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Abstract

It is evidently not trivial to analytically solve practical engineering problems due to

their inherent (geometrical and/or material) nonlinearities. Moreover, experimental

testing can be extremely costly, time-consuming and even dangerous, in some cases.

In the past few decades, therefore, numerical techniques have been progressively

developed and utilised in order to investigate complex engineering applications

through computer simulations, in a cost-effective manner.

An important feature of a numerical methodology is how to approximate a physical

domain into a computational domain and that, typically, can be carried out via

mesh-based and particle-based approximations, either of which manifest with a

different range of capabilities. Due to the geometrical complexity of many industrial

applications (e.g. biomechanics, shape casting, metal forming, additive manufactur-

ing, crash simulations), a growing attraction has been received by tetrahedral mesh

generation, thanks to Delaunay and advancing front techniques [1, 2]. Alternatively,

particle-based methods can be used as they offer the possibility of tackling specific

applications in which mesh-based techniques may not be efficient (e.g. hyper velocity

impact, astrophysics, failure simulations, blast).

In the context of fast thermo-elastodynamics, modern commercial packages are

typically developed on the basis of second order displacement-based finite element

formulations and, unfortunately, that introduces a series of numerical shortcomings

such as reduced order of convergence for strains and stresses in comparison with

displacements and the possible onset of numerical instabilities (e.g. detrimental

locking, hour-glass modes, spurious pressure oscillations).

To rectify these drawbacks, a mixed-based set of first order hyperbolic conservation

laws for isothermal elastodynamics was presented in [3–6], in terms of the linear

momentum p per unit undeformed volume and the minors of the deformation, namely,

the deformation gradient F , its co-factor H and its Jacobian J . Taking inspiration

of these works [4, 7] and in order to account for irreversible processes, the balance

of total energy (also known as the first law of thermodynamics) is incorporated to

the set of physical laws used to describe the deformation process. This, in general,

can be expressed in terms of the entropy density η or total energy density E by

which the Total Lagrangian entropy-based and total energy-based formulations

{p,F ,H, J, η orE} are established, respectively. Interestingly, taking advantage of

the conservation formulation framework, it is possible to bridge the gap between solid

dynamics and Computational Fluid Dynamics (CFD) by exploiting available CFD



techniques in the context of solid dynamics.

From a computational standpoint, two distinct and extremely competitive spatial

discretisations are employed, namely, mesh-based Vertex-Centred Finite Volume

Method (VCFVM) and meshless Smooth Particle Hydrodynamics (SPH). A linear

reconstruction procedure together with a slope limiter is employed in order to ensure

second order accuracy in space whilst avoiding numerical oscillations in the vicinity of

sharp gradients, respectively. Crucially, the discontinuous solution for the conservation

variables across (dual) control volume interfaces or between any pair of particles is

approximated via an acoustic Riemann solver. In addition, a tailor-made artificial

compressibility algorithm and an angular momentum preservation scheme are also

incorporated in order to assess same limiting scenarios.

The semi-discrete system of equations is then temporally discretised using a one-step

two-stage Total Variation Diminishing (TVD) Runge-Kutta time integrator, providing

second order accuracy in time. The geometry is also monolithically updated to be

only used for post-processing purposes.

Finally, a wide spectrum of challenging examples is presented in order to assess both

the performance and applicability of the proposed schemes. The new formulation is

proven to be very efficient in nearly incompressible thermo-elasticity in comparison with

classical finite element displacement-based approaches. The proposed computational

framework provides a good balance between accuracy and speed of computation.

Keywords: Finite Volume Method, Vertex-Centred scheme, Smooth Particle Hydrodynamics,

Riemann solver, Conservation laws, Thermoelasticity
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et Élégante Mécanique (CBEM), Universite de Nantes, France, 25 january, 2019.

Posters

� A. Ghavamian, C. H. Lee, A. J. Gil and J. Bonet.“Large strain solid dynamics in Total

Lagrangian framework” at The Annual Zienkiewicz Centre for Computational Engineer-

ing (ZCCE) Postgraduate Workshop, Swansea University, United Kingdom, 1-2 February,

2018. Awarded as the ”Best poster of the 2018 ZCCE poster competition”.



Contents

Title Page No.

Abstract xi

List of Figures xxi

List of Tables xxvi

List of Algorithms xxvii

Nomenclature xxvii

I Preliminaries 1

1 Introduction 3

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 State of the art in computational solid dynamics . . . . . . . . . . . . . . . . . 7

1.2.1 Mesh-based methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 Meshless methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Scope and outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

II Lagrangian Solid Dynamics 17

2 Governing equations 19

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

xv



Contents xvi

2.2 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Motion of a continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Lagrangian and Eulerian descriptions . . . . . . . . . . . . . . . . . . . 21

2.3 Balance principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Conservation of mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.2 Conservation of linear momentum . . . . . . . . . . . . . . . . . . . . . 24

2.3.3 Conservation of angular momentum . . . . . . . . . . . . . . . . . . . . 24

2.3.4 Conservation of deformation gradient . . . . . . . . . . . . . . . . . . . 25

2.3.5 Conservation of area map . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.6 Conservation of volume map . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.7 Conservation of total energy (first law of thermodynamics) . . . . . . . 28

2.3.8 Entropy inequality principle (second law of thermodynamics) . . . . . . 29

2.4 Conservation law formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.1 Irreversible process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.2 Isothermal process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Constitutive models 34

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Isothermal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 Hyperelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.2 Hyperelasto-plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Thermo-mechanical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.1 Thermo-elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.2 Linearised thermo-elasticity . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Hyperbolicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

III Numerical Methodology 53

4 Spatial discretisation: Finite Volume Method 55

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Finite Volume Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



Contents xvii

4.2.1 Riemann problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.2 Computational domain . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.3 Edge-based VCFVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Total Lagrangian VCFVM discretisation . . . . . . . . . . . . . . . . . . . . . . 61

4.3.1 Compatibility conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.2 Contact fluxes approximation . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.3 Linear reconstruction and slope limiter . . . . . . . . . . . . . . . . . . . 66

4.4 Coleman-Noll procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Spatial discretisation: Smooth Particle Hydrodynamics 72

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Principle of Virtual Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 Smooth Particle Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.1 Kernel approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3.2 Consistent kernel approximation . . . . . . . . . . . . . . . . . . . . . . 79

5.4 Total Lagrangian SPH discretisation . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4.1 Alternative framework: Edge-based SPH . . . . . . . . . . . . . . . . . . 85

5.5 Coleman-Noll procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.6 Artificial compressibility: Isothermal hyperelasticity . . . . . . . . . . . . . . . 90

5.6.1 General remark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.6.2 SPH artificial compressibility algorithm . . . . . . . . . . . . . . . . . . 92

5.6.3 Iteration speed-up procedure . . . . . . . . . . . . . . . . . . . . . . . . 93

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6 Temporal discretisation 95

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2 Time integrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3 Total Variation Diminishing Runge-Kutta scheme . . . . . . . . . . . . . . . . . 96

6.3.1 Stability condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.4 Algorithmic description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.5 Consistency and stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.5.1 Consistency analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.5.2 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101



Contents xviii

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

IV Numerical Results 111

7 One-dimensional problems: Fundamental studies 113

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.2 Rigid conductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.3 Thermo-elastic bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.4 Blake problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.5 Gas dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.5.1 Riemann solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.5.2 Sod’s shock tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.5.3 Left Woodward-Colella blast test . . . . . . . . . . . . . . . . . . . . . . 122

7.5.4 Right Woodward-Colella blast test . . . . . . . . . . . . . . . . . . . . . 124

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

8 Multi-dimensional problems: Fundamental studies 128

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.2 Spatial convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.2.1 Expanding cube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.3 Conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8.3.1 L-shaped block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8.3.2 Rotating Disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.4 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8.4.1 Nearly incompressible twisting column: Isothermal elasticity . . . . . . 142

8.4.2 Nearly incompressible twisting cylinder: Entropic elasticity . . . . . . . 147

8.5 Extension to incompressibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

8.5.1 Punch test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

8.5.2 Incompressible twisting column . . . . . . . . . . . . . . . . . . . . . . . 154

8.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

9 Multi-dimensional problems: Applications 160

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

9.2 Isothermal process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160



Contents xix

9.2.1 Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

9.2.2 Stent-like structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

9.3 Irreversible process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

9.3.1 Deep drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

9.3.2 Ball joint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

9.3.3 Pipe expansion joint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

9.3.4 Soft robotic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

9.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

V Conclusion and future outlook 177

10 Concluding remarks 179

10.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

10.2 Future outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

VI Appendices 183

A Mathematical preliminaries 185

A.1 Scalar, vector and tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

A.2 Mathematical operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

A.2.1 Multiplications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

A.2.2 Gradient, divergence and curl . . . . . . . . . . . . . . . . . . . . . . . . 187

A.2.3 Tensor cross product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

B Riemann solver: Physical boundaries 190

B.1 Traction boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

B.2 Fixed boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

B.3 Symmetric boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

B.4 Skew-symmetric boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

C VCFVM artificial compressibility algorithm 193

D Discrete angular momentum preserving algorithm 195



Contents xx

E Alternative descriptions of the formulations 197

E.1 Updated Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

E.2 Eulerian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

Bibliography 200



List of Figures

Title Page No.

1.1 Applications of computational solid dynamics . . . . . . . . . . . . . . . . . . . 4

1.2 Some sample numerical simulations using VCFVM and SPH schemes . . . . . . 5

1.3 Computational domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Numerical simulations on the basis of the classical displacement-based approach 7

2.1 Structure of Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Motion of a deformable continuum . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Schematic definition of Lagrangian and Eulerian descriptions . . . . . . . . . . 22

3.1 Structure of Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Structure of Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Computational domain in VCFVM scheme . . . . . . . . . . . . . . . . . . . . 57

4.3 One-dimensional Godunov type FVM: Riemann problem at the interfaces . . . 58

4.4 The schematic definition of control volume in two and three dimensions . . . . 59

4.5 Area vector approximation in VCFVM scheme . . . . . . . . . . . . . . . . . . 61

4.6 VCFVM approximation for the boundary contribution of the flux vectors . . . 62

4.7 Representative solution of a Riemann problem . . . . . . . . . . . . . . . . . . 64

4.8 One-dimensional solution representing a piecewise linear reconstruction . . . . 67

5.1 Structure of Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

xxi



List of figures xxii

5.2 Computational domain is SPH scheme . . . . . . . . . . . . . . . . . . . . . . . 75

5.3 Compact support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 Kernel approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.5 Boundary inadequacy in particle approximations . . . . . . . . . . . . . . . . . 80

5.6 Edge-based approach representation . . . . . . . . . . . . . . . . . . . . . . . . 85

6.1 Structure of Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2 Stability limits for the one-dimensional linear advection-diffusion equation . . . 104

6.3 Stability analysis: Spectral radius of the amplification matrix along phase angles

for different values of the dimensionless stability parameters . . . . . . . . . . . 108

6.4 Stability range of eigenvalues of the amplification matrix for different values of

αCFL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.5 Stability range of eigenvalues of the amplification matrix for different values of k 109

6.6 Stability range of eigenvalues of the amplification matrix for different values of

the Peclet number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.1 Rigid conductor: Validation of the numerical solution and convergence plot for

temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.2 One dimensional bar: Problem setup . . . . . . . . . . . . . . . . . . . . . . . . 115

7.3 One-dimensional bar: L2 norm convergence rate for velocity, deformation gradi-

ent, total energy and first Piola-Kirchhoff stress . . . . . . . . . . . . . . . . . . 118

7.4 Blake problem configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.5 Blake problem: The spatial distribution of radial pressure . . . . . . . . . . . . 119

7.6 Sod’s shock tube: Problem setup . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.7 Sod’s shock tube: Comparing the solutions obtained by the proposed approxi-

mated Riemann solvers with the analytical solution . . . . . . . . . . . . . . . . 122

7.8 Sod’s shock tube: Comparison between the analytical and numerical solution

obtained using Rusanov Riemann solver . . . . . . . . . . . . . . . . . . . . . . 123

7.9 Comparing the solutions obtained by the proposed approximated Riemann solvers

with the analytical solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.10 Left Woodward-Colella blast test: Comparison between the analytical and nu-

merical solutions obtained using Rusanov Riemann solver . . . . . . . . . . . . 125



List of figures xxiii

7.11 Right Woodward-Colella blast test: Comparing the solutions obtained by the

proposed approximated Riemann solvers with the analytical solution . . . . . . 126

7.12 Right Woodward-Colella blast test: Comparison between the analytical and

numerical solutions obtained using Rusanov Riemann solver . . . . . . . . . . . 127

8.1 Expanding cube: Problem configuration . . . . . . . . . . . . . . . . . . . . . . 129

8.2 Expanding cube: Initial conditions . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.3 Expanding cube: L2 norm convergence of Linear momentum, first Piola-Kirchhoff

stress tensor components and Temperature . . . . . . . . . . . . . . . . . . . . 132

8.4 L-shaped block: Problem setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8.5 L-shaped block: mesh refinement of deformed states with pressure contour plots 133

8.6 L-shaped block: time evolution of horizontal displacement uz and horizontal

velocity vz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.7 L-shaped block: Comparison of deformed shape plotted with temperature and

pressure distributions using the total energy-based VCFVM and SPH method-

ologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.8 L-shaped block: Time evolution of linear momentum, angular momentum, global

total energy and global entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8.9 L-shaped block: A sequence of deformed configurations with temperature and

pressure distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.10 Rotating disk: Problem setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.11 Rotating disk: Particle refinement of deformed states with pressure contour plots 138

8.12 Rotating disk: Time evolution of the components of vertical velocity vZ and

temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.13 Rotating disk: Comparison of deformed shapes plotted with pressure and tem-

perature distributions using the entropy-based SPH and VCFVM methodologies 139

8.14 Rotating disk: Time evolution of the components of linear momentum, angular

momentum, global total energy, and global entropy . . . . . . . . . . . . . . . . 140

8.15 Rotating disk: A sequence of deformed configurations with temperature and

pressure distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8.16 Twisting column: Problem setup . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8.17 Twisting column: Mesh/Particle refinement of the deformed state with pressure

contour plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143



List of figures xxiv

8.18 Twisting column: Time evolution of the components of horizontal displacement

uZ and horizontal velocity vZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8.19 Twisting column: Comparison of the deformed shapes plotted with pressure field

at time t = 0.1 s using a variety of numerical methodologies . . . . . . . . . . . 145

8.20 Twisting column: Time evolution of the components of vertical displacement uZ
and vertical velocity vZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8.21 Twisting column: Evolution of the deformed states with pressure contour plots

for the Upwind-VCFVM and Upwind-SPH schemes . . . . . . . . . . . . . . . . 146

8.22 Twisting cylinder: Problem setup . . . . . . . . . . . . . . . . . . . . . . . . . . 147

8.23 Twisting cylinder: Comparison of deformed shapes plotted with pressure and

temperature distributions using the total energy-based SPH and VCFVM method-

ologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8.24 Twisting cylinder: Time evolution of the components of displacement u, velocity

v and first Piola-Kirchhoff stress P . . . . . . . . . . . . . . . . . . . . . . . . . 148

8.25 Twisting cilinder: A sequence of deformed configurations with temperature and

pressure distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

8.26 Punch test: Problem setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

8.27 Punch test: A sequence of deformed configuration with temperature and pressure

distributions using the mixed-based {p, F , E} and {p, F ,H, J , E} total energy-

based Upwind-SPH methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 152

8.28 Punch test: Comparison of deformed shapes plotted with pressure and temper-

ature distributions using the total energy-based SPH and VCFVM methodologies153

8.29 Punch test: Time evolution of the components of vertical velocity vZ and com-

ponent of first Piola-Kirchhoff stress tensor P11 . . . . . . . . . . . . . . . . . . 153

8.30 Punch test: A sequence of deformed configurations with temperature and pres-

sure distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

8.31 Twisting column: A comparison between the {p, F , H, p} artificial compress-

ibility and the {p, F ,H, J} explicit Upwind-SPH algorithms . . . . . . . . . . 156

8.32 Twisting column: A sequence of mesh/particle refinement using the {p, F ,H, p}
VCFVM and SPH artificial compressibility algorithms . . . . . . . . . . . . . . 157

8.33 Twisting column: The effect of incorporating Laplacian viscosity to the VCFVM

artificial compressibility approach in different scenarios . . . . . . . . . . . . . . 158

8.34 Twisting column: The effect of incorporating Laplacian viscosity to the SPH

artificial compressibility approach in different scenarios . . . . . . . . . . . . . . 159



List of tables xxv

9.1 Taylor impact: Problem setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

9.2 Taylor impact: The deformed state of the copper bar at t = 80µs with plastic

strain filed in the left quarter and pressure distribution in the right quarter of

the domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

9.3 Taylor impact: Time evolution of X coordinate with three mesh/particle refine-

ments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

9.4 Stent-like structure: Problem setup . . . . . . . . . . . . . . . . . . . . . . . . . 164

9.5 Stent-like structure: Snapshot of the deformed state with pressure field . . . . . 165

9.6 Thin plate: Problem setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

9.7 Thin plate: A sequence of deformed configurations with temperature and pres-

sure fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

9.8 Spherical ball: Problem setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

9.9 Spherical ball: The deformed state along with pressure distribution . . . . . . . 169

9.10 Spherical ball: A sequence of deformed configurations with temperature and

pressure distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

9.11 Expansion joint: Problem setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

9.12 Expansion joint: A sequence of deformed configurations along with pressure field 172

9.13 Expansion joint: A sequence of deformed configurations with temperature dis-

tributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

9.14 Gripper: Problem setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

9.15 Gripper: A sequence of deformed configurations with temperature and pressure

distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

B.1 Schematic representation of different types of boundary conditions . . . . . . . 190



List of Tables

Title Page No.

8.1 Manufacturing solution: Required derivatives to obtain the source terms . . . . 131

9.1 Final radii of copper bar at t = 80µs. Results obtained using the proposed

VCFVM and SPH algorithms, benchmarked against other published method-

ologies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

xxvi



List of Algorithms

Title Page No.

3.1 Time update of the first Piola Kirchoff stress tensor - Hyperelasto-plasticity . . 39

4.1 Barth and Jespersen slope limiter . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.1 Complete stabilised Upwind-VCFVM and Upwind-SPH mixed methodologies . 98

xxvii



Nomenclature

Scalars

J Jacobian of deformation [−]

E Total energy [Kg m−1 s−2]

η Entropy [Kg K−1 m−1 s−2]

θ Temperature [K]

sR Heat source terms [Kg m−1 s−2]

p Pressure [Kg m−1 s−2]

E Internal energy [−]

εp Plastic strain [−]

W Strain energy [−]

φ Slope limiter [−]

D Dissipation [Kg m−1 s−2]

c Wave speed [m s−1]

cp Longitudinal or pressure wave speed [m s−1]

cs Transverse or shear wave speed [m s−1]

t Time [s]

x Distance [m]

ΩR Volume in material configuration [m3]

Ω Volume in spatial configuration [m3]

ρ Spatial density [Kg m−3]

ρR Material density [Kg m−3]

λ Lame constant [Kg m−1 s−2]

µ Lame constant [Kg m−1 s−2]

xxviii



Nomenclature xxix

κ Bulk modulus [Kg m−1 s−2]

κ̃ Fictitious bulk modulus [Kg m−1 s−2]

ν Poisson’s ratio [−]

E Young’s modulus [Kg m−1 s−2]

Cv Specific heat capacity [m2 s−2 K−1]

α Thermal expansion coefficient [1/K]

h Thermal conduction coefficient [Kg m K−1 s−3]

αCFL Courant-Fredrichs-Lewy number [−]

G Amplification factor [−]

Vectors

U Conservative variables

F Flux

FC Contact flux

S Source terms

u Displacement field, u = x−X [m]

p Linear momentum [Kg m−2 s−1]

v Spatial velocity [m s−1]

w Angular momentum [rad/s]

t traction [Kg m−1 s−2]

fR Body forces [Kg m−1 s−2]

Q Heat flux [Kg S−3]

x Spatial or Eulerian coordinates [m]

X Material or Lagrangian coordinates [m]

d Distance [m]

n Spatial outward unit normal [m]

N Material outward unit normal [m]

a Spatial area vector [m2]

A Material area vector [m2]

λ Lagrange multiplier [−]

Tensors



Nomenclature xxx

A Flux Jacobian matrix

F Deformation gradient [−]

C Right Cauchy-Green strain [−]

H Co-factor of the deformation [−]

χ Set of geometric strains {F ,H, J}

G Gradient of a scalar

G Amplification matrix

I Second order identity tensor [−]

ε Strain [Kg m−1 s−2]

P First Piola Kirchoff stress [Kg m−1 s−2]

S Second Piola Kirchoff stress [Kg m−1 s−2]

δ Kronecker delta [−]

ε Alternating or permutation tensor [−]

Subscripts 1

UR Property at reference temperature

Ua Nodal value

U b Neighbour value

Uab Property at the node associated to cell a

Uf Property at the face

Ug Property at Gauss point
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Chapter 1
Introduction

1.1 Motivation

Amongst real-life engineering problems, there are some applications in which extremely large

deformations take place in a very short amount of time (see Figure 1.1).

These problems can be analysed with any of the following options for which a set of benefits

and limitations are introduced.

Analytical (exact) solution: It provides a reliable closed-form solution to a mathematical

expression. This option, however, is limited to the case of some simplified linear Partial Dif-

ferential Equations (PDEs) and could not be a suitable choice for a comprehensive investiga-

tion, considering the inherent (geometrical and/or material) nonlinearities of most engineering

problems. Nonetheless, analytical solutions can still provide a significantly useful insight into

identifying the nature of a problem based on which a successive numerical algorithm can be

developed [8–10]. For instance, the analytical solution for one-dimensional linear advection

equation has been very useful to assess the capability of different types of (exact and approxi-

mated) Riemann solvers for shock-dominated scenarios [11].

Experimental solution: It has always been considered as a powerful, reliable and reasonably

valid tool in order to verify the cause of a problem. In addition, it can be applied to a

wide variety of disciplines. In fact, considering laboratory research, one can effectively control

the experiment’s environment (e.g. temperature and humidity) in comparison with natural

situations and that could improve, in some cases, the sought results. That also implies that

some conditions occur faster in an experimental setting that may take longer to occur in a

natural environment [12]. Despite all these benefits, there are some disadvantages of using

experimental testing approach. Sometimes, the experimental study conducted in a laboratory

environment might not be realistic and valid due to the error generated by human mistakes

and/or artificial situations. These systematic and random errors stem from different reasons

such as instrumental, observational and environmental errors. For instance, one can consider a

poorly calibrated thermometer that reads temperature 102◦ C when immersed in boiling water

and 2◦ C when immersed in ice water at atmospheric pressure. Moreover, the construction and

3
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(a) Car crash testing (b) Civil airplane crash

(c) Bone fracture (d) Forging

(e) Welding (f) Metal forming

Figure 1.1: Applications of computational solid dynamics

testing of the desired prototype has typically been costly, time-consuming and even in some

cases impossible (soft tissue modelling) [13–15].

Numerical solution: During the past few decades, an extensive effort has been devoted to

developing Computer-Aided Design (CAD) and Computer-Aided Engineering (CAE) tools in

order to successfully tackle engineering problems (see Figure 1.2 for some examples). Although

experiments will always be necessary to calibrate our models, these numerical methodologies,

with the aid of powerful computers, have become an efficient and economical replacement to

the experiments, in many practical applications [13]. They are capable of not only reducing the

cost of constructing new machines and reducing environmental risks but also simulate many

technological and natural phenomena where experiments can be far too dangerous or even

impossible to be safely conducted in a laboratory. Thus far, several numerical methods have

been developed in order to approximately find the solution of engineering problems. These

techniques are known for their unique features and capabilities which make them desirable
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(a) Deep drawing of a sheet metal (b) Fast implosion of a spherical structure

(c) Collapse of a thin sphere (d) Crushing of a stent-like structure

Figure 1.2: Deformed states of some numerical simulations with pressure distribution using in-
house mesh-based Vertex-Centred Finite Volume Method (a) and (b) and in-house mesh-free Smooth

Particle Hydrodynamics (c) and (d)

for certain applications. One of these features is the way of approximating a physical domain

into a computational domain as it typically consists of two categories, namely, (1) mesh-based

approaches and (2) particle-based (meshless) approaches. Figure 1.3 shows an example of a

physical domain approximated by mesh generation (unstructured tetrahedral elements) and

particle distribution.

Taking the advantages and disadvantages of the above-mentioned proposed solutions into ac-

count, one can appropriately choose the desired approach once the problem description and its

application are clarified. In this thesis, the application will be large strain fast solid dynam-

ics. Therefore, to avoid time-consuming costly experiments and also considering the existent

nonlinearities in the solution (due to large strains), numerical modelling has employed as the
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(a) (b)

Figure 1.3: Computational domain: Stanford bunny with (a) mesh generation; and (b) particle
distribution

desired approach. Of course, some analytical analysis is also carried out to prove the validity

of the proposed numerical schemes.

In general, to perform a numerical modelling in the context of solid dynamics, one might use

the existing commercial packages (ANSYS AUTODYN, LS-DYNA and ABAQUS to name

a few), open source software (Codeaster, FEM-based; OpenFOAM, FVM-based; and Dual-

SPHysics, SPH-based) or in-house computer software. By using commercial software, it is

possible to numerically simulate a wide range of applications, such as fracture and fragmenta-

tion, metal forming and additive manufacturing processes, contact and hypervelocity impact

[16]. These numerical tools are typically developed on the basis of classical low order finite

element displacement-based formulations and, consequently, suffer from a certain number of

numerical difficulties (locking, hour-glass modes and spurious pressure oscillations) [7, 17, 18].

Although some modifications have been applied to commercial tools to alleviate some of these

shortcomings [14, 19–21], numerical difficulties are still evident when dealing with nearly/truly

incompressible materials [16, 22]. Additionally, the shock-capturing technologies are poorly

developed in the context of solid dynamics [6, 7, 18, 23]. It is worthwhile noting that the

development and extension of the current capabilities of these tools are not straightforward

due to the closed nature of their implementation. Figure 1.4 shows the results of two test cases

using classical displacement-based numerical approaches. The deformation and pressure dis-

tribution of the simulations illustrates how the aforementioned numerical difficulties could be

experienced. In fact, the use of high order interpolation schemes [24] can be an alternative so-

lution. However, the increase in the number of Gauss integration points can drastically reduce
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(a) Punch test on a perforated cube (b) Crushing a stent-like structure

Figure 1.4: Numerical simulations based on classical displacement-based (a) vertex centred Finite
Volume Method; and (b) Smooth Particle Hydrodynamics

the computational efficiency in comparison with low order schemes, especially when complex

and history-dependent constitutive laws (e.g. visco-elasticity [25], visco-plasticity [26]) are of

great interest. This thesis offers a unified computational framework which is adapted to two

very competitive numerical methodologies capable of surpassing the above-mentioned numerical

shortcomings raised by the use of the traditional displacement-based approach. Additionally,

it provides a great potential to develop a robust shock capturing algorithm, thanks to the

conservative nature of the equations.

1.2 State of the art in computational solid dynamics

1.2.1 Mesh-based methods

On the past few decades, a vast branch of numerical methodologies has been designed based on

computational meshes. These methods have been evolving regularly and producing different

approaches in order to enhance the capability of tackling engineering problems. Additionally,

the mesh-based techniques provide some features where the particle-based approaches struggle

such as the straightforward imposition of boundary conditions, well-defined mesh connectivity

taking neighbouring elements/cells search into account and consistency of a numerical algo-

rithm, to name a few [27]. In the context of computational mechanics, and in particular

solid mechanics, Finite Element Method (FEM) [28] is the most often chosen. Shock waves

propagating in a different type of materials, contact-impact problems, buckling analysis, crack

propagation and dynamic fracture, mechanism-based modelling of material nonlinearities are

some of the applications in which FEM method has succeeded [13]. Nonetheless, it has been

shown that other well-known numerical techniques such as Finite Difference Method (FDM) [9],

Finite Volume Method (FVM) [11] and Discontinuous Galerkin (DG) method [29–31] can be an
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advantageous substitution to classical FEM approximation and even in some cases, outperform

the FEM solution [6, 32].

In the following section, the literature of the mesh-based methodologies is explored, categorised

to the classical displacement-based and mixed-based approaches.

1.2.1.1 Classical displacement-based approach

Current industry codes (e.g. PAM-CRASH, LS-DYNA, ABAQUS, Altair HyperCrash) target-

ing on the simulation of fast solid dynamics problems (e.g. vehicle crash simulation, hyper-

velocity impact on honeycomb sandwich panel and the implosion of an underwater structure)

are developed on the basis of classical low order (linear) finite element displacement-based

formulations. However, these formulations present a number of drawbacks, namely, (1) spu-

rious hour-glassing and pressure checkerboarding [33], (2) bending difficulty [34], (3) locking

phenomena [35], (4) reduced order of convergence for strains and stresses in comparison with

displacements and (5) high frequency noise in the vicinity of shocks [36, 37].

To rectify some of these shortcomings, a variety of enhanced techniques have been developed

and introduced in the last few decades. A popular option to avoid locking is resorting to a

Selective Reduced Integration (SRI) procedure [19–21], typically applied to (tri-linear) hex-

ahedral elements. In this case, the volumetric component of the stress is under-integrated

using a reduced number of Gauss integration points. Despite compromising accuracy and not

satisfying the inf-sup Ladyzenskaja-Babus̆ka-Brezzi condition, this approach remains very ap-

pealing to the industry as the modifications required to the existing commercial finite element

codes are very minor. As an alternative, a multi-field Veubeke-Hu-Washizu(VHW) type vari-

ational principle [19, 21, 38] is introduced to avoid locking by decomposing deviatoric and

volumetric components of deformation so that they can be treated independently. Mean di-

latation technique (also known as B-Bar method) is a specific case of VHW approach where

the volumetric part is under-integrated using constant interpolation [14]. Unfortunately, these

remedies are just designated to Hexahedral element as a linear tetrahedron element cannot be

under-integrated anymore.

In the past few years, effort has been devoted to tetrahedral meshing techniques as many

engineering applications involve complex geometries and that the use of tetrahedral meshing

will only be a practical choice for decompositions of the computational domains. The popularity

of using tetrahedral mesh is progressively increasing thanks to Delaunay [1], advancing front

techniques [2] and octree based method [39, 40]. In addition, it has been proven that the

tetrahedral mesh generation performs in a more efficient manner in some applications such as

shock hydrodynamics, optimisation and adaptive simulations [41]. The most preferred choice

in the industry is the Average Nodal Pressure (ANP) procedure originally proposed by Bonet

and Burton [42] in which the pressure field is under-integrated at nodes. Extensive effort has

since been devoted in order to prevent the appearance of hourglassing-like modes [34, 43–46],

a typical shortcoming of this type of finite element. Several variants of the original ANP

approach have since followed, including the averaged nodal deformation gradient [34], the F-

bar method [47], Triangular composite finite elements [48], and the Smoothed Finite Element
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Method (SFEM) [35]. However, all of the enhanced methods described above still suffer from

spurious pressure fluctuations when attempting to model predominantly nearly incompressible

solids [42]. This specific shortcoming can be partially alleviated using the recently proposed

SFEM in conjunction with the use of a non-consistent smoothing pressure procedure [49].

On another front, several attempts have also been reported at aiming to solve solid mechanics

problems via the use of displacement-based finite volume discretisations [50–53]. Some inter-

esting work has also been recently explored using the open source platform ”OpenFOAM”,

with special attention paid to the simulation of contact mechanics [54], orthotropic materi-

als experiencing moderate strains [55], hyperelastic and hypoelastic formulations for Eulerian

non-linear elastoplasticity [56] and metal forming applications [57]. In this thesis, the focus is

on Vertex-Centred Finite Volume Method (VCFVM) as one of the employed spatial

discretisation techniques.

Fryer and his co-workers could be considered as the pioneers on presenting VCFVM in solid

mechanics with the application of multiphysics modelling of metals casting process [58–60].

In [61, 62] the VCFVM and FEM techniques are compared and the connection between the

weak integral form in FEM approximation procedure and strong integral form of the governing

equations in FVM is expressed. In fact, the development of VCFVM is based on the work

of Baliga and Patankar [63] as they proposed a locally conservative (control volume based)

FEM in which the weighting function is assumed to be the identity matrix rather than being

equivalent to the shape function, as we expect at the standard Galerkin FEM. Fallah and his co-

workers [64] also compared VCFVM and FEM with the application of geometrically nonlinear

stress analysis. Taylor et al. used VCFVM for analysing the behaviour of elastic-visco-plastic

materials in multiphysics [65, 66]. Fluid-Structure Interaction (FSI), welding process, wave

propagation, biomechanics, natural extrusion process, shape casting and metal forming are

some of the applications where VCFVM has been employed for numerical approximation [32,

64–70]. An extensive very well organised literature review in finite volume method can be found

in [71].

In extension to thermo-mechanics, Biot [72, 73] pioneered in comprehensively developing vari-

ational principles in coupled thermo-elasticity and irreversible thermodynamics. Lord and

Shulman [74] introduced the concept of generalised thermo-elasticity and paradox of heat con-

duction versus classical (or conventional) thermo-elasticity. In fact, the paradox indicates that

the heat conduction portion of the total energy conservation law has an infinite speed of prop-

agation (diffusive behaviour) whereas the mechanical part is a wave-type motion. In this case,

a time-dependent heat transport equation will be considered, leading to hyperbolic coupled

equations. Nevertheless, the theory of generalised thermo-elasticity is not the main interest of

this work though (an extensive literature review can be found in [75–77]).

Simo and Miehe [78] presented an associative coupled thermo-plasticity at finite strains. Chad-

wick et al. [79] studied the thermo-mechanics of rubber-like solids and presented a modified

entropic elasticity material model. Following this work, Miehe [80] and Holzapfel [81] expressed

formulations and numerical analysis on entropic thermo-elasticity of rubber-like solids at finite

strains. Demirdz̆ić and his co-workers employed FVM for different coupled thermo-mechanical

problems such as thermo-elastoplastic stress analysis of a deformable solid [82], stress analysis



Chapter 1. Introduction 10

in complex domains [83], studying the deformation of a hygro-thermo-elastic orthotropic body

[84] and linear thermo-visco-elasticity [85]. Furthermore, various applications in the context of

thermo-mechanics is tackled using FVM such as thermo-elastic response of rubber-like matrix

composites and electro-magneto-thermo-elastic multiphase composites [86–88], thermo-elastic

wave propagation [89], analysis of nonlinear thermo-mechanical dynamics of shape memory

alloys [90], one-dimensional simulation of an electrofusion welding process [91], optimisation of

thermo-mechanical structural members [92], thermo-mechanical analysis of functionally graded

solids [93, 94], unidimensional thermo-mechanical numerical simulations of impacts on elastic-

plastic solids within the small strain framework [95], crack propagation in concrete [96] and

coupled Fluid-Structured interaction [97, 98].

1.2.1.2 Mixed-based methodology

The earliest attempt at employing a system of first order hyperbolic conservation laws in solid

dynamics originates from the work of Trangenstein and Colella [99, 100], inspired from the

work of [101], where the conservation variables of the mixed-based approach were the linear

momentum p and the continuum deformation gradient tensor F . Specifically, a second order

Godunov-type cell centred Finite Volume Method (FVM) in combination with a Riemann based

upwinding stabilisation was presented. Although the consideration of involutions was outlined

as part of the paper, its numerical implementation was not fully described. Moreover, the

explored examples were restricted to the case of small strain linear elasticity in two dimensions

[100]. With a similar philosophy, an alternative version of cell centred FVM (via a node-

based discretisation of the numerical fluxes) originally proposed by Mazeran and Després [102],

and later explored in [103–105], where gas dynamics applications were adapted to the case

of hyperelastic solids [106, 107]. In application of fully incompressible materials (biomedical

and structural engineering), a mixed-based displacement-rotation VCFVM framework [108–

110] and a displacement-pressure cell centred finite volume algorithm [53, 111] are presented in

order to account for incompressibility constraint. In parallel, Scovazzi and co-authors [25, 112–

115] also used a mixed-based approach for a linear tetrahedral element by utilising a Variational

Multi-Scale method. In extension to coupled thermo-mechanical problems, Fallah et al. [116]

pioneered in using a displacement-pressure cell centred finite volume formulation to analyse the

behaviour of compressible and incompressible solids and, that, it has followed by Bejilonja et

al. [117] using a segregated solution procedure to make the method computationally efficient.

In recent years, the research group at Swansea University have pursued the same {p,F } system

whilst exploiting a wide range of spatial discretisation techniques including upwind cell centred

FVM [6, 18], Jameson-Schmidt-Turkel vertex centred FVM [118], upwind VCFVM [7, 16],

two step Taylor-Galerkin FEM [119] and stabilised Petrov-Galerkin FEM [17]. In subsequent

papers, the {p,F } system was then augmented by incorporating a new conservation law for the

Jacobian of the deformation J [7, 16, 23] to effectively solve nearly incompressible deformations.

Moreover, the {p,F , J} formulation was also extended to account for truly incompressible

materials utilising a tailor-made fractional step approach [16, 120]. Further enhancement of

this framework has recently been reported [3, 120], when considering materials governed by a

polyconvex constitutive law where the co-factor H of the deformation plays a dominant role.
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The complete set of unknowns {p,F ,H, J} yields an elegant system of conservation laws, where

the existence of a generalised convex entropy function enables the derivation of a symmetric

system of hyperbolic equations, dual of that expressed in terms of entropy conjugates of the

conservation variables [120].

1.2.2 Meshless methods

An alternative way for the numerical approximation of engineering problems is particle methods

(or meshless methods) as it does not require to deal with the hassles of mesh generation and

connectivity matrix. This can be a great advantage on tackling specific engineering applications

where the mesh-based numerical approaches struggle. For instance, many practical applications

deal with extremely large deformations and using mesh-based approaches can lead to mesh

distortion and consequently, introduces severe error to the numerical computations [35, 121].

In addition, adaptive mesh refinement in some applications like moving discontinuities or failure

simulations (e.g. crack propagation) can cause more complicated computer implementations,

extra computational costs and also degradation of accuracy due to the projection of quantities

of interest between successive meshes [122, 123]. Meshless methods, however, can perform

particle refinement in a more efficient procedure, due to the fact that interpolation of the

solution does not depend on connectivities. The complexity of particle refinement still remains

as a challenging procedure though. Furthermore, they offer easier numerical implementations in

three-dimensional cases than grid-based methods [124]. The reasonable accuracy and stability

of these methods [125] along with their meshfree features and computational efficiencies have

made them very competitive for the past few decades.

Particle methods have been extensively used in fluid and solid mechanics such as crack growth

and propagation, free surface flows, hypervelocity impact problems, metal forming, multi-

physics, astrophysics and fluid-solid interaction [27, 126–128]. Smooth Particle Hydrodynamics

(SPH) was the very first particle method originally initiated by the work of Lucy [129] for as-

trophysics applications and, then, developed by Gingold and Monaghan [130]. To improve the

capability and robustness of the particle-based approaches, many other methods have been de-

veloped so far such as Corrected Smooth Particle Hydrodynamics (CSPH) [131], Element-free

Galerkin (EFG) [132], Reproducible Kernel Particle Method (RKPM) [133], Meshless Local

Petrov-Galerkin method (MLPG) [134], Material Point Method (MPM) [135], Discontinuous

Galerkin MPM (DGMPM) [136] and Particle-In-Cell (PIC) [137], to name a few. An exten-

sive review on the history and development of meshless methods can be found in the references

[127, 138–140]. In the current work, Smooth Particle Hydrodynamics (SPH) is considered

as an alternative spatial discretisation technique for balance principles.

1.2.2.1 Classical displacement-based approaches

The first attempt on making the classical SPH more competitive among the grid-based com-

putational approaches was perhaps carried out by Monaghan [141, 142], after the development

of SPH by Lucy [129], Gingold and Monaghan [130] in 1977. Over the past decades, many

efforts has been devoted to this Lagrangian particle-based numerical technique such that it has
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become a powerful, competitive and relatively reliable numerical tool to tackle a vast number

of practical problems such as astrophysics [143], Fluid dynamics [144, 145], wave propagation,

explosion phenomena and hypervelocity impacts [126, 146], to name a few (a comprehensive

review for SPH in diverse applications can be seen in reference [128]). Classical SPH has also

shown its capabilities on structural mechanics applications initiated by the work of Libersky

et al [147] in the subjects of high-velocity impacts on elastic-plastic solids, perforation and

fragmentation and that followed by successfully using SPH for some other applications like

geomechanics, machining, forging and metal forming and shell structures [148–151].

Traditionally, the displacement-based SPH Lagrangian formalism suffers from a number of

well-known drawbacks, namely, (1) existence of numerical errors close to the boundaries owing

to lack of consistency (lack of reproducibility of kernel interpolation function) [152, 153]; (2)

numerical difficulties associated to stability such as tensile instability (non-physical clumping

of particles under a tensile test) or appearance of zero-energy modes due to the rank-deficiency

emerging as a result of using nodal integration [154, 155] and (3) reduced order of convergence

for derived variables (e.g. strains and stresses) [42, 44–46].

To alleviate the above-mentioned shortcomings, significant efforts have been carried out to re-

establish the consistency and reproducibility, improve the accuracy and enhance the robustness

of the classical SPH over the last two decades. Chen et al. [156, 157] proposed a correction

on kernel function based upon a Taylor series expansion in order to enhance the accuracy of

solution within the domain, near and on the boundaries. Different strategies have employed

to make corrections on Kernel interpolation function aimed at ensuring its reproducibility and

consistency [133, 158–160], even though that has increased the risk of having negative, non-

symmetric or non-monotonically decreasing kernel which results in less accurate results and

representation of non-physical solutions like negative density or energy [154]. Bonet and Ku-

lasegaram [161] presented Corrected SPH (CSPH) by the introduction of corrections in the

kernel functions and in their derivatives. Dyka et al. [162, 163] introduced a stress-point ap-

proach to alleviate the tensile instability issue and improve the accuracy of the SPH algorithm.

Those companion Lagrangian points have been set to carry derived field variables like stress or

velocity gradient. Randles and Libersky [164] presented a normalised SPH aimed at increas-

ing accuracy and stability. Vignjevic et al. [165] also proposed an alternative discretisation

method for classical SPH to treat zero-energy modes and tensile instability. Belytschko et al.

[153] made a stability analysis on particle methods and stated that using a Lagrangian kernel

with stress points is the best approach for the discretisation of particle-based algorithms. In

fact, the Lagrangian kernel can only remedy tensile instability but not zero-energy modes. Util-

ising an analogues hourglass control approach in FEM, Ganzenmuller et al. [166] introduced a

stabilisation procedure to control hourglass modes and removed tensile instability inherent to

the updated Lagrangian approach and also rank-deficiency inherent to the nodal integration.

In extension to coupled thermo-mechanical problems, Barta et al. [167] used a modified SPH to

study shear strain localization exhibited in thermo-elasto-viscoplastic materials through a one-

dimensional problem, without adding an artificial viscosity. SPH methodology is considered

in [168] to exploit a thermo-visco-plasticity model accounting for damage due to fracture.

Zhang et al. [169] utilised a coupled SPH-FEM computational algorithm in order to simulate
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impact dynamics problems using viscoplasticity (consists of linear thermo-elasticity, von Mises

yield criterion, associated flow rule, nonlinear isotropic strain hardening, strain rate hardening,

temperature softening due to adiabatic heating) and isotropic ductile damage model along with

Mie-Grüneisen Equation Of State (EOS). A three dimensional fully coupled thermo-mechanical

approach using SPH methodology presented in the work of Fraser et al. [170, 171] to account

for large plastic deformations, particularly in the application of friction stir welding, where

free surfaces of arbitrary and rapidly alterable shapes are intrinsically covered by the SPH

method. Hu et al. [172, 173] considered a thermoelastic material model for simulating laser

welding through SPH methodology in order to predict the temperature distribution and the

dimensions of welding seam during the welding process. A Total Lagrangian thermo-mechanical

energy-based formalism is presented by Ba and Gakwaya [174] discretised using a corrected SPH

framework aimed at tackling large deformation problems in solid mechanics. In a recent work

[175], some thermo-mechanical coupled problems are simulated and compared using SPH and

FEM numerical algorithm provided by LS-Dyna commercial package.

Thus far, the available improved SPH methodologies still suffer from persistent artificial mech-

anism (e.g. hourglassing), especially when dealing with predominant nearly incompressible

behaviour [176] and that can be suppressed by the so-called non-consistent stabilisation strate-

gies (i.e. artificial viscous fluxes [164, 177, 178] and conservative strain smoothing regularisation

[42, 179]).

1.2.2.2 Mixed-based methodologies

In order to rectify the shortcomings of classical SPH, Lee et al. [4, 5] recently introduced a

mixed-based Total Lagrangian SPH computational framework for explicit fast solid dynamics,

where the conservation of linear momentum p is solved along with conservation equations

for the deformation gradient F , its co-factor H and its Jacobian J . Specifically, the SPH

discretisation of the new system of conservation laws {p,F ,H, J} was introduced through

a family of well-established stabilisation strategies, namely, a Jameson-Schmidt-Turkel (JST)

algorithm [3, 23] and a variationally consistent Streamline Upwind Petrov Galerkin (SUPG)

algorithm [5, 17]. Both computational methodologies yield in the same order of convergence

is obtained for velocities, deviatoric and volumetric components of stress and were capable of

eliminating spurious hourglass-like modes, tensile instability and spurious pressure oscillations

in nearly incompressible scenarios.

1.3 Scope and outline of the thesis

The scope of this thesis is the numerical investigation on fast transient large strain solid dy-

namic problems consisting of reversible and irreversible processes. In this work, a system of

conservation equations is expressed in terms of the linear momentum p and the minors of the

deformation, namely, deformation gradient tensor F , its co-factor H and its Jacobian J . Ad-

ditionally, in order to account for irreversible processes, the above system is augmented with
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an additional conservation law and variable describing the total balance of energy in the sys-

tem. This is known as the first law of thermodynamics which, in general, can be expressed

in terms of total energy E or entropy η. For completeness, both expressions for the first law

are presented and compared. For closure of the system, different constitutive models including

isothermal hyper-elastic, isothermal elasto-plastic and thermo-elastic materials are employed.

These constitutive models are constructed on the basis of polyconvex stored energy functionals

in order to guarantee the existence of real wave speeds for the entire range of (thermo-/hyper-)

elastic deformations. We then present an adapted artificial compressibility algorithm [180–182]

to be able to treat near (fully) incompressible scenarios.

From the spatial discretisation standpoint, a unified computational framework is presented

which consists of an upwind SPH scheme and an upwind VCFVM methodology. The distinct

abilities introduced by each of the employed numerical schemes allow for tackling a wide range

of applications. In addition, discontinuity of the solution at the interface of two control volumes

(VCFVM scheme) or between any pair of particles (SPH scheme) leads to a Riemann problem

which is solved by the aid of a very simple acoustic Riemann solver. The semi-discrete equations

are advanced in time through an explicit Total Variation Diminishing (TVD) Runge-Kutta

(RK) method.

The thesis is organised into the following chapters:

Part I

In this part, preliminary material for engaging into the subject of interest (large strain explicit

fast solid dynamics) is presented by illustrating how the current work can potentially contribute

to industrial applications. The state of art in the context of fast solid dynamics is then studied

in order to get advantages of the previous successive works.

Part II

In this part, the mathematical description of Lagrangian Solid Dynamics is presented. It is

divided into two chapters presenting the physical laws governing the deformation of a continuum

and the employed constitutive models.

Chapter 2:

This chapter introduces the balance principles used in solid dynamics in a Total Lagrangian

description. The conservation laws are presented in a mixed-based fashion, applicable to be

utilised for a reversible and irreversible process. The objective of the mixed-based formal-

ism is to alleviate some numerical difficulties encountered by traditional displacement-based

formulation.

Chapter 3:
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For closure of the system of equations presented in the previous chapter, appropriate constitu-

tive models are introduced in this chapter including thermo-mechanical and purely mechanical

models. The former consists of a (nonlinear and linear) thermo-elastic material. The latter

presents isothermal hyperelastic and elasto-plastic constitutive models.

Part III

This part deals with the numerical methodologies whose objective is to approximately translate

the problem from the continuum level to the discrete level. Two distinct numerical schemes

are utilised in order to discretise the conservation laws in space and, then, the conservative

variables are updated in time using a time integrator. The possibility of having different

choices for spatial discretisations provide a useful insight on how to choose an appropriate

numerical methodology for a target problem.

Chapter 4:

This chapter spatially discretises the presented system of equations using the Vertex-Centred

Finite Volume Method (VCFVM). The nature of the method and its computational features

are initially described and, then, the semi-discretised set of equations are presented. A linear

reconstruction procedure and a slope limiter are introduced in order to increase the order

of accuracy whilst avoiding spurious oscillations in the vicinity of sharp gradients. In order

to ensure the stability of the VCFVM algorithm, a Riemann-based upwinding stabilisation

procedure is presented. To this end, the rate of local entropy production of the VCFVM

algorithm is examined via the classical Coleman-Noll procedure.

Chapter 5:

This chapter focus on a spatial discretisation of the presented conservation laws using the

Smooth Particle Hydrodynamics (SPH). The fundamental features of the method and its re-

cent improvements are initially described and, then, the semi-discretised set of equations are

presented in conjunction with a linear reconstruction procedure and a slope limiter. It is then

shown that the upwind-SPH scheme produces non-negative local entropy between any pair of

particles via the classical Coleman-Noll procedure. Finally, a tailor-made artificial compress-

ibility algorithm is suitably adapted to the SPH scheme in order to accommodate nearly and

truly incompressibility.

Chapter 6:

In this chapter, the semi-discrete set of equations are evolved in time using a one-step two-stage

Total Variation Diminishing Runge-Kutta time integrator. The computational validity of the

numerical algorithm is investigated using consistency and von-Neumann stability analysis. To

this end, the complete flowchart of the proposed numerical algorithms is presented.
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Part VI

This part focus on analysing a series of one- and three-dimensional numerical examples in order

to assess the accuracy, robustness and capability of the proposed methodologies.

Chapter 7:

This chapter is devoted to a series of one-dimensional benchmark examples aimed at assessing

the fundamental abilities of the proposed algorithms in shock dominated scenarios. Further-

more, a convergence study is carried out using a linear thermo-elastic material to ensure the

optimum accuracy of the solution.

Chapter 8:

In this chapter, the fundamental study on the proposed algorithms is extended to three-

dimensional problems. A thorough study is carried out on the spatial convergence, conservation

property, robustness and ability to handle incompressible scenarios for both VCFVM and SPH

numerical methodologies.

Chapter 9:

In this chapter, a series of isothermal and irreversible practical test cases are analysed in order

to prove the robustness of the proposed numerical algorithms. These conceivable applications

involve impact scenarios, biomedical and soft robotic problems and manufacturing processes.

Part V

This part mainly provides some conclusions and future perspectives on the accomplished work

presented in this thesis.

Chapter 10

This chapter summarises the accomplished work in this thesis and suggests potential directions

of research in order to enhance the current work.
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Governing equations

2.1 Introduction

This chapter is devoted to present the balance principles of nonlinear solid mechanics with a

focus on thermo-elastodynamics. In Section 2.2, the kinematics of the motion of a continuum

is discussed followed by the introduction of different problem descriptions. The conservation

laws governing the motion of the continuum are then introduced in the form of a mixed-based

formulation in Section 2.3. Finally, the presented formulations are summarised into the form

of a set of first order conservation laws, applicable to both thermo-mechanical and isothermal

processes. The schematic representation of the layout of this chapter is depicted in Figure 2.1.

2.2 Kinematics

2.2.1 Motion of a continuum

Consider the deformation of a continuum moving from its reference (material) configuration

with volume ΩR, of boundary ∂ΩR, into a current (spatial) configuration at time t occupying

volume Ω, of boundary ∂Ω (see Figure 2.2). The motion of the body is defined through a

mapping function x = φ(X, t) by which a solid particle at the reference state is transformed to

the spatial configuration. Therefore, the displacement, velocity and acceleration of a particle

can be obtained as

Figure 2.2: Motion of a deformable continuum
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u(X, t) = φ(X, t)− φ(X, 0) = x−X; (2.1a)

v(X, t) =
∂u(X, t)

∂t
; (2.1b)

a(X, t) =
∂v(X, t)

∂t
=
∂2u(X, t)

∂t2
. (2.1c)

Strain measurement is important for the characterisation of deformation. The deformation gra-

dient (also so-called fibre map) is a two-point tensor by which a fibre at material configuration

can be related to its spatial counterpart (dx = F dX) and is defined as

F =
∂φ(X, t)

∂X
= I +∇0u, (2.2)

where I is the second order identity tensor and [∇0u]IJ = ∂uI
∂XJ

. Two additional geometric

strain measurements are the area map H (co-factor of F ) and the volume map J (Jacobian of

the deformation) defined as

H = JF−T ; (2.3)

J = det(F ). (2.4)

The former connects an area vector from material to spatial configuration (da = HdA) 2 and

the latter is responsible for linking a volume element from the reference into the deformed

states (dΩ = JdΩR).

Having the mapping defined, it is of paramount importance to ensure the fulfilment of the

following conditions [13]:

• The function φ(X, t) is continuously differentiable (smooth enough) so that the compat-

ibility condition is satisfied (i.e. no overlaps or gaps in the deformed state).

• The function φ(X, t) has to be one-to-one, meaning that for every point at the reference

configuration ΩR, there is a unique point at spatial configuration Ω and that is necessary

and sufficient for regularity of the deformation gradient F .

• The volume map restrictedly satisfies J > 0 since a regular deformation gradient F

requires non-zero determinant.

2.2.2 Lagrangian and Eulerian descriptions

The mathematical description of an equation, governing the deformation of a continuum can

be presented in different ways and that strongly depends on the sought problem. The two

very well-known approaches in continuum mechanics are Lagrangian (material) and Eulerian

2 This relation is known as Nanson’s formula [14].
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time= 0 time= 0

time= t

(a)

time= t

(b)

Figure 2.3: Schematic definition of (a) Lagrangian and (b) Eulerian descriptions

(spatial) descriptions where the former defines a problem based upon material coordinates X

and time t and the latter, introduces spatial coordinates x and time t as the independent

variables. A schematic of both frameworks is illustrated in Figure 2.3.

In the Lagrangian description, an observer follows an individual particle of a continuum (i.e.

an infinitesimal portion of the continuum) while the body deforms. This means that the

conservation of mass will be automatically fulfilled. Lagrangian approaches are more employed

in solid mechanics since the stress generally depends on the (history of) deformation [118].

From the numerical standpoint, the computational grid moves with the deformable body and

this can be very advantageous in the case of dealing with history-dependent constitutive models.

In addition, the boundaries of the computational domain always lie on the physical boundaries

of the deformed configuration which can be a matter of crucial importance when modelling

multi-material applications [13]. Nonetheless, the Lagrangian approach may struggle when

extreme deformations occur in which mesh distortion can drastically degrade the accuracy of

the numerical solution. Although this can be rectified by applying adaptive mesh refinement, it

brings more complexity in the computer programming, extra computational cost and numerical

error to the computations [35].

In the Eulerian approach, an observer looks at a specific location in the space through which

the deformable continuum moves. This feature allows handling extremely large deformations

without being concerned about any mesh entanglement since the computational mesh will be
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fixed in space. This is why the Eulerian approach is prevalent in fluid mechanics as the stresses

and behaviour of prevalent Newtonian fluids do not depend on their histories. This, however,

arises some difficulties in tracking boundary information in some cases such as simulating

moving boundaries, free surface boundaries and interfaces capturing. A possible way of remedy

this could be the use of Volume of Fluid (VOF) or Marker-and-Cell (MAC) method [183].

In this thesis, a Total Lagrangian framework is employed due to the type of applications under

consideration.

2.3 Balance principles

In this Section, the governing equations required to model the motion of a solid continuum

are presented in a Total Lagrangian framework. These equations traditionally consist of the

conservation of mass, linear momentum, angular momentum and total energy/entropy where

the last two are the first and second principles of thermodynamics. Insofar as a mixed-based

approach is employed in this thesis, the balance principle is supplemented with conservation

laws for geometric strains, namely, the deformation gradient, the area map and the volume

map.

2.3.1 Conservation of mass

The mass conservation principle postulates that for any closed system (i.e. no mass transfer),

the quantity of mass must remain constant over time and this can be generally written as

dm

dt
= 0, (2.5)

where m stands for the mass of the system. It is then possible to write the Total Lagrangian

(global) form of the mass conservation as

d

dt

∫
ΩR

ρR dΩR = 0. (2.6)

Here ρR is the density in the reference configuration, with a constant value for a homogeneous

continuum. This leads to the Total Lagrangian local form of mass conservation as

dρR
dt

= 0, (2.7)

followed by an appropriate jump condition

c JρR K = 0. (2.8)

where J· K = (·)+ − (·)− is the jump operator denoting the jump of a variable across a moving

interface with normal velocity c. It is evident from Eq. (2.7) that for a Total Lagrangian

framework, the mass conservation is automatically satisfied and, therefore, mass or continuity

equation does not need to be explicitly solved.
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2.3.2 Conservation of linear momentum

The linear momentum equation can be derived on the basis of Newton’s second law of motion

where the summation of all (surface and body) forces is equivalent to the time rate of the global

linear momentum. It can be written in an integral form and, then, with the application of the

Gauss divergence theorem renders

d

dt

∫
ΩR

p dΩR =

∫
∂ΩR

t dA+

∫
ΩR

fR dΩR (2.9)

=

∫
ΩR

(DIVP + fR) dΩR,

where p = ρRv is the linear momentum per unit undeformed volume ΩR, t = PN is the

traction vector obtained from the multiplication of the first Piola-Kirchhohf stress tensor P

and unit material outward normal vector N , fR = ρRb denotes the body forces per unit of

reference volume ΩR and DIV represents the material divergence operator. Hence, the strong

form of the linear momentum conservation equation reads

∂p

∂t
= DIVP + fR, (2.10)

followed by an appropriate jump condition

c Jp K = −JP KN . (2.11)

2.3.3 Conservation of angular momentum

Considering the definition of angular momentum about a reference point xR as w = r×p where

r = x−xR and using Eq. (2.9), the integral form of the angular momentum conservation, with

the application of Gauss divergence theorem, can be expressed as

d

dt

∫
ΩR

w dΩR =

∫
∂ΩR

r × t dA+

∫
ΩR

r × fR dΩR (2.12)

=

∫
ΩR

DIV(r P ) dΩR +

∫
ΩR

r × fR dΩR,

where the mathematical operator × is the standard cross product between two vectors and

is defined as the tensor cross product presented in [3] (see Appendix A). This leads to the local

form of the angular momentum conservation law as

∂w

∂t
= DIV(r P ) + r × fR, (2.13)

followed by an appropriate jump condition

c Jw K = −r (JP KN) . (2.14)
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By the aid of alternating tensor 3 and the Gauss divergence theorem, the surface integral on

the right hand side of Eq. (2.12) can be re-written as follows

∫
∂ΩR

r × t dA =

∫
∂ΩR

ε : (r ⊗ t) dA

=

∫
∂ΩR

ε : (r ⊗ PN) dA

=

∫
ΩR

(
ε : FP T + r ×DIVP

)
dΩR.

(2.15)

Replacing the new obtained expression from Eq. (2.15) into Eq. (2.12) results in∫
ΩR

r ×
(
∂p

∂t
−DIVP − fR

)
dΩR =

∫
ΩR

ε : (FP T ) dΩR. (2.16)

The balance of linear momentum Eq. (2.10) is evident on the left hand side of Eq. (2.16) and

thus, the simplified equation for fulfilling the conservation of angular momentum yields∫
ΩR

ε : (FP T ) dΩR = 0. (2.17)

The local form of the obtained relation in Eq. (2.17) reads

ε : (FP T ) = 0, (2.18)

which requires the fulfillment of FP T = PF T . In addition, considering the definition of second

Piola-Kirchhoff stress tensor as S = F−1P , it is possible to simply define the condition of the

conservation of angular momentum as the symmetry of second Piola-Kirchhoff stress tensor

S = ST . (2.19)

2.3.4 Conservation of deformation gradient

Considering the deformation gradient F as an independent conservative variable, the integral

form of the conservation of deformation gradient reads

d

dt

∫
ΩR

F dΩR =

∫
∂ΩR

1

ρR
p⊗N dA, (2.20)

which has been obtained by integrating the time derivative of Eq. (2.2) over a reference volume

ΩR. Applying the Gauss divergence theorem on the right hand side of Eq. (2.20) enables us to

3 The alternating tensor (or the so-called permutation operator) is defined as εIJK = êi · (êj × êk).
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express the local differential form for the conservation of deformation gradient

∂F

∂t
= DIV

(
1

ρR
p⊗ I

)
, (2.21)

followed by an appropriate jump condition

c JF K = − 1

ρR
Jp K⊗N . (2.22)

Crucially, the evolution of the fibre map F must be advanced in time satisfying a compatibility

condition (known as the so-called involution [184])

CURL(F ) = ∇× F = 0; (2.23a)

[CURL(F )]iI = εIJK
∂FiK
∂XJ

(2.23b)

where εIJK is the alternating (or permutation) tensor. This ensures that the deformation

gradient F corresponds to the material gradient of a real mapping [18, 106]. It is mathematically

evident that CURL of a gradient field is null. However, as the deformation gradient is considered

here to be an independent variable, its gradient will be computed in a weakly manner at a

discrete level. Hence, an appropriate approximation for the gradient of the (velocity) field has

to be taken into account such that the compatibility condition would not get violated.

2.3.5 Conservation of area map

An alternative expression for the co-factor of deformation gradient Eq. (2.3) is [185]

H =
1

2
F F =

1

2
CURL (x F ) . (2.24)

By integrating the time derivative of Eq. (2.24), the integral form of conservation of area map

reads
d

dt

∫
ΩR

H dΩR =

∫
ΩR

CURL (v F ) dΩR, (2.25)

from which the strong form of the conservation of the area map can be extracted

∂H

∂t
= CURL

(
1

ρR
p F

)
, (2.26)

followed by an appropriate jump condition

c JH K = −FAve

(
1

ρR
Jp K⊗N

)
, (2.27)
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where FAve := 1
2 (F+ + F−) denotes the average state of deformation gradient between the

left and right states of a discontinuous surface. The fulfillment of a compatibility condition for

evolution of area map H is also required as

DIVH = 0; (2.28a)

(DIVH)i =
∂HiI

∂XI
. (2.28b)

Notice that, if necessary, the conservation form of the area map Eq. (2.26) can be re-expressed

in non-conservation form by the aid of compatibility condition Eq. (2.23)

∂H

∂t
= F ∇R

(
p

ρR

)
. (2.29)

2.3.6 Conservation of volume map

The Jacobian of deformation can be evaluated using Eq. (2.4) or as follows

J =
1

3
(H : F ) =

1

3
DIV

(
HTx

)
. (2.30)

Integration of time derivative of Eq. (2.30) with the aid of the Gauss divergence theorem leads

to the integral form of the conservation of volume map

d

dt

∫
ΩR

J dΩR =

∫
ΩR

DIV

(
HT p

ρR

)
dΩR, (2.31)

where the local form yields

∂J

∂t
= DIV

(
HT p

ρR

)
, (2.32)

followed by an appropriate jump condition

c JJ K = −HAve :

(
1

ρR
Jp K⊗N

)
, (2.33)

with HAve := 1
2 (H+ +H−) standing for the average state of area map between the left and

right states of a discontinuous surface. The conservation form of volume map Eq. (2.32) can

be re-written, if necessary, in non-conservation form using involution Eq. (2.28)

∂J

∂t
= H :∇R

(
p

ρR

)
. (2.34)
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Remark 1: Notice that the geometric strains {F ,H, J}, in the case of displacement-based

formulation, are not independent variables anymore and will be computed as a function of the

material gradient of a current geometry as

F =∇0x; J = detF ; H = JF−T . (2.35)

2.3.7 Conservation of total energy (first law of thermodynamics)

Conservation of total energy postulates that the rate of change of total energy is equivalent to

the volume (B) and surface (S) energies (and/or works) applied on a continuum and its integral

form can be expressed in a Total Lagrangian framework as

d

dt

∫
ΩR

E dΩR =

∫
∂ΩR

S dA+

∫
ΩR

B dΩR, (2.36)

where E is the total energy density per unit of the reference volume, S includes the surface

forces (tractions t = PN and heat fluxes Q) and B comprises the body forces (fR) and heat

source terms (sR). Applying the Gauss divergence theorem, Eq. (2.36) can be re-written as

d

dt

∫
ΩR

E dΩR =

∫
∂ΩR

(t · v −Q ·N) dA+

∫
ΩR

(fR · v + sR) dΩR (2.37)

=

∫
ΩR

(
DIV

(
P Tv −Q

)
+ fR · v + sR

)
dΩR,

with heat flux Q defined by Fourier’s law [186] in Total Lagrangian description as

Q = −h
J
HTH∇Rθ. (2.38)

Here h denotes the heat conduction coefficient. By virtue of Eq. (2.37), we can now express

the local differential form of the conservation of total energy

∂E

∂t
= DIV

(
P Tv −Q

)
+ fR · v + sR, (2.39)

which is also considered as the first law of thermodynamics and followed by an appropriate

jump condition

c JE K = −
(

1

ρR
JP Tp K ·N

)
+ JQ K ·N . (2.40)

Alternatively, it is possible to define the total energy of a system per unit of the reference

volume as a combination of its internal energy E and kinetic energy

E = E +
1

2
ρRv · v. (2.41)
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This allows expressing the non-conservative form of the first law of thermodynamics in terms

of the internal energy as

∂E
∂t

+ v ·
(
∂p

∂t
−DIVP − fR

)
︸ ︷︷ ︸

Balance of linear momentum

= P :∇Rv −DIVQ+ sR. (2.42)

It can be seen from Eq. (2.42) that the second term on the left hand side will vanish as it repre-

sents Eq. (2.10). Therefore, the non-conservative local form of the first law of thermodynamics

reads

∂E
∂t

= P :∇Rv −DIVQ+ sR. (2.43)

2.3.8 Entropy inequality principle (second law of thermodynamics)

The second law of thermodynamics broadly states that the total entropy of an isolated system

(no mass and energy transfer out of/into the system) must increase over time. The second

law is responsible for the direction of energy transfer whereas the first law of thermodynamics

is not capable of [78, 80]. Let us consider the internal energy of a general thermo-mechanical

system defined as E = E(χ, η,α) where χ = {F ,H, J} represents the set of geometric strains,

η stands for entropy and α denotes a possible vector/tensor of the internal state variables which

can describe phenomena such as plastic deformation. We can now obtain the time rate of the

internal energy by the aid of chain rule as

∂E
∂t

=
∂E
∂F

: Ḟ +
∂E
∂H

: Ḣ +
∂E
∂J

J̇ +
∂E
∂η
η̇ +

∂E
∂α
· α̇. (2.44)

Defining temperature θ as the conjugate variable of entropy θ = ∂E
∂η and substituting Eq. (2.44)

into the non-conservative form of the first law of thermodynamics Eq. (2.43) reads(
∂E
∂F

+
∂E
∂H

F +
∂E
∂J
H − P

)
: Ḟ +

∂E
∂α
· α̇+ θη̇ + DIVQ− sR = 0. (2.45)

In the absence of any internal state variables ∂E
∂α = 0 and introducing the elastic first Piola-

Kirchhoff stress tensor P = ∂E
∂F + ∂E

∂H F + ∂E
∂JH, Eq. (2.45) reduces to

θη̇ + DIVQ− sR = 0, (2.46)

which is another form of the first law of thermodynamics in the absence of internal state

variables. This equation can be a replacement for conservation of total energy in the case of

smooth solutions.
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In order to obtain the entropy inequality, let us manipulate DIVQ as follows

DIVQ = θ
1

θ
DIVQ (2.47)

= θ

[
DIV

(
Q

θ

)
+

1

θ2
∇Rθ ·Q

]
= θDIV

(
Q

θ

)
+

1

θ
∇Rθ ·Q.

This can lead to an alternative conservation type law for the entropy as

∂η

∂t
+ DIV

(
Q

θ

)
=
sR
θ
− 1

θ2
Q ·∇Rθ, (2.48)

followed by an appropriate jump condition

c Jη K = J
Q

θ
K ·N . (2.49)

By substituting Eq. (2.47) into Eq. (2.45), after rearranging the last three terms

−Dint + θ

[
η̇ + DIV

(
Q

θ

)
− sR

θ

]
+

1

θ
∇Rθ ·Q = 0, (2.50)

where Dint is the so-called internal dissipation expressed as

Dint =

(
P −

[
∂E
∂F

+
∂E
∂H

F +
∂E
∂J
H

])
: Ḟ − ∂E

∂α
· α̇. (2.51)

It generally measures the amount of energy that has been lost through either a viscous type

behaviour or internal friction. In a particular case where internal state variables and viscous

type effects are absent, the internal dissipation vanishes Dint = 0 since P = ∂E
∂F + ∂E

∂H F+ ∂E
∂JH

and ∂E
∂α = 0. As the Fourier’s law of conduction states that

∇Rθ ·Q ≤ 0, (2.52)

Eq. (2.50) leads to

η̇ + DIV

(
Q

θ

)
− sR

θ
≥ 0, (2.53)

which represents the entropy inequality (or the second law of thermodynamics).

In a general case where internal state variables exist, based on the entropy inequality Eq. (2.53)

and Fourier’s law Eq. (2.52), Eq. (2.50) gives

Dint −
1

θ
∇Rθ ·Q ≥ 0, (2.54)

which represents the well-known Clasius-Duhem inequality [78]. It is also easy to prove that the

internal dissipation must be always positive (Dint ≥ 0) considering Clasius-Duhem inequality

(2.54) and Fourier’s law (2.52).
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2.4 Conservation law formulations

In general, the integral form of a conservation law is expressed as

d

dt

∫
ΩR

U dΩR +

∫
∂ΩR

FN dA =

∫
ΩR

S dΩR, (2.55)

with U representing the set of conservation variables, FN their corresponding flux vectors and

S is the set of possible source terms [3]. In the case of a smooth function, the integral form

Eq. (2.55) can be expressed in the form of a first order set of differential equations

∂U
∂t

+
∂F I
∂XI︸ ︷︷ ︸

DIV(F)

= S. (2.56)

Crucially, in the case of a non-smooth solution, the local conservation form (2.56) will be

followed by an appropriate Rankine-Hugoniot jump condition (2.57) [17, 22, 187] across a

discontinuity surface with outward unit normal N propagating with speed c as reads

c JU K = JF KN , (2.57)

In order to concisely define the required conservation laws to be employed for tackling a problem,

two different processes have been considered which will be discussed in the following sections.

2.4.1 Irreversible process

In an irreversible process the energy equation is coupled to the rest of conservation laws and

has to be solved in conjunction with conservation of linear momentum and geometric strains.

Therefore, re-calling conservation equations presented in Section 2.3 (Eq. (2.10), Eq. (2.21),

Eq. (2.26), Eq. (2.32), Eq. (2.39) and Eq. (2.48)), it is now possible to define the conservative

variables, their corresponding fluxes and the source terms as

U =



p

F

H

J

E

η


; FN = F INI = −



t

1
ρR
p⊗N

F
(

1
ρR
p⊗N

)
H :

(
1
ρR
p⊗N

)
1
ρR
p · t−Q ·N

−Qθ ·N


; S =



fR

0

0

0

fR · pρR + sR

sR
θ −

1
θ2
Q ·∇Rθ


.

(2.58)

Here the first law of thermodynamics is expressed in terms of both total energy and entropy

conservation laws such that either of them can be used to form the system of equations. The

former is known here as the total energy-based formulations whereas the latter is known as

the entropy-based system of equations. In addition, the appropriate jump condition for each
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conservation law, using Eq. (2.57) and Eq. (2.58), can be expressed as

c Jp K = −JP KN ; (2.59a)

c JF K = − 1

ρR
Jp K⊗N ; (2.59b)

c JH K = −FAve

(
1

ρR
Jp K⊗N

)
; (2.59c)

c JJ K = −HAve :

(
1

ρR
Jp K⊗N

)
; (2.59d)

c JE K = −
(

1

ρR
JP Tp K ·N

)
+ JQ K ·N ; (2.59e)

c Jη K = J
Q

θ
K ·N . (2.59f)

Remark 2: Nonetheless, Eq. (2.13) will not be solved along with other conservation equations

in this thesis because it introduces an extra variable r which cannot be obtained directly by

using any of the existing conservation laws. Therefore, a global a-posteriori angular momentum

projection procedure is considered for conserving the angular momentum of the system (see

Appendix D).

2.4.2 Isothermal process

For an isothermal process where we deal with a purely mechanical case, the total energy

equation (2.39) will be decoupled from the rest of conservation laws and is not necessary

to be solved. However, form a computational standpoint, the evolution of total energy can

still provide useful information on tracking the numerical dissipation of the algorithm. It is

worthwhile noting that the heat flux will be neglected due to the lack of temperature gradient.

The rest of the conservation laws will be treated as it is explained in Section 2.4.1, neglecting

the coupling effects.

Having the complete set of conservation laws, it is now possible to close the system of equations

by using an appropriate constitutive model (which will be introduced in chapter 3), initial and

boundary conditions.

2.5 Conclusion

In this chapter, the equations governing the motion of a deformable solid have been presented

with the focus on thermo-elastodynamics. The balance principles have been introduced in

a Total Lagrangian description. Finally, the general set of (total energy-based or entropy-

based) {p,F ,H, J, E or η} formulations are presented in the form of a first-order system of
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conservation laws to be utilised for either irreversible or isothermal isothermal process. In

the case of a discontinuous solution, the set of equations is accompanied by an appropriate

Rankine-Hugoniot jump condition.



Chapter 3
Constitutive models

3.1 Introduction

A constitutive model, in general, describes the material behaviour through a mathematical

model. It might simply be an empirical (phenomenological) relation between two physical

quantities, especially kinematic and kinetic, or derived based upon first principles (theoret-

ical work). In fact, a constitutive equation generally provides a relation between stresses,

strains and internal variables by which the principles of objectivity [14] and thermodynamic

consistency (via Coleman-Noll procedure [188]) have to be satisfied. The former, which is also

known as the principle of frame invariance, states that a rigid body motion must not generate

strains and, consequently, no stresses. The latter requires satisfaction of the second principle

of thermodynamics through the entropy inequality Eq. (2.54).

This chapter introduces the employed constitutive laws in the present work in two main cat-

egories: isothermal models (Section 3.2) and the general case of coupled thermo-mechanical

models (Section 3.3). To this end, Section 3.4 investigates the hyperbolicity of the system of

equations, expressed in Eq. (2.58), for the case of the employed material models. The schematic

representation of the layout of this chapter is depicted in Figure 3.1.

3.2 Isothermal model

A constitutive relation for an isothermal material model can be mathematically derived from

its strain energy functional ψ. The term strain energy stands for the energy stored by a

material undergoing deformation. In the case of reversible isothermal elasticity, the strain

energy functional ψR per unit of undeformed volume can alternatively be re-expressed via a

polyconvex function WR as [120]

ψR(∇0x) = WR(χ), (3.1)

where WR is convex with respect to its 19 variables, namely, 3 × 3 components of F and H

and the scalar J . This condition, which is strongly related to the material stability of the

34
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Figure 3.1: Structure of Chapter 3
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constitutive equations, ensures the well-posedness of the governing equations. An extensive

discussion about polyconvexity can be found in [189].

For isotropic materials, expression of WR can be further simplified through the use of the

invariants {I1, I2, I3} defined as [120, 185]

I1 = F : F ; I2 = H : H; I3 = J2. (3.2)

3.2.1 Hyperelasticity

Compressible polyconvex model

For a compressible Mooney–Rivlin model, an admissible polyconvex strain energy can be de-

fined as [3]

WR(χ) = αI1 + βI2 + f(J), (3.3)

where α and β are positive material parameters. Appropriate values for α and β and a suitable

function for f(J) must be chosen such that, at the reference configuration, the stress vanishes

and the usual linear elasticity tensor in terms of the Lame coefficients λ and µ is recovered.

This leads to the following set of conditions

f ′(1) = −2(α+ 2β);

f ′′(1) = λ+ 2α;

µ = 2(α+ β).

(3.4)

The following convex expression for f(J) is employed here

f(J) = −4βJ − 2α ln J +
λ

2
(J − 1)2. (3.5)

The first Piola-Kirchoff stress tensor can then be defined as [3]

PR(χ) =
∂WR

∂F
+
∂WR

∂H
F +

∂WR

∂J
H (3.6)

= ΣF +ΣH F +ΣJH. (3.7)

Notice here that ΣF , ΣH , ΣJ are defined as the corresponding work conjugate stresses to the

geometric strains {F ,H, J}, respectively. By substituting Eq. (3.3) into the above equation,

the first Piola-Kirchoff stress tensor for a compressible Mooney-Rivlin (MR) material model

reads

PR = 2αF + 2βH F +

(
−4β − 2α

J
+ λ(J − 1)

)
H. (3.8)

It is worth to mention that the Mooney-Rivlin model degenerates to the neo-Hookean (NH)

material model if α = µ
2 and β = 0 and, therefore, the first Piola-Kirchoff stress tensor for the

neo-Hookean material model can be expressed as

PR = µF +
(
−µ
J

+ λ(J − 1)
)
H. (3.9)
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Nearly incompressible polyconvex model

The strain energy WR for polyconvex nearly incompressible Mooney-Rivlin material model can

be decomposed into the deviatoric ŴR(χ) and volumetric UR(J) contributions [16, 120, 185]

W (χ) = ζJ−2/3 (F : F ) + ξJ−2 (H : H)3/2 − 3ζ − 33/2ξ︸ ︷︷ ︸
ŴR

+
κ

2
(J − 1)2︸ ︷︷ ︸
UR

, (3.10)

where ζ, ξ and κ (bulk modulus) are positive material parameters. By comparison of the

tangent elasticity operator at the initial undeformed configuration with that of classical linear

elasticity [185], appropriate values for the material parameters ζ and ξ can be defined in terms

of the shear modulus µ, that is, 2ζ + 3
√

3ξ = µ [4, 16, 120]. To obtain the expression for the

first Piola (3.6), the following derivatives are required as follows

∂ŴR

∂F
:= ΣF = 2ζJ−2/3F ; (3.11a)

∂ŴR

∂H
:= ΣH = 3ξJ−2 (H : H)1/2H; (3.11b)

∂WR

∂J
:= ΣJ =

∂ŴR

∂J︸ ︷︷ ︸
Σ̂J

+
dUR
dJ︸︷︷︸

Pressure(p)

, (3.11c)

with

Σ̂J = −2

3
ζJ−5/3(F : F )− 2ξJ−3(H : H)3/2; p = κ(J − 1). (3.12)

Hence, the first Piola-Kirchhoff stress tensor, decomposed here into deviatoric (P̂ ) and volu-

metric (Pvol) contributions, for nearly incompressible Mooney-Rivlin model reads

PR = P̂R + PR,vol, (3.13)

where

P̂R = 2ζJ−2/3F +
(

3ξJ−2 (H : H)1/2H
)

F +

(
−2

3
ζJ−5/3(F : F )− 2ξJ−3(H : H)3/2

)
H;

PR,vol = pH; p = κ(J − 1).

(3.14)

By consideration of the material parameters ζ = µ
2 and ξ = 0, it is possible to retrieve the

strain energy functional for nearly incompressible neo-Hookean model and, therefore, its Piola-

Kirchhoff stress tensor as

PR = µJ−2/3F − µ

3
J−5/3(F : F )H︸ ︷︷ ︸
P̂R

+ pH︸︷︷︸
PR,vol

; p = κ(J − 1). (3.15)
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Remark 3: It is worth to mention that the classical nearly incompressible neo-Hookean model

[14] can be simply recovered through Eq. (3.15) as

P̂R = µJ
−2/3
F

(
F − 1

3
(F : F )F−T

)
; PR,vol = pH; p = κ(J − 1). (3.16)

where J = detF is the Jacobian of deformation and H = 1
2 F F is the area map, both

evaluated on the basis of the deformation gradient tensor F =∇0x. It must be noted that in

continuum level, Eq. (3.16) is exactly equivalent to Eq. (3.15). However, in discrete level, they

will not be the same due to the different definition of the geometric strains.

3.2.2 Hyperelasto-plasticity

The standard rate-independent 4 von Mises plasticity with isotropic hardening 5 is considered

to be utilised here in order to model an isothermal hyperelasto-plastic behaviour [190]. In this

case, the deformation gradient tensor F can be multiplicatively decomposed into elastic Fe and

plastic Fp components such that

F = Fe Fp, (3.17)

It is also possible to define elastic left strain tensor as

be = F C−1
p F T ; Cp = F T

p Fp, (3.18)

where Cp is the plastic right Cauchy Green tensor. In addition, the strain energy functional

should be essentially defined in terms of the elastic principal stretches (λ1
e, λ

2
e, λ

3
e)

ψ(λ1
e, λ

2
e, λ

3
e, J) = ψ̂

(
J−1/3λ1

e, J
−1/3λ2

e, J
−1/3λ3

e

)
+ ψvol(J), (3.19)

where
ψ̂ = µ

[
(lnλ1

e)
2 + (lnλ2

e)
2 + (lnλ3

e)
2
]
− µ

3
(ln J)2;

ψvol =
κ

2
(ln J)2; κ = λ+

2

3
µ; lnJ =

3∑
α=1

lnλαe .
(3.20)

The algorithmic structure of how to update first Piola-Kirchhoff stress tensor for this particular

material model is shown in Algorithm 3.1.

4 A ’rate-independent’ model postulates that given a deformation history for the material will lead to a specific
state of stress irrespective of the speed at which this path is followed [14]. In other words, the stress is not a
function of the strain rate.

5 The feature of ’isotropic hardening’ indicates that the yield stress increases equally in all directions due to
tensile or compressive loading [14].
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Algorithm 3.1: Time update of the first Piola Kirchoff stress tensor - Hyperelasto-plasticity

Input : F n+1, Jn+1,
[
C−1
p

]n
, εnp

Output: P n+1

(1) Evaluate Jacobian of deformation: Jn+1
F = det

(
F n+1

)
.

(2) Compute trial elastic left strain tensor: b̄n+1
e = F n+1

[
C−1
p

]n [
F T
]n+1

.

(3) Obtain pressure: pn+1 = κ
ln (Jn+1)
Jn+1 .

(4) Spectral decomposition of b̄n+1
e to obtain stretches and spatial normal vectors:

λ̄ie , n̄i ← b̄n+1
e =

∑3
i=1

(
λ̄ie
)2

(n̄i ⊗ n̄i).

(5) Set spatial normals: nn+1
i = n̄i.

(6) Compute trial deviatoric Kirchoff stress tensor:

τ̄ ′ =
∑3

i=1 τ̄
′
ii (n̄i ⊗ n̄i) ; τ̄ ′ii = 2µ ln

(
λ̄ie
)
− 2

3µ ln
(
Jn+1
F

)
.

(7) Evaluate yield criterion: f
(
τ̄ ′, εnp

)
=
√

3
2(τ̄ ′ : τ̄ ′)−

(
τ0
y +Hεnp

)
.

(8) Compute direction vector, plastic multiplier and elastic stretch:

if f
(
τ̄ ′, εnp

)
> 0 then

(8.1) Direction vector: υn+1
i =

τ̄ ′ii√
2
3

(τ̄ ′:τ̄ ′)
.

(8.2) Plastic multiplier: ∆γ =
f(τ̄ ′,εnp)

3µ+H .

(8.3) Elastic stretch: λi,n+1
e = exp

(
ln(λ̄ie)−∆γ υn+1

i

)
.

else

(8.1) υn+1
i = ∆γ = 0.

end

(9) Update elastic left strain tensor: bn+1
e =

∑3
i=1

(
λi,n+1
e

)2 (
nn+1
i ⊗ nn+1

i

)
.

(10) Update plastic right Cauchy Green tensor:
[
C−1
p

]n+1
=
[
F−1

]n+1
bn+1
e

[
F−T

]n+1
.

(11) Update plastic strain: εn+1
p = εnp +∆γ.

(12) Compute Kirchoff stresss tensor: τn+1 =
∑3

i=1 τii
(
nn+1
i ⊗ nn+1

i

)
;

τii = τ ′ii + Jn+1
F pn+1; τ ′ii =

(
1− 2µ∆γ√

2
3

(τ̄ ′:τ̄ ′)

)
τ̄ ′ii.

(13) Evaluate first Piola Kirchoff stress tensor: P n+1
R = τn+1

[
F−T

]n+1
.
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3.3 Thermo-mechanical model

Considering an irreversible process, a general thermo-mechanical constitutive model is required

to account for mechanical and thermal effects altogether. In this case, the stress is generally

a function of the strains, temperature or entropy of the system and possibly, an internal state

variable.

3.3.1 Thermo-elasticity

For strict thermo-elasticity6, the internal energy of a system can be expressed by a convex

multi-variable (polyconvex) function as [191]

E = E (χ, η) , (3.21)

where χ = {F ,H, J} represents the set of geometric strains and η denotes the entropy, that

is the energy dual conjugate variable to the temperature described as

θ =
∂E
∂η
. (3.22)

Taking time derivative of equation Eq. (3.21) for the internal energy, in combination with the

geometric conservation laws for χ, gives

∂E
∂t

=
∂E
∂χ

:
∂χ

∂t
+
∂E
∂η

∂η

∂t
(3.23a)

=
∂E
∂F

:
∂F

∂t
+

∂E
∂H

:

(
F

∂F

∂t

)
+
∂E
∂J

(
H :

∂F

∂t

)
+ θ

∂η

∂t
(3.23b)

=

(
∂E
∂F

+
∂E
∂H

F +
∂E
∂J
H

)
:
∂F

∂t
+ θ

∂η

∂t
. (3.23c)

Note that the expression in the above parenthesis represents the components of the first Piola,

that is

P =
∂E
∂F

+
∂E
∂H

F +
∂E
∂J
H. (3.24)

General thermal relationships

In general, (Calorimetry) relationships between internal energy E , temperature θ and entropy

η can be derived from the definition of the heat capacity at constant volume cv

∂ Ẽ
∂θ

= cv; Ẽ (χ, θ) = E (χ, η (χ, θ)) , (3.25)

6 In the absence of other state variables such as plastic strain.
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where cv = ρRCv and Cv is the specific heat capacity at constant volume. Insofar as the internal

energy E presented in Eq. (3.21) is expressed as a function of the entropy η and deformation

χ, Eq. (3.25) can be recast using the chain rule to yield

∂E
∂η

∂η

∂θ
= cv. (3.26)

With the aid of Eq. (3.22), a constitutive relationship between the temperature θ and the

entropy η at constant deformation can be established

dθ

dη
=

θ

cv
. (3.27)

Assuming constant Cv for all temperatures allows the relationship between entropy and tem-

perature to be integrated for θ as

θ (χ, η) = θR exp

(
η − ηR (χ)

cv

)
; ηR (χ) = η (χ, θR) . (3.28)

with θR defined as the reference temperature.

Remark 4: It is useful to note that

θ (χ, η) = θ0 (χ) e
η
cv ; θ0 (χ) = θ (χ, 0) , (3.29)

where θ0 (χ) denotes the temperature of the material if entropy is kept constant at zero whilst

the deformation is changed. Both θ0 (χ) and ηR (χ) describe the thermal-mechanical couplings

and are related by

θ0 (χ) = θR exp

(
−ηR (χ)

cv

)
; ηR (χ) = −cv ln

(
θ0 (χ)

θR

)
. (3.30)

Moreover, the relation between ER (internal energy at reference temperature) and E0 (internal

energy for zero entropy) can be established

ER (χ) = E0 (χ) + cv (θR − θ0 (χ)) , (3.31)

where

E0 = E(χ, 0); θ0 (χ) = θRe
− ηR(χ)

cv . (3.32)

For completeness, Eq. (3.28) can also be alternatively expressed for η as

η (χ, θ) = ηR (χ) + cv ln

(
θ

θR

)
. (3.33)

Finally, assuming constant heat capacity cv, it is possible to write an explicit relationship for
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the internal energy E . Integrating Eq. (3.25) with respect to temperature θ between the limits

θ = θR and a given value θ

Ẽ (χ, θ)︸ ︷︷ ︸
E(χ,η)

= ER (χ) + cv (θ − θR)︸ ︷︷ ︸
∆θ

(3.34a)

= ER (χ) + cvθR

[
exp

(
η − ηR (χ)

cv

)
− 1

]
, (3.34b)

where ∆θ = θ − θR represents the temperature increment.

Helmholtz’s free energy functional

It is now possible to express the first Piola in terms of deformation χ and temperature θ. To

achieve this, by the aid of Legendre transform, the Helmholtz’s free energy (also called strain

energy functional in the isothermal case) per unit of undeformed volume can be introduced as

W (χ, θ) = E(χ, η)︸ ︷︷ ︸
Ẽ(χ,θ)

−θη(χ, θ). (3.35)

Moreover, based on Eq. (3.24), the state of stress at a given temperature can be obtained in a

direct manner as

P (χ, θ) =
∂W

∂F
+
∂W

∂H
F +

∂W

∂J
H. (3.36)

Substituting Eq. (3.34a) and Eq. (3.33) into Eq. (3.35) gives a final expression for the strain

energy functional W as [78]

W (χ, θ) = WR(χ)︸ ︷︷ ︸
Mechanical

−∆θηR(χ)︸ ︷︷ ︸
Coupling

+ T (θ)︸︷︷︸
Thermal

; T (θ) = cv

[
∆θ − θ ln

θ

θR

]
. (3.37)

More generally, a wide range of materials relies on the assumption that the distortional be-

haviour of the material can be split from the volumetric response. Mathematically, these

assumptions are expressed by means of an additive decomposition of WR into distortional ŴR

and volumetric components UR, namely, WR(χ) = ŴR(χ) + UR(J). Similarly, the same de-

composition between volumetric and distortional components can be established in terms of

entropy such that ηR(χ) = η̂R(χ) + ηR,vol(J). Equation Eq. (3.37) then becomes

W (χ, θ) = ŴR(χ) + UR(J)−∆θ [η̂R(χ) + ηR,vol(J)] + T (θ). (3.38)

In addition, a complementary relation to the energy dual conjugate variable described in

Eq. (3.22) is in the form of

η (χ, θ) = −∂W
∂θ

. (3.39)
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Using Eq. (3.36), the first Piola becomes

P (χ, θ) = P̂R (χ) + pRH −∆θ
[
∂η̂R
∂F

+
∂η̂R
∂H

F +

(
∂η̂R
∂J

+
dηR,vol

dJ

)
H

]
, (3.40)

where

P̂R =
∂ŴR

∂F
+
∂ŴR

∂H
F +

∂ŴR

∂J
H; pR =

dUR(J)

dJ
. (3.41)

Moreover, re-arranging equation Eq. (3.34a) and combining Eq. (3.35) defined at reference

temperature yields an alternative expression for θ using Eq. (2.41) to give

θ = θR +
1

cv

[
E − ρR

2
(v · v)− ER (χ)

]
; ER(χ) = WR(χ) + θRηR(χ). (3.42)

Looking at Eq. (3.40), we need to define the thermo-mechanical coupling term ηR(χ) in order

to obtain the explicit expression for the first Piola-Kirchhoff stress tensor.

In order to ensure the existence of real wave speeds for all values of {χ, η}, that is regardless

of the amount of deformation and thermal state, sufficient conditions for the function E(χ, η)7

Eq. (3.34a) to be convex in χ and η are [191]

(1) ER(χ) is convex in χ;

(2) −ηR(χ) is convex in χ.

3.3.1.1 Mie-Grüneisen equation of state

A particular case of an elastic material with Mie-Grüneisen Equation Of State (EOS) is consid-

ered here where only the volumetric mechanical component is coupled with the thermal effects,

that is ηR(χ) ≈ ηR,vol(J) by assuming η̂R(χ) = 0. This is described as

J
∂p(J, η)

∂E
= −Γ0J

q, (3.43)

where Γ0 and q are material constant parameters. It is now possible to obtain explicit expression

for ηR(J) starting from equation Eq. (3.43). This is achieved by combing equations Eq. (3.22)

and Eq. (3.34a) such that

∂p(J, η)

∂E
=

1
∂E
∂η

∂p

∂η
=

1

θ

∂p

∂η
= − 1

cv

dηR(J)

dJ
= −Γ0J

q−1, (3.44)

7 This is an extension of the usual polyconvexity condition for non-thermal processes where the internal energy
is required to be convex on the extended set of deformation variables χ and the entropy density η.
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from which ηR(J) can be integrated to give8

− ηR(J) =
cvΓ0

q
(1− Jq) . (3.45)

Differentiating Eq. (3.44) with respect to J implies the convexity of −ηR(J) such that

− d2ηR(J)

dJ2
= (1− q)cvΓ0J

q−2 ≥ 0 ∀ 0 ≤ q ≤ 1. (3.46)

This ensures the satisfaction of Condition 2, presented in the previous section, one of the two

conditions that must be fulfilled for a convex thermo-mechanical model.

Moreover, in order to complete the constitutive model, it is now necessary to ensure that ẼR(χ)

is also convex (refer to Condition 1). Due to the nature of a Mie-Grüneisen model, ẼR(χ)

is additively decomposed into the summation of a deviatoric contribution and a volumetric

contribution, namely ER(χ) = ÊR(χ) + ER,vol(J). For this reason, it would be tempting to

choose a function ER(χ) similar to those of WR.

However, this would lead to a non-vanishing state of stress for F = H = I, J = 1, η = 0,

which is contrary to the definition of a stress-free reference configuration. In order to resolve

this problem, it is important that ER(χ) satisfies appropriate initial conditions at χI = {F =

I,H = I, J = 1}. In particular, the first Piola Kirchhoff stress tensor at reference state

vanishes, and therefore differentiating equation Eq. (3.34a) gives

∂ÊR
∂F

∣∣∣∣
χI

+
∂ÊR
∂H

∣∣∣∣
χI

I +
∂ÊR
∂J

∣∣∣∣
χI

I = 0;
dER,vol
dJ

∣∣∣∣
J=1

= θR
dηR
dJ

∣∣∣∣
J=1

= cvΓ0θR. (3.47)

The simplest convex function for ÊR(χ) and ER,vol(J) that satisfies the above conditions

Eq. (3.47) are

ÊR(χ) = ζJ−2/3I1 + ξJ−2I
3/2
2 − 3

(
ζ +
√

3ξ
)

(3.48)

and

ER,vol(J) =
κ

2
(J − 1)2 + cvΓ0θR(J − 1), (3.49)

respectively. By making use of equations Eq. (3.48), Eq. (3.49), Eq. (3.45) and Eq. (3.34a), the

first Piola Kirchhoff stress tensor becomes

P (χ, θ(χ, η)) = P̂ (χ) + pH. (3.50)

Here,

P̂ (χ) := ΣF +ΣH F + Σ̂JH; p = pR + cvΓ0

(
θR − θJq−1

)
, (3.51)

where ΣF , ΣH , ΣJ and pR are already presented in Eq. (3.11). It is worth pointing out that

the material parameters {ζ, ξ, κ} used above in general are not the same as those defined in

Section 3.2). However, in this Mie-Grüneisen model, the deviatoric mechanical response is

8 For the limiting case of q = 0, expression Eq. (3.45) becomes −ηR(J) = −cvΓ0 ln J .
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completely decoupled from thermal effects, which implies that ζ and ξ remains the same as

those presented in Section 3.2.

Finally, it is interesting to find the relationship between κ as in equation Eq. (3.51) and the

traditional κR defined as

κR =
d2UR
dJ2

∣∣∣∣
J=1

, (3.52)

that is the initial bulk modulus at constant temperature (i.e. the bulk modulus defined in the

mechanical models). To achieve this, particularising Eq. (3.42)b to the volumetric component

of the Helmholtz free energy potential gives

UR(J) = ER,vol(J)− θRηR(J). (3.53)

Simple double differentiation of Eq. (3.53) gives at J = 1 the following bulk moduli relationship

κR = κ+ cvθRΓ0(1− q). (3.54)

Notice that for the particular case of q = 1, then κ = κR.

Remark 5: It is worth to mention that in the case of gas dynamics where q = 0, only the

volumetric part of the stress will be taken into account and, therefore, the first Piola will

simply reduces to

P = pH; p = −Γ0E
J
. (3.55)

In the particular case of an ideal gas using Mie-Grüneisen EOS, and following Eq. (3.45),

pressure yields

p(J, θ) = −∆θ
dηR,vol

dJ
= −cvΓ0J

−1∆θ. (3.56)

3.3.1.2 Modified entropic elasticity

Another type of thermo-mechanical model is the so-called modified entropic elasticity model

in which the internal energy at the reference temperature, that is ER(χ), is assumed to be a

function of the volume ratio such that

ER (χ) ≈ ER,vol (J) . (3.57)

Specifically, and following the work of Chadwick and Creasy [79], an empirical expression for

the volumetric energy functional ER,vol(J) is

ER,vol(J) = 3θRακG(J); G(J) = γ−1(Jγ − 1), (3.58)
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where γ > 0 is a positive non-dimensional parameter and α represents the so-called linear

thermal expansion coefficient defined at the reference temperature. In this thesis, the value of

γ = 1 identical to that of presented in [79] by Ogden is used, which implies that

ER,vol(J) = 3θRακ(J − 1). (3.59)

In this case, by using equation Eq. (3.35), both the deviatoric and volumetric components of

Helmholtz’s free energy at the reference temperature are

ŴR (χ) = −θRη̂R (χ) ; UR(J) = ER,vol(J)− θRηR,vol(J), (3.60)

respectively. Re-arrangement of the above expressions for η̂R and ηR,vol yields

η̂R (χ) = − 1

θR
ŴR (χ) ; ηR,vol(J) =

1

θR
[ER,vol(J)− UR(J)] . (3.61)

Taking derivative of Eq. (3.61) with respect to χ, and, then, substituting into equation Eq. (3.40)

for P yields

P (χ, θ) =
θ

θR
P̂R + pH; p =

θ

θR
pR −

∆θ

θR

dER,vol

dJ
= pR −∆θ

dηR,vol

dJ
. (3.62)

available for total energy-based formulations. The first Piola relation for the case of entropy-

based system of equations can be simply obtained by replacing temperature as a function of

entropy (3.28). In addition, the temperature described in Eq. (3.42) reduces to

θ = θR +
1

cv

[
E − ρR

2
(v · v)− UR(J)− θRηR,vol(J)

]
. (3.63)

Remark 6: In strict entropic elasticity [81], the internal energy is entirely associated with the

generation of heat in the material. This can be mathematically described as ÊR (χ) = ER,vol = 0,

which implies that

P (χ, θ) =
θ

θR
PR (χ) ; PR (χ) = P̂R (χ) + pRH, (3.64)

and

θ = θR +
1

cv

[
E − ρR

2
(v · v)

]
. (3.65)

3.3.2 Linearised thermo-elasticity

In this thesis, for mesh convergence study purposes on the numerical schemes, defined in

Chapters 4 and 5, the linearised thermo-elastic material model is derived. This can also be

useful in the case of problems introducing infinitesimal strains. In order to linearise the general
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nonlinear Helmholtz’s free energy Eq. (3.37), directional derivative about a reference state

defined by {χ, θ} = {I, 1, θR} is carried out as follows

W (χ, θ) 'W lin(∆χ, ∆θ)

= W (I, 1, θR)︸ ︷︷ ︸
0

+DW (I, 1, θR) [∆χ, ∆θ] +
1

2
D2W (I, 1, θR)

[
∆χ, ∆θ

∆χ, ∆θ

]
,

(3.66)

Evaluating the derivatives appeared in Eq. (3.66), allows us to obtain the linearised Helmholtz’s

free energy as follows

W lin(∆χ, ∆θ) =
λ

2
(ε : I)2 + µ (ε : ε)− cv

2θR
(∆θ)2 − cvΓ0 (ε : I)∆θ, (3.67)

where ε = 1
2

(
F + F T − 2I

)
. Therefore, it is now convenient to derive the linear expression

for first Piola-Kirchhoff stress tensor by taking derivative of linearised Helmholtz’s free energy

with respect to their corresponding conjugate variables

P =
∂W lin

∂ε
= (λI ⊗ I + 2µI) : ε− cvΓ0 (θ − θR) I, (3.68)

where I is unit fourth order tensor. Alternatively, the first Piola can be re-expressed as a

function of the deformation gradient as

P = λ (F : I) I + µ
(
F + F T

)
− cvΓ0 (θ − θR) I − (3λ+ 2µ) I. (3.69)

Recalling Eq. (3.39), the linear expression for entropy can be computed as follows

η = −∂W
lin

∂θ
=
cv
θR

(θ − θR) + cvΓ0 (F : I − 3) . (3.70)

Having the first Piola and entropy, it is now possible to obtain temperature, according to the

chosen coupling procedure.

Remark 7: It is useful to note that the Mie-Grüneisen constant Γ0 can be related to the material

properties as [192]

Γ0 =
3κα

cv
, (3.71)

where κ stands for the bulk modulus, α is the thermal expansion coefficient and cv represents

the heat capacity of the material.

3.4 Hyperbolicity

As it is well known, the study of the eigenvalue structure of the (entropy-based) system (2.58)

is crucial in order to guarantee its hyperbolicity. In Reference [7], the authors verified the
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hyperbolic nature of the problem only for a Mie-Grüneisen equation of state. However, the

procedure presented in [7] requires the formation of flux Jacobian matrix ∂FN
∂U , whereby the

evaluation of this matrix sometimes can be quite challenging. It is interesting to show that

the use of tensor cross product allows for simple expressions for the resulting tangent operator

which neatly separates material from geometrical dependencies, and, finally, the satisfaction of

Legendre-Hadamard condition [193]. The same methodology is then extended to the case of a

modified entropic elasticity.

To achieve this, the eigenvalues (or wave speeds) of the entropy-based system (2.58) can be

determined by identifying possible plane wave solutions (in the absence of source terms) of the

type [3]

U = φ(X ·N − cαt)Uα = φ(X ·N − cαt)


ρRvα
Fα
Hα

Jα
ηα

 , (3.72)

where φ denotes a scalar real-valued function, cα is the wave speed corresponding to the eigen-

mode Uα and N is the direction of propagation. Substitution of the above expression into

Eq. (2.56) leads to a characteristic equation of the system given by

ANUα = cαUα; AN =
∂FN
∂U . (3.73)

However, above eigenvalue problem Eq. (3.73) unfortunately requires the explicit expression

for the (convective) flux Jacobian matrix AN . To avoid this, it is important to note that the

above equation can be re-written by utilising the definition of the directional derivative to give

DFN [Uα] = cαUα. (3.74)

Considering each individual component of this system (2.58) gives

−


D (PN) [Fα,Hα, Jα, ηα]

D (v ⊗N) [vα]

D (F (v ⊗N)) [vα,Fα]

D (H : (v ⊗N)) [vα,Hα]

0

 = cα


ρRvα
Fα
Hα

Jα
ηα

 . (3.75)
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For the case where cα 6= 0, the geometric equations {Fα,Hα, Jα}, as well as the entropy

equation ηα, of the system, result in

Fα = − 1

cα
vα ⊗N ; (3.76a)

Hα = − 1

cα
[Fα (v ⊗N) + F (vα ⊗N)] ; (3.76b)

Jα = − 1

cα
[Hα : (v ⊗N) +H : (vα ⊗N)] ; (3.76c)

ηα = 0. (3.76d)

Substitution Eq. (3.76a) into Eq. (3.76b) yields

Hα = − 1

cα

(vα ⊗N) (v ⊗N)︸ ︷︷ ︸
0

+F (vα ⊗N)

 = − 1

cα
F (vα ⊗N) . (3.77)

It is possible to demonstrate after some algebra that the first term on the right hand side of

Eq. (3.76c) is zero, yielding the reduced equation

Jα = − 1

cα
H : (vα ⊗N) . (3.78)

Substitution Eq. (3.76a), Eq. (3.77) and Eq. (3.78) into Eq. (3.75) results in

ρRc
2
αvα = D (PN) [vα ⊗N ,F (vα ⊗N) ,H : (vα ⊗N) , 0] . (3.79)

For convenience, the above expression can also be pre-multiplied by a generic virtual velocity

field δv to give

ρRc
2
αδv · vα = (δv ⊗N) : DP [vα ⊗N ,F (vα ⊗N) ,H : (vα ⊗N) , 0] (3.80a)

= (δv ⊗N) : D

(
∂E
∂F

+
∂E
∂H

F +
∂E
∂J
H

)
[vα ⊗N ,F (vα ⊗N) ,H : (vα ⊗N) , 0]

(3.80b)

=


(δv ⊗N) :

F (δv ⊗N) :

H : (δv ⊗N)

0


T

[He]


: (vα ⊗N)

: F (vα ⊗N)

H : (vα ⊗N)

0


︸ ︷︷ ︸

Constitutive term

(3.80c)

+

(
∂E
∂H

+
∂E
∂J
F

)
: [(δv ⊗N) (vα ⊗N)]︸ ︷︷ ︸

Geometric term becomes 0

.
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Taking δv = vα leads to the well-known Legendre-Hadamard condition, but this time written

as

ρRc
2
α =


(vα ⊗N) :

F (vα ⊗N) :

H : (vα ⊗N)

0


T

[He]


: (vα ⊗N)

: F (vα ⊗N)

H : (vα ⊗N)

0

 > 0. (3.81)

Notice that the eigenstructure of the system only depends on [He], which contains full infor-

mation about the physics of the problem.

Remark 8: With the help of equation (3.80c), it is interesting to show that the fourth order

elasticity tensor C is additively decomposed into a material contribution Cm (depending upon

second derivatives of e) and a geometrical contribution Cg, namely, C = Cm + Cg, with

Cm = EFF + F EHH F + EJJH ⊗H + EFH F + F EHF + EFJ ⊗H (3.82a)

+H ⊗ EJF + F EHJ ⊗H +H ⊗ EJH F ;

Cg = I
(
∂E
∂H

+
∂E
∂J
F

)
,

where [I]iIjJ = δijδIJ . Utilising the Legendre-Hadamard condition expressed in Eq. (3.81) can

be alternatively represented as

ρRc
2
α = (vα ⊗N) : C : (vα ⊗N) = (vα ⊗N) : Cm : (vα ⊗N) = vα · (CNNvα) , (3.83)

where the acoustic tensor CNN being defined as

[CNN ]ij = [Cm]iIjJ NINJ . (3.84)

Instead of deriving a close form solution for the expression above Eq. (3.83), it is sufficient to

obtain bounds of the wave speeds by assuming N is a principal direction. In this particular

case, the first two eigenvalues correspond to pressure waves are obtained by taking vα = n,

where n is a unit vector orthogonal to the vectors FT1,2 = t1,2 lie on the propagation surface.

Similarly, the next four eigenvalues correspond to shear waves by taking vα = t1,2.

In order to obtain the Hessian [He] for both models presented in this work, we can use the

entropy as the thermal variable to allow the convex entropy function of the hyperbolic set of

equations to be chosen as the convex energy function S [191]

S(χ, η) =
ρR
2
v · v + E (χ, η)− θRη, (3.85)
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which gives conjugate entropy variables as

V =
∂S

∂U =



∂S
∂(ρRv)
∂S
∂F
∂S
∂H
∂S
∂J
∂S
∂η

 =


v

ΣF
ΣH
ΣJ
∆θ

 . (3.86)

The Hessian operator [HS ] associated with the convex entropy function S is obtained as

[HS ] =
∂V
∂U =

∂S

∂U∂U =


1
ρR
I 0

0 [HE ]

 =



1
ρR
I 0

∂2E
∂F ∂F

∂2E
∂F ∂H

∂2E
∂F ∂J

∂2E
∂F ∂η

0 ∂2E
∂H∂F

∂2E
∂H∂H

∂2E
∂H∂J

∂2E
∂H∂η

∂2E
∂J∂F

∂2E
∂J∂H

∂2E
∂J∂J

∂2E
∂J∂η

∂2E
∂η∂F

∂2E
∂η∂H

∂2E
∂η∂J

∂2E
∂η∂η


. (3.87)

Mie Grüneisen model

The Hessian operator [HE ] for the Mie Grüneisen model reads as follows [191]

[HE ] =


EFF 0 EFJ 0

0 EHH EHJ 0

EJF EJH EJJ EJη
0 0 EηJ Eηη

 , (3.88)

where the components are

EJ,η = EηJ = −Γ0J
q−1θ; Eηη =

θ

cv
; EJJ = γR + κ+ E∆TJJ + θcvΓ0J

q−2 [Γ0J
q + (1− q)] ,

(3.89)

and EFF = WFF , EHH = WHH , EFJ = EJF = WJF and EHJ = EJH = WJH . These

components are defined as [191]

WFF = 2ζRJ
−2/3I; WHH = 3ξRJ

−2II
1/2
H

[
II−1
H H ⊗H + I

]
; WJJ = γR + κ, (3.90a)

WFJ = WJF = −4ζR
3
J−5/3F ; WHJ = WJH = −6ξRJ

−3II
1/2
H H, (3.90b)

with

γR =
10ζR

9
J−8/3IIF + 6ξRJ

−4II
3/2
H . (3.91)

Modified entropic elasticity
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In the case of modified entropic elasticity, the Hessian operator [HS ] yields [191]

[HE ] =


EFF EFH EFJ EF η
EHF EHH EHJ EHη

EJF EJH EJJ EJη
EηF EηH EηJ Eηη

 , (3.92)

where

EFF =
θ

θR

[
2αI +

4α2
R

cvθR
F ⊗ F

]
; EHH =

θ

θR

[
2βRI +

4β2
R

cvθR
H ⊗H

]
; (3.93a)

EJJ =
θ

θR

[
f ′′ +

1

cvθR
(f ′ − κ̂R)2

]
; EFH =

θ

θR

4αβR
cvθR

F ⊗H; EHF =
θ

θR

4αβR
cvθR

H ⊗ F ;

(3.93b)

EFJ = EJF =
θ

θR

2α

cvθR

(
f ′ − κ̂R

)
F ; EHJ = EJH =

θ

θR

2βR
cvθR

(
f ′ − κ̂R

)
H; (3.93c)

EF η = EηF =
θ

cvθR
2αF ; EHη = EηH =

θ

cvθR
2βRH; EJη = EηJ =

θ

cvθR

(
f ′ − κ̂R

)
;

(3.93d)

Eηη =
θ

cv
. (3.93e)

The positive definite Hessian operators, obtained for both models, can ensure the existence of

real wave speeds (and, hence,material stability) for all values of {χ, η}, that is regardless of the

amount of deformation and thermal state9.

3.5 Conclusion

In this chapter, a set of constitutive models have been presented aimed at describing the non-

linear material behaviour in the context of large strain fast solid dynamics. To close the system

of equations introduced in Chapter 2, purely mechanical and thermo-mechanical constitutive

models have been presented by which the principle of objectivity and thermodynamical con-

sistency are satisfied. To this end, the hyperbolicity of the presented first-order conservation

laws is proved for the particular case of the employed constitutive models.

9 This is an extension of the usual polyconvexity condition for non-thermal processes where the energy is
required to be convex on the extended set of deformation variables χ and and the entropy density η.
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Chapter 4
Spatial discretisation: Finite
Volume Method

4.1 Introduction

Thus far, the conservation laws governing the motion of a continuum are presented in chapter

2 and for the closure of the system of equations, appropriate constitutive models (discussed

in chapter 3), initial and boundary conditions are provided. In the following chapter, the

governing equations are spatially discretised using a Vertex-Centred Finite Volume Method

(VCFVM). The nature of the numerical scheme is discussed in Section 4.2 and, therefore, the

discretised formulations are presented in Section 4.3. The contact flux approximations are then

introduced in Section 4.3.2, through the application of an acoustic Riemann solver. To this end,

the local entropy production of the VCFVM scheme is examined in Section 4.4. The schematic

representation of the layout of this chapter is depicted in Figure 4.1.

4.2 Finite Volume Method

The main idea for the Finite Volume Method (FVM) is initially introduced by the fundamental

works of Godunov [194] and Preissmann [195] in the 1960s. The method is then officially intro-

duced by McDonald [196], and MacCormack and Paullay [197] into the field of Computational

Fluid Dynamics (CFD) and later extended to three-dimensional cases in [198]. They used the

method to approximate the hyperbolic conservation laws corresponding to the Euler equations

of gas dynamics. Nowadays, FVM is not only the most widely spread numerical methodology

implemented in (open-source, commercial and industrial) CFD solvers, but it has also attracted

a great interest of solid mechanics community [71, 199].

Basically, FVM splits a physical domain into a number of sub-domains known as control vol-

umes/cells (visualised in Figure 4.2) in which the value of a conservative quantity is stored at

the centre of the control volume. This is also known as cell averaged quantity U i meaning the

55
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Figure 4.1: Structure of Chapter 4
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(a) Continuum (b) Sub-domains Ωk(Ω1 ∪ ... ∪Ω8 = Ω)

Figure 4.2: A physical domain divided into control volumes

total integral of the conserved quantity over each cell, expressed as

U i =
1

Ωi
R

∫
ΩiR

U dΩR. (4.1)

Recalling the general form of a conservation law Eq. (2.55), the cell averages will then advance

in time based upon the update of the flux vectors FN through the boundary of the control

volume
dU i
dt

= − 1

Ωi
R

∫
∂ΩiR

FN dA. (4.2)

Evaluating those flux vectors through an appropriate approximation has always been considered

as a significant numerical challenge in the context of finite volume methodology. The derivation

of numerical flux vectors corresponding to the current study is discussed in Section 4.3.2.

4.2.1 Riemann problem

A (Godunov-type) finite volume methodology can genuinely introduce a Riemann problem

which is defined by a conservation equation together with piecewise constant initial data, in-

troducing a single discontinuity into the domain of interest. Naturally, discontinuity of the

conservation variables across control volume interfaces leads to a Riemann problem, whose ap-

proximated solution can be derived by means of a Riemann solution [11]. Figure 4.3 illustrates

the discontinuous solution at the interface of each control volume for a one-dimensional prob-

lem. In addition, it must be noted that the flux entering into a control volume is identical to

that leaving the adjacent control volume and that is known as the conservation property of the

finite volume method. This property is of paramount importance when dealing with solution

discontinuities and shock dominated scenarios [200].
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Figure 4.3: One-dimensional Godunov type Finite Volume Method: Riemann problem at the
interfaces

4.2.2 Computational domain

The computational domain in the finite volume method is tessellated into a set of non-overlapping

control volumes that entirely cover the domain. The two very well-known control volume tessel-

lations are Cell-Centred Finite Volume Method (CCFVM) and Vertex-Centred Finite Volume

Method (VCFVM), among several variations of the original FVM (e.g. staggered, periodic

heterogeneous microstructural, matrix-free, meshless). In the case of the CCFVM, the con-

trol volumes are identical to the computational mesh with the conservative quantities stored

at their centres; whereas the VCFVM stores the conservative quantities at the computational

mesh vertices and the control volumes are constructed by median dual approach. This ap-

proach connects edge midpoints with element centroids in two dimensions and edge midpoints

with face centroids and element centroids in three dimensions [118, 199] and that ensures non-

overlapping control volumes. These constructed cells (based on the computational grid) at

the VCFVM is also known as dual control volumes. Figure 4.4 illustrates the computational

stencil for the CCFVM and the VCFVM schemes such that a representative prism with four

tetrahedral elements is selected through which a cell-centred control volume (or a tetrahedral

element) and a vertex-centred dual control volume are depicted. For intuitive purposes, the

two-dimensional stencil for CCFVM and VCFVM is also shown where it is evident how the

number of control volumes in the VCFVM stencil, in particular case of triangular elements, is

less than the case of the CCFVM. However each control volume in CCFVM has more edges

than in CCFVM. Roughly speaking, there is a transfer of the location of the computational cost

between CCFVM and VCFVM which is still a matter of debate between both communities.It

must be also noted that the FVM is well-suited to structured and unstructured meshes and

this feature makes the method quite suitable for representing complex geometries [8, 113, 118].

In this thesis, Vertex-Centred Finite Volume Method is considered as one of the employed

spatial discretisation methods and will be explored in the following sections.
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(a) CCFVM (b) VCFVM

Figure 4.4: The schematic definition of control volume in two and three dimensions for (a) Cell-
Centred Finite Volume Method (CCFVM) and (b) Vertex-Centred Finite Volume Method (VCFVM)
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4.2.3 Edge-based VCFVM

As it is mentioned earlier, the cell averaged value within a control volume will be updated by

the flux vectors (FN ) passing through the surface of the control volume (known as control

surface). The direction of those flux vectors will be defined by area vectors associated with

each control surface (facet). Using VCFVM, one classical approach is to loop over all the facets

associated with a dual control volume in order to compute the area vector as

Ca =
∑
k∈Γa

AkNk, (4.3)

where Γa is the set of facets associated with the dual control volume a, Ak is the area of a

given facet k and Nk denotes its outward unit normal vector (see Figure 4.5a). In this case,

the integral form of a conservation law Eq. (2.55) over an undeformed control volume Ωa
R can

be discretised as follows

Ωa
R

dUa
dt

= −

∑
b∈Λa

∑
k∈Γab

FCNk
Ak +

∑
γ∈ΛBa

FγaCγ
+Ωa

RSa, (4.4)

with FCNk
denoting the contact flux vectors, as yet to be defined in Section 4.3.2, and where

b ∈ Λa denotes the set of neighbouring control volumes associated with the dual control vol-

ume Ωa
R. Notice that the classical approach Eq. (4.4) clearly shows a substantial increase in

computational cost due to an extra loop over the facets of the dual control volume Ωa
R.

An alternative way for evaluation of the area vectors is an edge-based approach [199, 201] which

results in a more efficient stencil. In this approach, node a denoting the centre of dual control

volume Ωa is connected to a set of neighbouring interior nodes b or boundary nodes B through

edges. For a given edge connecting nodes a and b, the area vector is defined as

Cab =
∑

k ∈ Γab︸ ︷︷ ︸
Edges

AkNk, (4.5)

where Γab stands for the set of facets associated with the edge ab, Ak denotes the area of a

given facet k and Nk is its outward unit normal vector. The contribution of the boundary

faces ΓBa associated with a boundary edge (aB) should also be taken into account. It must be

noted that due to the definition of the dual mesh, the area vectors satisfy Cab = −Cba. The

main assumption of the edge-based approach indicates that the integral of the flux over facets

associated with an edge is approximated by assuming the flux to be constant over the facets and

equal to its computed value at the midpoint of the edge. In fact, the outward normal vector

associated with an edge (Nk) is the mean approximation of two outward normals (N1 and

N2) associated to the two facets through which the edge is crossed (see Figure 4.5b). It must

be noted that this assumption will not affect the order of convergence [118]. Consequently,

using the area vectors Cab (rather than Ca) can substantially reduce the computational cost

when computing the approximated boundary integral presented in Eq. (4.2). In this thesis, the

edge-based approach will be utilised through VCFVM approximation.
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(a) (b)

Figure 4.5: Area vector approximation in VCFVM using (a) classical and (b) edge-based approaches

4.3 Total Lagrangian VCFVM discretisation

In general, the integral form of a conservation law Eq. (2.55) over an undeformed control volume

Ωa
R can be spatially discretised using VCFVM as

Ωa
R

dUa
dt

= −

∑
b∈Λa

FCNab
‖Cab‖+

∑
γ∈ΓBa

FγaCγ

+Ωa
RSaR, (4.6)

where Ua is the cell averaged conservative quantity within the dual control volume Ωa
R and

Sa denotes the source term. The term presented in the big parenthesis in Eq. (4.6) is the

approximation for the flux vector FN defined in Eq. (2.58) and consists of two terms. The first

term evaluates the contact flux FC , yet to be defined in Section 4.3.2, by summing over all the

edges through which the center of dual control volume Ωa is connected to its neighbours Ωb
(see Figure 4.5b). The second term computes the fluxes Fγa by summing over all the boundary

faces associated with the dual control volume Ωa. Luo et al. [202] proposed to evaluate the

boundary fluxes through a weighted average stencil in two and three dimensions such that

(2D)Fγa =
5Fa +F b

6
; (3D)Fγa =

6Fa +F b +F c
8

, (4.7)

wherein the three-dimensional case, a and b and c represents the three nodes of a triangular

face. It must be reminded that a is also the centre of the dual control volume located on

the physical boundary (see Figure 4.6). In addition, the (tributary) boundary area vector is

approximated as Cγ = AγNγ

3 [11, 118].



Chapter 4. Spatial discretisation: Finite Volume Method 62

(a) (b)

Figure 4.6: VCFVM approximation for the boundary contribution of the flux vectors represented
in (a) two and (b) three dimensions

It is now possible to spatially discretise the system of conservation laws Eq. (2.58) using the

edge-based VCFVM and the application of the Green-Gauss divergence theorem

Ωa
R

dpa
dt

=
∑
b∈Λa

tC‖Cab‖+
∑
γ∈ΓBa

tγa‖Cγ‖+Ωa
Rf

a
R;

Ωa
R

dFa
dt

=
∑
b∈Λa

1

ρR
pC ⊗Cab +

∑
γ∈ΓBa

1

ρR
pγa ⊗Cγ ;

Ωa
R

dHa

dt
=
∑
b∈Λa

FAve
ab

(
1

ρR
pC ⊗Cab

)
+
∑
γ∈ΓBa

F γ
a

(
1

ρR
pγa ⊗Cγ

)
;

Ωa
R

dJa
dt

=
∑
b∈Λa

1

ρR
pC ·

(
HAve
ab Cab

)
+
∑
γ∈ΓBa

1

ρR
pγa · (Hγ

aC
γ) ;

Ωa
R

dEa
dt

=
∑
b∈Λa

(
1

ρR

(
pC · tC

)
‖Cab‖ −QC ·Cab

)

+
∑
γ∈ΓBa

(
1

ρR
tγa · pγa‖Cab‖ −Qγ

a ·Cγ

)
+Ωa

Rf
a
R ·
pa
ρR

+Ωa
Rs

a
R,

(4.8a)

(4.8b)

(4.8c)

(4.8d)

(4.8e)

where the averaged values are defined as [·]Ave
ab := 1

2 ([·]a + [·]b) and {tC ,pC ,QC} are the contact

traction, contact linear momentum and contact heat flux, respectively, as yet to be defined in

Section 4.3.2. In the case of entropy-based formulations where the equation of entropy evolution

replaces the conservation of total energy, the semi-discrete set of {p,F ,H, J} equations, as

described in Eq. (4.8a)-Eq. (4.8d), remains exactly the same, whilst the entropy equation can
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be spatially discretised as

Ωa
Rθa

dηa
dt

= −
∑
b∈Λa

(
QC ·Cab

)
−
∑
γ∈ΓBa

(Qγ
a ·Cγ) +Ωa

Rs
a
R. (4.9)

In addition, the spatial (deformed) geometry can be updated through the discrete nodal linear

momentum field as
dxa
dt

=
pa
ρR
. (4.10)

Note that in this thesis, the geometry update is only required for post-processing purposes.

4.3.1 Compatibility conditions

Crucially, the evolution of the fibre map F and area map H must be advanced in time satisfy-

ing a set of compatibility conditions Eq. (2.23) and Eq. (2.28). In discrete level, these intrinsic

constraints must ensure that F and H evolve in time through a material discrete gradient

of a continuous velocity field [18]. To achieve this, a central difference approximation is em-

ployed for discretisation of the contact linear momentum pC = 1
2 (pa + pb) in Eq. (4.8b) and

Eq. (4.8c). It has been proven that a central difference approximation in VCFVM is equivalent

to a linear Bubnov-Galerkin Finite Element Method and that guarantees the enforcement of

the involutions [7, 8]. Hence, the complete semi-discrete form of fibre map (2.21) and area map

(2.29) equations can now be expressed as

Ωa
R

dFa
dt

=
∑
b∈Λa

1

2ρR
(pa + pb)⊗Cab +

∑
γ∈ΓBa

1

ρR
(pγa ⊗Nγ)

Aγ

3
; (4.11a)

Ωa
R

dHa

dt
= Fa

∑
b∈Λa

1

2ρR
(pa + pb)⊗Cab +

∑
γ∈ΓBa

1

ρR
(pγa ⊗Nγ)

Aγ

3

 . (4.11b)

4.3.2 Contact fluxes approximation

From the viewpoint of Vertex-Centred Finite Volume Method (VCFVM) as one of the employed

spatial discretisation in this thesis, discontinuity of the conservation variables across (dual)

control volume interfaces crucially leads to a Riemann problem. That problem, therefore,

requires to be approximately solved through the use of a (nonlinear) Riemann solver. There

are several approaches to evaluate the approximated contact fluxes {t,p,Q}C presented in

Eq. (4.8) [200]. Classically, The flux vector along the direction of outward unit normal vector

N can be written as [11, 199]

FCN =
1

2

[
FN (U−) +FN (U+)

]
︸ ︷︷ ︸

Unstable flux

− 1

2

∫ U+

U−
|AN | dU︸ ︷︷ ︸

Upwinding stabilisation

; AN =
∂FN
∂U , (4.12)
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(a) (b)

Figure 4.7: Representative solution of a Riemann problem: (a) possible wave patterns; and (b)
structure of the solution

with AN denoting the flux Jacobian matrix to the system of conservation laws and U−,+ are

representing the linearly reconstructed left and right states conservative variables (see Section

4.3.3), defining the limit of the above integral along an arbitrary pass. The unstable flux

term is simply a central difference approximation between the left and right states, similar

to the Bubnov-Galerkin term in Finite Element Method, which suffers from severe numerical

instabilities [45, 155, 161]. Therefore, the upwinding stabilisation has played the significant role

of damping the instabilities and to achieve this, an Eigen structure analysis (as it is already

performed in Ref. [6]) is required.

4.3.2.1 Acoustic Riemann solver

Riemann solver is a numerical technique to solve Riemann problems. It is the most used and

developed in the context of Computational Fluid Dynamics (CFD) for solving time-dependent

hyperbolic Partial Differential Equations (PDEs). In fact, the solution structure of a Riemann

problem, for hyperbolic conservation laws in particular, strongly depends on the wave propa-

gation pattern of the solution. In general, three types of waves possibly appear at a contact

interface, namely, (1) shock wave, (2) contact discontinuity, and/or (3) rarefaction (smooth

transition) wave (see Figure 4.7a). The problem solution is evident at the left (UL) and right

(UR) states of a wave pattern and the challenge remains at how to obtain the solution at the

star region (see Figure 4.7b) distinguished by the waves [11, 200]. To achieve this, the two

types of exact or approximated Riemann solver can be employed. The formers, initiated by

the work of Godunov [194], is fundamentally useful to provide an invaluable insight into the

physical sense of the Riemann problem and can be considered as an excellent reference solution

to better develop the approximated Riemann solvers. However, its design strongly depends on

the variables selected (conservative or primitive), the (number of) equations and the technique

for the iterative procedure, to name a few [200]. These restrictions, therefore, entails that the

exact Riemann solver is not effectively applied in some cases where the use of non-iterative

approximated Riemann solvers could be an advantageous alternative.
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Considering an acoustic Riemann solver, Eq. (4.12) reduces to

FCN = FAve
N +FStab

N =
1

2

[
FN (U+) +FN (U−)

]
︸ ︷︷ ︸

Unstable flux

− 1

2
|AN |

(
U+ − U−

)
︸ ︷︷ ︸

Upwinding stabilisation(DU )

, (4.13)

with a further assumption of [200]

FN (U+,−) = F+,−
N . (4.14)

Following Ref. [6, 7], the explicit expression of the absolute value of the flux Jacobian matrix

|AN | =
∣∣∣∂FN∂U

∣∣∣ (see Ref. [6], Section 4.3.1, Eq. (32)) has to be utilised. Thus, the application

of Rankine-Hugoniot jump condition for the linear momentum conservation law yields

cp (n⊗ n) Jp K = −(n⊗ n) Jt K; (4.15a)

cs (I − n⊗ n) Jp K = −(I − n⊗ n) Jt K, (4.15b)

where (n ⊗ n) and (I − n ⊗ n) are the normal and tangential projection tensors and with

n denoting the outward unit normal vector across the interface of the deformed configuration

defined as

n =
HN

‖HN‖
. (4.16)

Eq. (4.15a) can be decomposed into the left and right states as

c−p (n⊗ n)
(
p− − pC

)
= (n⊗ n)

(
t− − tC

)
; (4.17a)

c+
p (n⊗ n)

(
p+ − pC

)
= −(n⊗ n)

(
t+ − tC

)
. (4.17b)

where the [·]− and [·]+ are denoting the linearly reconstructed values at the left and right states

of a contact interface, respectively. This can also be done for Eq. (4.15b) in a similar manner.

Thus, and after some simple algebraic manipulations, the contact flux vectors {p, t}C yield

tC = (n⊗ n)

[
c+
p t
− + c−p t

+

c−p + c+
p

+
c−p c

+
p (p+ − p−)

c−p + c+
p

]
+ (I − n⊗ n)

[
c+
s t
− + c−s t

+

c−s + c+
s

+
c−s c

+
s (p+ − p−)

c−s + c+
s

]
;

(4.18a)

pC = (n⊗ n)

[
c−p p

− + c+
p p

+

c−p + c+
p

+
t+ − t−

c−p + c+
p

]
+ (I − n⊗ n)

[
c−s p

− + c+
s p

+

c−s + c+
s

+
t+ − t−

c−s + c+
s

]
,

(4.18b)

with cp and cs representing the pressure and shear wave speeds.

It is worth noting that for the case of a homogeneous linear elastic material model, we have cp =

c+
p = c−p and cs = c+

s = c−s . As a result, and following the structure of contact flux presented in

Eq. (4.13), the contact linear momentum and contact traction presented in Eq. (4.18) reduce
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to

tC =
1

2

(
t+ + t−

)
+

1

2
[cp(n⊗ n) + cs(I − n⊗ n)]

(
p+ − p−

)
;

pC =
1

2

(
p+ + p−

)
+

1

2

[
1

cp
(n⊗ n) +

1

cs
(I − n⊗ n)

] (
t+ − t−

)
,

(4.19a)

(4.19b)

where cp and cs represent the elastic pressure and shear wave speeds, respectively

cp =

√
λ+ 2µ

ρR
; cs =

√
µ

ρR
. (4.20)

Having obtained the contact fluxes in Eq. (4.19), it is now possible to define the upwinding

stabilisation terms DU
ab. This is carried out by following the structure of Eq. (4.13) where we

have an averaged term named unstable flux and an upwinding stabilisation term. The latter

can be expressed, considering the corresponding flux of each conservation law (see Eq. (4.8)),

as

Dpab = tStab
ab = P Stab

ab Cab;

DJab = vStab
ab ·

(
HAve
ab Cab

)
;

DEab =
(
tStab
ab · vAve

ab + tAve
ab · vStab

ab

)
‖Cab‖,

(4.21a)

(4.21b)

(4.21c)

with the stabilised contact fluxes

P Stab
ab := Spab [(vb − va)⊗Nab] ; vStab

ab := SJab

[(
Σb
J −Σa

J

)
HAve
ab Nab

]
, (4.22)

where ΣJ is defined in Eq. (3.11c) and with positive definite stabilisation matrices {Spab,S
J
ab},

defined as

Spab =
ρR
2

[cpnab ⊗ nab + cs (I − nab ⊗ nab)] ; SJab =
1

2ρR

[
1

cp
nab ⊗ nab +

1

cs
(I − nab ⊗ nab)

]
.

(4.23)

Notice here that the stabilisation terms for deformation gradient and area map equations are

defined DFab = 0 and DHab = 0, as the necessary requirement for satisfying the involutions.

Additionally, the contact heat flux at the total energy conservation law is considered with no

stabilisation (i.e. QC
ab = QAve

ab ) since it naturally introduces a diffusive behaviour.

4.3.3 Linear reconstruction and slope limiter

In the classical Godunov’s type FVM [194], a piecewise constant approximation is considered

for conservative quantities U within each dual control volume. This results in a first order ac-

curate solution for the semi-discrete system of equations (4.6). This will introduce an excessive

numerical viscosity (due to its diffusive nature) and, therefore, smeared results with poor ac-

curacy, especially in the presence of sharp gradients [11, 199, 200]. To rectify this shortcoming
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Figure 4.8: One-dimensional solution representing a piecewise linear reconstruction

and following the work of [6, 7], a conservative linear reconstruction procedure is employed here

in order to obtain second order accurate solution in space (see Figure 4.8). To do so, a linear

field is assumed for the conservative quantity Ua within an arbitrary dual control volume Ωa

Ua(X) = Ua +Ga · (X −Xa) , (4.24)

where X belongs to any position of the dual control volume Ωa, Xa is its centroid position

and Ga is the gradient operator.

Gradient operator

The local gradient operator Ga can be obtained using a least squares minimisation process

[6, 18]. To do so, an objective functional Π with the unknowns Ua and Ga is defined as

Π(Ua,Ga) =
∑
b∈Λba

Ub − (Ua +Ga ·∆X)︸ ︷︷ ︸
∆U

2

; ∆X = Xb −Xa, (4.25)

where Ub is the centroid value of the neighbouring cells Ωb (with positions Xb) to the cell Ωa

and ∆U stands for the difference between the Ub and the value obtained by linear extrapolation

of Ua from cell a to b.

The directional derivative of the functional Π with respect to Ua and Ga reads

DΠ[δ Ua] =
∑
b∈Λba

−2 [Ub − (Ua +Ga ·∆X)] δ Ua = 0; (4.26a)

DΠ[δGa] =
∑
b∈Λba

−2 [Ub − (Ua +Ga ·∆X)] (∆X · δGa) = 0, (4.26b)
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in which considering arbitrary values for δ Ua and δGa, yields∑
b∈Λba

Ua +
∑
b∈Λba

∆X ·Ga =
∑
b∈Λba

Ub; (4.27a)

Ua
∑
b∈Λba

∆X +
∑
b∈Λba

(∆X ⊗∆X)Ga =
∑
b∈Λba

Ub∆X. (4.27b)

Eq. (4.27) is now a system of equations that can be solved for the unknowns Ua and Ga

representing as 
nb

[ ∑
b∈Λba

∆X

]T
∑
b∈Λba

∆X
∑
b∈Λba

(∆X ⊗∆X)


Ua
Ga

 =


∑
b∈Λba
Ub

∑
b∈Λba
Ub∆X

 . (4.28)

The case of which the positionXa is the centre of gravity (barycentre) of neighbouring positions

Xb leads to

Xcg = Xa =
1

b

∑
b∈Λba

Xb;
∑
b∈Λba

∆X = 0. (4.29)

Consequently, the solution of the system of equations (4.28) is obtained as follows

Ua =
1

b

∑
b∈Λba

Ub; Ga =

∑
b∈Λba

∆X ⊗∆X

−1 ∑
b∈Λba

Ub∆X. (4.30)

Remark 9: Alternatively, in the case of Ua being a known quantity, the objective functional Π

depends only on Ga as

Π(Ga) =
∑
b∈Λba

[Ub − (Ua +Ga ·∆X)]2 . (4.31)

Minimisation of this functional leads to the following expression for the gradient operator

Ga =

∑
b∈Λba

∆X ⊗∆X

−1 ∑
b∈Λba

(Ub − Ua) ∆X, (4.32)

which is identical to Eq. (4.30) when
∑
b∈Λba

∆X = 0 [6, 18, 118].
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Having the gradient operator at (4.30) or (4.32), it is now possible to obtain the reconstructed

solution Uaβ at the flux integration point β associated with the cell Ωa as

Uaβ = Ua +Ga · (Xβ −Xa). (4.33)

It must be noticed that the linear reconstruction procedure is conservative if and only if the

gradient is obtained at the cell centroid location Xa. However, this procedure, unfortunately,

violates the principle of monotonicity and, therefore, an appropriate slope limiter is required

in order to avoid spurious oscillations (wiggles) in the vicinity of sharp gradients.

Slope limiter

The employed linear reconstruction presented in Section 4.3.3 allows for constructing a high

order (second order) scheme. However, it is well known that these schemes show an oscillatory

behaviour in the vicinity of sharp (high) gradients [11, 200]. Hence, slope limiters are employed

in order to ensure robustness and preserve mesh symmetries which are on the basis of classical

slope limiters [203] for scalar fields and frame-invariant limiters for vector fields [204]. In

addition, these limiters guarantees monotonicity preserving numerical scheme fulfilling a set of

conditions, namely, (1) local extrema must not be created during the time evolution; and (2)

an existing local minimum must be non-decreasing and a local maximum non-increasing [183].

In this thesis, a priori component by component limiting procedure is adapted for vectors and

tensors since the definition of extrema is unclear for these fields. Hence, the local slope limiter

at flux integration point β reads [205]

Uaβ = Ua + φaGa · (Xβ −Xa). (4.34)

It is worth noting that the lack of mesh symmetry when employing component-by-component

velocity limiting has led to the development of frame-invariant tensorial limiting for vector fields

[204, 206]. An alternative proposed procedure is to limit the vector fields using convex hull

methodology [207, 208]. In the event that a reconstructed vector lies within the convex hull of a

neighbouring vector, it is shown that monotonicity is satisfied in all directions. This procedure

has been successfully tested in two dimensions, however, its extension to three-dimensional

scenarios is quite complex [206].

In this study, the conventional Barth and Jespersen limiter [209], described by Algorithm 4.1,

is used in order to obtain a monotonic solution.

4.4 Coleman-Noll procedure

In this section, we present a procedure to obtain consistent and locally conservative stabilisation

terms by utilising the concept of the rate of entropy production [16], which can be understood

as a discrete version of the classical Coleman-Noll procedure. We first start by multiplying the
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Algorithm 4.1: Barth and Jespersen slope limiter

Input : Ua, Ub
Output: φa

(1) Compute minimum and maximum values:

Umin
a = min

b∈Λba
(Ua,Ub); Umax

a = max
b∈Λba

(Ua,Ub).

(2) Compute an unlimited reconstruction at the flux integration point β:

Uaβ = Ua +Ga · (Xβ −Xa); ∀β ∈ Λβa .

(3) Obtain a maximum allowable value of φaβ at each flux integration point:

φaβ =


min

(
1, U

max
a −Ua
Uaβ−Ua

)
, if Uaβ − Ua > 0;

min
(

1, U
min
a −Ua
Uaβ−Ua

)
, if Uaβ − Ua < 0;

1, if Uaβ − Ua = 0.

(4) Select the limiter associated with the cell:

φa = min
β∈Λβa

(φaβ).

complete set of {pa,Fa,Ha, Ja} semi-discrete equations (expressed in Eq. (4.8a)-Eq. (4.8d)) by

their dual conjugate variables {va,Σa
F ,Σ

a
H , Σ

a
J}, subtracting them from Eq. (4.8e) and adding

over all nodes a of the computational mesh, gives, after some simple algebra,

Ḋp(t) :=
∑
a

Ωa
R

[
dEa
dt
− pa
ρR
· dpa
dt
−Σa

F :
dFa
dt
−Σa

H :
dHa

dt
−Σa

J

dJa
dt

]
(4.35a)

=
∑
a

∑
b∈Λa

[(
PAve
ab Cab

)
·
pAve
ab

ρR
−
(
PAve
ab Cab

)
· pa
ρR
− Pa :

(
pAve
ab

ρR
⊗Cab

)]
−
∑
a

∑
b∈Λba

(
QAve
ab · Cab

)
+
∑
a

Ωa
Rs

a
R −

∑
a

∑
b∈Λa

(
pa
ρR
·Dpab +Σa

JDJab −DEab
)

(4.35b)

=
∑
a

1

2ρR

∑
b∈Λa

(
PAve
ab Cab

)
· (pb − pa)−

∑
b∈Λa

(PaCab) · (pa + pb)


−
∑
a

∑
b∈Λba

(
QAve
ab · Cab

)
+
∑
a

Ωa
Rs

a
R −

∑
a

∑
b∈Λa

(
pa
ρR
·Dpab +Σa

JDJab −DEab
)
, (4.35c)

with Ḋp(t) defined as the time rate of numerical entropy (diffusion), Pa = Σa
F+Σa

H Fa+Σa
JHa

and the upwinding stabilisation terms are already introduced in Eq. (4.21). Since
∑

b∈Λa Cab =

0, we could then add the redundant term 1
ρR

∑
b∈Λa (PaCab) ·pa−

∑
b∈ΛaQa ·Cab to the above
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expression, yielding

Ḋp(t) =
∑
a

1

2ρR

∑
b∈Λa

(
PAve
ab Cab

)
· (pb − pa)−

∑
b∈Λa

(PaCab) · (pa + pb) +
∑
b∈Λa

2 (PaCab) · pa


+
∑
a

Ωa
Rs

a
R −

∑
a

∑
b∈Λa

(
QAve
ab −Qa

)
· Cab −

∑
a

∑
b∈Λa

(
pa
ρR
·Dpab +Σa

JDJab −DEab
)
.

(4.36)

Using Eq. (4.22) and after substitution of Eq. (4.21) into Eq. (4.36), in the absence of source

terms, it gives

Ḋp(t) =
1

4ρR

∑
a

∑
b∈Λa

[(Pb − Pa)Cab] · (pb − pa)−
1

2

∑
a

∑
b∈Λa

(Qb −Qa) · Cab

− 1

2

∑
a

∑
b∈Λa

‖Cab‖ (vb − va) ·
[
Spab (vb − va)

]
−
∑
a

∑
b∈Λa

Σa
J‖Cab‖

(
Σb
J −Σa

J

)
(HAve

ab Nab) ·
[
SJab

(
HAve
ab Nab

)]
. (4.37a)

Notice here that the evaluation of {Dpab,DJab,DEab} is carried out by utilising a piecewise constant

representation for {p, ΣJ} and, more importantly, the summation is carried out over control

volumes. Rearranging the above summation over edges connecting a and b gives

Ḋp(t) =
∑
edges
a↔b

Ḋabp (t), (4.38a)

where the edge-based entropy production is defined as

Ḋabp (t) := ‖Cab‖
[
(vb − va) ·

[
Spab (vb − va)

]
+
(
Σb
J −Σa

J

)2
(HAve

ab Nab) ·
[
SJab

(
HAve
ab Nab

)]]
.

(4.39)

It is now easy to show that both positive definite stabilisation matrices {Spab,S
J
ab}, expressed

in terms of the physical pressure cp and shear wave cs speeds (refer to Eq. (4.20)), guarantee

non-negative local entropy production for every edge, that is Ḋabp (t) ≥ 0. This demonstrates

the entropy production for the semi-discrete scheme.

4.5 Conclusion

In this chapter, the mixed-based system of {p,F ,H, J, E or η} conservation laws, introduced

in Chapter 2, is spatially discretised using a Vertex-Centred Finite Volume Method (VCFVM).

A linear reconstruction procedure in conjunction with a slope limiter is presented with the

objective of ensuring second order accuracy in space whilst avoiding numerical oscillations in

the vicinity of sharp gradients, respectively. The contact flux approximations are introduced by

means of an acoustic Riemann solver and, to this end, the non-negative local entropy production

for every edge is ensured via the classical Coleman-Noll procedure.



Chapter 5
Spatial discretisation: Smooth
Particle Hydrodynamics

5.1 Introduction

This chapter provides a meshfree numerical methodology aimed at spatially discretising the set

of mixed-based conservation laws Eq. (2.58) introduced in chapter 2. Firstly, the weak forms of

the system of equations are expressed in Section 5.2 as the building blocks for the discretisation

procedure. An introduction on the numerical scheme along with its features and capabilities

is then presented in Section 5.3. The mixed-based formulations are then spatially discretised

using both classical and edge-based Smooth Particle Hydrodynamics methodology in Section

5.4. The rate of entropy production of the SPH scheme is investigated in Section 5.5. Finally,

a tailor-made artificial compressibility algorithm is suitably adapted to the SPH scheme aimed

at extending the capability of the numerical algorithm to the limiting case of incompressibility.

The schematic representation of the layout of this chapter is depicted in Figure 5.1.

5.2 Principle of Virtual Work

In general, a standard weak variational statement for the mixed-based system {p,F ,H, J, E or η}
Eq. (2.58) (known as the Bubnov-Galerkin contribution AGal) is established by multiplying the

local form of the conservation laws Eq. (2.56) by appropriate work conjugate virtual fields δV
and integrating over the volume ΩR of a continuum, to give

0 = AGal(U , δV) :=

∫
ΩR

δV • ∂U
∂t

dΩR −
∫
ΩR

δV • S dΩR +

∫
ΩR

δV • ∂F I
∂XI

dΩR. (5.1)

The symbol • is used to denote the inner (dual) product of conjugate pairs, δV represent

the virtual power conjugates of the conservation variables U . In detail, δV consists of δv as

the virtual velocity field, {δΣF , δΣH , δΣJ} as appropriate conjugate stresses to {F ,H, J},
δΣE = C with C representing a constant value and δθ as the conjugate variable of entropy,

respectively.

72
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Application of the Green-Gauss divergence theorem on the last term of Eq. (5.1) results in

0 = AGal(U , δV) :=

∫
ΩR

δV•∂U
∂t

dΩR−
∫
ΩR

δV•S dΩR−
∫
ΩR

F I•
∂δV
∂XI

dΩR+

∫
∂ΩR

δV•FN dA.

(5.2)

Above Galerkin representation (5.2) can be particularised to the case of the linear momentum

p, the extended set of geometric strain measures {F ,H, J} and the total energy (E) of the

system as

0 = ApGal :=

δWiner︷ ︸︸ ︷∫
ΩR

δv · ∂p
∂t

dΩR +

δWint︷ ︸︸ ︷∫
ΩR

P :∇Rδv dΩR−

δWext︷ ︸︸ ︷(∫
ΩR

δv · fR dΩR +

∫
∂ΩR

δv · tB dA
)

;

(5.3a)

0 = AFGal :=

∫
ΩR

δΣF :

[
∂F

∂t
−∇R

(
p

ρR

)]
dΩR; (5.3b)

0 = AHGal :=

∫
ΩR

δΣH :

[
∂H

∂t
− F ∇R

(
p

ρR

)]
dΩR; (5.3c)

0 = AJGal :=

∫
ΩR

δΣJ

[
∂J

∂t
−H :∇R

(
p

ρR

)]
dΩR; (5.3d)

0 = AEGal :=

∫
ΩR

δΣE

[
∂E

∂t
−DIV

(
P Tv −Q

)
− fR · v − sR

]
dΩR; (5.3e)

=

∫
ΩR

δΣE
∂E

∂t
−
∫
∂ΩR

δΣE (v · t−Q ·N) dA−
∫
ΩR

δΣE (fR · v + sR) dΩR,

with tB being a possible boundary traction vector, δWiner represents the inertial virtual power

and δWint and δWext stand for internal and external virtual powers, respectively. Notice

that only the linear momentum conservation equation Eq. (5.3a) has been integrated by parts

in order to enable the imposition of boundary tractions [3]. Alternatively, the total energy

conservation, Eq. (5.3e), can be expressed in terms of entropy as

0 = AηGal :=

∫
ΩR

δθ

[
∂η

∂t
+

1

θ
DIV (Q)− sR

θ

]
dΩR. (5.4)

5.3 Smooth Particle Hydrodynamics

Smooth Particle Hydrodynamics (SPH) can be considered as the oldest modern particle method,

initially developed by Lucy [129] and Gingold and Monaghan [130] in the 1970s. The method

was first employed to tackle astrophysical and cosmological problems during the 1980s due to

the resemblance between particle movements and liquid/gas flow movements. Therefore, it

was considered suitable to model classical Newtonian hydrodynamics equations. The method

is then becoming greatly mature as a result of the increased scrutiny and exploration during

1990s [178]. The Lagrangian mesh-free SPH method has been evolving since then and became

a strong and reliable numerical tool to tackle several diverse ranges of applications in fluid me-

chanics such as free surface flows [210]. Considerable attention has also been shown on using
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(a) Isometric view

(b) Top view

Figure 5.2: Particle approximation of a physical domain using regular (left column) and irregular
(right column) particle distributions

the SPH method in simulation of solid mechanic problems, application in metal forming, frac-

ture and fragmentation, biomechanics and hypervelocity impacts [42, 124, 126, 147, 178, 211],

to name a few.

The SPH method basically approximate a continuum into a number of scattered particles as

it is illustrated in Figure 5.2. The particle distribution could be in a regular or an irregular

order, which would affect the accuracy of the solution (see [27] for an extensive discussion).

Once the domain is discretised, the value of a conservative quantity at a target particle will

then be approximated based on the information stored at its neighbours through a kernel
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(a) Computational domain (b) Tributary volume (c) Compact support

Figure 5.3: Neighbouring particles associated to a target particle by a tributary volume

approximation. The neighbouring particles are those whose locations lie within the kernel’s

compact support of that particular target particle (see Figure 5.3).

5.3.1 Kernel approximation

The concept of interpolation in the SPH method can be expressed by following first the defini-

tion of the Dirac delta distribution

δ(X −X ′) =

+∞ X = X ′

0 X 6= X ′
∀X ∈ ΩR, (5.5)

which obeys the following useful properties∫
ΩR

δ(X)dΩR = 1;∫
Ω′R

U(X ′) δ(X ′ −X) dΩ′R = U(X).
(5.6)

As the Dirac delta function is infinitely sharp and not integrable, it cannot be used for ap-

proximation purposes. Therefore and as an alternative, a smooth kernel function W can be

employed for approximating the value of a field U(Xa) as

U(X) =

∫
Ω′R

U(X ′)W (X −X ′, hp) dΩ′R, (5.7)

where hp is the so-called smoothing length defining the size of the compact support (or tributary

volume) for the kernel interpolant (see Figure 5.3). This parameter is of paramount importance

as it controls the accuracy of the interpolation in the SPH scheme [27]. By comparing Eq. (5.5)

and Eq. (5.7), it is evident that if the kernel function tends to the Dirac delta, the approximated

solution U tends to the exact solution U . It is worth noticing that if the density of particle

distribution varies in space, the smoothing length shall change accordingly to maintain the

designated numerical accuracy. Nonetheless, this is not the case of the current work in which
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the density of a continuum is regularly distributed between all the particles and therefore, a

constant smoothing length will be required.

By virtue of Eq. (2.56), it is required to evaluate the derivative of a field variable using kernel

approximation. In the case of the SPH methodology, the integral form of Eq. (5.7) will be

approximated using particle (nodal) integration such that the value of quantity U and its

derivative at a material point Xa will be computed as

U(Xa) ≈
∑
b∈Λab

Ωb
R U(Xb)W (Xa −Xb, hp);

∇RU(Xa) ≈
∑
b∈Λab

Ωb
R U(Xb)⊗∇RW (Xa −Xb, hp),

(5.8)

(5.9)

where, b denotes the neighbouring particles associated to the tributary volume of the target

particle a. For the rest of this thesis, W (Xa −Xb, hp) is replaced with Wb(Xa) for simplicity.

In addition, a further assumptions are made on the interpolation described in Eq. (5.8) and

Eq. (5.9) for computational efficiency, namely[125, 161],

U(Xa) ≈ Ua; δV(Xa) ≈ δVa. (5.10)

5.3.1.1 Kernel functions

Since the development of the SPH method, a wide variety of kernel functions with different

features are proposed. At the original SPH paper by Lucy [129], a smooth bell-shaped kernel

function was employed. Gingold and Monaghan [130] utilised a Gaussian kernel which was

sufficiently smooth even for high order derivatives. It is actually considered as a golden choice

due to its reliable stability and accuracy, specifically for irregular particle distributions. How-

ever, this kernel function requires a large number of particles to shape its compact support and

that leads to an expensive computational cost. Fulk and Quinn [212] investigated twenty kernel

functions in one-dimensional space and concluded that the obtained results are well established

for smooth data. They indicated, by contrast, that in the case of non-smooth data, the type

of kernel plays a much less important role on the accuracy of the solution and the obtained

results are generally not quite accurate. Morris [213] studied the effects of different kernels on

the accuracy and stability of the SPH scheme and showed that its stability property will gener-

ally improve if higher order spline kernel interpolants are employed. Johnson et al. [214] used

a quadratic smoothing kernel function to simulate high-velocity impact problems. Liu et al.

[210] studied the kernel function mathematically and proposed a systematical way to construct

a smoothing function that may meet different needs. Jin and Ding [215] analysed ten different

kernels on a stable field and showed that Gaussian and Q-spline kernels can be considered

as the most computationally accurate kernel functions among the others. Omang and his co-

workers [216] presented an alternative kernel function for cylindrically symmetric systems and

tested it on shock-dominated problems, resulting in a more efficient computational framework.

The most frequently used kernel function can be considered as the Schoenberg cubic B-spline
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Figure 5.4: Kernel interpolant function: (a) Different types of kernel functions and (b) a represen-
tative 3D kernel function

functions [217]. The cubic spline has narrow compact support along with the features of the

Gaussian kernel. However, the second derivative of the cubic spline is a piecewise linear func-

tion which makes its stability inferior to those smoother kernels. Bonet et al. [161] proposed a

fifth-order polynomial aimed at eliminating the spurious oscillations introduced by the classical

cubic kernels.

In this thesis, a quadratic kernel function in three-dimensions is employed [214] as

W (X, hp) =
ζ

πh3
p

(
1−D +

D2

4

)
, (5.11)

where D = ||X−Xb||
hp

is the distance between a target particle and its neighbours and ζ = 15
16

is a user supplied coefficient usually considered within the range of 0.8 ≤ ζ ≤ 1.5. Figure

5.4a compares the employed quadratic kernel against some of the existing higher order kernel

functions in the literature (quintic [161], quartic [218], cubic [217]). Additionally, an intuitive

three-dimensional representative kernel is depicted in Figure 5.4b.

5.3.1.2 Kernel properties

Crucially, an appropriate kernel function has to fulfil the following properties

• Compact support : the kernel function must have a compact support, shown in Figure

5.4b, as

W (X −Xb, hp) = 0 for ||X −Xb|| > hp. (5.12)
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• Unity condition: This condition indicates that the smooth kernel function must be nor-

malised over its supported domain (analogous to the Dirac delta function property pre-

sented at Eq. (5.6)a), ∫
ΩbR

W (X −X ′, hp)dΩ′R = 1. (5.13)

• Dirac delta condition: The kernel interpolant must tend to Dirac delta function when the

smoothing length tends to zero

lim
hp→0

W (X −Xb, hp) = δ(X −Xb). (5.14)

• Positivity : The kernel function has to be non-negative (W (X − Xb) ≥ 0) within the

compact support of a particle located at material point X for any material point Xb.

This is important to ensure a meaningful (or stable) representation of some physical

phenomena like density in hydrodynamical simulations [27].

• Monotonicity : the kernel function must be monotonically decreasing while the interpola-

tion is getting far away from a target particle. This means that the approximation of a

variable in the target particle is more affected by the closer neighbouring particles.

• Symmetry : The kernel should be an even function meaning that neighbouring particles

with the same distance but different locations form a target particle should have an

equivalent effect on it. Although this property is useful for interpolation purposes, it is

not a necessary condition.

5.3.1.3 Kernel drawbacks

It is well-known that the basic kernel functions introduce a number of shortcomings into the

SPH methodology [27, 161, 210], namely, (1) lack of consistency (or completeness); and (2)

boundary inadequacy. The former stands for the capability of the kernel to accurately reproduce

a polynomial of order n (nth order reproducibility). The classical kernel functions are not even

zeroth-order reproducible and that leads to an inaccurate interpolation. The latter entails that

the basic SPH approximations are derived on the basis of an assumption where a full distribution

of neighbouring particles is taken into account. This, however, is not the case when a target

particle is located close to the boundary of the physical domain. In this occasion, the kernel is

truncated by the physical boundary of the domain and, therefore, an inaccurate interpolation

will be performed due to an insufficient number of neighbouring particles (i.e. no particle lies

within the truncated compact support, see Figure 5.5). This can be interpreted as the lack of

unity property for the kernel function. To rectify these shortcomings, a correction procedure

is required for the kernel interpolant and its derivatives.

5.3.2 Consistent kernel approximation

During the past few decades, a considerable effort was devoted into proposing different correc-

tion approaches for the kernel interpolant and its gradients [133, 158, 159, 161, 177, 211, 217].

Moving Least Square (MLS) [219] and enforcing consistency condition [133] are two usual
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Figure 5.5: Boundary inadequacy in particle approximations

strategies to be employed for the kernel correction. The former basically approximate the ker-

nel function using a least-square polynomial with a set of complete basis and that ensures the

reproducibility of the kernel interpolant up to a certain order of accuracy. The latter is the

interest of the current thesis and will be discussed in the following section.

5.3.2.1 Corrected kernel

Liu et al. [133] introduced a set of adjusting factors (α, β) in the kernel function W aimed at

obtaining a reproducible kernel W̃ up to first order accuracy

W̃b(X) = Wb(X)α(X) (1 + β(X) · (X −Xb)) . (5.15)

The general integral form of constant and linear reproducibility constraints for the kernel

function can be expressed as ∫
ΩR

W̃ (X)dΩR = 1; (5.16a)∫
ΩR

XW̃ (X)dΩR = 0. (5.16b)

Notice that the first consistency condition Eq. (5.16a) for constant reproducibility is equivalent

to the unity condition Eq. (5.13). Considering the application of particle integration, as the
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typical case in the SPH methodology, the above integrals can be discretised as∑
b∈Λab

Ωb
RW̃b(Xa) = 1; (5.17a)

∑
b∈Λab

Ωb
R (Xa −Xb) W̃b(Xa) = 0, (5.17b)

where a stands for a target particle and b represents its neighbouring particles. Enforcing the

consistency conditions (Eq. (5.17a)) into Eq. (5.15) leads to evaluation of the adjusting factor

β(X) and subsequently α(X) as

β(Xa) =

∑
b∈Λba

Ωb
R(Xa −Xb)⊗ (Xa −Xb)Wb(Xa)

−1 ∑
b∈Λba

Ωb
R(Xa −Xb)Wb(Xa); (5.18a)

α(Xa) =

∑
b∈Λba

Ωb
RWb(Xa) [1 + β(X) · (Xa −Xb)]

−1

. (5.18b)

The corrected kernel obtained with this strategy guarantees a reliable interpolation for a linear

function and exact evaluation of its gradients. For simplicity, one may only consider the

constant reproducibility in which β(X) = 0 and thus, the corrected kernel suitable for perfectly

interpolating a constant function yields

W̃b(Xa) =
Wb(Xa)∑

b∈Λba

Ωb
RWb(Xa)︸ ︷︷ ︸
α(X)

. (5.19)

5.3.2.2 Corrected gradient of the standard kernel

Corrected Gradient of the Standard Kernel (CGSK) can be introduced using a correction matrix

L as [211],

∇̃RWb(Xa) = La∇RWb(Xa). (5.20)

By enforcing that the following consistency condition is fulfilled by the corrected gradient of

the standard kernel ∑
b∈Λba

Ωb
R(Xb −Xa)⊗∇RWb(Xa) = I. (5.21)

The correction matrix La can be evaluated for each particle as

La =

∑
b∈Λba

Ωb
R(Xb −Xa)⊗∇RWb(Xa)

−1

. (5.22)

This correction strategy ensures that the gradient of any linear (but not constant) field is

exactly evaluated.
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5.3.2.3 Corrected gradient of the corrected kernel

An alternative correction approach is to combine the constant correction presented at Eq. (5.19)

with the CGSK Eq. (5.20) [211]. To do so, the Corrected Gradient of the Corrected Kernel

(CGCK) reads

∇̃RW̃b(Xa) = La∇RW̃b(Xa), (5.23)

where the gradient of the corrected kernel ∇RW̃b(Xa) can be evaluated easily by differentiation

of Eq. (5.19) which yields

∇RW̃b(Xa) =
∇RWb(Xa)− γ(Xa)∑

b∈Λba Ω
b
RWb(Xa)

; γ(Xa) =

∑
b∈Λba Ω

b
R∇RWb(Xa)∑

b∈Λba Ω
b
RWb(Xa)

. (5.24)

In addition, enforcing the consistency condition Eq. (5.20), this time in terms of CGCK, the

correction matrix (L) renders

La =

∑
b∈Λba

Ωb
R∇RW̃b(Xa)⊗Xb

−1

. (5.25)

The CGCK strategy guarantees the perfect interpolation of a constant or a linear function and

the exact evaluation of its derivatives. In other word, the CGCK is reproducible up to second

order accuracy.

Having the corrected kernel and its corrected gradient, it is now possible to consistently ap-

proximate a field variable and its derivative using the SPH methodology as

U(Xa) ≈
∑
b∈Λab

Ωb
R U b W̃b(Xa);

∇R U(Xa) ≈
∑
b∈Λab

Ωb
R [U b − Ua]⊗ ∇̃RWb(Xa).

(5.26)

(5.27)

It is worth noticing that the term Ua is added into Eq. (5.27) in order to guarantee that the

gradient vanishes for a uniform field (constant reproducibility) [177]. Alternatively, the gradient

of a field variable can be evaluated using the CGCK approximation as

∇R U(Xa) ≈
∑
b∈Λab

Ωb
R U b ⊗ ∇̃RW̃b(Xa). (5.28)

5.4 Total Lagrangian SPH discretisation

Typically, in the context of Element Free Galerkin schemes [122, 220], the Galerkin weak

statements described in Eq. (5.3) are accurately evaluated using the necessary distribution

of (Gauss) quadrature points in order to avoid spurious hourglass (or zero-energy) modes

[42, 155]. In general, the positions of these quadrature points do not coincide with those of the
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material particles [220, 221]. This is, however, not the case when employing a mesh-free SPH

discretisation in which above integrands Eq. (5.3) are under-integrated at the cloud of particles

regarded as quadrature points [4, 107, 125, 176, 178].

The internal virtual power δWiner (5.3a) can now be approximated using the SPH technique

as

δWiner ≈
∑
a

Ωa
Rδv(Xa) ·

∂p(Xa, t)

∂t
≈ Ωa

R

∑
a

δva ·
∂pa
∂t

. (5.29)

This clearly results in the introduction of a lumped mass matrix which is usually preferred in

the application of explicit solid dynamics [4]. It is worth noticing that the lumped mass matrix

does not alter the order of convergence of the algorithm [17, 23]. The external virtual power

δWext comprised of external boundary tractions and body forces reads

δWext ≈
∑
B

ABδvB · tB +
∑
B

Ωa
Rδva · faR (5.30a)

≈
∑
a

Ωa
Rδva ·

Aa
Ωa
R

ta + faR︸ ︷︷ ︸
Ea

 , (5.30b)

where B represents a particle placed on the physical boundary, AB its material tributary

area and tB its traction vector computed directly from the given traction boundary conditions

[6, 18, 118]. It must be noted that Aa = 0 for those particles not lying on the physical boundary.

Finally, the approximation of the internal virtual power renders

δWint ≈
∑
b

Ωb
RPb :∇Rδv(Xb) (5.31a)

≈
∑
b

Ωb
RPb :

∑
a∈Λba

Ωa
R (δva − δvb)⊗ ∇̃RWa(Xb)

 (5.31b)

≈
∑
a

Ωa
Rδva :


∑
b∈Λab

Ωb
R

(
Pb∇̃RWa(Xb)− Pa∇̃RWb(Xa)

)
︸ ︷︷ ︸

Ta

 , (5.31c)

where Pa,b := P (Fa,b,Ha,b, Ja,b) and the internal force representation Ta described in Eq. (5.31c)

satisfies the global conservation of linear momentum, that is
∑

aΩ
a
RTa = 0.
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The extended set of geometric conservation laws along with conservation of total energy/entropy

can analogously be approximated to yield the semi-discrete equations as

dpa
dt

=
∑
b∈Λba

Ωb
R

(
Pa∇̃RWb(Xa)− Pb∇̃RWa(Xb)

)
+
Aa
Ωa
R

ta + faR +Dp; (5.32a)

dFa
dt

=
∑
b∈Λba

1

ρR
Ωb
R (pb − pa)⊗ ∇̃RWb(Xa); (5.32b)

dHa

dt
= Fa

∑
b∈Λba

1

ρR
Ωb
R (pb − pa)⊗ ∇̃RWb(Xa)

 ; (5.32c)

dJa
dt

= Ha :

∑
b∈Λba

1

ρR
Ωb
R (pb − pa)⊗ ∇̃RWb(Xa)

+DJ ; (5.32d)

dEa
dt

=
∑
b∈Λba

1

ρR
Ωb
R

[(
Pa∇̃RWb(Xa)

)
· pb −

(
Pb∇̃RWa(Xb)

)
· pa
]

(5.32e)

−
∑
b∈Λba

Ωb
R

(
Qa · ∇̃RWb(Xa)−Qb · ∇̃RWa(Xb)

)
+ faR ·

pa
ρR

+ saR +
Aa
Ωa
R

taB ·
paB
ρR
− Aa
Ωa
R

QaB +DE ,

where ∇̃RWb(Xa)
Ave := 1

2

(
∇̃RWb(Xa)− ∇̃RWa(Xb)

)
. Notice that Eq. (5.32c) and Eq. (5.32d)

are the discrete form for Eq. (2.29) and Eq. (2.34), respectively. Additionally, the stabilisation

terms for {p, J, E} equations reads

Dp =
∑
b∈Λba

Ωb
RP

Stab
ab ∇̃RWb(Xa)

Ave + faR +
Aa
Ωa
R

taB; (5.33a)

DJ =
∑
b∈Λba

1

ρR
Ωb
Rp

Stab
ab ·

(
Ha∇̃RWb(Xa)−Hb∇̃RWa(Xb)

)
; (5.33b)

DE =
∑
b∈Λba

1

ρR
Ωb
R (pa + pb) ·

(
P Stab
ab ∇̃RWb(Xa)

Ave
)

+
∑
b∈Λba

1

ρR
Ωb
R

(
Σa
J +Σb

J

)
∇̃RWb(Xa)

Ave · pStab
ab .

(5.33c)

In the case of entropy-based formulations where the equation of entropy evolution replaces the

conservation of total energy, the semi-discrete set of {p,F ,H, J} equations, as described in

Eq. (5.32a)-Eq. (5.32d), remains exactly the same and the entropy equation can be spatially

discretised as

θa
dηa
dt

= −
∑
b∈Λba

(
Ωb
RQa · Cab −Qb · Cba

)
+

[
saR −

Aa
Ωa
R

QaB

]
. (5.34)

Notice that no stabilisation is considered for the contact heat flux (i.e. QC
ab = QAve

ab ) due to its

natural diffusive behaviour. The stabilisation terms {p,P }, as yet to be defined in Section 5.5,
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(a) (b)

Figure 5.6: Edge-based approach: (a) Vertex-Centred Finite Volume Method and (b) Smooth
Particle Hydrodynamics

are the necessary requirements for the semi-discrete system of equations in order for numerical

stability of the algorithm [7, 16, 17, 22, 32]. In addition, the spatial (deformed) geometry can

be updated through the discrete nodal linear momentum field as

dxa
dt

=
pa
ρR
. (5.35)

Notice that the geometry update here is only for the post-processing purposes.

5.4.1 Alternative framework: Edge-based SPH

To approximate a field variable in the computational domain using the conventional SPH

approach, a nested loop is required where the first (outer) loop is over the (target) particles

and the second (inner) loop is over the neighbouring particles associated to a target particle.

This, however, degrades the computational efficiency of the SPH algorithm. An alternative

approach is the so-called edge-based SPH implementation which is somehow analogous to the

edge-based FVM approach presented in the previous chapter (section 4.2.3). Figure 5.6 depicts

the conceptual similarity of the edge-based approaches in the FVM and the SPH methodologies.

In this case, two representative particles are connected together with a line (edges) along the

direction of a pseudo-area vector, as yet to be defined. Hence, the approximation of a field

variable only needs one loop over the edges and that results in ease of implementation and

a computationally faster algorithm. To achieve this, it is first required to recall the VCFVM

methodology where the discrete gradient evaluation within a dual control volume associated

with node a reads

∇R U(Xa) ≈
1

Ωa
R

∫
∂ΩaR

U(X)⊗NdA, (5.36)
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with N being the outward unit normal vector on the boundary of the dual control volume

∂Ωa
R. Above discrete boundary integral (5.36) can then be discretised by means of the Finite

Volume Method where a (second order) central difference approximation is utilised for the

discretisation of the vectorial function U , to give

∇R U(Xa) ≈
1

Ωa
R

∑
b∈Λab

UAve ⊗Cab; UAve =
1

2
[Ua + U b] , (5.37)

where Cab is the area vector already defined in Eq. (4.5).

In addition, it has been proven in Ref. [211] that the CGSK reproduces exactly the gradient

of any linear function and thus, Eq. (5.28), if necessary, can be alternatively expressed by

artificially including the redundant term −Ua as

∇R U(Xa) ≈
∑
b∈Λab

2Ωb
R

(
1

2
[U b − Ua]

)
⊗ ∇̃RW̃b(Xa). (5.38)

In this case, the term (U b−Ua) vanishes the gradient for a constant field and thus, the correction

of the kernel function itself that ensures the constant reproducibility would be unnecessary.

Hence, the CGCK at above expression (5.28) can be replaced with CGSK which is responsible

for the linear reproducibility

∇R U(Xa) ≈
∑
b∈Λab

2Ωb
R UAve ⊗ ∇̃RWb(Xa); UAve =

1

2
[U b + (−Ua)] . (5.39)

Comparing Eq. (5.39) and Eq. (5.37), a useful relationship arises relating the (mesh-based)

material outward normal area vector with the (mesh-free) SPH kernel gradient evaluation,

defined as

CCGSK
ab = 2Ωa

RΩ
b
R∇̃RWb(Xa), (5.40)

which can be known as the material pseudo-area vector where its reciprocal relationship can be

defined as CCGSK
ba = 2Ωa

RΩ
b
R∇̃RWa(Xb). Due to the anti-symmetric nature of the SPH gradient

correction [161, 211], notice here that CCGSK
ab 6= −CCGSK

ba . It is imperative to remind that using

CCGSK
ab requires the application of UAve presented at Eq. (5.39).
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Remark 10: An alternative representation for the evaluation of a kernel gradient can be for-

mulated by adding the redundant term Ua to Eq. (5.28), to give

∇R U(Xa) ≈
∑
b∈Λab

2Ωb
R UAve ⊗ ∇̃RW̃b(Xa); UAve =

1

2
[Ua + U b] . (5.41)

By comparison of Eq. (5.38) with Eq. (5.37), one can present an alternative material pseudo-

area vector constructed on the basis of the CGCK correction procedure as

CCGCK
ab = 2Ωa

RΩ
b
R∇̃RW̃b(Xa), (5.42)

with its reciprocal relation defined as CCGCK
ba = 2Ωa

RΩ
b
R∇̃RW̃a(Xb).

Considering the definition of the pseudo-area vectors, it is now possible to re-express the system

of equations (5.32) as

Ωa
R

dpa
dt

=
∑
b∈Λba

1

2
(PaCab − PbCba) + [Ωa

Rf
a
R +Aat

a
B] +Dpab;

Ωa
R

dFa
dt

=
∑
b∈Λba

1

2ρR
(pb − pa)⊗ Cab;

Ωa
R

dHa

dt
= Fa

∑
b∈Λba

1

2ρR
(pb − pa)⊗ Cab

 ;

Ωa
R

dJa
dt

= Ha :

∑
b∈Λba

1

2ρR
(pb − pa)⊗ Cab

+DJab;

Ωa
R

dEa
dt

=
∑
b∈Λba

1

2ρR
[(PaCab) · pb − (PbCba) · pa] +Ωa

Rf
a
R ·
pa
ρR

+Ωa
Rs

a
R

−
∑
b∈Λba

1

2
(Qa · Cab −Qb · Cba)−AaQaB +Aat

a
B ·
paB
ρR

+DEab,

(5.43a)

(5.43b)

(5.43c)

(5.43d)

(5.43e)

where material and spatial pseudo-area vectors being defined as CAve
ab := 1

2 (Cab − Cba) and

cAve
ab := 1

2 (HaCab −HbCba), respectively. In addition, the chosen pseudo-area vector here is

Cab = CCGSK
ab , expressed at Eq. (5.40). Notice that Eq. (5.43c) and Eq. (5.43d) are the discrete

form for Eq. (2.29) and Eq. (2.34), respectively. Moreover, the entropy evolution Eq. (5.34)
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with the application of the pseudo-area vector (CCGSK
ab ) is re-written as

Ωa
Rθa

dηa
dt

= −
∑
b∈Λba

1

2
(Qa · Cab −Qb · Cba) + [Ωa

Rs
a
R −AaQaB] . (5.44)

It is quite clear that the new mathematical representation of the system of conservation laws

Eq. (5.43) is much more elegant than the classical version expressed at Eq. (5.32).

Remark 11: An alternative semi-discrete form of the system of equations (5.43a-5.43e) can be

expressed on the basis of the CGCK correction procedure. In this case, the discrete form of the

linear momentum Eq. (5.43a), entropy Eq. (5.44) and total energy Eq. (5.43e) remains identical

as presented before whilst the geometric strains take the format of

Ωa
R

dFa
dt

=
∑
b∈Λba

pb
ρR
⊗ Cab; (5.45a)

Ωa
R

dHa

dt
= Fa

∑
b∈Λba

pb
ρR
⊗ Cab

 ; (5.45b)

Ωa
R

dJa
dt

= Ha :

∑
b∈Λba

pb
ρR
⊗ Cab

+DJab, (5.45c)

where Cab = CCGCK
ab is defined at Eq. (5.42).

The upwinding stabilisation terms {Dpab,DJab,DEab}, presented in Eq. (5.43) can be obtained

through the same procedure used in Section 4.3.2 which yields

Dpab =
∑
b∈Λba

P Stab
ab CAve

ab ;

DJab =
∑
b∈Λba

1

ρR
pStab
ab · cAve

ab ;

DEab =
∑
b∈Λba

1

ρR
pAve
ab ·

(
P Stab
ab CAve

ab

)
+
∑
b∈Λba

1

2ρR

(
Σa
J +Σb

J

)
cAve
ab · pStab

ab ,

(5.46a)

(5.46b)

(5.46c)

where the stabilised contact fluxes are defined as

P Stab
ab := Spab

[
(vb − va)⊗

CAve
ab

‖CAve
ab ‖

]
; vStab

ab := SJab

[(
Σb
J −Σa

J

) cAve
ab

‖cAve
ab ‖

]
, (5.47)

and with the positive definite stabilisation matrices {Spab,S
J
ab}, already defined in Eq. (4.23).
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The compatibility condition will be satisfied here by considering no stabilisations for the fluxes

associated with the deformation gradient and the area map conservation laws (see Section

4.3.1). In addition, a linear reconstruction procedure and a slope limiter are utilised for the

SPH scheme, identical to what has already been presented in Section 4.3.3. The former ensures

second order accurate solution in space and the latter avoids the spurious oscillations of the

solution in the vicinity of sharp gradients.

5.5 Coleman-Noll procedure

Following the same procedure as presented in Section 4.4, multiplying the semi-discrete equa-

tions (5.43) by their dual energy conjugate variables {v,Σa
F ,Σ

a
H , Σ

a
J , θa}, and then summing

up over all particles a within the computational domain, which gives,

∑
a

Ωa
R

[
va ·

d(ρRva)

dt
+Σa

F :
dFa
dt

+Σa
H :

dHa

dt
+Σa

J

dJa
dt

+ θa
dηa
dt

]
(5.48a)

=
∑
a

∑
b∈Λba

1

2
[(PaCab) · vb − (PbCba) · va]−

∑
a

∑
b∈Λba

1

2
(Qa · Cab −Qb · Cba)

+
∑
a

Ωa
Rva · faR +

∑
a

Ωa
Rs

a
R

+
∑
a

∑
b∈Λba

[
va ·

(
P Stab
ab CAve

ab

)
+Σa

Jv
Stab
ab · cAve

ab −QStab
ab · CAve

ab

]
(5.48b)

=
∑
a

Ωa
Rva · faR +

∑
a

Ωa
Rs

a
R +

∑
a

∑
b∈Λba

[
va ·

(
P Stab
ab CAve

ab

)
+Σa

Jv
Stab
ab · cAve

ab

]
, (5.48c)

where Pa = Σa
F + Σa

H Fa + Σa
JHa. Notice here the nested summation carried out over

particles, which implies that the summation over the non-stabilised terms in Eq. (5.48b) vanish

as a result of their anti-symmetric nature and reduces into Eq. (5.48c).

Noticing that the rate of total energy is

dEa
dt

=

[
va ·

d(ρRva)

dt

]
︸ ︷︷ ︸

dψa
kin
dt

+

[
Pa :

dFa
dt

]
︸ ︷︷ ︸

dψa
ela
dt

+

[
θa
dηa
dt

]
︸ ︷︷ ︸
dψa

heat
dt

+ [−va · faR − saR]︸ ︷︷ ︸
dψaext
dt

, (5.49)

and re-arranging the above nested particle summation into a summation over edges by con-

necting neighbouring particles a and b (within a given compact support) yields

∑
a

Ωa
R

dEa
dt

= −
∑
edges
a↔b

[
P Stab
ab :

(
(vb − va)⊗ CAve

ab

)
+ vStab

ab ·
((
Σb
J −Σa

J

)
cAve
ab

)]
. (5.50)

To guarantee non-negative (numerical) entropy production for every edge, which in this case is

to ensure that the square bracket terms of Eq. (5.50) ≤ 0, appropriate numerical stabilisation

{P Stab
ab ,vStab

ab } are utilised, expressed at Eq. (5.47). It is very interesting to observe how these
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stabilisation terms are directly related to the difference in velocity (vb−va) and stress (Σb
J−Σa

J)

between neighbouring particles, typical of Riemann solver based upwinding terms.

5.6 Artificial compressibility: Isothermal hyperelasticity

5.6.1 General remark

In the case of nearly incompressible or truly incompressible materials, the volumetric wave speed

cp reaches very large values yielding to restrictive small time steps [222]. This can substantially

degrade the computational efficiency of any time-explicit algorithm. One relevant approach

to rectify this issue is to employ artificial compressibility method, originally developed for the

Navier-Stokes equations [180]. Considering an isothermal process, the artificial compressibility

approach [23, 120] is here adapted to the system of Total Lagrangian conservation equations

(described in Section 2.4.2) and then spatially discretised using the SPH scheme.

To do so, we initially require to re-express the volume map conservation law Eq. (2.34) in terms

of its entropy conjugate, pressure, as

1

κ

∂p

∂t
= H :∇R

(
p

ρR

)
. (5.51)

Thus, the new unknown variables of the problem are {p,F ,H, p} and this allows the consid-

eration of the degenerate case of strict incompressibility.

Pursuing a similar procedure as fractional step type approach, it is necessary to first temporally

discretise the continuum equations (2.10,2.21,2.29,2.34 and 5.51) and then proceed with their

spatial discretisation. Additionally, the {p, p} will now be updated in a semi-implicit manner

in order to enforce the incompressibility constraints without compromising the size of the time

step as

pn+1 − pn

∆t
−DIVP (F n,Hn, pn+1)− fnR = 0; (5.52a)

pn+1 − pn

κ∆t
−Hn :∇R

(
pn+1

ρR

)
= 0. (5.52b)

It must be noted that both {F ,H} conservation equations are still going to be solved explicitly.

In order to solve Eq. (5.52), a predictor-corrector algorithm is used. The algorithm is first

advanced explicitly yielding intermediate variables {pint, pint} which are then projected after
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iteratively solving an implicit system known as pressure correction. Therefore, the first (pre-

dictor or intermediate) step of the scheme over a time step ∆t is defined as(
pint − pn

)
∆t

−DIVP (F n,Hn, pn)− fnR = 0; (5.53a)

F n+1 − F n

∆t
−∇R

(
pn

ρR

)
= 0; (5.53b)

Hn+1 −Hn

∆t
− F n ∇R

(
pn

ρR

)
= 0; (5.53c)

1

κ

pint − pn

∆t
−Hn :∇R

(
pn

ρR

)
= 0. (5.53d)

The second (corrector or projection) step reads(
pn+1 − pint

)
∆t

−DIV
[(
pn+1 − pn

)
Hn
]

= 0; (5.54a)

1

κ

(
pn+1 − pint

)
∆t

−Hn :∇R

(
pn+1

ρR
− p

n

ρR

)
= 0. (5.54b)

It is of paramount importance to note that addition of equations (5.53a) and (5.54a) (and

5.53d and 5.54b) recovers the original equations (5.52a and 5.52b). For nearly and truly

incompressible materials, the bulk modulus present in the first term of equation Eq. (5.53d)

can potentially reach very high values (even infinite), leading to extremely small time steps.

This will then destroy the explicit nature of the predictor step of the scheme. Consequently,

that has replaced with a fictitious bulk modulus κ̃, yielding

1

κ̃

pint − pn

∆t
−Hn :∇R

(
pn

ρR

)
= 0. (5.55)

As a result of this, the projection step of the pressure equation Eq. (5.54b) consistently turns

to
1

κ

(
pn+1 − pn

)
∆t

− 1

κ̃

pint − pn

∆t
−Hn :∇R

(
pn+1

ρR
− p

n

ρR

)
= 0. (5.56)

Finally, in order to solve the implicit system for the correction step (refer to (5.54a) and (5.56))

through a matrix-free approach, the artificial compressibility algorithm is further exploited.

This is obtained through the introduction of ”pseudo-time” derivative terms ( ∂∂τ ) allowing the

explicit evolution of the corrector equations in pseudo-time until convergence. Hence,

∂p

∂τ
= DIV

[(
pn+1 − pn

)
Hn
]
−
(
pn+1 − pint

)
∆t

; (5.57a)

1

γ

∂p

∂τ
=

1

κ̃

pint − pn

∆t
+Hn :∇R

(
pn+1

ρR
− p

n

ρR

)
− 1

κ

(
pn+1 − pn

)
∆t

, (5.57b)

where γ represents the artificial compressibility parameter. In this thesis, the pseudo-time terms

are advanced in time using exactly the same time integrator described in Eq. (6.1)-Eq. (6.3).

The upwind SPH spatial discretisation for the predictor-corrector system (5.53a, 5.53b, 5.53c,

5.55, 5.57a, 5.57b) will be presented in the following section.
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Remark 12: An alternative approach for treating truly incompressibility is also presented here

for completeness. In this approach which is on the basis of a pressure Poisson equation [23, 120],

the pressure correction can be re-expressed by substituting Eq. (5.54b) into Eq. (5.52b) for pn+1

as

1

κ

(
pn+1 − pn

)
∆t

−∆tHn :∇R

(
pint

ρR

)
−Hn :∇R

[
DIV

(
1

ρR

(
pn+1 − pn

)
Hn

)]
= 0. (5.58)

To obtain the pressure increment, Eq. (5.58) needs the solution of a system of nonlinear equa-

tions at each time step. This is indeed not computationally efficient when aiming for large scale

simulations, hence not pursued in this thesis.

It is worthwhile to remind that the presented artificial compressibility algorithm is just suited

for the particular case of a reversible isothermal process and, therefore, the set of equations

should be derived appropriately, in the other cases such as thermo-elasticity.

5.6.2 SPH artificial compressibility algorithm

For treatment of nearly incompressible and truly incompressible materials, analogous to what

has already been described in Section 5.6.1, an artificial compressibility algorithm is presented.

Hence, and considering SPH discretisation technique presented at Eq. (5.32), the predictor step

of the mixed-based system {p,F ,H, p} reads

pint
a − pna
∆t

= En
a − T na +D(pna); (5.59a)

Ωa
R

F n+1
a − F n

a

∆t
=
∑
b∈Λba

1

2

(
pnb
ρR

)
⊗ Cab; (5.59b)

Ωa
R

Hn+1
a −Hn

a

∆t
= F n

a

∑
b∈Λba

1

2

(
pnb
ρR

)
⊗ Cab; (5.59c)

Ωa
R

1

κ̃

pint
a − pna
∆t

= Hn
a :

∑
b∈Λba

1

2

(
pnb
ρR

)
⊗ Cab +D(Jna ), (5.59d)

where the external and internal force vectors {Ea,Ta} are defined in Eq. (5.30) and Eq. (5.31),

respectively. Moreover, {D(pna),D(Jna )} are the stabilising terms, already defined in Eq. (5.46).

Furthermore, the corrector step of the discrete system {p,F ,H, p} renders

dpa
dτ

=
1

2Ωa
R

∑
b∈Λba

[(
pn+1
b − pnb

)
Hn
b

]
Cab −

(
pn+1
a − pint

a

)
∆t

; (5.60a)

1

γ

dpa
dτ

=
1

κ̃

pint
a − pna
∆t

− 1

κ

(
pn+1
a − pna

)
∆t

+
1

2Ωa
R

Hn
a :

∑
b∈Λba

(
pn+1
b

ρR
−
pnb
ρR

)
⊗ Cab. (5.60b)
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At each time step ∆t, above system (5.60) is iteratively solved for the linear momentum and

pressure within the pseudo time integration in order to obtain convergence to a pseudo steady

state (e.g. dpa
dτ ≈ 0 and dpa

dτ ≈ 0).

5.6.3 Iteration speed-up procedure

It is possible to incorporate an additional Laplacian (or harmonic) dissipative operator to

Eq. (5.60b) in order to speed-up the convergence within the iterative process

1

γ

dpa
dτ

=
1

κ̃

pint
a − pna
∆t

− 1

κ

(
pn+1
a − pna

)
∆t

+
1

2Ωa
R

Hn
a :

∑
b∈Λba

(
pn+1
b

ρR
−
pnb
ρR

)
⊗Cab+DPSE(pa). (5.61)

The discrete pseudo viscosity term at particle a can be expressed as

DPSE(pa) := ηL [p(Xa)] ; η = αD
c2
s∆t

µ
, (5.62)

where αD is a dimensionless user-defined parameter in the range of [0, 1]. It is now crucially

important to know how the (particle-based) Laplacian dissipative operator should be approxi-

mated such that the satisfaction of global conservation requirement, that is
∑

aΩ
a
RDPSE(pa) =

0, is guaranteed. To do so, consider the Laplacian of any arbitrary scalar function U to be

numerically approximated as

L [U(Xa)] :=∇R · [∇R U(Xa)] ≈
∑
b∈Λba

Ωb
R∇R U(Xb) · ∇̃RW̃b(Xa). (5.63)

Addition of the redundant term ∇R U(Xa) to Eq. (5.63) yields an alternative expression as

L [U(Xa)] ≈
∑
b∈Λba

2Ωb
R

[
∇R U(Xa) +∇R U(Xb)

2

]
· ∇̃RW̃b(Xa). (5.64)

It is worth mentioning that the squared bracket term, shown in Eq. (5.64) denotes the gradient

approximation at the mid-edge connecting particles a and b. This can be further approximated

via a second order central difference scheme as [223][
∇R U(Xa) +∇R U(Xb)

2

]
≈ Ub − Ua
‖Xb −Xa‖

Nab, Nab :=
Xb −Xa

‖Xb −Xa‖
. (5.65)

The normal Nab is defined here as a direction vector connecting particles a to b (see Figure

5.6).

Finally, substitution of Eq. (5.65) into Eq. (5.64) and replacing the scalar function U with

pressure p result in the discrete version of the Laplacian evaluation

L [p(Xa)] ≈ 2
∑
b∈Λba

Ωb
R

[
pb − pa
‖Xb −Xa‖

Nab

]
· ∇̃RW̃b(Xa). (5.66)
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Unfortunately, the evaluation of Laplacian operator prevents the exact global conservation due

to the lack of symmetry of the kernel gradient correction, that is ∇̃RW̃b(Xa) 6= ∇̃RW̃a(Xb).

This issue can also be addressed by replacing ∇̃RW̃b(Xa) with ∇̃RW̃
Ave
b (Xa) defined as

∇̃RW̃
Ave
b (Xa) :=

1

2

(
∇̃RW̃b(Xa)− ∇̃RW̃a(Xb)

)
. (5.67)

Remark 13: An alternative approach to approximate the (globally conservative) Laplacian

evaluation of the pressure variable p can be expressed as [4]

L [p(Xa)] ≈
∑
b∈Λba

Ωb
R [pb − pa] ∆̃RW

Ave
b (Xa), (5.68)

where ∆̃RW
Ave
b (Xa) reads

∆̃RW
Ave
b (Xa) :=

1

2

[
∆̃RWb(Xa) + ∆̃RWa(Xb)

]
, (5.69)

where the corrected Laplacian approximation ∆̃R can be obtained through a least-square min-

imisation procedure (see Appendix A in [4] for further details). This, however, needs the

solution of a system of equations and, therefore not pursued in this thesis.

Hence, the discrete pseudo viscosity operator can be described as

DPSE(pa) ≈ 2η
∑
b∈Λba

Ωb
R

[
pb − pa
‖Xb −Xa‖

Nab

]
· ∇̃RW̃

Ave
b (Xa). (5.70)

For completeness, the artificial compressibility algorithm for the VCFVM scheme is also pre-

sented in details at Appendix C.

5.7 Conclusion

In this chapter, the mixed-based system of {p,F ,H, J, E or η} equations (see Chapter 2), is

spatially discretised using a Smooth Particle Hydrodynamics (SPH) scheme. Both the clas-

sical and edge-based SPH implementations are introduced where the latter has resulted in a

dramatical decrease in computational cost. A linear reconstruction procedure and a slope lim-

iter are presented in order to guarantee second order accuracy in space and avoiding spurious

numerical oscillations in the vicinity of sharp gradients, respectively. The rate of local entropy

production is guaranteed via a classical Coleman-Noll procedure. Finally, a tailor-made arti-

ficial compressibility algorithm is adapted to the SPH methodology in order for the limiting

case of isothermal incompressibility.



Chapter 6
Temporal discretisation

6.1 Introduction

The semi-discrete system of equations given in Chapter 4 for Vertex-Centred Finite Volume

Method (VCFVM) and Chapter 5 for Smooth Particle Hydrodynamics scheme has to be up-

dated in time using an appropriate time integrator, as discussed in Section 6.2. To achieve

this, Section 6.3 introduces an explicit one-step two-stage Total Variation Diminishing (TVD)

Runge-Kutta scheme by which second order accuracy in time is guaranteed. Due to the explicit

nature of the time integrator, a stability condition is provided in Section 6.3.1. Additionally,

a consistency and a von Neumann stability analyses are performed in Section 6.5. Finally, a

complete algorithmic description of the proposed VCFVM and SPH schemes is presented in

Section 6.4. The schematic representation of this chapter is depicted in Figure 6.1.

6.2 Time integrator

The objective of the current thesis is to simulate the solution of fast transient large strain

solid dynamics problems. This entails a time integrator for the evolution of the semi-discrete

system of equations, already presented in Eq. (4.8) for VCFVM scheme and Eq. (5.43) for SPH

scheme. The selection between an explicit or an implicit time integrator can depend on several

factors such as the physics of a problem, the chosen material model and the type of governing

Partial Differential Equations (PDEs). For instance, hyperbolic PDEs interested in modelling

wave propagation and favour the use of an explicit scheme. On the other hand, an implicit

time integrator could be more suitable for a parabolic PDE due to its diffusive nature.

As the problems of interest in this thesis focus on fast transient phenomena, this favours the

utilisation of an explicit scheme. Considering the rather large set of semi-discrete equations in

this thesis, choosing an explicit time integrator is preferable for computational efficiency. With

this in mind, in this thesis, we advocate for the use of a Runge-Kutta type method, due to

its excellent results in the context of Euler equations [224, 225]. A multi-stage Runge-Kutta

method is employed here and discussed in the next section.
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Chapter 6

6.1
Introduction

6.2
Time integrator

6.3
Total Variation

Diminishing
Runge-Kutta
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6.5.1
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6.5.2
Stability analysis

6.6
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Figure 6.1: Structure of Chapter 6

6.3 Total Variation Diminishing Runge-Kutta scheme

In order to ensure second order accuracy in time, to be consistent with second order spatial dis-

cretisation10, a one-step two-stage Total Variation Diminishing (TVD) Runge-Kutta is utilised

in this thesis, already explored in [6, 7, 16, 18, 23]. This is described by the following time

10 For a steady state problem, a discretisation with first order accuracy in time along with second order accuracy
in space will eventually converge to a second order accurate solution [11].
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update equations from time step tn to tn+1

U?e = Une +∆t U̇ne (Une , tn);

U??e = U?e +∆t U̇?e(U?e, tn+1);

Un+1
e =

1

2
(Une + U??e ),

(6.1)

(6.2)

(6.3)

where the conservation variables U = {p,F ,H, J, η orE} and geometry x are all monolithically

updated through Eqs. (6.1) to (6.3).

It must be noted that the TVD concept, initially proposed by Harten [226], guarantees the

monotonicity of the first-order solution meaning that the appearance of any new local extrema

will be prevented within the solution domain. In the case of the second-order solution, although

a monotonic solution can be ensured by a slope limiter during the spatial reconstruction process,

it will not be automatically ensured by evolving in time and that is why the TVD concept is

required in order to avoid spurious oscillations in the solution [199].

6.3.1 Stability condition

As an explicit time integrator is utilised, the selected time step ∆t = tn+1 − tn must lie within

the range of the stability condition and that is governed by the standard Courant-Friedrichs-

Lewy (CFL) condition [222] given as

∆t = αCFL
hmin

cp,max
, (6.4)

where cp,max is the maximum pressure wave speed, hmin is the minimum characteristic length

within the computational domain (defined in our case as the smallest mesh element length) and

αCFL is the CFL stability number. For the multi-dimensional numerical examples presented in

this thesis, a value of αCFL = 0.3 has been selected to ensure both the accuracy and stability

of the proposed algorithms.

Notice that the proposed algorithms does not necessarily ensure the conservation of angular

momentum of the system due to the fact that the minors of the deformation gradient tensor,

namely, {F ,H, J}, are no longer computed on the basis of the material gradient of a current

geometry (e.g. F 6= Fx := ∇0x, H 6= Hx := 1
2Fx Fx, J 6= Jx := 1

6Fx : (Fx Fx))

[3]. This can become problematic only in those problems involving very large and sustained

rotations [16]. To alleviate this, and taking inspiration from the work of [6], a global least-

square angular momentum projection procedure is carried out. The linear momentum update

(see Eq. (4.8a) or Eq. (5.43a)) is suitably modified (in the least squares sense) in order to

preserve the total angular momentum whilst still ensuring the conservation of the overall linear

momentum. Details of this projection technique can be found in Appendix D.



Chapter 6. Temporal discretisation 98

Remark 14: It is worthwhile noting that the satisfaction of Coleman-Noll procedure, presented

in Sections 4.4 and 5.5, for both VCFVM and SPH schemes, respectively, is also respected in

the fully discrete case for the particular TVD Runge-Kutta time integration scheme used in

this work. Indeed, Eq. (6.1)-Eq. (6.3) can be combined to give (after replacing Ua with Dabp )

Dab,n+1
p −Dab,np

∆t
=

1

2

(
Ḋab,np + Ḋab,?p

)
. (6.5)

By noticing that both terms on the right hand side of the above equation are positive each (as

demonstrated in Eq. (4.39)), it is immediate to conclude the satisfaction of entropy production

in the discrete setting.

6.4 Algorithmic description

For ease of understanding, Algorithm 6.1 summarises the complete algorithmic description of

the mixed-based {p,F ,H, J, E or η} Upwind VCFVM and SPH methodologies, with all the

necessary numerical ingredients.

Algorithm 6.1: Complete stabilised Upwind-VCFVM and Upwind-SPH mixed methodologies

Input : Una where U = [p,F ,H, J, E or η]T

Output: Un+1
a , P n+1

a , xn+1
a

(1) ASSIGN old primary variables: Uold
a = Una and xold

a = xna .

(2) EVALUATE p-wave speed: cp (see References [6, 120])

(3) COMPUTE time increment: ∆t

for TVD Runge-Kutta time integrator = 1 to 2 do

(4) COMPUTE right-hand-side of the mixed-based system:
ṗa (4.8a or 5.43a), Ḟa (4.8b or 5.43b), Ḣa (4.8c or 5.43c), J̇a (4.8d or 5.43d) and Ėa

(4.8e or 5.43e) or η̇a (4.9 or 5.44)

(5) APPLY discrete angular momentum preserving algorithm (see Section 6 of [4, 16])
(6) EVOLVE {Ua,xa} via TVD Runge-Kutta Eqs. (6.1) to (6.3)

(7) IMPOSE essential boundary conditions directly on particles pa and Ea
(8) COMPUTE first Piola Pa (see Eq. (12) on pg. 75 in Reference [4, 16])

end

(8) UPDATE {Un+1
a ,xn+1

a } (see Eq. (6.3))

(9) COMPUTE first Piola P n+1
a (see Equation Eq. (3.40))
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6.5 Consistency and stability analysis

One of the main challenges in computational analysis is demonstrating the validity of the

numerical strategies. Although verifying a numerical methodology can be analytically achieved

up to a certain order of accuracy, it is just limited to some simple linear Partial Differential

Equations (PDEs) [10, 11, 183, 227]. Nonetheless, those analyses can provide a good insight

into the behaviour of the numerical methodology. To do so, it is firstly required to define a set

of concepts, namely, consistency, stability and convergence [11, 183],

• Consistency : A numerical methodology is said to be consistent if its solution for a PDE

tends to the analytical solution by refining the mesh size ∆x. In other words, using a

numerical approximation instead of an exact mathematical procedure, the so-called trun-

cation error (τn) will be introduced at each time step ∆t and, therefore, that numerical

scheme can be considered consistent if

τn → 0 when ∆x→ 0 and/or ∆t→ 0. (6.6)

• Stability : A numerical scheme is stable if it does not magnify the error introduced by

its approximation procedure. In other words, if an initial hypothetical perturbation gets

imposed on the solution of a numerical method, it will be stable if the solution remains

bounded.

• Convergence: The very well-known Lax-Equivalence theorem [11] states that given a

properly posed linear partial differential equation, discretised with a consistent Finite

Difference (FD) approximation, the the approximated solution converges to the correct

solution if and only if the numerical scheme is stable.

In the current thesis, the focus is on the coupled thermo-elastodynamics problems. Looking at

the system of equations (2.58), and (2.39) in particular, both advective and diffusive terms can

be recognised. Therefore, by considering the nature of the problems of interest in this work,

the consistency and stability analyses are carried out for the linear advection-diffusion equation

which reads
∂U
∂t

+ a
∂U
∂x

= α
∂2U
∂x2

, (6.7)

where U stands for the problem variable, a is the wave speed (assumed to be constant) and

α = h
cv

denotes the diffusivity coefficient. Eq. (6.7) is spatially discretised here using central

difference approximation(
∂U
∂t

)
i

= −Ri; Ri = −aUi+1 − Ui−1

2∆x
+ α
Ui+1 − 2Ui + Ui−1

∆x2
, (6.8)
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and also temporally discretised using the one-step two-stage Total Variation Diminishing (TVD)

Runge-Kutta time integrator

U∗i = Uni −∆tRi(Uni , tn);

U∗∗i = U∗i −∆tRi(U∗i , tn+1);

Un+1
i =

1

2
(Uni + U∗∗i ) .

(6.9)

6.5.1 Consistency analysis

The truncation error of a numerical scheme is typically defined as τn = O(∆xa, ∆tb) represent-

ing the order of accuracy of the numerical scheme in space (of order a) and time (of order b)

[8, 11]

τn =
1

∆t
(Ũn+1 − Un+1), (6.10)

where U stands for the exact solution of the partial differential equation (6.7) and Ũ denotes the

approximated solution obtained by the numerical scheme. Using Eq. (6.8) and Eq. (6.9), it is

now possible to find out the expression for Un+1
i as for the first stage of the TVD Runge-Kutta

time integrator

U∗i = Uni −∆ta
Uni+1 − Uni−1

2∆x
+∆tα

Ui+1 − 2Ui + Ui−1

∆x2
. (6.11)

Using Taylor series expansion of the terms Ui+1 and Ui−1 and replacing them into the above

equation yields

U∗i = Uni − a∆t
(
∂U
∂x

)n
i

− a∆t∆x
2

6

(
∂3U
∂x3

)n
i

+ α∆t

(
∂2U
∂x2

)n
i

+ α
∆t∆x2

12

(
∂4U
∂x4

)n
i

+O(∆x3).

(6.12)

Following Eq. (6.12) and looking at Eq. (6.9), the second stage of the time integrator can be

easily written as

U∗∗i = U∗i − a∆t
(
∂U
∂x

)∗
i

− a∆t∆x
2

6

(
∂3U
∂x3

)∗
i

+ α∆t

(
∂2U
∂x2

)∗
i

+ α
∆t∆x2

12

(
∂4U
∂x4

)∗
i

+O(∆x3),

(6.13)

in which space derivatives can be computed on the basis of Eq. (6.12). After some simple but

tedious algebraic manipulations

U∗∗i = Uni +∆t

(
−2a

∂U
∂x

+ 2α
∂2U
∂x2

)n
i

+∆t2
(
a2∂

2U
∂x2

− 2aα
∂3U
∂x3

+ α2∂
4U
∂x4

)n
i

+∆t∆x2

(
−a

3

∂3U
∂x3

+
α

6

∂4U
∂x4

)n
i

+∆t2∆x2

(
a2

3

∂4U
∂x4

− aα

2

∂5U
∂x5

+
α2

6

∂6U
∂x6

)n
i

+O(∆x3).

(6.14)
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This leads to the evaluation of the numerical solution at time n+ 1 on the basis of Eq. (6.9)c

Ũn+1
i =

1

2
(Uni + U∗∗i )

= Uni +∆t

(
−a∂U

∂x
+ α

∂2U
∂x2

)n
i

+∆t2
(
a2

2

∂2U
∂x2

− aα∂
3U
∂x3

+
α2

2

∂4U
∂x4

)n
i

+∆t∆x2

(
−a

6

∂3U
∂x3

+
α

12

∂4U
∂x4

)n
i

+∆t2∆x2

(
a2

6

∂4U
∂x4

− aα

4

∂5U
∂x5

+
α2

12

∂6U
∂x6

)n
i

+ H.O.T.

(6.15)

Here H.O.T denotes the High Order Terms. Having the numerical solution Ũn+1
i , we can now

expand the analytical solution Un+1
i about Uni in order to evaluate the truncation error using

Eq. (6.10),

τn =

0 based on Eq. (6.7)︷ ︸︸ ︷(
∂U
∂t
− a∂U

∂x
+ α

∂2U
∂x2

)n
i

+∆t

(
a2

2

∂2U
∂x2

− aα∂
3U
∂x3

+
α2

2

∂4U
∂x4

− 1

2

∂2U
∂t2

)n
i

+
∆x2

6

(
−a∂

3U
∂x3

+
α

2

∂4U
∂x4

)n
i

+∆t∆x2

(
a2

6

∂4U
∂x4

− aα

4

∂5U
∂x5

+
α2

12

∂6U
∂x6

)n
i

− ∆t2

6

∂3U
∂t3

+O(∆x3, ∆t3),

(6.16)

where the first term vanishes as it is just expressing the differential equation Eq. (6.7) and

the second term represents the definition of Utt + a2Uxx − 2aαUxxx + α2Uxxxx = 0. Therefore

Eq. (6.16) shows how the numerical methodology satisfies the consistency requirement (see

Eq. (6.6)). Having the consistency requirement fulfilled, the stability analysis is the next step

of demonstrating the validity of the numerical methodology.

6.5.2 Stability analysis

The von Neumann (also know as Fourier) stability analysis [203] is employed here to assess

the stability limit of the numerical scheme applied on linear PDEs. This method is established

based on Fourier decomposition of numerical error and can be necessary and sufficient fol-

lowed by a certain number of assumptions, namely, (1) The PDE and the employed numerical

methodology should be linear; (2) assuming periodic boundary conditions; and (3) the scheme

should not utilise more than two time levels [9, 228]. This analysis can provide a good insight

into approximating the stability limit for numerical schemes applied to nonlinear PDEs. As

stated earlier, stability indicates that the generated error associated with a numerical scheme

should not grow in time and that, this defines the key idea on von Neumann stability analysis.

In this method, the unknown variable(s) will be replaced by an arbitrary harmonic function

Uni =

M∑
m=1

Anme
Iiφm , (6.17)
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such that its amplitude (Am) must not grow in time. Note that eIiφm = eIkmxi where I =
√
−1,

φm are the phase angles with the range of [−π, π] and km = πm
∆xM are the wave numbers. The

time dependence of the proposed function is considered through its amplitude for which an

exponential function is assumed (Am(t) = ebt). This would be logical as the harmonic function

itself has an exponential behaviour

Uni =

M∑
m=1

ebteIiφm , (6.18)

where b is assumed to be a constant. In order to track the variation of amplitude in time, the

so-called amplification factor is introduced

G =
An+1
m

Anm
=
e(bt+b∆t)eIiφm

ebteIiφm
= eb∆t, (6.19)

and, therefore, the stability of the numerical scheme is ensured if

|G| ≤ 1 ∀φm ∈ [−π, π]. (6.20)

In this work, the one-dimensional linear advection-diffusion equation (6.7) and the one-dimensional

linearised system of equations (6.33) are considered for von Neumann stability analysis as ex-

plored in the following sections.

6.5.2.1 One-dimensional linear advection-diffusion equation

In this section, the stability of the one-dimensional linear advection-diffusion equation Eq. (6.7)

is analysed. For simplicity, this equation is discretised using the explicit forward Euler in time

and the second order upwind method in space [229, 230](
∂U
∂t

)n
i

=
Un+1
i − Uni
∆t

; (6.21)

(
∂U
∂x

)n
i

=

(
4k − 2αCFL + 3α2

CFL

4αCFL

)(Uni − Uni−2

2∆x

)
(6.22)

+

(
4k − 2αCFL + α2

CFL

4αCFL

)(Uni+2 − Uni
2∆x

)
+

(
2αCFL − α2

CFL − 2k

2k

)(Uni+1 − Uni−1

2∆x

)
;

(
∂2U
∂x2

)n
i

=

(
2αCFL − α2

CFL − 2k

2k

)(Uni+1 − 2Uni + Uni−1

∆x2

)
(6.23)

+

(
4k − 2αCFL + α2

CFL

2k

)(Uni+2 − 2Uni + Uni−2

4∆x2

)
,

where

αCFL =
a∆t

∆x
; k =

h

cv

∆t

∆x2
. (6.24)
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Substituting the above equations into Eq. (6.7), after some tedious algebraic manipulations,

the numerical solution at time (n+ 1) can be obtained as

Un+1
i =

1

2

(
2k − αCFL + α2

CFL

)
Uni−2+

(
2αCFL − 2k − α2

CFL

)
Uni−1+

1

2

(
2 + 2k − 3αCFL + α2

CFL

)
Uni .

(6.25)

Substituting Eq. (6.18) into the above equation and using Eq. (6.19), the amplification factor

yields

G =
1

2

(
2k − αCFL + α2

CFL

)
e−2Iφm+

(
2αCFL − 2k − α2

CFL

)
e−Iφm+

1

2

(
2 + 2k − 3αCFL + α2

CFL

)
.

(6.26)

Considering the stability requirement at Eq. (6.20), the stability condition for one-dimensional

linear advection-diffusion equation reads [230]

0 < k ≤ αCFL (2− αCFL)

2
. (6.27)

In order to check the above stability condition, it is possible to consider an extreme case in

which the problem becomes thermally dominant. That indicates the heat conduction will rule

on the stability condition of the numerical methodology and, therefore, one could follow the

stability limit for the heat conduction equation, which is 0 < k ≤ 0.5 [8]. Consequently, it can

be concluded from Eq. (6.27) that

0 < k ≤

1
2︷ ︸︸ ︷

αCFL (2− αCFL)

2
⇒ αCFL (2− αCFL) ≤ 1. (6.28)

It is then simple to show that

(αCFL − 1)2 ≤ 0 ⇒ αCFL ≤ 1, (6.29)

which is actually the stability condition for the linear advection equation. In this particular

case, we have αCFL = 1 and that, this simply shows how the general stability condition for

the one-dimensional linear advection-diffusion equation (6.27) can be recovered in the extreme

cases of a purely conductive or a purely advective phenomenon.

It is also useful to decompose the real and imaginary parts of the obtained amplification factor

(Eq. (6.26)) as

Re(G) =
1

2

(
2k − αCFL + α2

CFL

)
cos(2φm) +

(
2αCFL − 2k − α2

CFL

)
cos(φm)

+
1

2

(
2 + 2k − 3αCFL + α2

CFL

)
;

Im(G) = −1

2

(
2k − αCFL + α2

CFL

)
sin(2φm)−

(
2αCFL − 2k − α2

CFL

)
sin(φm).

(6.30)

This allows to plot the stability region for one-dimensional linear advection-diffusion equation

discretised using forward Euler in time and second order upwind method in space. Figure 6.2

illustrates the stability limit on the basis of three stability parameters. Firstly, the stability
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Figure 6.2: Stability limits for the one-dimensional linear advection-diffusion equation discretised
using forward Euler in time and second order upwind in space for different (a) k with a fixed αCFL =

0.5; (b) αCFL with a fixed k = 0.2; and (c) Pe

area is depicted for different values of k whilst αCFL = 0.5 is fixed, shown in Figure 6.2a. This

can be useful to study the diffusive behaviour of Eq. (6.27). In fact, the only case where the

amplification factor crossed out the stability limit (unit radius circle) is k = 0.5. This can be

justified using Eq. (6.27) such that 0 < 0.5 � 0.5(2−0.5)
2 = 0.375. The other values of k showed

a stable behaviour since they are all placed within the stability limit.

Figure 6.2b shows the stability range for different values of αCFL whilst k = 0.2 is fixed. This

can help to study the stability with the focus on the advective behaviour of Eq. (6.27). As it

is shown, all amplification factors placed within the stability limit (unit radius circle) except

the case of αCFL = 0.1 and that, this can be justified through Eq. (6.27). Notice here that all

values selected for αCFL are on the basis of stability limit for the linear advection equation,

that is 0 < αCFL ≤ 1 [11].

A more general way of performing the stability analysis is through the dimensionless Peclet

number defined as

Pe =
αCFL
k

, (6.31)

which introduces the ratio of the advective to the diffusive transport rate. In fact, a large Peclet

number indicates an advectively dominated problem whereas a small Peclect number describes

a diffusion dominated problem. It is possible to obtain the stability condition presented in

Eq. (6.27) on the basis of the Peclet number and αCFL as

Pe(2− αCFL) ≥ 2. (6.32)

Figure 6.2c shows the stability limit for different values of the Peclet number. As it is clear,

the amplification factor remains in the stability region for Pe ≥ 2 and becomes unstable once

Pe < 2.
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6.5.2.2 One-dimensional system of equations

In general, the entropy-based system of equations presented in Eq. (2.58) can be reduced, in

the absence of source terms, into the one-dimensional case as

ρR
∂v

∂t
=
∂P

∂X
; (6.33a)

∂J

∂t
=

∂v

∂X
; (6.33b)

θ
∂η

∂t
= −∂Q

∂X
= h

∂2θ

∂X2
. (6.33c)

Notice here that the one-dimensional strain assumption, that is J = F11, is considered. Addi-

tionally, Q = −h ∂θ
∂X is the linearised heat flux with the assumption of a constant heat conduc-

tion coefficient. The one-dimensional system of equations (6.33) can be presented on the basis

of three primary variables of {v, J, η} and to achieve this, we need to replace temperature as a

function of the variables of interest. Recalling Eq. (3.33) and with the aid of Eq. (3.45) with

q = 1, it is possible to obtain the explicit expression of temperature as

θ = θRe

(
η
cv
−Γ0(J−1)

)
. (6.34)

Using Eq. (6.34) and Eq. (3.69), it is possible to express the one-dimensional linearised first

Piola as

P = (λ+ 2µ) J − cvΓ0 (θ − θR)

=
(
λ+ 2µ+ cvΓ

2
0 θR

)
J − Γ0θRη − cvΓ0θR(Γ0 − 1), (6.35)

which is obtained for the particular case of a linear thermo-elastic material model along with

Mie-Grüneisen equation of state.

Also, the left hand side of Eq. (6.33c) can be re-expressed by the aid of Eq. (3.33) and the

application of chain rule as

θ
∂η

∂t
= θ

cvΓ0︷︸︸︷
∂η

∂J

∂J

∂t
+

cv︷︸︸︷
θ
∂η

∂θ

∂θ

∂t

= θRcvΓ0
∂J

∂t
+ θRcv

(
1

cv

∂η

∂t
− Γ0

∂J

∂t

)
= θR

∂η

∂t
. (6.36)

Linearising the expression for temperature, presented in Eq. (6.34), yields

θ = θR

(
η

cv
− Γ0 (J − 1)

)
, (6.37)
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which is utilised to reformulate the right hand side of Eq. (6.33c) in terms of the variables of

interest as

h
∂2θ

∂X2
=
hθR
cv

(
∂2η

∂X2
− Γ0cv

∂2J

∂X2

)
. (6.38)

Substituting Eq. (6.35), Eq. (6.36) and Eq. (6.38) into the one-dimensional system of equations

presented in Eq. (6.33) leads to its linearised case as

ρR
∂v

∂t
=

∂

∂X

((
λ+ 2µ+ cvΓ

2
0 θR

)
J − Γ0θRη − cvΓ0θR(Γ0 − 1)

)
; (6.39a)

∂J

∂t
=

∂v

∂X
; (6.39b)

∂η

∂t
=

h

cv

(
∂2η

∂X2
− Γ0cv

∂2J

∂X2

)
. (6.39c)

Remark 15: Using Eq. (6.35)a and Eq. (6.36)a, the one-dimensional system of equations (6.33)

can alternatively be expressed in a linearised form with the primary variables of {v, J, θ} as

following

ρR
∂v

∂t
=

∂

∂X

(
(λ+ 2µ) J − cvΓ0(θ − θR)

)
; (6.40a)

∂J

∂t
=

∂v

∂X
; (6.40b)

∂θ

∂t
=

h

cv

(
∂2θ

∂X2
− Γ0θR

∂v

∂X

)
. (6.40c)

To proceed with the von Neumann stability analysis, it is first required to discretise the system

of equations (6.39). To achieve this, and for simplicity, the forward Euler in time and the first

order upwind scheme in space are employed which yields

vn+1
i − vni
∆t

=
1

ρR∆X

[(
λ+ 2µ+ cvΓ

2
0 θR

) (
Jni − Jni−1

)
+ Γ0θR

(
ηni − ηni−1

)]
; (6.41a)

Jn+1
i − Jni
∆t

=
vni − vni−1

∆X
; (6.41b)

ηn+1
i − ηni
∆t

=
h

cv

(
ηni+1 − 2ηni + ηni−1

∆X2
− Γ0cv

Jni+1 − 2Jni + Jni−1

∆X2

)
. (6.41c)

Having the discrete form of the set of equations, it is now possible to proceed with the von

Neumann stability analysis. To do so, the primary variables are replaced with an arbitrary

harmonic function, expressed in Eq. (6.17). As we are dealing with a system of equations, the

amplitude of the harmonic function becomes a matrix, namely, the amplification matrix G. In

this case, the necessary and sufficient condition for weak conditional stability is such that the
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eigenvalues (or the spectral radius) of the amplification matrix have to be uniformly bounded

[231]. The spectral radius can be defined as

R = max{|Λ1|, |Λ2|, |Λ3|} ≤ 1, (6.42)

where Λ1, Λ2, Λ3 are the three eigenvalues corresponding to the amplification matrix G. It is

worthwhile noting that the weak stability is not a powerful enough criterion to be applied to

systems of differential equations with variable coefficients, even though it may be sufficient for

constant-coefficient problems or those with scalar variables [231].

Substituting Eq. (6.17) into the system of equations (6.41) gives

[
Am

]n+1

i
=



1
(
λ+2µ+cvΓ 2

0 θR
ρR

)
∆t
∆X f(φm)

(
−Γ0θR
ρR

)
∆t
∆X f(φm)

∆t
∆X f(φm) 1 0

0 (−Γ0h) ∆t
∆X2 g(φm) 1 + h

cv
∆t
∆X2 g(φm)


︸ ︷︷ ︸

G

[
Am

]n
i
, (6.43)

where Am stands for the amplitude vector whose components correspond to each variable of

interest {v, J, η} and with f(φm) =
(
1− e−Iφm

)
and g(φm) =

(
eIφm + e−Iφm − 2

)
. It is possible

to re-express some of the components of the amplification matrix in terms of the dimensionless

parameters employed in the previous section. Hence, the further simplified amplification matrix

can be defined as

G =



1 aαCFLf(φm)
(
−Γ0θR
aρR

)
αCFLf(φm)

αCFL
a f(φm) 1 0

0 (−Γ0cvk) g(φm) 1 + k g(φm)


, (6.44)

with {αCFL, k} already defined in Eq. (6.24) and where the wave speed a reads [7]

a =

√
λ+ 2µ+ cvΓ 2

0 θR
ρR

. (6.45)

The eigenvalues of the obtained amplification matrix can then be evaluated using the following

expression

|G − ΛI| = 0, (6.46)

which results in three eigenvalues and their corresponding eigenvectors. Eq. (6.46) is solved

with mathematical software and its mathematical expression is not presented here for brevity.

Notice from Eq. (6.43) that the amplification matrix depends on several physical and numerical

parameters, consisting of the thermo-mechanical material properties and numerical variables.

Consequently, it is not trivial to extract a specific stability condition for the numerical solution
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Figure 6.3: Stability analysis: Spectral radius of the amplification matrix along phase angles for
different values of the dimensionless stability parameters (a) αCFL; and (b) k; and (c) Pe.

and, therefore, a parametric study on the stability of the solution is performed. However, the

stability conditions for the linear advection equation (0 < αCFL ≤ 1) and the heat equation

(0 < k ≤ 0.5) have to be essentially satisfied.

In this thesis, the dimensionless numbers {Pe, αCFL, k} are considered as the parameters for

stability analysis. The Peclet number indicates a comparative study between the advective

and diffusive nature of the problem. Moreover, the advective and diffusive behaviours can be

studied separately using the αCFL and k, respectively.

Figure 6.3a shows the spectral radius distribution for different values of αCFL. As it is clear,

the spectral radius is uniformly bounded except the cases where αCFL ≥ 1. The distribution of

the spectral radius is shown in Figure (6.3b) for different values of k. In this particular case of

only varying k whilst the mechanical material properties are fixed, the numerical solution has

become unstable when k ≥ 0.25. Otherwise, it remains stable. Figure 6.3c depicts the spectral

radius distribution for different values of Peclet number. It can be observed that for Pe< 2,

the spectral radius crosses the stability limit and that, this is compliant with the stability limit

obtained for the one-dimensional linear advection-diffusion equation (see Figure 6.2c). For

the larger Peclet numbers where the problem is advectively dominant, the spectral radius has

remained in the stability area.

An alternative way of assessing the stability of the numerical solution is to depict the stability

range of the three eigenvalues of the amplification matrix for different values of the stability

parameters {αCFL, k,Pe}. In this case, the stability area will be a circle of radius one in order

to ensure the stability condition presented in Eq. (6.20). Figure 6.4 depicts the stability area

introduced by three eigenvalues of the amplification matrix for different values of αCFL. This

shows the second eigenvalue (Λ2) is the one responsible for instability since its area is larger

than the stability limit (the unit radius circle). Figure 6.5 illustrates the stability ranges for

three eigenvalues of the amplification matrix for different values of k. This time, the first

eigenvalue (Λ1) has crossed the stability limit beyond which the solution has become unstable.

Figure 6.6 shows the stability area introduced by three eigenvalues of the amplification matrix

for different values of the Peclet number. Although the first and second eigenvalues have shown

stable behaviour, the third eigenvalue has become unstable once Pe< 2.
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Figure 6.4: Stability range of eigenvalues of the amplification matrix for different values of αCFL.
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Figure 6.5: Stability range of eigenvalues of the amplification matrix for different values of k.
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Figure 6.6: Stability range of eigenvalues of the amplification matrix for different values of the
Peclet number.
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6.6 Conclusion

In this chapter, an explicit one-step two-stage TVD Runge-Kutta time integrator is utilised in

order to advance the conservative variables {p,F ,H, J, E or η} in time. A monolithic update

of geometry is carried out only for post-processing purposes. Additionally, a consistency and

von Neumann stability analysis are performed on the one-dimensional simplified case of the

proposed methodology. This has illustrated the second-order accurate solution in space and

time and designated an estimation on the stability limit for the presented algorithms. Finally,

the complete algorithmic description of the proposed numerical methodology is presented.



Part IV

Numerical Results

111



Chapter 7
One-dimensional problems:
Fundamental studies

7.1 Introduction

In this chapter, a set of one-dimensional benchmark problems are introduced aimed at analysing

the fundamental properties of the presented numerical algorithm. Firstly, a mesh convergence

study is carried out on a one-dimensional bar using two material models, namely, a rigid con-

ductor (Section 7.2) and linear thermo-elasticity (Section 7.3). The shock-capturing capability

of the numerical scheme is then assessed. This includes investigation on severe shock problems

in both elastic media (Section 7.4) and gas dynamics (Section 7.5).

In general, the total energy-based system of conservation laws presented in Eq. (2.56) can be

reduced into the one-dimensional case as

∂px
∂t

=
∂PxX
∂X

+ fR; (7.1a)

∂FxX
∂t

=
1

ρR

∂px
∂X

; (7.1b)

∂E

∂t
=

1

ρR

∂ (PxXpx)

∂X
− ∂Q

∂X
+
px
ρR
fR + sR. (7.1c)

Notice here that FxX is considered on the basis of one-dimensional strain assumption. All the

one-dimensional problems in this chapter have been numerically analysed using the Vertex-

Centred Finite Volume Method (VCFVM) algorithm. However, this can be considered as an

equivalent one-dimensional case of the Smooth Particle Hydrodynamics algorithm, using just

two neighbouring particles at upwind and downwind sides of a target particle in which the

solution is approximated.

113
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7.2 Rigid conductor

In this section, a rigid conductor is considered where the mechanical effects are neglected and

heat will only be conducted throughout the material. In this case, Eq. (2.39) reduces to

∂E

∂t
= −DIV (Q) + sR. (7.2)

Considering the linearised case of Eq. (2.38), which is, Q = −h∇Rθ, with the assumption of

constant conductivity coefficient (h) and, also, the lack of heat source term, Eq. (7.2) gives

∂θ

∂t
=

(
h

cv

)(
∇2
Rθ
)
, (7.3)

which is the well-known heat conduction equation where ∇2
R is the Laplacian operator and h

cv

denotes the diffusivity coefficient. The main objective of this example is to assess the spatial

convergence of the proposed VCFVM methodology via the so-called manufacturing solution

procedure. The problem consists of a unit length one-dimensional bar which is subjected to

the following smooth temperature profile

θ(X, t) = θamb

[
A sin

(
πX

L

)
(t− 1) + 2

]
; 0 ≤ X ≤ L, (7.4)

where A = 1
tend

is a user-defined coefficient and θamb = 293.15 K denotes the ambient temper-

ature, L = 1 m. The initial and boundary conditions are defined as

θ(X, t = 0) = θamb

(
−A sin

(
πX

L

)
+ 2

)
; (7.5)

θ(X = 0, t) = θ(X = L, t) = 2θamb. (7.6)

In this case, above temperature profile will be introduced into the Eq. (7.2) in order to analyt-

ically obtain its corresponding heat source term which, after some simple algebraic manipula-

tions, yields

sR(X, t) = Acvθamb sin

(
πX

L

)[
1 + k

(π
L

)2
(t− 1)

]
. (7.7)

This will provide an analytical solution which can be used for comparison purposes in order to

assess the spatial convergence of the numerical solution. In Figure 7.1a, the numerical solution

at tend = 1.5 s is compared against the analytical solution which an extremely good agreement

can be observed. The expected second order convergence rate for the temperature is also shown

in Figure 7.1b.

7.3 Thermo-elastic bar

In this example, a one-dimensional bar is subjected to the following displacement and temper-

ature profiles (see Figure 7.2)
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Figure 7.1: Rigid conductor: (a) validation of the numerical solution for temperature at particular
time t = 1.5 s and (b) L2 norm convergence of temperature at particular time t = 1.6−3 s. The
material properties used are density ρR = 1000 kg/m3, h = 10 W/m.K, Cv = 1 J/Kg.K and

α = 2.223× 10−4 K−1.
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Figure 7.2: One dimensional bar: (a) Configuration; and Initial conditions for (b) displacement;
and (c) temperature.

x(X, t) = X(
A

L
Xt+ 1); 0 ≤ X ≤ L, (7.8)

θ(X, t) = B θamb sin

(
πX

L

)
(t+ 1) + θamb, (7.9)

where θamb = 293.15 K denotes the ambient temperature, L = 1 m and A and B are constant

coefficients, yet to be defined. The main objective of this example is to assess the spatial

convergence of the proposed {px, FxX , E} methodology, using a linear thermo-elastic material

model.
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Following the manufacturing solution procedure (see Section 7.2), the linear momentum and

deformation gradient can be evaluated based on Eq. (7.8) as

px =
∂x

∂t
= ρR

AX2

L
; (7.10)

FxX =
∂x

∂X
=

2AX

L
t+ 1. (7.11)

Notice here that the one-dimensional strain assumption FxX is considered. Taking the one-

dimensional system of equations (7.1) into account, it is now required to obtain the unknowns

(source terms). To do so, we first need to obtain the general formula for evaluation of the

source terms

fR =
∂px
∂t
− ∂PxX

∂X
; (7.12a)

sR =
∂E

∂t
−
(
∂PxXvx
∂X

− ∂Qx
∂X

+ fRv

)
. (7.12b)

Looking at Eq. (2.38) and Eq. (3.68), obtaining the source terms (7.12) requires the evaluation

of the following derivatives

∂px
∂t

= 0; (7.13a)

∂PxX
∂X

= (λ+ 2µ)
∂FxX
∂X

− CvΓ0
∂θ

∂X
; (7.13b)

∂Qx
∂X

= −h ∂
2θ

∂X2
; (7.13c)

∂E

∂t
=
∂E
∂t

+
∂
(

1
2ρR

p2
x

)
∂t

. (7.13d)

By the aid of equations (7.9), (7.10), (7.11) and (3.34a), the above derivatives can now be

computed

∂θ

∂t
= Bθamb sin

(
πX

L

)
; (7.14a)

∂FxX
∂t

=
2AX

L
; (7.14b)

∂FxX
∂X

=
2At

L
; (7.14c)

∂θ

∂X
= Bθamb

π

L
cos

(
πX

L

)
(t+ 1); (7.14d)

∂2θ

∂X2
= −Bθamb

(π
L

)2
sin

(
πX

L

)
(t+ 1). (7.14e)

Therefore, substituting the evaluated linear momentum Eq. (7.10) and the given temperature

profile Eq. (7.9) into the system of equations (7.1) and with the aid of Eq. (7.14), the explicit
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expressions for the body force and heat source term yield

fR =− (2µ+ λ)

(
2At

L

)
+BCvΓ0θamb

π

L
cos

(
πX

L

)
(t+ 1); (7.15a)

sR =θ

(
B

θR
Cvθamb sin

(
πX

L

)
+ CvΓ0

2AX

L

)
+Bhθamb

(π
L

)2
(t+ 1) sin

(
πX

L

)
. (7.15b)

This provides the required analytical solution for the spatial convergence analysis. The re-

maining pending task is to measure the value of constant coefficients A and B in such a way

that the infinitesimal deformation and temperature gradient are ensured (i.e. linear thermo-

elasticity). To achieve this, we can set up the value of displacement in the range of linear

elasticity x−X
Xmax

∣∣
X=Xmax

= 10−4 in order to obtain the value of coefficient A. By replacing x

with the mapping profile presented in Eq. (7.8), the coefficient A renders

A =
10−4

tend
, (7.16)

where tend denotes the chosen final time for the simulation. The same procedure as above is

employed to obtain the particular value of the coefficient B. That can be achieved by setting up
θ−θR

max(θR)

∣∣
X=L

2
= 10−3 in order to ensure infinitesimal temperature gradient, and using Eq. (7.9)

yields

B =
10−3 ×max(θR) + θR − θamb

θamb (tend + 1)
. (7.17)

Considering the employed final time for the convergence study as tend = 10−3 and, also, recalling

Eq. (7.16) and Eq. (7.17), result in particular values of the user-defined parameters A = 0.2381

s−1 and B = −0.0012 s−1 for the manufactured solution.

To this end, the thermo-mechanical initial and boundary conditions are defined as

IC: px(X, t = 0) = ρR
AX2

L
, θ(X, t = 0) = θamb

(
B sin

(
πX

L
+ 1

))
. (7.18)

BC: px(X = 0, t) = 0; px(X = L, t) = AL, (7.19)

θ(X = 0, t) = θamb; θ(X = L, t) = θamb.

Figure 7.3 shows the expected second order convergence rate (e.g. L2 norm error) for the

conservative variables {vx, FxX , E} and the first Piola-Kirchhoff stress tensor PxX .

7.4 Blake problem

The Blake problem [107] is an example to illustrate the capability of an algorithm for capturing

a shock in solid media. Although the domain is a shell of inner radius ri = 0.1 m and outer

radius ro = 1 m (see Figure 7.4a), this problem can potentially be seen as a one-dimensional

example of shock propagation (along the aperture length) through a solid continua. A constant

in time boundary traction vector tB = −pn (with p = 1×106 Pa) is applied to the inner surface

of the shell, whereas the remaining surfaces are treated as traction free boundary conditions
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Figure 7.3: One-dimensional bar: L2 norm convergence rate for (a) velocity v, deformation gradient
FxX and total energy E; and (b) first Piola-Kirchhoff stress PxX at the particular time t = 1× 10−3

s. Results obtained using a neo-Hookean material model along with Mie-Grüneisen equation of
state using the proposed VCFVM methodology. The material properties used are Young’s modulus
E = 50.5 KPa, density ρR = 1000 kg/m3, h = 10 W/m.K, Cv = 1 J/Kg.K, α = 2.223 × 10−4 K−1

and αCFL = 0.3.

(a) (b)

Figure 7.4: Blake problem: (a) mesh of one-eight of a shell and (b) meshh of a needle

such that tB = 0. As reported in [107], for computational efficiency, the shell domain can be

simplified to a needle of 10 aperture angle, as shown in Figure 7.4b. In this case, all the bound-

ary faces introduced by this geometrical simplification are subjected to symmetry boundary

conditions (also known as roller support). The problem is simulated using the {p,F ,H, J}
Total Lagrangian VCFVM scheme in conjunction with acoustic Riemann-based upwinding sta-

bilisation and a linearised elastic neo-Hookean material model. The material properties are

described as density ρR = 3000 kg/m3, Young’s modulus E = 62.5 GPa and Poisson’s ratio

ν = 0.25.
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Figure 7.5: Blake problem: The spatial distribution of radial pressure at time t = 1.6 × 10−4 s
simulated using (a) piecewise constant reconstruction, (b) piecewise linear reconstruction and (c)
piecewise linear reconstruction with the Barth and Jespersen limiter. Results are obtained using the
{p,F ,H, J} Total Lagrangian Upwind–VCFVM scheme with a boundary traction vector tB = −pn
(with p = 1 × 106 Pa) constantly applied to the inner face. A neo-Hookean material is used with
density ρR = 3000 kg/m3, Young’s modulus E = 62.5 GPa, Poisson’s ratio ν = 0.25 and αCFL = 0.3.

The domain is discretised using a linear tetrahedral mesh.

Figure 7.5 shows the spatial distribution of radial pressure at time t = 1.6×10−4 s, as compared

to the analytical solution. As it can be observed, the first order VCFVM shows robust results

but with considerable numerical diffusion and, then, leads to a stable yet slightly inaccurate

solution (see Figure 7.5a). The second order VCFVM (using a piecewise linear reconstruction),

as seen in Figure 7.5b, gives much better resolution but fails near discontinuities, where non-

physical oscillations are generated. In order to control these spurious oscillations, the Barth

and Jespersen limiter [209] is implemented and consequently, a great improvement is observed

in Figure 7.5c.

7.5 Gas dynamics

In this section, three types of approximated Riemann solvers are introduced, followed by a series

of shock test cases in gas dynamics. One of the main objectives is to illustrate the performance

of the proposed algorithms in the vicinity of discontinuities.

7.5.1 Riemann solvers

Following the definition of Riemann solver in Section 4.3.2 of Chapter 4, three different types

of Riemann solvers particularising to one dimensional problems are presented as follows.



Chapter 7. One-dimensional problems: Fundamental studies 120

Acoustic Riemann solver

The general contact flux expressions using an acoustic Riemann solver, already presented in

Eq. (4.19), can be reduced to the one-dimensional case as

tx
C =

c+
p c
−
p

c+
p + c−p

(
t+x
c+
p

+
t−x
c−p

)
+

c+
p c
−
p

c+
p + c−p

(
p+
x − p−x

)
; (7.20a)

pC =
c+
p px

+ + c−p px
−

c+
p + c−p

+
t+x − t−x
c+
p + c−p

, (7.20b)

where tx = PxX is the one-dimensional first Piola and [·]+,− denotes the right and left sides of

an interface, respectively.

Harten-Lax-Van Leer Riemann solver

An alternative method to find the solution of a Riemann problem is the Harten-Lax-Van Leer

(HLL) Riemann solver, initially introduced by [226]. Here, the structure of the solution is

approximated by considering only two (shock) waves. This may result in a diffusive behaviour

of the solution since the star region (see Figure 4.7) is lumped into one single region as the

contact discontinuity is ignored. In this thesis, the one-dimensional case of HLL Riemann solver

is only considered. An extensive discussion on the multi-dimensional HLL Riemann solver can

be found at Refs. [232–234].

In this case, the contact fluxes can be obtained by application of Rankine-Hugoniot jump

condition as

FCHLL =


F− vx ≤ SL

SRF−−SLF++SLSR(UR−UL)
SR−SL SL ≤ vx ≤ SR

F+ vx ≥ SR

(7.21)

where SL and SR are the speed of the left and the right waves and v is the flow speed approx-

imated as vx = x+−x−
t . In fact, there are several ways to estimate the SL and SR wave speeds

[200]. For simplicity, these speeds are defined as SL = c−p and SR = c+
p [235]. In fact, the

Rankine-Hugoniot jump condition is applied to all conservative variables and their correspond-

ing fluxes which is different from an acoustic Riemann solver where the jump condition only

applies to the conservation of linear momentum. Using Eq. (7.21) for the system of equations

(7.1), the contact fluxes can be obtained as

tx
C =

c+
p tx
− − c−p tx+ − c−p c+

p (px
+ − px−)

c+
p − c−p

; (7.22a)

px
C =

c+
p px

− − c−p px+ − c−p c+
p

(
F+
xX − F

−
xX

)
c+
p − c−p

; (7.22b)

tx
Cpx

C =
c+
p tx
−p− − c−p tx+p+ − c−p c+

p (E+ − E−)

c+
p − c−p

, (7.22c)
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Figure 7.6: Sod’s shock tube: Problem setup

Rusanov Riemann solver

Rusanov [236] proposed another very simple but effectively useful approximation for the contact

fluxes as

FCRus =
1

2

(
F− +F+

)
− 1

2
Smax

(
U+ − U−

)
, (7.23)

where Smax stands for the maximum wave speed throughout the domain and is defined as

Smax = max{|c−p |, |c+
p |}. (7.24)

The choice of cp and cs can play a crucial role in the accuracy of this approximation. In this

work, and for simplicity, the wave speeds presented in Eq. (4.20) are taken into account. In

the case of a one-dimensional isothermal process, the Rankine-Hugoniot jump condition can be

derived for the conservation of linear momentum and as a result, the contact fluxes render

tCRus =
1

2

(
t−x + t+x

)
+

1

2
Smax

(
p+
x − p−x

)
; (7.25a)

pCRus =
1

2

(
p−x + p+

x

)
+

1

2Smax

(
t+x − t−x

)
. (7.25b)

Notice that the above approximated contact fluxes (Eq. (7.25) and Eq. (7.22c)) are the simpli-

fied one-dimensional versions of Eq. (7.20) with a relatively more robust behaviour, applicable

to be tested for one-dimensional examples.

7.5.2 Sod’s shock tube

A very well-known benchmarking example in the context of gas dynamics is the Sod’s shock

tube, initially introduced by [237], where the behaviour of an ideal gas subjected to a discon-

tinuous initial condition is investigated. A tube of length L = 2 m is separated by a diaphragm

into two halves. Each half contains an ideal gas at rest with different initial states (see Figure

7.6) where a free flow boundary condition is considered.
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Figure 7.7: Sod’s shock tube: Comparing the solutions obtained by the proposed approximated
Riemann solvers with the analytical solution for (a) velocity and (b) pressure at t = 0.25 s. Results
obtained for an ideal gas using the proposed VCFVM methodology with 100 elements and Barth-

Jespersen limiter. The material properties used are ρR = 1 kg/m3, Γ0 = 0.4 and αCFL = 0.4.

The diaphragm is ruptured at t = 0 in order to let the gases get interacted and that, this

triggers the generation of shock waves. An ideal gas is used with density of ρR = 1 kg/m3 and

Mie-Grüneisen coefficient Γ0 = 0.4.

Figure 7.7 shows the comparison between the analytical solution [200] and the numerical solu-

tions obtained using the three proposed approximated Riemann solvers at time t = 0.25 s. The

wave patterns of this example is a left rarefaction, contact discontinuity at the middle (inter-

mediate wave) and a right shock wave. In general, the Rusanov Riemann solver captured the

shock waves more accurately with respect to the other two approximated Rieman solvers. The

acoustic Riemann solver has shown bigger overshoots/undershoots in the vicinity of the shock

wave and the HLL Riemann solver seems to be more diffusive in capturing the rarefaction. It

must be mentioned that adapting other nonlinear Riemann solvers (e.g. Roe’s Riemann solver)

to the numerical approximation could improve the resolution of the solution in the vicinity

of shocks [200]. Since the Rusanov Riemann solver shows reasonably more accurate results,

the variation of velocity, Jacobian (FxX), total energy and pressure of the ideal gas along the

centerline of the tube length is shown in Figure 7.8 at time t = 0.25 s. It can be observed that

the Rusanov Riemann solver has convincingly captured the solution in the vicinity of shock

waves for all the variables of interest.

7.5.3 Left Woodward-Colella blast test

This example, initially introduced by [238], resembles the geometry of the Sod’s shock tube

but considering different initial conditions. The gases on the left and right side of the tube are

initially at rest with different states (FLxX = FRxX = 1 and pL = −1000 Pa and pR = −0.01 Pa).

The initial severe jump in pressure can be imposed through the total energy (EL = 2500 Pa
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Figure 7.8: Sod’s shock tube: Comparison between the analytical and numerical solution obtained
using Rusanov Riemann solver for (a) velocity; (b) Jacobian (FxX); (c) total energy; and (d) pressure
at t = 0.25 s. Results obtained for an ideal gas using the proposed VCFVM methodology with 100
elements and Barth and Jespersen limiter. The material properties used are ρR = 1 kg/m3, Γ0 = 0.4

and αCFL = 0.4.

and ER = 0.025 Pa). The diaphragm is ruptured at t = 0 allowing the interaction of the gases.

An ideal gas is used with density of ρR = 1 kg/m3 and Mie-Grüneisen coefficient Γ0 = 0.4.

Figure 7.9 shows the comparison of analytical solution [200] versus the numerical solutions

obtained by the proposed three approximated Riemann solvers at time t = 0.012 s. The

similar wave patterns can be observed as the previous example of Sod’s shock tube. This leads

to the conclusion that the Rusanov Riemann solver has more accurately captured the shock

waves against the other two approximated Riemann solvers. The acoustic Riemann solver has

shown more oscillations close to the shock wave and the HLL Riemann solver remains the

diffusive behaviour, particularly for the rarefaction wave. To further investigate the behaviour

of Rusanov Riemann solver, the distribution of velocity, Jacobian (FxX), total energy and
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Figure 7.9: Left Woodward-Colella blast test: Comparing the solutions obtained by the proposed
approximated Riemann solvers with the analytical solution for (a) velocity and (b) pressure at t =
0.012 s. Results obtained for an ideal gas using the proposed VCFVM methodology with 100 elements
and Barth-Jespersen limiter. The material properties used are ρR = 1 kg/m3, Γ0 = 0.4 and αCFL =

0.4.

pressure along the centerline of the tube length at time t = 0.012 s is depicted in Figure 7.10

in which the shock waves are well captured for all the variables of interest.

7.5.4 Right Woodward-Colella blast test

This example is geometrically analogous to the left Woodward-Colella blast test, but with

different initial conditions, aiming at generating a different shock wave pattern. The gases on

the left and right side of the tube are initially at rest with dissimilar states (FLxX = FRxX = 1

and pL = −0.01 Pa and pR = −100 Pa). The initial jump in pressure can be imposed through

the total energy (EL = 0.025 Pa and ER = 250 Pa). The diaphragm is ruptured at t = 0

allowing the generation of the shock waves. An ideal gas is used with density of ρR = 1 kg/m3

and Mie-Grüneisen coefficient Γ0 = 0.4. Figure 7.11 shows the comparison of the analytical

solution [200] against the numerical solutions obtained by the three proposed approximated

Riemann solvers at time t = 0.035 s. A left shock wave and a right rarefaction wave is the wave

pattern generated in this example. It can be similarly concluded that the Rusanov Riemann

solver has outperformed the acoustic and HLL Riemann solvers.

Figure 7.12 shows the distribution of the velocity, Jacobian (FxX), total energy and pressure

along the centerline of the tube length at time t = 0.035 s where the shocks are well captured

using the approximated Rusanov Riemann solver.

7.6 Conclusion

In this chapter, a set of one-dimensional examples are investigated with the objective of assess-

ing the fundamental characteristics of the proposed numerical algorithm. A spatial convergence
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Figure 7.10: Left Woodward-Colella blast test: Comparison between the analytical and numerical
solutions obtained using Rusanov Riemann solver for (a) velocity; (b) Jacobian (FxX); (c) total
energy; and (d) pressure at t = 0.25 s. Results obtained for an ideal gas using the proposed VCFVM
methodology with 100 elements and Barth and Jespersen limiter. The material properties used are

ρR = 1 kg/m3, Γ0 = 0.4 and αCFL = 0.4.

study is carried out in which second order accuracy for velocity, strains and stresses and the

temperature is observed. In addition, the employed numerical methodology has shown excellent

behaviour in the case of dealing with severe shocks, in particular case of isothermal elasticity

and gas dynamics.



Chapter 7. One-dimensional problems: Fundamental studies 126

-1 -0.5 0 0.5 1
X (m)

-7

-6

-5

-4

-3

-2

-1

0

1

V
el

oc
ity

 (
m

/s
)

-0.26 -0.25 -0.24 -0.23 -0.22 -0.21 -0.2 -0.19
X (m)

-6.35

-6.3

-6.25

-6.2

-6.15

-6.1

-6.05

-6

-5.95

V
el

oc
ity

 (
m

/s
)

Velocity at t=0.035 sec

(a)

-1 -0.5 0 0.5 1
X (m)

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

P
re

ss
ur

e 
(N

/m
2
)

-0.26 -0.25 -0.24 -0.23 -0.22 -0.21 -0.2 -0.19
X (m)

-58

-56

-54

-52

-50

-48

-46

-44

P
re

ss
ur

e 
(N

/m
2
)

Pressure at t=0.035 sec

(b)

Figure 7.11: Right Woodward-Colella blast test: Comparing the solutions obtained by the proposed
approximated Riemann solvers with the analytical solution for (a) velocity and (b) pressure at t =
0.035 s. Results obtained for an ideal gas using the proposed VCFVM methodology with 100 elements
and Barth-Jespersen limiter. The material properties used are ρR = 1 kg/m3, Γ0 = 0.4 and αCFL =

0.4.
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Figure 7.12: Right Woodward-Colella blast test: Comparison between the analytical and numerical
solutions obtained using Rusanov Riemann solver for (a) velocity; (b) Jacobian (FxX); (c) total
energy; and (d) pressure at t = 0.035 s. Results obtained for an ideal gas using the proposed
VCFVM methodology with 100 elements and Barth and Jespersen limiter. The material properties

used are ρR = 1 kg/m3, Γ0 = 0.4 and αCFL = 0.4.



Chapter 8
Multi-dimensional problems:
Fundamental studies

8.1 Introduction

In this chapter, a set of three-dimensional problems are analysed in order to assess the fun-

damental properties of proposed {p,F ,H, J, η orE} Vertex-Centred Finite Volume method

(VCFVM) and Smooth Particle Hydrodynamics (SPH) algorithms. That includes the spatial

convergence of both numerical methodologies (Section 8.2), conservation properties of the field

variables (Section 8.3), demonstration of the robustness of the both proposed numerical algo-

rithms through a challenging benchmark example (Section 8.4) and, finally, investigation of the

capability of the algorithms in handling incompressibility (Section 8.5).

8.2 Spatial convergence

8.2.1 Expanding cube

The main objective of this example is to show the convergence behaviour of the proposed {p,

χ, E} VCFVM and SPH methodologies. A cube of unit side length (Figure 8.1) is subjected

to a thermo-mechanical deformation process through the following mapping and temperature

profiles  x(X, t) = At
L (X ·X) I +X; 0 ≤ |X| ≤ L,

θ(X, t) = Bθamb sin
(
πX
L

)
(t+ 1) + θamb,

(8.1)

where L = 1 m, θamb = 293.15 K denotes the ambient temperature, I = [1, 1, 1]T and A =

0.2381 s−1 and B = −0.0012 s−1 are constant coefficients, obtained in Section 7.3 in order

for the particular case of linear thermo-elasticity. Taking time derivative and gradient of the

128
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Figure 8.1: Expanding cube: Problem configuration.

mapping profile gives linear momentum and deformation gradient, respectively, as follows

p(X, t) =
ρRA

L
(X ·X) I; (8.2)

F (X, t) =
2At

L
X + I, (8.3)

where X = X ⊗ (E1 +E2 +E3) and E1 = [1, 0, 0], E2 = [0, 1, 0], E3 = [0, 0, 1]. The cor-

responding mechanical and thermal initial conditions for linear momentum, temperature (see

Figures 8.2) and deformation gradient can then be identified as follows

p(X, t = 0) =
ρRA

L
(X ·X) I; (8.4a)

F (X, t = 0) = I; (8.4b)

θ(X, t = 0) = θamb

(
B sin

(
πX

L

)
+ 1

)
. (8.4c)

Symmetric mechanical boundary conditions corresponding to the given mapping at facesX = 0,

Y = 0 and Z = 0 and free boundary conditions at faces X = 1, Y = 1 and Z = 1 are taken

into account. The thermal boundary conditions will also be Dirichlet type at faces X = 0 and

X = 1 as θ = θamb and free boundary (zero-flux) for the rest of the faces.

Recalling Eq. (2.10) and Eq. (2.46), the expressions for computing body force fR and heat

source term sR are as follows

fR =
∂p

∂t
−DIV(P ); (8.5)

sR = θη̇ + DIV (Q) . (8.6)
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Figure 8.2: Expanding cube: Initial conditions.

Looking in Equations (8.5) and (8.6), and recalling the expressions for the linearised first Piola

Eq. (3.69) and the linearised entropy Eq. (3.70), it is essential to compute the derivatives

presented in Table 8.1 in order to achieve explicit expressions for the source terms. Therefore,

substituting the given linear momentum and temperature profile to the set of {p, F , H, J , E}
equations and also with the aid of Equations presented in Table (8.1), the body force and heat
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Table 8.1: Manufacturing solution: Required derivatives to obtain the source terms

Variable Space derivatives Time derivatives

p ∇0p = 2AρR
L X

∂p
∂t = 0

F DIVF = 2At
L I ∂F

∂t = 2A
L X

θ DIV(θI) =
[
Bθamb(t+ 1) πLcos

(
πX
L

)]
E1

∂θ
∂t = Bθamb sin

(
πX
L

)

source term yields

fR =− (2µ+ λ)

(
2At

L

)
I +

[
BCvΓ0θamb

π

L
cos

(
πX

L

)
(t+ 1)

]
E1; (8.7)

sR =θ

(
B

θR
Cvθamb sin

(
πX

L

)
+

2ACvΓ0

L
(X + Y + Z)

)
︸ ︷︷ ︸

η̇

+ (8.8)

Bhθamb

(π
L

)2
(t+ 1) sin

(
πX

L

)
︸ ︷︷ ︸

DIVQ

,

where θ is defined in Equation (8.1b). Figure 8.3 depicts the expected second order convergence

pattern (L2 norm error) for the components of the linear momentum, diagonal components of

the first Piola-Kirchhoff stress tensor and also temperature. It is interesting to note that

the SPH methodology requires finer grid size (the characteristic length defining the particle

spacing) in comparison with the VCFVM. This is expected as we know the SPH algorithm is

prone to more diffusive behaviour, depending on the kernel approximation and its smoothing

length. However, the VCFVM algorithm provides a sufficient number of neighbours for a control

volume in which any field variable can be properly approximated. Additionally, a slightly less

accurate solution (with the same slope but a higher translation error) can be observed for the

SPH methodology which, again, stems from its diffusive behaviour.
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Figure 8.3: Expanding cube: L2 norm convergence of (a) Linear momentum; (b) first Piola-
Kirchhoff stress tensor components; and (c) Temperature at a particular time t = 0.001 s. Results
obtained using a neo-Hookean constitutive model along with Mie-Grüneisen equation of state using
the proposed total energy-based SPH methodology. The material properties used are Young’s mod-
ulus E = 50.05 KPa, density ρR = 1000 kg/m3, thermal conductivity h = 10 W/m.K, Specific heat

capacity Cv = 1 J/Kg.K, thermal expansion coefficient α = 2.223× 10−4 K−1 and αCFL = 0.3.

8.3 Conservation

8.3.1 L-shaped block

The motion of a L-shaped block (Figure 8.4) is investigated initially introduced by [78] and,

then, studied by [3, 6, 7, 118, 239, 240], subjected to time-dependent forces (mechanical Neu-

mann boundary condition) on two of its sides and is then left free flying in space

F1(t) = −F2(t) = (150, 300, 450)T p(t); p(t) =


t 0 ≤ t < 2.5

5− t 2.5 ≤ t < 5

0 t ≥ 5

,

Figure 8.4: L-shaped block: Problem setup
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(a) 2× 6× 4 (b) 3× 10× 6 (c) 12× 40× 24 (d) 20× 66× 40

(e)

Figure 8.5: L-shaped block: mesh refinement of deformed states with pressure contour plots at time
t = 7.7 s for four different mesh sizes (a) h = 1.67 m; (b) h = 1 m; (c) h = 0.25 m and (d) h = 0.15
m. Results obtained using a neo-Hookean constitutive model along with Mie-Grüneisen equation
of state using the proposed total energy-based VCFVM methodology. The material properties used
are Young’s modulus E = 50.05 KPa, density ρR = 1000 kg/m3, Poisson’s ratio ν = 0.3, thermal
conductivity h = 10 W/m.K, Specific heat capacity Cv = 1 J/Kg.K, thermal expansion coefficient

α = 2.223× 10−4 K−1 and αCFL = 0.3.

while the block is thermally insulated from the environment. A thermo-elastic neo-Hookean

material model along with Mie-Grüneisen equation of state is employed with Young’s modulus

E = 50.05 KPa, density ρR = 1000 Kg/m3, Poisson’s ratio ν = 0.3, thermal conductivity

h = 10 W/m.K, specific heat capacity Cv = 1 J/Kg.K and thermal expansion coefficient

α = 2.223 × 10−4 K−1 where the block has an initial homogeneous temperature distribution

θR = 293.15 K. The main objective of this example is to computationally demonstrate the long

term preservation of linear momentum, angular momentum and global total energy.

A mesh refinement study for the block is carried out where pressure contour plots are shown in

Figure 8.5 at time t = 7.7 s. In addition, displacement and velocity evolution at the material

position X = [0, 10, 0]T are plotted for three different meshes in Figure 8.6.

In order to benchmark the numerical solution, Figure 8.7 depicts a comparison between the

proposed total energy-based VCFVM and SPH methodologies. The temperature and pressure

distributions are presented at the physical time of t = 11 s and a very good agreement can be

observed between the results. Figures 8.8a and 8.8c illustrate the linear momentum and global

total energy preservations. The latter proves the satisfaction of first law of thermodynamics

as the total energy grows due to the implication of the external forces (tractions) and, then,

remains constant once the tractions are released. The evolution of the total kinetic energy and

the total internal energy are also depicted. The sum is conserved, but there is an irreversible

transfer from the first to the second because of conduction (which is dissipative). The average

value (around which the quantities fluctuate) decrease for the total kinetic energy and increase

for the total internal energy, and the latter corresponds to an increase of the (spatial) average

temperature. In this case, since we have a free-flying structure, the long-term solution is a block

in rigid body motion with a uniform temperature (higher than the initial one), so the kinetic
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(b) Z-Velocity evolution

Figure 8.6: L-shaped block: time evolution of (a) horizontal displacement uz and (b) horizontal
velocity vz at material point X = [0, 10, 0]T . Results obtained using a neo-Hookean constitutive
model along with Mie-Grüneisen equation of state using the proposed total energy-based VCFVM
methodology. The material properties used are Young’s modulus E = 50.05 KPa, density ρR = 1000
kg/m3, Poisson’s ratio ν = 0.3, thermal conductivity h = 10 W/m.K, Specific heat capacity Cv = 1

J/Kg.K, thermal expansion coefficient α = 2.223× 10−4 K−1 and αCFL = 0.3.

(a)

Figure 8.7: L-shaped block: Comparison of deformed shape plotted with temperature and pressure
distributions using the total energy-based VCFVM and SPH methodologies at time t = 11 s. Results
obtained using a neo-Hookean constitutive model along with Mie-Grüneisen equation of state with
material properties Young’s modulus E = 50.05 KPa, density ρR = 1000 kg/m3, Poisson’s ratio
ν = 0.3, thermal conductivity h = 10 W/m.K, specific heat capacity Cv = 1 J/Kg.K, thermal

expansion coefficient α = 2.223× 10−4 K−1 and αCFL = 0.3.
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Figure 8.8: L-shaped block: Time evolution of (a) linear momentum; (b) angular momentum;
(c) global total energy; and (d) global entropy. Results obtained using a neo-Hookean constitutive
model along with Mie-Grüneisen equation of state using the proposed total energy-based VCFVM
methodology. The material properties used are Young’s modulus E = 50.05 KPa, density ρR = 1000
kg/m3, Poisson’s ratio ν = 0.3, thermal conductivity h = 10 W/m.K, specific heat capacity Cv = 1

J/Kg.K, thermal expansion coefficient α = 2.223× 10−4 K−1 and αCFL = 0.3.

energy may not tend towards zero but a positive constant value. In addition, the time evolution

of angular momentum is shown in Figure 8.8b where it preserved once the external forces are

released. Figure 8.8d depicts the evolution of global entropy which is growing positively all the

time as a result of increasing temperature within the insulated free-flying structure. A sequence

of the deformed states are shown in Figure 8.9 where a very smooth temperature and pressure

distributions can be observed. In fact, the temperature field shows how the heat is conducting

through the insulated body as results of the applied initial temperature gradient.
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Figure 8.9: L-shaped block: A sequence of deformed configuration with temperature and pressure
distributions at times t = 10× {0, 1, 2, 2.5, 3} s (left to right) and t = 2× {0, 1, 2, 3, ..., 19} s (left to
right-top to bottom), respectively. Results obtained using a neo-Hookean constitutive model along
with Mie-Grüneisen equation of state using the proposed total energy-based VCFVM methodology.
The material properties used are Young’s modulus E = 50.05 KPa, density ρR = 1000 kg/m3,
Poisson’s ratio ν = 0.3, thermal conductivity h = 10 W/m.K, specific heat capacity Cv = 1 J/Kg.K,

thermal expansion coefficient α = 2.223× 10−4 K−1 and αCFL = 0.3.
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8.3.2 Rotating Disk

This example presents the rotation of a free-flying disk (no mechanical Dirichlet or Neumann

boundary conditions) shown in Figure 8.10, which is initialised by the following velocity field

vR(X) = ωR ×X, with ωR = [1, 1, 1]T . (8.9)

The disk is thermally insulated from the environment except for a quarter of its lateral surface

(see Figure 8.10) in which a thermal Neumann boundary condition (sinusoidal heat flux Q) is

imposed as

Q =
2000

A0
f(t); f(t) =

sin
(
π
2 t
)

t ≤ 4s

0 t > 4s
, (8.10)

with A0 considered as the area where the heat flux is applied. A thermo-elastic neo-Hookean

material model along with Mie-Grüneisen equation of state is employed with Young’s modulus

E = 1474 Pa, density ρR = 10 Kg/m3, Poisson’s ratio ν = 0.478, thermal conductivity h = 10

W/m.K, specific heat capacity Cv = 10 J/Kg.K and thermal expansion coefficient α = 2.223×
10−4 K−1 where the disk has an initial homogeneous temperature distribution θR = 308.15 K.

The main objective of this example is to computationally demonstrate the satisfaction of the

first law of thermodynamics along with preservation of conservative variables.

Figure 8.11 illustrates a particle refinement for the disk with pressure contour plots at time

t = 1.35 s. It is evident how the pressure resolution is enhanced through the particle refine-

ments. Figure 8.12 shows the comparison between the total energy-based and the entropy-based

formulations using the proposed SPH methodology for three different particle refinements. The

time evolution of the vertical velocity vZ and temperature at the material point X = [2, 4, 0]T

 

Figure 8.10: Rotating disk: Problem setup
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(a) 850 (b) 4500 (c) 78200 (d) 16000 Particles

Figure 8.11: Rotating disk: Particle refinement of deformed states with pressure contour plots at
time t = 1.35 s for four different particle spacing (a) h = 0.12 m; (b) h = 0.07 m; (c) h = 0.06
m and (d) h = 0.05 m. Results obtained using a nearly incompressible thermo-elastic neo-Hookean
constitutive model along with Mie-Grüneisen equation of state using the proposed entropy-based
SPH methodology. The material properties used are Young’s modulus E = 1474 Pa, density ρR = 10
kg/m3, Poisson’s ratio ν = 0.478, thermal conductivity h = 10 W/m.K, specific heat capacity

Cv = 10 J/Kg.K, thermal expansion coefficient α = 2.223× 10−4 K−1 and αCFL = 0.3.
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Figure 8.12: Rotating disk: Time evolution of the components of (a) vertical velocity vZ and (b)
temperature at material point X = [2, 4, 0]T m. Results obtained using the total energy-based and
entropy-based system of equations considering a nearly incompressible thermo-elastic neo-Hookean
constitutive model along with Mie-Grüneisen equation of state discretised by the proposed SPH
methodology. The material properties used are Young’s modulus E = 1474 Pa, density ρR = 10
kg/m3, Poisson’s ratio ν = 0.478, thermal conductivity h = 10 W/m.K, specific heat capacity

Cv = 10 J/Kg.K, thermal expansion coefficient α = 2.223× 10−4 K−1 and αCFL = 0.3.

m is presented as a very good agreement can be observed between the obtained results. Figure

8.13 compares the solution of the proposed entropy-based SPH and VCFVM methodologies.

An extremely good agreement can be observed between the results in terms of deformation and

pressure and temperature distributions.

Figures 8.14a shows how the components of linear momentum are preserved as expected, up to

zero machine accuracy. The evolution of the components of angular momentum is also depicted

in Figure 8.14b where the initial values are conserved. Figure 8.14c presents the evolution of
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Figure 8.13: Rotating disk: Comparison of deformed shapes plotted with pressure and temperature
distributions using the entropy-based SPH and VCFVM methodologies at time t = 4 s. Results
obtained using a nearly incompressible thermo-elastic neo-Hookean constitutive model along with
Mie-Grüneisen equation of state with material properties Young’s modulus E = 1474 Pa, density
ρR = 10 kg/m3, Poisson’s ratio ν = 0.478, thermal conductivity h = 10 W/m.K, specific heat

capacity Cv = 10 J/Kg.K, thermal expansion coefficient α = 2.223× 10−4 K−1 and αCFL = 0.3.

the global total energy. It has initially increased and, then, decreased due to the implication

of the employed sinusoidal heat flux. This is expected as the disk is only exchanging heat

through a quarter of its boundary in which the heat flux is imposed and the rest of the body is

insulated. Therefore, the total energy has got the trend of the sinusoidal heat flux and, then,

remained constant once the boundary heat flux is removed. Additionally, the evolution of total

kinetic energy and total internal energy are shown once the total energy is conserved. The

fluctuations, as a result of disk’s vibration, of the total kinetic energy and the total internal

energy are gradually damped due to the diffusive nature of heat conduction. The (very) long-

term solution is expected to be a disk with a unified temperature, slightly higher than the

reference temperature. This is due to the relatively small generated heat by the deformation

which remains in the insulated body and also, the particular imposed heat flux to the disk.

Figure 8.14d shows the time evolution of global entropy which has initially followed the trend

of the imposed heat flux and, then, gradually increased, once the heat flux is removed. This

can be seen as the satisfaction of the second law of thermodynamics.

A sequence of deformed configurations are depicted in Figure 8.15 with very smooth pres-

sure and temperature distributions. The implication of the imposed sinusoidal heat flux can

clearly be observed through the evolution of temperature. The final state of the deformation

demonstrates the nearly uniform temperature distribution with a value slightly higher than the

reference temperature. Moreover, the pressure distribution pattern illustrates the contraction

and expansion of the inner circle in the middle of the disk during the deformation process.
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Figure 8.14: Rotating disk: Time evolution of the components of (a) linear momentum; (b) angular
momentum; (c) global total energy; and (d) global entropy. Results obtained using a nearly incom-
pressible thermo-elastic neo-Hookean constitutive model along with Mie-Grüneisen equation of state
using the proposed entropy-based SPH methodology. The material properties used are Young’s mod-
ulus E = 1474 Pa, density ρR = 10 kg/m3, Poisson’s ratio ν = 0.478, thermal conductivity h = 10
W/m.K, specific heat capacity Cv = 10 J/Kg.K, thermal expansion coefficient α = 2.223×10−4 K−1

and αCFL = 0.3.
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Figure 8.15: Rotating disk: A sequence of deformed configurations with temperature and pressure
distributions at time t = 0.5×{0, 1, 2, 3, ..., 19} s (left to right-top to bottom) and t = 3.3×{0, 1, 2, 3}
s (left to right), respectively. Results obtained using a nearly incompressible thermo-elastic neo-
Hookean constitutive model along with Mie-Grüneisen equation of state using the proposed entropy-
based SPH methodology. The material properties used are Young’s modulus E = 1474 Pa, density
ρR = 10 kg/m3, Poisson’s ratio ν = 0.478, thermal conductivity h = 10 W/m.K, specific heat

capacity Cv = 10 J/Kg.K, thermal expansion coefficient α = 2.223× 10−4 K−1 and αCFL = 0.3.
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8.4 Robustness

8.4.1 Nearly incompressible twisting column: Isothermal elasticity

A challenging benchmark test, already explored in References [4, 6, 7, 16, 18, 22, 118], is pre-

sented aimed at examining the applicability and robustness of the proposed SPH and VCFVM

algorithms in an isothermal process. A column with a unit square cross section is twisted,

initialising with a sinusoidal angular velocity field relative to the column’s origin expressed as

ω0 = [0, 0, Ω sin(πZ/2L)]T , where Ω = 105 rad/s and L = 6 m is the length of the column (see

Figure 8.16). An isothermal nearly incompressible neo-Hookean material is considered with

Young’s modulus E = 1.7× 107 Pa, density ρ0 = 1.1× 103 kg/m3 and Poisson’s ratio ν = 0.45.

 

Figure 8.16: Twisting column: Problem setup

Figure 8.17 illustrates a mesh/particle refinement for the column. A very smooth pressure

distribution can be observed for the deformed state of the column at time t = 0.1 s. The

resolution of the solution is clearly enhanced through the refinement process. It is also inter-

esting to note that the optical convergence of both VCFVM and SPH numerical methodologies

are evident in such a way that both obtained deformation and pressure resolutions are prac-

tically identical, from the very coarse to the very fine solutions. Figure 8.18 monitors the

evolution of the horizontal displacement and horizontal velocity components at the material

position X = [0.5, 0.5, 6]T m. The main purpose of this plot is to illustrate how the numerical

methodologies preserve perfect axial rotation without introducing out-of-axis characteristics,

both within zero machine accuracy.
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(a) 4× 4× 24 (b) 8× 8× 48 (c) 20× 20× 120 (d) 40× 40× 240

Figure 8.17: Twisting column: Mesh/Particle refinement of the deformed state with pressure
contour plots at time t = 0.1 s for four different mesh/particle spacing (a) h = 0.24 m; (b) h = 0.125
m; (c) h = 0.05 m and (d) h = 0.025 m. Results obtained using an isothermal nearly incompressible
neo-Hookean constitutive model using the proposed VCFVM and SPH methodologies. The material
properties used are Young’s modulus E = 1.7 × 107 Pa, density ρR = 1100 kg/m3, Poisson’s ratio

ν = 0.45 and αCFL = 0.3.
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Figure 8.18: Twisting column: Time evolution of the components of (a) horizontal displacement
uZ and (b) horizontal velocity vZ at material point X = [0.5, 0.5, 6]T m. Results obtained using
the VCFVM and SPH methodologies considering an isothermal nearly incompressible neo-Hookean
constitutive model with Young’s modulus E = 1.7 × 107 Pa, density ρR = 1100 kg/m3, Poisson’s

ratio ν = 0.45 and αCFL = 0.3.

For benchmarking purposes, the mixed-based {p,F ,H, J} Upwind-VCFVM and Upwind-

SPH schemes are compared with Jameson-Schmidt-Turkel (JST)-VCFVM [16], JST-SPH [4],

Streamline Upwind Petrov Galerkin (SUPG)-SPH [5], Petrov Galerkin (PG)-FEM [23] and

Constrained-TOUCH [6] (see Figure 8.19). Remarkably, the results obtained using different

methodologies are in an extremely good agreement in terms of deformation and pressure field.

To make the twisting column problem significantly more challenging, we increased the initial

angular velocity now to Ω = 180 rad/s. Figure 8.20 shows the time evolution of displace-

ment and velocity of the material position X = [0.5, 0.5, 6] for three different mesh/particle

refinements using VCFVM and SPH schemes.

It is interesting to note that the mesh refinement for the VCFVM scheme converges from

the lower bound limit whilst the particle refinement for the SPH scheme converges from the

upper bound limit. The optimal convergence of the solution for both numerical schemes can

be observed. It is essential to note that the SPH results have shown a more diffusive behaviour

than the VCFVM, as it is expected.

Figure 8.21 depicts the deformed states of the column using both VCFVM and SPH method-

ologies in which a very smooth pressure distribution can be observed. It is interesting how the

deformation of the highly twisted column is similarly well captured for both VCFVM and SPH

schemes.
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(a) (b) (c) (d) (e) (f) (g)

Figure 8.19: Twisting column: Comparison of the deformed shaped plotted with pressure field at
time t = 0.1 s using different numerical methodologies (a) Upwind-VCFVM; (b) JST-VCFVM [16];

(c) Upwind-SPH; (d) JST-SPH (ε
(2)
p = 0 and ε

(4)
p = 1

8 ) [4]; (e) SUPG-SPH-H1 (τF = ∆t, ξF = 0.2,
τp = 0.1∆t) [5]; (f) PG-FEM [23]; and (g) Constrained-TOUCH [6]. Results obtained using an
isothermal nearly incompressible neo-Hookean constitutive model using the proposed VCFVM and
SPH methodologies. The material properties used are Young’s modulus E = 1.7 × 107 Pa, density

ρR = 1100 kg/m3, Poisson’s ratio ν = 0.45 and αCFL = 0.3.
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Figure 8.20: Twisting column: Time evolution of the components of (a) vertical displacement
uZ and (b) vertical velocity vZ at material point X = [0.5, 0.5, 6]T m. Results obtained using
three different mesh/particle refinements of 4× 4× 24, 8× 8× 48 and 12× 12× 72 with an increased
angular velocity expressed as ω0 = [0, 0, Ω sin(πZ/2L)]T , where Ω = 180 rad/s. An isothermal nearly
incompressible neo-Hookean constitutive model is considered with Young’s modulus E = 1.7 × 107

Pa, density ρR = 1100 kg/m3, Poisson’s ratio ν = 0.45 and αCFL = 0.3.
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Figure 8.21: Twisting column: Evolution of the deformed states with pressure contour plots for (a)
Upwind-VCFVM scheme on the top row ; and (b) Upwind-SPH scheme on the bottom row. Results
obtained using an increased angular velocity expressed as ω0 = [0, 0, Ω sin(πZ/2L)]T with Ω = 180
rad/s considering an isothermal nearly incompressible neo-Hookean constitutive model. The material
properties are Young’s modulus E = 1.7×107 Pa, density ρR = 1100 kg/m3, Poisson’s ratio ν = 0.45

and αCFL = 0.3.
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8.4.2 Nearly incompressible twisting cylinder: Entropic elasticity

In this section, we made the twisting column example more challenging by changing the geome-

try from a column to a hollow cylinder (see Figure 8.22). The main objective of this example is

 

Figure 8.22: Twisting cylinder: Problem setup

to assess the robustness of the proposed VCFVM and SPH algorithms in the case of a thermo-

mechanical problem, entropic elasticity in particular. The cylinder is initially twisted with the

same angular velocity used for the twisting column example (presented in Section 8.4.1) where

Ω = 180 rad/s is considered. The insulated structure is clamped at the bottom and the rest

of the cylinder moves freely. A nearly incompressible entropic-elastic neo-Hookean material

model is employed with the material properties Young’s modulus E = 1.7 × 107 Pa, density

ρ0 = 1.1× 103 kg/m3, Poisson’s ratio ν = 0.45, thermal conductivity h = 0.2 W/m.K, specific

heat capacity Cv = 100 J/Kg.K and thermal expansion coefficient α = 2.223×10−4 K−1 where

the hollow cylinder has an initial homogeneous temperature distribution θR = 293.15 K.

For benchmarking purposes, the solution of the mixed-based {p,F ,H, J, E} Upwind-VCFVM

and Upwind-SPH are compared together in Figure 8.23. It is remarkable to observe that the

obtained results are in an extremely good agreement in terms of temperature and pressure

fields. Additionally, the complex deformation of the cylindrical structure is analogously well

captured by both algorithms. Figure 8.24 shows the time evolution of the components of

displacement and velocity and also diagonal components of the first Piola-Kirchhoff stress

tensor at the material position X = [−0.45, 0, 3] for three different mesh/particle refinements

using the VCFVM schemes.
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Figure 8.23: Twisting cylinder: Comparison of deformed shapes plotted with pressure and temper-
ature distributions using the total energy-based SPH and VCFVM methodologies at time t = 0.022 s.
Results obtained using a nearly incompressible entropic-elastic neo-Hookean constitutive model with
material properties Young’s modulus E = 1.7×107 Pa, density ρ0 = 1.1×103 kg/m3, Poisson’s ratio
ν = 0.45, thermal conductivity h = 0.2 W/m.K, specific heat capacity Cv = 100 J/Kg.K, thermal

expansion coefficient α = 2.223× 10−4 K−1 and αCFL = 0.3.
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Figure 8.24: Twisting cylinder: Time evolution of the components of displacement u; (b) velocity v;
and and first Piola-Kirchhoff stress P at material point X = [−0.45, 0, 3]T m. Results obtained using
three different mesh/particle refinements of 1910, 11300 and 44200 cells/particles with an angular
velocity expressed as ω0 = [0, 0, Ω sin(πZ/2L)]T , where Ω = 180 rad/s. A nearly incompressible
entropic-elastic neo-Hookean constitutive model with material properties Young’s modulus E =
1.7 × 107 Pa, density ρ0 = 1.1 × 103 kg/m3, Poisson’s ratio ν = 0.45, thermal conductivity h = 0.2
W/m.K, specific heat capacity Cv = 100 J/Kg.K, thermal expansion coefficient α = 2.223 × 10−4

K−1 and αCFL = 0.3.
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The convergence of the solution through the refined computational domains is evident for the

evolution of displacement, velocity and the diagonal components of the first Piola stress tensor.

It must be noted that the solution with the coarse mesh is interestingly very much close to

solution with the fine mesh. This shows the capability of the proposed algorithms as it can

capture the solution of complex problems in a computationally efficient manner.

Figure 8.25 depicts the deformed states of the hollow cylinder using the VCFVM methodology.

The particular cylindrical shape of the structure results in an initial expansion which is due to

the high value of the initial angular momentum. The expansion is also related to the thermal

expansion coefficient (α) in such a way that the extremely large deformation of the cylinder

generates heat and, therefore, that increases the temperature of the insulated cylinder. Evolving

in time, the cylinder starts to form some wrinkles at the bottom in which a very smooth pressure

and temperature distributions can be observed.
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Figure 8.25: Twisting cylinder: A sequence of deformed configuration with temperature
distribution (side view) and pressure distribution (isometric and top view) at times t =
{0, 0.01, 0.017, 0.022, 0.023} s (left to right). Results obtained using three different mesh/parti-
cle refinements of 1910, 11300 and 44200 cells/particles with an angular velocity expressed as
ω0 = [0, 0, Ω sin(πZ/2L)]T , where Ω = 180 rad/s. A nearly incompressible entropic-elastic neo-
Hookean constitutive model with material properties Young’s modulus E = 1.7 × 107 Pa, density
ρ0 = 1.1× 103 kg/m3, Poisson’s ratio ν = 0.45, thermal conductivity h = 0.2 W/m.K, specific heat

capacity Cv = 100 J/Kg.K, thermal expansion coefficient α = 2.223× 10−4 K−1 and αCFL = 0.3.



Chapter 8. Multi-dimensional problems: Fundamental studies 151

8.5 Extension to incompressibility

8.5.1 Punch test

A perforated cylinder is initially punched on the middle-top face with a linear velocity field

expressed as v0 = −10[0, 0, Z/H]T m/s where H = 1 m (see Figure 8.26). A symmetric

 

(a)

 

(b)

Figure 8.26: Punch test: (a) Initial configuration; and (b) Planar 1/4th geometry

mechanical boundary condition (i.e. roller support) is set on the bottom of the cylinder whilst

the rest of boundaries are subjected to a free movement. The cylinder is also thermally insulated

from the environment. The main objective of this example is to show the capability of the

proposed VCFVM and SPH algorithms in alleviating spurious pressure modes in the case of

nearly incompressible scenarios. A nearly incompressible thermo-elastic neo-Hookean material

model along with Mie-Grüneisen equation of state is employed with the material properties

Young’s modulus E = 50.05 KPa, density ρR = 1000 Kg/m3, Poisson’s ratio ν = 0.499,

thermal conductivity h = 10 W/m.K, specific heat capacity Cv = 1 J/Kg.K and thermal

expansion coefficient α = 2.223 × 10−4 K−1 where the cylinder has an initial homogeneous

temperature distribution θR = 293.15 K.

Looking at Figure 8.27, it is evident that the {p, F } Upwind-SPH methodology suffers from

spurious temperature/pressure modes. The numerical oscillations, however, is alleviated using

the {p, F , H, J} Upwind-SPH algorithm in which very smooth temperature and pressure

fields can be observed. In fact, the additional conservation laws {H, J} provide more flexibility

into the algorithm such that we can avoid some numerical deficiencies. In particular, the J

equation is useful in the case of incompressible materials in order to avoid spurious pressure

oscillations. Moreover, H equation could be helpful to suppress bending locking. Figure 8.28

depicts a comparison between the proposed total energy-based SPH methodology with the in-

house mixed-based Vertex-Centred Finite Volume Method (VCFVM) in terms of pressure and

temperature distributions as a good agreement can be observed between the results.
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Figure 8.27: Punch test: A sequence of deformed configuration with temperature and pressure dis-
tributions using the mixed-based {p, F , E} and {p, F , H, J , E} total energy-based Upwind-SPH
methodology. Results obtained using a nearly incompressible thermo-elastic neo-Hookean constitu-
tive model along with Mie-Grüneisen equation of state. The material properties used are Young’s
modulus E = 50.05 KPa, density ρR = 1000 kg/m3, Poisson’s ratio ν = 0.499, thermal conductivity
h = 10 W/m.K, specific heat capacity Cv = 1 J/Kg.K, thermal expansion coefficient α = 2.223×10−4

K−1 and αCFL = 0.3.
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Figure 8.28: Punch test: Comparison of deformed shapes plotted with pressure and temperature
distributions using the total energy-based SPH and VCFVM methodologies at time t = 0.38 s.
Results are obtained using a nearly incompressible thermo-elastic neo-Hookean constitutive model
along with Mie-Grüneisen equation of state. The material properties used are Young’s modulus
E = 50.05 KPa, density ρR = 1000 kg/m3, Poisson’s ratio ν = 0.499, thermal conductivity h = 10
W/m.K, specific heat capacity Cv = 1 J/Kg.K, thermal expansion coefficient α = 2.223× 10−4 K−1

and αCFL = 0.3.
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Figure 8.29: Punch test: Time evolution of the components of (a) vertical velocity vZ and (b)
Component of first Piola-Kirchhoff stress tensor P11 at material point X = [0, 1, 1]T m. The total
energy-based VCFVM, the total energy-based SPH and entropy-based SPH algorithms are compared.
A nearly incompressible thermo-elastic neo-Hookean constitutive model is considered along with
Mie-Grüneisen equation of state with Young’s modulus E = 50.05 KPa, density ρR = 1000 kg/m3,
Poisson’s ratio ν = 0.499, thermal conductivity h = 10 W/m.K, specific heat capacity Cv = 1

J/Kg.K, thermal expansion coefficient α = 2.223× 10−4 K−1 and αCFL = 0.3.
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The time evolution of vertical velocity vZ and the first component of the first Piola-Kirchhoff

stress tensor P11 is depicted for two different mesh/particle refinements in Figure 8.29 using

three approaches consisting of the total energy-based VCFVM, the total energy-based SPH

and the entropy-based SPH schemes. A perfect agreement can be observed between the total

energy-based and the entropy-based SPH methodologies for velocity and stress component.

Moreover, the diffusive behaviour of the SPH scheme, as expected, is evident with respect to

the VCFVM algorithm through the spatial convergence of the solution. A sequence of the

deformed states of the cylinder with very smooth temperature and pressure distributions are

shown in Figure 8.30.

8.5.2 Incompressible twisting column

The main objective of this example is to assess the robustness of the proposed Artificial Com-

pressibility (AC) algorithms in the case of dealing with nearly/truly incompressible scenarios.

To achieve this, the challenging twisting column example is studied with the same problem

setup defined in Section 8.4.1.

Figure 8.31 depicts the qualitative comparison between the explicit Upwind-SPH scheme and

the SPH-AC algorithm (presented in Section 5.6.2). A larger numerical dissipation can be ob-

served introduced by the artificial compressibility algorithm due to the use of the (conservative)

Laplacian viscosity term described in Eq. (5.70). Moreover, as illustrated in Figure 8.31, the

column’s top view entails that the methodology preserves perfect axial rotation without intro-

ducing out-of-plane characteristics. A progressive mesh/particle refinement study is carried

out and shown in Figure 8.32. It is remarkable that the deformation pattern predicted with

a coarse discretisation agrees extremely well with the refined solution. The resolution of the

pressure field is evidently enhanced by refining the discretisation.

Figure 8.33 and 8.34 show the effects of adding pseudo viscosity term to the both VCFVM

and SPH artificial compressibility approaches, with the primary objective of speeding up the

iterative process of the algorithm. In fact, using the viscosity term dramatically reduces

the number of iterations required for convergence within the pseudo time integration when

solving truly incompressible solids. The L2 norm convergence of pressure has shown for each

value of Poisson’s ratio for the particular value of artificial viscosity αD = 0.2. In addition,

comparing Figure 8.33 with Figure 8.34 entails that the VCFVM-AC algorithm is converging

to the solution with less number of iterations rather than the SPH-AC scheme. This leads to

the conclusion that the VCFVM-AC algorithms have a better resolution than SPH-AC as it

might be due to the diffusive nature of the SPH method.

8.6 Conclusion

In this chapter, the fundamental properties of the proposed {p,F ,H, J, η orE} VCFVM and

SPH algorithms are assessed through several three-dimensional benchmarking examples. The

numerical algorithms have shown second order accuracy in space for velocity, stresses and tem-

perature. The conservation property of the numerical methodologies is also demonstrated. To
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Figure 8.30: Punch test: A sequence of deformed configurations with temperature (top view) and
pressure (isometric view) distributions at time t = 0.07 × {0, 1, 2, 3, ..., 17} s (left to right-top to
bottom), respectively. Results obtained using a nearly incompressible thermo-elastic neo-Hookean
constitutive model along with Mie-Grüneisen equation of state using the proposed total energy-
based SPH methodology. The material properties used are Young’s modulus E = 50.05 KPa, density
ρR = 1000 kg/m3, Poisson’s ratio ν = 0.499, thermal conductivity h = 10 W/m.K, specific heat

capacity Cv = 1 J/Kg.K, thermal expansion coefficient α = 2.223× 10−4 K−1 and αCFL = 0.3.
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Figure 8.31: Twisting column: A comparison between {p, F , H, p} artificial compressibility
approach (left column) and Explicit {p, F ,H, J} Upwind-SPH (right column), with isometric view
(top row) and top view (bottom row), at time t = 0.1 s. Results obtained with an angular velocity field
ω0 = [0, 0, Ω sin (πZ/2L)] where Ω = 105 rad/s and L = 6 m. A nearly incompressible neo-Hookean
constitutive model is employed with Young’s modulus E = 1.7 × 107 Pa, density ρ0 = 1.1 × 103

kg/m3, Poisson’s ratio ν = 0.4999 and αCFL = 0.3.

this end, the robustness of the numerical schemes has been examined through some challenging

examples in which extremely good behaviour is observed, even in the limiting case of nearly

and truly incompressibility.
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(a) (b) (c)

Figure 8.32: Twisting column: A sequence of mesh/particle refinement using the mixed-based {p,
F , H, p} VCFVM and SPH artificial compressibility algorithms at time step t = 0.1s: (a) 4×4×24,
(b) 6 × 6 × 36, and (c) 8 × 8 × 48 cells/particles. Results obtained with an angular velocity field
ω0 = [0, 0, Ω sin (πZ/2L)] where Ω = 105 rad/s and L = 6 m. A truly incompressible neo-Hookean
constitutive model is employed with Young’s modulus E = 1.7 × 107 Pa, density ρ0 = 1.1 × 103

kg/m3, Poisson’s ratio ν = 0.5 and αCFL = 0.3.
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Figure 8.33: Twisting column: The effect of incorporating Laplacian viscosity (Eq. (5.70)) to the
VCFVM artificial compressibility approach in different scenarios: (a) ν = 0.499, (b) ν = 0.4999, (c)
ν = 0.49999 and (d) ν = 0.5. Results obtained for the first step of Runge-Kutta time integrator
with an angular velocity field ω0 = [0, 0, Ω sin (πZ/2L)] where Ω = 105 rad/s and L = 6 m.
A neo-Hookean constitutive model is employed with Young’s modulus E = 1.7 × 107 Pa, density

ρ0 = 1.1× 103 kg/m3 and αCFL = 0.3.
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Figure 8.34: Twisting column: The effect of incorporating Laplacian viscosity (Eq. (5.70)) to the
SPH artificial compressibility approach in different scenarios: (a) ν = 0.499, (b) ν = 0.4999, (c)
ν = 0.49999 and (d) ν = 0.5. Results obtained for the first step of Runge-Kutta time integrator
with an angular velocity field ω0 = [0, 0, Ω sin (πZ/2L)] where Ω = 105 rad/s and L = 6 m.
A neo-Hookean constitutive model is employed with Young’s modulus E = 1.7 × 107 Pa, density

ρ0 = 1.1× 103 kg/m3 and αCFL = 0.3.



Chapter 9
Multi-dimensional problems:
Applications

9.1 Introduction

The aim of this chapter is to prove the applicability and robustness of the both proposed

{p,F ,H, J, η orE} Vertex-Centred Finite Volume method (VCFVM) and Smooth particle hy-

drodynamics (SPH) algorithms. To achieve this, a set of challenging practical examples with

either complex geometries or deformations are assessed. The chapter is divided into two cate-

gorises as of isothermal process (Section 9.2) and irreversible process (Section 9.2) under which

different practical examples are presented and discussed.

9.2 Isothermal process

9.2.1 Impact

This example is initially introduced by Taylor [241] aimed at determining the dynamic yield

stress of materials. It is then studied in many references as a benchmark example [6, 16, 17,

118, 239]. A circular copper bar of initial length L = 0.0324 m and of initial radius r = 0.0032

m impacts against a rigid frictionless wall with a dropping velocity of v0 = 227 m/s (see

Figure 9.1). The aim of this classical benchmark example is to assess the performance of

the proposed VCFVM and SPH algorithms in capturing large elastic-plastic deformations and

show its applicability in impact scenarios with application to metal forming [14]. A von Mises

hyperelastic-plastic material with isotropic hardening is employed with the material parameters

Young’s modulus E = 117 GPa, density ρ0 = 8.930×103 kg/m3, Poisson’s ratio ν = 0.35, yield

stress τ̄0
y = 0.4 GPa and hardening modulus H = 0.1 GPa.

Figure 9.2 shows both plastic strain and pressure fields together at time t = 80µs where

extremely smooth pressure and plastic strain distributions can be observed. In addition, a very

good agreement between the VCFVM and SPH results can be observed. It is worth noting that

the solutions obtained on the basis of the standard linear 4-noded tetrahedral element (being

160
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Figure 9.1: Taylor impact: Problem setup.

widely used in commercial packages) typically suffer from volumetric locking and spurious

pressure oscillations [42, 44] and the proposed algorithms evidently rectify these issues.

Figure 9.3 depicts the time evolution of X coordinate at the material point X = [0.0032, 0, 0]T

at the bottom of the copper bar. The VCFVM and SPH results are compared for three different

mesh/particle refinements (800, 1880 and 3200 cells/particles). It is interesting how the SPH

methodology is converging to the reference solution from the upper bound limit whereas the

VCFVM results are converging from the lower bound limit. The numerical solutions are both

eventually converged close to the reference solution, thanks to the refinement. The deformed

states of the copper bar with pressure and plastic strain distributions are depicted at time

t = {20, 40}µs obtained by the VCFVM scheme and at times t = {30, 60}µs using the SPH

algorithm.

For verification purposes, the final radius of the copper bar at time t = 80µs, where the problem

reaches a steady-state solution, predicted by VCFVM and SPH algorithms is shown in Table

9.1. The obtained solutions are benchmarked against other published results using different

numerical schemes [17, 42, 118].
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(a) (b)

Figure 9.2: Taylor impact: The deformed state of the copper bar at t = 80µs with plastic strain
field in the left quarter and pressure distribution in the right quarter of the domain. Results obtained
using the proposed VCFVM and SPH algorithms with an initial velocity of v0 = (0, 0,−227)T m/s.
A hyperelastic-plastic constitutive model is employed with Young’s modulus E = 117 GPa, density
ρ0 = 8930 kg/m3, Poisson’s ratio ν = 0.35, yield stress τ̄0y = 0.4 GPa, hardening modulus H = 0.1

GPa and αCFL = 0.3.

Table 9.1: Final radii of copper bar at t = 80µs. Results obtained using the proposed VCFVM
and SPH algorithms, benchmarked against other published methodologies.

Method Final radius (cm)

Standard 4-Noded Tetrahedra [42] 0.555
Under-integrated 8-Noded Hexahedra [42] 0.695
Average Nodal Pressure 4-Noded Tetrahedra [42] 0.699
Jameson-Schmidt-Turkel Vertex Centred FVM [118] 0.698
Petrov-Galerkin FEM [17] 0.700
Upwind Cell Centred FVM [6] 0.700
Upwind-SPH mesh-free method 0.711
Upwind-VCFVM method 0.711
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Figure 9.3: Taylor impact: Time evolution of X coordinate at the material pointX = [0.0032, 0, 0]T

with three mesh/particle refinements (800, 1880 and 3200 cells/particles). Results obtained using
the proposed VCFVM and SPH algorithms with an initial velocity of v0 = (0,−227, 0)T m/s. A
hyperelastic-plastic constitutive model is employed with Young’s modulus E = 117 GPa, density
ρ0 = 8930 kg/m3, Poisson’s ratio ν = 0.35, yield stress τ̄0y = 0.4 GPa, hardening modulus H = 0.1

GPa and αCFL = 0.3.
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9.2.2 Stent-like structure

This example represents the expansion of a stent-like structure aimed at demonstrating the

robustness of the proposed VCFVM algorithm on rather complex geometry (see Figure 9.4).

The (coronary artery) medical stent is widely used in biomedical applications aiming at keeping

a vessel or passageway open. The structure has an initial outer diameter of d = 10 mm, a

thickness of T = 0.1 mm and a total length of L = 20 mm. The dimension of one of the

repeated geometrical pattern is depicted in Figure 9.4b. In this case, the expansion of the

stent-like structure is studied by applying constant traction of tB = 10 KPa directed outward

perpendicular on the interior of the cylindrical structure. For computational purposes and

due to the presence of three symmetry planes, only one-eighth of the problem is solved with

appropriate boundary conditions.

Figure 9.5 illustrates the deformed state of the expanded stent-like structure at time t =

3.4 × 10−4 s. The overall view of the deformation consists of two zoom sections in order to

better visualise the regions with sharp gradients. A very smooth pressure distribution can be

observed throughout the structure, and, at the sharp edges in particular. The front view shows

how much the stent-like structure is expanded relative to the reference state. The contraction

of the structure, however, is clear by looking at the top view.

It is evident that the proposed VCFVM algorithm produced reliable results without exhibiting

any zero-energy mode, locking or spurious pressure modes. It is also capable of capturing

highly nonlinear structural deformations. This can open up some interesting possibilities to

numerically simulate biomedical applications [242], in which this consideration is very relevant.

 

(a)
(b)

Figure 9.4: Stent-like structure: (a) Problem setup; and (b) Planar 1/32th geometry
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Figure 9.5: Stent-like structure: Snapshot of the deformed state with pressure field at t = 3.4×10−4

s. A Front view (top row - left), top view (top row - right) and an Isometric view (middle) with
two highlighted regions of the structure are presented. Results obtained using the proposed VCFVM
algorithm with a constant traction of tB = 10 KPa directed outward perpendicular on the interior
of the cylindrical structure. A neo-Hookean material model is employed with Young’s modulus

E = 1.7× 107 Pa, density ρ0 = 1100 kg/m3, Poisson’s ratio ν = 0.45 and αCFL = 0.3.
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9.3 Irreversible process

9.3.1 Deep drawing

A very thin plate is considered for deep drawing process in which a sheet metal undergoes a

shape transformation process with material retention. Figure 9.6a shows the problem setup
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Figure 9.6: Thin plate: (a) Initial configuration; and (b) Velocity profile

where the plate is initialised with the following velocity profile

v = [0, 0, vZ ]; vZ =

√
π

2
v0

(
exp

(
−(X − 5)2

2

)
+ exp

(
−(Y − 5)2

2

))
, (9.1)

with v0 = 20 m/s. In addition, the thin faces around the plate are also initialised with a

temperature of 250 K (see Figure 9.6b). A sinusoidal heat flux is imposed on the middle of the

plate as

QB =
10000

A0
sin
(π

2
t
)
, (9.2)

with A0 considered as the area where the thermal Neumann boundary condition (Q) is applied.

Homogeneous distribution of initial temperature of θR = 293.15 K throughout the plate is

considered with free mechanical boundary conditions. A thermo-elastic neo-Hookean material

model along with Mie-Grüneisen equation of state is employed with Young’s modulus E = 50.05

KPa, density ρR = 1000 Kg/m3, Poisson’s ratio ν = 0.3, thermal conductivity h = 10 W/m.K,

specific heat capacity Cv = 1 J/Kg.K and thermal expansion coefficient α = 2.223 × 10−4

K−1. The main objective of this example is to show the robustness of the proposed VCFVM

methodology in terms of handling a challenging and practical thermo-mechanical example.

Figure 9.7 depicts a sequence of the deformed states of the thin plate with temperature and

pressure distributions. It is interesting to note that the plate is eventually reformed into a state

with very sharp edges in which the deformation is well captured and very smooth pressure and

temperature fields can be observed.
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Figure 9.7: Thin plate: A sequence of deformed configurations with temperature field on the top
row at t = {0.45, 0.76, 0.90, 0.98} s and isometric view with pressure distribution on the bottom
rows at t = {0.10, 0.16, 0.21, 0.32, 0.41, 0.59, 0.70, 0.81, 0.90, 0.98} s. Results obtained using a nearly
incompressible thermo-elastic neo-Hookean constitutive model along with Mie-Grüneisen equation of
state using the proposed VCFVM methodology. The material properties used are Young’s modulus
E = 50.05 KPa, density ρR = 1000 kg/m3, Poisson’s ratio ν = 0.45, thermal conductivity h = 10
W/m.K Specific heat capacity Cv = 1 J/Kg.K, thermal expansion coefficient α = 2.223× 10−4 K−1

and αCFL = 0.3.
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9.3.2 Ball joint

Spherical structures are utilised in many industrial applications such as ball joints for bearing

and casters, ball valves, pressure tanks and ball in toy industry. In fact, these structures helps

to minimise the material consumption as a sphere provides the smallest surface area for a given

volume. Here a thin spherical ball is considered which is perforated in an unsymmetrical manner

in order to provide a rather more complex geometry. The ball is punched on its top surface with

a velocity field of v = [0, 0, 1.5]T m/s. The geometry and problem setup are shown in Figure

9.8. This example aimed at demonstrating the robustness of the proposed SPH algorithm with

respect to massive deformation of a rather complex geometry. A free (mechanical) boundary

condition is considered for the ball while it is thermally subjected to a heat flux QB = 1000/A

where A denotes the surface in which the heat flux is imposed. An entropic-elastic constitutive

model is used with material properties Young’s modulus E = 1.7× 107 Pa, density ρR = 1100

kg/m3, Poisson’s ratio ν = 0.3, thermal conductivity h = 0.2 W/m.K, specific heat capacity

Cv = 1000 J/Kg.K and thermal expansion coefficient α = 2.223 × 10−4 K−1 with the initial

homogeneous temperature distribution of θR = 293.15 K.

Figure 9.9 shows the deformed state of the ball at time t = 0.42 s. The extremely large de-

formation of the ball is evident where the pressure distribution is shown to be very smooth,

particularly close to the sharp edges of the holes. In addition, different viewpoints of the de-

formed configuration is depicted with a very smooth temperature distribution. It is worth to

mention that the small temperature gradient of the entropic-elastic material is expected con-

sidering its material properties with a large specific heat capacity and a small heat conduction

coefficient (which results in a very small temperature gradient).

Figure 9.8: Spherical ball: Problem setup
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Figure 9.9: Spherical ball: The deformed state along with pressure distribution at time t = 0.042 s.
Results obtained using a nearly incompressible entropic-elastic neo-Hookean constitutive model using
the proposed SPH methodology. The material properties used are Young’s modulus E = 1.7 × 107

Pa, density ρR = 1100 kg/m3, Poisson’s ratio ν = 0.3, thermal conductivity h = 0.2 W/m.K, specific
heat capacity Cv = 1000 W/Kg.K, thermal expansion coefficient α = 2.223× 10−4 and αCFL = 0.3.
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(a) Side view (b) Top view (c) Front view

Figure 9.10: Spherical ball: A sequence of deformed configurations with temperature and pressure
distributions at time t = 0.042 s and t = 0.01 × {0, 1, 2, 3, 4, 4.2} s (left to right-top to bottom),
respectively. Results obtained using a nearly incompressible entropic-elastic neo-Hookean constitutive
model using the proposed SPH methodology. The material properties used are Young’s modulus
E = 1.7 × 107 Pa, density ρR = 1100 kg/m3, Poisson’s ratio ν = 0.3, thermal conductivity h = 0.2
W/m.K specific heat capacity Cv = 1000 J/Kg.K, thermal expansion coefficient α = 2.223 × 10−4

K−1 and αCFL = 0.3.
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9.3.3 Pipe expansion joint

This example is representative of a rubber expansion joint which is usually used in pipe systems

in order to absorb temperature-induced expansions and withstand the internal pressure of the

pipes. Moreover, it has the functionality to absorb noises, vibrations and/or deformations.

The representative geometry is a very thin truncated sphere (see Figure 9.11) subjected to a

free expansion and the body is adiabatically insulated. A constant traction is applied on the

physical boundary within the sphere as tB = 500 N/m2 (as shown in Figure 9.11b). The aim of

this example is to demonstrate the capability of the proposed VCFVM algorithm in capturing

extreme deformations in nearly incompressible scenarios in which numerical difficulties such

as locking or spurious pressure oscillations are effectively alleviated. A neo-Hookean material

model along with Mie-Grüneisen equation of state is employed with Young’s modulus E = 50.05

KPa, density ρR = 1000 Kg/m3, Poisson’s ratio ν = 0.499, thermal conductivity h = 10

W/m.K, specific heat capacity Cv = 1 J/Kg.K and thermal expansion coefficient α = 2.223×
10−4 K−1 where the body has a homogeneous distribution of initial temperature θR = 293.15

K.

Figure 9.12 shows the side-view evolution of the spherical structure which its extreme defor-

mation is well captured along with very smooth pressure distribution. For a better vision of

the deformed states, the sphere is clipped into half and the evolution of temperature field is

shown in Figure 9.13 in which a very smooth temperature distribution can be observed. It is

worthy to note that the coupling effect, and so the heat generated by the deformation, is just

taking place through the volumetric part of the stresses. Consequently, an extremely small

temperature gradient is expectable in this case as the near incompressibility feature of the

material leads to a very small coupling term.

(a) (b)

Figure 9.11: Expansion joint: (a) Initial configuration; and (b) Problem setup
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Figure 9.12: Expansion joint: A sequence of deformed configurations along with pressure field
at t = {0, 0.31, 0.55, 1.42, 1.78, 1.93, 2.04} s (left to right - top to bottom). Results obtained using
a nearly incompressible thermo-elastic neo-Hookean constitutive model along with Mie-Grüneisen
equation of state using the proposed vertex-centred FVM methodology. The material properties
used are Young’s modulus E = 50.05 KPa, density ρR = 1000 kg/m3, Poisson’s ratio ν = 0.499,
thermal conductivity h = 10 W/m.K, Specific heat capacity Cv = 1 J/Kg.K, thermal expansion

coefficient α = 2.223× 10−4 K−1 and αCFL = 0.31.
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Figure 9.13: Expansion joint: A sequence of deformed configurations with temperature distribu-
tions at t = {0, 0.66, 0.74, 1.20, 1.28, 1.37, 1.83, 1.88, 1.98} s (left to right - top to bottom). Results
obtained using a nearly incompressible thermo-elastic neo-Hookean constitutive model along with
Mie-Grüneisen equation of state using the proposed vertex-centred FVM methodology. The material
properties used are Young’s modulus E = 50.05 KPa, density ρR = 1000 kg/m3, Poisson’s ratio
ν = 0.499, thermal conductivity h = 10 W/m.K, Specific heat capacity CF = 1 J/Kg.K, thermal

expansion coefficient α = 2.223× 10−4 K−1 and αCFL = 0.31.
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9.3.4 Soft robotic

This example studies the deformation of a gripper-like structure (see Figure 9.14) widely used

in (soft) robotic applications. The gripper has four geometrically symmetric arms with L = 0.4

m which are connected to a hollow cylindrical shape with a radius of R = 0.1 m. The central

interior of the cylinder has a constant temperature of θ = 280 K (thermal Dirichlet boundary

condition) while the rest of the domain is thermally insulated. The end faces of the arms (at

XY plane) are also subjected to a constant tractions tB = 1000 N/m2 where the temperature

is initially set to be θ = 300 K. The main objective of this example is to show the robustness

of the proposed SPH algorithm in bending dominated scenarios where mechanical and thermal

boundary conditions are imposed to the problem. A thermo-elastic neo-Hookean material

model along with Mie-Grüneisen equation of state is employed using the entropy-based SPH

methodology. The material properties used are Young’s modulus E = 50.05 KPa, density

ρR = 1000 Kg/m3, Poisson’s ratio ν = 0.45, thermal conductivity h = 10 W/m.K, specific heat

capacity Cv = 1 J/Kg.K and thermal expansion coefficient α = 2.223 × 10−4 K−1 where the

gripper has an initial homogeneous temperature distribution θR = 293.15 K.

Figure 9.15 shows the overall states of deformation in three different viewpoints with very

smooth pressure and temperature distributions. In fact, heat conduction has occurred through

the four arms as a result of temperature gradient which origins from the difference in tempera-

ture between the reference temperature and the thermal Dirichlet boundary condition imposed

at the hollow cylindrical shape of gripper’s centre. In addition, the bending deformation, due

to the imposed Neumann boundary condition (tractions), leads to a heat generation in the

arms and that, this affects the heat conduction process.

Looking at the pressure distribution in Front view of the gripper, the areas with the most

contractions and extensions are evident. For instance, the bottom of the hollow cylinder at the

 

Figure 9.14: Gripper: Problem setup
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gripper’s centre is contracted and consequently, yielded an increase in temperature. This can

be clearly seen in Bottom view with temperature distribution. Moreover, notice the decrease

in temperature at the hollow centre of the gripper (at Isometric view with temperature dis-

tribution) which is a result of its extension. This is illustrated in the top view with pressure

distribution.

9.4 Conclusion

In this chapter, the capability of the {p,F ,H, J, η orE} VCFVM and SPH algorithms are

assessed through several numerical examples with relatively complex geometries. These chal-

lenging examples can also be seen as some conceivable industrial applications. The numerical

algorithms have shown excellent behaviour on capturing extremely large deformations in con-

junction with smooth distribution of the variable fields (e.g. pressure and temperature).
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Figure 9.15: Gripper: A sequence of deformed configurations with temperature and pressure dis-
tributions at t = 0.47 s. Results obtained using a nearly incompressible thermo-elastic neo-Hookean
constitutive model along with Mie-Grüneisen equation of state using the proposed SPH methodol-
ogy. The material properties used are Young’s modulus E = 50.05 KPa, density ρR = 1000 kg/m3,
Poisson’s ratio ν = 0.45, thermal conductivity h = 10 W/m.K, specific heat capacity Cv = 1 J/Kg.K,

thermal expansion coefficient α = 2.223× 10−4 K−1 and αCFL = 0.3.
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Chapter 10
Concluding remarks

10.1 Summary

This work has been devoted to study and analyse the behaviour of nonlinear solid materials

undergoing large deformations with the focus on fast transient applications. Following the

works of Aguirre et al. [7] and Lee et al. [4, 5], a mixed system of first order conservation laws

[3, 6, 7, 16–18, 22, 23, 118] is first presented in order to explore some limiting scenarios in the

isothermal case, such as the consideration of near and true incompressibility. Specifically, the

Total Lagrangian system of hyperbolic equations is expressed in terms of the linear momentum

p and the minors of the deformation, namely, the deformation gradient F , its co-factor H and

its Jacobian J . One of the main contributions of this work is to extend the above mixed-based

set of equations to the case of thermo-elasticity to account for irreversible processes. This is

achieved by the introduction of an additional conservation law for the total energy (also known

as the first law of thermodynamics) to the set of physical laws presented above. Typically,

the first law of thermodynamics is written in terms of total energy, similar to that of Euler

equations used in CFD. In this work, and for completeness, we also re-write the first law in

terms of entropy variable. For closure of the system, appropriate constitutive models derived

on the basis of polyconvex energy functions are presented. This guarantees the existence of real

wave speeds (and hence, material stability) for the entire range of deformation and temperature.

For instance, in the context of thermo-elasticity, new convex thermo-mechanical models (in this

case, Mie-Grüneisen equation of state and modified entropic elasticity) are presented.

From the spatial discretisation viewpoint, two distinct and competitive numerical methodolo-

gies are utilised, namely, a mesh-based Vertex-Centred Finite Volume Method (VCFVM) and

a meshless Smooth Particle Hydrodynamics (SPH). Taking advantage of the new conservation

law formulation, well established stabilisation algorithms are then explored.

Naturally, discontinuity of the conservation variables across (dual) control volume interfaces or

between any pair of particles leads to a Riemann problem, whose approximate solution derived

by means of an acoustic Riemann solver. For this reason, artificial user-defined stabilisation

parameters typically used in the classical SPH formalism can be avoided. Both spatial dis-

cretisations are accompanied by a linear reconstruction procedure to ensure second-order of

179



Chapter 10. Concluding remarks 180

accuracy in space. In addition, Barth and Jespersen slope limiter is applied in order to avoid

spurious numerical oscillations in the vicinity of sharp gradients. The overall VCFVM and

SPH algorithms are shown to satisfy the discrete version of entropy dissipation law via the

Coleman-Noll procedure.

In order to monotonically update the semi-discrete second-order system of equations and ge-

ometry in time, a second-order explicit one-step two-stage Total Variation Diminishing (TVD)

Runge-Kutta time integrator is utilised.

In terms of computer implementation, the in-house {p,F ,H, J} Upwind-SPH algorithm has

been used [22]. The novel {p,F ,H, J, η orE} VCFVM solver, artificial compressibility algo-

rithm and the edge-based {p,F ,H, J, η orE} SPH methodology are implemented from scratch

in MatLab. In order to speed up the computation time, the numerical examples are compiled

using the Application Program Interface (API) of the MatLab and C++ reference library.

The key contributions and novelties of this thesis are:

. Continuum level

• Introduction of a general mixed-based set {p,F ,H, J, η orE} of first order con-

servation laws in Total Lagrangian description for large strain (isothermal and/or

thermo-elastic) solid dynamics.

• Derivation of advanced polyconvex (mechanical and thermo-mechanical) constitutive

models.

• Introduction of a unified computational framework that can be generalised to a

myriad of discretisation techniques.

. Discrete level

• Derivation and implementation of two distinct numerical methodologies for spa-

tial discretisation, namely, the mesh-based Vertex-Centred Finite Volume Method

(VCFVM) and the meshless Smooth Particle Hydrodynamics (SPH).

• The implementation of a tailor-made artificial compressibility and an angular mo-

mentum preservation algorithms suitably adapted to both VCFVM and SPH nu-

merical schemes.

• Derivation of a Riemann-based upwinding stabilisation for the both VCFVM and

SPH algorithms in Total Lagrangian framework. Notice that the nature of this type

of stabilisation does not require the selection of any user-defined artificial stabilisa-

tion parameter.

• The satisfaction of local entropy production at the discrete level via a Coleman-Noll

procedure for both developed VCFVM and SPH techniques.

• An edge-based implementation is carried out for the SPH method, not only reducing

its computational cost but also bridging the gap with the VCFVM implementation.

• Study of the consistency and stability of the schemes for some simplified linearised

cases.
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10.2 Future outlook

The following suggestions and possibilities can be considered for the continuation of this work

in future

� Nonlinear Riemann solver for solids:

In this work, the numerical fluxes are approximated on the basis of an acoustic Riemann

solver. This can be further improved by adopting a more accurate (nonlinear) Riemann

solver (i.e. Roe’s Riemann solver) accounting for severe shocks and interactions between

several materials.

� Constitutive models:

The library of the constitutive models employed in this work can be extended by including

mechanical and thermo-mechanical material models such as visco-elasticity [25], visco-

plasticity [26], thermo-visco-elasticity [85] and thermo-plasticity [169]. In addition, a

time-dependent equation of state can be considered which involves the time needed for

acceleration of the heat flow. In this case, the so-called relaxation time is introduced to

account for the time-lag needed to establish a steady-state heat conduction [75]. This

requires the theory of the generalised thermo-elasticity and a different representation of

the discretised system of equations [75, 76].

� Fluid-Structure Interaction:

The promising presented framework can be extended to the case of tackling multi-physics

applications such as Fluid-Structure Interaction (FSI) where a deformable structure in-

teracting with an internal or surrounding fluid flow. Consideration of FSI is essential in

the design of many engineering applications (e.g. aircraft, engines, bridges, etc) and to

account for biomedical problems (e.g. aneurysms). In this case, an alternative Arbitrary

Lagrangian-Eulerian (ALE) description of motion can be used [243, 244].

� Application in mechanobiology:

Nowadays, the applicability of the computational mechanics is very well accepted in the

field of biomechanics as it is applied from the small scale of the molecular simulations

up to the cardiovascular and musculoskeletal systems. As an example, the arterial wall

exhibit a thermo-elastic behaviour similar to that of rubber [245]. Therefore, the current

developed work has great potential to be applied in those type of applications.

� Computational efficiency: Although the implementation of the presented numerical

algorithms are efficiently carried out in Matlab, they can be further computationally

enhanced by using more basic computer programming languages (i.e. C or C++) in

order to be potentially re-developed in open-source software (e.g. OpenFOAM). This, in

conjunction with parallelisation of the numerical algorithm, can potentially lead to the

capability of tackling real-life engineering problems.

� Dynamic fracture: An interesting application can be dynamic fracture where the role

of material inertia in fracture phenomena becomes significant. In this case, the crack
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initiation/propagation and, also, the transient driving forces acting on the crack can be

accurately captured and determined by means of Riemann solver in the contact between

cells/particles. Using SPH algorithm, it would be also interesting to utilise a variable

smoothing length. This way, an anisotropic compact support can be introduce for the

kernel interpolation function in order to approximate the solution in the region of interest

in a more efficient manner.
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Appendix A
Mathematical preliminaries

The objective of this section is to introduce some basic mathematical concepts and notation

used throughout this thesis.

A.1 Scalar, vector and tensor

A scalar can be considered as an element of a field with a magnitude which is used to define a

vector space [14, 28].

Vectors are quantities with a magnitude and a direction and can be mathematically presented

as [14]

a =

3∑
I=1

aIEI . (A.1)

where aI are the three components of the vector and {E1,E2,E3} is the set of vectors that

form an orthonormal basis (i.e. Cartesian coordinate).

A tensor can be defined as an algebraic object that describes a linear transformation (mapping)

from one algebraic object to another [14]. A tensor can take different forms on the basis of

its order. For instance, the second-order tensor A is a linear mapping that associates a given

vector a to vector b as

a = Ab. (A.2)

and it can be mathematically represented as

A =

3∑
I,J=1

AIJEI ⊗EJ . (A.3)

with EI,J considered as the unit normal vector and {I, J = 1, 2, 3}. A simple mathematical

example of a second-order tensor is the identity tensor which maps a vector onto itself as

a = Ia. (A.4)
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To give a physical example of a second-order tensor, the Cauchy stress tensor σ that takes a

unit normal vector n of a plane and map (transform) the stress into a force (traction) t on that

plane

t = σn. (A.5)

It is worthwhile noting that a zeroth-order tensor is a scalar and a first-order tensor is a vector.

A.2 Mathematical operators

A.2.1 Multiplications

The dyadic or tensor product of two given vectors (a and b) yield a second-order tensor (A)

and mathematically is defined as [14]

A =

(
3∑
I=1

aIEI

)
⊗

(
3∑

J=1

bJEJ

)
=

3∑
I,J=1

aIbJ︸︷︷︸
AIJ

(EI ⊗EI) . (A.6)

The scalar or dot product of two given vectors (a and b) will result in a scalar and can be

mathematically presented as

a · b =

(
3∑
I=1

aIEI

)
·

(
3∑

J=1

bJEJ

)
(A.7)

=
3∑

I,J=1

aIbJ (EI ·EJ)︸ ︷︷ ︸
δIJ

= a1b1 + a2b2 + a3b3. (A.8)

with δIJ as the Kronecker delta defined as

δIJ =

1 if I = J,

0 if I 6= J.
(A.9)

Similar to the dot product of two vectors, the double product or double contraction of two

given tensors (A and B) gives a scalar and reads

A : B =

 3∑
I,J=1

AIJEI ⊗EJ

 :

 3∑
M,N=1

BMNEM ⊗EN

 (A.10)

=
3∑

I,J=1

3∑
M,N=1

AIJBMNδIJδMN =
3∑

I,J=1

AIJBIJ . (A.11)
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The cross product of two vectors (a and b) renders a vector and introduced as

a× b =
3∑
I=1

3∑
J=1

3∑
K=1

εIJKEIaJbK =

∣∣∣∣∣∣∣
E1 E2 E3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣ . (A.12)

with εIJK as the permutation (Levi-Civita) symbol defined as [28]

εIJK = EI · (EJ ×EK) , (A.13)

where 
εIJK = 1 if I, J,K = 1, 2, 3 (cyclic order)

εIJK = 0 if I = J or J = K or I = K

εIJK = −1 if I, J,K = 1, 3, 2 (anti cyclic order)

(A.14)

A.2.2 Gradient, divergence and curl

The material gradient operator of a quantity is defined as [14]

GRAD ([•]) =∇R ([•]) =
∂ [•]
∂XI

⊗EI . (A.15)

where I = {1, 2, 3}, ([•]) as representative of a tensor with order {0, 1, 2, 3, ..} and ∇R is the

material differential operator. By consideration of the tensor product feature, it is evident that

the gradient operator increases the order of a tensor by one order of magnitude.

The material divergence operator of a quantity can be expressed as [14]

DIV · ([•]) =∇R · ([•]) =
∂ [•]
∂XI

·EI . (A.16)

This shows the divergence operator decrease the order of a tensor by one order of magnitude.

The curl of a second-order tensor is defined as

CURL× ([•]) =∇R × ([•]) = εIJK
∂ [•]iK
∂XJ

. (A.17)

where εIJK is introduced at Eq. (A.14).

A.2.3 Tensor cross product

The tensor cross product between two second-order tensors (A andB) can be defined as follows

[3, 185]
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[A B] =


[A B]xX [A B]xY [A B]xZ

[A B]yX [A B]yY [A B]yZ

[A B]zX [A B]zY [A B]zZ

 (A.18)

where the resultant tensor components are defined as

[A B]xX = AyYBzZ −AyZBzY +AzZByY −AzYByZ

[A B]xY = AyZBzX −AyXBzZ +AzXByZ −AzZByX

[A B]xZ = AyXBzY −AyYBzX +AzYByX −AzXByY

[A B]yX = AxZBzY −AxYBzZ +AzYBxZ −AzZBxY

[A B]yY = AzZBxX −AzXBxZ +AxXBzZ −AxZBzX

[A B]yZ = AzXBxY −AzYBxX +AxYBzX −AxXBzY

[A B]zX = AxYByZ −AxZByY +AyZBxY −AyYBxZ

[A B]zY = AxZByX −AxXByZ +AyXBxZ −AyZBxX

[A B]zZ = AxXByY −AxYByX +AyYBxX −AyXBxY

(A.19)

with U and u representing material and spatial vectors, respectively. In addition, the tensor

cross product between a second-order tensor (A) and a spatial or material vector (u or U) can

be defined as

[u A] =


uyAzX − uzAyX uyAzY − uzAyY uyAzZ − uzAyZ

uzAxX − uxAzX uzAxY − uxAzY uzAxZ − uxAzZ

uxAyX − uyAxX uxAyY − uyAxY uxAyZ − uyAxZ

 (A.20a)

(A.20b)

[A U ] =


AxY UZ −AxZUY AxZUX −AxXUZ AxXUY −AxY UX

AyY UZ −AyZUY AyZUX −AyXUZ AyXUY −AyY UX

AzY UZ −AzZUY AzZUX −AzXUZ AzXUY −AzY UX

 (A.20c)

The following properties are satisfied using the presented tensor cross product
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I I = 2I (A.21)

A I = (trA) I −AT (A.22)

CofA =
1

2
A A (A.23)

(A A) : A = 6 detA (A.24)

A B = B A (A.25)

A B = AT BT (A.26)

S (A B) = (SA) B = A (SB) (A.27)

A (B +C) = A B +A C (A.28)

(AC) (BC) = (A B) (CofC) (A.29)

A (v ⊗ V ) = −v A V (A.30)

v (A V ) = (v A) V = v A V (A.31)

(A B) : C = (B C) : A+ (A C) : B (A.32)

(v ⊗ V ) (u⊗U) = (v × u)⊗ (V ×U) (A.33)

(A B) (V ×U) = (AV )× (BU) + (BV )× (AU) (A.34)



Appendix B
Riemann solver: Physical
boundaries

The aim of this section is to introduce interface contact fluxes at the physical boundaries using

a Riemann-based approach. This can be achieved by providing appropriate values in Eq. (4.19),

depending on the type of boundary condition (see Figure B.1).

(a) Traction boundary (b) Fixed boundary

(c) Symmetric boundary (d) Skew-symmetric boundary

Figure B.1: Schematic representation of (a) traction; (b) fixed (clamped); (c) symmetric (tangen-
tially sliding); and (d) skew-symmetric (normally sliding) boundary conditions
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B.1 Traction boundary

In the case of traction (Neumann) boundary condition, depicted in Figure B.1a, the wave

speeds and traction in the outer domain read

t+ = tB; c+
p = c+

s = 0, (B.1)

with tB as the applied force on the physical boundary. Replacing these values into Eq. (4.19)

yields

pC = p− + St (tB − t−);

tC = tB.
(B.2)

Notice that for a free boundary condition tB = 0.

B.2 Fixed boundary

Considering a fixed (clamped) boundary condition, depicted in Figure B.1b, no deformation

(e.g. displacement) is allowed in any direction and, therefore,

p+ = pB = 0; c+
p = c+

s ≈ ∞, (B.3)

Substituting these values into Eq. (4.19) renders

pC = pB;

tC = t− + Sp (pB − p−).
(B.4)

B.3 Symmetric boundary

Figure B.1c shows a symmetric, also known as roller, boundary condition where the normal

displacement is prevented (zero normal velocity). This leads to

p+
n = 0; c+

p ≈ ∞; c+
s = 0. (B.5)

By the aid of Eq. (4.19) and using the above values, the contact fluxes read

pC = (I − n⊗ n)

[
p− +

1

c−s
(tB − t−)

]
;

tC = (n⊗ n)
[
t− − c−p p−

]
+ (I − n⊗ n)tB.

(B.6)
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B.4 Skew-symmetric boundary

The tangential displacement is restricted in a skew-symmetric boundary condition, shown in

Figure B.1d, and consequently,

p+
t = 0; c+

p = 0; c+
s ≈ ∞. (B.7)

Using these values reduce Eq. (4.19) into

pC = (n⊗ n)

[
p− +

1

c−s
(tB − t−)

]
;

tC = (n⊗ n)tB + (I − n⊗ n)
[
t− − c−p p−

]
.

(B.8)



Appendix C
VCFVM artificial compressibility
algorithm

Following the VCFVM discretisation procedure presented in Section 4.3, and the artificial

compressibility algorithm introduced in Section 5.6, the predictor step of the mixed-based

system {p,F ,H, p} reads

Ωa
R

[
pint
a − pna
∆t

]
=
∑
b∈Λa

PAve,nCab +
∑
γ∈ΓBa

tγ,na ‖Cγ‖+Ωa
Rf

a,n
R +D(pna); (C.1a)

Ωa
R

[
F n+1
a − F n

a

∆t

]
=
∑
b∈Λa

1

ρR
pAve,n ⊗Cab +

∑
γ∈ΓBa

1

ρR
pγ,na ⊗Cγ ; (C.1b)

Ωa
R

[
Hn+1
a −Hn

a

∆t

]
= F n

a

∑
b∈Λa

1

ρR
pAve,n ⊗Cab +

∑
γ∈ΓBa

1

ρR
pγ,na ⊗Cγ

 ; (C.1c)

Ωa
R

[
pint
a − pna
κ̃∆t

]
= Hn

a :

∑
b∈Λa

1

ρR
pAve,n ⊗Cab +

∑
γ∈ΓBa

1

ρR
pγ,na ⊗Cγ

+D(Jna ). (C.1d)

where {D(pa),D(Ja)} are the upwinding stabilisation terms, already defined in Section 4.3.2.

In addition, the corrector step of the discrete system {p,F ,H, p} renders

Ωa
R

dpa
dτ

=
1

2

∑
b∈Λa

[(
pn+1
b − pnb

)
Hn
b

]
Cab −Ωa

R

(
pn+1
a − pint

a

)
∆t

; (C.2a)

Ωa
R

γ

dpa
dτ

=
Ωa
R

κ̃

pint
a − pna
∆t

−
Ωa
R

κ

(
pn+1
a − pna

)
∆t

+
1

2
Hn
a :

∑
b∈Λba

(
pn+1
b

ρR
−
pnb
ρR

)
⊗Cab. (C.2b)

At each time step ∆t, above system (C.2) is iteratively solved for the linear momentum and

pressure within the pseudo time integration in order to obtain convergence to a pseudo steady

state (e.g. dpa
dτ ≈ 0 and dpa

dτ ≈ 0).
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Iteration speed-up procedure

An additional Laplacian (or harmonic) dissipative operator can be incorporated to equation

(C.2b), aimed at accelerating the speed of convergence within the iterative process of the

correction step as

Ωa
R

γ

dpa
dτ

=
Ωa
R

κ̃

pint
a − pna
∆t

−
Ωa
R

κ

(
pn+1
a − pna

)
∆t

+
1

2
Hn
a :

∑
b∈Λba

(
pn+1
b

ρR
−
pnb
ρR

)
⊗Cab +DPSE(pa).

(C.3)

where the discrete Laplacian viscosity operator is defined as

DPSE(pa) := αD
c2
s∆t

µ

∑
b∈Λa

[
pb − pa
‖Xb −Xa‖

Nab

]
·Cab, (C.4)

Here αD is a dimensionless user-defined parameter in the range of [0, 1]. Above dissipa-

tive operator automatically ensures fulfillment of the global conservation requirement, that

is
∑

aΩ
a
RDPSE(pa) = 0. It is also worth recalling that the viscosity operator DPSE(pa) is

added to Eq. (C.3) with the only purpose of accelerating the speed of convergence within the

pseudo-time integration process in correction step. This is in clear contrast to the upwinding

stabilisation terms {D(pa),D(Ja)} introduced in the predictor step Eq. (C.1), necessary to

guarantee the robustness (ovreall stability) of the algorithm.



Appendix D
Discrete angular momentum
preserving algorithm

It is mentioned earlier in Chapter 6 that the proposed numerical algorithms do not necessarily

ensure the conservation of angular momentum of the system. This is due to the fact that the

minors of the deformation gradient tensor, namely, {F ,H, J}, are no longer computed on the

basis of the material gradient of a current geometry (e.g. F 6= Fx := ∇0x, H 6= Hx :=
1
2Fx Fx, J 6= Jx := 1

6Fx : (Fx Fx)) [3].

To rectify this, and taking inspiration from the work of [6], this section is aimed at presenting

a global least-square angular momentum projection procedure. Specifically, the local internal

nodal force Ta, presented in Eq. (D.1) and, is modified (in a least-square sense) in order to

conserve the total angular momentum, whilst still ensuring the global preservation of linear

momentum. The internal force for the VCFVM scheme can be expressed as

Ta =
∑
b∈Λa

tC‖Cab‖. (D.1)

Moreover, the internal forces for the SPH scheme are already presented in Eq. (5.31c). Sufficient

conditions for the global preservation of the discrete linear and angular momentum within a

time step are enforced at each stage of the one-step two-stage Runge–Kutta time integrator

(6.1-6.3) described as ∑
a

Ωa
RT
X
a = 0;

∑
a

Ωa
RXa × TXa = 0. (D.2)

where

Xa =

xna , ifX = n,

xna + ∆t
2ρR

(pna + p?a) , ifX = ?.
(D.3)

A least-square minimisation procedure is used to obtain a modified set of internal nodal forces

T̂a that satisfy the conditions introduced in Eq. (D.2). This can be achieved by computing the

195



Appendix D. Discrete angular momentum projection algorithm 196

minimum of the following functional [6, 118] (ignoring time arguments for brevity)

Π
(
T̂a,λang,λlin

)
=

1

2

∑
a

Ωa
R

(
T̂a − Ta

)
·
(
T̂a − Ta

)
(D.4)

− λang ·

(∑
a

Ωa
RXa × T̂a

)
− λlin ·

(∑
a

Ωa
RT̂a

)
. (D.5)

After some simple algebra, a modified set of internal nodal forces T̂a arise

T̂a = Ta + λang ×Xa + λlin. (D.6)

The Lagrange multipliers {λang,λlin} are the solutions of the following system of equationsλang

λlin

 =

 ∑aΩ
a
R [(Xa ·Xa)I −Xa ⊗Xa]

∑
aΩ

a
R X̂a∑

aΩ
a
R X̂a −

∑
aΩ

a
R

−1 [
−
∑

aΩ
a
RXa × Ta∑

aΩ
a
R Ta

]
, (D.7)

with the indicial notation
[
X̂a

]
ik

= Eijk [Xa]j . In addition, an extra condition must be added

for the satisfaction of the global angular momentum preservation, namely,∑
a

Ωa
RD(pa) = 0;

∑
a

Ωa
RXa ×D(pa) = 0. (D.8)

Similarly to the least-square minimisation procedure described above, a set of modified up-

winding dissipation terms can now be obtained by replacing {T̂a,Ta,λang,λlin} in Eq. (D.6)

and Eq. (D.7) with {D̂(pa),D(pa),µDp ,λDp}.



Appendix E
Alternative descriptions of the
formulations

The main objective of this section is to alternatively describe the mixed-based system of con-

servation laws, expressed in Chapter 2, Eq. (2.58), in two other descriptions, namely, Updated

Lagrangian and Eulerian formalisms. It is first useful to recall the Total Lagrangian form of

conservation law
d

dt

∫
ΩR

U dΩR +

∫
∂ΩR

FN dA =

∫
ΩR

S dΩR. (E.1)

where U stands for a set of conservation variables, FN represents their corresponding flux

vectors and S is the set of possible source terms [3].

E.1 Updated Lagrangian

In order to obtain the Updated Lagrangian description of the formulations, it is possible to

push forward the integral form of the conservation law formulation presented in Eq. (E.1). To

achieve this, the application of Nanson’s rule and volume mapping transformation are required

NdA = H−1nda (E.2a)

dΩR = J−1dΩ(t). (E.2b)

Application of Eq. (E.2) into Eq. (E.1) leads to the integral form of the Updated Lagrangian

formalism as
d

dt

∫
Ω(t)

U dΩ =

∫
∂Ω(t)

Fn da+

∫
Ω(t)

S dΩ, (E.3)

with

U := J−1U ; Fn :=
3∑
i=1

(
H−TF

)
i
ni; S := J−1S, (E.4)

and where n represents the spatial outward unit normal vector on a moving boundary surface

∂Ω(t). Subsequently, a representation of the strong form of the formulations are expressed here
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in an Updated Lagrangian description as follows

ρ
∂v

∂t
= div (σ) + f ; (E.5a)

∂F

∂t
= Jdiv

(
v ⊗H−1

)
; (E.5b)

∂J

∂t
= Jdiv (v) ; (E.5c)

∂H

∂t
= Jdiv

(
F

(
v ⊗H−1

))
; (E.5d)

∂E

∂t
= Jdiv (σv − q) + f · v + s. (E.5e)

Here ρ = J−1ρR denotes the spatial density, q = H−TQ stands for spatial heat flux vector,

f = J−1fR and s = J−1sR are the body force and the heat source term per unit of deformed

volume.

E.2 Eulerian

The Eulerian description of the mixed-based system of equations can be expressed by the

aid of Reynolds transport theorem. This theorem helps to represents the formulations with

respect to a fixed domain (e.g. control volume) instead of a moving domain and that yields

the introduction of convective fluxes along the boundaries of the fixed domain. The principal

difference between a Lagrangian and Eulerian description is already explored in Section 2.2.2.

Applying the Reynolds transport theorem on the left hand side of Eq. (E.3) reads

d

dt

∫
Ω(t)

U dΩ =

∫
Ωf

∂U

∂t
dΩf +

∫
∂Ωf

(U⊗ v)n da, (E.6)

with Ωf representing a fixed domain coincident at the current time t. By substituting Eq. (E.6)

in Eq. (E.3), the integral form of the conservation law formulation in Eulerian description

renders ∫
Ωf

∂U

∂t
dΩf +

∫
∂Ωf

(U⊗ v)n da =

∫
∂Ωf

Fn da+

∫
Ωf

S dΩf . (E.7)

To this end, the strong form of the mixed-based set of conservation laws is expressed in Eulerian

description as

∂ρ

∂t
+ div (ρv) = 0; (E.8a)

∂ (ρv)

∂t
+ div (ρv ⊗ v − σ) = f ; (E.8b)

∂
(
J−1F

)
∂t

+ div
(
J−1F ⊗ v − v ⊗H−1

)
= 0; (E.8c)

∂
(
J−1H

)
∂t

+ div
(
J−1H ⊗ v − F

(
v ⊗H−1

))
= 0; (E.8d)

∂J−1E

∂t
+ div

(
J−1Ev + σv − q

)
+ f · v + s = 0. (E.8e)
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Notice that in the Eulerian description, the conservation of mass is not automatically satis-

fied anymore and, therefore, Eq. (E.8a) represents the mass continuity equation which is a

replacement for the conservation of volume map in Total/Updated Lagrangian formulation.
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