscript we will mean F k0 .
3This is true when the worldvolume gauge field on the D8, D4 branes is absent. When it is on, there is

D6 and D2 flavor charge induced on the D8’s and D4’s. See the appendix B of [33] for details.
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Figure 1.1: An example of a linear function h4,8(ρ). This kind of function is defined piecewise
on every interval ρ ∈ [2πk, 2(k + 1)π], while it decreases in slope along the ρ dimension.

by a delta function. Thus, F k0 and ck5 are associated with the ranks4 of the (flavor) global

symmetries of the dual field theory.

Gauge anomaly cancellation

Realizing the h4 and h8 pieces across the ρ dimension as blocks of gauge and flavor groups

in the dual two-dimensional quantum field theory, we assembly them to quiver gauge theories.

Then, cancellation of their gauge anomalies implies

N
[k−1,k]
D8 = F k−1

0 − F k0 , N
[k−1,k]
D4 = ck−1

5 − ck5. (1.10)

For the h4, h8 functions this translates to decreasing slopes5, ck5 and F k0 respectively, as ρ

increases. Thus, any of these functions draws a piecewise linear curve of decreasing slope, as

in Figure 1.1.

While the present section provides a consistent summary of these particular AdS3 super-

gravity vacua and their dual quiver field theory, the reader is prompted to [31] for details on

the construction of the solutions, to [32] for an overview and to [33] for a deeper dive into

the quiver realization.

4The rank is a positive number. If the slope is negative, that is related to the orientation of the branes.
5Or slopes that remain the same across intervals, giving no flavor branes between them.
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1.3 String dynamics on AdS3×S2 × R

The bosonic string dynamics is reflected on the Polyakov action, that is a non-linear σ-model,

which in conformal gauge reads

SP = − 1

4πα′

∫
Σ

d2σ ∂aX
µ∂bX

ν
Ä
gµνη

ab +Bµνε
ab
ä
, (1.11)

where the string coordinates Xµ(τ, σ) equation of motion is supplemented by the Virasoro

constraint Tab = 0, where the worldsheet energy-momentum tensor is given by

Tab =
1

α′

Å
∂aX

µ∂bX
νgµν −

1

2
ηabη

cd∂cX
µ∂dX

νgµν

ã
. (1.12)

We desire a string embedding that produces ordinary differential equations as its equations

of motion, so that we can apply differential Galois theory. In order for the differential

equations of motion to end up ordinary (and not partial) the string coordinates must be

Xµ = Xµ(τ) or Xµ = Xµ(σ), where τ, σ are the worldsheet coordinates. Since the search

of (non-) integrability requires bringing dynamics to the test, we like our soliton to have as

much stringy character as possible, according always to the above restriction Xµ = Xµ(σ).

Thus, we wrap it around all cyclic coordinates available.

Both Class I and II of the AdS3 supergravity vacua we consider consist of the NS-NS

sector, in the string frame,

ds2 = f1 ds2
AdS3

+ f2 ds2
S2 +

dρ2

f1
+ f3 ds2

CY2
,

B2 = f4 volS2 , e−Φ = f5,

(1.13)

where fi = fi(ρ) are the various warp factors, left undefined for each supergravity class to

be separately examined, and volS2 = sinχdχ∧ dξ. If global AdS3 and S2 with unit radii are

expressed as

ds2
AdS3

= − cosh2 r dt2 + dr2 + sinh2 r dφ2,

ds2
S2 = dχ2 + sin2 χdξ2,

(1.14)

then we set up our string embedding to be
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t = t(τ), r = r(τ), φ = νσ,

ρ = ρ(τ), χ = χ(τ), ξ = κσ,

(1.15)

where we wrapped the string ν and κ times around the φ coordinate and the ξ dimension,

respectively. CY2 dynamics was left out of the game, since it won’t be eventually needed

in the hunt of non-integrability. Note that it is the wrapping that provides the stringy,

non-trivial behavior to the configuration. Without it we would just have point particle dy-

namics. Indeed, one of these winding modes will play a crucial role later on when we enforce

differential Galois theory.

1.3.1 Equations of motion

Instead of the action (1.11), it is more convenient working with its associated Langrangian

density

L = f1

(
cosh2 r ṫ2 − ṙ2 + ν2 sinh2 r

)
− ρ̇2

f1
− f2

(
χ̇2 − κ2 sin2 χ

)
+ 2κf4 sinχχ̇, (1.16)

where the dot implies derivation wrt the worldsheet time τ . For our particular string em-

bedding, the equations of motion for this Lagrangian are equivalent to those of the σ-model

and read

ṫ =
E

f1 cosh2 r
,

r̈ = −ν
2f2

1 sinh 2r + 2E2 tanh r sech2 r + 2f1 f
′
1 ṙρ̇

2f2
1

,

χ̈ = −κ2 cosχ sinχ+
ρ̇ (−f ′2 χ̇+ κf ′4 sinχ)

f2
,

ρ̈ =
f ′1
(
−E2 sech2 r + f2

1 (−ν2 sinh2 r + ρ̇2)
)

+ f2
1

(
(−κ2 sin2 χ+ χ̇2)f ′2 − 2κf ′4 sinχχ̇

)
2f1

,

(1.17)

where the dash on fi’s implies derivation wrt their argument ρ. Notice that we have replaced
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the equation of motion for t into the rest of the equations. These equations of motion are

constrained by the worldsheet equation of motion, i.e. the Virasoro constraint

2Tττ = 2Tσσ = f1

(
− cosh2 r ṫ2 + ṙ2 + ν2 sinh2 r

)
+
ρ̇2

f1
+ f2

(
χ̇2 + κ2 sin2 χ

)
= 0,

Tστ = 0.

(1.18)

This constraint holds regardless of the equations of motion and, thus, it is a primary con-

straint. The energy-momentum tensor is preserved on shell, ∇aT ab = 0, since ∂τTττ =

∂σTσσ = 0 on the equations of motion (1.17). Note, also, that the compliance of the world-

sheet constraints with the equations of motion yield the consistency of our embedding.

In order to deeply appreciate our method and get a better grip on its physics, we break

on through to the Hamiltonian formulation, by defining the conjugate momenta

pt = 2f1 cosh2 r ṫ, pr = −2f1ṙ, pχ = −2f2χ̇+2κf4 sinχ, pρ = −2ρ̇

f1
(1.19)

and the Hamiltonian density

H =
p2
t

4f1 cosh2 r
− p2

r

4f1
−

p2
ρ

4(f1)−1
− (pχ − 2κf4 sinχ)2

4f2
− κ2f2 sin2 χ− ν2f1 sinh2 r. (1.20)

In this language, the Virasoro constraint is H = 0. Hamilton’s equations on H and pi co-

incide, of course, with the Euler-Lagrange equations of motion (1.17). Therefore, our string

dynamics problem reduces to that of a particle in a non-trivial potential. In particular, the

effective mass is defined by geometry through the kinetic terms, while the winding modes in

the string perspective are realized as a potential on the particle.

1.3.2 Normal Variational Equation

While a system of involved differential equations of motion is unattractive to solve, there

are always a few delicate ways to handle it. One of them is to look for a simple solution

and expand around it, evaluating this way the dynamical behavior of the system. Stated

otherwise, we look in the equations of motion for the simplest solution available by one of
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the variables and, given this solution, we study the fluctuations of the rest of the variables

around it. We call such a fluctuation a Normal Variational Equation (NVE).

Taking up the equations of motion (1.17), we easily see that their jet bundle prefers the

point

r = ṙ = r̈ = χ = χ̇ = χ̈ = 0, (1.21)

which satisfies the r and χ equations, while the one for ρ becomes

ρ̈ =
f ′1
2f1

(
ρ̇2 − E2

)
, (1.22)

yielding the simple solution

ρsol = Eτ, (1.23)

where we omit an integration constant without loss of generality. Notice that having all vari-

ables −but ρ− vanish is the simplest way to go, the rest of the choices leading to complicated

solutions for r or χ.

Since the Virasoro constraint (1.18) is essentially the equation of motion for the world-

sheet metric and as such holds independently from the string coordinates’ equations of mo-

tion, (1.17), it should reflect the same physics, at least classically, if not a more constrained

one (since it is of first order). Indeed, enforcing the choice (1.21) onto the Virasoro constraint

we acquire

ρ̇2 = E2 (1.24)

i.e. the same solution as (1.23). Depending on the particular quality of a system, one can

choose to seek for a simple solution on either the standard string equations of motion or on

the Virasoro constraint. Regardless, any invariant plane we choose to fluctuate on must be

a solution of both the string coordinates’ equation of motion and the Virasoro constraint, in

order for it to be consistent with our string embedding.

Now, since the simple solution ρsol is localized on the point (1.21), then it is that point

around which we study the fluctuations of r, χ. Letting r(τ) = 0 + ε%(τ) into the r equation

of motion in (1.17), we expand for ε→ 0 and obtain its NVE at leading order as
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%̈(τ) + B%(τ)%̇(τ) +A%(τ)%(τ) = 0,

B%(τ) =
Ef ′1
f1

∣∣∣∣
ρsol

, A%(τ) =
E2 + ν2f2

1

f2
1

∣∣∣∣
ρsol

.

(1.25)

In the same manner, letting χ(τ) = 0 + εx(τ) we obtain the NVE for χ as

ẍ(τ) + Bx(τ)ẋ(τ) +Ax(τ)x(τ) = 0,

Bx(τ) =
Ef ′2
f2

∣∣∣∣
ρsol

, Ax(τ) =
κ2f2 − κEf ′4

f2

∣∣∣∣
ρsol

.

(1.26)

Using the change of variable y = e
1
2

∫
Bz in the above differential equations, we deduce two

new ones of the kind

z′′ = V z, V =
1

4

(
2B′ + B2 − 4A

)
, (1.27)

where y is Liouvillian if and only if z is Liouvillian and, thus, no generality is lost. In this

new variable, the NVEs for r and χ read

%̈ = V% %, V% = −ν2 −
E2
(
4 + (f ′1)2 − 2f1f

′′
1

)
4f2

1

, (1.28)

ẍ = Vx x, Vx = −κ2 −
E
(
E(f ′2)2 − 2f2(2κ(f ′4)2 + Ef ′′2 )

)
4f2

2

, (1.29)

Therefore, we end up with two linear, second order, ordinary differential equations. After

defining fi(ρsol) in every supergravity class, each V − which we call the potential − will turn

out to be a rational function of τ . Hence, eventually, equations (1.28)-(1.29) for r and

χ are of the appropriate form to be examined by differential Galois theory for Liouvillian

integrability.

Differential Galois theory on differential equations boils down to Kovacic’s algorithm, [45].

Kovacic provided three criteria on the pole structure of differential equations of the form



26 Non-integrability on AdS3 vacua

(1.25) and (1.26) that decide if a Liouvillian solution can exist. These conditions are necessary

but not sufficient for integrability. In other words, if none of these criteria is satisfied then we

deduce with certainty that no Liouvillian solution exists. In that case, the dynamical sector

under examination and, thus, the whole theory are non-integrable. On the other hand, even

if one of the criteria is satisfied, then such a solution may exist and if it does then Kovacic’s

algorithm will find it. If the algorithm fails, no Liouvillian solution exists. A detailed analysis

is found in Appendix A.

In what follows, we employ the analysis of the present section to examine separately

each AdS3×S2 ×R×CY2 supergravity class of the form (1.1), first presented in [31]. After

defining each class through the functions fi(ρ) and, thus, specify the corresponding NVEs,

we intend to put Kovacic’s theorem into action.

1.4 Class I backgrounds

Given the general form of the NS-NS sector of the AdS3×S2 ×R×CY2 massive IIA super-

gravity, at string frame, as

ds2 = f1 ds2
AdS3

+ f2 ds2
S2 +

dρ2

f1
+ f3 ds2

CY2
,

B2 = f4 volS2 , e−Φ = f5, fi = fi (u, h4, h8) ,

(1.30)

then the first supergravity class is defined by the warp factors

f1 =
u√
h4h8

, f2 = f1
h4h8

4h4h8 + (u′)2
, f3 =

 
h4

h8
,

f4 =
1

2

Å
−ρ+

uu′

4h4h8 + (u′)2

ã
, f5 =

h
3
4
8

2h
1
4
4

√
u

»
4h4h8 + (u′)2.

(1.31)

For simplicity, we treat the functions h, u in a general manner, as in (1.4), i.e.

u(ρ) = c3ρ, h4(ρ) = c4 + c5ρ, h8(ρ) = c1 + F0ρ, (1.32)

since their piecewise character, (1.4)-(1.5), can be always assumed. Meaning, whatever result

we reach can be assumed to hold for any interval of these functions along the ρ dimension.

Notice that h4 and h8 can only vanish at the beginning and at the end of the ρ coordinate.

Otherwise, the background would degenerate and blow up at points along ρ. In fact, both
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of these functions vanish at ρ = 0 and at least one of them has to vanish on the end of the

ρ dimension, ρf , for the space to end in a smooth fashion. This, also, results in a constant

dilaton field near and on ρ = 0. Hence, h4 and h8 preserve their sign: they begin as positive

piecewise linear curves and they remain this way, while their slope decreases along ρ. An

example is drawn in Figure 1.2.

Figure 1.2: An example of the linear functions h4,8(ρ) in Class I backgrounds. These piecewise
functions decrease in slope along ρ and at least one of them (or both) has to vanish at the
end of the dimension, ρf .

1.4.1 Abelian T-dual of AdS3×S3×T4

Although we chose the functions u, h4, h8 such that Class I backgrounds begin and end in a

smooth fashion, i.e. (1.32) and Figure 1.2, it is worth breaking that rule for a brief moment.

That is, we can trivially choose their most general form (1.4) to reduce to constant functions,

i.e. u = c2, h4 = c4 and h8 = c1. Then the background reduces to

ds2 = R2

Å
ds2

AdS3
+

1

4
ds2

S2

ã
+

dρ2

R2
+

…
c4

c1
ds2

CY2
,

B2 = −ρ
2

volS2 , Φ ∼ const. ,

(1.33)

which is the Abelian T-dual (ATD) of AdS3×S3×T4. The latter symmetric background

is classically integrable, [74]. Hence, its Abelian T-dual, this duality being a canonical

transformation, will preserve bosonic, classical integrability. This last statement was formally

elaborated in [30]. Thus, the trivial choice of constant functions u, h4, h8, which is slightly
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outside the smooth choices we consider, leads to an integrable background.

Note, however, that the T-dualized S1, in S3, is contractible. This means that strings

oscillating in S1 become massless in the dual vacuum, in the limit of the vanishing radius.

Hence, the spectrum should be complemented with those additional massless modes, while

the low-energy theory is not supergravity anymore.

Notice, also, that we only picked CY2 = T4, since global metrics on K3 are not ex-

plicitly known. They should exist from Yau’s theorem, but this fact is obviously useless

wrt examining string dynamics on these surfaces. The same holds, of course, in the next

subsection.

1.4.2 Non-Abelian T-dual of AdS3×S3×T4

Before the general treatment, a provoking choice of parameters in (1.32) is c1 = c4 = 0, since

then AdS3 unwarps from the rest of the space and the background reduces to

ds2 = R2 ds2
AdS3

+

Å
R2ρ2

R4 + 4ρ2

ã
ds2

S2 +
dρ2

R2
+

…
c5

F0
ds2

CY2
,

B2 =

Å
− 2ρ3

R4 + 4ρ2

ã
volS2 , Φ ∼ − ln

(
1 + ρ2

)
,

(1.34)

where R2 = c3√
c5F0

. This particular background is the non-Abelian T-dual (NATD) of

AdS3×S3×T4, having dualised one of the SU(2) subgroups of S3, [75]. The latter sym-

metric background is classically integrable, [74]. Hence, its non-Abelian T-dual, this duality

being a canonical transformation, will preserve bosonic integrability. Therefore, c1 = c4 = 0

leads to an integrable background, (1.34), or, more generally, to an integrable interval of this

class of backgrounds6.

Note that the dilaton field in the vacuum (1.34) ranges from zero, at ρ = 0, to a negative

constant, at ρ = 2πk, which yields that the string coupling constant has range gs ∈ (0, 1].

Hence, the superstring is not strongly coupled on this vacuum and allows for the supergravity

approximation.

Now, since this particular choice of parameters gives an integrable structure, this should

be reflected on the corresponding r and χ NVEs. Indeed, this is the case and the details are

given in Appendix B.

Recalling that h4 and h8 are defined piecewise in ρ, (1.4)-(1.5), we realize that the choice

c1 = c4 = 0 reflects only the first interval, [0, 2π], of both the functions. That would be the

6Letting c1 = c4 = 0 be true for all intervals, we inherit an overall NATD integrable theory. Letting it be
true for a specific ρ-interval means that the background on this particular interval is an integrable NATD of
AdS3×S3×T4. Henceforth, we study all other cases except the trivial one where c1 = c4 = 0 everywhere.
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first interval for both curves in Figure 1.2. Thus, we conclude that all possible geometries in

this supergravity class begin as NATDs of AdS3× S3×T4 with radius R2 = c3√
c5F0

and are

integrable in that part of their space.

Then h4 and h8 drive along ρ as positive functions of decreasing slope and, depending

on the particular selection of their parameters {ci, F0}, they may give various backgrounds

associated with appropriate brane set-ups. The positiveness of h4(ρ) = c4 + c5ρ and

h8(ρ) = c1 + F0ρ combined with the decreasing slopes along ρ mean that c1 and c4 are

always non-negative,

c1, c4 ≥ 0, c1c4 ≥ 0, (1.35)

while increasing (or staying the same) across the intervals7. This is equivalent to saying that

each linear curve on every interval of Figure 1.2 has a non-negative projection on the ρ = 0

axis. Apart from providing a clearer picture on the overall brane set-up, this statement will

define the outcome of the next section where we investigate integrability.

Expanding near ρ → 0+ the space becomes AdS3 × R3×T4, which is symmetric and

integrable, as expected for any vicinity of an integrable background like (1.34). Hence, our

study of (non-) integrability narrows down to all other intervals except that first NATD one

and, from now on, it is those intervals that our study implies.

1.4.3 NVE for the radial dimension

Let us begin our integrability analysis on the intervals next to the first NATD one, by first

studying the string dynamics along r. Letting the warp factors (1.31) roll on the NVE for

r, (1.28), we obtain

%̈ =
QI

τ2(τ + c4
c5E

)2(τ + c1
F0E

)2
%, (1.36)

where QI = QI(τ
6, ci, F0, E) is a long polynomial in the numerator whose explicit form will

not concern us. Now, the object that essentially needs to fall under our microscope is the

potential V%. Here, it comes with three poles of order two, {τ1 = 0, τ2 = − c4
c5E

, τ3 = − c1
F0E
}

and it expands around τ →∞ as

V∞% = −(
c5F0E

2

c2
3

+ ν2)− (c1c5 + c4F0)E

c3τ
+O
Å

1

τ2

ã
, (1.37)

7In case of confusion, c4 and F0 here represent the constants of h4 and h8 in a random interval. According
to the piecewise definition (1.4)-(1.5), these would reflect to the constants ck4−ck5k and ck1−F k0 k, respectively.
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exhibiting zero order behavior there. Thus, V% satisfies the first and second Kovacic’s criteria,

implying that the NVE (1.36) may have Liouvillian solutions. However, Kovacic’s algorithm

fails to solve it as it is.

Nevertheless, the above potential is defined on general parameters whose adjustment

equals picking different supergravity backgrounds. Therefore, the failure of Kovacic’s al-

gorithm here just states that not all possible backgrounds are integrable. It does not say

that there are no integrable ones, among the whole class. This can be also realized by the

fact that we have already found, in the previous subsection 1.34, an integrable selection of

parameters, i.e. c1 = c4 = 0. It’s this kind of possible combinations of these parameters

(like c1 = c4 = 0), i.e. particular supergravity backgrounds, that we are interested in, if any

(others) exist.

Therefore, we shall utilize the full power of Kovacic’s method. This way, if there are any

selections of {ci, F0} that allow for Liouvillian solutions of (1.36), we shall find them along

with their associated solutions. If such selections are impossible, then we shall safely declare

the whole supergravity class as non-integrable.

Kovacic’s analytic algorithm is a step-by-step procedure, detailed in Appendix A. Overall,

it states that each one of its criteria is associated with a sub-algorithm, called a Case, that

may (or may not) solve the equation at hand. As proved above, our NVE (1.36) satisfies

the first and second criteria and, thus, must be undertaken by Cases 1 and 2, respectively,

of the algorithm.

Since there is nothing intuitive about Kovacic’s method, the explicit calculations of the

analytic algorithm on all Cases are held in Appendix C. In the main chapter, we just present

the results of the algorithm and act with our string-theory considerations on them.

1.4.4 Case 1

Case 2 takes into account that Case 1 does not hold, hence we shall always begin by con-

sidering Case 1 of Kovacic’s theorem. The algorithm for this particular Case is explained in

Appendix A.1 and the explicit calculation on our r NVE (1.36) is given in Appendix C.1.

Up to some real constants and signs that we do not care about here, the algorithm

produces the quantity

d ∼ i

…
c1c4

c2
3

± i (c1c5 + c4F0)E

2
»
c2

3c5F0E2 + c4
3 ν

2
(1.38)

and states that d has to be a non-negative integer. If d is such a number, then the algorithm

moves on to its next stage. If d is never such a number, then Case 1 cannot give a Liouvillian

solution. In other words, integrability demands the above object to be real.
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Therefore, we have reduced our integrability problem to whether there are any inter-

relations between the supergravity parameters {ci, F0} that let (1.38) to be real. Such a

relation would correspond to a specific background. In what follows, we prove that these pa-

rameters are constrained by the behavior of the rank functions h4(ρ ; c4, c5) and h8(ρ ; c1, F0),

in such a way that no such relations can exist.

So, there are three possibilities for (1.38) to be real: either both imaginary terms vanish

simultaneously, either they cancel each other out or they both end up real.

The first possibility is excluded since c1, c4 6= 0, the opposite being true only on the first

ρ interval of the space (the NATD part). Alternatively, if c1 = 0 while c4 6= 0 then the

first term may vanish but the second one (which also has to vanish) implies F0 = 0, which

together lead to h8 = 0. But, as argued repeatedly, h4, h8 = 0 can only happen at the

beginning and at the end of the space, otherwise the background degenerates and blows up.

The same holds for c1 6= 0 while c4 = 0.

The second possibility is also excluded, since the first term is ν-independent and the

second ν-dependent. ν is the string winding number and can be anything, while we want a

relation between parameters for all possible string configurations. Notice that this is another

good example of why all the available stringy character, in a supergravity (non-) integrability

test, is always welcome.

Last but not least, the third possibility is excluded too, since in (1.35) we proved that

c1c4 ≥ 0 always and, hence, the first term in (1.38) can never be a positive real number.

Since the first term cannot be real nor vanish we don’t have to check whether the second

term does.

Nevertheless, let us look up the second term of (1.38), for completeness. The second term

has a ν-dependent square root, meaning that the root argument cannot be fixed as negative

and, thus, cannot produce an i factor in order to end up with a non-zero real number.

Therefore, the only possibility left is for this term to vanish. This only happens when

c1c5 = −c4F0 ⇒ c1 = −c4F0

c5
, (1.39)

which, if we substitute in the first term of (1.38) and demand reality, gives c5F0 > 0. But

then, given that c5F0 > 0 together with c1c4 > 0, the initial assumption c1c5 = −c4F0 can

never hold8. As expected, we end up with the same result.

One could also argue whether the instantonic mode E = 0 is an option to vanish the

second term in (1.38). The fact is that by choosing E = 0, we select a particular configuration

for our embedding. Even if the E = 0 mode was integrable it would make no difference,

since for E 6= 0 the configurations are non-integrable as shown above. While an integrable

8We can include the possibility that c1c5 + c4F0 = 0 when c5 = F0 = 0, but then this doesn’t stop the
first term from being imaginary.
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sector of the theory should exhibit its homonymous property on its wholeness, i.e. for all

configurations of the string embedding. That is the reason we only look for special selections

of {ci, F0}, but not of E, ν, κ. For the curious mind, the instanton E = 0 leads here to a

non-Liouvillian solution.

Subsequently, d can never be a non-negative integer and, thus, Case 1 cannot provide us

a Liouvillian solution. Of course, our NVE (1.36) also satisfies the second Kovacic’s criterion

and, to that end, we still have a chance to spot integrability through Case 2.

1.4.5 Case 2

This Case is explained in Appendix A.2 and the explicit calculation on our r NVE (1.36) is

given in Appendix C.2. Here, the algorithm produces the integer quantities Ei ∩ Z,

E1 =

ß
2− 4

…
−c1c4

c2
3

, 2 , 2 + 4

…
−c1c4

c2
3

™
, E2 = E3 = {−1, 2, 5}, (1.40)

However, as already shown in (1.35) and used on the previous Case, c1c4 ≥ 0. Which

means that the quantities under the square roots in E1 are non-positive and thus give overall

imaginary numbers or 2. In any case, since Ei’s have to be integers, we conclude that

E1 = {2}.
Given these Ei’s, the algorithm builds a rational function based on the pole structure of

V% as

θ =
1

τ
− 1

2
Ä
τ + c4

c5E

ä − 1

2
Ä
τ + c1

F0E

ä (1.41)

and dictates that the equation

θ′′ + 3θθ′ + θ3 − 4V%θ − 2V ′% = 0, (1.42)

must be satisfied, in order for a Liouvillian solution to exist. Replacing θ, (1.41), into the

latter necessary condition we find out that it is not satisfied. Therefore, Case 2 also fails to

provide a Liouvillian solution.

Since both Cases failed to expose integrability, we may now declare this class of super-

gravity backgrounds as non-integrable. Of course, since dynamics along the r dimension is

non-integrable we don’t have to study the NVE for χ and our analysis can cease at this

point.
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This whole section, dedicated on the r NVE (1.36), was a prototype example of the an-

alytic enforcement of Kovacic’s algorithm. Since this differential equation was parametrized

by {c1, .., c5, F0} we employed the algorithm analytically in order to find any special relations

between the parameters that would allow for a Liouvillian solution. In our particular case,

however, by demanding consistency on those brane-set-up parameters, we proved that no

such relations can exist.

The bottom line is that the above procedure is necessary if one wants to study non-

integrability, through differential Galois theory, on a parametrized differential equation. Fail-

ure of Kovacic’s algorithm without exploring the possible selections between the parameters

does not imply the non-integrability of the system. It just states that not all choices of the

parameters lead to an integrable system. By which we mean that particular combinations

of the parameters may produce Liouvillian solutions. That is, if we are allowed to play with

the parameters. If full generality on them is necessary, for any reason, then the analytic

application of the algorithm is not needed.

1.5 Class II backgrounds

Reminding ourselves for one last time the general form of the NS-NS sector of the AdS3×S2×
R×CY2 massive IIA supergravity, at string frame, as

ds2 = f1 ds2
AdS3

+ f2 ds2
S2 +

dρ2

f1
+ f3 ds2

CY2
,

B2 = f4 volS2 , e−Φ = f5, fi = fi (u, h4, h8) ,

(1.43)

then the second supergravity class is defined by the warp factors

f1 =
u»

h2
4 − h2

8

, f2 = f1
h2

4 − h2
8

4(h2
4 − h2

8) + (u′)2
, f3 =

»
h2

4 − h2
8

h4
,

f4 =
1

2

Å
−ρ+

uu′

4(h2
4 − h2

8) + (u′)2

ã
+
h8

h4
Ĵ , f5 =

h4

»
4(h2

4 − h2
8) + (u′)2

2
√
u(h2

4 − h2
8)

1
4

,

(1.44)

where Ĵ is a 2-form on CY2. For simplicity, again, we treat the functions h, u in a general

manner, as in (1.4), i.e.
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u(ρ) = c3ρ, h4(ρ) = c4 + c5ρ, h8(ρ) = c1 + F0ρ, (1.45)

since their piecewise character, (1.4)-(1.5), can be always assumed. Observe that it must be

always true that h4 ≥ h8 ≥ 0.

Notice that, in this supergravity class, the condition for the background to be smooth at

the beginning and at the end of the ρ dimension is h4|ρ=0 = h8|ρ=0 = 0 and h4|ρf = h8|ρf ,

respectively. Hence, h4 and h8 are positive piecewise linear curves that start from h4|ρ=0 =

h8|ρ=0 = 0, with h4 > h8 always, and decrease in slope until they reunite at the end, ρf , as

in Figure 1.3.

Figure 1.3: An example of the linear functions h4,8(ρ) in Class II supergravity. These
piecewise functions start from h4|ρ=0 = h8|ρ=0 = 0, with h4 > h8 always, and decrease in
slope until they reunite at the end, ρf = 10π.

1.5.1 NVE for the radial dimension

Faithful to the way we treated Class I, let us begin our integrability analysis by first studying

the string dynamics along r. We again replace the warp factors (1.44) into the NVE for r,

(1.28), and obtain

%̈ =
QII

τ2(τ − c1−c4
(c5−F0)E )2(τ + c1+c4

(c5+F0)E )2
%, (1.46)

where QII = QII(τ
6, ci, F0, E) is a long polynomial in the numerator whose explicit form

will not concern us. In this class, V% also comes with three poles of order two, {τ1 = 0, τ2 =
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c1−c4
(c5−F0)E , τ3 = − c1+c4

(c5+F0)E } and it expands around τ →∞ as

V∞% = −
Å

(c2
5 − F 2

0 )E2

c2
3

+ ν2

ã
− 2(c4c5 − c1F0)E

c2
3τ

+O
Å

1

τ2

ã
, (1.47)

exhibiting zero order behavior there. Thus, V% satisfies the first and second Kovacic’s criteria,

implying that the NVE (1.46) may have Liovillian solutions. However, Kovacic’s algorithm

fails in this class too to solve it as it is.

Of course, the NVE (1.46) is again parametrized by {ci, F0}, whose various inter-relations

give different backgrounds in this supergravity class. Therefore, we shall employ for one last

time the full power of Kovacic’s method to seek out for any such relations that allow for

Liouvillian solutions, if any.

Since in this class, the r NVE (1.46) satisfies the first and second Kovacic’s criteria too,

we will again consider Cases 1 and 2 of Kovacic’s theorem.

1.5.2 Case 1

As said before, Case 2 takes into account that Case 1 does not hold, thus we again begin

by considering Case 1 of Kovacic’s theorem. The explicit calculation on our r NVE (1.46) is

given in Appendix C.3. Here, up to some real constants and signs, the algorithm produces

the quantity

d ∼ i

 
c2

4 − c2
1

c2
3

± i (c4c5 − c1F0)E»
c2

3(c2
5 − F 2

0 )E2 + c4
3 ν

2
. (1.48)

Again, d has to be a non-negative integer for Case 1 to produce a Liouvillian solution, which

in turn means that the above object must be real.

The history repeats itself. There are three possibilities for (1.48) to be real: either both

imaginary terms vanish simultaneously, either they cancel each other out or they both end

up real. Considering the ν-dependence of the second term, that term can never be a non-zero

real number since ν can be anything for a general string configuration. On the exact same

grounds, it can never be canceled against the first term, which is ν-independent. Those

arguments exclude the second and third possibility.

The only possibility left is for the second term of (1.48) to vanish, i.e. c4c5 = c1F0. In

turn, the latter condition obligates the first term to give |c5| ≥ |F0|, in the name of reality.

Now, as we argued in the beginning of the section and showed in Figure 1.3, h4 and h8

are positive piecewise curves that both start from h4|ρ=0 = h8|ρ=0 with h4 > h8 everywhere,

and decrease in slope until they reunite at the end, h4|ρf = h8|ρf . From simple trigonometry,

the fact that h4 is always above h8 while they both end at the same point ρf states that: at
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least on the last interval before their reunion, it is true that c4 > c1. Whatever their slope

inter-relation is. Observing Figure 1.3, this statement is equivalent to saying that, on the

last interval, h4 always has a greater projection on the ρ = 0 axis than h8.

But now, since there has to be at least one region where c4 > c1, then, combined with

the hypothesis |c5| ≥ |F0|, the initial assumption c4c5 = c1F0 can never hold everywhere.

Therefore, d can never be a non-negative integer and we conclude that Case 1 fails to

provide a Liouvillian solution for the second supergravity class. Since V% satisfies also the

second Kovacic’s criterion, we move on to examine whether Case 2 can do any better.

1.5.3 Case 2

For this last application of Case 2 in Kovacic’s theorem, the explicit calculation on our r

NVE (1.46) is given in Appendix C.4. Here, the algorithm produces the integer quantities

Ei ∩ Z,

E1 =

®
2− 4

 
c2

1 − c2
4

c2
3

, 2 , 2 + 4

 
c2

1 − c2
4

c2
3

´
, E2 = E3 = {−1, 2, 5}. (1.49)

However, as we just showed on the previous subsection, c4 > c1 at least at the last interval

before h4 and h8 meet at ρf . Thus c1 ≥ c4 can never be always true for any interval, which

means that the square root in E1 becomes imaginary. Hence, since Ei’s have to be integers,

we conclude that E1 = {2}.

Since the Ei’s are exactly the same with the ones of Class I, the algorithm again builds

a rational function, based on the poles of V% in Class II, as

θ =
1

τ
− 1

2
Ä
τ − c1−c4

(c5−F0)E

ä − 1

2
Ä
τ + c1+c4

(c5+F0)E

ä (1.50)

and, the same as the last time, dictates that the equation θ′′ + 3θθ′ + θ3 − 4V%θ − 2V ′% = 0

should be satisfied. In this class too it does not, therefore Case 2 cannot provide us a

Liouvillian solution either, for our r NVE (1.46).

Since both Cases also failed for this class of backgrounds, for any possible selection of

the parameters {ci, F0}, we declare this supergravity family too as non-integrable. Hence,

both supergravity classes are non-integrable and that concludes our integrability adventure

on this AdS3 supergravity.
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1.6 Conclusions

The apparent conclusion of the present work is the complete, classical, Liouvillian non-

integrability on certain warped backgrounds of the form AdS3×S2 × R×CY2, first con-

structed in [31] and then considered in [33]. Enforcing the full power of Kovacic’s theorem,

along with simple consistency considerations on the supergravity brane set-ups, we deduced

that all possible backgrounds in this warped AdS3 supergravity family are non-integrable.

Note that those considerations were not based on the supergravity approximation of the

parameters of the background, which would be an easier but less general way to go. Instead

we considered the consistency rules of string theory on Hanany-Witten brane set-ups.

An exception of two integrable choices of backgrounds is when the Class I supergravity

solution reduces to the ATD and NATD of AdS3×S3×T4, for all intervals along the ρ

dimension. These unique integrable cases occur when AdS3 unwarps from the rest of the

space. Any other warped background for both AdS3 supergravity classes, was proven to be

non-integrable.

As a side comment, we note that integrability on AdS supergravity vacua seems to occur

only when the AdS part of the space gets unwarped. In the present case, we illustrated that

this only happens on Class I, when the background reduces to the integrable ATD and NATD

of AdS3×S3×T4. Then, there is the Sfetsos-Thompson background [62, 75], which is the

unwarped integrable case of the Gaiotto-Maldacena AdS5 vacua, [76]. The same also holds for

a more recent background [1], among the AdS7 massive IIA supergravity family [38,77]. This

argument still holds as just a dominant indication and certainly not as definite statement.

However, in [63] and later in [67], it was illustrated that on AdS supergravity vacua that

allow for the GKP embedding the AdS space should be unwarped for integrability to occur.

This constitutes a strong constraint for many AdS backgrounds, yet it does not apply in our

AdS3 family which does not support a GKP vacuum.

Nevertheless, the main aspect of this work is the way we utilize Kovacic’s theorem on a

differential equation. We illustrated that failure of Kovacic’s algorithm on a parametrized

equation does not necessarily imply absence of Liouvillian solutions. It just says that there

are no such solutions for the full generality of the parameters. If the problem allows to

impose any restrictions on its parameters, then a brand new horizon of possibilities appears.

On the other hand, if full generality on them is necessary, for any reason, then the analytic

application of the algorithm is not needed. In the case when the parameters are adjustable,

like with our present supergravity family, then the analytic algorithm must be employed.

This way, if there are any selections between the parameters that lead to an integrable

result, the algorithm will find them along with the corresponding solutions. Only when this

procedure is followed and no such selections are discovered, then we can safely deduce that

our system is non-integrable in the Liouvillian sense.
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In our case, the AdS3 supergravity family is defined on general parameters whose adjust-

ment equals picking different supergravity backgrounds. Therefore, the failure of Kovacic’s

algorithm here just states that not all possible backgrounds are integrable. It does not

say that there are no integrable ones, among the whole family. Therefore, we utilized the

full power of Kovacic’s theorem, by considering its analytic algorithm, and found some nec-

essary conditions − on the background parameters − in order for Liouvillian solutions to

exist. By constraining these parameters according to the consistency of the associate brane

set-ups, we proved that those necessary conditions can never hold, yielding the complete

non-integrability of these vacua. That is, up to the trivial case where the background re-

duces to the ATD and NATD of AdS3×S3×T4.

A Differential Galois theory and Kovacic’s theorem

In this appendix we give the basic elements of differential Galois theory that were used by

Kovacic [45] to produce his famous algorithm, regarding the existence of Liouvillian solutions

on second order linear ordinary differential equations. By a Liouvillian, closed form solution

we mean one that is given in terms of algebraic, exponential, trigonometric functions and

integrals of those.

The theorem concerns second order linear ordinary differential equations of the form

y′′(x) + B(x)y′(x) +A(x)y(x) = 0, (1.51)

where x ∈ C and A,B are rational complex functions. We can use the variable transformation

y = e
1
2

∫
Bz to eliminate the y′ term and acquire the new equation

z′′(x) = V(x) z(x), V =
1

4

(
2B′ + B2 − 4A

)
, (1.52)

where we shall call V the potential of the differential equation. Evidently, y exhibits Liou-

villian solutions if and only if z does, thus no generality is lost through this change of variable.

The starting point of differential Galois theory on this kind of equations, which is actually

Piccard-Vessiot theory, is the group of automorphisms of its solutions, that is SL(2,C) and

its possible subgroups. Letting G be an algebraic subgroup of SL(2,C), then one of the four

cases can occur:
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Case 1 G is triangulisable.

Case 2 G is conjugate to a subgroup of{(
c 0

0 c−1

)∣∣∣∣∣ c ∈ C, c 6= 0

}
∪

{(
0 c

−c−1 0

)∣∣∣∣∣ c ∈ C, c 6= 0

}
(1.53)

and Case 1 does not hold.

Case 3 G is finite and Cases 1 and 2 do not hold.

Case 4 G = SL(2,C).

If the differential equation falls into one of the three first cases, it has Liouvillian solutions.

On the other hand, if G = SL(2,C), no such solutions can exist.

The first contribution by Kovacic was to translate Cases 1, 2 and 3 into algebraic ar-

guments on the behavior of V in (1.52). These algebraic conditions build up the following

theorem.

Theorem 1. The following conditions are necessary for the respective Cases to hold.

Case 1 Every pole of V must have even order or else have order 1. The order of V at ∞
must be even or else greater than 2.

Case 2 V must have at least one pole that either has odd order greater than 2 or else has

order 2.

Case 3 The order of a pole of V cannot exceed 2 and the order of V at ∞ must be at least

2.

If V = s/t, then the poles of V are the zeros of t and the order of the pole is the multiplicity

of the zero of t. By the order of V at ∞ we shall mean the number deg t− deg s.

Since these conditions are necessary for the respective cases to hold, then also their failure

is sufficient for Case 4 to hold. Therefore we deduce that failure of all three conditions is

enough to declare the differential equation (1.52) as non-integrable in the Liouvillian sense.

Nevertheless, if any of the conditions is satisfied, then the respective Case may hold

and if it does then a Liovillian solution exists. Hence, when a condition is satisfied we are

prompted to the sub-algorithm of the respective Case to examine whether such a solution
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exists and, when it does, use the algorithm to find it. The second contribution by Kovacic

was to produce these algorithms for Cases 1, 2 and 3.

A.1 The algorithm for Case 1

We assume that the necessary condition of Case 1 holds, and we denote by Γ the set of poles

of V.

Step 1 For each c ∈ Γ∪{∞} we define a rational function [
√
V]c and two complex numbers

α±c as described below.

(c1) If c ∈ Γ and c is a pole of order 1, then

[
√
V]c = 0, α±c = 1.

(c2) If c ∈ Γ and c is a pole of order 2, then

[
√
V]c = 0.

Let βc be the coefficient of 1/(x− c)2 in the partial fraction expansion for V. Then

α±c =
1

2
± 1

2

√
1 + 4βc.

(c3) If c ∈ Γ and c is a pole of order 2ν ≥ 4 (necessarily even by the condition for Case 1),

then [
√
V]c is the sum of terms involving 1/(x− c)i for 2 ≤ i ≤ ν in the Laurent series

expansion of
√
V at c. There are two possibilities for [

√
V]c, one being the negative of

the other, either one may be chosen. Thus

[
√
V]c =

a

(x− c)ν
+ · · ·+ d

(x− c)2
.

Let βc be the coefficient of 1/(x − c)ν+1 in V minus the coefficient of 1/(x − c)ν+1 in

[
√
V]2c . Then

α±c =
1

2

Å
±βc
a

+ ν

ã
.

(∞1) If the order of V at ∞ is > 2, then
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[
√
V]∞ = 0, α+

∞ = 0, α−∞ = 1 .

(∞2) If the order of V at ∞ is 2, then

[
√
V]∞ = 0 .

Let b∞ be the coefficient of 1/x2 in the Laurent series expansion of V at∞. (If V = s/t,

where s, t are relatively prime, then b∞ is the leading coefficient of s divided by the

leading coefficient of t.) Then

α±∞ =
1

2
± 1

2

√
1 + 4β∞ .

(∞3) If the order of V at ∞ is −2ν ≤ 0 (necessarily even by the condition of Case 1), then

[
√
V]∞ is the sum of terms involving xi for 0 ≤ i ≤ ν in the Laurent series for

√
V at

∞. (Either one of the two possibilities may be chosen.) Thus

[
√
V]∞ = axν + · · ·+ d .

Let β∞ be the coefficient of xν−1 in V minus the coefficient of xν−1 in ([
√
V]∞)2. Then

α±∞ =
1

2

Å
±β∞

a
− ν
ã
.

Step 2 For each family s = (s(c))c∈Γ∪{∞}, where s(c) is + or −, let

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)c .

If d is a non-negative integer, then

ω =
∑
c∈Γ

(
s(c)[
√
V]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
V]∞ ,

is a candidate for ω. If d is not a non-negative integer, then the family s may be

removed from consideration.

Step 3 This step should be applied to each of the families retained from Step 2, until success
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is achieved or the supply of families has been exhausted. In the latter event, Case 1

cannot hold.

For each family, search for a monic polynomial P of degree d (as defined in Step 2)

that satisfies the differential equation

P ′′ + 2ωP ′ + (ω′ + ω2 − V)P = 0 .

This is conveniently done by using undetermined coefficients and is a simple problem

in linear algebra, which may or may not have a solution. If such a polynomial exists,

then η = Pe
∫
ω is a solution of the differential equation (1.52). If no such polynomial

is found for any family retained from Step 2, then Case 1 cannot hold.

A.2 The algorithm for Case 2

This algorithm assumes that Case 1 is known to fail. Just as for Case 1, we first collect data

for each pole c of V and also for ∞. The form of the data is a set Ec (or E∞) consisting of

from one to three integers. Next we consider families of elements of these sets, perhaps dis-

carding some and retaining others. If no families are retained, Case 2 cannot hold. For each

family retained we search for a monic polynomial that satisfies a certain linear differential

equation. If no such polynomial exists for any family, then Case 2 cannot hold. If such a

polynomial does exist, then a solution to the differential equation (1.52) has been found.

Let Γ be the set of poles of V.

Step 1 For each c ∈ Γ we define Ec as follows.

(c1) If c is a pole of order 1, then Ec = {4}.

(c2) If c is a pole of order 2 and if βc is the coefficient of 1/(x − c)2 in the partial fraction

expansion of V, then

Ec = {2 + k
√

1 + 4βc|k = 0,±2} ∩ Z .

(c3) If c is a pole of order ν > 2, then Ec = {ν}.

(∞1) If V has order > 2 at ∞ , then E∞ = {0, 2, 4}.
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(∞2) If V has order 2 at ∞ and β∞ is the coefficient of V in the Laurent series expansion of

V at ∞, then

E∞ = {2 + k
√

1 + 4β∞|k = 0,±2} ∩ Z .

(∞3) If the order of V at ∞ is ν < 2, then E∞ = {ν}.

Step 2 We consider all families (ec)c∈Γ∪{∞} with ec ∈ Ec. Those families all of whose coor-

dinates are even may be discarded. Let

d =
1

2

(
e∞ −

∑
c∈Γ

ec

)
.

If d is a non-negative integer, the family should be retained, otherwise the family is

discarded. If no families remain under consideration, Case 2 cannot hold.

Step 3 For each family retained from Step 2, we form the rational function

θ =
1

2

∑
c∈Γ

ec
x− c

.

Next we search for a monic polynomial P of degree d (as defined in Step 2) such that

P ′′′ + 3θP ′′ + (3θ2 + 3θ′ − 4V)P ′ + (θ′′ + 3θθ′ + θ3 − 4Vθ − 2V ′)P = 0 .

If no such polynomial is found for any family retained from Step 2, then case 2

cannot hold.

Suppose that such a polynomial is found. Let ϕ = θ+P ′/P and let ω be a solution

of the equation

ω2 + ϕω + (
1

2
ϕ′ +

1

2
ϕ2 − V) = 0 .

Then η = e
∫
ω is a solution of the differential equation (1.52).

We will not go on to describe the algorithm for Case 3, since we will not be needing it

on the present analysis, while it is a bit more of a job than the above Cases 1 and 2. We

should note, however, that the necessary algebraic condition that allows for Case 3 to hold is

quite restricting and certainly more rare than the others to its satisfaction. If the reader still

desires the explicit sub-algorithm for Case 3, Kovacic’s original work [45] is the place to visit.
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B NVEs for the non-Abelian T-dual of AdS3×S3×T4

Since the particular choice of parameters c1 = c4 = 0 gives an integrable structure, this

should be reflected on the corresponding r and χ NVEs. Indeed, replacing this particular

choice into the NVE for r, (1.28), the latter becomes

%̈ = −(1 + ν2) % , (1.54)

which is the harmonic oscillator, integrable as it should. Replacing also into the NVE for χ,

(1.29), we acquire

ẍ =

ï
−4κ

Å
κ+

2E

R2

ã
− 48R4E2

(R4 + 4E2τ2)2
− 16R2Eκ

R4 + 4E2τ2

ò
x . (1.55)

This equation satisfies the first and second Kovacic’s criteria, but yet the algorithm fails

to solve it. However, this not yet the correctly informed NVE. That is, since c1 = c4 = 0

reduce the AdS warp factor to a constant, f1 = c3√
c5F0

= R2, then the t equation of motion

in 1.17 is solved9 for the static gauge10 t = τ and gives E = R2 near r = 0 (around which

we fluctuate). Replacing this into (1.55), we get

ẍ =

Å−48− 4κ(1 + 4τ2)(6 + κ+ 4(2 + κ)τ2)

(1 + 4τ2)2

ã
x , (1.57)

which is now solved by the algorithm11, as it should. Note that the above equation is solved

for any choice of gauge t = λτ , λ ∈ C (and thus every energy E = λR2), as it is appropriate

for equivalent physics. Also, notice that we did not really pick a value for the energy E −
the energy depends on the observer, i.e. the choice of gauge − the background picked it by

itself and we just informed the system about it.

A special case for the above gauge choice is to set λ = 0, i.e. choose a configuration

t = const. . Since the worldsheet theory localizes on target space time t, this is an in-

stantonic mode of energy E = 0. Being one of the legitimate configurations of our string

embedding in an integrable space, this instanton has to be integrable as well. Indeed, set-

9Equivalently, we can find the energy from the worldsheet conjugate momentum as

E = p0 =

∫ 2π

0

dσPτ0 = − 2π

4πα′
2 g00 ṫ

α′=1
== cosh2 rf1 ṫ

r=0−−→
t=τ

R2 . (1.56)

10This is a privilege of the current situation, where g00|r=0 = −R2 = const. . When g00(τ)|r=0 6= const. ,
then t behaves as t =

∫
E dτ

g00(τ)|r=0
and thus E cannot be specified as a constant and must remain as it is in

the equation.
11We omit the solution since it is of substantial size. The curious reader can put the equation in any

algebra software to acquire the solution.
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ting E = 0 in the NATD NVE (1.55) we obtain an harmonic oscillator, integrable as it should.

C Kovacic’s theorem on NVEs

In this appendix we apply the algorithm presented in Appendix A, to study the r NVE

for both supergravity classes. The main body of the chapter was reserved for the essential

string theory considerations that exclude integrability. Here we just present the explicit

calculations that lead to the necessary conditions on which those considerations act.

C.1 Case 1 for Class I

First in line is the supergravity Class I, with the r NVE (1.36). We begin by writing the

partial fraction expansion of V% as

V% = −
Å
c5F0E

2

c2
3

+ ν2

ã
+

Å−c2
3 − 4c1c4

4c2
3

ã
1

τ2
+

5/16

(τ + c4
c5E

)2
+

5/16

(τ + c1
F0E

)2
+ . . . , (1.58)

where the coefficients βi of the pole terms 1/(τ − τi)2 are used to construct the complex

numbers α±i = 1
2 ±

1
2

√
1 + 4βi. In our case these become

α±1 =
1

2
±
…
−c1c4

c2
3

α±2 = α±3 =

{
5
4

−1
4

. (1.59)

Next, we move to the τ →∞ regime and define a rational function [
√
V%]∞ which here, since

V∞% is of zeroth order, it has to be just a complex number, i.e. [
√
V%]∞ = a. Then a is found

by matching terms between [
√
V%]2∞ and V∞% in (1.37), taking the value a = i

√
c5F0E2

c23
+ ν2.

As before, letting β∞ be the coefficient of 1/τ in V∞% , we construct the complex numbers

α±∞ = ±β∞
2a which are now valued

α±∞ = ± i (c1c5 + c4F0)E

2
»
c2

3c5F0E2 + c4
3 ν

2
. (1.60)

Stepping forward, we gather all our findings α±i , α
±
∞ and, letting s(·) be the sign function,

we define the numbers d = α
s(∞)
∞ −

∑
i α

s(i)
i . Considering all the possible sign combinations,

these are 24 = 16 complex numbers. Up to some real constants and signs between their

terms, these sixteen numbers are all of the form12

12We write
√
−c1c4 → i

√
c1c4 for convenience in our following considerations.
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d ∼ i

…
c1c4

c2
3

± i (c1c5 + c4F0)E

2
»
c2

3c5F0E2 + c4
3 ν

2
. (1.61)

Kovacic states that d has to be a non-negative integer in order for the algorithm to move on

to its next stage. If d is never such a number, then Case 1 cannot give a Liouvillian solution.

In other words, the above two terms must be real.

Under the string theory considerations on subsection 1.4.4, we conclude that this can

never be the case and, thus, Case 1 cannot hold.

C.2 Case 2 for Class I

In this Case, we begin by considering the same pole coefficients βi that made up the α±i
numbers, (1.59). But now βi’s construct the coordinates Ei = {2+k

√
1 + 4βi|k = 0,±2}∩Z,

which in this case read

E1 =

ß
2− 4

…
−c1c4

c2
3

, 2 , 2 + 4

…
−c1c4

c2
3

™
E2 = E3 = {−1, 2, 5} . (1.62)

Under the string theory considerations on subsection 1.4.5, we conclude that E1 = {2}.
Next, since our potential at infinity, V∞% , is of zeroth order, we also define the coordinate

E∞ = {0}. Then, in analogy with Case 1, we gather the coordinates E∞, Ei and define the

numbers d = 1
2(e∞−

∑
i ei), where ei ∈ Ei are the particular coordinates. Again, d’s have to

be non-integers to be acceptable. Considering all the possible coordinate combinations we

calculate 32 = 9 numbers, of which only one is non-negative, i.e. the one for e2 = e3 = −1

(e∞ = 0 and e1 = 2 always) that gives d = 0.

Now, since in this Case we actually obtained a single non-integer d, d = 0, we may move

to the next step. That consists of forming the rational function θ = 1
2

∑
i

ei
τ−τi , in which we

use the particular ei’s that made up d = 0, i.e. e1 = 2, e2 = e3 = −1. In our case, θ is

θ =
1

τ
− 1

2
Ä
τ + c4

c5E

ä − 1

2
Ä
τ + c1

F0E

ä . (1.63)

Next we search for a monic polynomial P of degree d such that

P ′′′ + 3θP ′′ + (3θ2 + 3θ′ − 4V%)P ′ + (θ′′ + 3θθ′ + θ3 − 4V%θ − 2V ′%)P = 0 . (1.64)
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Since d = 0 is our only heritage from the previous step, that means P = 1 and the question

reduces to whether θ′′ + 3θθ′ + θ3 − 4V%θ − 2V ′% = 0. Replacing θ, (1.63), into the latter

necessary condition we find out that it is not satisfied. Therefore, Case 2 also fails to provide

a Liouvillian solution.

C.3 Case 1 for Class II

We begin by writing the partial fraction expansion of V% as

V% = −
Å

(c2
5 − F 2

0 )E2

c2
3

+ ν2

ã
+

Å
4(c2

1 − c2
4)− c2

3

4c2
3

ã
1

τ2
+

5/16

(τ − c1−c4
(c5−F0)E )2

+
5/16

(τ + c1+c4
(c5+F0)E )2

+. . . ,

(1.65)

where the coefficients βi of the pole terms 1/(τ − τi)2 are used to construct the complex

numbers α±i = 1
2 ±

1
2

√
1 + 4βi. Here, these become

α±1 =
1

2
±
 
c2

1 − c2
4

c2
3

, α±2 = α±3 =

{
5
4

−1
4

. (1.66)

Next, we move to the τ → ∞ regime and define the rational function [
√
V%]∞ which here,

since V∞% is of zeroth order, it has to be just a complex number, i.e. [
√
V%]∞ = a. Then

a is found by matching terms between [
√
V%]2∞ and V∞% in (1.47), taking the value a =

i

…
(c25−F 2

0 )E2

c23
+ ν2. As before, letting β∞ be the coefficient of 1/τ in V∞% , we construct the

complex numbers α±∞ = ±β∞
2a which are now valued

α±∞ = ± i (c4c5 − c1F0)E»
c2

3(c2
5 − F 2

0 )E2 + c4
3 ν

2
. (1.67)

We gather all our findings α±i , α
±
∞ and, letting s(·) be the sign function, we define the

numbers d = α
s(∞)
∞ −

∑
i α

s(i)
i . Considering all the possible sign combinations, these are

24 = 16 complex numbers. Up to some real constants and signs between their terms, these

sixteen numbers are all of the form13

d ∼ i

 
c2

4 − c2
1

c2
3

± i (c4c5 − c1F0)E»
c2

3(c2
5 − F 2

0 )E2 + c4
3 ν

2
. (1.68)

13We write
√
c21 − c24 → i

√
c24 − c21 for convenience in our following considerations.
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Again, d has to be a non-negative integer for Case 1 to produce a Liouvillian solution, which

in turn means that the above two terms must be real.

Under the string theory considerations on subsection 1.5.2, we conclude that this can

never be the case and, thus, Case 1 cannot hold.

C.4 Case 2 for Class II

In Case 2, we begin by considering the same pole coefficients βi that made up the α±i numbers,

(1.66). But now βi’s construct the coordinates Ei = {2 + k
√

1 + 4βi|k = 0,±2} ∩ Z, which

in this case read

E1 =

®
2− 4

 
c2

1 − c2
4

c2
3

, 2 , 2 + 4

 
c2

1 − c2
4

c2
3

´
, E2 = E3 = {−1, 2, 5} . (1.69)

Under the string theory considerations on subsection 1.5.3, we conclude that E1 = {2}.
Since the Ei’s are exactly the same with the ones of Class I, we again have a single

non-negative integer d = 0 made out of them, while the rational function θ = 1
2

∑
i

ei
τ−τi now

reads

θ =
1

τ
− 1

2
Ä
τ − c1−c4

(c5−F0)E

ä − 1

2
Ä
τ + c1+c4

(c5+F0)E

ä . (1.70)

The same as the last time, θ should satisfy θ′′+ 3θθ′+ θ3− 4V%θ− 2V ′% = 0. In this class too

it does not, therefore Case 2 cannot provide us a Liouvillian solution either, for our r NVE

(1.46).







Chapter 2

Non-integrability of the Ω deformation

1 Introduction

A particular supergravity vacuum that deserves the attention of non-integrability methods

was recently discovered in [35]. Neglecting an unimportant warp factor, this background is

the holographic dual of the four-dimensional, Ω-deformed N = 4 SYM theory. In the same

vein of the supergravity realization of the Ω-deformation, a similar study was also recently

performed in [78]. Ω-deformation was originally introduced in [79] as a method of calcu-

lating the path integral of four-dimensional N = 2 gauge theories, through supersymmetric

localization. Since then, the deformation and its associated Nekrasov partition function,

have produced numerous exact results on supersymmetric quantum field theories on curved

manifolds, as well as having laid the foundations for both the Nekrasov-Shatashvili [80] and

the AGT [81] correspondences. The background we consider is a deformation of AdS5×S5 in

type IIB theory that preserves 16 supercharges, while the Ω-deformation manifests itself in

this dual gravity as turning on a Kalb-Ramond field (and a C2 RR form). Interestingly, the

associated H3 flux inter-binds the whole geometry and breaks part of the bosonic symmetries

of AdS5×S5, both being facts that make this background intractable to classic integrability

methods.

The study of non-integrability on this particular background is of interest, since there

are significant suggestions linking integrable structures and the Ω-deformation in the present

literature. In particular, a connection has been established between the Ω-deformed N = 2

gauge theory and quantum integrable Hamiltonian systems, see [80–83] or the more recent

[84]. Similar work has been done, [85, 86], on a string theory realization [87–89] of the

Ω-deformation, where the resulting models were associated with the TsT subclass of the

Yang-Baxter deformation. Considering all these integrable aspects of the Ω-deformation, an

indication of non-integrability would consequently suggest an interesting antithesis, worthy

of further study.

In this chapter, after a complete symmetry analysis on the ten-dimensional Ω-deformed

supergravity background, we accordingly construct string embeddings that are dynamical on

51
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the asymmetric directions. We do so, in order to have a better chance to spot non-integrable

behavior. We then find simple solutions on the equations of motion and let the string fluctu-

ate around them, along each dimension. As it turns out, in each case, one of the fluctuations

exhibits a non-Liouvillian solution in terms of the Bessel function of the first kind, yielding

the classical non-integrability of our embedding and, therefore, of the whole vacuum under

consideration.

2 The supergravity solution

The supergravity vacuum dual to the Ω-deformation of N = 4 SYM at the conformal

point was introduced in [35]. Neglecting a warp factor1 which we can set, along with the

radii of the space, to unity we obtain the background fields

ds2 =
d~x2

4 + dz2

z2
+ dθ2 − sin2 θdφ2 + cos2 θdΩ2

3 ,

B2 = igsC2 = −βe
−φ sin θ

4z
(dx1 ∧ dx2 + dx3 ∧ dx4) ,

F5 = − i

gs
(1 + ?10) d

Å
1

z4

ã
∧ vol4 , eΦ = gs ,

(2.1)

where gs is the string coupling and vol4 the volume of the R4 subspace. β ∈ R+ is the defor-

mation parameter in the dual field theory, which was identified with the linear combination

ε1 + ε2 in [90, 91]. Thus, the Ω-deformation manifests itself as turning on a Kalb-Ramond

field (and a C2 RR field) on the integrable H5 × dS5.

Since the internal space of the IIB background (2.1) is a deformation of the five-dimensional

de Sitter space, this implies that the background is actually a solution of type IIB* super-

gravity [92, 93]. Continuing as φ → iϕ, we obtain the Euclidean AdS5×S5. The vacuum

preserves 16 supercharges and it is the supergravity dual of N = 4 SYM. Interestingly, the

non-trivial H3 flux inter-binds the geometric subspaces and breaks part of the bosonic sym-

metries of AdS5×S5, both facts that make the background intractable to classic integrability

methods.

While the geometry in (2.1) looks like a peculiar continuation of AdS5×S5, on which

the string dynamics could be qualitatively questioned, it is not quite unfamiliar. In fact, it

was obtained in [94] by a double Wick rotation on AdS5×S5 (in our notation wrt to the R4

time t ≡ x1 and φ), as a natural formulation on which the holographic principle − for the

1This is equivalent to setting w = 0 in [35]. This parametrizes a VEV of a scalar field in a representation
of the SO(6) of N = 4 SYM. In the dual gravity, it generates a distribution of smeared D3-branes.
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Penrose limit − naturally associates the bulk with the boundary. In particular, it was shown

that, for the BMN string on this geometry, the bulk-to-boundary trajectories are interpreted

as a tunneling phenomenon and thus that the BMN boundary-to-boundary correlations are

holographically well-defined.

3 Symmetries of the vacuum

Since the Ω-deformation is realized on the background as a B2-field − that obviously does not

respect part of the geometric isometries − it is instructive to perform a symmetry analysis

on its associated H3 flux. Noting that the geometry (2.1) is a product space and thus its

Killing vectors (KVs) are decoupled for the two subspaces, we may vary H3 separately along

H5 and dS5. Here, we present the symmetries of the Ω vacuum, while the details to extract

them are held in Appendix D.

Hence, if K is a KV on H5, then the vanishing of the Lie derivative LKH3 = 0 is solved

for the vectors

KR12 = x1∂2 − x2∂1 ,

KR34 = x3∂4 − x4∂3 ,

KSCi = ∂i , i = 1, ..., 4 ,

(2.2)

namely two SO(4) rotations on R4 and the four SO(1,1) special conformal Killing vectors 2

(SCKVs) on H5. As far as the KVs of dS5 are concerned, the only non trivial KV that leaves

H3 invariant is

KB = e−φ (cot θ cosω1 ∂φ + cosω1 ∂θ + tan θ sinω1 ∂ω1) , (2.3)

where ω1 is an angle in Ω3 of dS5
3. This rotation is identified as an SO(1,1) boost of the

SO(1,5) isometry. The rest of the KVs of dS5 that preserve H3 are trivial, namely the six

SO(4) rotations of Ω3 inside dS5.

Note that the symmetry analysis on the background (2.1) is of twofold interest. First, it

reveals the action of the Ω-deformation on the symmetry structure of the dual supergravity.

Most importantly for our non-integrability method, though, it serves as a beacon on how

to push our bosonic string towards a less symmetric embedding, the latter having a better

2K = ∂i, i = 1, ..., 4, are translations on R4 and special conformal transformations on H5.
3There are two more, one for each angle ω2, ω3 in the 3-sphere, dΩ2

3 = dω2
1 +sin2 ω1dΩ2

2, of dS5. It doesn’t
make any difference in this problem.
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chance to exhibit non-integrable dynamics.

4 String dynamics

4.1 The first embedding

The bosonic string dynamics emerges from the non-linear σ-model, in conformal gauge,

SP = − 1

4πα′

∫
Σ

d2σ ∂aX
µ∂bX

ν
Ä
gµνη

ab +Bµνε
ab
ä
, (2.4)

where the string coordinates’ Xµ(τ, σ) equation of motion is supplemented by the Virasoro

constraint Tab = 0, where the worldsheet energy-momentum tensor is given by

Tab =
1

α′

Å
∂aX

µ∂bX
νgµν −

1

2
ηabη

cd∂cX
µ∂dX

νgµν

ã
, (2.5)

with τ, σ being the worldsheet coordinates. Having differential Galois theory in mind, we

desire a string embedding that produces second order, ordinary linear differential equations

of motion. This means that the string coordinates must be Xµ = Xµ(τ) or Xµ = Xµ(σ).

For a closed string in type II theory, this translates into wrapping the string around compact

coordinates.

Since H5×dS5 is integrable, our chance to spot non-integrable behavior lies along the H3

flux. Hence, most importantly, our embedding should incorporate dynamics along the H3

flux. The B2 field component(s) Bx1x2 (and Bx3x4) is non-vanishing on the σ-model (3.32)

only for the choice − in these coordinates − x1 = x1(τ) and x2 = x2(σ), or vice versa.

However, such a σ-dependence produces partial differential equations of motion for a closed

string and, thus, it must be excluded.

The resolution comes by changing our coordinates on the R4 subspace of H5, from Carte-

sian to spherical, as

d~x2
4 = dr2 + r2

(
dψ2 + sin2 ψdχ2 + sin2 ψ sin2 χdξ2

)
, (2.6)

with the old coordinates depending on the new ones as
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x1 = r cosψ ,

x2 = r sinψ cosχ ,

x3 = r sinψ sinχ cos ξ ,

x4 = r sinψ sinχ sin ξ ,

(2.7)

In this R4 subspace, we can choose the embedding r = r(τ), χ = χ(τ), ξ = κσ, and ψ = π/2.

Since H3 is invariant under only two out of the six SO(4) rotations of R4, we set ψ = π/2 but

we leave χ = χ(τ) in order to have some portion of R4 rotations that can bring the equations

of motion to the test. The same symmetry analysis also showed that z is non-trivially

involved in H3 and thus we let z = z(τ).

As far as dS5 is concerned, we choose θ = θ(τ) and φ = φ(τ) which also parametrize H3

non-trivially. The Ω3 of dS5 with line element

dΩ2
3 = dω2

1 + sin2 ω1dω2
2 + sin2 ω1 sin2 ω2dω2

3 , (2.8)

is not involved in the H3 flux, the latter being invariant under its SO(4) rotations, and

thus we set ω1 = ω2 = π/2, while we wrap the string as ω3 = νσ to reinforce the stringy

character of the embedding. Indeed, both wrappings − along ξ and ω3 − turn out to play a

crucial role in surfacing the full power of the H3 dynamical contribution. Also, notice that

having non-dynamical ωi prevents the string soliton from boosting symmetrically as in (2.3).

Overall, the string embedding reads

r = r(τ) , χ = χ(τ) , ψ =
π

2
, ξ = κσ , z = z(τ) ,

θ = θ(τ) , φ = φ(τ) , ω1 = ω2 =
π

2
, ω3 = νσ ,

(2.9)

where κ, ν ∈ Z. Translating the B2 field according to the map (2.7) and the above embedding

as

B2 = −βe
−φ sin θ

4

(
r sin2 χdr ∧ dξ + r2 sinχ cosχdχ ∧ dξ

)
, (2.10)

then the σ-model (3.32) on the embedding (2.9) reduces into the Lagrangian density
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L =
−ṙ2 − r2χ̇2 + κ2r2 sin2 χ− ż2

z2
− θ̇2 + sin2 θ φ̇2 + ν2 cos2 θ

− βκ e−φ sin θ

2z

(
r sin2 χ ṙ + r2 cosχ sinχ χ̇

)
,

(2.11)

where the dot implies derivation wrt to the worldsheet time τ . For our particular string

embedding, the equations of motion for this Lagrangian are equivalent to those of the σ-

model and read

4r̈ = βκ e−φ r sin2 χ
Ä
z sin θ φ̇+ sin θ ż − z cos θ θ̇

ä
− 4 r

(
κ2 sin2 χ− χ̇2

)
+

8ṙż

z
, (2.12)

4rχ̈ = βκ e−φ r cosχ sinχ
Ä
z sin θ φ̇+ sin θ ż − z cos θ θ̇

ä
− 4 rκ2 cosχ sinχ+

8rχ̇ż

z
− 8ṙχ̇ ,

(2.13)

4zz̈ = −βκ e−φ rz sin θ sinχ
(

sinχṙ+r cosχχ̇
)

+4 r2
(
κ2 sin2 χ− χ̇2

)
+4
(
ż2 − ṙ2

)
, (2.14)

4θ̈ = 2ν2 sin 2θ + βκ e−φ r cos θ sinχ(sinχ ṙ + r cosχ χ̇)− 2 sin 2θ φ̇2 , (2.15)

4 sin θ φ̈ = −8 cos θ θ̇φ̇ + βκ e−φ r sinχ(sinχ ṙ + r cosχ χ̇) . (2.16)

These equations are constrained by the worldsheet equation of motion, i.e. the Virasoro

constraint

2Tττ = 2Tσσ =
ṙ2 + r2χ̇2 + κ2r2 sin2 χ+ ż2

z2
− sin2 θ φ̇2 + θ̇2 + ν2 cos2 θ = 0 ,

Tτσ = 0 .

(2.17)

The worldsheet energy-momentum tensor is conserved, ∇aT ab = 0, since ∂τTττ = ∂σTσσ = 0

on the equations of motion (2.12)-(3.98). This compliance of the worldsheet constraints with

the string coordinates’ equations of motion yield, also, the consistency of our embedding.

Transforming into the Hamiltonian formulation, our worldsheet theory reduces to a simple

particle system with conjugate momenta

pr = −2ṙ

z2
− βκ e−φ sin θ

2z
r sin2 χ , pz = −2ż

z2
, pθ = −2θ̇ ,

pχ = −2r2χ̇

z2
− βκ e−φ sin θ

2z
r2 sinχ cosχ , pφ = 2 sin2 θφ̇

(2.18)
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and Hamiltonian density

H = − z2

4r2

Ç
pχ +

βκ e−φ sin θ r2 sinχ cosχ

2z

å2

− z2

4

Ç
pr +

βκ e−φ sin θ r sin2 χ

2z

å2

− z2p2
z

4
+

p2
φ

4 sin2 θ
−
p2
θ

4
− κ2r2 sin2 χ− ν2 cos2 θ .

(2.19)

Of course, Hamilton’s equations of motion on the above system coincide with the Euler-

Lagrange equations (2.12)-(3.98). In this effective particle system, the masses are determined

by the geometry and they can be read off through the kinetic terms. The string winding

modes manifest themselves as a non-trivial potential on the particle dynamics, while the Ω-

deformation (i.e. theH3 flux) is realized as a magnetic disturbance on the particle kinematics.

Before we proceed to analyze the dynamics, a crucial comment is in place. Usually, in

this kind of Hamiltonian analysis on a string embedding we have a well-defined equation

of motion for the target-space time, which always gives the energy of the string as its first

integral and so on. Although not often emphasized, this is essential for a string state to be

holographically associated with a dual operator, even if we don’t know what that operator

looks like. And we do desire a consistent holographic realization of our embedding, since

we ultimately want to share the argument of (non-) integrability with the dual field theory

as well. Hence, one should care about the validity of our embedding (and of every other

embedding for that matter) on this kind of space. A first answer has already been provided

through [94], where the string trajectories on the geometry (2.1) are shown to naturally realize

the holographic principle. The second argument has to do with our particular formulation.

The dual field theory lives on R4, in which the target-space time of our interest lives, i.e.

t ≡ x1. Since we have re-expressed R4 in the spherical coordinates (2.7), then the radial

coordinate r should incorporate (Euclidean) time. Therefore, since we do include r(τ) into

our dynamics, through the equation of motion (2.12), everything is in order and our string

should have a well-defined holographic realization.

4.2 A simple solution

Next, we desire a simple solution on the equations of motion, around which we can study the

fluctuations of the string. In that respect, regardless of having used the symmetries of the

background to simplify our embedding (towards a less symmetric truncation), the equations

of motion (2.12)-(3.98) still possess a rich variety of simple solutions. However, not all

of these solutions are consistent with our particular embedding: any consistent solution

must also satisfy the worldsheet constraint (2.17). Given, in turn, the set of the consistent

simple solutions, not all of those are actually useful since not all of them permit fluctuations
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that include the B2 field contribution on the dynamics. The latter being the only possible

non-integrable deviation from the integrable H5×dS5. The associated H3 flux dynamics is

reflected on the β-dependent terms in (2.12)-(3.98), thus our simple solution should let those

terms survive in our fluctuating equations.

Under the above considerations, it turns out that there is an infinite set of invariant

planes that do the job, for θ ∈ (π4 ,
π
2 )∪ (π2 ,

3π
4 ) and χ ∈ (0, π). It may seem naively odd, but

the most − by far − convenient choice comes with the invariant plane

{
r = ṙ = r̈ = 0, χ =

π

2
, χ̇ = χ̈ = 0, θ = θ? ≡ arctan

…
5

3
, θ̇ = θ̈ = 0

}
, (2.20)

around which the fluctuations simplify tremendously. On this plane, the equations of motion

(2.12)-(3.98) are satisfied along with the simple solutions

φ(τ) = −ντ , z(τ) =
e
ν
2
τ

√
10
, (2.21)

where the coefficients including the winding number ν were identified by the Virasoro con-

straint (2.17), while the signs and the constants were selected to our convenience without

loss of generality4.

Note that the symmetry analysis on the background was not necessary to build an em-

bedding. We just used it to shape a less symmetric string truncation, so as to have a better

chance in non-integrability. Had we not used those symmetry considerations, we would have

chosen a far more general embedding whose equations of motion would include a large variety

of invariant planes. Nevertheless, all of those planes would eventually descend down to the

invariant plane (2.20) and its corresponding simple solution (2.21) as the only useful option,

just through a way more laborious path.

Next, we expand around the invariant plane in order to study the dynamical behavior of

the system there. While the r, χ and θ fluctuations around the plane are generally coupled,

such complexity is not eventually needed in our case. Stated otherwise, we shall study

isolated fluctuations on each one of those dimensions, around the invariant plane (2.20) and

on the simple solution (2.21). As in the last chapter, we call such a fluctuation a Normal

Variational Equation (NVE).

4To be precise, there is another choice of signs that gives a similar result, while the rest of the choices
turn out quite complicated.
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4.3 Fluctuations around the invariant plane

To isolate the θ-fluctuations around the invariant plane (2.20), we expand as θ(τ) = θ?+ε ϑ(τ)

for ε→ 0 in the θ-equation of motion (2.15), while we keep the other dimensions frozen, i.e.

{r = ṙ = r̈ = 0, χ = π
2 , χ̇ = χ̈ = 0}. Hence, we obtain the θ-NVE

ϑ̈(τ) = 0 , (2.22)

which has a Liouvillian solution.

In the same vein, the isolated χ-fluctuations around the invariant plane occur for χ(τ) =
π
2 + ε x(τ) while {r = ṙ = r̈ = 0, θ = θ?, θ̇ = θ̈ = 0}, which however solves the χ-equation of

motion (2.13) identically and gives no further insight.

Therefore, we are only left with the r-fluctuations around the invariant plane (2.20). To

isolate those, we expand as r(τ) = 0 + ε %(τ) for ε → 0 in the r-equation of motion (2.12),

while we keep the other dimensions frozen, i.e. {χ = π
2 , χ̇ = χ̈ = 0, θ = θ?, θ̇ = θ̈ = 0}.

Hence, we obtain the r-NVE

%̈(τ) − ν%̇(τ) + κ

Ç
κ+

βν e
3ν
2
τ

32

å
%(τ) = 0 , (2.23)

which is solved for

%(τ) = c1 JG (f(τ)) e
ντ
2 Γ (1 +G) + c2 J−G (f(τ)) e

ντ
2 Γ (1−G) ,

f(τ) =

 
βκ e

3ντ
2

18ν
, G =

2
√
−4κ2 + ν2

3ν
,

(2.24)

where c1, c2 are constants and Jn(τ),Γ(z) are the Bessel function of the first kind and the

gamma function, respectively. Before anything, two comments are in place here. First, if

the string windings are such that κ ν < 0, then f(τ) ∈ I and we just work with the modified

Bessel functions. Secondly, if the windings are such that G ∈ I then Jn(τ) acquires a purely

imaginary order n ∈ I and gives a complex number z1(τ) ∈ C, while its conjugate function

J−n(τ) gives z?1(τ). Similarly, Γ(z) with z ∈ C gives a complex number z2 ∈ C, while Γ(z?)

gives z?2 . Thus, for G ∈ I, our %-solution (2.24) can be written as

%(τ) = c1 e
ντ
2 z1(τ)z2 + c2 e

ντ
2 z?1(τ)z?2 , (2.25)
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which can only be real for c1 = c2. This is a necessary condition for the physicality of our

solution.

The Bessel function is non-Liouvillian except only for half integer order n. If n = ±G is

imaginary then it can never be a half integer, anyway. If it is real, on the other hand, ±G
reflects the various configurations of our embedding and thus it cannot be restricted without

losing generality. In other words, we should care about the solution (2.24) on every value of

the winding numbers κ, ν. Even if there are particular string configurations (for appropriate

κ, ν) that are Liouvillian, there are always others that are not. Hence, we have ultimately

spotted a string embedding that exhibits non-integrable dynamics.

As a consistency check, note that for β = 0 in (2.23) we recover integrability, as we should

for an undeformed and symmetric vacuum. The same holds for κ, ν = 0, where the string

reduces to a point particle on H5×dS5 that cannot feel the H3 flux.

4.4 A simpler embedding

Since one is never enough, we shall study another string embedding. We have already

mentioned that had we included extra string coordinate dependence than the one we chose

before, we would have ultimately ended up studying the embedding (2.9). Hence, we are

led to build a simpler truncation this time. It turns out that the most minimal alternative

is to localize the coordinates z = z0 = 1 and χ = π
2 in our previous embedding, which now

becomes

r = r(τ) , χ =
π

2
, ψ =

π

2
, ξ = κσ , z = 1 ,

θ = θ(τ) , φ = φ(τ) , ω1 = ω2 =
π

2
, ω3 = νσ ,

(2.26)

where κ, ν ∈ Z. The B2 field that couples to the new embedding reduces to

B2 = −β
4
re−φ sin θdr ∧ dξ , (2.27)

while the associated Lagrangian density becomes

L = −ṙ2 + κ2r2 − θ̇2 + sin2 θ φ̇2 + ν2 cos2 θ − βκ

2
re−φ sin θ ṙ . (2.28)

Of course, on this embedding too, the equations of motion for this Lagrangian are equivalent

to those of the σ-model and read
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4r̈ = −4κ2r + βκ re−φ
Ä
sin θ φ̇− cos θ θ̇

ä
, (2.29)

4θ̈ = 2 sin 2θ
Ä
ν2 − φ̇2

ä
+ βκ e−φ cos θ r ṙ , (2.30)

4 sin θ φ̈ = −8 cos θ θ̇φ̇ + βκ e−φ r ṙ . (2.31)

These equations are constrained by the worldsheet equation of motion, i.e. the Virasoro

constraint

2Tττ = 2Tσσ = ṙ2 + κ2r2 − sin2 θ φ̇2 + θ̇2 + ν2 cos2 θ = 0 ,

Tτσ = 0 .
(2.32)

The worldsheet energy-momentum tensor is conserved, ∇aT ab = 0, since ∂τTττ = ∂σTσσ = 0

on the equations of motion (2.29)-(2.31), yielding also the consistency of our embedding. Of

course, the associated Hamiltonian system here is qualitatively the same as with the previous

embedding.

In this particular case however, under the considerations − again − of consistency and

of including the H3 flux contribution, there is only one invariant plane that serves our cause.

That is

{
r = ṙ = r̈ = 0, θ =

π

4
, θ̇ = θ̈ = 0

}
. (2.33)

Note that, while for the previous embedding the choice θ = π
4 was excluded since it led to

useless invariant planes, here it constitutes our only option. This is indeed the unique plane

that does the job and on which the equations of motion (2.29)-(2.31) are satisfied, along with

the simple solution

φ(τ) = −ντ , (2.34)

where the coefficient was identified with the winding number ν through the Virasoro con-

straint (2.32), while the sign was again selected to our convenience without loss of generality.

For one last time, we move on to study the isolated fluctuations around the invariant plane

(2.33) and on its associated simple solution (2.34).

Obviously, the θ-fluctuations are again trivial and so we are left to study the fluctuations

along r. We expand r(τ) = 0 + ε %(τ) for ε→ 0 in the r-equation of motion (2.29), while we
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keep θ frozen, i.e. {θ = π
4 , θ̇ = θ̈ = 0}. Hence, we obtain the r-NVE

%̈(τ) + κ

Ç
κ+

√
2βν eντ

8

å
%(τ) = 0 , (2.35)

which is solved for

%(τ) = c1 JG (f(τ)) Γ (1 +G) + c2 J−G (f(τ)) Γ (1−G) ,

f(τ) =

 
βκ eντ√

2ν
, G =

2iκ

ν
,

(2.36)

where c1, c2 are constants and Jn(τ),Γ(z) are the Bessel function of the first kind and the

gamma function, respectively. Again, if the string windings are such that κ ν < 0, then

f(τ) ∈ I and we just work with the modified Bessel functions. Also, as explained for the

case of the previous solution (2.24), since the order n = ±G of the Bessel function is purely

imaginary, it can never be a half integer (that gives a Liouvillian solution) while it must

necessarily hold that c1 = c2 for the physicality of our solution (2.36). Hence, we have

spotted another non-integrable fluctuation of the string.

Again, as a consistency check, note that for β = 0 in (2.35) we recover integrability, as we

should for the undeformed vacuum. The same holds for κ, ν = 0, where the string reduces

to a point particle on H5×dS5 that does not couple to the Kalb-Ramond field.

As indicated repeatedly, the invariant planes we have studied so far are the unique solu-

tions that consistently incorporate the H3 flux contribution. Nevertheless, in case we want

to be persistent and make the non-integrable character of the system manifest in an addi-

tional way, we could go for a more involved string embedding. In particular, we could build

a spinning string by letting

ξ(τ, σ) = κσ + Ξ(τ) , ω3(τ, σ) = νσ + Ω(τ) , (2.37)

in the previous embeddings, (2.9) and (2.26). Choosing that truncation, worldsheet consis-

tency conditions (on necessarily similar invariant planes) drop the dynamics down to the

exact same results we found for the simpler embeddings.

As an additional consistency check, we can repeat everything we have done so far in

Euclidean signature, i.e. on the Euclidean AdS5×S5. In order to do this, we Wick rotate

the target space in (2.1) as φ → iϕ while we pick − for consistency − an also Euclidean

worldsheet. Again, we acquire the exact same results up to certain factors.
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Since an integrable structure exhibits its homonymous property on all of its sectors, we

deduce that the dynamical sector we studied and, therefore, the whole supergravity back-

ground under consideration are classically non-integrable.

5 Conclusions

Ultimately, we have proven that string theory on the vacuum dual to the Ω-deformed N = 4

SYM, recently proposed in [35], is classically non-integrable in the Liouvillian sense. Using

the broken symmetries (by the H3 flux) of the background, we constructed appropriate

string embeddings and studied their fluctuations around simple solutions of their equations

of motion. Since particular fluctuations turned out to be non-Liouvillian for a general string

configuration, we declared the whole theory as non-integrable.

Notice that, contrary to the usual method of analytic non-integrability, on this particular

analysis we did not have to enforce differential Galois theory and Kovacic’s theorem on

differential equations of motion. That is, we reached exact non-Liouvillian solutions given

in terms of the Bessel function of the first kind, of no half-integer order for a general string

configuration.

Since the supergravity background we examined is dual to the Ω-deformed N = 4 SYM,

holography dictates that the statement of non-integrability must be shared by the gauge

theory as well. Hence, apart from being just a delicate Hamiltonian mechanics problem, the

present work suggests that the Ω-deformation does not preserve classical integrability.

However, a non-integrable theory may possess integrable subsectors or limits. In the

Ω-deformed theory, this is obviously true on the grounds of the existing literature that as-

sociates this deformation with various integrable structures, as noted in the introduction.

Therefore, the ontology of the regimes of integrability is worthy of further examination. More

interestingly though, given the Ω dual background (2.1), a valuable study would be based on

its Kalb-Ramond field which realizes the Ω-deformation itself. In particular, special vacua

or limits of string theory on this supergravity background could investigate the action of this

B2 field on the associated string states, while − in that case − holography should be in place

to shed light on their dual Ω-deformed field theory subsectors.

D Symmetries of the Ω vacuum

We are interested in the Ω vacuum [35], H5×dS5, namely

ds2 =
d~x2

4 + dz2

z2
− sin2 θ dφ2 + dθ2 + cos2 θ dΩ2

3 , (2.38)
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where we have set both the radii equal to one. This geometry enjoys an SO(1,5)×SO(1,5)

isometry and comes along with an NS-NS field

B2 = −β
4

e−φ sin θ

z
(dx1 ∧ dx2 + dx3 ∧ dx4) , (2.39)

where β ∈ R parametrizes (linearly) the Ω-deformation of the dual field theory. For later

convenience in calculating the symmetries separately in the two subspaces, H5 and dS5, we

rewrite B2 as

B2 = f(φ, θ)
ω2

z
, f(φ, θ) = −β

4
e−φ sin θ , (2.40)

where ω2 is an invariant 2-form in R4 of H5. Obviously, the H3 = dB2 flux does not

respect all the symmetries of the gravitational field, which prompt us to investigate the

actual symmetry vector flow that is shared by both fields.

Two observations are in place here. First, we note that the geometry (2.38) is a product

space and, thus, its Killing vectors (KVs) are decoupled for the two subspaces. This lets us

vary H3 along H5 or dS5, separately. The second point is that we can approach the problem

through two distinct paths: we can check which of the KVs are respected by H3 or we can

independently find the symmetries of H3, regardless if they are KVs or not. However, the

independent symmetries of H3 will involve vectors that mix up the whole set of coordinates

and the calculation (of the Lie derivative) will become quite involved. Therefore, we stick to

the first option.

Let K1 be the symmetries of H5 along H3, then it holds that

0 = LK1H3 = diKH3 +���
��:0

iK1dH3

= diK1

(
df ∧ ω2

z
+ fd

(ω2

z

))
= df ∧ diK1

(ω2

z

)
+ df ∧ iK1d

(ω2

z

)
+ fdiK1d

(ω2

z

)
,

where the first two terms must vanish separately from the last, leading to the conditions

LK1

(ω2

z

)
= 0 , LK1

Å
dz ∧ ω2

z2

ã
= 0 . (2.41)

Now, let K2 be the symmetries along dS5, then it holds that
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0 = LK2H3 = diK2H3 +���
��:0

iK2dH3

= diK2

(
df ∧ ω2

z
+ fd

(ω2

z

))
= d

[
(iK2df)

ω2

z

]
,

which leads to the condition

LK2f = iK2df = 0 . (2.42)

Therefore, in order to study the above conditions we have to find the KVs of each subspace.

D.1 Constant KVs of H5 along the H3

H5 enjoys an SO(1,5) isometry, where the SO(5) subgroup implies ten rotations supplemented

by five SO(1,1) conformal transformations. The latter, as we are about to see, imply one

dilation and four special conformal transformations.

For a symmetric space the KVs are easy to find, since we can always realize it as an

embedding in a higher dimensional flat space, which inherits the rotational group on its

hypersurface. In our case, H5 is a hyperboloid in R6 that inherits its SO(1,5) isometry from

the original SO(6).

Therefore, we consider the rotations of R6

Vi ≡ ViA∂Y A , (2.43)

where Y A, A = 0, ..., 5 are the embedding coordinates which build the hypersurface

ηABY
AY B = −1 , (2.44)

with ηAB =diag(1, 1, ...,−1). These rotations are inherited into H5 as the KVs

Ki ≡ Ki
µ∂µ = gµν

Ç
∂Y A

∂xν
VA

å
i

∂µ , (2.45)

where xµ are the H5 coordinates and gµν its metric, while i runs in the KV space. By

choosing the Poicarè solution to eq.(2.44),
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Y 0 =
z

2

(
1 +

1

z2

(
1 +

4∑
i=1

x2
i

))
,

Y i =
xi
z
, i = 1, ..., 4 ,

Y 5 =
z

2

(
1− 1

z2

(
1−

4∑
i=1

x2
i

))
,

(2.46)

one can find each one of the fifteen KVs of H5. The first in line are the expected six rotations

of the SO(4) subgroup, namely

KRij = xi∂j − xj∂i , (2.47)

for i, j = 1, ..., 4, defined up to an overall sign.

Next, there are eight KVs composed of the two sets of conformal Killing vectors (CKVs)

KCk = KCk
µ∂µ : KCk

k =
1− x2

k +
∑

i 6=k x
2
i + z2

2
,

KCk
i = −xkxi ,

KCk
z = −xkz ,

KVk = KVk
µ∂µ : KVk

k =
1 + x2

k −
∑

i 6=k x
2
i − z2

2
,

KVk
i = xkxi ,

KVk
z = xkz ,

(2.48)

one for each value of k = 1, ..., 4, again up to overall signs, accompanied by the unique

element of the homothetic group for H5, namely the SO(1,1) dilation

KD =

4∑
i=1

xi∂i + z∂z . (2.49)

While the six rotations and the dilation are in their standard form, the eight CKVs look

certainly uglier. This can be easily fixed by a change of their basis. This is achieved by adding
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and subtracting every vector of the first set, KCk , with its k-counterpart in the second set,

KVk . By adding them, we acquire the four (conformal) translations5

KSCi = ∂i , i = 1, ..., 4 , (2.50)

up to a sign, as expected by the xi-invariance of the metric tensor. Apart from the dilation,

these are the remaining four SO(1,1) SCKVs. The last four KVs are found by subtraction

and they are what remains of the SO(5) (conformal) rotations, namely

KCRk =

Ñ
x2
k −

∑
i 6=k

x2
i − z2

é
∂k −

∑
i 6=k

2xkxi∂i − 2xkz∂z , (2.51)

for k = 1, ..., 4 and, as always, up to an overall sign.

Without further ado, we plug all of the above KVs into the conditions for invariance

along the H3 flux, eq.(2.41), and observe that the only ones that satisfy them are

KR12 = x1∂2 − x2∂1

KR34 = x3∂4 − x4∂3

KSCi = ∂i i = 1, ..., 4

(2.52)

namely two rotations of the SO(4) subgroup rotating the R4 and the four SO(1,1) SCKVs.

D.2 Constant KVs of dS5 along the H3

This case is simpler, since we don’t have to find the KVs of dS5. The condition for invariant

dS5 vectors along H3, eq.(2.42), has quite a simple form and solution. Thus, it is easier to

just use this condition to find the H3 symmetries and then constrain them to be KVs of dS5.

Taking the condition

LKf = iKdf = 0 , (2.53)

and observing that

df = e−φ (cos θ dθ − sin θ dφ) , (2.54)

we can easily conclude that the minimal ansatz for a symmetry vector is

5K = ∂i, i = 1, ..., 4, are translations in R4 and special conformal transformations in H5.
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K = A(φ, θ)∂φ +B(φ, θ)∂θ , (2.55)

which solves eq.(2.53) for

K = A(φ, θ)∂φ +A(φ, θ) tan θ ∂θ , (2.56)

the simpler choice for which is for A(φ, θ) = 1, namely

K = ∂φ + tan θ ∂θ . (2.57)

However, this family of vectors, eq.(2.56), fails to satisfy the Killing equation K(µ;ν) = 0.

The resolution comes by observing the way the Killing equation fails and is actually quite

straightforward. We consider the next most-minimal symmetry vector

K = A(φ, θ, ω1)∂φ +B(φ, θ, ω1)∂θ + C(φ, θ, ω1)∂ω1 , (2.58)

where ω1 is an angle in the 3-sphere, dΩ2
3 = dω2

1 + sin2 ω1dΩ2
2, of dS5. Plugging this vector

into the condition eq.(2.53), it gets restricted to

K = A(φ, θ, ω1)∂φ +A(φ, θ, ω1) tan θ ∂θ + C(φ, θ, ω1)∂ω1 . (2.59)

Next, we surrender it to the Killing equation for reformation. The K(φ;φ) = 0 component

gives that

∂A

∂φ
= −A ⇒ A(φ, θ, ω1) = e−φA1(θ, ω) , (2.60)

while the K(θ;θ) = 0 component gives that

A1 = −∂A1

∂θ
sin θ cos θ ⇒ A1(θ, ω1) = cot θ A2(ω1) . (2.61)

Finally, the K(ω1;ω1) = 0 component gives

∂C

∂ω1
= e−φ tan θ A2(ω1) ⇒

ß ∂C1(ω1)
∂ω1

= A2(ω1)

C2(φ, θ) = tan θ
, (2.62)
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which, along with the K(φ,ω1) = K(θ,ω1) = 0 components that demand

∂A2(ω1)

∂ω1
= −C1(ω1) , (2.63)

specifies the last subfunctions as A2(ω1) = cosω1 and C1(ω1) = sinω1. The rest of the

components of the Killing equation are also satisfied and, therefore, our KV becomes

KB = e−φ cot θ cosω1 ∂φ + e−φ cosω1 ∂θ + e−φ tan θ sinω1 ∂ω1 (2.64)

and is identified as one of the SO(1,1) boosts of the SO(1,5) isometry of dS5. Had we chosen

a different angle than ω1 from the 3-sphere of dS5, i.e. ω2 or ω3, we would have found two

more boost KVs. These are the unique non-trivial KVs of dS5 that preserve the H3 flux.

The rest of the KVs of dS5 that preserve H3 are trivial, since the flux is entirely Ω3-

invariant, and consist of the six SO(4) rotations of Ω3 inside dS5. This concludes the sym-

metry analysis on H3.





Chapter 3

Integrability on AdS7 vacua

1 Introduction

Quantum field theories may be realized in the context of renormalization group (RG) flows,

from short distances in the UV to long distances in the IR. The endpoints of these flows are

called fixed points and the associated field theories are scale invariant. In d-dimensional rela-

tivistic field theories with SO(1, d−1) spacetime symmetry, it is common to assume that the

fixed-point theory is a CFT, whose symmetry is enhanced to the conformal algebra SO(2, d).

Aside from free CFTs, there is compelling evidence for a vast landscape of interacting CFTs

in diverse dimensions, with many of these theories being non-Lagrangian. The latter are

CFTs without a known representation in terms of fields and, in this sense, the best way to

learn about those field theories is to employ the AdS/CFT duality [11] and work on their

holographically dual vacua. SCFTs in six dimensions, which are the subject of this chapter,

resist a Lagrangian realization.

Examples of such six-dimensional theories include N = (2, 0) theories [9], realized on

a stack of M5-branes. Less is known about the N = (1, 0) theories. None of those six-

dimensional CFTs has a weakly-coupled UV Lagrangian. However, one may always move

along the tensor branch of the theory, which corresponds to giving a VEV to the scalar

inside the tensor multiplet. In such cases, one can find an effective Lagrangian description for

N = (1, 0) theories in terms of a weakly-coupled quiver gauge theory, where the scalars inside

the tensor multiplets −controlling the coupling constants of the corresponding gauge groups−
are promoted to a set of dynamical fields. Reaching for the origin of the tensor branch

typically leads to a strongly-coupled six-dimensional SCFT with N = (1, 0) supersymmetry.

Some of those systems have a realization in string theory [95], [96]. The description of these

CFTs is well-advanced, see for example [36–43] and [97–107], which deal with the system

from the field-theoretical, D-brane or holographic point of view.

The subject of this chapter is to study classical integrability on such six-dimensional

N = (0, 1) SCFTs through their holographically-dual supergravity vacua, which were devel-

oped in [36–43]. Those massive type IIA backgrounds preserve N = (0, 1) supersymmetry,

71



72 Integrability on AdS7 vacua

they consist of a warped AdS7 × M3 geometry, where M3 is isomorphic to S3, and are

associated with D8-D6-NS5 Hanany-Witten brane set-ups. While the study of a particular

bosonic string soliton illustrates that all vacua with a warped geometry exhibit complete

non-integrability, in the special case of the unwarped AdS7 × M3 space we prove the op-

posite to be true. That is, we observe that the Wess-Zumino-Witten (WZW) model on M3

is an integrable deformation of the same model on S3, which yields that the Neveu-Schwarz

sector of the string σ-model on this special vacuum is classically integrable.

This chapter has the following structure. In Section 2, we summarize the string and

field-theoretical realizations and describe the holographic map between those pictures that

follow from a Hanany-Witten description [68] of the CFTs. In Section 3, we investigate

classical integrability by studying the dynamical evolution of a semiclassical, bosonic string

soliton. As in the previous chapters, we employ out tools of analytic non-integrability and

prove that all vacua with a warped AdS7 × M3 geometry are non-integrable. However, the

special case of an unwarped space is singled out, on which the string equations of motion

exhibit a Liouvillian solution, yielding the possibility of an integrable vacuum. Indeed, in

Section 4 we show that the WZW model onM3 is a λ-deformation of the same model on S3,

which, together with the fact that AdS7 is a symmetric space, means that the string σ-model

is classically integrable on AdS7 × M3. Of course, this is supported by the construction

of an explicit Lax connection, through which the equations of motion of the string on the

special vacuum are derived. In Section 4.3, we give some of the field theoretical observables

associated with this special, integrable background, which serve as a holographic definition of

the dual integrable N = (1, 0) six-dimensional SCFT and, finally, we summarize our findings

and conclusions in Section 5.

2 Six-dimensional SCFT and holography

It is useful to recap the main issues afflicting higher dimensional (d > 4) field theories.

Consider a simple interacting field theory in six dimensions with action,

S =

∫
d6x

ï
−1

2
(∂µφ)2 − V (φ)

ò
.

Here φ represents a real scalar field with classical dimension [φ] = m2. The potential can

be a mass term V = m2

2 φ
2 or more interestingly a classically marginal interaction term,

like V = gφ3, but this would lead to a system without ground state (for φ < 0). On the

other hand, a potential like V = λφ4 has a well-defined vacuum, but the interaction is

irrelevant, hence the theory is not well-defined in small scales, i.e. it has no UV completion.

The Wilsonian logic, according to which we start from a conformal (not necessarily weakly
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coupled) field theory and deform it by inserting relevant operators into the Lagrangian,

flowing to interesting field theories at low energies, does not seem to apply here.

Nevertheless, different string theoretic constructions have suggested that supersymmetric

field theories of scalars coupled to gauge fields have an interacting UV fixed point. In fact,

considering a Lagrangian like

L ∼ −1

2
(∂µφ)2 − c φF 2

µν + fermions, (3.1)

and assuming 〈φ〉 → 0, we are dealing with the strong coupling limit of a gauge field theory

(since the scalar φ takes the role of the inverse coupling of the gauge theory). The presence

of fermions in the supersymmetric theory implies the possible existence of gauge anomalies

that need to be canceled. This cancellation is possible if the scalar φ belongs to a tensor

multiplet [107], [108] and a certain tuning between the amount of adjoint and fundamental

matter must be imposed.

This picture was realised in D-brane constructions. The relevant Hanany-Witten set-

ups [68] were presented in [109]. The associated six-dimensional field theories preserve eight

Poincare supercharges and have SO(1, 5) Lorentz and SU(2) R-symmetries. In more detail,

the field theories with N = (1, 0) supersymmetry are constructed in terms of the following

multiplets:

• Tensor multiplets with field content (Bµν , λ1, λ2, φ). A two form with self-dual curva-

ture H3 = dB2, two fermions and a real scalar.

• Vector multiplets with field content (Aµ, λ̂1, λ̂2), a six-dimensional vector and two

fermions.

• Hypermultiplets with field content (ϕ1, ϕ2, ψ1, ψ2), two scalars and two fermions.

• Linear multiplets with field content (~π, c, ξ̃) an SU(2) triplet and a singlet, together

with a fermion.

These field theories have a tensor branch when the scalar φ gets a non-zero VEV. In this case,

the SU(2)R symmetry is preserved. On the other hand, when the scalars inside the hyper

or the linear multiplet get VEVs, we explore the Higgs branch breaking the R-symmetry. In

what follows we will be concerned with the tensor branch only.

To reproduce the Lorentz and R-symmetry mentioned above, the authors of [109] dis-

tributed D6, NS5, and D8 branes according to Table 3.1.

There are some key differences with Hanany-Witten set-ups in lower dimensions,

• The dimension of the field theory on the NS5-branes is the same as that on the bounded

D6-branes. The non-decoupling of the five-branes dynamics adds the dynamical tensor

multiplets to the field theories. These are absent in lower dimensional set-ups.
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t x1 x2 x3 x4 x5 x6 x7 x8 x9

NS5 • • • • • • · · · ·
D6 • • • • • • • · · ·
D8 • • • • • • · • • •

Table 3.1: The generic brane set-ups. All the branes are extended on the Minkowski R1,5

directions. The D6-branes also extend over x6 where they have finite size extension between
NS5-branes. The D8-branes also extend along the x7, x8 and x9 directions, preserving the
SO(3)R symmetry.

• The bending of the NS5-branes due to other p-branes ending on them leads to a Laplace

equation in 6 − p dimensions. In this case, where p = 6, there is no bending and the

field content is always such that anomalies are canceled, namely

ND6,R +ND6,L +ND8 = 2ND6,c , (3.2)

being ND6,R/L the number of sixbranes to the right/left of a given stack with ND6,c

branes.

• We can consider D2-branes on (t, x1, x6) that end on the NS5-branes. These branes

represent one-dimensional magnetically-charged defects identified with the instantonic

strings charged under the self-dual H3.

• When the system is in the tensor branch (the difference between the scalars in different

tensor multiplets 〈φi − φi−1〉 is non-zero) the instantonic strings are massive and the

field theory can be described by an anomaly-free quiver. When 〈φi − φi−1〉 → 0, the

theory is proposed [107] to flow to a strongly-coupled six-dimensional CFT with (1, 0)

supersymmetry. These are the theories that we study in this paper.

2.1 The dual AdS7 vacua

Let us now discuss the holographic description of the SCFTs that appear when we move

to the origin of the tensor branch. This description was developed in a set of papers, most

notably [36–43]. We adopt the notation of [43].

The six-dimensional SCFTs have SO(2, 6)×SU(2)R bosonic symmetries, see for example

[110]. They are realised as the isometries of a massive type IIA vacuum of the form
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ds2 = f1(z)ds2
AdS7

+ f2(z)dz2 + f3(z) dΩ2
2(χ, ξ),

B2 = f4(z)VolΩ2 , F2 = f5(z)VolΩ2 , eφ = f6(z), F0 = F0(z) , (3.3)

where we have defined dΩ2
2(χ, ξ) = dχ2 + sin2 χ dξ2 and VolΩ2 = sinχ dχ ∧ dξ.

If we impose that N = (1, 0) supersymmetry is preserved by the vacuum, we need the

functions fi(z) to satisfy some first-order and nonlinear differential equations. Those are the

Bogomol’nyi-Prasad-Sommerfield (BPS) equations, which are solved if the functions fi(z) in

(3.3) are all defined in terms of a function α(z) and its derivatives [37,43], as

f1(z) = 8
√

2π

…
− α

α′′
, f2(z) =

√
2π

…
−α
′′

α
, f3(z) =

√
2π

…
−α
′′

α

Å
α2

α′2 − 2αα′′

ã
,

f4(z) = π

Å
−z +

αα′

α′2 − 2αα′′

ã
, f5(z) =

Å
α′′

162π2
+

πF0αα
′

α′2 − 2αα′′

ã
, (3.4)

f6(z) = 2
5
4π

5
2 34 (−α/α′′)

3
4√

α′2 − 2αα′′
.

Where α(z) has to satisfy the differential equation

α′′′ = −162π3F0. (3.5)

The function α(z) must be piece-wise continuous, which implies that F0 is piece-wise constant

and may be discontinuous. The internal space M3 = (z,Ω2) is a two-sphere fibered over

the z-interval. The warp factor f3(z) must vanish at the beginning and at the end of the

z-interval (i.e. z = 0 and z = zf , by convention), in such a way that the two-sphere shrinks

smoothly at those points.

For a piece-wise constant and possibly discontinuous F0(z), the general solution to

eq.(3.5) in each interval of constant F0 is

α(z) = a0 + a1z +
a2

2
z2 − 162π3F0

6
z3 . (3.6)

Since α(z) is piece-wise continuous, a polynomial solution like the one above should be

proposed for each interval [zi, zi+1]; each such interval should exhibit its own parameters
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{ai, F0}. Imposing that the two-sphere shrinks smoothly at z = 0 and z = zf implies that

α(0) = α(zf ) = 0. Before we discuss a generic solution, let us find general expressions for

the D-brane charges associated to the vacua in (3.3).

Page charges

To that end, we consider the non-gauge-invariant but localized, conserved and quantized

Page charges,

QDp =
1

(2π)7−pgs(α′)
(7−p)

2

∫
F̂8−p , QNS5 =

1

4π2g2
sα
′

∫
H3 , (3.7)

where F̂ = e−B2 ∧ F is the Page flux. In what follows we set gs = α′ = 1. Using that

α(0) = α(zf ) = 0 we find the NS5-brane charge,

QNS5 =
1

4π2

∫
z,Ω2

∂zf4 =
1

π

∫ z=zf

z=0
∂zf4 =

f4(zf )− f4(0)

π
= −zf . (3.8)

Up to an orientation-related sign, the size of the z-interval equals the number of fivebranes.

Hence we need to choose zf to be a positive integer. We shall take QNS5 = zf = N5 in what

follows.

Calculating the charge of D6-branes, we find

QD6 =
1

2π

∫
(χ,ξ)

F2 − F0B2 =

ï
α′′ + 162π3F0z

81π2

ò
=
α′′ − zα′′′

81π2
. (3.9)

This charge gives the charge of D6-branes but includes, also, the charge of D6-branes induced

onto the D8-branes. To avoid this ‘over-counting’ note that we may perform a large gauge

transformation in any interval [k, k + 1] such that

B̂2 → B2 + kπ dΩ2. (3.10)

We then find that in the interval [k, k + 1] the Page charge reads

QD6 =
1

2π

∫
S2

F2 − F0B̂2 =
1

2π
× α′′ − α′′′(z − k)

162π2
× 4π . (3.11)

Using that on the [k, k + 1] interval the function α′′(z) = −81π2 [Nk + (Nk+1 −Nk)(z − k)],

we find that
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ND6 =
1

2π
× α′′ − α′′′(z − k)

162π2
× 4π = −Nk . (3.12)

The sign can be attributed to a choice of orientation for the two-sphere. The expression

above indicates that in the [k, k + 1] interval, there are Nk D6-branes. In other words, we

performed a large gauge transformation to subtract the D6-charge induced onto the D8-

branes in eq.(3.9), in order to have a clear view of the number of D6-branes in their stacks.

We thus find that the number of the distinct D6-branes (and not of the ones in bound

states with D8-branes) in the associated Hanany-Witten set-up is given by

ND6 = − 1

81π2

∫ zf

0
α′′(z)dz . (3.13)

This can be verified by explicitly performing this integral for a generic function α′′(z), ob-

serving that it counts the sum of the ranks of the gauge groups (see eq.(3.29) for an example

of a function α(z) for a generic quiver with four nodes and four flavour groups). On each

interval [k, k + 1] this gives

− 1

81π2

∫ k+1

k
α′′dz = −

∫ k+1

k
[Nk + (Nk+1 −Nk)(z − k)] dz =

Nk +Nk+1

2
. (3.14)

Summing over all the intervals (using that N0 = NP+1 = 0), gives the total quantity

ND6 =
P∑
k=0

Nk +Nk+1

2
= N1 +N2 + ....+NP . (3.15)

Considering the Page charge QD8 = ND8 = 2π
∫
F0 and eq.(3.5), the number of D8-

branes in any given Hanany-Witten set-up reads

ND8 =
1

81π2

[
α′′′(0)− α′′′(zf )

]
. (3.16)

In other words, the jumps in α′′′(z) (coming from a piece-wise continuous function α(z))

counts D8-branes across any interval, in accordance with eq.(3.5). Adding these jumps leads

to the total number of D8-branes in a given set-up, i.e. eq.(3.16).

These expressions are analogous to those derived in [111], for the case of Hanany-Witten

set-ups associated with four-dimensional N = 2 SCFTs. In Section 2.2 we test the new

expressions in eqs.(3.13),(3.16) on some examples.
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Entanglement entropy

Klebanov, Kutasov and Murugan [112] studied entanglement entropy (EE) in gravity vacua

dual to confining large Nc gauge theories, generalizing the Ryu-Takayanagi conjecture [113]

to non-conformal theories. They argued that, for this kind of theories, the volume of the

8− d compact dimensions and dilaton of a AdSd+2 vacuum are in general not constant and,

hence, suggested that the EE in these cases is given by

SEE =
1

4GN

∫
γ

d8σ e−2φ
»

det g8,ind , (3.17)

where GN = 8π6g2
sα
′4 = 8π6 is the ten-dimensional Newton constant, γ is all surfaces with a

common boundary with the entangling surface and g8,ind is the induced string frame metric

on γ.

As an entangling surface they considered a strip of length LEE and, hence, the entan-

glement entropy SEE for a rectangular region of length LEE is found by minimizing an

eight-manifold at the infinity of the AdS-radial direction. In this problem, there are two lo-

cal minima of the action (3.17), given a particular LEE while, also, a regularization is needed,

analogously to what happens when calculating Wilson loops. The first minimum reflects a

disconnected surface, which consists of two regions which are separated by a distance LEE .

The second is a connected surface, in which the two regions are connected by a tube whose

width depends on LEE . EE is generally divergent in the UV but subtracting between its

connected and disconnected phases we get a finite result.

For our kind of vacua, the treatment is the same as with [112,114]. That is, we consider an

eight-manifold set in a gauge where its worldvolume coordinates equal distinctly spacetime

dimensions as

Σ8 = [x1, x2, x3, x4, x5, z, χ, ξ], R = R(x1) ,

where R is the AdS-radial coordinate, while we use Poincaré coordinates for the AdS7 space

to acquire its induced metric as

ds2
8,ind = f1

ï
R2d~x2

4 + dx2
1

Å
R2 +

R′2

R2

ãò
+ f2dz2 + f3(dχ2 + sin2 χdξ2) .

Then the entanglement entropy is

SEE =
128V4

6561GN

Å∫ zf

0
α′′(z)α(z)dz

ã∫
dx1R

5

 
1 +

R′2

R4
, V4 =

∫
dx2dx3dx4dx5 .



Six-dimensional SCFT and holography 79

Following the formalism of [114], we find the regularized entanglement entropy

SregEE =
V4

2GN

ñ∫ ∞
1

dy

Ç
y8√
y10 − 1

− y3

åô
NR4

0 = µ1NR4
0 ,

N = − 512

6561

∫ zf

0
α(z)α′′(z)dz ,

(3.18)

and the separation between the two regions

LEE =

ñ
2

∫ ∞
1

dy√
y4(y10 − 1)

ô
1

R0
=
µ2

R0
. (3.19)

Substituting LEE into SregEE we get the final expression

SregEE = N
Å
µ1µ

4
2

L4

ã
. (3.20)

The factors µ1µ
4
2 are common to all six-dimensional CFTs. The power L−4 is the only pos-

sible one given conformality and the dimension of the CFT. All the information about the

particular CFT in consideration is in the factor N ∼
∫
αα′′.

Central charge

A quantity closely related to that of entanglement entropy and of great importance in

CFT is the central charge. To illustrate its holographic expression, we follow the formalism

developed in [112,114] and in [115].

In [112], a generic metric on a type II string theory vacuum was considered, assumingly

dual to a (d+ 1)-dimensional CFT, which, in string frame, reads

ds2 = a(r)
(
dx2

1,d + b(r) dr
)

+ gij dθidθj . (3.21)

The (d+ 1)-dimensional Minkowski space is parametrized by dx2
1,d, gij is the metric field on

the internal manifold and a, b are functions of the AdS radial coordinate r, while the vacuum

may also be supported by a dilaton field. For this type of background, the holographic

central charge is defined by the quantities
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H = e−4ΦVinta
d , Vint =

∫
d~θ
√

det gij , (3.22)

and it is proportional to the volume of the internal space.

Nonetheless, in our kind on vacua the functions a, b (and the dilaton) depend on the

coordinates ~θ of the internal manifold. In this case, it was proposed in [114] that the above

defining quantities should be modified as

Ĥ = V̂ 2
int , V̂int =

∫
d~θ
»
e−4Φ ad det gij , (3.23)

since now a,Φ are generally dependent on ~θ. Then, the central charge of the (d + 1)-

dimensional CFT is defined to be

c =
ddb

d
2 Ĥ

2d+1
2

GN (Ĥ ′)d
, (3.24)

where GN = (lP )D−2 is the Newton constant in D spacetime dimensions, with lP the Planck

length.

Plugging our family of vacua (3.3) into the above expression, as was first done in [61], we

acquire the formula

c = − 1

16GN

Å
2

3

ã8 ∫ zf

0
α(z)α′′(z)dz , (3.25)

which is the holographic central charge for the kind of CFTs we consider in this chapter.

Notice, here, that this charge is proportional to the entanglement entropy in (3.18), up to

some numerical factor, which is exactly as it should be since both quantities measure the

number of degrees of freedom.

2.2 The quiver gauge theory

Before we sail off into the main subject of integrability, let us illustrate the duality between

the AdS7 vacua of the form (3.3) and the six-dimensional field theory. Those vacua are

parametrized by α(z) and its derivatives and each choice for that function corresponds to a

distinct vacuum and, hence, a particular quiver theory.

For clarity, let us work the other way around and reconstruct the AdS7 vacuum from a

specific quiver gauge theory. To that end, we consider a quiver structure with gauge and flavor
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groups bound together through bifundamental matter, satisfying condition (3.2) and, hence,

being non-anomalous. Moreover, we define the function R(z), a piecewise continuous linear

function such that at z = j (with j being a positive integer number) the value R(j) = Nj

is the rank of the j-th gauge group. It was shown in [43] that this rank-function must be

convex to satisfy the anomaly cancellation condition in eq.(3.2). R(z) is not necessary to

understand or work out the holographic duality; it is merely a matter of convenience, a

intermediate step that clarifies the connection between the rank of the quiver gauge groups

and the number of D6-branes in string theory.

Therefore, noticing the expression for the number of D6-branes in (3.13), we define the

rank-function to be

R(z) = − 1

81π2
α′′(z). (3.26)

Choosing a particular rank-function and considering this identification, equation (3.26), we

may determine the function α(z) by imposing boundary conditions and continuity of α and

α′.

In order to understand the ways of holography and comprehend the formalism presented

above, we now give a couple of examples. For a larger variety of those, [61] should be

consulted1.

A simple example Consider the Hanany-Witten set-up, quiver and Rank function R(z)

in Figures 3.1-3.3.

NS51

1N D6

NS52

2N D62N D6

NS53

3N D63N D63N D6

1N D8

NS54

3N D63N D63N D6

3N D8

NS55

Figure 3.1: The Hanany-Witten set-up for the field theory. The vertical lines denote individ-
ual Neveu-Schwarz branes extended on the (x4, x5) space. The horizontal ones D6-branes,
that extend on x6, in between fivebranes. The crossed-circles represent D8-branes, that
extend on the (x7, x8, x9) directions. All the branes share the Minkowski directions. This
realises the isometries SO(1, 5)×SO(3).

1In order for the supergravity vacuum to capture faithfully the SCFT dynamics one should work with
long linear quivers, with large ranks. In this sense, the examples of [61] are trustable, while our examples in
this section are not but should be taken as illustrative of the procedure.
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1N 2N 3N

1N

3N

3N

Figure 3.2: The quiver corresponding to the Hanany-Witten set-up above. The circle nodes
are gauge groups, individual gauge theories, and the square nodes are flavor symmetries.

1N

2N

3N

1 2 3 4 5
z

R(z)

Figure 3.3: The rank-function R(z) corresponding to the field theory, defined by the ranks
of the gauge groups on the quiver structure.

In this example, the rank function and the function α′′(z) are given by,

R(z) = − 1

81π2
α′′(z) = N



z 0 ≤ z ≤ 1

(z − 1) + 1 1 ≤ z ≤ 2

(z − 2) + 2 2 ≤ z ≤ 3

3 3 ≤ z ≤ 4

3− 3(z − 4) 4 ≤ z ≤ 5.
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This implies that the generic function α(z) for this example is,

α(z) = −81π2N



a0 + a1z + z3

6 0 ≤ z ≤ 1

b0 + b1(z − 1) + 1
2(z − 1)2 + 1

6(z − 1)3 1 ≤ z ≤ 2

c0 + c1(z − 2) + 2 (z−2)2

2 + 1
6(z − 2)3 2 ≤ z ≤ 3

d0 + d1(z − 3) + 3 (z−3)2

2 3 ≤ z ≤ 4

p0 + p1(z − 4) + 3 (z−4)2

2 − 3 (z−4)3

6 4 ≤ z ≤ 5.

To determine the ten integration constants, we need to impose:

• That α(0) = α(5) = 0. This is to have an internal space that shrinks smoothly at the

beginning and end of the z-interval. These conditions imply

a0 = 0, p0 + p1 +
3

2
− 3

6
= 0

• That the function α(z) is continuous, this implies the equations

a1 +
1

6
= b0, b0 + b1 +

1

2
+

1

6
= c0, c0 + c1 + 1 +

1

6
= d0, d0 + d1 +

3

2
= p0.

• That the function α′(z) is continuous. This implies

a1 +
1

2
= b1, b1 + 1 +

1

2
= c1, c1 + 2 +

1

2
= d1, d1 + 3 = p1.

Solving these equations we find,

a0 = 0, −5a1 = 19, −30b0 = 109, −10b1 = 33, −15c0 = 94, −5c1 = 9,

−10d0 = 69, 10d1 = 7, −10p0 = 47, 10p1 = 37.

which define completely the function α(z).

As a confirmation, we may apply α(z) to acquire the number of NS, D6 and D8-branes.

Indeed, using equations (3.8), (3.13) and (3.16) we find

NNS5 = zf = 5, ND8 =
1

81π2

[
α′′′(0)− α′′′(zf )

]
= 4N,

ND6 = − 1

81π2

∫ zf

0
α′′(z)dz = 9N. (3.27)
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which coincide with the numbers we count from the Hanany-Witten set-up in Figure 3.1.

Let us now study a more generic example.

A more generic example Consider the field theory represented by the Hanany-Witten

set-up in Figure 3.4 or equivalently, the quiver in Figure 3.5.

NS51

N1 D6N1 D6N1 D6N1 D6N1 D6

F1 D8

NS52

N2 D6N2 D6N2 D6N2 D6N2 D6

F2 D8

NS53

N3 D6N3 D6N3 D6N3 D6N3 D6

F3 D8

NS54

N4 D6N4 D6N4 D6N4 D6N4 D6

F4 D8

NS55

Figure 3.4: The Hanany-Witten set-up corresponding to the generic field theory studied
here.

N1

F1

N2

F2

N3

F3

N4

F4

Figure 3.5: The quiver corresponding to the generic field theory studied here.

Notice that, while in the previous example we considered specific numbers for the gauge

or flavor groups, we now have set the ranks to be general. Thus, while the previous quiver

theory implicitly satisfied condition (3.2) (by construction, for the gauge anomalies to cancel),

we now need to impose

2N1−N2 =F1, 2N2 −N1 −N3 =F2,

2N3 −N2 −N4 =F3, 2N4 −N3 =F4. (3.28)
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We construct the rank-function

R(z) =



N1z 0 ≤ z ≤ 1

(N2 −N1)(z − 1) +N1 1 ≤ z ≤ 2

(N3 −N2)(z − 2) +N2 2 ≤ z ≤ 3

(N4 −N3)(z − 3) +N3 3 ≤ z ≤ 4

−N4(z − 4) +N4 4 ≤ z ≤ 5.

The function α(z) reads,

α(z) = −81π2



a0 + a1z +N1
z3

6 0 ≤ z ≤ 1

b0 + b1(z − 1) +N1
(z−1)2

2 + (N2 −N1) (z−1)3

6 1 ≤ z ≤ 2

c0 + c1(z − 2) +N2
(z−2)2

2 + (N3 −N2) (z−2)3

6 2 ≤ z ≤ 3

d0 + d1(z − 3) +N3
(z−3)2

2 + (N4 −N3) (z−3)3

6 3 ≤ z ≤ 4

p0 + p1(z − 4) +N4
(z−4)2

2 −N4
(z−4)3

6 4 ≤ z ≤ 5.

(3.29)

Again, we determine the ten coefficients by imposing that α(0) = α(5) = 0 and the continuity

of α(z) and α′(z). The resolution of the algebraic system is straightforward and, acquiring

the function α(z), we may calculate the number of D-branes as

NNS5 = zf = 5, ND8 =
1

81π2

[
α′′′(0)− α′′′(5)

]
= N1 +N4 = F1 + F2 + F3 + F4,

ND6 = − 1

81π2

∫ zf

0
α′′dz = N1 +N2 +N3 +N4,

which, of course, coincide with the Hanany-Witten set-up in Figure 3.4.

3 Non-integrability on the generic AdS7 vacua

We now move on into the main subject of this chapter, which is the study of classical

integrability of these AdS7 vacua and, subsequently, of their dual six-dimensional SCFTs. We

employ our tools of analytic non-integrability just as we did in Chapters 1 and 2, by exploring

the dynamics of the σ-model on those vacua and searching for dynamical subsectors of the

bosonic string that exhibit non-integrability. We do this because, as stressed on the previous

chapters, an integrable theory has all of its dynamical sectors integrable, which means that

even a single sector with non-integrable behavior is enough to declare a supergravity vacuum
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(or a whole family of those, in our case) as non-integrable.

Of course, whenever the methods of analytic non-integrability fail to spot the homony-

mous property on a vacuum, that does not necessarily imply integrability. In other words,

even if those methods do not show non-integrability and give way to the possibility of inte-

grability, this possibility is certainly not a certainty. Integrability may or may not be there.

As we show below, the AdS7 vacua defined by a generic function α(z) are non-integrable,

while there is one and only one vacuum (for a special choice of this function) where non-

integrability recedes and the possibility of integrability pops up. In that particular case, the

vacuum is indeed integrable and we prove this in the next section.

We begin by expanding the Neveu-Schwarz sector of the background in eq.(3.3) in global

coordinates for AdS7 as

ds2 = f1(z)
[
−dt2 cosh ρ+ dρ2 + sinh2 ρ(dϕ2 + cos2 ϕdθ2 + sin2 ϕdΩ3)

]
+ f2(z)dz2

+f3(z)
(
dχ2 + sin2 χdξ2

)
, B2 = f4(z) sinχdχ ∧ dξ. (3.30)

Following the logic of the previous chapters, we desire dynamics that is supported by second-

order ordinary differential equations of motion. Therefore, once again, we propose a string

embedding of the form

t = t(τ) , ρ = ρ(τ) , ϕ = ϕ(τ) , θ = µσ , z = z(τ) , χ = χ(τ) , ξ = κσ , (3.31)

where the integers κ and µ indicate the number of times the bosonic string wraps around

the ξ and θ-dimensions, respectively. The rest of the variables are set to zero.

We study the equations of motion of this soliton derived from the Polyakov action, sup-

plemented by the Virasoro constraint,

SP = − 1

4πα′

∫
Σ

d2σ
Ä
ηabGµν + εabBµν

ä
∂aX

µ∂bX
ν , (3.32)

Tab = ∂aX
µ∂bX

νGµν −
1

2
ηabη

cd∂cX
µ∂dX

νGµν = 0 .

The equations of motion are
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f1(z)ṫ =
E

cosh2 ρ
,

f1(z)ρ̈ = − E2

f1(z)

sinh ρ

cosh3 ρ
+ f1(z) sinh ρ cosh ρ

(
ϕ̇2 − µ2 sin2 ϕ

)
− f ′1(z)ρ̇ż ,

f1(z)ϕ̈ = −f1(z)

Å
2

cosh ρ

sinh ρ
ϕ̇ρ̇+ µ2 cosϕ sinϕ

ã
− f ′1(z)żϕ̇ , (3.33)

f3(z)χ̈ = κf ′4(z)ż sinχ− f ′3(z)żχ̇− κ2f3(z) sinχ cosχ ,

2f2(z)z̈ = f ′1(z)

Å
− E2

f1(z)2 cosh2 ρ
+ ρ̇2 + sinh2 ρ

(
ϕ̇2 − µ2 sin2 ϕ

)ã
− f ′2(z)ż2

+f ′3(z)
(
χ̇2 − κ2 sin2 χ

)
− 2κχ̇ sinχf ′4(z) .

where the dot indicates derivatives with respect to τ and the prime derivatives with respect

to z. We have used the first equation above, to replace for ṫ in the other four equations.

The Virasoro constraints for the string soliton are

Tστ = 0 , Tττ = Tσσ = 0→ (3.34)

f1(z)
(
− cosh2 ρ ṫ2 + ρ̇2 + sinh2 ρ

(
ϕ̇2 + µ2 sin2 ϕ

))
+ f2(z)ż2 + f3(z)

(
χ̇2 + κ2 sin2 χ

)
= 0 .

This constraint holds regardless of the equations of motion and, thus, it is a primary con-

straint. The energy-momentum tensor is preserved on shell, ∇aT ab = 0, since ∂τTττ =

∂σTσσ = 0 on the equations of motion (1.17). Note, also, that the compliance of the world-

sheet constraints with the equations of motion yield the consistency of our embedding.

We proceed by noticing that the invariant plane of motion with

ϕ̈(τ) = ϕ̇(τ) = ϕ(τ) = χ̈(τ) = χ̇(τ) = χ(τ) = ρ̈(τ) = ρ̇(τ) = ρ(τ) = 0 . (3.35)

automatically solves the equations of motion in (3.33), while it reduces the equation for z(τ)

to
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2f2(z)z̈ = − f ′1(z)

f1(z)2
E2 − ż2f ′2(z) . (3.36)

After inserting the expressions for the functions f1(z) and f2(z) in terms of α(z), the above

equation reads

z̈ −
Å
αα′′′ − α′α′′

4α2

ã( α
α′′

)Å E2

16π2
− ż2

ã
= 0 , (3.37)

which has a simple solution

zsol(τ) =
E

4π
τ . (3.38)

This also solves the constraint in eq.(3.34) using the first of eqs.(3.33) for ṫ and the expressions

for f1(z) and f2(z).

Hence, we have a ‘base solution’ around which we perturb the other variables. This

leads to the Normal Variational Equation (NVE) for the different coordinates and it is those

fluctuations that we use to reveal the dynamics of the system.

3.1 NVE for a spherical coordinate

In spite of the fact that we have previously, in Chapter 1, used exclusively the radial

dimension to study a NVE, it is now more suitable (for reasons explained in Appendix E)

to handle one of the spherical coordinates of the AdS7 space.

Hence, we allow for small fluctuations ϕ(τ) = 0 + ε f(τ) over the equation of motion for

ϕ̈(τ) in (3.33), into which we insert the simple solution zsol(τ), (3.38), while we keep all other

variables to zero, according to the base solution. The resulting NVE, at leading order of the

small parameter ε, reads

f̈(τ) + B(τ)ḟ(τ) +A(τ)f(τ) = 0

Bf (τ) =
f ′1(z)

f1(z)

E

4π

∣∣∣∣
zsol

=
E

8π

Å
α′

α
− α′′′

α′′

ã∣∣∣∣
zsol

(3.39)

Af (τ) = µ2

where the function α(z) − with z = z(τ) = zsol(τ) − is taken, of course, in its fully general
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form, (3.6). The analysis on the Liouville integrability of this equation is relegated to Ap-

pendix E and the final result is that it does not admit any Liouvillian solutions, therefore

yielding a non-integrable dynamical system. That is, since we chose α(z) to be general (i.e.

rendered by generic polynomial parameters {ai, F0}), the result is general too and yields the

complete non-integrability of the whole family of these supergravity vacua. That is, if α(z)

is a polynomial of the form (3.6).

At this point, we make a simple observation: if the warp factor f1(z) is equal to a

constant, then Bf = 0 and the above differential equation is that of a harmonic oscillator,

which admits a Liouvillian solution of the form f(τ) = exp(iµτ). The exact same fact holds

for the NVE of ρ(τ), together posing a hint for integrability. On the other hand, we only

study a dynamical subsector of a particular soliton (and not the complete dynamics of all

possible string configurations), which does not provide any real proof of classical integrability

for this special vacuum. As a matter of fact, this observation is actually an expected result,

considering that a constant f1(z) unwarps the AdS7 subspace from the internalM3 (and so

fluctuations on the symmetric AdS, of variables ρ and ϕ, are expected to be integrable).

Nonetheless, a hint is a hint and we should follow it through to see if there is any deeper

truth underneath it. And in our case, finally, there is. This is the subject of the next section.

4 Integrability on a special vacuum

The analysis above strongly suggests that the case of a constant AdS7 warp factor is quite

special. Considering the AdS7 warping by f1(z), this implies a background-defining function

α(z) = A sin(ωz) (3.40)

for which both functions f1(z) and f2(z) are constant. This solution does not fall within the

class of solutions defined by α(z) in (3.6) and studied in Section 2.1. We will understand

what this change in the definition of α(z) implies, momentarily, by the new form of the F0

flux that it is produced.

When α(z) = A sin(ωz), the z-coordinate varies in the interval 0 ≤ z ≤ π
ω , where we

choose ω = π
N5

with N5 being a large integer. Plugging this into the full vacuum defined by

(3.3) and (3.4), we get
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ds2 =

√
2π

ω

Ç
8ds2

AdS7
+ ω2 dz2 +

Ç
sin2 ωz

1 + sin2 ωz

å
dΩ2

å
,

e−2φ = e−2φ0(1 + sin2 ωz), B2 = π

Å
−z +

sinωz cosωz

ω(1 + sin2 ωz)

ã
dΩ2,

F0 =
Aω3 cosωz

162π3
, F2 = −Aω

2

81π2

Ç
sin3 ωz

1 + sin2 ωz

å
dΩ2. (3.41)

The expression for F0 suggests that we have a continuous distribution of D8-branes, along

the z-dimension. Indeed, in contrast with the examples in Section 2.1, F0 in (3.41) is a

continuous function, instead of a piece-wise constant and discontinuous one that reflects

(through the associated Bianchi identity) localized D8-branes.

What makes the vacuum (3.41) special is the fact that AdS7 andM3 are now decoupled.

The geometry becomes a direct product AdS7×M3 and bosonic string theory factorizes into

a σ-model on AdS7 times a σ-model onM3 coupled to a B2 field. All this, up to the Virasoro

constraint that glues together the total worldsheet theory, acting as a primary constraint on

the target-space equations of motion. On the level of the action, we have

SP = SAdS7
P + SM

3

P (3.42)

= − 1

4πα′

∫
Σ
d2σ ηabGAdS7

αβ ∂aX
α∂bX

β − 1

4πα′

∫
Σ
d2σ

Ä
ηabGM

3

µν + εabBM
3

µν

ä
∂aX

µ∂bX
ν

where the Latin indices range over the worldsheet coordinates and the Greek indices over

the target-space ones. In particular, (α, β) are in AdS7 and (µ, ν) run over z, χ and ξ of the

internal space M3.

Now, since AdS7 is a symmetric space and, as such, should host integrable dynamics for

the bosonic string, we bring our attention to subspace M3. We may approach the problem

with the following logic. As already emphasized, integrability depends on the existence of

a Lax connection on the cotangent bundle of the theory, while no standard recipe is pro-

vided to acquire such a construction. In fact, there is not even an a priori reason to decide

whether such a connection does exist. Therefore, integrable systems are mainly obtained

as structure-preserving deformations of known integrable theories, [27–30]. Having acknowl-

edged that, we recall thatM3 is isomorphic to S3, which may suggest that, if integrability is

indeed present (and not just a hint of the calculation in the previous section), it could be the

case thatM3 is an integrable deformation of S3, the latter being symmetric (as a geometry,
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without a B2 field) and hosting integrable dynamics for the bosonic string. The familiar

paradigm for such a scenario is the λ-deformation of the WZW model on SU(2) ∼= S3, [116],

and our chance here would be that the string σ-model on M3 is a λ-deformed WZW model

on S3, for a particular value of the λ parameter. This is indeed the case.

4.1 M3 as a λ-deformation of S3

As it turns out, the Neveu-Schwarz sector of the bosonic string on M3, for the vacuum

(3.41), is exactly equal to a λ-deformed WZW model on SU(2). The λ-deformation is an

integrable deformation of the WZW model proposed by Sfetsos in [28]. The WZW model on

a Lie group G is given by an action

SWZW,k =
k

2π

∫
∂B

Tr [jaj
a] +

k

6π

∫
B
εabcTr

î
jajbjc

ó
(3.43)

where k ∈ Z is the level of the model and ja is an algebra-valued current form on G. The

first term is the action of the Principal Chiral Model (PCM), which may be realized as the

metric-field part of the string σ-model on a group manifold. The second WZ-term may be

realized as the dynamics generated by a B2 field. Both the PCM and the WZW model on a

Lie group G are integrable and their features and structure are introduced in Appendix F.

The λ-model is practically the sum of the PCM and WZW model. Since both of those

ingredient models are integrable, so is their combination. The level k of the WZW model

combines with the coupling parameter of the PCM and make up what we call the λ parameter.

The action of the λ-model on a Lie group G then reads

Sλ = SWZW,k +
k

π

∫
∂B

̃A+
Ä
λ−1 −DT

ä−1

AB
jB− (3.44)

where ja is a left-invariant current and ̃a = ∂agg
−1 is a right-invariant current. Notice that

these currents are algebra-valued and the indices A and B range over the components of the

G-algebra. The matrix DAB = Tr
[
TAgTBg

−1
]

relates the left and right invariant currents

as jAa = DA
B ̃Ba , with TA the generators of the group G. Based on its form, this action may

be realized as an (integrable) deformation of the WZW model on level k and this is what

makes up the concept of the λ-deformation.

Getting back on our track, we choose the λ-model (3.44) on SU(2) ∼= S3 [116], whose

action is equivalent to bosonic string theory on the vacuum
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ds2
λ = 2k

Å
1 + λ

1− λ
dz2 +

1− λ2

∆
sin2 zdΩ2

2

ã
,

Bλ
2 = − 2k

Ç
z − (1− λ)2

∆
cos z sin z

å
volΩ2 ,

e−2Φλ = e−2Φ0∆ ,

(3.45)

where ∆ = 1 + λ2 − 2λ cos 2z and λ ∈ [0, 1]. For λ = 0 we obtain the original WZW model.

The action we obtain for λ→ 1 is related to the non-Abelian T-dual of the WZW model in

eq. (3.43), see [116] for a detailed explanation.

The SU(2) λ-model for λ = 3− 2
√

2

Our intuition paid off. Comparing the SU(2) λ-model in (3.45) with the special vacuum in

(3.41), we notice that for λ = 3−2
√

2 those two coincide on theM3 part of the supergravity

vacuum. In particular, for this value of λ, which implies ∆ = 4λ
(
1 + sin2 z

)
, the λ-model

(3.45) reads

ds2
λ = 2

√
2k
Ä
dz2 + sin2 z

1+sin2 z
dΩ2

2

ä
,

Bλ
2 = −2k

Ä
z − sin z cos z

1+sin2 z

ä
volΩ2, (3.46)

e−2Φλ = e−2Φλ0
Ä
12− 8

√
2
ä (

1 + sin2 z
)
.

which is identical to the Neveu-Schwarz sector of the internal space M3 in (3.41), if we

identify ω = π
2k and choose a convenient dilaton field, e−2Φλ0 . The holographic limit ω → 0,

associated to long quivers, corresponds to k → ∞, the semi-classical limit of the WZW

model.

A word of caution here. AdS7× S3 is not a supergravity solution, AdS7×M3 as in (3.41)

is. The λ-deformation was only used to connect (a part of) our vacuum to an integrable

structure (the WZW on S3, in this case), not surf along different supergravity solutions.

Therefore, we have indeed spotted classical integrability for the special vacuum, follow-

ing from the choice α(z) = A sin(ωz). It is for this choice of the function α(z) where the

geometry becomes a direct product AdS7 ×M3 and the Polyakov action factorizes into two
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separate σ-models (up to the Virasoro constraint), one for AdS7 and one forM3 coupled to

a B2 field. The first is bosonic-string dynamics in a symmetric space and, as also illustrated

below, is integrable. The second, as was shown in this section, is an integrable λ-model.

Thus, the only formal ingredient left to validate this particular story of classical integrability

is a Lax connection and this is what we show next.

4.2 The Lax connection

The Lax connection is a connection on the cotangent bundle of the theory, whose flatness

condition equals the dynamical equations of motion. This, together with the involution

between all the analogous independent conserved quantities, reflects classical, Liouvillian

integrability of the theory. In this section, we give some basic concepts and results, while a

more thorough analysis and references are held in Appendix F.

Lax connection on AdS7

As stated repeatedly in this section, the σ-model on a symmetric space is classically inte-

grable. In other words, the Polyakov action on an AdSn target space, without a B2-field, is

integrable. In order to see this, we first introduce the PCM on a semisimple Lie group G,

SPCM = −κ
2

2π

∫
d2σ Tr

[
∂ag∂

ag−1
]
, g ∈ G. (3.47)

which exhibits a GL×GR global symmetry and can be written in terms of the Maurer-Cartan

form ja, an algebra-valued connection on the group manifold G,

SPCM =
κ2

2π

∫
d2σ Tr [jaj

a] , ja = g−1∂ag ∈ g. (3.48)

where g is the Lie algebra of G. This Maurer-Cartan form is by construction flat. The

flatness condition together with the equations of motion for the action in eq.(3.48) read

∂+j− + ∂−j+ = 0,

∂−j+ − ∂+j− − [j+, j−] = 0.
(3.49)

Here we used lightcone coordinates on the string worldsheet. The above eqs.(3.49) combine

to construct a Lax connection

L± =
1

1∓ Z
j±, (3.50)
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where Z ∈ C is the spectral parameter, such that the flatness of the Lax connection

dL+ L ∧ L = 0, (3.51)

is equivalent to the equations of motion (3.49) obtained from the action (3.48).

Now, while there is the isomorphism

AdSn+1
∼=

SO(2, n)

SO(1, n)
, (3.52)

which implies the example of AdS3
∼= SO(1, 2) ∼= SL(2,R), our case at hand, AdS7, is not

a group manifold G but a symmetric coset F = G/H. That means that there is a Z2

automorphism of the algebra of G, under which the latter decomposes as g = f ⊕ h. Thus,

the right action of H is realized as a gauge symmetry and, by introducing a h-valued gauge

field Ba, the new gauge-invariant PCM action reads

SPCM =
κ2

2π

∫
d2σ Tr [JaJ

a] , Ja = ja −Ba, (3.53)

where we have defined the projection Ja = Pf(ja). The resulting equations of motion are

DaJ
a = 0, Da = ∂a + [Ba, · ] , (3.54)

while the new flatness condition

∂aBb − ∂bBa + [Ba, Bb] +DaJb −DbJa + [Ja, Jb] = 0, (3.55)

uses the commutation relations [h, h] ⊂ h, [h, f] ⊂ f and [f, f] ⊂ h to decompose into two

separate projections on the algebras h, f as

∂aBb − ∂bBa + [Ba, Bb] + [Ja, Jb] = 0,

DaJb −DbJa = 0.
(3.56)

As before, the flatness condition (3.56) together with the equations of motion (3.54) combine

into a Lax connection for the coset space,
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L± = B± + Z±1J±, (3.57)

whose flatness condition is equivalent the equations of motion of the PCM on the symmetric

coset. This demonstrates that the string on a symmetric space, in the absence of a B2 field,

is classically integrable.

In Appendix F we introduce another natural but more geometric environment to realize

the symmetric PCM and, hence, its Lax connection. We now move on to the M3 part of

the vacuum.

Lax connection on M3

Since we proved that the M3 part of the vacuum is an (integrable) SU(2) λ-model, for

λ = 3− 2
√

2, we may just write down its Lax connection, [116], as

L± = −
Ç

1 +

√
2

2

å
A±

1∓ Z
, (3.58)

where Z is the spectral parameter and A is an algebra-valued gauge field on SU(2) trans-

forming as A→ h−1Ah− h−1dh, with h ∈ SU(2). In our case, this gauge connection reads

A± =

à
± sinχ sin ξz± ± sin 2z

2(1+sin2 z)
(cosχ sin ξ χ± + sinχ cos ξ ξ±)− sin2 z√

2(1+sin2 z)
(2 cos ξ χ± − sin 2χ sin ξ ξ±)

∓ sinχ cos ξz± ± sin 2z
2(1+sin2 z)

(cosχ cos ξ χ± − sinχ sin ξ ξ±)− sin2 z√
2(1+sin2 z)

(2 sin ξ χ± + sin 2χ cos ξ ξ±)

∓ cosχ z± + sinχ
2(1+sin2 z)

Ä
± sin 2z χ± + 2

√
2 sin2 z sinχ ξ±

ä
í

.

(3.59)

Here, for the variables, we use the notation f+ = ∂+f , f− = ∂−f and f+− = f−+ = ∂+∂−f ,

while we wrote A± in the adjoint representation of SU(2). One may check that the flatness

condition for this Lax connection is equivalent to the equations of motion for the Polyakov

action on the internal space M3. Those dynamical equations are

z+− =
1

2
√

2
(
sin2 z + 1

)2 Ä√2 sin 2z
(
χ+χ− + sin2 χ ξ+ξ−

)
−
(
5 + sin2 z

)
sin2 z sinχ (χ+ξ− − χ−ξ+)

ä
,
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χ+− =
1

2
sin 2χ ξ+ξ− +

1

2
√

2

Å
1 +

4

1 + sin2 z

ã
sinχ (z+ξ− − z−ξ+)− cot z

1 + sin2 z
(z+χ− + z−χ+) ,

ξ+− = − 1

2
√

2

Å
1 +

4

1 + sin2 z

ã
sin−1 χ (z+χ− − z−χ+)− cot z

1 + sin2 z
(z+ξ− + z−ξ+)−cosχ

sinχ
(χ+ξ− + χ−ξ+)

(3.60)

and this concludes the formal construction of a Lax connection for our special vacuum,

demonstrating classical integrability for bosonic string theory on it.

As a closing comment, we note that there are other examples in the literature of inte-

grable supergravity vacua, whose geometries are direct products of integrable sub-spaces.

Those examples are the Sfetsos-Thompson vacuum [75] in the Gaiotto-Maldacena class of

supergravity solutions, the Lunin-Maldacena real β-deformations [27] and, of course, the

special cases of [2] in Chapter 1; in all those cases the AdS warp factor is a constant. Similar

observations have been made in [64].

4.3 The dual field theory

We now present an approach to the six-dimensional SCFT dual to the special, integrable

vacuum in (3.41). Since the derivative of the rank function, R′(z) = −α′′′(z)
81π2 , is not piece-

wise discontinuous and constant for this vacuum, a description in terms of a well-defined,

six-dimensional quiver structure with gauge and flavor nodes, as those given in Section 2,

is not a suitable one. This is because the discontinuity of R′(z), the jumps in the slope of

R(z), is the feature that translates into ranks of gauge and flavor groups; this is absent for

the continuous R′(z) of the special vacuum. Instead, we will define this particular SCFT by

calculating some of its characterizing quantities.

First, it is illustrative to acquire the function α(z) = A sin(ωz) through a different path,

other than the one of this section where the choice of α(z) followed from demanding a

constant AdS warp factor. We begin from the defining equation for α(z), (3.5), that is

α′′′ = −162π3F0 , (3.61)

which may also be regarded as an equation of motion. The solution of this equation, with

F0 being piece-wise constant (and possibly discontinuous), is a polynomial
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α(z) = a0 + a1z +
a2

2
z2 − 162π3F0

6
z3 , (3.62)

which is piece-wise continuous along the P intervals to which the z-coordinate is divided.

And, of course, every polynomial may be expanded in a Fourier series. In particular, de-

manding F0 to be an even (periodic) function on that coordinate (with period T = 2P ),

equation (3.61) implies the Fourier expansion α′′′(z) =
∑

n bn cos(ωnz). Integrating three

times, we acquire

α(z) =
∞∑
n=1

cn sin

Å
nπ

N5
z

ã
. (3.63)

where we set all integration constants to zero, in order to satisfy the boundary conditions

α(z = 0) = α(zf ) = 0. We also used that QNS5 = N5 = zf , coming from (3.8). It is this

infinite sum of harmonics that reproduces the piece-wise continuous function α(z), made

out of cubic polynomials in each interval. In reverse, it may be the case that a particular

polynomial α(z) may be well approximated by a particular harmonic and, hence, this is a

way to realize α(z) = A sin(ωz) which defines the special, integrable vacuum. The physical

content of such an harmonic, as discussed below the vacuum (3.41) and is evident from the

form of F0 in (3.61), is associated with D8-branes that are smeared along the z-dimension.

This is in contrast with the case of sharply-localized D8-branes, which characterize the

generic vacua of this supergravity family and correspond to a piece-wise constant α′′′, as

with the examples in Section 2.1. A situation of this sort was also suggested in [61] and [43].

In [43], it was observed that a possible scaling under which the vacua of the form (3.3) are

trustable representations of N = (1, 0) SCFTs, involved taking the number of D8-branes to

infinity and creating a continuous distribution; in that case, it was emphasized that anomaly

cancellation still holds true.

Let us now outline the special, six-dimensional SCFT by exploring some basic quantities

in its dual vacuum. We begin by considering the solution derived from α(z) = A sin(ωz)

and choosing ω = nπ
N5

, which makes the z-coordinate range between 0 ≤ z ≤ N5
n . We work

with n = 1 only (the first harmonic) in what follows. Using again that QNS5 = N5 = zf ,

we may employ equations (3.13) and (3.16) to calculate the number of D6 and D8-branes in

this vacuum,
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ND6 = − 1

81π2

∫ zf=N5

0
α′′(z)dz =

2Aπ

81N5
, (3.64)

ND8 =
1

81π2

[
α′′′(0)− α′′′(N5)

]
= − 2Aπ

81N3
5

. (3.65)

where we included a factor of π in the first equation, coming from (3.13). (3.13) is a proposed

formula, originally constructed by integration of the Page charge; it, now, has to include an

appropriate factor of π in order for the result to be a rational number. In absolute value,

those expressions imply relations among the quantities,

A =
81

2π
N5ND6 , A =

81

2π
N3

5ND8 → ND6 = ND8N
2
5 , (3.66)

which defines the constant A inside α(z). Subsequently, we may use (3.25) to find the

holographic central charge for the special vacuum and its dual SCFT,

c = − 28

38 16GN

∫ zf=N5

0
α(z)α′′(z)dz =

8

38GN
A2ω2N5 =

N2
D6N5

4π2
, (3.67)

in terms of the number of D6 and NS5-branes, where we also used the convention GN = 8π6.

In the same vein, we may use (3.18) to find the (regularized) entanglement entropy for this

field theory,

SregEE =

Å
µ1µ

4
2

L4

ã
64π4N2

D6N5 , (3.68)

which has the same scaling of N5 and ND6 with the central charge. Of course, this common

dependence on the matter content of the theory is as it should, since both quantities measure

the degrees of freedom.

As already argued, α(z) = A sin(ωz) does not determine the ranks of gauge and flavor

groups and a quiver-theory description is obscure for the SCFT dual to the special, inte-

grable vacuum. Hence, the objects calculated in this subsection may serve as a description

of the six-dimensional N = (1, 0) SCFT, in the limit where the number of D-branes are large.
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5 Conclusions

In this chapter, we studied classical integrability on a class of type IIA vacua that preserve

N = (0, 1) supersymmetry, consist of a warped AdS7 × M3 geometry, with M3 isomorphic

to S3, and are associated with D8-D6-NS5 Hanany-Witten brane set-ups, [36–43]. The aim

here was to spot any vacua in this supergravity family that may exhibit integrability and

use holography to learn about their dual, six-dimensional N = (0, 1) SCFTs.

Applying our methods of non-integrability on the dynamics of a particular bosonic string

soliton, we illustrated that all vacua with a warped geometry are non-integrable, with the

bright exception of a special vacuum with an unwarped AdS7 × M3 space, for which we

proved the opposite to be true. In the latter case, that is when the geometry becomes a direct

product AdS7 ×M3, the Polyakov action factorizes into two separate σ-models (up to the

Virasoro constraint), one for AdS7 and one for M3 coupled to a B2 field. The first reflects

bosonic-string dynamics in a symmetric space and is integrable, while the second proved to

be an (integrable) SU(2) λ-model, for a particular value of λ. The classical integrability of

the special vacuum was formally concluded by the construction of a Lax connection, whose

flatness condition reproduces the equations of motion of the dynamical system.

As a matter of fact, we noted that there are various examples in the literature of integrable

supergravity vacua, in all of which cases the AdS warp factor is a constant and the geometries

reduce to direct products of integrable sub-spaces. Those examples are the Sfetsos-Thompson

vacuum [75] in the Gaiotto-Maldacena class of supergravity solutions, the Lunin-Maldacena

real β-deformations [27] and, of course, the special cases of [2] in Chapter 1, while similar

observations were made in [64].

Nonetheless, while the six-dimensional field theories, dual to these AdS7 type IIA vacua,

are described by quiver chains of gauge theories coupled through bifundamental matter, the

special SCFT dual to the integrable vacuum cannot be represented by such a structure. This

is because, in terms of string theory, this vacuum is flooded with D8-branes which make up a

continuous distribution along the z-dimension. In terms of holography, this situation cannot

determine the flavor and gauge groups for the dual field theory and, instead, this particular

N = (1, 0) SCFT was defined by some of its universal quantities, the central charge and

entanglement entropy, which depend on the matter content in the field theory.

Finally, this chapter concludes the study of classical, Liouvillian integrability on string

theory vacua. We mostly utilized our methods of non-integrability and, indeed, proved

several classes of supergravity vacua as non-integrable, but, in the end, we also managed to

spot a particular integrable AdS7 vacuum through the λ-deformations. Integrability itself is

quite rare, considering the rich variety of supergravity vacua, and, certainly, relatively hard

to prove, all of which facts render the tools of non-integrability reasonably appealing. As
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far as those tools are concerned, an important contribution comes from Chapter 1 where

the proper use of Kovacic’s theorem was illustrated, an analytic method that can handle

parametrized systems of equations. In the context of string theory, whenever we have a

parametrized supergravity family of solutions (where the parameters range over the various

vacua in a family), this method informs us about possible, integrable solutions. Nonetheless,

despite its rich structure in the physics of the string, integrability is, most notably, important

for field theory. This stems from the fact that integrable field theories are solvable for any

value of their coupling constant. In other words, the exploration of integrable structures in

string theory is immensely useful in the context of holography, through which we can spot

integrable CFTs, a project, if not impossible, otherwise quite demanding on its own right.
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E Analytic non-integrability

We begin by examining the NVE for ϕ(τ), following the concepts and notation of Chapter 1

and its Appendix A. That is, as in (3.39), we allow for small fluctuations ϕ(τ) = 0 + εf(τ)

in the ϕ(τ) equation of motion in 3.33 and acquire

f̈(τ) + B(τ)ḟ(τ) +A(τ)f(τ) = 0

Bf (τ) =
f ′1(z)

f1(z)

E

4π

∣∣∣∣
zsol

=
E

8π

Å
α′

α
− α′′′

α′′

ã∣∣∣∣
zsol

(3.69)

Af (τ) = µ2

Looking forward to apply Kovacic’s theorem [45], we follow Chapter 1 and change variables

as y = e
1
2

∫
Bx in the above differential equation, deducing

x′′ = Vx x, Vx =
1

4

(
2B′y + B2

y − 4Ay
)
, (3.70)

where y is Liouvillian if and only if x is Liouvillian and, thus, no generality is lost. In this

new variable, the NVE for ϕ is characterized by

Vf (τ) =
−36a4

3E
8µ2τ8 − 384a2a

3
3E

7πµ2τ7 + . . .

4(4a2π + 3a3Eτ)2 (64a0π3 + 16a1Eπ2τ + 4a2E2πτ2 + a3E3τ3)2 (3.71)

where we have replaced z = z(τ) = zsol(τ) inside α(z). Kovacic’s automatic (software)

algorithm fails to solve this as it is, which means that the system is non-integrable for a

generic choice of its parameters. Hence, we have to employ the analytic method of the

theorem, in order to decide whether there are any special choices for the parameters ai that

lead to Liouvillian solutions.

Before even going into the pole structure of Vf , we may just notice that both the nu-

merator and denominator contain terms with τ8, which means that the order of Vf (τ) at

infinity is zero, as Vf (τ) ∼ −µ2 when τ → ∞. Hence, following Kovacic’s theorem in Ap-

pendix A, Vf may only satisfy the first and second of Kovacic’s criteria and not the third

one, which justifies our choice to pick the ϕ-NVE (instead of the rest) as the simplest case to

work on. Going into the pole structure of Vf , except the obvious pole at τ = −4a2π/3a3E,

includes taking the cubic polynomial to a depressed form, τ3 + pτ + q and then follow Car-
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dano’s formula for cubic equations. Finding those poles (which are given in terms of cubic

roots), following the steps in Kovacic’s analytic method and respecting the constraints on

the parameters ai opposed by our supergravity construction (through and around condition

(3.6)), we deduce that no Liouvillian solutions may occur. In other words, there is not even

a single choice for the parameters ai that leads to integrability. The procedure is quite long

and the expressions not enlightening at all, but the quality of the process is identical to the

calculations in Appendix C of Chapter 1 and, thus, we omit its details here.

F Integrability on the Symmetric σ-model

Classical Liouvillian integrability for a Hamiltonian dynamical system, or for a field theory,

emerges over the existence of a flat Lax connection L, that is

dL+ L ∧ L = 0 , (3.72)

on the cotangent bundle T ∗M (phase space), together with the involution of all the analogous

independent conserved quantities. Generally, though, there is no particular prescription for

finding such a connection and one has to rely on their inspiration to address the problem.

However, given a 2-dimensional scalar field theory in a homogeneous space for a connected

semisimple Lie group G, the action can be reformulated in terms of its underlying group

structure as

SPCM ≡ −
κ2

π

∫
Tr jaj

a , (3.73)

where the Lie-algebra-valued current j ∈ g(G),

j± ≡ g−1∂±g = ji±ti, g ∈ G, ti ∈ g , (3.74)

is defined over the group element g = eX
iti , that is all the point transformations on the scalar

field worldsheet, on the group manifold. This one-form current is by construction flat and

its flatness condition, together with the equations of motion,

∂+j− + ∂−j+ = 0,

∂+j− − ∂−j+ + [j+, j−] = 0 ,
(3.75)
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may be combined in a parametrized Lax connection

L± =
j±

1∓ Z
, (3.76)

where Z ∈ C is the spectral parameter, whose flatness condition, eq.(3.72), is equivalent to

the equations of motion, eq.(3.75). Then, one also defines the holonomy of L for constant

time, i.e. the monodromy

M(Z) = P exp

∫
L , (3.77)

which defines a parallel transport on the group manifold Σ(G) and whose eigenvalues are

conserved, which means that by expanding in Z at infinity we can obtain an infinite set of

conserved charges. This is known in the literature as the Principal Chiral Model (PCM), it

exhibits a global GL ×GR symmetry and it is obviously integrable.

Moreover, the σ-model (in the presence of a B2 field) in a homogeneous space for a group

G can be represented by the WZW model as

SWZW,k =
k

2π

∫
∂B

Tr jaj
a +

k

6π

∫
B
εabc Tr jajbjc, j ∈ g(G), (3.78)

which exhibits an GL,cur × GR,cur current algebra symmetry, it is an exact CFT and thus

integrable.

The situation becomes even more elegant in the case of the non-linear σ-model in a

symmetric homogeneous space. Symmetric spaces are backgrounds with rich underlying

group structure, which can be exploited in a natural way to make the integrability of the

σ-model manifest. From the group theoretical point of view, a symmetric space is a coset

space G/H, where the isometry G is a connected Lie group and the subgroup H ⊂ G is its

isotropy group. Then the σ-model (without a B-field) can be recast as a PCM with currents

projected on the coset algebra. The WZW model on a symmetric coset, on the other hand,

does not correspond to the σ-model on that space (except in the case of a group manifold)

and exhibits alternative interpretations.

In what follows we will illustrate the classical integrability of the string worldsheet on a

symmetric space. To study this in more detail see [44], for a more general review of integra-

bility in the context of string theory [117] and AdS/CFT correspondence [24].
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Integrability of AdS space

The σ-model on AdS space is integrable. We know this as a fact, since, as we illustrated

above, the σ-model is integrable on every symmetric homogeneous space. Of course, an

uneasy mind shall always ask for an explicit Lax formulation given a specific background,

something that proves to be quite challenging as we climb higher in dimensions of the target

space. The difficulty rests in the fact that finding the gauged group element (matrix) of the

coset space becomes an involved task in higher dimensions.

Nevertheless, if one desires to make this portrait more delicate, they shall preserve the

rich underlying group structure of the PCM, adopting at the same time a more geometric

point of view.

In particular, one can realize the element of a group G abstractly as

g ≡ expXi ti , (3.79)

where ti ∈ g(G) and Xi parametrize the adjoint space, which produces another formulation

of the PCM action as

SPCM = −κ
2

π

∫
d2σ ηij e

i
µ(X) ejν(X) ∂+X

µ∂−X
ν , (3.80)

where ηij = 〈ti, tj〉 is the metric on the Lie algebra g, defined by [ti, tj ] = fij
ktk, while the

vielbein

eiµ =
∂Xi

∂Xµ
, (3.81)

represents the relationship between the adjoint and the target space2.

Therefore, in this context, the vielbeins eiµ represent the components of the symmetry

transformations of G or, equivalently, the Killing vectors of the manifold at hand. Subse-

quently, the vielbein is realized as the Maurer-Cartan connection

ji± ≡ ei± = eiµ ∂±X
µ, (3.82)

where j± = ji±ti, and satisfies the structural flatness condition

2i runs in the adjoint space of G while µ spans the target space dimensions. The vielbeins represent a
relationship between different bases, i.e. they express an object in different frames. As such, this relationship
can exist between any kind of spaces.
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∂µe
i
ν − ∂νeiµ + f ijk e

j
µ e

k
ν = 0. (3.83)

As in the standard case, this flatness identity together with the equations of motion of the

PCM

∂+

(
eiµ ∂−X

µ
)

+ ∂−
(
eiµ ∂+X

µ
)

= 0, (3.84)

construct the Lax connection

L± =
j±

1∓ Z
, (3.85)

where Z ∈ C is the spectral parameter, and whose flatness condition

[∂+ + L+, ∂− + L−] = 0, (3.86)

is equivalent to equations of motion.

Thus, we conclude that in order to specify a particular Lax connection for the σ-model

on a symmetric space, one only needs the Killing vectors of the background manifold.3

The reader could argue that the Lax connection eq.(3.85) works only for the PCM on a

group G, since it is not of the appropriate coset form, i.e. it doesn’t project on separately

the isotropy and coset algebras. However, this is not the case since, as we argued above, the

Killing vectors are a special coset parametrization, constrained by the target space metric.

In other words, as the Lax connection is defined up to a gauge transformation, one could

gauge transform our Lax eq.(3.85) into a traditional coset Lax connection.

Next, finding the Killing vectors is, thankfully, a simple task for a symmetric space. This

is because a symmetric space can always be realized as an embedding in a higher dimensional

space, the former inheriting most of the isometries of the latter. A standard example is S2

which inherits the SO(3) isometries from R3 (but not the translations).

AdSn space is a hypersurface in R2,n−1 onto which only the Lorentz group is tangent.

Therefore, the boosts and the rotations of R2,n−1,

Vi ≡ ViA∂Y A , (3.87)

3One could be naively troubled about the fact that a symmetric space has less degrees of freedom than
the number of its Killing vectors, e.g. S2 has two d.o.f. and three Killing vectors. In reality, the Killing
vectors - the space isometries - are constrained by the metric and encode the actual degrees of freedom.
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where Y A, A = 0, ..., n are the embedding coordinates which build the hypersurface

ηABY
AY B = −l2, (3.88)

with ηAB =diag(−1, 1, ...,−1), are inherited into AdSn as the Killing vectors

ξi ≡ ξiµ∂µ = gµν
Ç
∂Y A

∂xν
VA

å
i

∂µ , (3.89)

where xµ, µ = 0, ..., n − 1 are the AdSn coordinates and gµν its metric, while i runs in the

vector space. By choosing one of the solutions to eq.(3.88), like the global embedding

Y 0 = l cosh ρ cos t,

Y j = l sinh ρ Ωj , j = 1, ..., n− 1,

Y n = l cosh ρ sin t,

(3.90)

where Ωj are the Euclidean coordinates for the unit sphere (ΩjΩj = 1), one can find each

one of the n(n+ 1)/2 Killing vectors of AdSn.

It’s worth emphasizing that the Killing vectors that are inherited into a symmetric space,

through an embedding, are constrained by the metric tensor. This means that while their

number (number of isometries) exceeds the dimension of the space, in reality they encode

the actual degrees of freedom. In other words, the PCM metric

Gµν = ηij e
i
µ e

j
ν ∂+X

µ∂−X
ν = ηij ξ

i
µ ξ

j
ν ∂+X

µ∂−X
ν , (3.91)

matches the target space metric (it has not redundant degrees of freedom). Thus, while in

a matrix realization of the PCM we would, traditionally, have to gauge the isotropy group

H out of the isometry group G to obtain the element of the coset G/H, the Killing vectors

constitute a natural environment to describe a symmetric space.

Since we have identified the Killing vectors ξi of the background space of the PCM with

the vielbeins ei in eq.(3.80), then one can explicitly check that the equations of motion of

this action, eq.(3.84), are equivalent to the standard equations of motion of the σ-model in

the same background, as they should. Therefore, the Killing vectors can be used to build up

an explicit Lax connection through equations (3.82) and (3.85), as promised.
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The AdS3 example

While AdSn can give frustrating results as we climb up the ladder of n, AdS3 constitutes

a relatively compact example of the above methodology. The reader should not be worried

about the special case of AdS3, it being a group manifold. As we argued above, our construc-

tion holds for every symmetric coset and, in fact, it was also tested for higher dimensions,

successfully as it should.

Choosing a global AdS3 embedding in R2,2 as

Y 0 = cosh ρ cos t,

Y 1 = sinh ρ cos t sinφ,

Y 2 = sinh ρ cos t cosφ,

Y 3 = cosh ρ sin t,

(3.92)

then the six corresponding Killing vectors are

ξ1 = ∂t,

ξ2 = ∂φ,

ξ3 = tanh ρ sin t sinφ ∂t + coth ρ cos t cosφ ∂φ + cos t sinφ ∂ρ,

ξ4 = tanh ρ sin t cosφ ∂t − coth ρ cos t sinφ ∂φ + cos t cosφ ∂ρ,

ξ5 = tanh ρ cos t sinφ ∂t + coth ρ sin t cosφ ∂φ + sin t sinφ ∂ρ,

ξ6 = tanh ρ cos t cosφ ∂t − coth ρ sin t sinφ ∂φ + sin t cosφ ∂ρ,

(3.93)

where the curved indices of the components ξi
µ can be lowered, as usual, with the global

AdS3 metric gµν . These Killing vectors ξi, as discussed before, are the vielbeins ei of the

PCM action eq.(3.80) that construct the flat current eq.(3.82), namely

ji± = ξiµ ∂±X
µ, (3.94)

from which the Lax connection in eq.(3.85) is built as

Li± =
ji±

1∓ Z
. (3.95)

The flatness eq.(3.86) of the PCM Lax connection results in two sets of equations, the first
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being the flatness eq.(3.83) of the Maurer-Cartan current, which is a structural fact as it can

be easily checked by the reader. This is an identity to be expected, since this flatness equation

can be realized as just the Cartan’s first structure equation applied on Killing vectors.

The second set of equations are the equations of motion eq.(3.84) of the PCM, the

necessary condition for an integrable model.

If one desires to further validate all the above, all they have to do is to secure the fact that

the equations of motion of the PCM coincide with the equations of motion of the bosonic

string, on AdS3.

For that purpose, we use the AdS3 Killing vectors, eq.(3.93), on the PCM equations of

motion , eq.(3.84), that is

∂+

(
ξiµ ∂−X

µ
)

+ ∂−
(
ξiµ ∂+X

µ
)

= 0. (3.96)

In particular, ξ1 = e1 (which lifts to a boost in the Y 0 − Y 3 plane of R2,2) gives

cosh ρ ∂+∂−t = − sinh ρ (∂+ρ ∂−t+ ∂+t ∂−ρ) , (3.97)

which is the correct equation of motion for t, while ξ2 = e2 (which lifts to a rotation in the

Y 1 − Y 2 plane of R2,2) gives

sinh ρ ∂+∂−φ = − cosh ρ (∂+ρ ∂−φ+ ∂+φ ∂−ρ) , (3.98)

which is the correct equation of motion for φ. Last but not least, ξ6 = e6 (which lifts to a

rotation in the Y 2 − Y 3 plane of R2,2), supplemented with the above equations for t and φ,

gives

∂+∂−ρ = cosh ρ sinh ρ (∂+φ ∂−φ− ∂+t ∂−t) , (3.99)

which, of course, is the correct equation of motion for ρ.

In accordance with what we have discussed so far, the fact that it took just three of the

six Killing vectors of AdS3 to deduce the equations of motion is just another manifestation

of the actual degrees freedom encoded in the Killing vectors.
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Part II preface

In this second part, we employ holography and, in particular, the AdS/CFT duality,

in order to explore the features of certain supersymmetric quantum field theories in two

spacetime dimensions. This part is dedicated to the publication [4].

In Chapter 1 of the second part, the final chapter of this thesis, we study the duality

between AdS3 massive Type IIA supergravity vacua and two-dimensional N = (0, 4) quiver

structures. More precisely, after categorizing all kinds of gravity solutions, we demystify the

ones that seem to reflect anomalous gauge theories. In particular, we prove that there are

bound states of D-branes on the boundary of the space which provide the dual quiver theory

with exactly the correct amount of matter in order to cancel its gauge anomalies. Then

we propose that the structure of the field theory should be complemented with additional

bifundamental matter, which we argue it may only be N = (4, 4) hypermultiplets. Finally,

we construct a BPS string configuration and use the old and new supersymmetric matter

to build its dual ultraviolet operator. During this holographic synthesis, we uncover some

interesting features of the quiver superpotential and associate one of the proposed operators

with the same classical mass of its dual BPS string.





Chapter 1

Holography for two-dimensional QFT

1 Introduction

The AdS/CFT duality constitutes a primo realization of the holographic principle while it

ties string theory to the most well-studied particle theories we possess. In other words, besides

being a conceptual breakthrough on its own right, holography brings strong confidence that a

complete quantum theory of gravity shines upon the physics of the superstring. Nonetheless,

the power of this duality does not limit itself in supporting quantum gravity but also unravels

the properties of certain supersymmetric quantum field theories that otherwise are yet out

of our reach through the standard methods or techniques.

While over the years many type II supergravity solutions have made their appearance

in the holographic arena, there is a certain kind that has recently been popping up more

frequently and has become quite popular. These are supergravity backgrounds whose entirety

of fields is defined by functions of the coordinates of the internal manifolds and are dual to

supersymmetric quiver gauge theories. These are the kind of vacua that we considered in

Chapter 1 and 3. Studying those backgrounds ultimately boils down to understanding their

defining functions. The dual physics of these vacua is generally described by SCFTs, which

for d < 4 are assumed to be strongly coupled IR fixed points that flow to better-understood

ultraviolet quiver field theories through the renormalization group equations. The latter are

defined on supersymmetric multiplets of fundamental fields, whose interactions are usually

well-defined and provide an understandable particle theory.

SCFTs exist exclusively in d < 7 dimensions [110] and there has been intensive work

on all of their diversity, both field theoretically and holographically. In six dimensions, an

infinite family of N = (0, 1) theories has been discussed in [1, 36–43, 77, 97–107, 109], as

in Chapter 3. In five dimensions, solutions in a variety of supersymmetry were analyzed

in [118–125]. For N = 2 supersymmetry in four dimensions there has been a fruitful study

in [62,111,126–130], while three dimensional N = 4 theories were discussed in [131–135].

The case of AdS3 supergravity solutions is somewhat unique. Three-dimensional gravity

as well as the algebra of two-dimensional field theory make the study of AdS3 holography

115
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of particular interest and this is reflected on the rich literature regarding the subject, some

representatives of which are [31,136–150].

Another family of such AdS3 solutions was recently introduced in [31–34]. Those were the

vacua considered in Chapter 1 and which we are about to consider in this chapter too, in more

detail this time, focusing on different aspects of their structure. These massive IIA vacua

are associated with D2-D4-D6-D8 Hanany-Witten brane set-ups [68] and were first build

in [31]. The D2 and D6-branes exist as fluxes and they are dual to gauge symmetries, while

the D4 and D8-branes live explicitly in the background and provide dual flavor symmetries.

In [33] a particular class of them that exhibits the local geometry AdS3×S2×CY2 × R was

distinguished and was proposed to be dual to two-dimensional quiver quantum field theories

with N = (0, 4) supersymmetry. Some holographic aspects of these quivers were studied

in [69,151].

The defining functions of a supergravity solution render the form of the fields on the

gravity side of the holographic duality, while they accordingly shape the exact structure of

the dual quiver field theory. In order to validate the duality and study the whole range of its

potential, one should explore the various properties of these functions and confirm that every

single time they make perfect sense on their dual field-theoretical attribution. This makes

up the starting point of this chapter, where we take the most unusual choice of such defining

functions which seems to give an anomalous dual quantum field theory. By carefully focusing

on the right regions of the supergravity background we discover D-branes that are realized

as extra matter with new global symmetries in the dual quiver structure, providing exactly

the flavors needed to cancel the apparent gauge anomalies. Due to strong Ramond-Ramond

fluxes on the boundary of the space these D-branes come exclusively in bound states, forming

polarizations that provide flavor symmetries in an idiosyncratic way.

Observing the quiver structure of the theories under consideration, we realize that there

must be some linking multiplets missing. Such multiplets bind color D2 with flavor D4-branes

and color D6 with flavor D8-branes, while it is shown that those may only be N = (4, 4)

hypermultiplets corresponding to suspended superstrings between D2 and D4-branes or D6

and D8-branes in the ancestral Hanany-Witten set-up.

The existence of this new matter complements the quiver structure, while it seems to be

also vital in the construction of the dual operator for a particular BPS string state. To be

precise, after picking a semiclassical string configuration connecting two stacks of D-branes

in the background, we prove that this is a BPS state and propose a string of scalar fields

as its dual UV operator. While two-dimensional scalars have mass dimension zero implying

a vanishing conformal dimension for that operator, we conclude that the latter property is

attained non-perturbatively. That is, we bring to the surface the superpotential of the UV

quiver theory to find interactions between the scalars inside the operator, supporting the idea

of a totally non-perturbative anomalous dimension at the IR of the RG flow. Next, we find
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that scalars inside the vector superfields should obtain a VEV through a Fayet-Iliopoulos

term due to the U(1) theory inside each U(N) gauge group. Superpotential interactions

between the vector and hypermultiplets then dictate that bifundamental matter acquires a

mass, ultimately associating the dual UV operator with a classical mass equal to that of the

BPS string. Since the operator mass is a sum of all the individual scalar field masses, this

renders the operator very much alike to a classical bound state of particles dual to a bound

string state between D-branes. Finally, we construct an alternative choice of a dual operator,

made out of spinor scalars which ultimately synthesize a bosonic quantity, which also seems

to be a good holographic fit for the dual BPS string state.

The plan of this chapter is as follows. In Section 2 we review the massive IIA supergravity

backgrounds and quantum field theory first constructed in [31]. While the basics of these

vacua are repeated from Chapter 1, we go beyond them and present new features, focusing

on the field theory aspects of the duality. We also give a brief but complete summary of

two-dimensional N = (0, 4) quantum field theory that is useful in understanding gauge

anomalies, R-current charges and superpotentials between multiplets, all basic ingredients

for the self-containment of the present work. In Section 3 we study special solutions of

vacua that naively give anomalous quiver theories and show how these are canceled by flavor

symmetries produced by dielectric branes on the boundary of the space. In Section 4 we

illustrate that new matter should be added in the structure of the field theory in the form

of N = (4, 4) hypermultiplets. Finally, in Section 5 we construct a BPS string soliton and

propose a couple of dual operators, one of which both seems to be associated with the same

classical mass of the dual soliton.

2 AdS3 massive IIA vacua vs N = (0, 4) theory

2.1 The supergravity solutions

In Chapter 1, a new family of AdS3 massive IIA supergravity solutions with N = (0, 4) super-

symmetry was introduced. A subclass of these solutions with local geometry AdS3×S2×CY2×Iρ

was conjectured in [32–34] to be dual to N = (0, 4) quiver quantum field theories in two

dimensions. These vacua have an NS NS sector, in string frame,

ds2 =
u√
h4h8

Å
ds2

AdS3
+

h4h8

4h4h8 + (u′)2
ds2

S2

ã
+

√
h4h8

u
dρ2 +

 
h4

h8
ds2

CY2
,

B2 =
1

2

Å
2kπ − ρ+

uu′

4h4h8 + (u′)2

ã
vol(S2) , e−φ =

h
3
4
8

2h
1
4
4

√
u

»
4h4h8 + (u′)2 ,

(1.1)
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where u, h4, h8 are functions of the coordinate ρ, defining this family of supergravity back-

grounds. Note that we also allow for large gauge transformations B2 → B2 +πk volS2 , every

time we cross a ρ-interval [2πk, 2π(k + 1)], for k = 0, ..., P . The RR sector reads

F̂0 = h′8 , F̂2 = −1

2

(
h8 − h′8(ρ− 2α′πk)

)
vol(S2) ,

F̂4 =

Å
∂ρ

Å
uu′

2h4

ã
+ 2h8

ã
dρ ∧ vol(AdS3)− h′4 vol(CY2) ,

(1.2)

where F̂ = e−B2 ∧ F is the Page flux. These functions are locally constrained as

h′′4 = h′′8 = u′′ = 0 , (1.3)

where the first two equations come from the Bianchi identities, while the last comes from

supersymmetry. This results in piecewise linear functions

h4(ρ) =


α0 + β0

2πρ 0 ≤ ρ ≤ 2π

αk + βk
2π (ρ− 2πk) 2πk ≤ ρ ≤ 2π(k + 1) k = 1, ..., P − 1 ,

αP + βP
2π (ρ− 2πP ) 2πP ≤ ρ ≤ 2π(P + 1)

(1.4)

h8(ρ) =


µ0 + ν0

2πρ 0 ≤ ρ ≤ 2π

µk + νk
2π (ρ− 2πk) 2πk ≤ ρ ≤ 2π(k + 1) k = 1, ..., P − 1 ,

µP + νP
2π (ρ− 2πP ) 2πP ≤ ρ ≤ 2π(P + 1)

(1.5)

while u = a + bρ globally, for supersymmetry to be preserved. Note that P, αk, µk have to

be large for the supergravity limit to be trusted, while continuity of these equations along ρ

implies µk =
∑k−1

i νi and αk =
∑k−1

i βi.

Nonetheless, the defining functions have to be chosen with some care for the space to

properly close on the ρ-dimension. Considering a linear u function, both h4, h8 need to be

zero at the ρ = 0 endpoint whereas at ρ = 2π(P + 1) ≡ ρf only one of them needs to vanish.

For a constant u function, on the other hand, just one of them has to vanish at any endpoint.

The study in [32,33] focused exclusively on solutions where both of these defining functions

vanish at the endpoints, i.e. for α0 = µ0 = a = 0 and νP = −µP , βP = −αP in the above

definitions (1.4) and (1.5), a particular choice being represented by Figure 1.1. In Section 3

of the present chapter, we investigate all other possible cases, where h4 and h8 generically

do not vanish at the endpoints of the ρ-coordinate.
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Figure 1.1: An example of piecewise linear functions h4, h8 and of u, defining a particular
supergravity background. Here, both h4 and h8 vanish at the endpoints of the ρ-dimension.

This particular choice of backgrounds − where h4 and h8 are both zero at the endpoints

of the ρ-dimension − start in a smooth fashion on this coordinate as the non-Abelian T-duals

of AdS3 × S3 × CY2 [31]. Near the endpoint ρ = 2π(P + 1) − x with x → 0, on the other

hand, the space becomes

ds2 ∼ s1

x
ds2

AdS3
+ s3ds2

CY2
+
x

s1

(
dx2 + s1s2ds2

S2

)
, e−4φ = s4x

2 , (1.6)

where si are constants. According to the extremal p-brane solutions, classified in Appendix

G, this space is a superposition of O2/O6 planes, where the O2 are smeared over O6.

In order to gain a better grip on the parameters of the system, let us consider the RR

charges on the intervals [2πk, 2π(k + 1)]. For α′ = gs = 1, a Dp-brane is charged under

QDp = (2π)p−7
∫

Σ8−p
F̂8−p, thus in our set-up they read

QD2 =
1

32π5

∫
CY2×S2

F̂6 = h4 − h′4(ρ− 2πk) = αk , QD4 =
1

8π3

∫
CY2

F̂4 = βk ,

QD6 =
1

2π

∫
S2
F̂2 = h8 − h′8(ρ− 2πk) = µk , QD8 = 2πF0 = 2πh′8 = νk ,

(1.7)

Also, QNS = 1
4π2

∫
ρ×S2 H3 = 1, while we used that vol(CY2) = 16π4. These results imply

that αk, βk, µk, νk are integers. A study of the Bianchi identities in the next section reveals

that no explicit D2 and D6 branes are present in the geometry, just their fluxes1. This asso-

ciates their amount, αk and µk respectively, with the ranks of the (color) gauge groups in the

1This is true when the worldvolume gauge field on the D8, D4 branes is absent. When it is on, as we are
about to see, there is D6 and D2 flavor charge induced on the D8’s and D4’s.
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Table 1.1: 1
8 -BPS brane set-up, generator of our supergravity backgrounds. The dimensions

(x0, x1) are where the 2d CFT lives. The dimensions (x2, ..., x5) span the CY2, on which
the D6 and the D8-branes are wrapped. The coordinate x6 is associated with ρ. Finally
(x7, x8, x9) are the transverse directions realizing an SO(3)-symmetry associated with the
isometries of S2.

dual field theory. On the other hand, as restated, D8 and D4 branes do exist in the geometry

and modify the Bianchi identities by a delta function. Thus, βk and νk are associated with

the ranks of the (flavor) global symmetries of the dual field theory.

2.2 Bianchi identities

The above story is conjectured [32–34] to be generated by a certain Hanany-Witten brane

set-up [68]. However, in this case the D-branes are not distributed across flat space as usual

but along flat dimensions and a CY2 manifold instead, as indicated by Table 1.1.

The family of supergravity backgrounds (1.1) comes to be as the near-horizon limit of

this brane set-up, given always a large portion of each of the D-branes. Nevertheless, not all

D-branes are explicitly present in the near-horizon limit of a Hanany-Witten set-up; some

are there while others exist only as RR fluxes. This distinction is immensely important to

Section 3 and, thus, to clarify the situation we turn our attention to the Bianchi identities.

We begin by noticing that dF0 = h′′8dρ and dF̂4 = h′′4dρ ∧ vol(CY2) where, according to

the Bianchi identites encoded in (1.3), h′′4 = h′′8 = 0 at a generic point along ρ. However,

h4 and h8 are piecewise functions, given by (1.4) and (1.5), which means that at the points

where their slope changes we get

h′′4 =

P∑
k=1

Å
βk−1 − βk

2π

ã
δ(ρ− 2kπ) , h′′8 =

P∑
k=1

(νk−1 − νk
2π

)
δ(ρ− 2kπ) . (1.8)
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These give the source equations

dF0 = h′′8 dρ , dF̂6 = df̂6 =
1

2
h′′4 (ρ− 2kπ) dρ ∧ vol(S2) ∧ vol(CY2) ,

dF̂4 = df̂4 = h′′4 dρ ∧ vol(CY2) , dF̂2 = df̂2 =
1

2
h′′8 (ρ− 2kπ) dρ ∧ vol(S2) ,

(1.9)

indicating that there are localized D4 and/or D8 branes at points ρ = 2kπ, whenever the

slope between the intervals [k− 1, k] changes. In fact, the D4-branes are smeared over CY2,

while note that fp represents the magnetic part of a RR flux Fp. We also use that xδ(x) = 0,

which yields that there are no sources present for the D6 and D2-branes. This is because of

the large gauge transformations of the Kalb-Ramond field.

The above source equations suggest that the D2 and D6-branes play the role of color

branes, while the D4 and D8-branes that of flavor branes. Since gauge transformations

vanish at infinity, it is the gauge fields fluctuating on the D4 or D8-branes in the bulk that

are realized as global (flavor) symmetries in the dual field theory. Ultimately, the essential

feature of the Bianchi identities which becomes crucial in the forthcoming analysis is that

the derivatives of h4 and h8 source D4 and D8-branes, respectively.

In the above source equations, however, we have not considered the gauge fields living

on the D4 and D8 branes. Switching on a gauge field f̃2 on both kinds of D-branes, we form

the gauge invariant field strength F2 = B2 +λf̃2, where λ = 2πl2s , and the Bianchi identities

now become

df̂2 = λf̃2 ∧ dF0 ,

df̂4 = h′′4dρ ∧ vol(CY2) +
λ2

2
f̃2 ∧ f̃2 ∧ dF0 ,

df̂6 = λf̃2 ∧
(
h′′4dρ ∧ vol(CY2)

)
+
λ3

3!
f̃2 ∧ f̃2 ∧ f̃2 ∧ dF0 .

(1.10)

In regard to the gauge field dynamics, it being of order l2s , one may neglect it and keep

only the zeroth order contribution, that is the Bianchi identities (1.9) that give only D8 and

D4-branes; this is what was assumed in [32]. In Section 3 of the present chapter, however,

we deal with cases where the gauge field does become important and completely redefines

the supergravity picture on the boundaries of the space.
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Figure 1.2: The building block of our quiver field theories. The solid black line represents
a N = (4, 4) hypermultiplet, the maroon line a N = (0, 4) hypermultiplet and the dashed
line represents a N = (0, 2) Fermi multiplet. Inside the node representing an SU(N) gauge
theory lives a N = (4, 4) vector multiplet. The groups SU(P ), SU(Q) and SU(R) can be
gauge or global symmetries.

2.3 N = (0, 4) SCFT

The conjecture of [33] is that the above family of supergravity vacua is dual to a set of two-

dimensional SCFTs with N = (0, 4) supersymmetry. These SCFTs are considered to be the

low-energy fixed points on the RG flows of well-defined quantum field theories. Here, we just

introduce the basic idea on those better-understood UV particle theories, ultimately aiming

to cancel gauge anomalies that shall arise and also to unravel some interesting properties of

the quiver superpotential. The N = (0, 4) superfields are summarized in Appendix H, at the

end of this chapter, while a more thorough analysis on this kind of supersymmetry is held

in Appendix 1, at the end of the thesis.

Gauge anomalies

The quiver gauge theory of [33] may be outlined by its fundamental building block of su-

perfields, given by Figure 1.2. The field content and action of those multiplets is given in

Appendix H.1 and, besides giving basic insight on the quiver structure, it is used in Section

5 to build an operator and challenge its interacting properties.

Each SU(N) gauge theory living on N D2 or D6 color branes is represented by a gauge

node that yields a N = (4, 4) vector multiplet. In N = (0, 2) language, each gauge node

includes a vector, a Fermi and two twisted chiral multiplets in the adjoint representation

of SU(N). A gauge node connects with other (gauge or flavor) nodes which in turn rep-

resent theories of (gauge or global) symmetry groups SU(P ), SU(R) and SU(Q), providing

altogether a quiver network that reflects superstrings suspended between branes.

In the notation of Figure 1.2, the SU(N) gauge node connects to the SU(P ) (gauge

or flavor) node through a N = (4, 4) hypermultiplet. In N = (0, 2) language, each such
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hypermultiplet includes two Fermi and two chiral multiplets. Since there are NP kinds of

strings between the SU(N) and the SU(P ) brane stacks, we realize 2NP of each of these

Fermi and chiral multiplets. The SU(N) gauge node also connects to a SU(R) node, through

a N = (0, 4) hypermultiplet. That is, through two N = (0, 2) chiral multiplets. Since there

are NR kinds of strings between the SU(N) and the SU(R) brane stacks, we realize 2NR

chiral multiplets connecting the two nodes. In the same manner, the SU(N) gauge node

connects to a SU(Q) node, through NQ N = (0, 2) Fermi multiplets. All that being said,

we may consider the superfield content of Appendix H.1 to find the overall anomaly of the

gauge group SU(N) and impose that it cancels.

In two dimensions, quantum anomalies are one-loop-exact products of two point current

correlations. The calculation is quite simple [152, 153] and, given a non-Abelian symme-

try acting on ψ+i right-moving and λ−a left-moving fermions with charges QRi and QLa

respectively, it gives

< JAµ J
B
ν > ∼ Tr

î
γ3J

A
µ J

B
ν

ó
= Tr

î
TATB

ó(∑
i

Q2
Ri −

∑
a

Q2
La

)
δµν , (1.11)

where TA are the non-Abelian generators. For SU(N), the algebra has a metric

Tr
î
TATB

ó
= NδAB or Tr

î
TATB

ó
=

1

2
δAB , (1.12)

depending on the generators being in the adjoint or in the (anti-) fundamental representation,

respectively. Obviously, no mixing between non-Abelian currents takes place.

Since gauge anomalies need to be always canceled for a consistent quantum field theory,

chiral theories like ours require us to carefully study the anomaly contribution of each mul-

tiplet. Considering the field content previously presented, the SU(N) anomaly coming from

the N = (0, 2) superfields comes as follows:

• Vector superfield: they are in the adjoint representation of the gauge group SU(N) and

thus they contribute with a factor of −N .

• Chiral superfield: if they are in the adjoint representation of the gauge group SU(N)

they contribute with a factor of N . If they are in the (anti-) fundamental representation

they contribute with a factor of 1
2 .

• Fermi superfield: if they are in the adjoint representation of the gauge group SU(N)

they contribute with a factor of −N . If they are in the (anti-) fundamental represen-

tation they contribute with a factor of 1
2 .
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Having established all the gauge anomaly contributions, the next step is to use them

on our kind of quantum field theories and see if there are any restrictions coming off the

anomaly cancellation condition. This is a simple task since the proposed holographic duality

describes a particular building block of supersymmetric multiplets that supports our quiver

field theories. That is the one on Figure 1.2.

With the quiver building block in mind, Figure 1.2, we may calculate the overall anomaly

of the gauge group SU(N) and impose that it cancels. Of course, the same job is to be done

for each gauge group in a quiver field theory. For SU(N), as in Figure 1.2, the contributions

come from the multiplets that couple to its gauge current, that is:

• N = (4, 4) vector multiplet: the adjoint fields contribute as 2N−N−N = 0. This is as

it must since this is a vectorial multiplet, with equal amount of right and left-moving

fermions.

• N = (4, 4) hypermultiplet: the bifundamental fields connecting to SU(P ) contribute

as 2NP (1
2 −

1
2) = 0. Again, this is expected since this hypermultiplet is too vectorial.

• N = (0, 4) hypermultiplet: this connects to SU(R) and contributes as 2NR 1
2 = NR

• N = (0, 2) Fermi multiplet: it connects to SU(Q) and contributes as NQ(−1
2).

Requiring the gauge anomaly cancellation, we reach the condition

2R = Q , (1.13)

which analogously must hold for each gauge group in a consistent quiver gauge theory.

If all the above is to hold, then the anomaly cancellation condition must agree with the

dual situation on the supergravity side of the story. That is, since anomaly cancellation

requires certain relationships between the ranks of the gauge and global symmetry groups,

the amounts of branes (represented field theoretically by these ranks) in the supergravity

side should be in total agreement with (1.13). This is indeed the case. Choosing an arbitrary

supergravity solution where both h4 and h8 vanish at the end points of the ρ-dimension as

h4(ρ) =


β0

2πρ 0 ≤ ρ ≤ 2π

(β0 + β1 + . . .+ βk−1) + βk
2π (ρ− 2πk) 2πk ≤ ρ ≤ 2π(k + 1) k = 1, ..., P − 1 ,

αP − αP
2π (ρ− 2πP ) 2πP ≤ ρ ≤ 2π(P + 1)

(1.14)



AdS3 massive IIA vacua vs N = (0, 4) theory 125

Figure 1.3: A standard example of a quiver field theory, dual to the proposed family of
massive type IIA AdS3 supergravity solutions. This particular quiver theory reflects the
solution defined by the functions (1.14) and (1.15). Circle nodes indicate gauge groups while
square ones indicate global (flavor) symmetries. This figure is schematic in the sense that
flavor nodes are actually far apart in the supergravity limit.

h8(ρ) =


ν0
2πρ 0 ≤ ρ ≤ 2π

(ν0 + ν1 + . . .+ νk−1) + νk
2π (ρ− 2πk) 2πk ≤ ρ ≤ 2π(k + 1) k = 1, ..., P − 1 ,

µP − µP
2π (ρ− 2πP ) 2πP ≤ ρ ≤ 2π(P + 1)

(1.15)

and u = b0
2πρ, we make use of the Page charges (1.7) to decode these functions into portions

of D-branes that give a dual quiver theory as in Figure 1.3.

Applying the anomaly cancellation condition (1.13) on the gauge currents of the first

gauge nodes of the above quiver chain we find

F0 + ν0 + ν1 = 2ν0 ⇒ F0 = ν0 − ν1 ,

F̃0 + β0 + β1 = 2β0 ⇒ F̃0 = β0 − β1 ,
(1.16)

which are precisely the results that we get from the Bianchi identities (1.8) for the portions

of the D4 and D8-branes, validating further the proposed duality.
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U(1) R-current anomaly

Non critical for the consistency of the gauge theory but as much instructive is the anomaly

produced by the R-symmetry current. Focusing on the SU(N) gauge theory of our building

block and considering the U(1)R R-charges that are given in Appendix H.2, we consider the

anomaly contributions through Tr
[
γ3Q

2
i

]
on each multiplet:

• For the fields in the adjoint representation of SU(N), the only contribution comes from

the fermions inside the vector and Fermi multiplets. This amounts to a contribution

of −2(N2 − 1). This coincides with (minus) twice the number of N = (0, 4) vector

multiples in SU(N).

• The contribution coming from the bifundamentals joining SU(N) with SU(P ) is 2NP ,

due to both of the right-handed fermions inside each hypermultiplet. This is the number

of N = (0, 4) hypermultiplets in that link.

• The contribution coming from the fields running inside the maroon line, joining SU(N)

with SU(R), is accordingly 2NR, once again counting the number of N = (0, 4) hy-

permultiplets running on that connection.

• Finally, the fields running over the dashed line do not contribute as the left-handed

fermion is uncharged under R-symmetry.

Summarizing, we find that the total R-anomaly reads

Tr
[
γrQ

2
i

]
∼ 2 (nhyp − nvec) , (1.17)

which is proportional to the difference between the hypermultiplets and the vector superfields

of the building block. As derived in [32, 154] this anomaly is linked to the central charge of

the theory

c = 6 (nhyp − nvec) , (1.18)

which will be useful to us in Section 4, where we want to add matter in the theory while

leaving this charge intact.

Quiver superpotential

As promised, we now realize a superpotential on our quiver theory by focusing on its building

block given by Figure 1.2. In particular, we just take one simple connection of it, that is the
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link between a hypermultiplet and a vector superfield. All other links on the quiver structure

can be deduced as generalizations of this connection. In fact, a particular two-dimensional

superpotential was developed in [156] that serves exactly our case; we briefly reproduce this

here, in order to extract the field interactions which furnish a certain operator in Section 5

with special features.

Through N = (0, 2) supersymmetric eyes, a N = (4, 4) vector superfield breaks into a

vector multiplet V, a Fermi multiplet Θ and two (twisted) chiral multiplets Σ, Σ̃. On the

other hand, a N = (4, 4) hypermultiplet breaks into two chiral multiplets Φ, Φ̃ and two

Fermi multiplets Γ, Γ̃. First things first, considering transformation properties under the

R-symmetry, the Fermi multiplet Θ inside the vector superfield may only be defined through

D̄+Θ = EΘ by the holomorphic function

EΘ = [Σ, Σ̃] (1.19)

and by the superpotential WΘ = Φ̃ΘΦ, where JΘ = Φ̃Φ is another holomorphic function.

On the contrary, the R-symmetry representations furnishing the N = (4, 4) hypermulti-

plet, define its Fermi multiplets as

EΓ = ΣΦ , EΓ̃ = −Φ̃Σ (1.20)

and let for the superpotential WΓ +WΓ̃ = Φ̃Σ̃Γ + Γ̃Σ̃Φ, where JΓ = Φ̃Σ̃ and JΓ̃ = Σ̃Φ.

In reality, it is not just the R-symmetry representations that we took into account to

shape the above functions, but also the constraining condition E · J =
∑

aEaJ
a = 0 that

should hold for supersymmetry to be preserved; of course, it is easy to see that this is satis-

fied for the given functions. The holomorphic functions Ea and Ja give the potential terms

∼ |Ea(φi)|2 and ∼ |Ja(φi)|2 in the action and produce an interesting interactive sector in our

theory that is going to become decisively important in Section 5.

3 Dielectric branes on the boundary

The case studied in [32,33] and in the previous section is dedicated to supergravity solutions

defined by functions h4, h8 that vanish at the endpoints of the ρ-dimension, as in Figure 1.1.

Nevertheless, this is just one choice among many.

To classify all other possible kinds of solutions we must first consider the restrictions that

apply on the functions h4, h8 and u. That is, these defining functions have to be chosen in

such a way that the space properly closes on the ρ-dimension. Considering a linear u function,
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both h4, h8 need to be zero at the ρ = 0 endpoint whereas at ρ = ρf only one of them needs

to vanish. For a constant u function, on the other hand, just one of them has to vanish at any

endpoint. As we are about to find out, the physical set-up significantly changes depending

on whether the function u is linear or just a constant, both being legitimate solutions of the

BPS equation u′′(ρ) = 0.

While all those novel cases are totally valid as supergravity solutions (i.e. they satisfy the

equations of motion (1.3)), a particular ambiguity arises in their dual quiver field theories.

The ambiguity is that the gauge anomalies for these new quivers do not seem to cancel. In

particular, it is the color nodes on the edges of the quivers that − naively − seem anomalous.

A promising answer to this riddle arises by focusing back on the supergravity side and

observing the limiting geometry at the endpoints of the ρ-dimension (where the physics is

dual to the aforementioned color nodes at the quiver edges). On those limiting vicinities, in

contrast with the original paradigm of the previous section where the limiting space is either

smooth or has O-planes, we now find D-branes. This is promising because explicit D-branes

correspond to flavor symmetries (i.e. flavor nodes) that may contribute in the necessary way

to cancel the gauge anomalies. Indeed, this is exactly what happens. But let us better realize

all this through some solid examples.
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(a) A background with linear u and a non-
vanishing h4 at the endpoint.

(b) A background with linear u and a non-
vanishing h8 at the endpoint.

Figure 1.4: All the possible classes of backgrounds defined by a linear function u(ρ) and a
non-vanishing function h4 or h8 at the endpoint ρ = ρf .

3.1 Linear u(ρ)

As restated, the physics of the supergravity solutions changes depending on whether the

function u is linear or just a constant. Therefore, we split our analysis into two distinct

parts, with regards to this property. The possible classes of backgrounds with linear u and

a non-vanishing h4 or h8 at the endpoint ρ = ρf are classified in Figure 1.4.

Example I

We begin by studying the class of backgrounds that is defined by a linear function u and

a non-vanishing function h4 at the endpoint ρ = ρf , that is Figure 1.4a. Nevertheless,

because all the interesting action takes place in the last interval of the ρ-dimension (and its

dual quiver gauge end-node) whose behavior we essentially care about, we shall study the

simplest version of this class. That would be Figure 1.5a.

The class of backgrounds represented by Figure 1.5a are defined by a linear function u

and by the functions

h4(ρ) =

{
β
2πρ 2πk ≤ ρ ≤ 2π(k + 1) k = 0, ..., P − 1 ,

α− βP−α
2π (ρ− 2π(P + 1)) 2πP ≤ ρ ≤ 2π(P + 1)

(1.21)

h8(ρ) =

{
ν
2πρ 2πk ≤ ρ ≤ 2π(k + 1) k = 0, ..., P − 1 .

νP
2π (2π(P + 1)− ρ) 2πP ≤ ρ ≤ 2π(P + 1)

(1.22)
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(a) A simplified version of Figure 1.4a. The func-
tion u is linear, h8 starts and closes with a van-
ishing value and h4 vanishes at zero but not at
ρ = ρf .

(b) This is the naive quiver dual to the back-
ground defined by (1.21), (1.22). In reality, there
is one more flavor node, canceling the gauge
anomalies for the last D6 gauge node.

Figure 1.5: A simplified version of the background given in Figure 1.4a and its dual quiver
theory. Here, besides a linear function u, h8 starts and closes with a vanishing value, while
h4 starts at zero but finishes at a non-zero value.

The background defined by these functions is − naively − dual to the quiver theory given

by Figure 1.5b. The fact that this quiver is not the right one can be easily seen by observing

the last D6 gauge node, i.e. the one with gauge rank Pν; using the anomaly cancellation

condition (1.13), the gauge anomalies on this node do not cancel. On the contrary, anomaly

cancellation would occur if the gauge node was to connect with an additional flavor node of

rank α through a N = (0, 2) Fermi multiplet.

This raises a puzzle, since the standard Hanany-Witten brane set-up introduced in [32,33]

(and represented by Figure 1.1) does not include any additional D-branes at the endpoints

of the ρ-dimension, which would support such an additional flavor symmetry. Nonetheless,

in contrast to that particular case, our solution defined by (1.21) and (1.22) has the novelty

of a non-vanishing function h4 at ρ = ρf . Hence, we shall focus on that vicinity of the

supergravity background, which is dual to the problematic D6 gauge node, and see whether

there is anything interesting there. That is, we focus near the end point ρ = 2π(P + 1)− x,

for x→ 0, where the geometry and the dilaton read

ds2 =
1√
x

(
s1 ds2

AdS3
+ s2 ds2

CY2

)
+
√
x
(
s3 dx2 + s4 ds2

S2

)
, eφ = s5 x

− 3
4 , (1.23)

with si real constants. As foreseen, we reached an interesting outcome since this background

corresponds to D6-branes on AdS3×CY2 and smeared over S2. To be exact, the above metric

and dilaton also correspond to O6-planes, however only D6-branes can host open strings on

their worldvolume and, thus, we only consider those to deduce global symmetries. That is,
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being explicit branes, these D6’s contribute to the flavor structure of the quiver theory and,

in principle, they should cancel the gauge anomalies on the last D6 gauge node.

On the other hand, the Bianchi identities yield no explicit D6-branes in our supergravity

construction. According to the violation of these identities, the h4 function − that appears

here to feed the boundary of the space with D6-branes − may only give rise to D4-branes.

Hence, since we do know we should have D4-branes at the endpoint where h4 does not vanish,

while we do not see them, we go on and study their sources. That is, we look upon their full

Chern-Simons action [157]

SD4
CS = µ4

∫
Tr
∑

eiλıΦıΦC(n)e
F2

= µ4

∫
Tr Cel5 + Cel3 ∧ F2 + iλ(ıΦıΦ)Cel7 − λ2(ıΦıΦ)2

Ä
Cel9 + Cel7 ∧ F2 + . . .

ä
,

(1.24)

where the sum keeps only five-form terms that may source D4-branes. Cel is the electric part

of a potential form, F2 = B2 +λf̃2 is the gauge invariant field strength that incorporates the

D4 worldvolume gauge field and ıΦ reflects the inner product with the D4-brane transverse

modes Φi. Dimensional analysis here implies λ = 2πl2s , up to a proportionality constant. The

first term in the second line sources standard D4-branes, the second term reflects a D4/D2

bound state, while the third gives a D4/D6 bound state and so on. While the object C3∧F2

realizes D2-charge induced into the D4-brane worldvolume, the seminal work by Myers [157]

showed that an RR potential coupled to the transverse modes Φi represents a polarization

of lower-dimensional D-branes into a higher-dimensional one.

Taking into account the RR fluxes of (1.2) and the functional forms (1.21),(1.22) near

the endpoint ρ→ ρf , we pick a convenient gauge choice and deduce that

Cel3 , C
el
5 → const. , Cel7 ∝

Å −1

ρf − ρ

ã
vol(AdS3) ∧ vol(CY2) → −∞ ,

Cel9 ∝ (log(ρf − ρ)) vol(AdS3) ∧ vol(CY2) ∧ vol(S2) → −∞ .

(1.25)

Since Cel7 and Cel9 blow up at the boundary, then their corresponding source terms in the

Chern-Simons action (1.24) dominate the game as opposed to the rest. Between those two

potentials, Cel7 scales infinitely faster as we approach ρf and therefore we argue that, at the

boundary, the D4-branes couple to an infinitely strong Cel7 RR potential and condense out
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into D6-branes, yielding the analogous background (1.23). In fact, it should be the fifth term

in the expansion of (1.24) that prevails; it is this particular term that yields bound states

of D6-branes that are smeared over S2 (under the coupling to F2), which agrees with the

background (1.23). The third term in (1.24) gives just ordinary (not smeared) bound states

of D6-branes2. Finally, notice the fact that we have a non-vanishing Cel5 ; this is vital for the

very existence of the constituent D4-branes on the D4/D6 bound state.

Recalling our original goal, we want to find the way this D4/D6 bound state contributes

to the flavor symmetry of the theory. That is, the strings on the condensed D4-branes form

a U(N4) gauge theory under certain conditions, N4 being the number of those branes given

by the Bianchi identity

df̂4 = h′′4 dρ ∧ vol(CY2) . (1.26)

The U(N4) flavor gauge group is what we are after and anticipate of it canceling the gauge

anomalies in the quiver theory.

To calculate (1.26) at the boundary, we have to handle things delicately. This is because

the number of four-branes is associated with h′4 and a derivative is not well defined on

the endpoint of a closed interval. Therefore, we shall demand that h4|ρf = 0, so that the

derivative becomes well-defined near the endpoint ρf
3. This is not a physical requirement of

any short; it is just a trick to calculate the D-branes at the end of the space. Thus we now

have the derivative

h′4

∣∣∣
ρ→ρf

= lim
x→0

h4(ρf )− h4(ρf − x)

x
= lim

x→0

−α
x

(1.27)

and, in order to calculate all the four-branes on the endpoint, the D4 Page charge in (1.7)

has to be integrated4 towards ρf as

N4 = −
∫ ρf

ρf−x
h′4 = α . (1.28)

2A more elaborate proof of this is based in the string length (λ-) order of those Cel7 -terms and comes
through the analogous case of the upcoming Section 3.2, which is thoroughly analyzed in Appendix I. There,
we will show that only terms of, at least, order O(λ2) can provide non-trivial solutions for the D-brane bound
states.

3The essence of differentiation is to realize how a function changes. In our particular context, the measure
of this change is associated with the number of branes at a point. Since the background is defined on a closed
interval, it makes sense to realize the absence of branes out of it as a shift of the defining function to a
vanishing value. Stated otherwise, we exchange emptiness for a zero.

4The trick we applied on the h4 function, forms a situation where the branes appear smeared near the
endpoint, instead of being localized with a delta function as with the rest of the D4-brane stacks along the ρ-
dimension. This is merely an artifact of our particular handling that is resolved just by adding up (integrating
over) all the branes near that endpoint.
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Figure 1.6: This is the actual quiver dual to the background defined by (1.21), (1.22). Here,
the extra four-brane flavor node cancels the gauge anomalies for the last h8 (D6) gauge node.

Bottom line, we found α D4-branes sitting on the endpoint of the ρ-interval and being in a

D4/D6 bound state.

The polarization that takes place should raise the question whether the D4-branes are

enough in number, throughout the bound state, to support massless string modes and thus a

unitary gauge theory. In reality, though, we are not obligated to know the precise geometry

of the polarized branes, just that they are enough in number to be close to one another so

that the modes do not get massive. And fortunately we do know that the D4-branes are a

lot, since α must be large in the supergravity limit by construction. Therefore U(α) should

be the gauge group we have anticipated.

Being explicit branes, the worldvolume theory of those D4-branes feeds, through a

N = (0, 2) Fermi multiplet, the D6 color chain of the quiver with flavor. In particular,

this U(α) gauge group is dual to a global symmetry in the quiver theory which, using (1.13),

gives exactly the flavor needed in order to cancel the gauge anomalies of the last D6 color

chain node. This is all visualized in Figure 1.6, where the quiver theory is now consistent.

Focusing on the starting point ρ = 0 of the ρ-interval, the background becomes the non-

Abelian T-dual of AdS3×S3×CY2, which yields no D-branes there. This is to be expected

from the supergravity side, since everything is obviously smooth there. But even by just

looking at the field theory, the quiver is non-anomalous at its beginning (and now every-

where for that matter), which means that no additional D-branes should be there. If there

were any, these would contribute with flavor and spoil the anomaly cancellation balance.
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(a) A simplified version of Figure 1.4b. The func-
tion u is linear, h4 starts and closes with a van-
ishing value and h8 vanishes at zero but not at
ρ = ρf .

(b) This is the naive quiver dual to the back-
ground defined by (1.29), (1.30). In reality, there
is one more flavor node, canceling the gauge
anomalies for the last D2 gauge node.

Figure 1.7: A simplified version of the background given in Figure 1.4b and its dual quiver
theory. Here, besides a linear function u, h4 starts and closes with a vanishing value, while
h8 starts at zero but finishes at a non-zero value.

Example II

Next, let us study the case represented by Figure 1.4b. Again, we consider Figure 1.7a

instead which falls into the same class of backgrounds but is way simpler. This is the class

of backgrounds where h8 does not vanish at the end of the ρ-interval while h4 does.

Therefore, according to Figure 1.7a the defining functions read

h4(ρ) =

{
β
2πρ 2πk ≤ ρ ≤ 2π(k + 1) k = 0, ..., P − 1 ,

βP
2π (2π(P + 1)− ρ) 2πP ≤ ρ ≤ 2π(P + 1)

(1.29)

h8(ρ) =

{
ν
2πρ 2πk ≤ ρ ≤ 2π(k + 1) k = 0, ..., P − 1 ,

µ− νP−µ
2π (ρ− 2π(P + 1)) 2πP ≤ ρ ≤ 2π(P + 1)

(1.30)

The background defined by these functions is − naively − dual to the quiver theory

given by Figure 1.7b. Again, this quiver cannot be the right one and this can be seen by

using the anomaly cancellation condition (1.13) on the last D2 gauge node, i.e. the one with

gauge rank Pβ. For that node the gauge anomalies do not cancel. On the contrary, anomaly

cancellation would occur if it connected to a flavor node of rank µ through a N = (0, 2)

Fermi multiplet.

We go on and focus on the dual geometric vicinity of the ‘anomalous’ gauge node, an-
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ticipating again to find the necessary portion of D-branes that cancel the gauge anomalies.

We find that near the endpoint, ρ = 2π(P + 1)− x, for x→ 0, the backgrounds reads

ds2 =
s1√
x
m1 ds2

AdS3
+
√
x
(
m2 dρ2 +m3 ds2

S2 +m4 ds2
CY2

)
, eφ = m5 x

1
4 , (1.31)

with mi real constants, which corresponds to D2-branes on AdS3 and smeared over CY2×S2.

To be exact, this background also corresponds to O2-planes, but strings may live only on

D2-branes and, thus, we only consider those to search for global symmetries. Being ex-

plicit branes, these D2-branes contribute to the flavor structure of the quiver theory and, in

principle, they should cancel the gauge anomalies.

However, we encounter the same problem as with Example I. That is, the Bianchi iden-

tities yield that the h8 function only gives rise to D8-branes and certainly not to D2-branes.

Therefore, since we do know we should have D8-branes at the endpoint ρ = ρf where the

h8 function is non-vanishing, while we do not see them, we look up the D8-branes’ source

terms, that is their Chern-Simons action

SD8
CS = µ8

∫
Tr Cel9 + Cel7 ∧ F2 + Cel5 ∧ F2 ∧ F2 + Cel3 ∧ F2 ∧ F2 ∧ F2 , (1.32)

where the first term sources standard D8-branes and the rest reflect eight-branes as bound

states of D6, D4 and D2-branes, respectively. Here, we omitted the coupling to the single

D8 transverse mode since there is no object into which this brane could possibly polarize.

Taking into account the RR sector (1.2) near the endpoint ρ = ρf , we again pick a

convenient gauge and deduce

Cel7 , C
el
9 → const. , Cel5 ∝ (log(ρf − ρ)) vol(AdS3) ∧ vol(S2) → −∞ ,

Cel3 ∝
Å −1

ρf − ρ

ã
vol(AdS3) → −∞ .

(1.33)

Since Cel5 and Cel5 blow up at the boundary, then their corresponding source terms in

the Chern-Simons action (1.32) dominate the game as opposed to the rest. Between those

two potentials, Cel3 scales infinitely faster as we approach ρf and therefore we argue that, at

the boundary, the D8-brane gauge field couples to an infinitely strong Cel3 RR potential and
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induces D2-charge on its worldvolume, yielding the analogous background (1.31). Addition-

ally, the smearing of those D2-branes can be understood by the coupling of Cel3 to (∧F2)3,

in the D8/D2 source term of (1.32).

We conclude that the D8-branes’ gauge field couples to D2-charge through the term

S
D8/D2
CS =

µ2

(2π)3

∫
Tr Cel3 ∧ f̃2 ∧ f̃2 ∧ f̃2 , (1.34)

together forming a D8/D2 bound state. The D8 gauge flux on CY2× S2 should be quantized

as

1

(2π)3

∫
CY2× S2

f̃2 ∧ f̃2 ∧ f̃2 = N2 for N2 ∈ Z (1.35)

and the D2-branes are explicitly given by the Bianchi identity

df̂6 =
λ3

3!
f̃2 ∧ f̃2 ∧ dF0 =

λ3

3!
N2 vol(CY2) ∧ vol(S2) ∧ (h′′8 dρ) . (1.36)

Hence, we conclude that every eight-brane on the boundary should exist exclusively in a

D8/D2 bound state, sourced by

S
1×D8/D2
CS = N2

Å
µ2

∫
Cel3

ã
, (1.37)

that is each D8-brane contains N2 units of D2-charge.

Nonetheless, there is no just one D8-brane (with an Abelian gauge field) but there should

be multiple coincident D8-branes at the boundary. The number of these branes is given by

the Bianchi identity

dF̂0 = h′′8 dρ , (1.38)

where, following the same procedure for h′8 as in Example I with h′4, we find that at the

boundary ρ = ρf they amount to

N8

∣∣∣
ρ=ρf

= µ . (1.39)
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Figure 1.8: This is the actual quiver dual to the background defined by (1.29), (1.30). Here,
the extra D2 and D6 flavor nodes cancel the gauge anomalies for the first D6 and the last
D2 gauge nodes.

Since those D8-branes are coincident and thus their gauge field is non-Abelian, a U(µ) gauge

theory arises that is realized as a global symmetry in the dual quiver theory and which should

cancel the apparent gauge anomalies there.

Indeed, the D8-branes, as D8/D2 bound states, feed with flavor the end of the D2 color

chain of the quiver through a N = (0, 2) Fermi multiplet, as usual. As expected, using the

anomaly cancellation condition (1.13), they give exactly the flavor needed in order to cancel

the gauge anomalies of the last D2 node. This is all visualized in Figure 1.8, where the quiver

theory is now consistent.

3.2 Constant u(ρ)

The class of supergravity backgrounds with constant function u(ρ) is analogous but, at the

same time, dissimilar to the linear case. The representative kinds of backgrounds in this class

are the ones presented in Figures 1.9, distinguished by their constant u(ρ) curve. Instead

of going through both examples again, we now combine them into one that includes all the

interesting behavior. That is, at the beginning of the ρ-dimension h4 does not vanish while

h8 does, the opposite being true at the other endpoint. Of course, we again realize simplified

versions of these cases as in the previous examples and, depending on the behavior of the

defining functions at each endpoint, the precise form of h4 and h8 can be read off from

(1.21),(1.22) and (1.29),(1.30). Accordingly, for this new background, we seek for U(α) and

U(µ) flavor symmetries at ρ = 0 and ρ = ρf respectively, in order to cure the apparent gauge

anomalies at the dual edge-nodes of the quiver chain.
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(a) A background with constant u and a non-
vanishing h4 at the beginning ρ = 0.

(b) A background with constant u and a non-
vanishing h8 at the endpoint ρ = ρf .

Figure 1.9: The representative backgrounds defined by a constant u(ρ) and a non-vanishing
h4 or h8 at either endpoint. The roles of h4 and h8 may be exchanged in (a) and (b).

At the beginning of the ρ-dimension

The background we consider begins on its ρ-dimension, for ρ = x while x → 0, with a

vanishing h8 but a non-vanishing h4 function, giving

ds2 =
1√
x

(
m1 ds2

AdS3
+m2 ds2

S2 +m3 ds2
CY2

)
+m4

√
x dx2 , eφ = m5 x

− 5
4 , (1.40)

that corresponds to D8-branes on AdS3×S2×CY2, which again seems odd since h4 only

gives D4-branes. Our experience gained from the precious sections drives us to study the

full Chern-Simons source action of N4 D4-branes, including the coupling of the transverse

string modes to the higher dimensional RR fields, as

SD4
CS = µ4

∫
Tr Cel5 + Cel3 ∧ F2 + iλ(ıΦıΦ)Cel7 − λ2(ıΦıΦ)2

Ä
Cel9 + Cel7 ∧ F2 + . . .

ä
, (1.41)

where the first term represents standard D4-branes and the second D4/D2 bound states,

while the rest reflect polarized D4-branes into higher dimensional ones. Considering the RR

sector (1.2) near the beginning ρ = 0, we deduce

Cel3 , C
el
7 → 0 , Cel5 → const. , Cel9 → −∞ , (1.42)
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at the vicinity of that boundary, where again a convenient gauge was chosen.

Therefore, at ρ → 0, only the first and fourth term survive in (1.41), which stand for

standard D4-branes and D4/D8 bound states, respectively. Since the potential Cel9 blows

up, without any competition this time, the fourth term in the above action dominates the

first and this is why the background metric and dilaton behave according to (1.40). That

is, the D4-branes couple to an infinitely strong RR potential Cel9 and condense out into

an eight-brane, forming a D8/D4 bound state while giving a D8-brane background on that

boundary. Of course, the non-vanishing Cel5 is vital for the very existence of those constituent

D4-branes. As it is the case with Example I and (1.24), both the coupling to the transverse

scalars and the string length order in the Chern-Simons action (1.41) would make here a

more detailed treatment instructive, a calculation that is held in Appendix I.

Casting the usual trick on h′4, we count α D4-branes on ρ = 0, on which open strings end

and make up a U(α) gauge theory. The polarization that takes place over CY2 should raise

the question whether the D4-branes are enough in number, throughout the bound state, to

support massless string modes and thus a unitary gauge theory. As restated though, we do

know that the D4-branes are a lot since α must be also large in the supergravity limit, by

construction. Therefore U(α) is the flavor group we anticipated for the beginning node of

the quiver chain, canceling exactly the gauge anomalies there through a N = (0, 2) Fermi

multiplet.

At the end of the ρ-dimension

Focusing on the other endpoint, ρ = 2π(P + 1)− x while x→ 0, the same background ends

on its ρ-dimension with a vanishing h4 but a non-vanishing h8, giving

ds2 =
1√
x

(
s1 ds2

AdS3
+ s2 ds2

S2

)
+
√
x
(
s3 dx2 + s4 ds2

CY2

)
, eφ = s5 x

− 1
4 , (1.43)

which corresponds to D4-branes smeared over CY2. While this seems odd since h8 only

produces D8-branes, our wisdom off the previous section guides us to study the source terms

SD8
CS = µ8

∫
Cel9 + Cel7 ∧ F2 + Cel5 ∧ F2 ∧ F2 + Cel3 ∧ F2 ∧ F2 ∧ F2 , (1.44)

where the first term sources a standard D8-brane and the rest reflect a D8-brane in a bound
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state with D6, D4 and D2-branes, respectively.

Studying the RR fluxes (1.2) at ρ → ρf for a constant function u again, the potentials

behave as

Cel7 → 0 , Cel3 , C
el
9 → const. , Cel5 → −∞ , (1.45)

where we again chose a convenient gauge. The fact that Cel7 vanishes excludes the D8/D6

bound state whatsoever. Between the rest of the terms in (1.44), the one that couples to Cel5

dominates since it is this potential that blows up at the vicinity of that endpoint.

We conclude that the D8-brane gauge field couples to D4-charge through the term

S
D8/D4
CS =

µ4

4π2

∫
Tr Cel5 ∧ f̃2 ∧ f̃2 , (1.46)

together forming a D8/D4 bound state. The fact that Cel5 is infinitely strong makes the

source term (1.46) dominant in (1.44) and this is why the eight-branes are geometrically

realized as smeared D4-branes. The D8 gauge flux on CY2 should be quantized as

1

4π2

∫
CY2

f̃2 ∧ f̃2 = N4 for N4 ∈ Z (1.47)

and the D4-branes are explicitly given by the Bianchi identity

df̂4 =
λ2

2
f̃2 ∧ f̃2 ∧ dF0 =

λ2

2
N4 vol(CY2) ∧ (h′′8 dρ) . (1.48)

Hence, we conclude that every eight-brane on the boundary should exist exclusively in a

D8/D4 bound state, sourced by

S
1×D8/D4
CS = N4

Å
µ4

∫
Cel5

ã
, (1.49)

that is each D8-brane contains N4 units of D4-charge.

Nonetheless, there is no just one D8-brane but there should be multiple coincident D8-

branes at the boundary. The number of these branes, same as in the last section with

Example II, is given by N8 = µ. Since those D8-branes are coincident and thus their gauge

field is non-Abelian, a U(µ) gauge theory arises that is realized as a global symmetry in the

dual field theory and which cancels exactly the gauge anomalies in the end of the quiver
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chain through a N = (0, 2) Fermi multiplet.

Note that the smeared D4 and the D8-branes in this section are backgrounds equivalent

to smeared O4 and O8-planes, respectively. Of course, strings may only live on the former

which is why we only consider those to find the desired flavor symmetries.

As a last remark on the whole section, let us clarify a few details about the RR potentials.

Firstly, the fact that we chose a particular gauge does not change any of the results. Indeed,

by studying the RR fluxes we realize that had we picked any other gauge choice would

have made no difference; the qualitative relationship between the Cp forms (which one is

stronger at the endpoints) would have stayed the same. Secondly, one may wonder whether

such objects blowing up test the supergravity approximation. However, as argued in [33],

singularities are bound to exist when D-branes do, while they are not dangerous as long

as they are regulated and stay far apart from each other (here, along the ρ-dimension).

This is exactly the case with the Ricci scalar (which diverges at the positions of localized

sources) and with the RR potentials, as long as βk, νk, P are large. Indeed, large βk, νk

control all divergences, while large P keeps the singularities far apart (for the backgrounds

we considered, RR potentials only blow up at the endpoints, anyway). Nonetheless, we

believe that the particular divergence of some of the RR potentials at the endpoints is an

artifact of the functions h4, h8 being defined on a closed interval; this was the case when we

counted D-branes at those endpoints, where we had to go around the fact that h′4, h
′
8 are not

well-defined there. The essence of those infinities in our context is that some potentials are

profoundly stronger than others.

Aside from curing a problem and better realizing the way the dual field theory works,

this section has an additional value. Since the discovery of particular flavor branes was the

exact thing that made the quiver theory consistent, this calculation provides an additional

validity check of the whole field theoretical structure. Further validation of the quantum

quiver structure is especially important here, since the matter content of these quiver theo-

ries is by no means trivial. This is the subject of the following section.

4 Adding matter in the quiver field theory

The quantum quiver theory dual to the AdS3 supergravity vacua we consider was presented

in Section 2.3. In [33] these linear-quiver theories were thoroughly analyzed and tested, while

our previous section suits as further validation. Nevertheless, there is more to their story to

tell. That is they are ultimately characterized by additional structure.

Let us address the problem in a constructive way. In a Hanany-Witten brane set-up, we

have all possible kinds of oscillating strings stretched between the branes. In the dual quiver

theory, these kinds of strings correspond to supersymmetric multiplets that bind the gauge
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theories (gauge nodes) together and constitute the matter content of the overall field theory.

Thus, when we try to build the correct dual field theory of a particular kind of brane set-up,

the problem boils down to finding all the possible matter content.

Establishing the quiver theory introduced in [32–34] as a well tested structure, we realize

that there are two kinds of superfield connection missing. These are the multiplets connecting

D2 gauge with D4 flavor nodes and the ones connecting D6 gauge with D8 flavor nodes,

respectively representing D2-D4 and D6-D8 strings. Instead of quantizing, we may just ask

what multiplets can possibly fill this gap. The problem gets quickly simplified, since we

know we do not want to consider additional N = (0, 4) hyper multiplets nor N = (0, 2)

Fermi multiplets. This is because their presence would spoil the fragile balance of the gauge

anomaly cancellation once and for all, a balance that was further confirmed to holographically

hold by the last section. Therefore, we should only consider N = (4, 4) hyper multiplets.

Nonetheless, our unique choice should be in harmony with the central charge of the field

theory. In particular, since the central charge was found in [33] to be holographically correct

for the (original) quiver theory, then the new matter content we want to add should change

nothing and be entirely invisible to it. Indeed, this is exactly the case. The central charge

of the quiver field theory reads

c = 6 (nhyp − nvec) = 6

Ñ
P∑
j=1

(
αjµj − α2

j − µ2
j + 2

)
+

P−1∑
j=1

(αjαj+1 + µjµj+1)

é
, (1.50)

which means that it is sensitive to the number of the hyper multiplets. This may sound

discouraging wrt adding new N = (4, 4) hyper multiplets, since we want to leave the central

charge intact, but it is not. This is because we work in the supergravity limit, i.e. for

P → ∞, which means that we are eligible to add new hyper multiplets as long as their

number is sub-leading in P wrt to the old ones.

In the supergravity limit the sources (flavor nodes) should exist far apart along the linear

quiver, which means that the new hyper multiplets escorting them are much less than the

old ones that exist between the flavor positions (connecting the gauge nodes). The proposed,

enhanced quiver theory is visualized in Figure 1.10.

In order to prove that the new hyper multiplets are always of lower order in P than the

old ones, we expand the already existing ones as

nhyp =

P∑
j=1

(
j−1∑
k=0

βk ·
j−1∑
l=0

νl

)
+

P−1∑
j=1

[(
j−1∑
k=0

βk ·
j∑
l=0

βl

)
+

(
j−1∑
k=0

νk ·
j∑
l=0

νl

)]
, (1.51)
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Figure 1.10: This is the new dual quiver theory, with additional N = (4, 4) hyper multiplets
binding the D4 and D8 flavor nodes with the D2 and D6 gauge nodes, respectively. The
already existing N = (4, 4) hyper multiplets are represented with black solid lines, while the
new additional ones with orange solid lines.

while the new ones, n?hyp, read

n?hyp =

iM∑
j=i1

αjF̃j−1 +

iN∑
j=i1

µjFj−1

=

iM∑
j=i1

(
j−1∑
k=0

βk (βj−1 − βj)

)
+

iN∑
j=i1

(
j−1∑
k=0

νk (νj−1 − νj)

)
,

(1.52)

where j = i1, ..., iM,N are the M,N intervals with sources for the D4 and D8 branes, re-

spectively. The fact that in the supergravity limit the sources (flavor nodes) should exist far

apart along the linear quiver means M,N � P .

In order to compare nhyp and n?hyp we can just focus into similar terms between them.

These are, for instance, the second term of (1.51) and the first of (1.52). For them, we observe

that their first summation is to P − 1 and iM , respectively. Since M,N � P , this means

that the former is of order P while the latter is not. Focusing on the inner summations of

the same terms, we realize that their summing products are of the same order, whatever that

is. Therefore, overall, nhyp is always an order higher in P than n?hyp, which makes the latter

invisible in the central charge for P →∞.

The whole situation would be immediately cleared out if we quantized the system of D-

branes. What is more, quantizing the D2-D4 and D6-D8 systems in flat space seems to indeed

reproduce the new N = (4, 4) hypermultiplets that we just proposed to exist. However, this

particular Hanany-Witten set-up is assumed to live in CY2 dimensions as well, which makes

the standard quantization techniques obscure in the case at hand and, therefore, such a study



144 Holography for two-dimensional QFT

remains on the sidelines at this point.

Another link that we intentionally left out is the multiplet corresponding to superstrings

between D4 and D8 flavor branes. Not giving gauge groups, these links are allowed to be

any multiplet as far as the gauge anomaly balance is concerned. Therefore, this situation

demands to be properly quantized and thus eludes the present work.

Truth be told, there is another path through which we might have imagined that the ad-

ditional matter is an essential ingredient to our theory. This argument too surfaces from the

supergravity side of the duality, but in order to illustrate it we need to consider a particular

state of the bosonic string. This is what we deal with in the following section.

5 The meson string

Having worked out even the most exotic parts of the duality between the massive IIA vacua

and the dual quantum field theory, we are certainly in desire of testing their holographic

performance. In that vein, we look for a simple object to construct, starting off with the

supergravity side of the story.

5.1 A BPS state

The most accessible state in our theory of gravity is a semiclassical string stretching be-

tween D-branes. That is, we consider a meson string soliton Mk,m on the supergravity

background, that extends between stacks of flavor branes at ρ = 2πk and ρ = 2πm, respec-

tively, and which is a point on the rest of the dimensions sitting at the center r = 0 of AdS3.

An analogous calculation was performed in [158].

Therefore, we allow a string embedding with τ = t, σ = ρ, whose mass is essentially its

length

MM =
1

2π

∫
dσ
√
−det gab =

1

2π

∫ 2πm

2πk
dρ
√
−det gab = m− k , (1.53)

where gab is the worldsheet pullback of the metric in (1.1). If Fk and Fm are the number of

D-branes in the respective stacks on which the string endpoints are, then this configuration

transforms in the bi-fundamental representation of SU(Fk) × SU(Fm).

Since we are always interested in states that preserve some supersymmetry, we may

upgrade the above configuration to a BPS state just by considering the suspended string

to fluctuate on the two-sphere, whose SU(2) isometry corresponds to the dual R-symmetry.

This is done by including φ = ωτ in the above configuration, where we let this fluctuation

to be small − i.e. ω � 1 − so that the embedding simplifies still into the expression (1.53).

Note, of course, that small ω does not imply small angular momentum JR for the semiclassical
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string; after all, JR ∼M for a BPS state. Indeed, as we show below, small angular velocity

ω of the large semiclassical soliton reflects large angular momentum.

Picking a U(1)R inside SU(2)R, we now seek the R-charge of the above state. Since the

generator of the U(1) on the two-sphere is associated to the 1-form cos θ dφ, then we look

for the string coupling terms

SR ∝
∫

cos θ dφ . (1.54)

As far as the R-charge is concerned, it may be read off the source terms of the form
∫
JRA1 =

QR
∫
A1, with A1 = cos θ dφ. The relevant term in the worldsheet action is

SM =
1

2π

∫
Σ
B2 , (1.55)

where Σ = [2πk, 2πm] × R. Ultimately, after some manipulation given in Appendix J, this

term may be actually seen as the source term

SM = (m− k)

∫
R

cos θ dφ , (1.56)

which yields an R-charge

QR = m− k . (1.57)

Comparing this with the string mass in (1.53), we conclude that this is indeed a BPS state.

5.2 An ultraviolet operator

Now, we want to look for the operator dual to this BPS state. To this end − since the

IR SCFT is completely unknown − we consider the UV quiver theory on the ρ-interval

[2πk, 2πm] and pick the appropriate field excitations inside the supersymmetric multiplets.

Since we are dealing with a purely bosonic state, we are immediately led to consider the

complex scalars φi inside the N = (0, 2) chiral multiplets Φi, since these are the obvious

on-shell bosonic degrees of freedom in our theory. In particular, we choose to excite one

scalar in each of the (m− k) + 2 N = (4, 4) hypermultiplets that connect two flavor nodes;

this makes a perfect fit with the fact that string fluctuations transverse to the worldvolumes

of branes are also scalar modes wrt these worldvolume theories. It also illustrates why we

need the additional N = (4, 4) matter, as promised in the beginning of this section; if it
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Figure 1.11: The meson operator M consists of the supersymmetric multiplets that are
highlighted with blue, while the rest of the quiver structure is left blurred. If k and m are
the positions of the flavor nodes along the quiver chain, then this operator runs over m−k+2
N = (4, 4) hypermultiplets and m − k + 1 N = (4, 4) vector multiplets. Such an operator
may also connect D4 with D8 flavors, by jumping through N = (0, 4) hypermultiplets.

was not for these new hypermultiplets, there would be no way to build a string of bosonic

field excitations that connect two flavor nodes. And such a dual bosonic connection must

somehow exist, given that the meson string we consider is a legitimate BPS state.

Shortly, however, we spot a problem. As illustrated in Appendix H.2, the φi scalars inside

any of the N = (0, 4) hypermultiplets are uncharged under R-symmetry, while we do need

an R-charge − according to (1.57), proportional to (m − k) − for our proposed operator.

In fact, the only scalars that are charged under the U(1)R subgroup of the R-symmetry are

the ones in the N = (0, 4) twisted hypermultiplets (Σi, Σ̃i), inside the N = (4, 4) vector

superfields of the gauge nodes. This leads us to consider these scalars, let us call them σi, as

well. The inclusion of these scalar fields is also somewhat compelling, since these are the ones

that let the φi scalars interactively talk to each other; this realizes an interactive continuance

among the string of fields in the operator, holographically analogous to the compactness of

the string. These supersymmetric interactions will become apparent shortly.

All in all, choosing a σi excitation as well in each gauge node between the N = (4, 4)

hypermultiplets, we acquire the meson operator

Mk,m = πk

(
m−1∏
i=k

σiφi

)
σmπ̃m , (1.58)

which transforms in the bifundamental representation of SU(Fk) × SU(Fm), with Fk and Fm

the ranks of the flavor groups in the corresponding positions of the quiver chain. Here we

named πi the scalars inside the end-point hypermultiplets connecting to the flavor nodes and

also chose them to be in conjugate representations of each gauge group. Such an operator
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has two πi’s, (m − k) φi’s and (m − k + 1) σi’s, which in the supergravity limit − where

sources are far apart − account for 2(m− k) complex scalars. Since only half of those (the

σi’s) are R-charged, this is the desired R-charge considering the BPS string charge (1.57).

For clarity, the operator is highlighted in Figure 1.11.

The only quantities left to compare are the mass (1.53) of the BPS state and the conformal

dimension of the operator Mk,m. At this point, of course, we may have an actual problem;

scalar fields in two dimensions have mass dimension zero. At least classically. At first

sight, this degrades our proposal for the operator which seems to have a vanishing scaling

dimension. However, before rushing into conclusions, we remind ourselves that we have

actually considered the UV operator and not the actual IR situation; it is the IR operator

the one that should necessarily acquire the appropriate scaling dimension. Therefore, if the

choice of operator is correct, our only way out is the possibility of the operator acquiring an

anomalous dimension through quantum effects. Whatever the case is with the IR SCFT, such

quantum effects should be present in the UV Lagrangian, pointing towards an anomalous

dimension γ(g) that scales with energy.

On the other hand, studying quantum corrections is obscure in our case. This is exactly

because it is the UV theory that we use to organize fields into an operator; therefore even if we

assume a completely anomalous dimension ∆M = γ(g), our SCFT is assumed to be strongly

coupled which discredits any perturbative calculation. To be exact, it is the non-integrability

of our AdS3 backgrounds [2] that prohibits surfing along the range of the coupling constant,

as it is possible with e.g. the work of BMN [22] in the AdS5 × S5 correspondence. Regardless,

the possibility itself of a non-perturbative anomalous dimension requires certain interactions

to be there, between the fields of interest; finding whether those exist is essential to our

proposal. Interestingly, such interactions indeed exist.

The interactions between the φi’s of the hypermultiplets and the σi’s of the twisted hyper-

multiplets have actually already appeared in our study of the Fermi multiplet interactions.

As seen in Section 2.3, Fermi multiplets defined by D̄+Γa = Ea(Φi,Σi) give a potential

|Ea(φi, σi)|2, which for our interactive chain of multiplets exhibits quite a few components.

From those, the ones that couple φi’s and σi’s are the

EΓi(φi, σi) = σiφi , (1.59)

or EΓ̃i
= −φ̃iσi, depending on which scalar field we excite inside a certain hypermultiplet.

Accordingly, if we choose to excite σ̃i inside a twisted hypermultiplet, instead of its twin

σi, then these scalars couple through the superpotential term |Ja(φi, σi)|2 and, in particular,

through the components
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JΓ̃i
(φi, σ̃i) = σ̃iφi , (1.60)

or JΓi = φ̃iσ̃i.

These are all the interactions present between the different scalars we choose to excite and

which furnish our operator (1.58) with quantum effects. We presume that those are capable

of correcting it non-perturbatively to the desired conformal dimension ∆M = γ(g) = m− k.

5.3 Dual mass

While the scaling dimension of the meson operator stands as a proposal, there is another

insight as to the mass of the BPS state that both enforces the proposed duality and digs out

an interesting feature of the field theory.

It is simpler to explore things heuristically here. While coincident branes give massless

modes, a superstring suspended between two distanced D2 or D6-branes gives a BPS hyper-

multiplet (in our kind of theory, presumably of N = (4, 4) supersymmetry) of mass
√
|~x|,

where ~x is the spatial vector connecting the branes. While a hypermultiplet is massless, a

mass is obtained by its coupling to a vector superfield, since the latter obtains a VEV through

a Fayet-Iliopoulos D-term lying on the U(1) gauge theory in the brane worldvolume. That

is, as seen from (1.30) and (1.33), for a U(1) vector superfield we have a D-related action

SD =

∫
1

g2
D2 + σDσ̄ − ξD , (1.61)

where the last term is the Fayet-Iliopoulos term. After integrating out the auxiliary field D,

the potential energy V = g2(|σ|2 − ξ)2 is formed which yields the new classical vacuum

〈σ〉 =
√
ξ , (1.62)

which in turn couples to the hypermultiplet and is felt as a mass.

When instead we have two stacks, one of n1 and another of n2 D-branes, we acquire

n1n2 hypermultiplets that transform under the (n1, n̄2) representation of U(n1)×U(n2). In

Hanany-Witten set-ups we have parallel stacks of branes distanced and bordered by NS

fivebranes, where the gauge group actually breaks down to SU(ni)×U(1); the non-trivial

U(1) center provides a Fayet-Iliopoulos D-term whose coupling is identified with ξ = |~x|.
That is, the D-term coupling is given by the distances between the NS fivebranes [68,109]
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ξ = ρi+1 − ρi . (1.63)

Each U(1) is actually the center of mass of the stack of branes and D is really its Hamiltonian

function, where the Fayet-Iliopoulos coupling reflects the fact that we may always add a

constant to such a function. While this story is generally studied, let us bring it down onto

our case and clarify how it actually works.

By adding a Fayet-Iliopoulos D-term to the N = (4, 4) vector superfield action and

integrating out D, we acquire the new vacuum 〈σi〉 =
√
ρi+1 − ρi = 1/2. As restated, σi is

one of the scalars of the N = (0, 4) twisted hypermultiplet inside the vector superfield on

a stack of D2 or D6-branes, placed between the (i + 1)th and ith stack of NS fivebranes.

Notice here that we also normalized, by a redefinition, the fundamental ρ-interval distance

ρi+1 − ρi = 2π to 1/4, for convenience that will become apparent momentarily. Now, this

VEV gives a mass to a N = (4, 4) hypermultiplet coupled to it and, in particular for our

operator of interest, this is achieved through the interactive terms (1.59) and (1.60) that we

brought up in the previous section. That is, if we choose to consider the σi scalar inside the

vector superfield and the φi scalar inside the hypermultiplet then a mass is acquired by the

latter as

|EΓi |
2 = 〈σi〉2 |φi|2 =

1

4
|φi|2 . (1.64)

Accordingly, for other choices of scalar fields inside those multiplets the mass is obtained

through other E-terms or superpotential |J |2 terms with J as in (1.60).

Now, each such hypermultiplet is actually linked to two stacks of D-branes (gauge nodes),

one on its left and one on its right along the ρ dimension. This means that the mass that is

gained comes from two VEV contributions, that is

|EΓi |
2 +

∣∣EΓi+1

∣∣2 =
(
〈σi〉2 + 〈σi+1〉2

)
|φi|2 =

1

2
|φi|2 , (1.65)

where the mass is now unity. Notice that the value of the mass comes from normalization and

thus it is a matter of convention on absolute distances along the ρ-dimension. What really

matters though is the relative positions of NS fivebranes; changing those shifts the masses of

the hypermultiplets in between. Since all the NS fivebranes in our brane set-up are equally

separated along ρ, accordingly all masses will be the same. Moreover, note that there are as

many massive hypermultiplets as the U(1)’s. That is, all hypermultiplets between the gauge

nodes along the quiver chain are massive. Therefore we only care about the number of those
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hypermultiplets that contribute to our operator.

Ultimately, the meson operator (1.58) contains m− k scalar fields φi which are massive,

associating the operator itself with a total classical mass

MM = m− k , (1.66)

which exactly agrees with the mass (1.53) of the BPS string.

In regard to our particular choice of the BPS operator, besides the agreement on the dual

masses it is worth emphasizing the way that this equality is supported. That is, as with the

R-charge (or even the presumable anomalous dimension), it again takes both scalar fields φi

and σi to holographically reflect a dual semiclassical soliton; the σi’s adjust a mass (and a

R-charge) and the φi’s realize it.

Again, it is the UV particle theory that shapes the proposed meson operator M and

not the actual IR SCFT that sits on the dual side of our AdS3 supergravity backgrounds.

While this cautions us to be careful about our statements on what the actual dual BPS

operator looks like, we are encouraged by the agreement in mass to make an otherwise bold

conjecture: if the choice of operator is correct, then the operator mass somehow transforms

into a scaling dimension. This is not as presumptuous as it may sound if we consider that

the non-perturbative anomalous dimension ∆M = γ(g) = m − k, that we expect, should

be generated by the same interactions that produced the Fayet-Iliopoulos mass. Thus the

aforementioned transformation is really thought to be a change on how we realize the same

field interactions at different energy scales. That is, the interactions given by (1.59) and

(1.60) may be realized as a classical mass in the UV or an anomalous dimension in the IR.

This idea is strongly advocated by the fact that the coupling is relevant at the IR of the

two-dimensional quantum theory, where the quantum corrections should be important and

the scalar masses get integrated out.

As a final comment, the BPS string is a semiclassical bound state which inspires us to

assume that its dual operator should too reflect a bound state of two-dimensional fields.

That being said, we notice that the operator mass is a sum of all the individual scalar field

masses, a fact which renders the UV operator indeed very much alike to a classical bound

state of particles. This is a statement on classical bound states in the sense that we neglect

an unimportant interaction energy, as we already did with the implicit quantum correc-

tions between fields inside the operator or with the sphere fluctuations on the string mass.

While the latter is geometrically obvious through (1.53), the former may be supported by the

fact that the gauge coupling is irrelevant at the UV of two-dimensional quantum field theory.
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5.4 An alternative operator

Although the last two sections follow the standard examples in the literature (e.g. see

[158]), there is an alternative choice of bosonic operator dual to the suspended string. Such

an operator may be built out of spinor products, which render it bosonic, as long as it satisfies

the desired holographic features, i.e. the correct conformal dimension and R-charge.

This can be achieved through products of left and right-handed spinors inside the N =

(4, 4) hypermultiplets that connect the two flavor nodes at stake. Ultimately, the operator

reads

Mk,m = χ̄
(k)
+ · χ̄

(k)
−

(
m−1∏
i=k

ψ̄
(i)
+ · λ̄

(i)
−

)
χ̄

(m)
+ · χ̄(m)

− , (1.67)

where χ±, ψ+ and λ− are chiral spinors inside the (4, 4) hypermultiplets. Again, χ± are

spinors inside the end-point hypermultiplets connecting to the flavor nodes. The operator

transforms in the bi-fundamental representation of SU(Nk) × SU(Nm) and comprises of

mass dimension ∆0
M = m− k (since [ψ] = m

1
2 in two dimensions) and R[M] = m− k, since

R[ψ+] = −1 and R[λ−] = 0. Both of those features are exactly what we need.

Though unusual, the new UV operator constitutes a good holographic fit for the sus-

pended string; maybe, it is even better than the more conventional choice of the previous

sections, considering that we do not have to assume an IR anomalous dimension or anything

else. Nonetheless, there is no obvious reason to choose between the given options of dual

operators; as long as the IR SCFT is in the shadows, both of them could be correct. In

fact, we could also build operators that are combinations of those two, which would also

fit the desired standards. As a final remark, note that even if the scaling dimension of

the operator (1.67) exhibits small corrections in the IR, this holographically agrees with the

small mass corrections of the BPS string due to its S2-fluctuations that we neglected in (1.53).

6 Conclusions

Summarizing, in Section 3 we studied all possible categories of vacua within a particular

AdS3 family of massive IIA supergravity solutions, first given in [34]. Apart from the original

solutions introduced there, we presented the remaining types of vacua in the same family

which all naively seem to give anomalous dual quiver gauge theories. We proved that these

erratic solutions imply D-branes on the boundary of the space, which in turn correspond to

flavor symmetries that exactly cancel the apparent gauge anomalies. A special feature of

the situation is that, due to strong RR fluxes on the boundary of the space, these D-branes
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come exclusively in bound states forming polarizations that provide the quiver with flavor

in a quite idiosyncratic way.

After dealing with all possible kinds of solutions and quiver theories, in Section 4 we

supplement the quiver structure with additional matter in the form of bifundamental links

between color and flavor nodes. These, we argue, may only be N = (4, 4) hypermultiplets

corresponding to suspended superstrings between D2 and D4-branes or D6 and D8-branes

in the ancestral Hanany-Witten set-up.

Having introduced the complementary bifundamental matter too, in Section 5 we put

holography to the test by considering a semiclassical string inside the AdS3 background

stretched between two D-branes. We call this a meson string and by finding its mass and

R-charge we show it is a BPS state. Next, we propose a UV operator out of fundamental

scalar fields, which we argue it may be dual to the BPS soliton. Moreover, crucial to the

construction of this operator is the additional bifundamental matter we have introduced.

While the R-charge of the proposed operator seems to get along with our expectations,

its conformal dimension is classically zero since scalar fields in two spacetime dimensions

have a vanishing mass dimension. What is more, since the two-dimensional SCFT we are

assuming is strongly coupled and these AdS3 vacua have been proven to be non-integrable,

the perturbative regime of calculations is out of our reach. Nonetheless, by bringing to the

surface the superpotential of the UV quiver theory, we find interactions between the scalars

inside the operator and we are led to the conclusion that the latter could be acquiring a totally

non-perturbative anomalous dimension at the IR, equal to the mass of the BPS string.

Pursuing the holographic picture of the meson string, we focus on the quiver structure and

find that scalars inside the vector superfields should obtain a VEV through a Fayet-Iliopoulos

term. The latter is due to the U(1) theory inside the U(N) gauge group of each stack of

branes in the set-up. Superpotential interactions between the vector and hypermultiplets

then dictate that bifundamental matter acquires a mass, ultimately associating the dual

meson operator with a classical mass equal to that of the BPS string. Since the operator

mass is a sum of all the individual scalar field masses, this renders the operator indeed

very much alike to a classical bound state of particles dual to a bound string state between

D-branes.

Finally, we propose an alternative operator dual to the BPS soliton. This new object

is made out of spinor products, which ultimately renders it a bosonic quantity. A simple

calculation shows that this operator has the correct scaling dimension and R-charge, which

makes it a good holographic fit for the dual BPS string, but, nonetheless, there is no a priori

reason to choose this operator over the other or, even, over a combination of both.



Extremal p-brane solutions 153

G Extremal p-brane solutions

Extremal p-branes are supergravity solutions that in the context of superstring theory are

identified with stacks of Dp-branes. These are distinct from O-planes that essentially con-

stitute boundary conditions for strings. The leading order backgrounds for all the above

read

p-brane : ds2 ∼ x
7−p

2 ds2
M1,p + x

p−7
2
(
dx2 + x2ds2

Σ8−p

)
, eφ ∼ x

(3−p)(p−7)
4 ,

p-brane

smeared on Σ̃s
: ds2 ∼ x

7−p−s
2 ds2

M1,p + x
p+s−7

2
(
dx2 + ds2

Σ̃s + x2ds2
Σ8−p−s

)
, eφ ∼ x

(3−p)(p+s−7)
4 ,

Op-plane : ds2 ∼ 1√
x

ds2
M1,p +

√
x
(
dx2 + ds2

Σ8−p

)
, eφ ∼ x

3−p
4 ,

(1.68)

where we schematically acknowledge constants. Here M1,p is a manifold that the brane fills,

Σ8−p is a compact space − on which one integrates to obtain the associated charge of the

brane − and Σ̃s is the manifold over which a brane may be smeared.

H Two dimensional N = (0, 4) superfields

H.1 Field content and action

Traditionally, extended supersymmetric theories are best realized through constituent, min-

imal supersymmetric multiplets. N = (0, 4) supersymmetry is no different and boils down

to N = (0, 2) superfields, which we now introduce. The language and content we present is

mainly based on [155,156], which both hold excellent reviews on the subject.

Gauge multiplet This is a real superfield, V, which comprises of an adjoint-valued com-

plex left-handed fermion ζ−, a real auxiliary field D and a gauge field A. The standard

kinetic term for the gauge multiplet expands into the action

Sgauge =
1

g2
Tr

∫
d2x

Å
1

2
F 2

01 + iζ̄−(D0 +D1)ζ− +D2

ã
. (1.69)

Chiral multiplet A N = (0, 2) chiral superfield, Φ, comprises of a right-moving fermion

ψ+ and a complex scalar φ, which both transform in the same gauge group representation.

The kinetic term for the gauged chiral multiplet expands into
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Schiral =

∫
d2x
Ä
−|Dµφ|2 + iψ̄+ (D0 −D1)ψ+ − iφ̄ζ−ψ+ + iψ̄+ζ̄−φ+ φ̄Dφ

ä
. (1.70)

Fermi multiplet This is an anticommuting superfield, Ψ, containing a left-moving spinor

ψ− and a complex auxiliary field G. The Fermi superfield is constrained by D̄+Ψ = E where

D+ = ∂θ+ − iθ̄+(D0 +D1), with D0,1 = ∂0,1 + iA0,1 and E = E(Φi) a holomorphic function

of the chiral superfields Φi. The kinetic term for the Fermi multiplet expands into

SFermi =

∫
d2x

Å
iψ̄−(D0 +D1)ψ− + |G|2 − |E(φi)|2 − ψ̄−

∂E

∂φi
ψ+i + ψ̄+i

∂Ē

∂φ̄i
ψ−

ã
. (1.71)

The holomorphic function E(φi) comes up as a potential ∼ |E(φi)|2 inside the action and

thus its particular choice, along with superpotential terms, determine the interactions of the

theory.

Superpotentials Considering multiple Fermi superfields Ψa which couple to scalar chiral

superfields Ja(Φi) through SJ ∼
∫

ΨaJ
a over half of the superspace, supersymmetry dictates

that superfields are constrained as E · J =
∑

aEaJ
a = 0. Ja(φ) produce potential terms

∼ |Ja(φi)|2 which are usually referred to as the superpotential in N = (0, 2) theories. There-

fore, besides the E-terms, the J-terms also give potential terms inN = (0, 2) supersymmetric

theories, all of them directly connected to Fermi multiplets. The attachment E ·J = 0 when

multiple Fermi and chiral multiplets are present, decides for the particular interactions in

the theory. But to see how this plays out we must first introduce N = (0, 4) supersymmetric

multiplets.

Two dimensional N = (0, 4) supersymmetry has four real right-moving supercharges that

rotate in the (2,2)+ representation of a SO(4)R ∼= SU(2)R × SU(2)R R-symmetry, where

the plus sign indicates the chirality under the SO(1, 1) Lorentz group. The superfields in

this kind of theories are the following.

N = (0, 4) vector multiplet Since in two dimensions the gauge field is not propagating

it is natural that two-dimensional N = (0, 4) vector superfields are composed of left-handed

spinors, which don’t transform under right-moving supersymmetry. Thus, aN = (0, 4) vector

superfield consists of an adjoint-valued N = (0, 2) Fermi superfield Θ and a N = (0, 2) vector

superfield .
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Besides the gauge field, there are two left-handed complex fermions, ζa− and three auxil-

iary fields, transforming in the (2,2)− and (3,1) R-symmetry representations, respectively.

The Fermi superfield is constrained through D̄+Θ = EΘ with EΘ depending on the matter

content, i.e. the chiral superfields present in the theory.

N = (0, 4) hypermultiplet The first way to couple matter fields to a N = (0, 4) vec-

tor multiplet (essentially to its constituent N = (0, 2) Fermi multiplet) is to consider a

N = (0, 4) hypermultiplet that consists of two N = (0, 2) chiral superfields, Φ and Φ̃, which

transform in conjugate gauge group representations and whose pairs of complex scalars and

right-handed spinors transform in the (2,1) and (1,2)+ representations, respectively, under

the R-symmetry.

N = (0, 4) twisted hypermultiplet Another possible way to couple matter fields to a

N = (0, 4) vector multiplet N = (0, 4) is through a twisted hypermultiplet. This consists of a

pair of N = (0, 2) chiral multiplets, Σ and Σ̃, which too transform in conjugate gauge group

representations. Now, nonetheless, different R-charge is being enforced by the coupling to

the Fermi field Θ. In contrast to hypermultiplets, the scalars and right-handed spinors now

transform in the (1,2) and (2,1)+ representations of R-symmetry.

N = (0, 4) Fermi multiplet Those contain two N = (0, 2) Fermi superfields, Γ and Γ̃,

which transform in conjugate gauge group representations and whose left-moving spinors

transform in the (1,1)− R-symmetry representation.

N = (0, 2) Fermi multiplet Finally, it is acceptable in N = (0, 4) supersymmetric theo-

ries to consider N = (0, 2) Fermi multiplets, as long as their left-moving spinors are SO(4)R

singlets and, according to that R-symmetry transformation, couple appropriately to the rest

of the matter in the theory.

As we are about to see, our quantum field theory also contains N = (4, 4) superfields that

decompose under N = (0, 4) supersymmetry into their N = (0, 4) superfield constituents.

The N = (4, 4) vector multiplet splits into an N = (0, 4) vector multiplet and an adjoint-

valued N = (0, 4) twisted hypermultiplet. The chiral superfields Σ and Σ̃ inside the twisted

hypermultiplet couple to the Fermi multiplet Θ inside the N = (0, 4) vector superfield. Fi-

nally, a N = (4, 4) hypermultiplet decomposes into an N = (0, 4) hypermultiplet, Φ and Φ̃,
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and an N = (0, 4) Fermi multiplet, Γ and Γ̃.

H.2 U(1) R-charge

From the SU(2)R × SU(2)R R-symmetry of the N = (0, 4) theory, we single out a U(1)R

inside one SU(2)R and give the U(1)R charge of each fermion in the above multiplets.

For the N = (0, 4) vector multiplet we have that the left-handed fermion inside the vector

has R[ζ−] = +1 while the same holds for the left-handed fermion inside the Fermi multiplet,

i.e. R[ψ−] = +1. On the contrary, both right-handed fermions inside the N = (0, 4) twisted

hypermultiplet have R[ψ+] = 0. For both right-handed fermions inside the N = (0, 4)

hypermultiplet we have R[ψ+] = −1. Finally, the fermion inside the N = (0, 2) Fermi

multiplet is uncharged under R-symmetry.

I The D8/D4 bound state

We consider the background of the case with a constant u function and study the beginning

of its ρ-dimension where D4-branes seem to polarize into a D8/D4 bound state. The fact

that Cel9 field becomes infinitely strong at that endpoint reasonably makes the D8/D4 bound

state dominant, yet a more formal proof of it being the true vacuum is in order.

Comparing to Myers’s original calculation [157], here we are dealing with higher dimen-

sional branes. Furthemore, the method developed in [157] holds in the flat space limit,

whereas our bound state takes place in AdS3×S2×CY2×Iρ. What is more, Calabi-Yau man-

ifolds lack a particular metric tensor whatsoever.

However, the situation is less dramatic than it may look. First of, the Chern-Simons

term

SD4
CS = µ4

∫
Tr
∑

eiλıΦıΦC(n)e
F2 , (1.72)

gets only deformed away from the flat space limit by terms coupled to the B2 field. These

terms would be unimportant compared to our infinitely strong Cel9 potential coupling, but the

Kalb-Ramond field vanishes at ρ = 0 for constant u(ρ) anyway. Next, the Dirac-Born-Infeld

(DBI) action

SD4
DBI = −T4

∫
d4ξ Tr e−φ

√
−det

Ä
Gab +Gai(Q−1 − δ)ijGjb + λf̃ab

ä
det
Ä
Qij

ä
, (1.73)
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where

Qij = δij + iλ[Φi,Φk]Gkj . (1.74)

The a, b are indices pulled-back on the D4-brane worldvolumes, while i, j are their transverse

dimensions. That is, Gµν = (Gab, Gij) where Gai = 0 and the transverse field Gij includes

the ρ-dimension and an independent CY2 block.

Choosing a static gauge where the D4-branes’ worldvolumes fill up AdS3×S2, i.e. choosing

worldvolume coordinates and the transverse modes (which are scalars in the D4 worldvolume)

as

ξa = Xa = (t, x, r, θ, φ) , Xi(ξa) = λΦi(ξa) , (1.75)

where the λ was included on dimensional grounds, then the DBI action reads

SD4
DBI = −T4

∫
d4ξ Tr e−φ

√
−det(Gab + λ2∂aΦi∂bΦjGij) det

Ä
δij + iλ[Φi,Φk]Gkj

ä
, (1.76)

where we ignored the D4-brane gauge field f̃ as unimportant. Using the fact that the

determinant behaves like det(A+ λB) = detA + λTrB + . . . for small λ, we obtain the

potential energy

V (Φ) = N4T4M4 −
T4M4λ

2

4
Tr [Φi,Φj ]2 − i

T4M4λ
3

12
Tr [Φi,Φj ]3 + . . . , (1.77)

where the ellipsis contains higher-order potential terms and contractions with the transverse

metric Gij are implied. N4 is the number of D4-branes and M4 comes from the factor

e−φ detG, which for our background (1.40) at ρ→ 0 scales as

e−φ detG
ρ→0−−−→ M4 ρ

5
4 ρ−

5
4 = M4 , (1.78)

which goes to a constant. Notice that in the flat space limit, the second term of (1.77) reflects

the familiar SYM potential.

So far, the sole deviation from the flat space analysis is the contraction of indices in

the potential (1.77) with the transverse metric Gij . This field includes the ρ-dimension
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component and an independent CY2 block. The former is known but unimportant since the

Φρ modes will not be ultimately involved in the potential energy and thus no such indices

will need to contract, while the latter is essential but lacks a particular metric tensor. We

could maybe realize some generic algebraic constraints on the Calabi-Yau block, like its Ricci

flatness, but we do need a particular metric tensor which makes it is easier to assume CY2 =

T4 and thus let for a Euclidean R4 metric.

Our study significantly simplifies by choosing a convenient gauge for the RR potential as

Cel9 = −u
2

h8
vol(AdS3) ∧ vol(S2) ∧ vol(CY2) . (1.79)

On these grounds, while picking the static gauge (1.75), we can expand the source term

S
D8/D4
CS = −λ

2

2
µ8

∫
Tr (ıΦıΦ)2Cel9 = −λ

2

2
µ4

∫
d5ξ Tr ΦiΦjΦkΦl Cijkltxrθφ

= −λ
2

8
µ4

∫
d5ξ Tr [Φi,Φj ][Φk,Φl]C9 ,

(1.80)

where we redefine the Latin letters i, j, k, l to denote only CY2 directions. The transverse

modes Φi are in general anticommuting matrices, where the diagonal elements are the po-

sitions of the D4-branes, while the non-diagonal ones reflect their quantum geometry due

to the superposition of strings ending on them. The fact that Φi are oscillations in non-flat

dimensions is not restrictive in any way, since we fundamentally assume those modes as

generic anticommuting matrices that may (and actually do) give a fuzzy geometry. Also,

note that in general we should include Φρ too, but not in our particular gauge of Cel9 .

Now we want to focus on ρ = 0 where all the action takes place, i.e. expand Cel9 around

that endpoint. It being a singular endpoint implies a Laurent expansion but, since it is also

the endpoint of a closed interval, this series is not well defined around it. Thus, we just

pick a point x close to ρ = 0 and expand around it, inside a circular region (of the complex

domain) − of radius x too − which touches the singularity. That is, the expansion reduces

to a Taylor series around x as

S
D8/D4
CS = −λ

2

8
µ4

∫
d5ξ Tr [Φi,Φj ][Φk,Φl]

(
C9|ρ=x + λΦρF10|ρ=x + . . .

)
. (1.81)

Since h8 → 0 for small x, the RR fields C9 and F10 blow up there and thus from now on we

will consider them as largely-valued quantities.

The above source term adds to the interactions (1.77) of the DBI action and hence, taking
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into account the full D4-brane action S = SDBI + SCS, we acquire the potential energy

V (Φ) = − λ2

4
Tr [Φi,Φj ]2 +

λ2

8
Tr [Φi,Φj ][Φk,Φl]C9|ρ=x

− i
λ3

12
Tr [Φi,Φj ]3 +

λ3

8
Tr [Φi,Φj ][Φk,Φl]Φρ F10|ρ=x ,

(1.82)

where we have assumed a constant mode Φρ to simplify the game and reparametrized the

fields conveniently to absorb numerical factors. Reparametrizing once more, the potential

gets an order by order variation ∂V
∂Φ = 0 as

O(λ2) : [Φi,Φj ] = [Φk,Φl]Cijkl... ,

O(λ3) : [Φi,Φj ][Φj ,Φk] = −i[Φl,Φm]Fiklm... ,

(1.83)

which has a trivial solution [Φi,Φj ] = 0 giving V0 = 0, corresponding to separated D4-branes.

Alternatively, combining both of these equations, the potential also exhibits the non-trivial

solution

[Φi,Φj ] = −iεij∂ρ , (1.84)

which in momentum space reads

[Φi,Φj ] = εijpρ , (1.85)

where we abuse the antisymmetric tensor just to sustain the antisymmetry of the commutator

into the rhs. Placing this solution back into the SYM potential we get

V? ∼= λ2 p2
ρC9|ρ→0 + O(λ3) , (1.86)

where we used the fact that C9 is large at ρ→ 0.

As a matter of fact, C9 is not only large but also negative at that endpoint, which means

that V? < 0. Since the separated D4-branes correspond to the null energy state V0 = 0, the

latter is unstable and condenses out into the non-trivial D8/D4 bound state with V? which

is the true stable vacuum at ρ = 0. Also, notice the fact that specifically V? → −∞, due to

the strong RR potential C9 → −∞ at ρ→ 0, which saves us from having to also investigate
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other bound states. In our case, Cel3 , C
el
7 → 0 at ρ→ 0 anyway, but even if this was not the

case there just cannot be any lower energy than V?.

J R-charge of the BPS state

Naively, the B2 field in (1.1) has nothing to do with the 1-form cos θ dφ. However, B2 ex-

hibits large gauge transformations across the ρ-intervals [2πk, 2π(k+1)], which are explicitly

realized through the 1-form

Λ1 = Θ
(
ρ− 2πk

)
Θ
(
2π(k + 1)− ρ

)
πk cos θ dφ . (1.87)

Therefore, the large gauge transformations B2 → B2 + dΛ1 read

B2 −→ B2 + Θ
(
ρ− 2πk

)
Θ
(
2π(k + 1)− ρ

)
πk dΩ2

+
[
δ
(
ρ− 2πk

)
− δ
(
2π(k + 1)− ρ

)]
πk dρ ∧ cos θ dφ ,

(1.88)

where, in this explicit formulation, the only difference now is the novel delta-terms, Bδ
2. The

latter, which are the ones producing the R-charge, are integrated over a ρ-interval as

1

2π

∫
Bδ

2 =
2

2π

∫
R

cos θ dφ

∫ 2π(k+1)

2πk
dρ

ß [
δ
(
ρ− 2πk

)
− δ
(
2π(k + 1)− ρ

)]
πk

− δ
(
2πk − ρ

)
π(k − 1) + δ

(
ρ− 2π(k + 1)

)
π(k + 1)

™
,

(1.89)

where the first line is the contribution coming from Bδ
2 defined on the interval [2πk, 2π(k+1)]

as expected, while the second line includes the contributions coming from the intervals prior

and next to that. Considering
∫∞

0 δ(x)dx = 1/2, the above integral gives

1

2π

∫
Bδ

2 =

∫
R

cos θ dφ (1.90)

and the whole meson string Mk,m acquires the R-charge source term

SM = (m− k)

∫
R

cos θ dφ , (1.91)
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which yields its R-charge

QR = m− k . (1.92)
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Chapter 1

Supersymmetry in two dimensions

In this appendix we briefly review supersymmetry and its realization in two spacetime

dimensions. After summarizing the basics of superspace and superfields, we dive into two-

dimensional superfields and, in particular, we introduce N = (0, 2) supersymmetric multi-

plets. From the latter we build up N = (0, 4) and N = (4, 4) superfields in two dimensions,

while we show the way those decompose in a theory of smaller supersymmetry. Finally, we

point out the different realizations of R-symmetry while we dimensionally reduce a super-

symmetric theory. Standard references on these subjects are [154–156,159,160].

A Superspace and superfields

In usual spacetime, the symmetry generators of a Lie algebra produce appropriate trans-

formations on spacetime coordinates and leave the theory intact. The simplest example is

translation invariance, that is invariance under the transformation

x′µ = xµ + aµ , (1.1)

where aµ parametrize the translations. In particular, they parametrize the (differential)

translation generators on a group element, U = exp(iaµPµ), which acts on spacetime fields

and coordinates.

Supersymmetry, on the other hand, is generated by anticommuting (Grassmann) gen-

erators Qα, Q̄α̇ which are parametrized analogously by spinors εα, ε̄α̇, building up transfor-

mations U = exp
(
iε ·Q+ iε̄ · Q̄

)
. Therefore, if we want to realize supersymmetry charges

as producing a translation too on the fields, we may treat ε, ε̄ as displacement vectors in

an extended spacetime with extra Grassmann coordinates. We choose the supersymmetry

charges to be minimal spinors and so the same follows for ε, ε̄ that parametrize them. Thus,

the superspace that we are looking for has extra Grassmann coordinates θα, θ̄α̇ in addition

to the usual spacetime coordinates xµ.

165
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A superfield is a field with dependence on the whole superspace as S(x, θ, θ̄). Since, in a

theory of states, a (super) field transforms unitarily as

〈s1| S(x′, θ′, θ̄′) |s2〉 = 〈s1|U(a, ε, ε̄) S(x, θ, θ̄) U †(a, ε, ε̄) |s2〉 , (1.2)

then, using the superalgebra, we find that a translation in superspace reads

x′µ = xµ + aµ + iεσµθ̄ − iθσµε̄ ,

θ′ = θ + ε ,

θ̄′ = θ̄ + ε̄ .

(1.3)

Through a general supersymmetric transformation U = exp
(
iaµPµ + iε ·Q+ iε̄ · Q̄

)
, this

reveals the differential form of the supercharges,

Qα =
∂

∂θα
− iσµαα̇θ̄

α̇ ∂

∂xµ
,

Q̄α̇ = − ∂

∂θ̄α̇
+ iσµαα̇θ

α ∂

∂xµ
,

(1.4)

where α, α̇ are the two chiralities of spinor indices.

The simplest kind of superfield that may live in superspace is obviously a scalar (com-

muting) superfield Φ(x, θ, θ̄). However this field has a large field content, since it expands

as

Φ(x, θ, θ̄) = φ(x) + θ · ψ(x) + θ̄ · χ(x) + θ · θA(x) + . . . , (1.5)

up to nine terms. If we want to use superfields to build the simplest kind of theories (i.e. the

Wess-Zumino kind of Lagrangians of a scalar with a spinor superpartner and an auxiliary

field) we must somehow constrain Φ(x, θ, θ̄) to a minimal field content. Observing (1.5), we

notice that if Φ is a function of x and θ only, then it becomes substantially minimal. Thus,

we can naively demand Φ to be independent of θ or θ̄, that is

∂

∂θ̄α̇
Φ = 0 . (1.6)

However, this is not consistent with supersymmetry since, considering (1.5), even if we

assume Φ = Φ(x, θ) then a supersymmetric transformation shall spread it back over all
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superspace. It turns out that, if we demand a general constraint

D̄ S(x, θ, θ̄) = 0 , (1.7)

then the operation D has to obey {D,Q} = {D, Q̄} = 0 for supersymmetry to be preserved.

This leads to the operators

Dα =
∂

∂θα
+ iσµαα̇θ̄

α̇ ∂

∂xµ
,

D̄α̇ = − ∂

∂θ̄α̇
− iσµαα̇θ

α ∂

∂xµ
.

(1.8)

Therefore, the simplest superfield we can realize is a (left-) chiral superfield which obeys

D̄α̇Φ = 0 and expands as

Φ(x, θ, θ̄) = φ(x) + θ · ψ(x) + θ · θF (x) + . . . , (1.9)

where the dots indicate derivative terms of the above fields, of higher order in θ, θ̄. Observing

that D̄α̇ leaves the coordinate yµ = xµ + iθσµθ̄ invariant, i.e. D̄α̇y
µ = 0, then the left-chiral

superfield may be written in the compact form

Φ(y, θ) = φ(y) + θ · ψ(y) + θ · θF (y) , (1.10)

while its complex conjugate Φ̄ is an antichiral superfield obeying DαΦ̄ = 0.

A.1 Supersymmetric action terms

Taking the supersymmetric variation of a chiral superfield

Φ(x′, θ′, θ̄′) = Φ(x, θ, θ̄) + i
(
εσµθ̄ − θσµε̄

)
∂µΦ + ε · ∂Φ + ε̄ · ∂̄Φ + . . . (1.11)

and expanding in component fields, we find that the auxiliary field transforms as a total

derivative, i.e. δF ∼ ε̄·/∂ψ. Stated otherwise, the coefficient of the θ·θ term in the expansion of

a left-chiral superfield Φ(x, θ, θ̄) transforms as a total derivative under supersymmetry. These

we call the F -terms of chiral superfields and in the simple case of using just one left-chiral

superfield Φ we can construct a supersymmetry-invariant action term as
∫

d2θΦ = Φ|F = F .
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Of course, there is no interest in a term containing just an auxiliary field, which means

we desire more complicated left-chiral superfields accompanied by more interesting F -terms.

The key observation is that the product of any number of left-chiral superfields is a left-chiral

superfield itself. Therefore, if the quantity W(Φi) is a holomorphic function of left-chiral

superfields Φi, then it is a left-chiral superfield itself and it produces supersymmetry-invariant

terms as

W(Φ1,Φ2, ...)

∣∣∣∣
F

, (1.12)

which, in terms of its component fields, reads

W(Φi)

∣∣∣∣
F

=
∂W(φi)

∂φj
Fj −

1

2

∂2W(φi)

∂φj∂φk
χi · χj + h.c. (1.13)

and it is what we call a superpotential. It turns out that the interaction terms of the minimal

supersymmetric (Wess-Zumino) model can be obtained from the superpotential terms

LWZ
int =

Å
1

2
mijΦiΦj +

1

3!
yijkΦiΦjΦk

ã ∣∣∣∣
F

+ h.c. . (1.14)

The kinetic terms, on the other hand, are obtained as the coefficients of the term with

θ · θθ̄ · θ̄ from

LWZ
kin =

∫
d4θ Φ†Φ = Φ†Φ

∣∣∣∣
D

, (1.15)

which is a supersymmetry-invariant quantity that we call a D-term, a name that will acquire

its meaning in the next subsection, where we introduce the vector superfield.

A.2 Supersymmetric gauge theory

Introducing a U(1) phase on the chiral superfields as

Φ −→ e2iqΛΦ , (1.16)

where q is the charge, we understand that Λ(x) must be a chiral superfield as well, since

a phase cannot change the chirality of a superfield (otherwise it is not a phase). As far as
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the kinetic term (1.15) is concerned, it acquires a phase Φ†Φ −→ e2iq(Λ−Λ†)Φ†Φ which is

compensated by the introduction of a superfield V as Φ†e2qVΦ, which transforms under a

gauge transformation as

V −→ V − i(Λ− Λ†) . (1.17)

Observing in the above expression that V transforms into real gauges, we can choose it to

be a real superfield, i.e. V = V†. Given that, we can restraint V to the Wess-Zumino (WZ)

gauge as

V = −θσµθ̄Aµ + θ · θθ̄ · ζ̄ − iθ̄ · θ̄θ · ζ +
1

2
θ · θθ̄ · θ̄ D , (1.18)

which is what we call the vector (gauge) superfield. In WZ gauge, there is still one redundant

gauge freedom left, Λ(x) = a(x), which is the ordinary freedom of the spacetime gauge field

Aµ(x) −→ Aµ(x) + ∂µa(x). Since we are dealing with a U(1) theory and we have already

introduced a gauge field through the coupling to the vector superfield, the action is gauge

invariant as it is (the covariant derivative Dµ naturally forms for the φ and χ inside Φ, on

the expanded kinetic action) while supersymmetry is not affected by the gauge freedom.

Note that last argument: for Abelian gauge transformations, supersymmetry does not

conflict with gauge freedom. We can see that on the level of the supersymmetric variations,

which include the field strength Fµν that is gauge invariant under U(1). This also means that,

while Φ (if present) is charged under U(1), the spinor λ inside the vector superfield (1.18) is

not U(1)-charged. In the non-Abelian case things must be modified, since Fµν is not gauge

invariant anymore and thus the spinor and the auxiliary field must also transform under

the gauge transformations in order to compensate and leave the supersymmetric variations

gauge invariant. This is achieved by just advancing all the (super) derivatives into (super)

covariant derivatives Dα, D̄α̇ and Dµ.

Except the new kinetic term for the left-chiral superfields,

Φ†ie
2qiVΦi

∣∣∣∣
D

, (1.19)

gauge invariance of the action must also hold for their superpotential, (1.13). Therefore,

since the superpotential is a holomorphic function of the chiral superfields, then it can only

be gauge-invariant if

∑
i

qi = 0 . (1.20)
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The only thing left is to construct the field strength of the Abelian vector superfield, that

gives the kinetic terms its component fields. The strength reads

Fα ≡ D̄ · D̄DαV , (1.21)

which, observing that D̄α̇Fβ = 0, is a spinor (anticommuting) left-chiral superfield. Being a

left-chiral superfield, it naturally builds the supersymmetry-invariant kinetic F -term

1

4
F · F

∣∣∣∣
F

, (1.22)

which expands in the usual kinetic terms for component fields of the gauge multiplet (1.18).

B N = (0, 2) superfields in two dimensions

Superspace in d = 1 + 1 dimensions is parametrized by the spacetime coordinates x± =

x0 ± x1 and the complex (one-component1) Grassmann coordinates θ±, θ̄±. The latter can

be realized as the reduction of the anticommuting coordinates in four dimensions, which are

two-component Weyl spinors, as

θα ≡

(
θ1

θ2

)
KK−−→

{ θ+

θ−
(1.23)

and their complex conjugates. While the four-dimensional θα coordinate is Weyl, i.e. a chiral

spinor, its reduced two-dimensional children θ± have opposite chiralities. This antithesis is

insightful in the context of the dimensionally reduced R-symmetry, which we analyze in the

last section.

N = (0, 2) superspace is the restriction of life on the single right-moving complex coordi-

nate θ+ and its conjugate θ̄+, [154–156]. The supercharges are always chosen to be minimal

spinors, i.e. one-component real Majorana-Weyl spinors in two spacetime dimensions, which

means that the amount of supersymmetry N also represents the number of the supercharges.

Thus, in this case we have the real chiral supercharges

Q+ =
∂

∂θ+
+ iθ̄+ (∂0 + ∂1) , Q̄+ = − ∂

∂θ̄+
− iθ+ (∂0 + ∂1) . (1.24)

These commute with

1In d spacetime dimensions, a Dirac spinor has 2[ d
2 ] complex components.
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D+ =
∂

∂θ+
− iθ̄+ (D0 +D1) , D̄+ = − ∂

∂θ̄+
+ iθ+ (D0 +D1) , (1.25)

where D0 +D1 = ∂0 + ∂1 + iA0 + iA1, that is we introduced (super) covariant derivatives to

handle with a non Abelian theory from now on. These derivatives obey

D̄2
+ = D2

+ = 0 ,
{
D+, D̄+

}
= 2i (D0 +D1) . (1.26)

Both N = (0, 2) and N = (0, 4) supersymmetry algebras have the feature of contain-

ing only right-moving supercharges. This means that right-handed spinors are paired with

bosonic fields in the familiar supersymmetric manner. In contrast, left-moving spinors can

be loners; they need not have bosonic companions, in which case supersymmetry acts only

to restrict their interactions with the right-handed spinors.

Therefore, two-dimensional theories withN = (m,n) supersymmetry exhibit an SO(m)R×SO(n)R

R-symmetry, which rotates left and right-moving supercharges respectively. Thus a N =

(0, 2) theory has a U(1)R R-symmetry, under which θ+ has charge +1 and θ̄+ has −1. R-

symmetry is important since its R-current anomaly is directly associated with the central

charge of the theory. The different R-symmetry realizations are discussed in Section D.

B.1 Gauge multiplet

The gauge multiplet is a real superfield, V. It comprises of a gauge field A, an adjoint-valued

complex left-handed fermion ζ− and a real auxiliary field D. The component expansion is

V = (A0 −A1)− iθ+ζ̄− − iθ̄+ζ− + θ+θ̄+D , (1.27)

where the bosonic and fermionic degrees of freedom (dof) do not have to match (and they

don’t), since the right-moving supercharges of N = (0, 2) supersymmetry does not act on

left-handed spinors.

Having introduced the two-dimensional vector superfield, we can also define the left-

handed super covariant derivative

D− = D0 −D1 = ∂0 − ∂1 − iV , (1.28)

which may be used to write down the kinetic term for a chiral superfield and the superfield
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strength

Υ =
[
D̄+,D−

]
= −ζ− − iθ+(D − iF01)− iθ+θ̄+(D0 +D1)ζ− . (1.29)

This satisfies D̄+Υ = 0, which means that Υ is a spinor left-chiral superfield. Equivalently,

it is a special case of a Fermi multiplet, which will be introduced below.

The standard kinetic action for the gauge multiplet reads

Sgauge =
1

8g2
Tr

∫
d2x d2θ ῩΥ

=
1

g2
Tr

∫
d2x

Å
1

2
F 2

01 + iζ̄−(D0 +D1)ζ− +D2

ã
.

(1.30)

B.2 Chiral multiplet

N = (0, 2) chiral multiplets contain a right-moving fermion ψ+ and a single complex scalar

φ, each transforming in the same representation of the gauge group. These synthesize a

complex-valued bosonic chiral superfield Φ obeying

D̄+Φ = 0 , (1.31)

with component expansion

Φ = φ+ θ+ψ+ − iθ+θ̄+ (D0 +D1)φ . (1.32)

Note, here, the matching between the bosonic and fermionic dof. Since ψ+ is one-component,

the Dirac equation may still be a matrix equation but there is no mixing between spinor

components.

The kinetic terms for the gauged chiral multiplet are now given by

Schiral =

∫
d2x d2θ Φ̄ (D0 −D1) Φ

=

∫
d2x
Ä
−|Dµφ|2 + iψ̄+ (D0 −D1)ψ+ − iφ̄ζ−ψ+ + iψ̄+ζ̄−φ+ φ̄Dφ

ä
.

(1.33)
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B.3 Fermi multiplet

N = (0, 2) theories have the property that left-moving spinors are not necessarily accompa-

nied by propagating, bosonic superpartners. A spinor of this kind, ψ−, sits in an anticom-

muting superfield Ψ, obeying the condition

D̄+Ψ = E , (1.34)

where, considering (1.26) and D̄2
+ = 0, E is some chiral superfield

D̄+E = 0 . (1.35)

We call Ψ a Fermi multiplet. In our context, we always take E = E(Φi) to be a holomorphic

function of the chiral superfields Φi. This function must be chosen so that E(Φi) transforms

in the same manner as Ψ under any symmetries; we will realize this in the context of R-

symmetry, below. Being a chiral superfield, E expands as

E(Φi) = E(φi) + θ+ ∂E

∂φi
ψ+i − iθ+θ̄+(D0 +D1)E(φi) . (1.36)

The choice of E determines the interaction of the theory and also appears in the compo-

nent expansion of the superfield,

Ψ = ψ− − θ+G− iθ+θ̄+ (D0 +D1)ψ− − θ̄+E(φi) + θ+θ̄+ ∂E

∂φi
ψ+i . (1.37)

Here G is a complex auxiliary field. As mentioned before, the superfield strength Υ is of this

type, with D̄+Υ = (E =)0.

The kinetic terms for the Fermi multiplet are given by

SFermi =

∫
d2x d2θ Ψ̄Ψ

=

∫
d2x

Å
iψ̄−(D0 +D1)ψ− + |G|2 − |E(φi)|2 − ψ̄−

∂E

∂φi
ψ+i + ψ̄+i

∂Ē

∂φ̄i
ψ−

ã
.

(1.38)
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Note that the holomorphic function E(φi) appears as potential terms in the Lagrangian.

Thus, just by constraining the Fermi superfield Ψ on the chiral superfields Φi, as in (1.34),

we acquire interactions. However, as we now explain, this is not the only way to introduce

potential terms though chiral multiplets.

B.4 Superpotentials

Each Fermi multiplet contains an auxiliary complex scalar G, which transforms as a total

derivative. Thus, we may consider the supersymmetric G-terms

S ∼
∫

dθ+ Ψ , (1.39)

which however is uninteresting. To spice things up, we notice that, like the F -terms of the

scalar chiral superfields are supersymmetry-invariant, so are the G-terms of anticommuting

chiral superfields2, ∫
d2x dθ+ (...)

∣∣
θ̄+=0

+ h.c. , (1.40)

where (...) is an anticommuting superfield, annihilated by D̄+. Given that a product of chiral

superfields is itself a chiral superfield and, also, that a product of an anticommuting and a

commuting (scalar) superfield is itself an anticommuting superfield3, an obvious candidate

for (...) is ∫
d2x dθ+ (ΨJ)

∣∣
θ̄+=0

+ h.c. , (1.41)

where J = J(Φi) is a holomorphic function of the Φi’s, while D̄+Ψ = D̄+J = 0. But this

only works for the special case of a chiral Fermi superfield, i.e. with E = 0. Therefore, we

consider multiple Fermi superfields Ψa corresponding to multiple scalar chiral superfields Ja,

together building the sum
∑

a ΨaJ
a that has a supersymmetric G-term only when it is a

chiral superfield, that is iff

D̄+ (ΨaJ
a) = 0 . (1.42)

2In the special case of (1.39), Ψ does not have to be chiral, i.e. D̄+Ψ = E = 0, for this G-term to be
supersymmetric. That is, we only extract a single auxiliary field G which transforms as a total derivative on
its own right.

3Following the obvious rule: odd · even = odd.
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This, in turn, is satisfied if

E · J ≡
∑
a

EaJ
a = 0 , (1.43)

which constitutes a highly strong constraint for a supersymmetric theory. This shows that

there is some tension when introducing both E-type potentials and J-type potentials associ-

ated to the same Fermi multiplet. If we only have one Fermi multiplet, then this necessarily

means that (J 6= 0 and) E = 0, as we argued for (1.41). In general, however, E 6= 0 if we can

arrange some cancellation between other Fermi multiplets. This condition will prove crucial

in our construction of N = (0, 4) theories below.

Overall, we obtain the supersymmetric term

SJ =

∫
d2x dθ+

∑
a

ΨaJ
a(Φi)

∣∣
θ̄+ + h.c. , (1.44)

which expands in

SJ =
∑
a

∫
d2x

(
GaJ

a(φi) +
∑
i

ψ−a
∂Ja

∂φi
ψ+i

)
+ h.c. . (1.45)

After integrating out the auxiliary fields Ga, this results in a potential term ∼ |Ja(φi)|2.

Notice that the fields indexed by i all come from the function Ja(Φi). (1.45) is usually

referred to as the superpotential in N = (0, 2) theories. In what follows, we will also use the

notation

W = ΨaJ
a(Φ) . (1.46)

Hence, we see that there are two ways to construct potential terms in theories withN = (0, 2)

supersymmety. Both are associated to Fermi multiplets and both involve holomorphic func-

tions, E(φi) and J(φi). The difference between them is not visible in the bosonic Lagrangian

alone; it only shows through the subtle difference in the Yukawa terms in (1.38) and (1.45).

This difference will be important in the context of N = (0, 4) theories.
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B.5 N = (2, 2) decomposition

TheN = (0, 2) vector superfield may also be realized as the dimensional reduction of theN =

1 four-dimensional vector superfield (1.18). The latter reduces into a two-dimensional N =

(2, 2) vector superfield4 (a N = 4 multiplet in two dimensions), which in turn breaks under

N = (0, 2) supersymmetry into the vector multiplet (1.27) with the non supersymmetric

left-moving spinor ζ− and the N = (0, 2) chiral multiplet (1.32) with the supersymmetric

right-moving ζ+.

The N = 1 four-dimensional chiral superfield (1.10) reduces into a two-dimensional

N = (2, 2) chiral superfield5, which in turn breaks under N = (0, 2) supersymmetry into the

chiral multiplet (1.32) with the supersymmetric right-moving spinor ψ+ and a N = (0, 2)

Fermi multiplet (1.37) with the non supersymmetric left-moving ψ−.

C N = (0, 4) superfields in two dimensions

Theories in two dimensions with N = (0, 4) supersymmetry have four, real, right-moving

supercharges. Correspondingly, they have an R-symmetry

SO(4)R ∼= SU(2)−R × SU(2)+
R . (1.47)

The supercharges transform in the (2,2)+ representation, where the subscript denotes their

chirality under the SO(1, 1) Lorentz group.

We now move one to build N = (0, 4) theories using N = (0, 2) superfields. These theo-

ries are composed so that they enjoy an enhanced SO(4)R R-symmetry, which ensures that

there is an extended supersymmetry.

C.1 Vector multiplets

Since in two dimensions the gauge field is not propagating it is natural that two-dimensional

N = (0, 4) vector multiplets are composed of left-handed spinors, which don’t transform

under supersymmetry6. We first indicated this for the N = (0, 2) vector superfields (1.27).

Thus, a N = (0, 4) vector superfield consists of a N = (0, 2) vector and an adjoint-valued

4This comprises of a real auxiliary field D, a complex scalar φ and two complex fermions ζ± that lose half
of their dof under their common Dirac equation.

5This comprises of a complex auxiliary field F , a complex scalar φ and two complex fermions ψ± that
lose half of their dof under their common Dirac equation.

6A two-dimensional N = (0, 4) vector superfield has no right-handed spinors, since these would transform
under supersymmetry while their multiplet has no on-shell bosonic dof.
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N = (0, 2) Fermi multiplet Θ. Besides the gauge field, there are a pair of left moving

complex fermions, ζa−, a = 1, 2, transforming as (2,2)−
7 under the R-symmetry and a triplet

of auxiliary fields transforming as (3,1)8.

The Fermi superfield obeys

D̄+Θ = EΘ , (1.48)

where EΘ depends on the matter content, i.e. the chiral superfields present in the theory.

The N = (0, 4) action is obviously given by the sum of (1.30) and (1.38).

C.2 Hypermultiplets and twisted hypermultiplets

There are two distinct ways to couple matter fields to a N = (0, 4) vector multiplet (essen-

tially to its constituent N = (0, 2) Fermi multiplet). For this reason, we distinguish between

hypermultiplets and twisted hypermultiplets.

An N = (0, 4) hypermultiplet consists of a pair of N = (0, 2) chiral multiplets, Φ and Φ̃

, transforming in conjugate representations of the gauge group. The pair of complex scalars

transforms as (2,1) under the R-symmetry, while the pair of right-handed spinors transforms

as (1,2)+.

The kinetic terms for both chiral multiplets are given by (1.33). In addition, there is a

coupling to Fermi superfield in the N = (0, 4) vector multiplet. This takes the form of a

superpotential (1.46) with

JΘ = ΦΦ̃ ⇒ WΘ = ΦΘΦ̃ . (1.49)

The N = (0, 4) twisted hypermultiplet also consists of a pair of N = (0, 2) chiral multi-

plets, Φ′ and Φ̃′, transforming in conjugate representations of the gauge group. The differ-

7Naively, the left-handed spinors which are singlets under the right-moving supersymmetry would also
be singlets under the R-symmetry. However, since both the N = (0, 2) vector and the Fermi multiplets
couple to chiral superfields, as in (1.33) and (1.38), that do transform under R-symmetry, the former must
transform as well for an R-symmetric theory. As we will see below, the reason that these left-handed spinors
transform under both SU(2)’s is that the various chiral multiplets (to which they couple) transform under
both groups. Another starting point could be the supersymmetric variations. There, by requiring that the
supersymmetry-variation parameters ε± are charged appropriately, we find the R-charges of the component
fields. This procedure however may be bypassed, since we know that the gauge field − and thus the vector
superfield − are not charged under R-symmetry and so we can require R[Υ] = +1.

8The N = (0, 2) vector and Fermi multiplets together have 3 real auxiliary dof, which transform under
one of the SO(3)R ∼= SU(2)R.
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ence from the hypermultiplet lies in the R-symmetry transformation of the fields. The pair

of scalars transform as (1,2) while the pair of right-moving fermions transforms as (2,1)+.

The kinetic terms for the two chiral multiplets are again given by (1.33). The different

R-symmetry transformations are enforced by the coupling to the Fermi field Θ. In contrast

to the hypermultiplet, the coupling is no longer through the superpotential but instead via

the relation (1.48), with

EΘ = Φ′Φ̃′ , (1.50)

with the combination Φ′Φ̃′ arranged so that it transforms in the adjoint of the gauge group.

To realize why the hypermultiplet and the twisted hypermultiplet transform differently,

we just observe their coupling on the level of the action in (1.45). There, the Fermi multiplet

(which couples to the E function) couples to the J function. Requiring the action to be

R-symmetric under an operator R, we find that R[Φ] = 1 − R[Φ′], where Φ,Φ′ represent

chiral superfields coming from hypermultiplets and twisted hypermultiplets, respectively.

This means that whenever a hypermultiplet is charged as +1 the other is a singlet and vice

versa.

To preserve N = (0, 2) supersymmetry, we must have E · J = 0. If we have only a single

vector multiplet, this condition reads

EΘ JΘ = 0 . (1.51)

Obviously, as we commented when we introduced the superpotential, this is not satisfied if

we naively try to couple both hypermultiplets and twisted hypermultiplets to the same gauge

group (except if the Fermi multiplet is a chiral superfield, i.e. EΘ = 0, which is not the case

here). To do this in a manner consistent with supersymmetry, we need to introduce further

multiplets.

C.3 Fermi Multiplets

We define the N = (0, 4) Fermi multiplets to consist of a pair of N = (0, 2) Fermi multiplets,

Γ and Γ̃, transforming in conjugate representations of the gauge group. The left-handed

spinors transform as (1,1)− under the R-symmetry9.

9In contrast with the Fermi multiplet Θ inside the N = (0, 4) vector superfield, the Fermi multiplets
Γ, Γ̃ couple, as we see below, in a mixed manner with the hyper and twisted hypermultiplets. This mixing
cancels the R-charges between them, in the level of the action, applying no pressure anymore to the Fermi
multiplets to be R-charged (in order for the action to be R-symmetric). Thus, these Fermi’s are singlets under
R-symmetry.
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The kinetic terms for each fermion are given by (1.38); no further coupling between Γ, Γ̃

and Θ is needed (nor, indeed, possible, since both contain left-moving fermions only). It is,

however, possible to introduce other couplings for the Fermi multiplet through the potentials

E and J in a manner that preserves SO(4)R R-symmetry. While we have not determined

the most general such interaction, the one that will be relevant for our purposes couples a

Fermi multiplet to a hypermultiplet and a twisted hypermultiplet. It arises, as we explain

shortly, when we look at the better studied N = (4, 4) gauge theories through N = (0, 4)

eyes.

Finally, we note that it is possible to have a single N = (0, 2) Fermi multiplet which is

consistent with N = (0, 4) supersymmetry. For this to happen, the chiral fermion should be

a singlet under the SO(4)R R-symmetry. Of course, the coupling to other matter multiplets

must also respect this.

C.4 N = (4, 4) Decomposition

To understand N = (0, 4) theories better, it is useful to see how N = (4, 4) multiplets

decompose into their N = (0, 4) counterparts.

The N = (4, 4) vector multiplet splits into an N = (0, 4) vector multiplet and an adjoint-

valued N = (0, 4) twisted hypermultiplet. We will denote the N = (0, 2) chiral multiplets in

this twisted hypermultiplet as Σ and Σ̃. They couple to the Fermi mutliplet Θ (inside the

N = (0, 4) vector superfield) through,

EΘ = [Σ, Σ̃] . (1.52)

An N = (4, 4) hypermultiplet decomposes into an N = (0, 4) hypermultiplet, Φ and Φ̃, and

an N = (0, 4) Fermi multiplet, Γ and Γ̃. As described above, there is a superpotential term

WΘ = Φ̃ΘΦ . (1.53)

The remaining couplings are associated to the N = (0, 4) Fermi multiplet and provide

the example of an interaction between a Fermi multiplet Γ,Γ̃, a hypermultiplet Φ,Φ̃ and a

twisted hypermultiplet Σ, Σ̃ that we promised above. The interaction makes use of both

superpotentials and E terms. The former are given by

WΓ̃ +WΓ = Γ̃Σ̃Φ + Φ̃Σ̃Γ . (1.54)
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These are combined with the E-term couplings

EΓ = ΣΦ EΓ̃ = −Φ̃Σ . (1.55)

Note that the constraint (1.43) is satisfied, as required by supersymmetry, since

E · J =
Ä
Φ̃[Σ, Σ̃]Φ + Φ̃Σ̃ΣΦ− Φ̃ΣΣ̃Φ

ä
= 0 . (1.56)

D R-symmetry

R-symmetry is the internal symmetry of a superalgebra, under which the supercharges rotate

into each other. In the level of the action, where the superalgebra is realized through fields,

R-symmetry manifests as a global symmetry on those fields. Therefore, in general, a super-

symmetric theory with N supersymmetries exhibits at most a U(N ) R-symmetry10, [160].

If the supercharges are real (Majorana or Majorana-Weyl), then obviously R-symmetry is

realized as SO(N ).

The most familiar example of R-symmetry is for aN = 1 supersymmetric four-dimensional

theory, where it rotates the supercharges by a U(1) factor as

[Q,R] = Q ,
[
Q̄, R

]
= −Q̄ , (1.57)

keeping {Q, Q̄} = 2iσµPµ invariant. Thus, the standard U(1) R-symmetry is chiral. Since,

in superspace, the supercharges generate a supersymmetric translation of the form

x′µ = xµ + aµ + iεσµθ̄ − iθσµε̄ ,

θ′ = θ + ε ,

θ̄′ = θ̄ + ε̄ ,

(1.58)

then U(1)-charged supercharges imply charged supersymmetric parameters ε, ε̄ and grass-

mann coordinates θ, θ̄ as well. Therefore, if Q and Q̄ are charged with +1 and −1, then it

follows that ε, θ and ε̄, θ̄ also have charges +1 and −1, respectively. Assigning these charges

10For the special case of N = 4 in four dimensions, the U(1) subalgebra commutes with the supercharges
and thus R-symmetry reduces to SU(N ).
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on the supersymmetric variations of the fields of the theory, we may find the R-charges of

these fields.

Nonetheless, R-symmetry also manifests through the dimensional reduction of a super-

symmetric theory. This is because the reduced spatial dimensions are realized as fields in

the reduced theory, while the previously rotational-symmetry group now becomes a global

symmetry rotating those fields. A standard example is the ten-dimensional N = 1 SYM

which reduces to the four-dimensional N = 4 SYM. There, the six reduced spatial dimen-

sions become six scalar fields and the original rotational SO(6) symmetry becomes a global

symmetry rotating the reduced scalar fields. This is another way to realize the SU(4) ∼=
SO(6) R-symmetry of the four-dimensional N = 4 SYM.

Hence, if we dimensionally reduce a theory we may consider two different realizations of

R-symmetry. First, it is the original R-symmetry of the unreduced theory that is inherited

to the lower-dimensional one. Secondly, it is the R-symmetry that manifests as a realization

of the previously rotational group of the reduced spatial dimensions. These are two differ-

ent realizations of R-symmetry and their distinction manifests in the way they act on the

Grassmann dimensions θ, θ̄ (and on ε, ε̄).

Let us ground all this on the example of our two-dimensional N = (0, 4) theory. This

theory (actually, its N = (2, 2) sibling) is obtained from dimensional reduction on four-

dimensional N = 1 gauge theory. In four dimensions the U(1) R-symmetry acts on θ, θ̄ with

charges +1,−1 and thus when the spinors get dimensionally reduced as

θα ≡

(
θ1

θ2

)
KK−−→

{ θ+

θ−
, (1.59)

then obviously θ±, θ̄± are also charged with +1 and −1, respectively.

The second kind of R-symmetry is identified with the SO(2) rotational group of the two

reduced spatial dimensions. In the reduced theory it interchanges the scalars that popped up

from dimensionally reducing the gauge field. But how does this R-symmetry acts on spinors

(i.e. on supercharges and θ, θ̄) of our reduced theory? The answer lies, of course, on the way

SO(2) acts − as a group of spatial rotations − on the spinors of the unreduced theory.

The situation would be simpler if we were dealing with the reduction of a six-dimensional

theory to a two-dimensional one, since then we would have a SO(4) ∼= SU(2)×SU(2) R-

symmetry − remnant of the four reduced spatial dimensions − where the left and right-

moving spinors transform independently under the two distinct SU(2)’s.

However, when the ‘remnant’ R-symmetry is not a decomposable group, like in our SO(2)

case, we have to find how the two spinor chiralities are charged under it. This is simply done

by observing the subalgebra (of the unreduced theory)
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[Qα, J3] = ... = +
1

2
σ3
αβQβ −→

{ [Q1, J3] = +1
2Q1

[Q2, J3] = −1
2Q2

, (1.60)

where we chose specifically J3 which is the helicity operator11. This shows that the four-

dimensional spinor θα has its components θ1, θ2 charged with +1 and −1 respectively. Equiv-

alently, when we dimensionally reduce as in (1.59), the reduced Grassmann directions θ+, θ−

realize opposite R-charges.

Nevertheless, our two-dimensional theory enjoys a N = (0, 4) supersymmetry, which

obviously exhibits a SO(4) right-moving R-symmetry, which in turn rotates the right-moving

real supercharges. Focusing on a U(1) subalgebra of this right-moving R-symmetry, we

should be able to obtain it from the previously discussed realizations of R-symmetry. This

is achieved by taking a suitable linear combination of those two realizations, in order to

construct a right-moving R-symmetry operator, i.e. a U(1) operator under which θ+ is

charged with +1 while θ− stays invariant. More details on this can be found in [155].

11J3 corresponds to σ3 which is diagonalized in the standard basis and acts on states to reveal their spin.
J1 and J2, on the other hand, mix the spinor components under a rotation.
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