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Abstract

The calculations of scattering amplitudes in gauge theories are well-known
for the difficulties which they present. Traditional methods for obtaining per-
turbative results (e.g., Feynman diagrams) are often impractical in all but the
simplest cases. This has led to searches for new techniques which simplify the
calculational process and allow a wider set of results to be obtained. In recent
years these searches have produced a number of new methods Whlch have been
used successfully to find many amplitudes in QCD.

Scattering amplitudes in perturbative quantum grav1ty are among the most
difficult to calculate. The success of the new techniques in the standard model
scenario suggests that it would be profitable to look at extensions of these to
PQG. Here we look at the ways in which two of these methods — the string-
inspired and Cutkosky rules — can be applied in the new situation. We show
how a set of string-inspired rules for one-loop graviton amplitudes can be derived
by looking at a closed bosonic string and how we can use information provided
by the Cutkosky method. As an example of the string-inspired technique we
calculate all one-loop four graviton amplitudes with massless internal particles.
An application of the Cutkosky rules allows us to check these results as well as
to obtain information about divergences in PQG theories. A combination of the

.Cutkosky rules and dimensional reduction enables us to re-derive some of the

string-based results and to extend these to cases with massive internal particles.

*
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Are you sitting comfortably?
Then I’ll begin.

Julia S. Lang

1. Introduction

The ability to carry out calculations is an important palurt of physics. Whether we are
interested in the formal aspects of a theory or its value as a model, calculationé will be a
prime source of information. Moreover, if we cannot use a theory to prdduce qua,ntitativ;e
predictions then. it will be practically useless. Consequehtl};, the development of efficient
calculational methods is vital for the continuing progress and sefviceability of physics.

In quantum field theories (QFTs) the calculation of physical quantities is often a
difficult process. A large proportion of results cannot be obfained precisely, s0 we rely on
perturbative expansions to give us some approximation. These are expressed as a: series in
' some smail parameter of the theory. Rather than looking for the whole result, we try to find

Y
terms in this series. The conventional way for finding terms in such an expansion is the well-

known ‘Feynman Diagram" method [1]. This involves drawing gi‘aphical representations of
é,ll processes — constructed from ‘propagators’ and ‘vertices’. Each vertex and propagator
is‘ related to an dlgebraic expression, derived from the Lagrangian of the theory. These
relations: ailow us to construct an integral expression for each diagram. We can class the
integrals according to perturbative order. The sum of all the integrals in a particular class
gives us the required term in the expansion.

Ir; principle, Feynman rules are aﬁplicable for all orders in the perturbqtive expansion.
ﬁowever, it will be clear to anyone who has atfempted to use them for gauge theory
calculations that they have severe limitations. vIn all but the simplest cases the method

proves to be prohibitively complex; the combination of a large number of diagrams and

difficult algébra often make the com;;utation of any results beyond leading order (tree
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level) impractical. We mighﬁ accept this as an inherent difficulty with the theory if the
resulting expressions for amplitudes were equally complex — a result of many pages length
might be expected to require pages of calculation. In practice; this does not seem to be the
case. There are many cancellations in the final sum of integrals, so that’, while calculations
can be very long, they typically produce results which can be written compactly. It seems
that Feynman diagram techniques are a particularly inefficient way to carry out amplitude

calculations.

*

This ineﬁciency is a severe drawback for particle physics. In quantum chrdmoaynam-
ics (QCD) especially, higher order corrections are important in comparisons with experi-
ment and the lack of.results has left large theoretical uncertainties. In recent years, these
problems have led to a search for alternatives to Feynman’s method; techniques which pro-
duce fesults by a more efficient means. At tree level there have been developments such
as the spinor helicity method, colour decomposition and supersymmetric (SUSY) Ward
Identities (see, e.g., the review in ref. [2]). In this work we will be concerned with ‘methods
- for onp—logp calculations (Next to Leading Order, or NLO). In QCD, two techniques have
been particularly effective at this ordér — the string-inspired rules [3,4] and an investigation
of unitarity cof;straints [5]. (Though we will not discuss them here, we ShO;lld also mention
other developments — the worldline formalism (e.g., [6,7]), Mahlon’s recursive methods [8]
‘and the investigation of collinear limits [9,10,11] — Whiéh have proved useful.)

+ The string inspired technique was first developed by Bern and Kosower [3]. The
essence of the méthod is the observation that string theories contain gauge theories in
their infinite tension limit [12,13]. By choosing a suitable string and looking at this limit,
it is péséibie to derive an alternative set of rules for amplitude calculations. These rules
iﬁherit‘mény of the simplicities of one-loop string calculations. In particular, they seem
to reorganise the contributions so that many cancellations occur early in the calculation,
rather than in the final stages. Consequently, the amount of compufation required is

significantly less than with Feynman diagrams. In fact, the method is quite a contrast to

2
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Feynman’s. It begins with a l{inematic expression — the ‘Master Formula’ - which contains
all the information for the amplitude. The rules are simply manipulations which allow
results to be extracted from this. The exact forms of the ‘Master Formula’ and the i‘ules
depend on the initial string theory. Though the original manifestation \ivas develdped from
a fully consistent heterotic string [3], it was later shown that an alternative version could
be obtained by analysis of the simpler open bosonic string [14,15]. This, in turn,-produces‘ |

a 51mpler Master Formula and set of rules

- The second technique takes a completely different approach to the ‘direct calculations
of both the Feynman and string-inspired rules. Instead, it focusses on the mathematical
restrictions which can be placed on amplitudes. With the information which these provide,
some attempt can be made to reconstruct expressions for the results. In this case, the
mathematical restrictionsa,re found using the ‘Cutko‘sky rules [5,16,1]. These rules allow
us to find discontinuities of an amplitude by looking at integrals involving ainplitudes'of
lovs{'er order. If we can relate these discontinuities to other terms which might appear, then
. we ‘can bégin to reconstruct the full e}ipression So, for instance, we can determine the
absorptive parts of a one-loop amplitude from our knowledge of tree results [17,10]. From
this we can deduce which loganthmlc terms must be present and place strong constraints
on the total form. This provides a good check on calculations by other methods but,
geﬁerally? a,“mbiguitiesprevent us from determining the complete result. |
ey ‘The adVantages of this Cutkosky-based technique are clear — since it can be used purely
at the a,inplitude" level, it circumvents many of ’che problems associated with Feynman
diagrams; trees can be simpliﬁed before the calculation and late cancellations are reduced.
The lirliil;ation of the method seems to l:>e the ambiguities in the results. However, there are
two ways in which this limitation can be ov‘ercome: First, looking at the basis of functions
required to construct one-loop arnplitudes it becomes clear that many SUSY results are
uniquely specified by this method [17]; the comblnatlons of functions which cause problems

are not relevant in these cases. Second all results can be found precisely 1f the method is
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carried out in a dimensional regularisation scenario (i.e. 4— 2e dimensions) [18]; analysis of
the basis functions implies that knowledgé of the discontinuities at O(e) gives the complete
amplitude at O(€’). By using the Cutkosky-based approach in these ways, we can go

beyond merely checking previous calculations and find new results.

The two one-loop techniques also allow us to incorporate other simplifications. For
example, the tree-level techniques mentioﬁed above can be used to great effect. The spinor
hel‘icity method [19,20,21] expresse;s helicity vectors as products of Weyl spinors. In this |
form many inner products involving these vectors vanish. In addition, expressions for
amplitudes can be written in a particularly compact form. Using this method, the ‘Master
Formula’ in the string-inspired rules and the trees in the Cutkosky method can both be
simplified greatly. The SUSY Ward Identities [22,23,2] are also useful in applications of
the Cﬁtkosky rules. In SUSY theories; it is possible to relate amplitudes with different
external particles. At tree level, the difference between SUSY and non-SUSY amplitudes
is largely cosme/tic, so we can use these SUSY relations in a more general context. As tree
: ampli'gudeﬂs are the basic building block in the Cutkosky-based one-loqp calculations, these
relations are a useful tool for simplifying the process. |

A further applicatior; of SUSY which comes in at the one-loop le\;el is the super-
symmetric decomposition [15,24]. This is another technique inspired by string theofy. It
suggests that the most efficient way to calculate a complete set of amplitﬁdes is to concen-
trate on those for SUSY multiplets and then to reconstruct others with linear combinations
of these. ’We have already mentioned that considering SUSY multiplets in Cutkosky cal-
culations is one of the ways of finding complete amplitudes. In addition, for both the
string-based and ‘.Cutkosky methods these results involve the simplest calculations.

' The combination of the string-inspired rules aﬁd the Cutkosky-based method (together
With the SUSY and spinor helicity simpliﬁcatiohs) have led to a range of new results. In
QCD, they have produced all one-loop four- and five-gluon amplitudes (3,4,25] and one-

loop n-gluon amplitudes with specific helicity‘conﬁgu"rations [10,17,26]. They have also
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contributed to the calculation of QCD amplitudes with two external quarks [27] and some

electroweak results [24].

Even within QFTs, quantum theories of gravity — for instance perturbative quantum grav-
ity (PQG) [28,29] and supergravity (SUGRA) [30] — are renowned for the calculational dif-
ficulties they present. The large number of different processes and the algebraic complexity
of ‘contributions conspire to make the majority of calculations practically impossible. A
comparison with QCD shows the problem.s clearly: The Feynman rules for PQG include
.more vertices than QCD and the vertex formulae are more complex. In‘addition, PQG
integrals typically involve more powers of loop momenta. Clearly, quantum gravity am-
plitudes will be harder to obtain than the (already difficult) QCD equivalents. As before,
we can contrast the compufational difficulties with the relatively simple results found for
typical amplitudes. . e

~ Given the success of the new techniques for QCD, we might wonder if we can use
‘ sirﬁilaf metheds for quantum gravity. This is the question which will be addressed in this
thesis. We W111 take the work outhned above and look at the ways it can be adapted for
PQG and SUGRA calculations. We will see that both string-based and Cutkosky based
methods can be used successfully in this new‘situation. As in the QCD case, these two
methods will also allow us to use spinor helicity and SUSY methods to sirﬁplify amplitudes
fﬁrther and calculate more efficiently.

: The‘developr’nent of string-inspired rules for gravity closely resembles the QCD case.
Again, we find a relevant string theory and look at the infinite-tension limit [31]. Again,
we find a ‘Master Formula’ and a sété of rules which can be used to extract amplitude
e)—cpressioﬁs.' The primary difference between the two cases is the starting point; open
bosonic strings do not include the spin-2 graviton required by PQG. Instead, we must look
at a closed bosonic string [12]. While the derivations inv these two cases are similar, we

find the closed string case includes some complications: The closed string has two sets
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of variables - left- and right-moving — where the open string has one. Consequently, the
string expression will include componeﬁts of both sets, as well as interactions between

them. Thus, we expect the string-based rules for gravity to resemble, but differ from,

those for QCD. -

The Cutkosky rules can be used in precisely the same way for any theory, S0 we vdo
not need to make changes for gravity; the difference will be the amplitudes which we use as
buélding blocks. We will look here at analogous exercises to those carried out in QCD —the
reconstruction of one-loop amplitudes frorﬁ. trees. Asin QCD, we can use this to find some
SUSY amplitudes exactly, though the number in gravity is reduced significantly. In gravity,
the method is useful-even when we cannot find complete aﬁlplitudes; the Cutkosky rules
can be useful for investigating the problematic divergences which plague these theories. If
we aré interested in obtaining a wider range of rcomplete amplitudes then we can again

turn to the combination and dimensional regularisation.

. As examples of these methods we will look at the calculation of one-loop arflplitudes

¥
" with external gravitons. We will also use the Cutkosky rules to investigate some of the

one-loop divergences in PQG.
.

'The work presented here is structured as follows: In the next chapter‘ we outliné the
conventional construction of perturbative quantum gravity and give a brief discussion of
supersymmetry and supergravity theories. Since the major problems in quantum gravity
are related to divergences and renormalisability, we go on to look at these in chapter 3;
calculations later will help to confirm or extend existing results in this é,rea. In chapter 4
we review the string-inspired techniqué for QCD and iﬁclude a sample calculatién. This
irit‘roduceé, in a simpler case, many of the ideas réquired in the extension to gravity. We
discuss this extension in ch‘.apter‘5. Using thé string-inspired rules we are able to calcu-
late all the éne-loop four graviton amplitudes; that is, ail amplitudes with four external

gravitons and any choice of internal (massless) particles.

6
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In chapter 6 we introduce the Cutkosky rules. We use these as check on the amplitudes
which we have calculated by the string;inspired techniques.‘ We follow this ﬁith a short
interlude discussing how to find infrared divergences in one-loop quantum gravity ainpli-
tudes. We can use this to confirm that only IR divergences occur in the one-loop graviton
amplitudes but, more importantly, it prepares us for chapter 8 in which we calculate di-
vergences in a wider range of gravity amplitudes using the Cutkosky techniques. | Since we
can identify IR divergefices indepeﬁdently, we"can use these results to find UV divergences
in quantum gravity. We use these to confirm earlier derivations of counterterms and to
obtain new information gbout those previously unknown. -

We end our calcylations in chapter 9, where we look at the extension of the Cutkosky
technique commented on above. Combining Cutkosky rules with an explicit use of dimen-
sional regularisation gives us the potential to recover any one-loop amplitude efficiently.

As an éxample of this we re-derive one of the earlier results found with the string-inspired

rules. We also find an expression for a four-graviton amplitude with internal massive

. particles.’

After a concluding chapter, we end with a series of appendices which describe some of
the less import’ant techniqlies which we implemented in the preceeding calculations (SUSY
Ward identities, SUSY decomposition and Spinor Helicity methods), as well as outlining

some of the more technical aspects of the work.




We knyow that we live in contradiction, but
that we must refuse this contradiction

and do what is needed to 'reduce it.

Albert Camus

2. Gravity in Quantum Field Theory |

Gravity has long posed a problem for particle physicists. While we have a successful
classical theory in General Relativity (GR), this does not fit with our quan‘tum theories of
matter in a neat ‘philoeophical’ way. This is a puzzle which cannot easily be side-stepped
since matter is related d1rectly to GR quantltles in Einstein’s field equations (2.9). So, we
would 11ke to ﬁnd some cons1stent method to hnk GR to quantum field theories, preferably
by quant1smg grav1ty itself. The d1ﬂ?1cu1ty is that 1t is not clear what form such a quantum
theory of gravity should take — all those proposed have flaws of some sort. A continuing
' pfob‘le_m in all investigations in this area is the difficulty of ’calculating quantities, as we
discussed in the Introduction. In particuiar', this has made hard work of attempts to
understand t"he formal prgblems such as renormalisation (see next chap;;er). Hopefully,

so‘m'e‘ of these restrictions will be relieved by the work presented here.

»Before we look at the new calculational techniques, let‘ us sketch the scenario in which
we W111 be worklng ‘We will begin in the next section by g1v1ng a brief outline of GR.
Follovvlng thls we W111 go on to dlscuss some of the conjectures for describing gravity in a
Way‘c‘onsrlstent with theories of matter. We will then look in detail at those to which our
‘ eaicnlatiens will apbly _ the Lagrangian—based thenfies'. This will involve short descriptions
of the approaeh which we take with the pure gfavity Lagrangian the ways in which bosons
- and ferm1ons are coupled to gravity and extensions to SUGRA. Flnally, we W111 give an

overv1eW of the previous calculations which have been carried out.
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2.1 General Relat1v1ty | | v e
Let us begin with a very brief overview of the essentlal aspects of General Relat1v1ty to ,
estabhsh notatlon (for all full discussion see, e.g., [32]) GR is an extens1on of Spec1a1bf
Relat1v1ty (SR) which includes gravity. To begin with, the Lorentz transformatmn of SR

is replaced by a general coordinate (gauge) transformation:
ot — g (z) gAY
B R L C Nt de* — da'* = At dz'" L
(That is, transformations under the group GL(4 R).) Scalars vectors and'tensors in the
theory are then quant1t1es which transform under the gauge transformatlons as
¢(:c) — ¢(z") = §(z) "
Au(z) = A" = (A I)p A, (»"C)
| - (2.2)
T“l #n (:c) T’ul un (w ) A‘“l . Aun e
A x,(A‘yl),j’ll (A" 1)% oL ;;(x).
- Gravity cbmes into the theory as a result of the curvature of space—time This is encoded

in the metric tensor, 9w (together W1th an 1nverse g*? s. t g" *goav = 6F). The curvature

is then seen in a typ1cal hhe element deﬁned as
e 'g,;,,ax»axv.»w b e (23)

lThe metr1c is used to ra1se, lower and contract 1nd1ces on tensors (e.g., A = guA”).
o, As W1th all gauge theor1es we must deﬁne a covar1ant derlvatlve Th1s is the con-

Vent1ona1 derlvatlve plus extra terms Wh1ch produce the correct transformatron propertles

For example for scalars and Vectors we deﬁne it to be -

m éw .
L (2.4)
VA, =A,,.,L‘=5‘A ~ T, 4x.

(For a more general expressmn, see append1x )T is the connection, Wh1ch is defined in

such Way as to g1ve the correct transformatmn properties to V.. In GR we assume that

5 -



Gravity in Quantum Field Theory 10

the theory is ‘torsion-free’, that is, that I‘)l‘w =T u- The usual choice for I' is
F);‘u/ = %g)\a (altgozu + &/Qau - aag;w) . : (25)

This is the ‘metric connection’ and, in this case, I' is referred to as the Christoffel symbol.
This choice is made so that

V)‘ Juv = 0. (2.6)

. The other quantities which we define are curvature tensors. These give a guide to
the geometry of the space we are working in. The most usual choices are the Riemannian
tensor

“ Rp,

vep —

9,T% , —9,I%, + T,k —T% Tk - (29)

vot ap vp- ac

and the Ricci teflsdr and scalar

Ruy = Ra

pov
' (2.8)

) R - g“uR#y -
The dependence of the curvature on the matter in the universe is expressed in the

- Einstein field equations:

R[LV - %g#yR = 87I'G Tuy. (2.9) .
. | .
T,y is the energy-momentum tensor of the matter. Clearly, this is a non-linear equation

in g,,, making explicit our contention that this is what encodes the curvature.

2.2 Particle Physics Approaches to Quantum Gravity

There have been a number of attempts to include gravity in a quantum theory; all have
problems of some sort. The theories which we will discuss here are perturbative quantum
gravitj} (PQG) [28,29,33], supergravity (SUGRA) [30] and string theory (ST) [34].- We will
look at string theory later; this forms the Basis for one of the new céiculatiohal techniques.
String theories include gravity with matter in a way which avoids the theoretical problems
present in other models. However, they have their own difficulties: At present it is not

clear _hb_W to construct a ST which fits with experimental results. In this chapter we give
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an overview of PQG and SUGRA. It is these theories at which our calculations will be
aimed. | '

PQG takes the most obvious path to a quantum theory of gravity: A Lagfangian Whichi |
leaqs to the Einstein field equations, or some generalisation of these. The Lagrangian which

gives the left hand side of (2.9) exactly is the Einstein-Hilbert action,

=2 VG R(g) - (2.10)

»

(This is the case for a theory with no matter; Ty, = 0. A non-zero energy-momentum
tensor will be present in (2.9) when we couple this with matter Lagrangians.) g,y is
taken to be the fundamental field in the theéi‘y and repi‘esénts the spin-2 graviton. The
Lagrangian is quantised in a way analogous to other field theories and so fits neatly with
our theories of matter, as hoped. ‘Un‘fortunately, it can be shown that this theory is non-
renormalisable; that is, it includes divergences which cannot be removed by fhe addition
of a finite number of counterterms (see next chapter). |

Itis £)ossible to find a Lagrangian which is renormalisable. For instance, Lagrangians
of the form [35,36] o : : , . | ‘ .

L]

L= —2\/—g(n_2R +aR? + BR,,R*). (2.11)

These theories have their own problems. To see this note that the propagator will look
like - |
m ~ 1—)15 — zﬁ_Jr—l'W (2.12)
The second term here is a propagator for a massive ghostlike particle, which implies that
the theory viélatqs unitarity (see ref. [36] and chapter 111 of ref. [33]).

" The other method which tries to extend (2.10) in a way which deals with the renor-
malisation problem is supergravity. As is well known, SUSY and SUGRA theories (see

refs. [37,30]) include symmetries between fermions and bosons. These symmetries would

be expécted to reduce the divergences in the theory, and maybe remove them completely.
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does not exist any satisfactory quantum theory of gravitation, and in liew of such
a theory 1t would seem well to gain what empe'rience we can by solving any problems

that can be solved with the limited formal apparatus already at our disposal.’

A better understanding of gravity amplitudes and the low energy limit of quantum gravity

theories may give pointers to the form of a full consistent theory.

Apart from the direct applications to gravity, this work enables us to explore and

i

develop the scope of the new techniques which we are using. It shows the power of these
methods and makes clear the ways they can be generalised to a wider range of situations.

In this work, we will consider calculations for gravity coupled to a range of particles.
This includes theorie.s ;:;)ntaihiﬁg spin 0, %, ‘1 and % particles and, in particular, super-
gravity theories. Before discussing any calculations let us briefly look at the meﬁhods for

quantising theories ianlving gravity.

L

2.3 Quantisation of Pure Gravity [28,29,3?;]

~ Let us begin with the quantisation of pure gravity theory. As we have said, the starting

point is the Einstein-Hilbert action

2
Sgrav - "';:—2‘/614(1,' \/—‘gR . (213)

Here g = det(g,,) and R is the Ricci scalar, defined above.
" In order to quantise the theory we expand the metric as small perturbations around

a classical backgréund.

¥

Guv = Guv + £ hyy (2.14)

-

We will use this to expand all quantities in the theory, the expansion parameter being .
k = /871G, where G is Newton’s gravitational constant. Note that this implies that & is
a dimensional parameter. It is this property which is at the root of the renormalisation

difﬁculfies. hyuy will be the quantum of our fheory. The indices on h,, are raised and

13
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lowered by §,, and its inverse:
- RHY = gEY R

(2.15)
=§#a$7yﬂ hap ; '
The inverse metric is similarly expanded as
g =" — kh* + k2 RE R — &* RE RG BPY + O(k*). (2.16)

b

This enables us to expand the quantities in the Lagrangian as follows: The square root of

the determinant becomes

2 : 3 o : '
V=i=v-% (1 + ht (h* = 2hL hg) + To(h® — 6hAE hS + 8 R BY hﬁ)) (2.17)

and inserting the above definition in (I.3) gives the expansion for the Ricci scalar
R=R+s(r5% —1%") |
e )

T v {18 8
+3hph, — 3h* (h giuv — 2h ﬂ;uﬂ)

JA
(2.18)

— ghih (2RG — RYT) + hjh#ﬂéaﬂ> + O(x*)

»
(see appendix I for details of these expansions). -
- For our purposes, we will always take the classical background to be flat Minkowski
spacef. Hence,

Guv = Tuv - (2.19)
Inciuding this choice of classical background, the action becomes
Sgrav = —;25 / d%(& (hss,aa - hga,pe)
| + K2 (%h (hsp,aa f-hﬂa,ﬂa) + ihék,uhok,u + %hrp,ﬂhpﬁ,r (2.20)

— haoAhou,u + %huﬁ,rhw,r) + 0("“3))

t We choose to define the Minkowski metric, 1,,, with the signature (+ — ——).
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This will be the 1mp11c1t startmg point in all our calculatlons We quant1se as usual.

For 1nstance we can deﬁne Feynman rules from this Lagrangmn in the same way as we

do for other quantum ﬁeld theones to allow us to find scattermg amphtudes Note that

we have an mﬁmte number of terms in the action; these will lead to 1nteract1ons with any
S

15

number of grav1tons It is  here that we already begin to see the dlfﬁculty of calculatlons in

grav1ty with each increase in the number of external partlcles or number of loops belng ‘

considered in an amplitude calculation the number of possible interactions in the theory
also increases. We can also see hints of the ‘complexity of intefactionterms: the low orders
shown here already have a large number of terms which must be considered.

As in other ﬁeldmtheones calculatmns by conventlonal methods require us to include
a gauge ﬁxmg term, —-—C 2 together W1th ghost contr1but1ons A usual gauge cho1ce is the
de Donder gauge [29], Cu = 8ahS — 30,h. In fact, none of the new methods here require
an exp11c1t choice of gauge or any involvement of ghost contributions. Th1s is one of the

»

‘many simplifications in the new techniques as compared to the conventional oties.

2.4 Coufiling to Other Particles: Bosons

To include other particles in our theory we add suitable Lagrangiens to the pure gravity
one. Clearly, when adding'otvher particles to our theory we must couple them in some way
to our grav1ton ﬁeld In non- supersymmetrlc quantum grav1ty, we do this W1th a ‘minimal
couphng In the case of bosons this 51mply means maklng all derivatives in the added
‘ Legtanglan covariant with respect to Lorentz transformations and including the metric

explicitly where vertices are contracted. For instance, the Lagrangian for a free massless

scalar is
R 5

»

Ly = %Bﬂ@a“@. N . | ©(2.21)
So, for a theory containing scalars coupled to gravity we just add the term
| se=} [ dayTgy,eve

(2.22)
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to Sé;av. Including the expansion (2.14) and condition (‘2.19), this becomes -
3= t) [ a2 (0000 48 Grhpna b 0800
482 (5 (17 hon)? = 2haphas) M — hophas) u28,8 +O(%).
The graviton and & fields are then quantised. B o

We will also consider the cases with gravity coupled to massive and complex scalars.

As might be expected, the first merely 1nvolves adding an extra term to the action

ot

’ . | S:Sgrav"l'séu_/dw\/ gm | ’k (224)
For the second the scalar component of the action becomes

PR S.:p :4—/d4w\/—gg””3“<1>*6,,<1>"; BRI . (2.25)

The practmal effect of this ‘will be extra particles in loop calculations and dlﬁ'erent combi-
natorlcs in Feynman rules | | |

We can include spin 1 particles in an analoéous'vvay. The starting point in this case
is the Ldgfangian ,

R  La= -%tr(Fﬂ,,Fué) T (2.26)
wifh | ‘ - . |
o Fay = Ou Ay — 0, A, +ig[Ay, Ay, | (227)
(For photons [A#,A,,] = 0. ) So, couphng of th1s field to gravity requires the addition of
theterm : R '

Sa= -i/d“az \/:Zgo”‘gﬁ" tr((VuA,, VA +iglAu A])
‘ . | ‘ ' (2.28)
x (Vadg — Vadg +ig[Aa,Aﬁ]))
: to the pure grav1ty actlon and’ quantlsatlon of the grav1ton and Ay fields. We can expand
thls as above and quantise. | | |
Note again that in both these eases we must consider interactions between two, three

or four matter particles and any number of gravitons. Even in the coupling to matter, the

calculational }Sroblems will increase considerably with higher order calculations.
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2.5 Coupllng to Other Partlcles' Fermions

For fermions, the couphng to gravity is more complex [41,42]. Unhke the Lorentz group, 1t :

is not p0851ble to construct spinor representatlons of the local coordlnate transformatlon

group (GL(4, R)). The coordinate transformation group is the bas1c symmetry of GR so’
we must find some way to overcome this problem if we wish to mclude spmors and hence :
fermions, in our theory. In order to deal W1th th1s We ﬁnd that we must formulate GR in a‘ 3
shghtly d1ﬂ’erent way; in. order to obtain a spmor representatlon we set up a locally mertlal‘

space at each pomt Since thls is Lorentz 1nvar1ant We can deﬁne representatlons W1th1n :

it for all quant1t1es mcludlng spmors i

| To carry thls out in practlce, we set up a sy’stem’ of merbems el Wh1ch take us from
our orlglnal coordmates :c“, to coordmates, fa, Whlch are local mertlal at each po1nt In
effect we place all of the coordmate dependence in the v1erbe1ns leavmg us to deal only
‘ W1th the Lorentz aspects of fields. We can then 1nc1ude spmors in the theory with relatlvely‘

httle trouble et

The e“ ’s are deﬁned by - AR
gt

 en = s (2.29)
. P ”,("'v‘ ,v: Ty ) :"u’ s L
1 and produce a transformation of the metric -
’ €a 6%%5 = gaﬂ- o PR e (230)

(Note that the v1erbe1ns can be thought of as the matrix square root of the metric. ) We

- raise Greek 1nd1ces usmg the metric tensor a,nd Roman indices using the Minkowski tensor.

f

The V1erbems can be shown to be both Lorentz and GL(4, 7?,) (coordmate) vectors,

“'(x) (w)em) ;‘e;'i'(s:g’”: 4@  (2.a1)

Cim s

1 and hence we can use them to transform coordmate tensors into Lorentz tensors and

it coordmate scalars e. g ‘a coordmate vector becomes a set of four coordinate scalars which
form a‘ Lorentz Vector,

IA% = et Ar, ' (232)

Gmbz’t@ in Qudntum erldTheory ’
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When this is done for all tensors, spinors can be brought into the formulation in a way

analogous to any other field — as a set of coordinate scalars which transform as a Lorentz
spinor.

As with the metric formulation of GR, we must introduce a covariant derivative. We

deﬁne this to be

1
Pﬂ=8“+2

The o are generators of a rejvpresent‘eti’on the Lorerltz group The represenfation depends
on the type of quantity being acted on. (The sigrriﬁeant case here being Spinors; where
o 4[7 7] K

| w,wb is the spm connection’; ; ‘1t plays an analogous role to the connectmn in (2.4).
We can define th1s in a number of Ways the two main conventlons are the “first’ and
second’( order formalisms. These glve two dlfferenf m1mmal couplmgs of fermions to
‘ grav1ty In the first order formahsm we begin by takmg w,mb to be an mdependent field
. a,nd subsequently eliminate it by solving its field equat1on, 65/ 5w“ab = 0. We will use this
| method in the next sectlon to construct the s1mp1est form of N = 1 SUGRA. Here, we
outline the second order formalism. This is the usual choice for fermions’in non-SUGRA
theorles The definition follows the method for deﬁnmg the metric connection in the metric
formulatlon of GR.‘ In that case we requlre that the covariant derivative of the metric tensor

vanishes. Here, we define the the second order spin connection, wyqs(e), by

Oues —}—wzb(e)eb,, F,’j#ep 0. o (2.34)
| Which impiies that
: 1
wp.ab: e: (a,u.ebu - alleb[l. + 2eaeb(a €y ™ ayecp62)> + (a > b). (2.35)

’il (This is, in faCt, the solution of §5/8w,as = 0 when S is the pure gravity action.)

L - © o (2.33)

18
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In order for us to use the correct measure in the action ‘integration, we must also

define /=g in terms of the vierbeins. We find, in agreement with the suggestion that the
vierbeins are the ‘matrix square root’ of the metric, that it is simply - L i

i

In terms of the vierbein formalism the pure gravity Lagrangian becomes

11
26 T T2 ey

AL

Once we have Wr1tten quantltles in th1s v1erbe1n formahsm of GR we can easﬂy ﬁnd

R

‘the mlnlmally coupled Lagranglan as before - we s1mply change der1vat1ves to covarlant k

derivatives Wherever they occur However, before - We d1scuss the details of th1s We must
look at hOW we handle the grav1tons in thls formahsm The grav1ty ﬁeld is nOW represented
by the v1erbe1ns SO we Would expect that these should be expanded in some Way Obv1ously,
for the s1mp1est apphcatlon of the theory we Would hke to expand the v1erbe1ns in a Way
Whlch meshes vv1th our formulatlon for bosons If th1s were not poss1ble we would have
to rewrlte the bosonlc terms (and in, partlcular the pure grav1ty terms) us1ng v1erbe1ns
Whenever we included ferm1ons in our theory Wh11e this is poss1b1e it is not ideal by any
means. Fortunately, 1t has been shown that for sultable gauge cho1ces we can write the

;v1erbe1ns s0 that the rnetr1c is the ﬁeld varlable i. e., we can expand es in terms of h‘w

and use both GR formulat1ons in parallel [43] The expans1on of the V1erbe1n is

B D

€ = ez t3 hm*”"em - —(huﬁg o lpaean +0(s*)  (238)
where §’ﬂ v and Eua aTe 'respectively the metric and vierbein fields representing the classical

v

‘ background
: W1th our choice of gﬁ" = 776" th1s expansmn is
e ' 2

’[av a: ' a“ K
€u ,:5u+‘2_hu o

’—S—hmhc‘““—l—O"(s'&). o (2.39)

(It is trivial to check that (2.39) and (2.30) imply (2.14).)

- Lgravzi—eR=———eRab ek : (2.37)‘

19
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Having constructed a way of introducing fermions into GR and found the above expansion
to relate this to our other results, we are now in a position to deﬁhe ou‘rbtheory‘ with
gravity-fermion couplings in a way which fits with the boson couplings of ‘the last section.
We begin with spin- fermions.

2

As is well known, the Lagrangian for a free massless spin- fermion is

L=ter@m-@ar) . )

We must convert the derivatives, 8,, to covariant derivatives and insert vierbeins

Whereafp‘prcﬂ)priatev. So,"theextra term to be added to the action is

. i . : »‘ “‘ _ . | : v‘
s= g [atae (i@ - @Dane) - e
~* are the usual constant 7 matrices. We can use (2 39) to give us an action which can be

L L

S1m1lar1y, we can look a,t spin-3/2 fermlons The kinetic-energy term Wh1ch we must

. use for thls ﬁeld is the Rarlta-Schvvmger term [44]

. i , ‘
L\p = —§E“VPU\IJ,,,’75’7,,8P\I’0. . (242)

| Agam to couple this to grav1ty, we must convert the derivative to a , covariant one. For

‘ 81mp1101ty of descr1pt1on we initially mix the two GR formulations in our descr1pt10n of this

ﬁeld [45,46]; we consider the field to have a coordinate vector index and a Lorentz spinor

{ index. i.e, ¥ =T,,.

3

Then, the action of the covariant derivative on this term must take the form

¥ ’DV\I’ua = au\Ilp.a — F,);V\I;)\a + ‘éwuab (O'ab)i ‘Ilﬂﬂ . (24:3)

where Whab eﬁd Cab are those deﬁﬁed above. Note that in the Lagrangian the symmetric
! 1nd1ces on I' are contracted W1th the Levi-Civita tensor and so the middle term on the

| rlght hand 31de vanishes in the Lagranglan — we may regard the derivative to be with

20
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_respect to the spm—-— content of ¥ only. Hence, we can 1gnore the I‘lli term and need not

worry about the mixing of the GR formulatlons

Assuming this definition for D, we can “write the complete action for“;the gravityib

- gravitino system as:
' 0o

‘ This can then be expanded and qu'antised.

lf
L

2.6 Supergravity [30, 16]

; As we have already ment1oned supersymmetrlc theorles are theor1es yvhrch contain symme-
trles between bosons. ;nd fermlons These symmetnes 1mp1y that there Wlll be cancellatlons
in amphtude ealculat1ons and 81mp11ﬁcat10ns in ﬁnal express1ons The hope that cancella-
. tions W111 remove problematlc d1vergences has generated a great deal of interest in SUSY
, theorles Wh1ch contam gravity. o

Whlle a spm 2 (grav1ton) ﬁeld can be mcluded in a global SUSY theory (see e.g.,
“; ref. [46]), the typlcal Way of creatmg a theory with grav1ty and SUSY is to use local

: supersymmetry (see ref [30]). In fact, 1t is easy to show that a gauged supersymmetmc

‘ theory requ1res the mtroductlon of a spin- -2 boson and 1ts sp1n—— partner We can identify -

the sp1n 2 part1c1e W1th the grav1t0n and SO find that theorles with local supersymmetry
must contam grav1ty We name thls class of theor1es supergrav1ty (SUGRA)

[ " The 51mp1est SUGRA theory is one contammg a smgle supersymmetry and a single
| doublet contalnmg a grav1ton and a grav1t1n0 (the spm—— partlcle) 'Evidently, the starting
pomt for such a theory w111 be the Lagranglan found in the ﬁnal last section for a theory
;'; couplmg these tWO part1cles (2 44) There are then two ways to approach the problem of
‘;,‘ supersymmetrlsmg th1s The first hlstorlcally Was to add interaction terms which make

3@ the Lagranglan 1nvar1ant under SUSY transformatlons [45]

 Lim = 5}5 (@“7”‘1’6 (‘T’m‘l’c +I2\TJ”7“‘I’C) —4(Fy-0)7). (249)

21
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The Lagrang1an is then invariant under the local SUSY transformatmn ‘

 bey, = -—EF)/“\I!;L'

e % . _(246)
&I’@z—D €. : :
K

"It i is, however poss1ble to construct a s1mpler form of the act1on 1f one takes w‘uab ‘to

 be an mdependent field from the beglnnmg [47] Then we ﬁnd that our supersymmetr1c '-'
Lagrang1an is JU.St | o o ' B o , g
I LN 1= ——1—eR—n 15“”””‘P“757 e"D \If (2.47)

Thls is 1nva,r1ant under the transformatmns 1
S — = a
el i S 8 = —D € A
aoup ;~f' o :

,1 ‘
Ewwb = 6’}’5’)/“9 \If e“b”",—- -2—6 e'ysfyaD ¥, e

EERS |
+ 36 e’ysfya'D \Ii,,eb"””

. " ThlS is the so- called second order formahsm for the spm connectlon lf we solve the ﬁeld

“,‘equatlon ‘, . . o K 8 |
| | &ifb_—_-o ‘, (a9
| wefind that wuap iegivenby
o sk moa@ R (250)

Here, u},;@b(e) is the connection defined in equation (2.34). k,qp is defined as

Fuad = :Z—‘(fllpjya}lfb —~ FI’uvz;\I'a + xpmpr) : | (2.51)

f}‘ Th1s extra term can be 1nterpreted as 1mply1ng that grav1t1nos add torsion to our ‘theory.
1 Note that the two act1ons are equ1valent on-shell. S1nce our calculations are restricted to
~on- shell amphtudes We Wlll not need to d1st1ngu1sh between the different formulations in
the results d1scussed here Thus, we have formulated a theory with a smgle local SUSY

‘ 1nvar1ance. :
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We can also regard this from an operator perspective. ‘In this view, we have an

operator, (), which transforms between‘the creation and annihilation operators of the
theory. So, in the theory above we would have a @ such that"
SR » [Q,a;’:] = :I:alaf; z
{Q,ai} = iaga;t
where a;t and aiz are creation and annihilation operators for gravitons and gravitinos (of
helicity #1) respectiveiy.' Since we have only one operator“this‘ 1s désignated’to bea N =1
 SUGRA theory. In this formulation We implicitly have two SUSY doublets, one containing
the positive helicity particles and the other containingthe negative helicity ones. We can
“ easﬂy extend the theory by couphng other N =1SUSY doublets [48]. These need not
necessarlly be (2, 2) doublets
It is possible to create theories containing more than one SUSY operator — that is, with
" more that one supersymmetry between particles. Starting with our N =1 Lagrang1an it
can be shown that, if we couple a ( , 1) doublet, it is possible to extend the Lagranglan in
| su’ch a_Way that ’the two spin—% fields can be rotated into each other. This implies that the
theory has a second SUSY transformation similar to the original one but “Witlil the spin——g£
‘ fields swapping roles. Frorh an operator point of view we now have two SUSY operators;

| the theory is N'= 2 SUGRA [49]. The four particles comprise a completeN = 2 multiplet.

1

| (In general, we will include two multiyplets containing sets of positive and negative helicity
particles.)
[ ‘In thisyway; we can continue to add more particles and increase the number of op-
erators [50 51] ‘The Lagrangians become 1ncreasmgly complicated, so we will not give
| any of them in deta11 here A theory can contam any number of multiplets with different
comblnatlons of part1cles related by the supersymmetry. So, for instance, in an N = 2
theory we may have the 2 multiplets described above plus a matter multiplet containing
tvvo scalars and a spm—— fermion. The natural limit of increasing SUSY operators seems

: to be N = 8 SUGRA Beyond thls point we must add a spin-2 particle 1nto the theory.

(2;5:'2) |
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reason to believe that nature contains anythmg beyond spin-2 [30 52]

‘The N=38 SUGRA [53] has one possible mult1plet contalmng the part1cle content:

quantum gravity. Also, we might hbpe that the theory hash a symmetry group Which could

| these seems to be untrue in pract1ce [46] the first we Wlll d1scuss later . i

2.7 Previous ‘C‘alculations" in Perturbative Q"ua’nturn ‘Gravity’

There are two sets of calculat1ons Wh1ch are relevant 1n quantum gravity, perturbatlve
amphtudes and counterterms Obv1ously, these ‘are, strongly 1ntertW1ned the ﬁrst often
glvmg 1nformat1on for the second. We W1ll leave the problem of counterterms to the next
sectlon',‘ Where we d1scuss the d1vergences and renormal1sat1on in PQ_G. Here we look at
: ‘ explicit calculations of amplitudes L | |

Due to the d1ﬂlcult1es 1nvolved in calculatmg quant1tles in quantum ﬁeld theories, we
often cons1der a perturbat1ve expansmn That is, We take a small parameter (usually, a

| coupl1ng constant) and l1m1t our calculat1ons to spec1ﬁc orders in that parameter This
‘_1s the most Wldespread way for finding scattermg amphtudes for ‘particle interactions.
The maJor1ty of these calculat1ons are carned out using the Feynman diagram technique
‘(though we will also ment1on cases Where string theory has been used in the past). Since
- ‘CthlS techmque 1s W1dely used n partlcle phys1cs we W1ll only g1ve a br1ef review of the
iessent1al aspects of the method

| The Feynman rules are constructed to prov1de a straightforward, graphical and com-
" ; pact way of calculatmg Green functions or scattermg amphtudes in quantum field theories.

| The rules are constructed from ‘the Lagrangian of the theory being cons1dered (including

Gmmty in Quantum erld Theory

There are difficulties in coupling such a field with other partlcles and, anyway, there is no

1 grav1ton 8 gravitinos, 28 vectors, 56 Sp1n—- fermions and 35 (complex) scalars Th1s
| symmetry it could be that this overcomes completely the problems of infinities found in

'~ be broken to give the standard model and all its part1cles Unfortunately, the second of
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a suitable gauge fixing condition and ghost contribution). They consist of a set of ‘ver-

tices’ and ‘propagators’; the former describing the point interactions of the particles in the

theory and the latter their movement between these interactions. These components are

used to construct diagrams representing perturbative processe‘s in the theory Each vertex '

and propagator is associated with an algebralc formula; these are used together Wlth the

d1agrams to construct 1ntegral expressions for the Green functions of the theory

. Since each vertex carries a power of one of the couphng constants of the theory we
can easily éeparate Feynman diagram resu‘its into contributions at the sa.me pertui'bative
order. For a fixed number of e‘cterna,l partlcles the diagrams can be classed according to
the number of loops .which they contain; the higher the number of loops, the higher the

perturbative order a diagram will contribute to. So, the lowest order is found be summing

all tree ‘diagfams — that is, those with no internal loops; the next will be the sum of all

| diagrams with one loop; and so on. e

- InPQG we can carry out this process in precisely the same way as other field theories;

| the rules are derived from the Lagrangian and calculations at a particular perturbative

order can be carried out. (For an example of a complete set of Feynman rules see ref. [54].)

| We have already hinted at the significant difference between this and most other field
| theories — the expansion of the Lagrangian contains an infinite number of terms, so we will

{ have an infinite number of vertices which must be considered. Each vertex is also typically

more complex than analogous ones in other theories and integrals will contain more powers

| of momenta, in genefal. These all work to increase the difficulty of calculations in PQG.

There is one further step which is often made in gravity formulations: the background

| field rr{ethod [55] | This simplifies calcﬁlations and iretains some of the symmetry of the

theory It is pnmarlly used to produce an effective action W1th has the same symmetries

as the theory It is particularly useful when con31der1ng counterterms, since it allows us to

lwrlte them in a form in which all symmetries are seen explicitly [56].

~ This method is formulated within an effective action description of the theory and
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so is relevant, in the first instance, for 1 particle irreducible diagrams. The basic step in
the background field method is to make a spl1t of the fields 1nto background and quantum

parts. So in gravity we will have an additional split to the one in (2. 14)

o

(Guv is the ‘background’ field and qS,w the quantum one) (We W1ll use "7 to indicate
| quantities which depend only on background quant1t1es ) The effectwe action is cons1dered
| to be an 1ntegral only over the quantum ﬁelds only these can appear in loops Conversely,
“ only background ﬁelds have source terms; only these can appear as external l1nes in d1a—
grams So our 1PI dmgrams cons1st of external Tuv part1cles with loops of ¢ uv Darticles.

P We ﬁnd that,. the theory now has two gauge symmetr1es one in which the background
fields do not transform and the other in which all fields transform, the background ones
j‘Witl’l‘ the orlglnal gauge symmetry of the theory. So, we can just break the first symmetry
| and leave’all the results as functions of the background fields which retain the symmetries
‘o‘f the ,the*ory.v This way we will recover an effective action which obeys all the theory’s
symmetries o | | | o |

We can use th1s for general amphtude calculations, as was shown in ref. [57]. Breaking
the second gauge symmetry allows us to introduce a propagator for the background field
with Wh1ch we can join the 1PI diagrams. So, we will have loops containing quantum
| fields joined by background field propagators. As we have broken the quantum field and
background field symmetries independently, there is no reason that they should have the

Isame gauge choice. “So,‘surprisingly, we find that we have a method in which we can use

! different gauges in the loop and tree parts of our calculations.

b Itis 1n this background gauge method form that we will implicitly consider the counter-
| Lagrangian ‘)’In this way the counterterms retain the symmetries seen in the underlying
theory It also seems that this is the gauge implied by the strmg rules; to find a field theory

‘mapplng for these rules we are required to formulate our theory in precisely th1s way (see

h;u/ = gﬂy + ¢p,1/ : ' : ‘ (253)
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ref. [58]) The field theory mapping for the QCD. rules implies that the most efh'c1ent”

Now let us catalogue the previous calculatlons in PQG. As with all ﬁeld theor1es, the calcu-

‘have been derived. There are two cases which are of 1nterest here because of their use of
string theory. In 1ef [60], Sannan obtalned the tree—level 4 grav1ton scatterlng amphtude

| both d1rectly and by lookmg at the 1nﬁn1te tens1on limit of a closed strlng theory The

latter is close in sp1r1t to the Work Wh1ch we W1ll present here. Berends, G1ele and Kur]f [20]
“1 combmed thls W1th the fact that open and closed str1ng tree scattermg amplitudes could
; be related [61] This allovved them to relate gluon and grav1ton amphtudes and find new
grav1ton results at tree level.. By this method, they obtained a conJecture for n- grav1ton

arnphtudes of the form Atree(1~, 2 3"’ n"') and conﬁrmed 1t numerlcally for n < 11.

The maJonty of one- loop calculatlons using Feynman d1agrarns in perturbatwe gravity
: have been correct1ons to the propagator These have been calculated for all particles types
' in refs [62 63] Correct1ons to the propagator are the simplest calculatlons at any order,

$0 th1s is perhaps the obv1ous starting po1nt The results found gave some indication of

i the drvergences in PQG

‘ Probably the most hero1c attempt at using the trad1t1onal methods for one-loop gravity
1 calculat1ons was by Gr1saru and Zak in ref [64]. They calculated all one—loop four graviton
amphtudes W1th rnternal massless scalars We reproduce these results, using the string-
1nsp1red and Cutkosky rules as part of a more general set of one-loop results.

The calculat1on Wh1ch is closest 1n sp1r1t to the work done here is that by Green,

zSchvvarz and Brmk in ref. [65]. They obtained the four-graviton N = 8 supersymmetrlc

“method of calculat1on in that situation is to use the background ﬁeld method plus the '
Gervais-Neveu [59] gauge on the trees. In the str1ng—1nsp1red rules for grav1ty, we requ1re ‘

the background gauge plus the de Donder gauge and a slight redeﬁn1t1on of the ﬁelds [31] .

lat1ons of grav1ty tree amphtudes are reasonably stralghtforward usmg Feynman d1agrams |

| There is no integration requ1red SO the results come almost 1mmed1ately after the rules
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.

, amphtude by looking at the field theory limit of a closed strmg theory. Agam we reproduce |
this result with both the string-inspired and Cutkosky rules.

The other Feynman diagram calculation at one-loop was carried out by Desef and van
Nieywenhuizen [42]. They looked at the scattering of eight fermions. ,‘Their purste‘ was -
to identify non-zero counterterms in the Dirac-Einstein system and so they concentrated

‘ only on the divergent contribution of the diagram. We will look at this in the next section

where we consider the W1der issue of dlvergences and counterterm determmatmn in PQG

W
“

N




I can’t help it, the idea of the

infinite torments me.

‘Alfred de Musset

3. Divergences and Renormalisation .

Any d1scuss1on of grav1ty in quantum ﬁeld theory must 1nclude some con51derat1on of
renormal1sab1l1ty, since this is one of the maJor problems for anyone W1sh1ng to construct
a quantum grav1ty theory Our Work here W1ll be no exception: many of the results will
relate cl1rectly to the problem and we must keep it in m1nd even when they do not. For
this re{ason‘, we v;'ill devote. th1s chapter to an outline the vissue‘of renormalisation and

divergences in PQG and SUGRA.
{ 3.1 Renormalisation [66]

In general,~ if we vlrrite down' some Lagrangian for a quantum field theory we will find
| that infinities appear ‘in calculations rve carry‘out. These infinities come in two forms
- infrared and ultraviolet n&commg from the low and high momentum sector of integrals,
l respeetiVely). We will discuss the infrared divergences in chapter 7; they do not concern
‘us too’vrmuch since we know that they will eventually vanish in the S-matrix [1,67]. If the
: “ only .divergen'ces in a theory are IR then the theory is finite and we have no problems. If,
| .on the other hand, the theory contains ultraviolet divergences, we will have problems if we
| cannot deal with them in a sensible Way.

bl The usual method for removing an}t Uuv diyvergencesWhich occur in a particular theory
is to ad(l ‘icounterterms’ to the Lagrangian. These are extra t'erms which act to remove the
| | infinities from the results. In perturbative calculations it may be that counterterms must
| be added at each order. This process of adding counterterms is fine if the new terms are

'the same as the terms already in the Lagrangian or if we only need to add a finite number.



Di‘vergences and R‘enormalisa’tio’nh :
The ﬁrst case merely implies that the ‘physical’ parameters whrch we chose were wrong,'

the second that we chose the Wrong Lagranglan In both these cases we call the theory,

renormalisable.

‘The probleny comes if an infinite number of counterterms is required to make a theory J

finite. This w1ll happen if, for instance, we must add a new type of term at each perturba-
tive order In th1s case we lose pred1ctab111ty (since, in effect we must rewr1te the theory
at each order) and the theory is non-renormalisable.

"o

Any theory conta1n1ng perturbat1ve grav1ty will theoret1cally be non- renormahsable a

fact which can be attmbutecl to its d1mens1onal couphng constant At each order we must:

add an add1t1onal momentum in the numerator to balance the extra power of the coupling

| constant Hence as the number of loops be1ng cons1dered gets larger there is potentlal for

1ncreas1ngly dxvergent contr1but1ons to the amphtude As d1vergences at each order will

be of dlfferent type, the1r presence will require an 1nﬁn1te set of counterterms

Of course thls non- renormallsab1hty Would not be a problem 1f these potentral diver-

| : gences van1sh order by-order in the theory and the perturbat1ve expans1on was finite. In

: th1s case all potent1al counterterms wrll have zero coeffic1ents and be 1rrelevant Proof or

'

dlsproof of thls has been a s1gn1flcant area of research in grav1ty, espec1ally for the case
of SUGRA theor1es Here we glve a br1ef review of the results obtalned We begin with

general 1 loop results followed by tWO loop pure grav1ty and ﬁn1sh w1th a discussion of

| the status 1n SUGRA

Before we start note that in all calculat1ons and discussions of d1vergences we will

| 1mpl1c1tly assume that regularlsatmn is carried out by use of a d1mens1onal regularisa-

t1on [68] or d1mens1onal reduct1on [69] scheme In both these schemes we analytically

W

contlnue the dlmensmn we are WOI‘kll‘lg in away from 4104~ 2e In the former we decrease

' the number of states accordmgly, in the latter we assume the change in dimensions is due

to compactlﬁcatron SO that the number of states is constant Dimensional reduction is

1mportant in the supersymmetrlc theorles, since it retains supersymmetric cancellatlons.
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It can be shown that the two are equivalent (up to redefinition of the coupling) [69]. In
both schemes divergences are seen as poles, 1/€™. Note further, that when caloulating in
4 — 2¢ dimensions, the dimension of k will change. To compensate for this We"ehould make
the Fedeﬁnition K o pfft, ‘Where e is eome arbitra,rymass scale [63] ;‘ \K}"C‘a,n then retain its

four-dimensional value throughout. However, for simplicity, we will not make this change

- explicitly, but will assume that it can be done where necessary. . ., '

[

I

3.2 One-Loop Divergences

hoped that there might be some ‘hidden symmetries’ in the theory which would force it

| to be finite at all orders. To make some p’rogr’ess’towards discovering whether this was
| true, a number of calculations of one loop results were carried out. The first of these

| was by ’t Hooft and Veltman They were able to show via s1mple arguments that pure

L

‘ grav1ty is in fact finite on-shell at one-loop [56] Unfortunately, this success did not carry
| over to other situations A simply algorithm showed [70] that pure gravity off-shell and
| grav1ty coupled to scalar particles are both divergent [ 6] Deser and van Nieuwenhuizen
! [71] used this algorithm to show the same for gravity coupled to a photon and (together

| with Tsao) for gravity c’ouple'd to Yang-Mills pvarticleﬂs [72]. They also found, this time via

direct calculation, that the Einstein-Dirac system is no better [42].
' We will describe these calculations below, but first let us begin with the proof of a

useful theorem: When dealing with external on-shell particles, we can use the classical

;ﬁeld equations to simplify the counter—Lagrang1an This was shown by 't Hooft [70]:

Consider a general Lagrang1an dependent on ﬁelds i,

£(BaN) = Lold) + ALGLY) (5.1)

14 A£ is the counter- Lagrang1an AE ~ 1/e, and is dependent on a parameter A, AL ~ A.

We Wlll cons1stently d1scard terms ~ (’)()\2) A field redefinition should not affect any

When it was realised that gravity was potentially a non-renormalisable theory, it was
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results, so let us look at the effect of changing ¢; by
$i— di+8di | (3.2

with é¢; ~ A. Insertmg this into the Lagranglan gives

zo(¢z+5¢)sco(¢)+z'(¢ >5¢1+0(,\2)f‘ 33

6¢; can contain poles of € and, if so, will require a change in the counter-Lagrangian of

—ﬁ{)(qu)& ¢i. Lo = 0 are the classical field equations, so this suggests that we can use these

it

to simplify the counter-Lagrangian.

- On-shell Pure‘Gravity ‘

It is, in fact, quite straightforward to show the on-shell finiteness of pure gravity by simple

| arguments concerning the counterterms:

To find all possible one-loop counterterms consider first that the degree of divergence

ofa one-loop calculation will be O(k*). We must therefore look for counterterms containing
| four derivatives. ‘We can restrict our search to terms which are invariant functions of the
il i .

;background field, since the counter-Lagrangian should have the same symmetries as the

»

A moment s thought shows that th1s implies we must build terms containing just two

’} Rlemann tensors or one Rlemann tensor and two covanant der1vat1ves Further, it is easy
to see that any term with derivatives must be exact derivative, and so will not affect the

| action. ;We are left Wi‘th three candidate counterterms:

R2
Ry, R | (34)
R;wapRp ap
(In all cases these terms depend only on the background fields.) We can simplify this

{ further by 1mp1ement1ng the well-known Gauss-Bonnet formula

: / die/ g (Rw,,,,R“”"P 4R,L,,R‘“’ +R2> =0 (35)
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" This allows us to remove‘ one of the three terms in the ection‘ in faVour of the' other two. E

E ﬁeld equatlons of the theory to simplify the counter: Lagrangmn In th1s case the ﬁeld",’

b

‘, AL =0 1mplymg that any pure gramty amphtudes w1th external on—shell gra\utons are -

\‘ ﬁmte

If we Wlsh to cons1der the d1vergences for amphtudes Wh1ch are not on- shell we must find

‘ the values of o and /5‘ In general this involves a comphcated calculatlon but the ’t Hooft-

Veltman algomthm reduces the work cons1derably by recastmg the theory in the form of a

Lagrang1an of scala.r ﬁelds ‘With only the calculation of s1mple vacuum energy dlagrams,

they showed that a Lagranglan of the form

L=+v=g (0u¢ g’“’a ¢z ~ 2¢*N "Bm + ¢*M; ) (3.7)

{(where N* and M are funttlons of external ﬁelds) W111 have the counter-Lagrangian

i : . : 2
A= (l/; ( I Yo + (M FNEN, + DMN“ _ 6R> o
+60 (R“”Rw B "RZ))

In ref [56], tl’llS was apphed to pure grav1ty by carrymg out a background ﬁeld ex-

(3.8)

pans1on of the grav1ty field, arrangmg the Lagrang1an in a su1table form and identifying
lthe ten mdependent ﬁelds in hij (recall that h” is symmetrlc) with ¢1,..., é1o.

| f Th1s glves the counter—Lagrangmn for off—shell grav1ty to be

e T /g (1 T 5 5
e _ v | 3.9
A= S B R B (3.9)

' (Note tha,t th1s is of the form (3.6), in agreement W1th the general arguments glven above.)

In general, when we are cons1der1ng external on'shell part1cles we can use the class1cal

33

Thus, we find our counter—Lagrangmn must take the form ; SR e

| equations are simply R,,(§) = 0 Clearly, msertmg these into (3. 6) Wlll gwe the result
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Gravity coupled to Bosons
't Hooft and Veltman also applied the same algorithm to a theory with one scalar coupled

| to gravity.

L= R Y0090 (310)

VE To do this, they simply extended the set of fields ¢; by identifying the extra scalar with

7

| #11. In this way, they found the counter-Lagrangian

: _ vV 9 9 ."2 43 7 Kt 2peva 1 2
Ab= (47)%e 720R 120R'“’R +—(,,¢qbg 8,,(15)

S

EY

(4 is the background scalar field). Note that in this case there are divergences for on-shell
as well as off-shell particles; unlike the previous case, the classical field equations do not
Iremove all the terms in the counter-Lagrangian. We can, however, use the field equations

»

(to simplify (3.11) when the external particles are on-shell. The relevant equations in this

'case are’ ‘
J ] " D,D*$=0
~ ‘ /<;2 PN ~
R = -—2—( w®)(Dv9) | (3.12)

ull (Dmxw)

Implymg the counter-Lagrangian can s1mphﬁed as

¢

AL V70 203R /=g 203

(4m)2e 80 (4@%@6’“4(1) woD"9)" : (3:13)

The 't Hooft-Veltman algorithm was also used to show that gravity coupled to elec-
~romagnetxsm and gravity coupled to Yang-Mills fields both contain divergences [71,72].

The counter- terms for an Emstem Maxwell Lagrangian are
5 (9 ~ . 1., K2 .
~ (4m)2e\20 40 (3.14)
i 13 4 pv K2 af ﬂﬁw
‘ ) S + w1 = Str (D*Fuu D %)

(3.11)
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where, as usual, F,, = 9,4, — 8,4, and T, = F’”aﬁ’ 4g#,,F P Fng (A“ is the back-

' ground photon field). Using the field equations, we can simplify this to ;

V=g 137 -
R L I
AL (47!')26 60 " *

Mills case as ; ’ FRAAERE

(4m)2e \\ 60 ' 10

‘ Where r is the dimension of the gauge group, f is the Yang—Mﬂls coupling constant and

TC C’“bCC’abc, the product of the structure functlons

‘ Grav1ty coupled to Fermions

| The ’t Hooft Veltman algorithm is not apphcable to the calculation for the Dirac-Einstein

i1 Lagrangian without signiﬁcant adaption; it ’cannot be used in the form above when fermions

| are invOlf/ed. Deser and van Nieuwenhuizen [42] were able to sheW that one of the coun-
; )certer'n{ eeefﬂcieﬁts can b‘e'cal‘cﬂulatved by looking at one set of diagrams '~>thc'>se with eight |

: external fermions and 1nternal gravitons. (In fact, only the dlvergent parts of this diagram

‘iare needed to extract the Felevant information, ) The coefﬁc1ents found in this calculation

are sufﬁc1ent to prove that thls system will also conta,ln d1vergences

vIn general, We would expect the counter—Lagranglan to take the form
AE (4 )2 [alR + a2R2 + a3’€4(777uD?77)2 + 0‘4’94(77’)’”Dn77)2
+ asn‘*pra(ﬁa“”n)(ﬁa’”’n) + agn® R (777, Dy)

(3.17)
+ Of7f‘c8 H(UF n) + Oés"ém(7713:/?7)2(7715’577)2
=1

-+ m“ (TFsn)@Frm))™ (T7uDom) + -+ |

4(‘Our splitting of the fermion fields differs from that used in ref. [42]; here, we choose

Y =n -}—\"x.‘ So, 1 and 7 are the fermion background fields.) The F;’s are expressions which

(3.15)

when the external particles are on-shell. This can be generalised to the (on-shell) Yang- |

AL=- V=g ((137 + 1= 1) R, B - ——C (f)2 (F“F“)) | (3.16)
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contain v-matrices, but no derivatives. (Note that the F}’s may include suppressed indices.
For example, the raised indices in the ag term are shared in some way between Fy and F7.)

As usual, for on-shell amplitudes, we can implement the field equations:

Ry = KzTu,,
R=0 ‘
‘ (3.18)
y¢Dyn =0

Ty ~ TYuDun.

’; These imply that the a9 and a4 terms vanish on-shell, and that the aj, a3 and ag terms
| are all equivalent. The only term which neither vanishes nor is mixed with others due
] to these equétions‘ is the a7‘ one. FQr this reason Deser and van Nieuwenhuizen focussed
on this part of the counter-Lagrangian. Their method was to considered the diagrams
| described by fig. 3.A. Power counting implies that the only parts of (3.17) which can act as
‘ COUntertérms for this diégram are the a7 and ag terms. (The other parts have divergenceé
Iwhich will introduce too many powers of momenta.) It can be shown that the Iat}tber will
“'<’)nly be,refevant if we include antisymmetric components of the vierbein in our calculation.
11t is easy to exclude these contributions. (In fact, we can define the Viérbein in a symmetric
tway and ignore them comp{efely.) ‘So, we find that we can relate the a7 term to this simple
iset of calculations. In ref. [42] the relevant calculation was considered ahd it was shown

i i

ithat a7 must be non-zero; there must be a term in the counter-Lagrangian

~ @ﬁn“ ((777“Ars77)(777"7517)77@)2 (3.19)

Clearly, knoWledge of the existeﬁce of this term is all we require to deduce that the
iDirac-Einstein system is neither ﬁnite‘nor renormalisable (it can not be absorbed into the
"Lagrangian or ren'lox./ed by the field equations). Fermions.coupled to .gravity do not solve
?the probléms Wifh the theory. (We should note that this calculation was restricted to the

theory based on the second order formalism for the spin connection. The situation for a

vvtheory based on the first order formalism remains an open problem.)

36
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Figure 3.A: The diagram calculated by Deser and van Nieuwenhuizen.
The bottom figure shows the combination of vertices which the ‘dot’ represents

So, various ca_lcﬁlations have lead to the conclusion that pure gravity is finite at one-loop
(On-shell), but that this does not generalise to simple cases with a coupling to matter. To

overcome this problem, we must look to theories in which the matter fields are included

'in the same SUSY multiplet as the graviton, as we discuss below.

Before we look at the situation at two-loops and in SUGRA, let us make a small detour to
- consider where the one-loop divergences in these theories will appear. We can show that
infinities will not be seen in amplifudes with only external gravitons. We follow the proof

of Grisaru et al [73]. For a general set of matter fields, #', we expect to have a counter

Lagrangian of t‘hv‘q form:

f— (4m)2e

AL= (B + BB AR M (0 + N ) (320)

Where M and N are bolynomials of the ¢* fields and their derivatives. (The vierbein, ek,

nters since the derivatives must be covariant.)



Divergences and Renormalisation

" As in the case of pure gravity, we can always insert the field equatiohs for the back-

£ ground field into our counter-Lagrangian. The general form for theseis

1

o Contracting the indices allows us to deduce that

S e R

‘and that

!
|

' The counter-Lagrangian can then be recast as.

1
‘AL  (47)%e

i We can find the free rlev"elwresults‘(which is all we need at this stage) by inserting iterative

solutions of .t‘he field equations:
b ‘L 3 i i ’

. ea u(x) = e (w) + :“J/D(:(: _ xl)J(¢z,6)d$,

o R e - (3.25)
) = il [ Dle =K N
1nto A L‘ Collectmg the relevant number of in- felds’ will give the terms which contribute

to the S matrix for any partwular process Note from equatlon (3 24) that there are no

Purely grav1tat10nal terms, 1mp1y1ng that 1t is not p0351b1e to find non—§r1V1al terms with

Only external grawtons el | ,
Thls is a completely general result ~ we can always elimipate the Ricci quantities
. A " . t- .

e fr om the counterterms in favour of the energy -momentum tensor’ using the ﬁeld equations
. . A

1. Th1s will be relevant botb to the results of our calculatlons a,nd‘the discussion of SUGR

leergences below. .

Rap = £ (Taﬂ - §gaﬁT) 3 o (323)

S e

38

(#a(Tyo? + KT + 1By (85,00 + EN(G,0) - 320)



Divergences and Renormalisation

- 3.3 Two-Loop Divergences

The finiteness of pure gravity at one-loop led to the hope that this might also be the

case at higher orders. Unfortunately, a problem occurs as soon as we look at the two—

loop counter-terms. There is one 1ndependent counter-term which cannot be dlsm1ssed for

on-shell gravitons -
Rapﬂ,,R”VaﬁR(fﬂap- ‘ (3.26)

[

(By ‘independent’ we mean that any other possibilities can be related to this one.) -

The only way for amplitudes to be divergence-free at this order is if the coefficient of
this term vanishes. A number of calc.{ilations have shown that this is not the case [74]. We

o find that we have the two-loop counter-term:

: ) . ’
AL _ 209 K Rapule“laﬂRaﬂap' ] “ ‘ (3.27)

2880 (47)%e

W

So, not only does gravity coupled to matter diverge at one-loop, but pure gravity is

-not much better — diyergi'ng at the two-loop level.

34SUGRA

~ As'we have stated, SUGRA" theories contain a significant number‘ of symmetries and our

hYOpe is that these symmetries will completely remove the problems of divergences in the-

| Or1es including grav1ty We can show that this hope is reahsed at low orders

We can use the symmetries in SUSY theories to relate the amphtudes for d1fferent sets

P f external particles (see appendlx IV). We can use these ‘SUSY Ward identities’ [22,23,2]

to deduce that there are no dlvergences at one-100p in SUGRA theorles [73]: First, we

Ilote that these relations 1mp1y that all non-zero amphtudes within a SUSY multiplet are

into an amplitude, so if we
equal up to a phase This phase cannot introduce a divergence 1 p )

“ can find one finite am phtude ina pa,rtlcular multiplet then we know that all amplitudes

In that multlplet will be finite. Recall that we were able to shOW that one-loop amplitudes

With external gravitons were finite in all cases. So, any amplitudes between particles in
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the same multiplet as the graviton are finite and, consequently, any theories which contain

only gravity multiplets will be finite at one-loop order. Unfortunately, this fact does not

carry over to theories also containing pure matter multiplets [75].

We do find, however, that for theories with pure gravity multiplets the finiteness goes

further - all two-loop divergences also vanish. We can show this in a similar way to the

above [76]; the two loop counterterm

[

fepréééhts a flipping of graviton helicity (77]. We can show using the SUSY Ward identities

thét supersymmetry does not allow this flipping, so this term must vanish. Anothgr way

. of looking at this is to notice that it is not possible to a,djustv this term, or add other

contributions to it, in'such a way as to create a SUSY invariant quantity [78]. This implies

that it cannot be a counterterm in a SUSY theory. So, at two loops our hopes about

SUGRA seem to be justified; at the very least the extra symmetries have postponed the

onset of divergences.

The situatioﬁ becomes more co‘rﬁplicmated at three-loops. It has been shox:n}n that it
iS"p‘ossible to coﬁstruct counterterms at this order which obey all the necessary symme-
ffies‘ [78]. This would éuggest that divergences are theoretically possible at this order.
Th;re may, of course, be some hidden symmetry which causes these to vanish, but di-
vergence in two- loop pure gravity has led to pessimism regarding this. However, as with
that case, the only true test is to carry out explicit calculations. The complexity of such
Calcula’uons in PQG and SUGRA has 1nh1b1ted 1nvest1gat10ns which may shed light on

th1s It is to new-ways of carrying out such calculatmns that we begm to look in the next

chapter. . ...

RapuyRuyaﬂRa'Bap ' ‘ (328) .
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I don’t want reality, e
I want magzc ‘

Vivien Leigh in ‘A Streetcar na,med Des1re

4. String-Based Rules I: QCD o

4.1 Introductionb
. As we have said, calculations in ﬁeld theories are typically computationally complex. While
L the basic theory of the conventional Feynman techniques for these calculations is fairly
straight-forward, its apphcatlon soon leads to very complex calculations. In the Introduc— ‘
‘ tlon we dlscussed the mcongrmty of the complexity of QCD and gravity calculations Wlth
1 ‘the simplicity of the answers. This leads us to the obvious questions: ‘Isn’t there better
approach to ﬁelld theory catculations?’ and, if so, ‘Where do we look for this new approach?’
i When corhparing the processes of r)ertlirbative calculation in point-particle field theory
- (uéing Feynman tevchniqueS) and string theory we notice that the latter‘has a number of
advantages over the former:
“ J lIn Feynman calculations there are typically a large ﬁumber of diagrams which must
be considered at each order 1n string theory there is only one; -

In string theory one loop amphtudes can be the formulated in such a way that the

| . loop momenta are, implicitly integrated out, in the‘Feynman diagram method this

_integration must be done expﬁatly,

Simplifications due to spinor helicity techmques can be used at an early stage in string

| theory, whereas most can only be used at the end in field theory;

| Symmetriee (suchh as SUSY) seem to simplify the calculation process in string theory

rather than merely producing cancellations at the end.
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i These hint that string theory could be a promising place to look ‘for alternative methOds 7

© of calculations to the tradltlonal Feynman diagram methods; if we could ﬁnd a relatmn

between the results of string calculations and field theory amphtudes then we could carry |

some or all of thesé advantages over.

In fact, it can be proved that string theories contain gauge ﬁeldtheori’es in the“ lnﬁniteé N
tension limit [12,13]. Hence, we have a clear connection between the theories With ‘sim’pler
’ calculatmn techniques and the theories for which we would like results. Th1s connect1on ¥
| was exploited by Bern and Kosower to develop a new, simpler calculatlon techmque for ’

one-loop QCD [3,4]. The result was a ‘straightforward set of rules Whlcl’l could be usedi
f“y eas1ly W1thout knowledge of the development details. These rules have successfully been

use to carry out one- loop 4- and 5-gluon amphtudes [3,4,25] and many of the techmques

derlved from the rules have been used in electroweak CalCUlatIOHS [24l Smce gramty 18 also
contalned in the mﬁmte tens1on hm1t of certam strmg theories [12] it is natura,l to try to |

| apply the same techmques to tlus more complex case. The results from such an a,ttempt

: ;adre o more dramatlc than the QCD case. The first steps in thlS apphcatmn were made

by Bern, Dunbar and Shlmada in ref [31] We will present a complete CllSCllSSlOIl in the

next chapter | ,

In this chapter we will give a brief description of the relevant elements of string theory‘
| tlnd the infinite- tens1on l1m1t follovved by a dlSCUSS]OIl of the Way the rules for QCD are

demved As Would be expected these rules are s1mpler than those for grav1ty HoWever

IIl6Lny of the significant ideas are shared between the two sets and an mtroductlon to these

| 111 the s1mpler case Wlll aid the later d1scuss1on We ﬁnlsh W1th a summary of the QCD

- rules and an example of ca.lculatlons usmg th1s method

o The str1ng—1nsp1red’ rules for QCD were ongmally developed usmg a heterotic string the-

t : full consistent
‘ Ory [ ] Th1s allowed a dlrect derivation of a eomplete set of rules from a fully

b
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strings [15,14]. Bosonic string theory is one of the simplest available and, hence, engenders
the simplest derivation and a partlcularly compact form of the ﬁeld theory rules There .
are potential problems in using bosonic string theories as our startmg point - they do not
contain all necessary particles and are formally inconsistent in four dlmensmns ~but. acor-
rect and complete set of rules can be constructed by comparison with the heterotic—based
result. For theories containing particles of spin less than or equal to one (e.g. QCD, QED)
the formulatlon can be carried out using an open strlng theory. (For the case of perturba—
o tlve grav1ty, Where the gauge boson has a spin of 2, we must look at closed string theor1es E
There are both obvious and subtle differences in the construction of these ”theones which

must be taken into account while developing field theory rules from them.)

4.2 Amplitudes in String Theory!
-+ It is well-known that string theory models particles es'excitat\i_ons of one-dimensional ob-

jects — ‘strings’. Strings can either be closed or open; i.e., they have two free ends or they

‘are loops with no free enés, respectively (fig. 4.A).

N . ‘

| (2)

-

Figur‘e’4.A.:‘ (a) Onen and (b) closed strings and example world-.sheets
| for each freely propagating.

\/\

All particle traJectorxes in a string theory are represented by two- dimensional World-

0 Sheets the area, mapped out by the strmgs as they move through space (fig. 4.A). We

t See, for instance, ref. [34] and references therein.
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parameterise the world-sheets with a space-like and a time-like parameter, o and 7. We

can then describe the string trajectory mathematically by X*#(o,7), a vector giving the .

space-time position of the string at world-sheet position (o, 7). We also 1ntroduce 2 metric,

hyy(o,7), on the world-sheet. This allows us to write the action of the free strmg as

S = (4ma')™! / &2 Vhhas 8 X, 00 X*. (4.1)

(Note that the in't’egral and the o and B indices are on the two-dimensional world-sheet;

the y index is on the physical space. )

(b)

(2)

‘ Flgure 4.B: World-sheets representing the joining of two strmgs to form a thlrd for ‘
(a) open ang (b) closed strings

" "An interaction in string theory can be pictured as the world sheet in fig. 4.B; i.e.;
o ‘those which describe the jc;ining of two strings to form one new string (or, equivalently,

one string splitting into two). We find the string diagrams for a perturbative expansion in

an analogous way to point—parficle theory: The interactions are used as the building blocks

. lcOlf dlagrams with the requlred perturbatlve order and number of external partlcles In the

Case of open strmgs, the result will be world—sheets W1th a number of ‘holes’ and ‘strips’

extending to the far past and far future. The holes correspond to loops in Feynman

. diagrams and the strips to external particles. In the same way, for closed strings we

. - Will have ‘handies’ (cérresponding to loops) and ‘tubes’ e;;tending to the past and future

(COrresponding to external particles).

44
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Figure 4.C: Contributions to four-point tree amplitude in ,
point particle theory.

)

The major difference between point-particle and string theory (as far as perturbation -
‘ théory goes) is that the latter.has only one diagram at each perturbative Ordef;“Sinee
Hlanifdlds are completely determinecl’ by the number of loops and holes‘they have, we need
_ Only consider dlagrams Wthh are topologlcally d1st1nct There is also no need to consider
L diagrams with different mternal partlcles propagatmg since aH particles descnbed by the
Strlng are mcluded For example, consider a s1mp1e 4-point tree arrlbhtude In Feynman
‘ Calculatlons we Would potentlally requlre all the d1agrams in fig 4 C mcludmg a sum over

all partlcles in the theory propagatmg along the mternal lines. In strmg theory all these

Poss1b111t1es are mcluded in one tree d1agra'n (ﬁg 4 D) The dn‘ferent contnbutlons will be

“fOund as dn‘ferent reglons of integration in the string amplitude.

Flgure 4 D Contribution to four- pomt tree amphtude in
string theory.

1 To begin calculating string amplitudes in practice, we make use of a conformal invari-
| ance of the strihg action to manipulate the diagrams into a more manageable form. We

¢an make a conformal rescah'ng of the world-sheet metric which tekes the world-sheets to

Ay o o
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"\ (2) (b)

Figure 4.E: Conformal mappings taking the external strings of a tree to
points on a (a) disc and (b) sphere.

N ) (b)

Figure 4.F: Conformal mapping taking a one-loop diagram to
points on (a) an annulus and (b) a torus. :

COmpact manifolds Wlth the external partlcles mapped to pomts on ‘fhe surface (e g see
figs. 4.E and 4.F). We are mterested here in one loop amplitudes (fig. 4.F): In the case of

the open strmg, this mappmg takes a one loop dlagram to an annulus with vertex operators

distributed over the two edges Similarly, for a closed string we “obtain a torus with vertex |

~ operators distributed over xts surface Smce this process maps external states to pomts,

the quantum numbers for these must be retained in some way. We find that there are local
operators — ‘vertex operators’ - at each point encoding this mformatlon For a particle,

the vertex operators are of the form |
Valk) = / AR Wa()e F X | . (4.2)
WA contains the quantum number information for the particle (ie the spin dependence,

ete), The infegral 18 ovor the locations of emission points on the world-sheet. X# and huy -

are the same quantities as those found in the action (4.1). o' is a string parameter which

‘We can 1dent1fy as the reciprocal of the strmg tension.

" One way in Wthh we can express an amplitude using the vertex operators is via the

POlyakov formahsm in which the amphtude is the expectation Value of the vertex operators

46
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| - summed over all possible string topologies:

topologies

An(AI,kl;‘...;An,kn) = Z <HVA (k' )> : 1 “ (4.3)
where the average is weighted as
(Vi V) ~ / [DX] [Dhag] exp(~S)Vi(k1)... Va(ka) (4.4)

and § is the string action deﬁned earlier (4.1). This is-the form we will use. In c one-
loop calculatlons the functional mtegral over the metric is essentlally an 1ntegral over |
‘ conformally inequivalent tori (or annull), spec1ﬁed by a parameter T. The metrlc on each
Cof these tori (annuh) is kg aB ~ Nap. SO0, f[Dhaﬂ] will be reduced tO def(T) In order to
‘ma,nipulate this into & more convenient form for calculations, we can use Wick’s Theorem

The most useful expression of this for our purposes is (from

to re-write the average.

~ appendix 7T.A of ref. [34])

(: et eB = el4B) B o (4.5)
Which can be generalised as
<f eAl Az L AN :) = He(A‘Af). ‘ | (4.’6)
i<j ’

| Thﬁs, if we can express the V’sin the form V = [ d*v P (4.3) will become (in the one-loop

. caSe)

Ao ~/d2rf<r>H [ En I IR )

i<J

ThlS will be our starting p01nt for the development of the Bern and Kosower method. We
will look at the infinite tension hm1t of thls expresswn to construct a new set of rules for
one-loop calculations.

Before we go on to look at the effect of th1s limit, we must make a short comment about

. the dlmens1on in wh1ch our strings live. It is well known that bosonlc string theories are

only cons1stent in a 26 d1mens1ona1 space tlme However, we are rnterested in amplitudes
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. ind— 2e dimensions {working in a dimensional regulansatmn scheme) This m1ght appear

48

to be a problem but, for our purposes, we ﬁnd that we can simply truncate the number of . :

: d1mens1ons in a naive way from 26 to 4 2e W1th only a mmor adjustment We can eas1ly ‘,,‘ :

 confirm that this i 1s sufficient for the purpose of our analys1s by comparmg the results W1th o

. the fully consistent heterotic string construction.

"

o order to obtain the partlcle amphtudes requlred we must cons1der the ﬁeld theory or L

lnﬁmte tension’ limit of our strmg amphtude [12 13 3] The conventional strmg parameter

ralis the reczprocal of the strmg tens;on, SO 1nﬁn1te tens101r corresponds to takmg

o ""'(4.8)'

! We must look carefully to find all the contributions in this limit: in both the open and

string cases we find that the amplitude has an overall factor of ()™ (m > 0), so we must

| ':look at the reglons of r and v 1ntegrat1on which produce compensatmg powers of (oz’ )L

‘ We will see that there are two reglons Wh1ch must be cOIlSldel'ed The ﬁrSt 18 Where the

e p031t10n of two vertex operators come close — or are pmched

T lvi ~vj| =0 “”Wf'sorlhe!i,j e - (49

o (v, an d VJ are the pos1t ions of two emlss1on pomts cf (4.2).) In the mﬁmte tension limit,
, “th1s Corresponds to extractlng massless poles We can regard it dlagrammatmally as two
o ternal legs commg together to produce a tree attached to the loop (ﬁg 4.G). Each pinch
“ «of th1s form Wlll contrlbute a leadmg ( ) -1 to the amphtude expressmn ln practice we

: W1ll ﬁn d that we mus t consi d or all poss1ble combmatlons of pmches These combmatlons

: gIVe us . set - dlagrams wh1 ch must be considered — all one-loop ¢3 d1agrams with the

,, correct number of external parncles Th1s may seem surpr1s1ng since the theories we are

t This section follows ref. 3 c105ely. " i
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Flgure 4.G: A dlagrammatlc representatlon of the effect of the
hmit |v; — vj] — 0. :

considering have vertices where more than 3 particles meet. In fact, gravity has n-pomt
vertices for all n > 3. This reduction of vertices to be considered is a simioliﬁcation

reﬂe‘cting the string theory roots.

The second integration region is the one in which
T — 0. o e (4.10)

(In the closed string case this will translate to S(r) — 00.) ‘Diagtammatically’ we can

. think of this as shrinking the ‘annulus or torus to a thin circular wire (fig. 4.H). We find

that this limi£ leads s to consider an integrél of the form
0o , C ‘
/ dr(r)mtel2em e KT D C(4.11)

for ,s'om‘e m > ‘O.‘ This gives a contribution (to leading order in a')

(alﬂ’)m+1+e/2 : ' ‘ . '

Flgure 4. H A diagrammatic representation of the effect of the
limit 7 — ©0. '



', with non-zero contribution in this l1m1t 18

- sector. The tachyon is a potent1al problem,

[
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- So, we have (a/)™! contributions from the 7 integration and from combinations of
pinches. We might wonder if these all give non-zero contributions as « — 0. Let us -

consider the open string case: Here we have an overall factor of (a')" -2 (n is the number

of external legs). Whatever cholce of pmches we are cons1der1ng, the comb1nat10n of these

two contributions cancels these n — 2 powers completely; the pinches give (n —ny) and

the loop integration (n; — 2) powers of (o)1

loop) In the closed string case the s1tuat1on is slightly more complicated but essentially

the same. In both cases, the ;mpl1cat1on is that we must include all pinch combinationst, *

and that these give the complete non-vanishing contribution as a' — 0.

After cons1der1ng the T 1ntegrat1on we are left W1th the 1ntegrals over the remammg

vi’s. As the v;’s always appear W1th 1/7 and 0<vy; <rT,the only reg1on of Vi 1ntegrat10n

|vi] = o0 s.t.‘%;éo v (4.13)

"
&)

(In the case of closed strings it is the limit in which the imaginary part of these quantities

" goes to infinity which must be‘ considered’) We will find that these amount to Feynman
" ‘parameter integrals. (K in equation (4.12) will be seen to be a typical Feynman parameter
denolr'nirlator.)‘ The numerator of the integral will depend on the explicit form of the vertex

' Operators and the particle content of the theory.

It is the d’ — 0 limit which allows us to control the particle content. The limit causes

4

all massive states to decouple so that we are left only With the massless states and the

tachyon So, for a particular spectrum, we merely select theory Wlth a suitable massless

we do not want 1t to feature in our final results,

but it is present in all bosonic ‘theories and produces exponentially large contributions in

’Ghe limit (4.8). In fact ‘since it is clear which contr1but10ns come from the tachyon, it is

' We 0m1t tadpole diagrams and those with the loop
we implement the usual dimensional regularlsatlon presc

isolated on an external leg. These vanish because
ription [13].

(g is the number of legs attached to the

50
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sufficient for us merely to drop these as we go along. As with the truncation of dimension

we need not worry since the final results can be shown to work.

So, we begin to see the form that our method must take: we expect to look for a number

of ¢3 diagrams correspondlng to pmch contributions, plus a set of rules which lead toa

Feynman parameter integral for each diagram. Summing over all the contr1but1ons Wlll

give us an expression for the amphtude

4.4 Derivation of QCD Rules from Open Strings [14,15]
“‘We now turn to an exphc1t d1scuss1on of this limit in the open bosonic strlng case. We
know from earlier in th1s chapter that amphtudes in this theory can be descr1bed by a set

. of vertex operators s1tt1ng on the bounda,mes of an annulus.

Open bosonic strmg theory has a massless sector which contalns only a spln one Yang_
| M1lls part1cle so in the first 1nstance we can use 1t to produce rules for use in pure QCD
- 8auge calculations. Note that amplitudes in QCD must include traces of colour factors, so
before discussing the rules let us see how these would enter in the string-inspired method.

There is a Very simple way of e‘xpressing these amplitudes which comes out naturally from
‘Open string theory:

i Z NCTT(Ta”w(l) ces Ta”("))An;1<ka(1)a‘ Eq(1)i+* ") ka(n)) Eo'(n))

‘UESn/Sn‘l

(/2] '
Aa(1 Qo(m-— Ga(m) e %o(n)
L Z Z Tr(T W, T ‘ f))Tr(T T4 )

m—2 Uesn/sn ;m

. Ay =g

(4.14)

‘: X An; m(ka(l)a ea’(l); kcr('n)y ea(n))

o

Where the traces are over colour matr1ces. ThlS is a ‘colour decomp031t1on of QCD ampli-

- tudeg [79]. In thiS method rather than calculating the full amplitude, An, we need only

~“calculate the s1mpler ‘colour-ordered’ sub-amplitudes, An;m- In the field theory limit of

OPen string theory this occurs naturally due to Chan- Paton [80] factors of the string (these

are quantum numbers Wthh sit on the ends of the string). These factors produce the traces

51
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seen in the above sum. We know that vertex operators sit on the edges of an annulus. If r

52

all vertex operators are located on one edge of annulus then we have one trace, terms with -

tWo traces occur when vertex operators are shared out between the two boundar1es Since
our aim here is to give pomters to the closed string development for grav1ty we w111 not
discuss this further: Closed strings do not have Chan-Paton factors and the World-sheets
do not have edges; these differences are consistent with our unyderstand‘iri‘gof gravity since
it has no equivalent to colour and we expect to have to sum over all orderings. Instead,

we concentrate on the calculation of A, since this is closest in form to the approach for

_ grawty

| For the calculation of An .1 We must cons1der an open string amphtude w1th all vertex
Operators located on the same bounda.ry of the annulus (as in ﬁg 4.1). Since the Operators
‘are restricted to one- chmensmnal spaces there is an lmphclt order1ng of the Vertex opera—

tors. (It is this ordermg Wh1ch allows us to use W1ck’s theorem ) We must 1ntegrate over

all positions of the vertex operators consistent with this ordering.

Figure 4.I: The string diagram relevant for the calculation of Ay ;.

‘For external vector particles, the vertex operators required are

Vi~ e 0, X () VXD
o9 ei(\/&7k;-X+e;-3X)
Where by ‘linear’, we mean ‘keep only terms linear in €;’

eXpOnentiated’ form we ' know from section 4.2 that we can express the amphtude as

Al loop /Hde

iy

linear

. Since we have v; in a suitable

(4.16)

multi-linear

H (\/_—k X+teir aX)(\/_k, X+e;-8X))

va! - e
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i Mu1t1 linear’ is the natural generalisation of the condition in (4. 15) =~ we keep all termsv

i contamlng one of each ¢;. We can expand a generic term in the product as.

exp (<(z\/_ ki X(vi) + € - a,,,X(u,))(a\/— ki X(VJ)H] aV,X(y,))»

._exp( ’k”k” (X, (y,)x (y])>+\/— Rier (X ﬂ(u,)a,,x (y,)> (4 17)”1;{"“;

- +Va'kte! (0,,X, ()X, (u,))+e“e" (a,,,x (u,)au,x @,))) :

a function of the b o-point correlation function. This correlation function can be ey‘a_lyuated‘ -
'f‘ ,as ' | ) .

(X ()Xo (v)) = 60 G (vi = 1)

‘ 4.18
= ~bu (longsmh(z/”)[ — (V”) 4qs1nh2(v,])) + O( 2) ( ) |

i (u,, = v; — vj and q = exp _27-) In general we w111 wr1te this as G B since We Wlll only

i require certain limits of the funct1on In thls way (4. 17) becomes .

- Imulti-linear . .

| exp (a'ki . k;GB(V;j) + \/07(’% 7 kj" fi)GB(Vij) - 61'" 5J'GB(VU)) (4-19)
: 0 Wlth GB(I/) ' 15,Gp(v) and GB(V)“ 62GB(V) Insertmg this in (4 16) and ﬁllmg in

: the mlssmg terms, glves us a complete expressmn for the n- pomt amphtude ,

‘ ; ;‘k ' n—1. ’
’ - € — (1 536/2)
| (47r) /2 ) n/2 2/ d / dz/; 49(1/z —-Vz+1)7' 2+ /2 l[f(Q')] E
i ot [T [T S
n ’ e I8 2
- HeXp (a k k GB(VZ]) + Y (kz 6'7 - k‘] EZ)GB(V”) 6 6‘7 B(V])) multj-linear

Where f(q) is the part1t10n funct1on | f R |
f(q) II (1-4") ~ o
n-.l ol
e a.ﬁ d there s an arbltra riness 1n the vi ’s wh1ch has allowed us to set v, equal to 7. We

o emphasme again that the Vs are 1mp1101tly Ordered in th1s expressmn (T =Up < Up_y <

th1s is a naive truncatlon of the bosonic .
< Vl < 1) Note that ‘as d1scussed earher,

E
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string expression from 26 to 4 — 2e d1men31ons The subtlety is that we keep the leading

~1 by hand in order to obtain a sens1ble limit as 7 — 0.

We could use this expression ‘as it is’ as our starting point for the rules. Howevér,

before looking at the limits it is useful to remove all Gp factors by integrating b‘y‘ parts.
Doing this will enable us to find a particularly simple form of the rules. For each ¢ B(vij)

we integrate by parts with respect to one of the variables v; and v;. For example, in a four

point calculation & simple term would be one such as

GB(ulz)GB(ng)GB(uM I COILE kGB(Vu)) @)
i<y ¥

- We can remove G B(v12) by integrating by parts w.r.t. v1 to givgf

él GB(Vlz)GB(Vzg)GB(V34)2 exp (a’lz ki- ijB(Vij))
" - i<i | S (423)

X (fﬁ : kZGB(‘VIZ) + k1 - ksdg(v13) + k1 - k%G'B(ul,;))

"
4

In many cases such & mampulatlon will create a,nother G B, but iteration of the process

Wlll eventually lead to an expression “with no G g’st. (It was proved in ref. [79] that thls
L]

V‘Pl‘0cess always ends.)

Havmg carried out the 1ntegrat1on by parts we will be left with an integral over

eXp(GB) and C'p’s. We can now look at the effect of o — 0. When (4.20) is expanded

- out fully, the leading power of o will be (a)*~2. So, to find the_ non-zero factors in the

! One might expect boundary terms to appear here, but We can dispatch these easily: All boundary
[-n=e’h ki kj |l,‘_+,,J (Some terms will require the use

terms will contain a factor of the form v — v;
contai to enable them to be seen in this form.) With a suitable analytic

of periodicity v — v + r=v+va
- continuation of k; - [13 79,81] these w1ll vamsh

't For example,"if we had . (unW1sely) chosen to 1ntegrate (4 22) by P
obtained

‘ v . 4 “
GB(V12)GB(V34) exp ( Z ki kJ GB(V'J )) (a’ ; b kiGB(V“)Gé(”zS) ) éB(VzS))

arts w.r.t. vy we Would have

t<J
s w.r.t. 3 followed by a further integration by parts w.r.t. vy

Tnt d term by part
egratlng the the secon n equivalent to (4.23).

will eventua,lly give a G- -free expressm
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i limit, we must look for places where inverse powers of o' are produced to cancel thls As e

we discussed in section 4. 3, there are two types of contribution, plnch’ and ‘loop Whlch ’f,

we must consider.

" The first of these comes from the integration regions where v; — Vi In thrs l1m1t the G .

exp(a’ ZKJ ki k; G”) term looks like =% %% /™ and each GB produces a factor of 1/

(see appendix I). So in general we will have an integral of the form - |

°

i In the o — 0 limit this will 'only ‘produc‘e a lastirig contribution if n = 1:

/di/t 1+a,k oy — = Py a ——->0 , L “(4.25)’

i For n # 1 the resulting denominator W1ll be (a - 1nteger) Whlch W1ll not surv1ve o — 0

o due to the the overall powers of o'. We can recogmse (4 25) as a maSSIeSS propagator l1ke =

8

B term confirmmg our- earl1er assertron that pmches extract massless poles ‘

The practlcal effect is that When conS1der1ng a p1nch contr1but10n in Wh1ch 1/” — 0

2 We W]ll drop all those terms Wh1ch do not have exactly one power of Ga(v; J) Where smgle

pOwers of G B(VU) do oceur they W1ll be replaced by the massless pole 1/ k kJ, v; will be

‘ ‘SUbst1tuted for v; in all other factors

© After carrying out a serles of pmches we will have 1ntroduced a factor’ of (o )“”“‘”‘

“ ",‘, (nl is the number of legs stlll attached to the loop after p1nch1ng) We W1ll also have

iy ‘treduced the number of v 1ntegrathnS to ny; we W1ll now only need to integrate over a

Subset {Vzl,sz, Vz"n }
term : ,
" exp (a ZP;, Rm GB(Vz‘zz'm)); : | Coo T (4.26)

" Sollm : . X

W lts forrh is the same but the momenta are now the momerlta of the legs attached to the
’ , o

lOQP )

(Note how this reduct1on of varlables changes the exponentlal

e
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e part of the Green functions is takes the form

%
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Once we have considered the pinch contributions we must look at the 7, |v| = oo limit.
Note first that the string amplitude contains an overall of ¢~}

7. In the 7 — oo limit we must find a single power of ¢ to cancel this and produce ﬁmte

contributions. Terms Wlth hlgher powers of ¢ will vanish in the limit. (There isa component

| of the amplitude which has no ¢’s to cancel this factor, leading toa exponent1ally growmg
term This is the tachyonic contribution referred to above which can s1rnp1y be dlscarded ‘

for our purposes.)’ There are two places in our express1on where we can find this ¢; the

partition function (4.21) and the Green functions (appendix II).
First let us look at the partition function. If we expand f(gq) it is clear that this will

1ntroduce an overall factor of 2(1 - —6 RE), but have no other effect. ‘We then only need

the (’)(q ) terms in the the G B expansion (appendix II) leaving us with

Gp(v) ~—isign(v)+v -~ | (4.27)

»

So, this contribution Will‘ simply consist of an overall factor plus the above substitution for

each of the Green functlon

From (II 2) we see that every Green function also has a term 1nclud1ng q which could

: potentially' contribute, so this is the second possibility which we must con51der. This O(g)

: —gexp (27|zi — j])-

where we he ve defined z; = vi/T When considering this, we arein a 51m11ar situation to the
i = .

to the 7 integral Wh1ch
Overall q'1 the term contrlbutes an exponentlally growmg factor to g

‘ we dlscard as part of the tachyOIl contribution, but it also produces finite contr1but1ons

which we must take into account. The ﬁnlte contributions must come vsrhere this term is

multlphed by a factor which cancels the exponential growth exactly. In a general product

of Gps, equation (4. 28) will be multlphed be factors of exp(— 2|1/|) to give an overall

Contribution of

pairs(k,l)

cfoteni- Z)

; an exponential function of .

(428)
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_ This can only give a finite (and non- zero) contrlbutlon if the sum exactly cancels |x, -zl

i Th1s can only happen if the sum follows the ordenng of the external legs and takes the '.

SR form

Z Im.k —_' J?Il = |$;‘ = x£1| + |_3:§1'--xi2| 4o
| + I:Bn- 1 -’Ca,. ' + I.I‘, : ;cJ'

z;|, leaving us with — —q. This will be true 1f we have a. cycle of | e

- (430) |

3k which clearly cancels |z; —
~ Gp’s. That is, a product of Gp’s with indices arranged as

(Vu%n)GB(Vszta) GB(Vi.n_x.i.n )GB(V?:ni.l ) ..' . : (4 31)

i o w1th Vn < Vi, < . < th , <V Such a cycle wrth more than two G B ’s w:ll g;ve a

COntnbutmn of 1in the limit; a cycle w1th exactly tWO GB s w1ll contr:bute 2 (smce bOth -

i_._.:GB can contnbute a q and the cycle cr1ter1on w111 be fulﬁlled)

Agaln, once we have cancelled the g 1 the remaamng GB § can be expanded as (4 27) o

Note that 1f more than one cycle can be 1dent1ﬁed in any term then each can contrlbute a' '
B :"-."q, the term pro duces a sum over the contnbutlons from each cycle (Note also that they

i . must only contrlbute one a,t a tJme - th1s 15 in contrast to cycle contr1butlons from other

Dartlcles, as we wnll see later ) ' ARy

) Once We have dealt w;{;h the dommant q ! we can consrder the T and vi mtegratwns

5 The ﬁrst step L change to th e neW varla.bles o = vi / T. In these var1ab1es (II 2) and

' - G'B(:tsj) ~ —--SIgn(«"faJ)""""J - '- . ‘ o = '
T(wm Ixiriml)) (32

Hexp oe(;}',g(r/ZJ k k; HGXP( ZPu
s g Yy m
. '_--Where the sum only mcludeS those Iegs rema.mmg after pmches have been carrled out.

" The only T contnbutlon is now the expment‘al plus the exp licit fa":tors = (4 20) This

: Contnbutlon i dep endent of the G B content so we can carry out the 1ntegrat10n now

r&ther than 1nclucle it exphmtly in the rules The resultmg mtegratmn is simply -

|

(4.33)

I<m

/drr“' -1 -2+e/2 xp(ct ZP" P,mr(:cmm Ix3l3ml))
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" Note that the ™1 term here comes from [] dv; = [[ dz;7™~!. Equ. (4.33) is recognisable

as (4 11) with K =o' Y %, Py - Pi (2}, —|Ziin|), so we get the answer

1 : T(n; =2+ ¢/2) o (4’3‘-4')
ny—2+¢e/2 —2 .
(al) ! / [ l<m le sz lx”'ml(l ,muzm I)] mm2te/2
| Finally, we integrate over the region 0 < :t,-p < :c,2< -l-"- <”:v“,~n 1 <$zn[ = 1.

Note that we can relate the z; parameters to convent1onal Feynman parameters Settmg

T; = Z j=1 a; shows (4. 34) to be a typical Feynman denommator W1th parameters aj.

As requ1red the combination of p1nch and loop contr1but1ons has g1ven us an overall

factor of (a)~ "+"l(a)*n'+2 = (a)“""‘z. Th1s is 1ndependent of the number of p1nches

Wh1ch we carr1ed out which 1mphes that we must cons1der all pOSS1ble p1nch combmatlons

: ‘to obtain the complete result.

So we can see the basic plan for the rules: We can take 1nto account the various pinch

. contr1but1ons by considering all the diagrams coming from the d1fferent ways of pinching

(as in fig. 4. G) - that is, all $3 one- loop diagrams (except tadpoles and those W1th the loop

on an external leg) For each d1agram we begm by lookmg at the eﬂ?ect of pmches present

“and then look at the two Ways the loop contr1butes This produces a Feynman parameter

mtegral which we can eas1ly evaluate. Then a sum over all contr1but1ons from dlagrams

gIVes the requ1red amphtude

As we sald this string contams only a spin-one particle in its massless sector, so the

&naly31s above will only lead to rules for pure gluon amplitudes. We may Wonder if we

can derive rules for other part1cles c1rculat1ng in the loop’. We find that we can do this

W1th relatively small changes The simplest case is for scalar particles in the loop. We

'» can ﬁnd the rules for these by maklng a small adaptlon of the strmg If we compact1fy

we W1ll introduce scalars into the
Some d1mens1ons before malung our na1ve trunca,thIl

‘ "spectrum [82 65] We ﬁnd that (4.20) changes by an overall factor of

14 n.q+0(¢%)
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(n, is the number of scalars). From this we can easily deduce that scalars will have similar

rules to gluons, but without cycle contributions.

. The bosonic string spectrum does not contain ferrhionic particles 50 we cannot deduce
rules for fermions in the loop directly by the above method. We can, however, ﬁnd such
a set of rules indirectly by looking at the superstring rules The superstrlng expressmn
has an extra component constructed from fermionic Green functions, G 1«1 It was noted in

ref. (3] that (after removing G terms via the integration by parts process) the kinematic

function found in the superstring rules would vanish if the substitution Gg — —-Gg was

~made. This suggests that all the _information we _need is in some way encoded _in’ the bosonic
component of the superstring, and hence in our bosonic string expression. By lookingat

~ the superstring rules,“we can deduce rules Which extract this‘ ir;formatiqn.

" 4.5 QCD Rules [14]
After considerihg the analysis from string theory, we can simplify the procedure to give
a simple set of ru‘leswx;vhich encode the calculational steps required while discarding the
. ‘unwanted string theory artifacts. In this way the method can easily be used by those who
do not have a pr1or knowledge of string theory. Here we give these rules in their simplified
fOrm We also'detail the differences required for par t1cles other than gluons in the loop.

. The starting point for the rules is to identify all relevant dlagrams. Recall that we must
, tnclude diagrams corresponding to. all pinch combinations. In practice, this means drawing
all 1-loop-¢3 diagrams with the correct number of external legs (except ‘tadpole’ d1agrams
and those with bubbles on external legs). Since we are con51der1ng the colour ordered form
of the amplitude; only 1abelhngs of the external legs which follow the cyclic orderlng of
the colour trace need be included Internal legs are labelled accordmg to the pinch rule -

at g three pomt vertex the internal leg is g1ven the label of the most clockwise of the two

Outer legs.: We then derive an expression for each diagram and sum the contributions at

the end.

59
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 For each diagram we have the integration

| F(nz -2+ -1—6) 1 ‘ Tig,~1 Tig Zip
D= 2 T P p .
(=2 i dx n‘_l/o dzi,, _, /0 dz 2/0 dz;,

. K, a(zi,... ) Ty, ) : (4735)
X nl—-2+€
( l<m B P wlmn( — i 4 ))

where n; is the number of legs attached to the loop.
K_; is the ‘reduced kinematic factor’.

. kinematic expression

K= /de,

© which Will be recogniSed as a simpliﬁed form of the numerator in the string integrand, with

multn linear

[Iexe [k k;GY (k, €& — k E])GB"’Ez e,G”” “’ (4.36)
i< ‘ , o

L ;Gg = GB(I/ij). : o ‘ . e
While we know from earlier sections that Gp and its derivatives are string theory

Green functions, in these simplfﬁed rules we can regard them simply as functions of Feyn-

man parameters“. It is useful to note that G 1§ and Gp are symmetric, while ¢ B is anti-

Symmetric. "

As in the derivation, we begin by integrating by parts to remove the G'g’s from the

’e;(Pré‘Seion ‘(in the same way as our earlier example, (4.22) and (4.23)). Once this has been

 done we can drop the ] d:;i [Texp [ki . ijg} term from the expression. (Recall from
the deri‘vation‘that the only ewcplicit contribution from this term was in the denominator
‘resulting from the 7 1ntegrat10n this has already been accounted for in (4.35).)

So, we are now left with a k1nemat1c expressmn consisting of a sum of products of

(Feynman parameter functlons
tlons For any tree attached to the loop we cons1der each vertex in turn, beginning with

‘thos o outs1 de and Worklng in. At each Vertex we make the subst1tut10ns in fig. 4.J.

" Once we have done thls for every tree in the diagram being considered, we move on

o the loop rules. We saw in the der1vat10n, that there are two types of loop contribution

To obtain the this we begin with the full

Our next step 1is  to deal with the pinch, or tree, contribu-
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[

Direction of loop —

_5n,1 — 5n,1
k2 " - 2k; - kj
i — J. in remaining terms .

Flgure 4.J: The Tree Rules. Note that leg i
appears before leg j in the (clockwise) cyclic orderlng

L]

o we must consider. For the first, we multiply the kinematic expression by 2(1 — %6 RE) and

make the substitution

Gp — —3sign(zij) + ij N (4.37)

The second ‘contribution comes when we have terms containing ‘cycles’ of Green func-

tions. As we dlscussed in the last sect1on these are products of Green functions with

R atc L
| We must only con31der cycles thch fO
, contnbutlons dependent on the length of the cycle For a cycle containing two Gp’s we
| Inake the substltumon | | . |

o GG o2, (4.39)
for one with mo‘r‘e“ than two we substitnte'

: G%zngzB . G‘tn nnGznu __)1 I (n>2)_ -~ (4.40)

We must consider the' cycles contributions in each term one at a time. After a cycle

Substitution has been made we substitute for all other Gp's as in (4.37).

llow the ordering of the legs. There are two possible

v
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and

' (We can, if we wish, make the substitution z; = Z

- 1ntegration.) Once we have contributions from

‘©xpression for the full amplitude.

freedom). In general it will be useful

If we Choose the d1mens1onal regula,rlsatlon ‘scheme wher

String-Based Rules I: QC’Dl

' Let us consider a typical term as an example of the loop rules:

’. 2. . . ‘ T o
(@) exeses 0 aay

with the legs ordered as z; < 72 < 23 < 4 < z5. The non-cycle contribution will be .-

2(1 — 38re)(} +212)* (5 + 234)(5 + Tas)(—3 fes) (142)

We then have two cycles contributions

(Gg) = G2 GY — -2 o (443)

GUEBEP -1 " B T (444)

. giving a total Ioop contribution of

_1§.e T12 z34)(} + 2as)(—7 +253)
2(1 63)(2+ 12)2(3 + 734)(3 + @05 ) (4.45)

—2 X (2 +$34)(2 +$45)(-——+$53)+1 X (2 +m12)2

- Havmg carried out all the rules and obtained an expression for Kreq, we can insert th1s

into (4. 35) and mtegrate to obtam the contribution from the diagram being considered.

, a; to obtain a Feynman parameter

all diagrams we simply sum to get an

L

‘ ‘The loop rules above glve the contrlbutlon for a complete gluon (Wlth two degrees of

to express the rules for one gluon degree of freedom.

e 6g = 0 then we simply omit the
Overall factor multlplymg the non- cycle terms and the cycle substitutions become

GuhGiE -1, (4.46)
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. and

N LT SR ST AT

As we mentioned in the last section, we can also find rules for scalars eas1ly The

)

result is that we follow the above prescnptmn precisely, but omlt cycle terms after dealing
e with pmches, we merely make the substitution (4.37) and multiply by an overall factor of

N, the number of real scalars. For instance, our previous example term (4.41) Would glve

us the scalar loop contr1but1on

No(1 = 16re) (% + 212)*(§ +234)(3 + @a5)(~F + T53).

For fermions, we again find that the only change is in the cycle contributions. Unlike

~ the gluon case, where only cycles of a particular ordering are included, we include cycles

. ofall orderings. The actual contribution for each cycle also differs slightly. For fermions,

©we make the substitution

on. Shell external momenta. We can therefore make full use of the spinor-

GZBlwbgzs sz 1zm szn N _(___l)m H sign(xik ik+1) (4.48)
' ‘ k=1
‘ . |
The other difference from the gluon case is that cycles no longer contribute one at a

time, So if a term has more than one cycle, we must 1nclude all posmble comblnatlons
, .

Of Contr1but1ons For example, conSIder again the sample term (4.41); in the ferm1on case

- this will glve a loop contribution

‘Nf((2 +$12)2( ~l-:t:34)(2 +:v45)(—— +:r53) ' B .1 ) ‘k4.4g)
<G+ bou)—d+ass) B x (ko) + )

We have alsov multlphed by an over all factor of minus the number of ferm1on1c degrees of

freedom, -N f_

1t Is useful to note at this point that the only momenta which appear in these rules are the
hehc1ty technique
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~ described in appendix ITI to simplify (4.36) at the start of the calculation. An astute choice
of reference momenta will significantly reduce the number of terms which we must consider
from that expression. This allows significant simplifications over Feynman diagrams, where

off-shell loop momenta occur explicitly and restrict the use of spinor-helicity until the end.

4.6 Sample Calculation [15)

As an example of this method, let us consider the one—loop’four gluon helicity amplitude
Al-loop(1= o+ 3+ 4+) As Speciﬁed in the rules, we begin the calculation by identifying
, relevant diagrams. In this case we > consider those in fig. 4.K. They are the d1agrams with
, 1o pinches - (a); with one PlnCh (b), (c), (d) and (e); and with two p inches - (f) and (g).
Before considering the kinematic expression, let us try to simplify things by using
o spiner helicity relations. A useful ch01ce of reference momenta for this amplitude is
| ‘(k4, k1, k1, k1) (by which we mean, the ﬁrst particle has reference momentum k4, the second

k1, etc.). We can see immediately that this allows us to identify the following as trivial

ﬂ .

o € * 6j=0 ‘ ) Vi, g
ko€, =0 Vi o (4.50)
ky-e =0,

aIld using (4 50) together with momentum conservatlon to equate

ce1 = —ks-€ ks - 62——k4 €2
taees = ks | (4.51)

ky-€3 = kg €3 k€4 = —k3 - €a

Wlth these s1mphﬁcat10ns (4.36), with n. = 4, becomes

multi-linear

x IC /Hd$zﬂeXP [k ks GB—(!cJ e,——k,ve,)Gg]
i<j -
/de,Hexp [k kiG] ] (kz"ﬁl (GB "GB3)

A<y e (Gz G234) kg - €3 (Gf? + (;73B4) ko .e4 ((;'234 - Gg)(2.52)



. Figﬁre 4.

. (a) :

K: Relevant diagrams for the A
* gluon calculation.
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(g)

toloo(17,2%,8%,4%)
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Using the spinor helicity expressions to express the dot products in terms of spinor inner-

preducts,
| Lo o 221 e = (13)332)
ZIi . V2(12)
' by e = 12231 L (12)[24

P A13) SRRV T VTR

we can rewr1te (4.52) in a form which is both compact and 1ndependent of our choice of

reference momenta,

1 248 R
k= im9es 6y [41]/[116,1”?;[16@ [k )k i€} J |

« (e -o8) (o -x) 63 +5) ().
We have ﬁo need to integrate by parts here, so we can drop the int.egra,l and exponential

-

- terms, [[]dz;]]exp [ki . ijg}, immediately to give the 'kinem‘atic factbr

| 211[1 2] ‘(22;)]?33;) [41] (Gle - G}’;’) (G? - G?) (GZI)33 * Gﬁ) (Gz’; - G?) 459

Looking at the effect of pinch rules for the various dlagrams we can instantly see that
L

] dlagram © va,nlsheS there s no G”‘ term in (4. 53) so the pinch contribution vanishes.

AISO (¢) and (g) vanish: when a 2-3 pmch occurs (G12 GY) becomes (GX — GL¥) =0,

, smce we must set 2 — 3. In the same way, (d) and (f) have zero contribution because

(G23 _ G24) Vanlshes when there is a 3- 4 p1nch These can all be dismissed before the loop

rules are apphed and so give no contrlbutlon, scalar or cycle.

So, we are left with (a) and (b) Let us look first at the scalar contribution to these,

Béginning with (a) This has no plnCheS, s0 we go Stralght to the loop rules. The loop

Substitutions give us

~a) 1 [24)%ts2 219 _wIBA 293 — T24) (1 + T23 + 234) (24 — T34)
Areé T 4[12](23) (34) [41] ( Jen T 2 (4.54)
1 [24]%¢s 2o — 23) (23 — 74) (1 + T2 — 24) (22 — 23)
Z[1y2]<z3>(34)[41}( ? "‘)(,, ) ,?
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L Substituting this into (4.35) gives us

Dla) _ I(n; — )l ’ [24]2t2
s (471')2 6/2 4[12] (23) (34)[41]

Ty — T3 — 1
v ><‘/0 d$3/ d:L'z/ dz; (@2 3D)2+(E/32 )xs

Where z4 has been set to 1 and

| (4.55)

4
D= k . k-x,-j(l — x,‘j)‘ ” o '
| ; | (4.56)
= (—sz1(z3 — z2) — t(z2 *5'11)(1—963)) R
We can convert (4.55) into a Feynman parameter i’nt’egral with t.he substitgtiqp z; = z; L a;:

D(a) F(nz 2+391 24)%s?
- (4m)zelz 4[12](23)(34)[ 1]

, 4 2
azas(ay + ay)
/ I]:daZ ( Z ) (——sa1 as — ta2a4)2+€/2

i=1

(4.57)

'+ This can then be integrate (for example, with ar; integral table constructed by the methods
_ outlined in ref. [83]) to give:

Dm-2+391  4fts? x

PO T AR T o (4.58).
For (b) we must first apply the pinch rules. So, we substltute
" @) -me-s aw
and change the indices 1 — 2 in remaining terms. This gives
B - T VPR (63 + %) (c3 - ¢¥)
S 4[12](23)(34) [4 1] s ” (4.60)

,»1- | [24] ‘ $3_ z2—2 $2—-’L'3)
43[1z]<23)<34>[41]( 2 ,)(

Then, similar to (a), we get

o | I'(n ——é-i-'%é)l “ ‘[24]2 , '
DY = (;W)Zy—e/? 4[12](23)(34)[41 R (4.61)

| (22 — 23) (23 — 1) 22
/ dxs/ dz, Di+e/z




ER% We can 1dent1fy cycles in every term

String-Basecz Rules I QCD 5

' where x4 has been set to 1 and
D= Z K; - K; :c,J(1 9:,]) L e
K is the momentum in the leg attached to the loop with label 3, so this‘evaﬂh“lates‘ to

and the integral, in the Feynman parameter form, is

®) _ I‘(n; 24+ 1) 1 [24)*ts?
T (4m)2=e2 4s[12](23) (34) [41]

L e ! d3a4(a2 2)
/ H da" ( _ ;a,) (—3a2a3)1+6/2 : L i
e ‘I‘(nl 241 e)1 4t R R
(®) — — (4,65
D= =Gpr iies EaEl 6 o 09

T Combining (4.58) and (4.65) we get the result | | |
;o Du-2+39 v [4t" e (4.66)
(4m)2-€/2 24[12] (23) (34)[41] i

Now let us look at the extra cycle contrlbutlons for the gluon. If we expand (4. 53), '

. _1_ ! [24)%¢ 12 __G,13 | C;’23 2024 _ (G24)2GZS+G (G )2
‘32[12](23)(34)[41] (GB B)(( 5)Ch |
B Vi RGY - GR(CY )+ CHCHCE +ERCRGY),

, o (4.67)

‘—- tWo cycles in t‘he first six here and three-cycles in

- the remalnmg two Makmg the cycle substltumons, this becomes :

1 [2 4] 12 er
‘ G G
32 [12](23) (34) [4 1] ( B ?,) | ey , (4.68)
< (- (Gh - 6 + 63~ 0¥ - G¥ - G¥) 1-4),
- We ‘fhen make the loop substltutlons and obtain ’ ‘ N
L 24t ( s 3)( 2(23 + 224) — 2% + 723) = 23 +734)) —2), (4.69)

32[12](23)(34)[41]

Which is clearly zero.

e 64):

68
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" The gluon cycles for (b) also vanish since it has essentlally the same sum of contrl—'“’, e

So, the total loop contribution is the same for every particle conteht (up_to a numerlcal ; e

i

D=N, (4 )2-6/2 3[12] (23) (34) [41]

Q

e So we have shown how we can use an- open bosomc strlng to 81mphfy QCD amphtude
i : calculatl ons. By lookmg at the mﬁmte tensmn 11m1t of such a strmg we can construct a set
i of rules for ﬁn dmg gluon Scattermg amphtudes These rules prove to be s1gn1ﬁcant1y more

éfﬁment than conventmnal techmques, suCh as Feynman d1agrams, as We demonstrated

: ;‘Wlth : sample calculatlon In the next chapter we W111 look at the ways in Whlch we can

‘;"‘;’use th1s type of ana1y51s to help us in PQG

69

‘butions. Similarly, there will be no fermlon cycle contrzbut:on for ‘any of the dlagrams

i ‘Where N, = Nb N f, the number of bosomc minus the number of fermlomc degrees of ’,



the left- and right—moving cc’)mponen’ts,‘

Remember that what pulls the strings

is the force hzdden within; there ‘

lies the power to persuade .e-

Marcus Aurelius Antoninus

5. String—Based Rules II: Gravity»

a-

In the previous chapter we used open bosonic strings to construct rules for the one- loop ,

» amphtudes with external spm one partlcles and part]cles of spm one, one half and zero in

the loop. We now turn to the case of gravity; for this we need a system which 1nc1udes

: partldes of spins up to two. This entails a switch from using open bosomc strmgs to closed,

~since the former only mcludes particles of spin < 1. As mlght be expected, this leads to

us a set of rules which have a similar structure to the QCD rules qutlined in chapter 4,

" but for which there are also significant differences. In the next section we will outline the

derivation in the closed stgring case. We will pay particular attention to ways in WhiCh it .

differs from the open strlng analyms Once we have considered the essentza,l features of

‘ the derivation, we will give the complete set of rules for one-loop calculations containing

external gravitons and present the results which have been obtalued using these.

Before we look at the‘ denvatlon let us 1dent1fy the dlfferences we expect to see. We know

that one loop closed string amphtudes can be described as a torus with vertex operators on

the external surface, rather than the annulus with ver’cex operators on the boundanes in

the open strmg case. Since the operators are now located on a two-dimensional surface we

: descnbe their locitions by complex vanables 1nstead of real ones. The closed nature also

Jeft’ ht’-moving components
leads to dlﬁ'erent boundary cond1t1ons Wh1ch generate left’- and ‘rig g p

in the strmg theory and ‘left’ and ‘right’- ‘monng variables. As a result, we will find that

our startzng amphtude expressmn is the Pmduct of two copies of the open string expression,

plus an interaction term. So, we expect that our
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‘kinematic term will resemble that in the QCD rules squared plus terms which mix the

left and right moving variables. The pinch rules will require a contribution from both -

components; the loop rules look very similar to the open rules applied to each component

independently. We ‘also find that we must express our kinematic factor in a different way;

the mixing terms introduce extra powers of 7=1 which will adj'ustﬁ our use of (4.11). In

order to take this into account we find it is necessary to postpone the T ,il}tegration‘ and

Include it as an explicit feature of the rules.

Since our calculation is on a torus the vertex operators are not restr1cted to lie in a

certain order. This will be reﬁected in the rules by a sum over all ordermgs of external

L]

. legs.

5.1 Derlvatlon of Grav1ty Rules from Closed Strlngs
| In thls section we look at the demvatlon of the gravity rules from closed strmgs As there
i are many similarities to the QCD/open string case, we Wlll concentrate on the differences

‘ 1
outlined above. :

In this case the part1c1e structure is shghtly more complex than that seen in the last

‘. ch&pter, the massless sector of the closed bosomc strmg contams a symmetric tensor — the

grawton - as expected but it also includes an antisymmetric tensor and a scalar In four:

dlmensmns the antlsymmetrlc tensor has only one 1ndependent component and so looks

llke a second scalar So, 1n1t1ally we W1ll be constructmg rules Wh1ch will be valid for a

- 8raviton plus two (real) scalars in tne loop.

In order to carry out a one-loop closed strlng amphtude we map the torus onto the

t
COInplex plane We then 1ntegrate over all pos1t1ons of vertex opera ors The Vertex

- operator for the grav1ton is”

. 9X* X", | |
VN K/ 6/1,1/ 81/ a’/ e LI E (5-1)

¢

write this as
“ We can factorlse e#,, = Fu e,, [84] and so re

Vo~ k:expi(k: X+6 o,X te aX) N (5.2)
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- The ‘linear’ condition implies that we keep terms linear in ¢ and €, We then insert this

_ into (4.6). Again, let us begin by looking at a generic term. We ﬁnd that we have two o

' coples of the closed string result one dependent on v;; and the other on 7;; i plus an term
~which mixes the left- and right-movers |
eXP(ke kiGp(vij) + (ki e — kj - €)Gp(vi) — & - ;G p(vs;) |
+ (k,- cej—kj- Gi)é-B(Vij) —€ - EjéB(Vij)) SR (5.3)

IXexp( (€ - ej-}-ej e,)HB)

multi-linear ..

- ( Multl Imear is the generahsatxon of ‘linear’ above ) G'B is deﬁned as before as

(X X ) ”,,GB (vi — 1/}) | . B : (54) .
' C;'B(V) = 50:;6!8(”) . GB(L_") =§aDGB(V) . (5 5)
Gov) = 188Go()  Gn(9) = eEGH0) ks

“The mixing term comes from the part of the expansion which looks like
- elE (0, X0, X, ) + E'€] (0 X0 Xo)

= (el 0y, 00, + ELe) 05,0, GB(VU) P (5.6).

. o . =-—(Ef€; +€f€;)HB
(Sée appendix II) '

.SO, we eventually end up with' an expression for the amplitude’
4 € 2 n — R N
An =i G2 (o) .
n—1 .
“/ | dzr(%r)"”““ / T il - IV=+1I) - I[f(q)f(q")l-zfl-émm

a-l '

xHexp (ak kGB(V,J)-!-\/—( i 53" J ft)GB(VU) €i* eJGB(VU)

s<J

multi-linear -

+\/‘(k, EJ—-]C} e,)GB(u,J)—e, eJGB(V,J) (e, e]

ot Recall, from chapter 3, that we have chasen not to write the couplmg explicitly as ufx in 4 — 2¢

dlmensmns

e s

i
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- g and § are defined as exp(—27) and exp(—27), respectively. Note that we have an implicit

‘Ordering of the v’s in the integral: |v1| < ... < |vp| = |7|. This has been imposed to allow -

us to use Wick’s Theorem. Closed string amplitudes do not have any naturgl orde;ing of

the legs (since they are located on the surface of a torus); we will take this into account in ,.

the rules by summing over contributions from all orderings of the external labels.

As with open string case we begin by integrating by parts to remove Gp and Gp

terms. We can do this for the left and right terms in turn, but must be careful to look out
. . . ight
for those places where a differentiation with respect to (n ght) moving variables hits (rl‘fﬁ

moving functions to produce Hp’s. We will give an example of this Whe“n we give a ﬁgal

version of the rules.

‘As'sumingl we have carried out this process, let us look at the effect of the o' — 0
‘11m1t It is easy to check that, when the exponentlal is expanded to fulfil the ‘multi-linear’
. ‘:cond1t1on a term containing k Hp’s will have a overall factor of (a')n k=2 As before,

| ‘We will find ‘pinch’ and ‘loop’ contributions which produce sufficient powers of (a’ )‘1 to
cancel this. Fi'rst, let us look at the way the pinches work in this case.

Pinch co1;trib;1tions come from the effect of |vi — vj| — 0. Evidently, this also means

: , L s i .. .
" that |7 7| — 0, so we expect contributions from both G} and G 5 In the limit we will

* find integrals of the form

| 1 e (58
/dp”z (v ;)" ke k2w Vi Vi ‘ (5:8)
ijVi ‘

' ij : iy i oro
(cf (424)) The ]y,—a'k-"ki/”'comes from the exp(Gé) term; each G3 and Gz produces
This 1ntegra,l will only give a contribution which surv1ves as

a Vij and 1/ respectwely

& S50ifn=m" =1 ifn#m then the integral vanishes and if n = m # 1 then the

| result will be 1/(a’ — integer) Wh1ch g1ves a trivial contnbutlon in the limit as o/ — 0 For

n =m =1 (5.8) becomes:

o o | 2r | / 0 59
d2v; 1 T k/zﬂ.__)—alk..k. @ ( )
‘ : ¢ (Vi]l/z])1+a o ' ! |

73



String-Based Rules II: Grovity 74

So, a pinch contribution in the closed string rules will arise when we have exactly one
C;' ! and one Gg in a term. We can compare this to the open string case in which a pinch -
contribution occured for a term contalnmg exactly one G ] Apart from this dlfference the‘
pinches will function in precisely the same way as the previous case: we must subst1tute
vi — v; in all other terms, the number of integrations will be reduced to n; (the nurnber

of legs remaining attached to the loop), the exponential will look like (4.26) and we will

generate an overall factor of (a' YT

We now turn to the loop contributions. Here we find that the reIevant port1on of the r
 integral is that in which ST — co. This implies that we also restrict the »; integrations to
| the regions where |Sv;| — co. As with the open string case, we must deal ”With exponential
. funetions of 7'.‘ ‘In this case, we see that (5.7) has factors of both ¢7! and 1. We treat
R barred and unbarred variables independently, so, up to the point at which we carry out
' .the 37 integration, We can follow the opén strtng analysis for the leop contributions on
| | ‘the left and r1ght movers mdependently For each ‘half’ we must include the gluon cycle
& and non- cycle contr1but1ons that we used before When applying these loop rules we can
treat the Hp’s as constants, since they haye no relevant contribution. The only subtlety.
- in this precess cemes when making the substitution for Gp and Z.;—B in terms of z;’s. Since
both are dependent on Sv = —S7, both have the same substitution:
| Ga(eg) ~ —L sign(i;) + ij |  (5.10)
_é—B(xij) ~ — 1 sign(zij) + i |
(There is a relative minus sign ignored‘here, but this is absorbed into other factors; See

" appendix IL.) ,
The significant difference comes when we have carried out this analysis and try to

R L ith S dependence are
lntegrate over 7. The remaining terms wtth S dep

/d --2+e/2 HGXP (a ki k; (:c” |x,]I)JT — (€& +&- fj)Hg) (5.11)‘
R T ]

' T it is implies that, in general, we
~ Recall that we must impose the ‘mult1—lzneet’ condition. This imp 10 g v |
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will have a product of Hp’s. So, a generic integral will be

/d\sr( r)M(ST) T [T exp (O‘k ki 587 (23; "”nl))HklllH’gzlz'”H‘glr (5-125

1<J,

~ We know that in the |7| — co limit H g ~ 1/S7 (appendix I), so this integral becomes

/d%r(\w)"'(\ﬂ) 2+e/2(x (ST)~ kHexp (a ki - k]\fT(x ,3311’)) ki (513) |

1<J

Referring back to (4.33) and (4.34), we can see that the integral will introduce (a')~M+2+k,
This, coupled with the (o)~ "™ from pinches, will exactly oancel the %eading (d')n—2-k
in each term. The number of powe:rs of the Feynman denominator will also depend 'On
¥ “ the number of H B’s. So, whereas in the open string case we did‘ not have to includé the
T integration in the rules, here it will be necessary to do so. (Note that we could have

"o L

1ncluded the = 1ntegratlon in the open string rules and obtained a ‘Schwmger proper-time’
form of the calculatlon such as ‘that used in ref. [58].) | ”
| As with the openv string case we call adapt the cycles rules to include other particles.
For vectors and soalars n thé loop, we can find rules by using compactiﬁcaﬁon arguments
again ‘[82,65].‘ The result for a vector is that we must apply the open string scalar rules to
one oomponent and the open string vector rules to the other. For a scalar we simply apply
0pen strlng scalar rules to both components |
For the fermmns we must look to superstnngs for our - motivation. The D1rac (spm-—)
fermion has the rules one. would expect after exammmg the vector and scalar cases: we

apply open string scalat rules to one component and open string fermion rules to the other.

o For . Ranta-Schwmgef (spln-”) fermlon we might expect to apply open strmg fermion and

Open string vector rules to each component respectlvely This is almost right — in fact, like

‘the graviton, th1s 1ncludes slightly more than the particle requxred In this case we will

have ope spin-3 and one spln—g particle. So the Rarita-Schwinger fermion will be found

by subtracting the Dirac result from this.

75
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Given these adjustments, we can now construct a full set of rules for graviton scattering

amphtudes which, as in the QCD case, can be used without knowledge of their string theory -

Source.

5.2 Gravity Rules

As with the QCD rules, our starting point for an amplitude is to draw all the reIe’vant‘
diagrams - that is'all those constructed from ¢® vertices. (Excluding tadpoles and diagrams
with the loop' isolated on an external leg.) The difference here is that we must include
~diagrams with all orderings of the external labels. The 1nternal lines are labelled accordmg

to the plnch rules — at a three point vertex the internal leg is glven the label of the

most clockwise of the two outer legs. The contribution from each labelled n-point ¢3-like

diagram with n, legs attached to the loop is

[ "

| —“ " | ' | Fing=t o . = T Tne—3+e
DS :i ( ﬁ:) \A d‘fint-—lr\/(; d¢in£—2 ...’v/ dle/ d T

X eXp( T Z Pz, sz -szu (1 :L.Zmll )) ed(ley mi"l ‘, T)
I<m

(5.14)

*

(V&;hére ny is the number of legs attached to the loop). In order to eyaluate Kreq, we start

' With the graviton kinematic exprgssion

K= /Hdm da:, exp [k - kj GBJ exp [(k
e I P AR | : | | “

X'exp[(k" g —kj - E,-)'G_g —& - § GBJ exp[—(fi &g Ei)Hé’]
1 g ‘

j
"

| 9y i
; kj c6)GE — € - € GBJ

multi—linear

(5.15)

We ‘have factorised the gra\uton polansatlon tensor as descrlbed earher we will recover it

at th d bv t kmg e 4 e . Gg’s can be regarded as nothlng more than ‘Feynman

e end by ta. ~

‘Parameter functions’. C g and Gp are derivatives of these with respect to left-moving
meter functio

8 " ‘ t to right-movers
. R 5G]} G are derivatives with respec g
Variables (e.g., G = %‘5‘;?‘) and Gp and Gp

| : S ivati the Green function with respect
(e.g., 5}92 = ;%ﬁﬂ_) The term Hg is th(? “derlvatlvbe of e
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- to one left-moving and one right-moving variable. - The functions G},G} and HY. are

symmetric in the i and j indices while Gp is antisymmetric. |

We can begin by using spinor-helicity simplifications where possible (@pp‘endix IH).
This entails choosing a particular helicify configuration and relevant reference ‘.mo‘men’ta.
Repeating the calculation for all helicity configurations will give us the complete amplitude.
Though it is not a necessary part of the rules, the spinor-helicity method will, W1th a good

ch01ce of referencé momenta, remove a number of terms in (5.15) and cut down the work

in evaluating the expression.

The first step in the rules is tQ'rémove all of the @g vand Gg by integrating the

‘kinematic expression by parts with ryespect to the variables z; and #; where necessary.

Whﬂe carrying out this process we must be careful to take into account the cross-terms

where a left-mover derivative hits right-mover terms, and vice versa. This can be done by

»

using the results

0 ij ij
(? }3=6sz 5kJH ' 5;G _5“1{5-5,6]-533 N
| o Tk R 0 (5.16)
o 0
G ——G
awk . 5:L'k

- For example, if the expressic)n

/ Hda: LR G”]G“G”G”(G %% (5.17)

i<y

is integraﬁéd by parts with re‘sp'ect‘t‘o ;z:l”,‘ the result 1s

/de dac,Hexp[k,- kJGg]G (G 2 “ . | | Ty

3<J . Co R L
L ((k ;;zc:};m kG +h - RCE)T + Y

“(Repeated 1ntegrat1ons by Pal”tS may be needed to remove the GB and Gp's completely.)

Onece all ('n and rel B's have been dealt with we can drop the 1ntegral and exponential
a B

teI‘Ins, leaving us with a function consisting’ of Gp a_nd GB s. Using this function, we can
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go on to find an expression for Kieq for each dzagram in turn. We begm with the pinch

bontrlbutlon For every tree attached to the loop we make the substltutlon in fig.5.A. As -

in the QCD case, we begin W1th the outermost tree vertices and work 1nwards applymg

the rule where appropriate.

- d " Direction of loop —

. 6n16m 1 On 16
n G” m e n1%m,1
(G ( : k2 2/{:,' . kj
i— 7 ln remaining terms

Figure 5.A: The Tree Rules. Note that legi
appears before leg j in the (clockwise} cyclic ordering.

. Q. ,
Once the tree rules have been carried out for a dlagram we apply the loop rules The

 first step is to replace all occurrences of H Ip with

Lo 'r.‘ ! ' 1 ‘ ‘ . ‘ .
We then turn to tl1e remainlng derivatives of Gp. From earlier diSCUSSiOf}S, we know that
the rules for G and Z?B replacements will depend on the particles which are circulating

-1n the loop As suggested in the der1vat1on, our bu1ld1ng blocks are the open strmg loop
rules, We can obtain the full spectrum of particles (spin < 2) ‘in the loop’ by applying

comblnahons of the QCD rules to the left and right components of the kinematic funct1on

~In table 5.1, we g1ve the combmatlons required for the different particles. By [X, V]

kWe mean that rules X should be applied to the Gpg’s and rules Y should be applied to the

fermion and vector loop rules respectively. (The

| vector rules we require here are those for 2 single vector state, equs. (4.46) and (4.47).)

[

GB s. 'S, Fand V represent the scalar,
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Substitution Particle Content

2[5, 5] complex scalar
. —2[8, F] : Weyl Fermion -

2[5, V] Vector -

—4[V, F] gravitino and Weyl Fermion

4{V, V] graviton and complex scalar ’
. 4[V, V] —2[S, S] graviton

- —4[V, F1+ 2[S, F] : . gravitino -

Table 5.1: Applying the substitution rules on the left corresponds to having the particle -
content on the right circulating in the loop. [z,y] denotes applying
substitution rules  and y to barred and unbarred terms, respectively. -

"The Scalai contribﬁtion, S , simply fequires ﬁs!to make the subetitutioh
Gg - "( s1gn($,])+2x”) : ‘
. vvv w ‘ (5-20)

G” —(— 51gn(:c,]) + 255:]) , K

We know that F and |4 each produce two types of contr1but10n scalar S, and cycle

A cycle contnbutmn is found Whenever we have a cycle of GB or GB 8:

" -

Guzzcgzzzs G;; 11nGln11 E or G’“'"’G2223 th_lz"é—gil. S '(5.21)

Let'us write the cycle contributidns as Cy and CF-Z S,(”

F=S+4+CF
~ | (5.22)
| V S 4 CV ,.
For Cv, the substltutmn rules are
| ‘ 0311201221 __) 1 e
(5.23)

GuwGlzla G"m 1?"‘(}""‘” — 1/2 (m > 2)

“Where all the cycles must follow the ordermg of the legs and only one cycle at a time

\‘ May Contrlbute to any term Once these substltutmns have been made all remaining Gz’s

should be replaced as in equ. (5.20).
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For Cr the following substitution is made

Gn i3 GZzta o Glm 1im Gtmu _(_1/2)111 H Slgn(x,k,k+1) (5 24) 1

k=1

In contrast to the V rules all cycles contrlbute in the F case regardless of ordermg Also, S

all combinations of one or more cycles from each term contrlbute Agam, once these :

5 substltutlons have been made all remaining Gp's s should be replaced as in (5 20)

" Once we have carried out the pinch and loop rules for the diagram and part1c1e content e

o

= we are considering, we obtain an expressmn for Kred We then 1nsert th1s into (5 14) and

~ carry out the mtegratlons 'In contrast to the QCD case, we have an extra T 1ntegrat10n

j“ which must be evaluated If we do thls ﬁrst we will ﬁnd a 51m11ar denommator to the

"‘k‘QCD case, possﬂjly w1th a dlffermg exponent (After carrymg out the T 1ntegrat10n aii

substitution z; = ZJ 1 a, W1H show that agam we have recovered a Feynman parameter

' integration. T i is, in some senses, the Schwmger proper t1me ) Once We have carried out

all 1ntegratlons we can sum the results from all dlagrams to obtam the full amphtude

: One reason for expressmg the loop rules in the form (5 22) is that it allovvs us to make

! eXp11c1t the sunphﬁcatlons in a SUSY decomPOSItlon (appendlx V) This anOIVeS calcu-

i latlng amphtudes for spec1ﬁc SUSY multlplets rather than for 1nd1v1dual part1c1es The

oF

: 1nd1v1dual contributions can then be reconstructed from the SUSY results In th1s > way,
‘ We can explo1t SUSY snnphﬁcatlons durlng the “calculational process they are seen as

Cancellatlons between common contr1but1ons in the rnult1pletS

N scalars .| ‘spin-1/2 | spin-1 . | “spin-3/2 ' spin-2

N=1 1

‘N =¢4 3 | 4

N—6 | 10 15 e

N=38 T35 | 56 28 8 1
Scalars are

nt of the supersymmetric multiplets we consider.

Table 5.2: Particle conte W v
complex, and the fermlons are Weyl.

e i e
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Here, we chose to calculate amplitudes for the N = 0,1,4,6,8 multiplets centred
around the scalar (ie, those in table 5.2). The cancellations for these multiplets leave a
simple contribution to be calculated and a reduced degree of Feynman parameter poly—
nomial (see table '5. 3, and note that in the combination Cy — 4CF the 2- 'and 3 -cycle

contributions cancel). Clearly, this will be a particular efficient way to carry out the one

loop amplitude calculations.

L)

N Contribution Degree
N=0 2[5, 5] 2n
N=1 2[Cr, S] 2n — 2
N=4 2[Cv — 4CF, S] ‘ 2n —4

" N=6 —4[Cy — 4Cr,Cr] 2n—6
N =28 4[Cv—4CF,Cv-—4CF] In—-8-

Table 5.3: The String rules appropriate for the multiplet are given and the degree
of the Feynman parameter polynomial for an n-point loop integral.

Using the string fuleé in this way gives a further simplification compared to Feynman

techniques.

,’5 3 Sample CalculatlonJr

Let us look how at an e‘cample of a typical calculatlon usmg this technique. We will

choose the four-point amplitude with helicity conﬁguratzon A1-loor P(172%3%4%); the grav-

ity equlvalent to the QCD example in the previous chapter.
We begln by 1dent1fy1ng the relevant dlagrams, these are depicted fig.5.B. These are

| 'éSSent1a11y the same as those in the QCD example, but recall that we must now include |

all Ordermgs of the external legs. |
We go on to look at the use of the spinor-helicity technique. The most suitable choice
ki,ki,k1). This allows us to

‘T This was originally calculated in ref. [31]

81
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(b) ) (c) |

nt diagrams for the A171°°P(172+3+4+)

graviton calculation.

Figure 5.B: Releva

ORI G A W o we

‘i%?@a‘m:‘a‘ wE W~

R S Via
PR
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deduce the formulae:

€€ =0 €€ =0 Vi, j
. &g =0 Ve
. | - o S (5.25)
k‘l-ej:o vkl'gj=0 , Vj '
k4'61:0 k'4'€1‘:0' o PR ] : . "

(Recall that we can factorise the polarisation tensor as two vectors, €,, = €,€,.) If we |

combine these results with momentum conservation, then we can equate

kz-él :—-kg-el k‘3-62 =‘-—I€4'62“‘ ‘ k2‘€1 ='l"‘k3‘€1 ) k3“'v€2=—k4"52 s AR

ko e3=—ky-e3 ky-es=—k3 e ky € =—ks & ky & =—ksy-&.

Usiﬁg these results in the kinematic expression (5.15) and expanding to fulfil the multi-

W » -

linear condition gives us

= [ [amn o[t 13

Cxhky - erks - exky - esky - eaky - & ks

y [(—G},ﬁ N Gle) (—(;’234 ﬁGZB?’) (G + G34) (G%“ - G?)J

< E2ky - Eky - &y

« [(_a‘g + é};) (—5234 + @'233) (é‘§"+ @_‘?) (a? - 6%4)} i (5.27)
. . 4 s? [2 4]2t32
= [1] 4= dHP[’“ Sl J (‘5[121<23> 39 [411>
=1, i< » 5 )
[ (o 6) (o +08) (63 + &) (63 - )

o [(ci ) (B ) (65 05) (65 - )|
Note that this is simply a double copy of the kinematic expression in the QCD example,

5o by comparison with that case we knOV;/ immediately that there is no contribution from

1mehes (e) 0 (g) (h) (_]) and (k). In this case, however, we are left with five other
) ’ ?

W here because we are cons1der1ng all
dlag 51der, e have more
rams Wh1ch we must con ‘
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ordermgs of the external legs, so there are three boxes to be cons1dered rather than the .

one in the QCD case, plus an extra plnch diagram. .

Let us look first at the scalar contr1but10ns from the contributing d1agrams The boneg
have no p1nches S0 vrfe can look at the loop rules straight away. We begm Wlth (a) The .
scalar loop contributions depend on the ordering of t}hre external ,1‘?%8 threugh th‘? Srgn( wi].) ,
‘in (5.20). (a) has the ordering 0 < :c1< T2 < a:3< 74 =1, Wh1chlsthesame as the i
QCD box in the I'f)revious example. Hence, the reduced kinematic factor which We tha.in S
e precisely the square of (4 54): | it | o : | : ‘,
16 ([1 2] ([22:)] (ts)[4 1]) ((22 ;'¢3)(é3 —1):§£ (372—-333))2 .' ’(5.2’8_) o

i Substltutmg th1s lnto (5 15), and carrymg out the T 1ntegrat1on g1ves us

Kl =

0 _ Ll 2+—e) 1 [24] 22 ) | S
D§>_ (@ ([12] (23) <34>‘[41] i
(z2 —5173) (56'3 — 1) 332 ,

e / - / — (m_@)_t(m_r)aﬁ ”“5”

i Whlch use the Feynman parameter form is -

D@+ ko) &t ( | 4P )

C T G s | T <3?> [44 ) | (' R
: L ‘ ; 033(14 al a9 L
‘ X.,/(; Hda & ( };Gz) (—Sa1033 _ 25a2a4)2+e/2
, ﬂ =L e ‘z= P g
We obtain from this L
| it 1 ( [24] (5.31
D( - = Tany (47r)2 8403t [12] (23) (34) [4 1] i (531
- where rp is g b o L ‘,“ ‘ " R s o :
Yhere rr is given by - o (1 -—"e)F(1+ e) S 53
. rr ’= ‘ F(l — 26) K : ‘

For (b) the order1ng is O < :c1 < 3:3 < :Uz <z4=1 Whlch leads to a reduced kinematic
? ; .

expl‘eSSlon (after loop subst1tut10ns) of i - | |
I’(b) | 1 (______[_Zfﬂlf____—-) ((:1:3 —fvz) (2-:1:3)( 1+$2)(:c2 ——xg)) (5.33)
red = [12](23) (34)[41] i o | | |
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The relevant denominator in the integral is now (—uzy(z3 — z2) — t(x2 — :cl)(l - SL‘3))2+£/2.

So we obtain the integral (in Feynman parameter form)

(2 + Le) xt ( et Y’
DO = W 16 \ [12](23)(34) [41])

1 4 iy aga4(a1 +az — 2))2 :
X /0 l:IIda ) ( ;az) (—uazas — tagag )2 Hel2
Which ’gives : o | | , ) | :
et 1 [24] ts2 '
(8) =y’ ( 5.35
b =rr (471')2 840ut \ 1 2] 23) (34)1e 1]) o (5.35)

*

The final box is (c) with ordermg 0 < T < T2 < Ty < :1:3 = 1 The reduced kmematm

i express1on for this is -

I’(C)

red

1 [24]%ts Y — 1z, $4;1 23 — 24)T3)’ (5.36)
([121< ><34>[411) (=221 ) |

1

‘ . : . . ) o 2+e/ |
~ and the denominator required is (—3351 (24— 72) — u(es — z1)(1 x4)) From these

‘Wwe obtain the Feynman parameter 1ntegre:1

(C) T(2+35 e) P ( [24]°ts ) | S | |
P  (4m)P 7 el E36eyny, LR
! (a2as(ar + az — 2))°

o 14 4
, ,X/ Hda,é l—gai (_Sa1a3 _ua2a4)2+e/2
o J0 = =

Giving the result ~ -~ o \ )2

: ikt 1 ( 24] ts”
DO =rr——5 (4ﬁ)2 252su \ [12](23) (3 4) [41]

ch d1agrams We begln with (d), the 1-2 pinch. Recall

(5.33)

- Now we must look at the pin
- that we must now look for terms containing exactly one GB and one GB ; the SUbStltum@

 Tule in this caseis = 0 T " bm1bn1
“ o . “‘ ‘{ ) B o ' ' B ml n

(G};)n 5m 15n1 —

(—é};)mk 2k k2 s (539

(5.34)
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and change the indices 1 — 2 in remaining terms. This gives

2, .2 2 . . : %34 24 ;34 O
1 ([12]<[24] ts ) %(G?—G?) (G’%;"’-I—GB)(G TG,B),

16 23) (34)[41] | L g e
) (@3 -C%) (Cp+0y) (G4 -T%) (540
1 24" 2 z3 — za(z2 — 23 2
~ 163 ([12](23)(34)[41]> (e ,1) ( ) | ,

With the relevant denominator, this becomes

T(1+1e) wt  [24]%s?

DY = 2—¢/2 34)[41] |
(4m)2=</2 163 [12] (2‘3)< )1 4 o\ (a2 (5.41)

Wheré,“ as usual, we have converted to Feynman parameters. This evaluates to

11 [24]¢s? .
S M- ( 3 RS (5.42)
D= 736052 \[12](23) 34 [41] ) X
Finally we have the 1-3 pinch diagram‘(i). After applying the pinch rules we obtain

the expression

i'ri}é‘([12]([22?jl>](t34)[41]) E(GB GB)(GB+GB>(B “B)

«(G3-0%) (@3 +3%) (4 -) a9

1 | [54]2’532 \ x;—i)xz(l‘z—%))z
T 16u ([12] (23)(34) [41]) (

‘ S SETY. o (—u 1+¢/2, (learly we have thé same
The denominator which require in this case is ( uaza3) y

i | d
Integral as in (d) up to a factor of (s/u)?. Hence we fin

ot 11 24)°ts? (5.44)
DY = 75600 23) (34) [41]
s = (am)? 360u? \ [12](23) (3
Summing the vafious contributions gives us the final result of
L o 2 N2 2+‘St+t2
2 ) = 5760 ) (5.45)

. ' e st 2
A(1f,2+,3+,4+)=Ns@—,;)'5(Z) ([12](23) (34) [41]
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5.4 Results
Here we give a complete set of results for 4-graviton amplitudes. We express them using
the spinor-helicity terminology and making use of the SUSY décompositiqn descxjibéd,in

appendix IV.

For the (—,+,+,+) and (+,+, +,+) one-loop amplitudés all the supersymmetric |

components in the decompos1t10n vanish due to supersymmetnc Ward identities. Th1s is.

related to the fact that all cycles vanish, so that the contr.butlon for every particle is Just

a multiple of the scalar one. The results are

2(s? + st + t2)

| A(1",2+,3+,4+)=N;(71%;(‘i’t) ([12] (222)4(]34) [41]) | 5760 (5.46)
e M G e
ATt 2,3 4) = Ve (< TR ) e e
where | ‘ - IR |
| N, =Ny - Ny, - (5.48)

»

‘the number of bosonic states in the loop minus the number of fermionic states, s = (k1 +

)2. So, for instance, since & graviton is made up of two

;k2)2 t = (ky+ks)? and v = (k1 + ks

hehcﬂ;y states the amphtudes for pure gravity are found by putting Ny = 2 in the above

- €Xpressions. ‘ . . : .

For the A(1-,2-, 3+, 4*) amplitude, none of the cycle terms vanish, We express their
or J e 9 b b L ‘. .

contributions using the supersymmetric decomposition given 1n the‘ previous section. The

‘(‘COI‘nplex) scalér.amplitud? is . | | |
: | Fu3t3(1ﬁ(—t/ —u)? +7?)
‘ _ Ft(n(-t/ —w+ )
A[O](1~,2 ‘3+ 4+) - 5 4
F(t w) (t* +9 ut® +46u%t? + 9udt + ut) In(—t/ — u) (5.49)
+ 3087 . :
| F(2t4+23ut3+222u2t2+23ut+2u)
+ 180 5°

m— -
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where F' is

ikt(4m)er st(12)* 2: stur?(4m)rp o +, L | . o
16(47r)2r((12)(23)(34)(41))' o AT (520,304h), ~ (5.50)

and A™ee(1-,27 3% 41) is

iKk? (12)4‘“ 2 st S
4tree(1-,2",‘3+’4+) — _4_(<12> (23> (3,4) (41>) X o | ‘ ’(5’,51)

(This tree amplitude has been calculated previously in refs. [64 60] and was given in this
‘ihel1c1ty basis form by Berends, Glele and Kuijf in ref. [20]. )

" The amphtudes for the supersymmetric multiplets given in tabl¢ 5.2 are .

o T s 2‘—‘t N _F,rz A
vF(t2+14tu+u2)_Ftu (ln( / u) ) L

AT = 24 s* 26
F(t —u) (2 + 8tu + u?) In(~¢/ — u)
. - 12s° |
| 72) 4 g2
AN=t = .2-% ((t —u)sln(—t/ ~u) - tu(1n2(ft/ —u)+7%) + ) o

”AN%: 2 (1n2(-t/3-2-u)'f7r2) |
o2F <ln(—u) In(~1) ln(—s)) |

st su - tu

n n(—s) . In{—u)ln(— t)‘ ln(—.s)ln(._u) ‘
+2F(1(t)l( ), ’ )

st tu ‘ us

AN=8 —

€

We chosé to express the amplitude in the (unphysical) regime where all momentum vazi-
"abl‘ T négative. One can obtain expressions in the physical region by the
es s,'t and u are ‘ e o _ :

Substitution

.ln(_w) — In(ja]) - i6(2). (5.53)

O(s) is the Heavyside function where ©(z) =1,z > 0 an (z)
Th ity amplitude can be found from (5.52) using the expression in equ. (V.1),
€ pure gravity foun ‘ |
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which gives the result

A= 27 3t 4h)
_ (_62_ <ln(-—u) L=t ln(——e))

&t Su tu
+2 In(—u)In(-s) N 2 In(—t)In(—u) + 2 ln‘(ﬂ—t) In(-s)
8y tu ts
415 + 14 ut® + 28wt + 351303 + 28u?e? + 140t + 4ub) |
+ ( o | (lnz(—t/ u) + 7r2)
-4 4 Sy + 1126 t2u? + 809 tu’. + 261
L i) (261¢ +809tu+303 u? + 809 tu’ + “)1n( tmw)
1682¢% + 5303 t3u + 7422%u? + 5303 tu® + 1682 u* )
18036 | | | S
. T "“(554)

It is clear from (5.52) and (5.54) that only amphtudes contalmng grav1tons have
dlvergent components In chapter 3, we showed that amphtudes in Wh1ch the only external v

| particles are gravitons should be UV finite. If this is true then. the.divergences seen here -

-should be purely IR. We will confirm this in chapter 7. - . o

)
We have shown how we can use a closed bosonic string to construct a set of rules for the

~efficient calculation of one-loop graviton scattering amplitudes. These rules are applicable

to any combination of particles in the loop and any number of external gravitons. We find i

t.ha‘t' the method constitutes a powerful alternative to the conventional techniques and, as

a result. allows us to carry oot many calculations which have not been practical up to now. ‘{
| | !

Using this strmg—mspired method we were able to produce'a complete set of four-

: gl‘aVIton one-loop amplitudes. In order to conﬁrm the vahdlty of these results, it Would

be useful to have mdependent checks There are a few we can cons1der First, it is clear

that these amphtudes exh1b1t the correct symmetrles

result for internal scalars agrees W1th the one found by Grisaru and Zak [64]. Finally, we

Second we can conﬁrm that our

{ can cong ider the mformatlon prov1ded by the Cutkosky rules. ThlS will be the focus of the

next chapter
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_ Jolly agreed, so the toys set to work

Little Bear cut . and Rabbzt ﬁfl?ed s

them in place with glue and pms

= Jetne Hlssey in ‘Jolly’TaJll’

6 C utkosky Rules

The Cutkosl{y rules [5 16,1] allow us to ﬁnd the d1scont1nu1t1es of an amplltude If we

o can take these d1scont1nu1t1es and relate them in a umque Way to other terms Wh1ch can |

e appear in an amplitude, then the ryles W111 allow us to constraln or reconstruct the form '

of the amphtude to some extent We Wlll use these 1deas to obtam parts of a,mphtudes we

6.1 Introduction

We can formulate the rules in the follovvmg way (see, e.g., [1]

‘man dlagram into two separate parts (e g as 1n ﬁg 6 A) Then We can ﬁnd the dlscont1—

‘ ShOUld be taken to be on- shell -
| W? insert ~ 9(k)6(k2

" are 1nterested in. Some we can construct completely,

P

for the others we ﬁnd parts Whlch

.pr0V1de a check on the string calculatlons RENES

): ‘Consider ‘cutting’ a Feyn-

o nultles n channel T assoc1ated W1th that cut |

LIE

The normal Feynman rules should be
where we Would use the1r

2) mstead (He

. i

1
o
|
|
!

- Flgure '6‘.A: Example Feynman diagram with ‘cut

osed except that all legs which are ‘on the cut’

propagator in the calculation

re, k and m are the momentum and mass of the
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Propagating particle respectively. ) Thls gives us an equation for the discontinuous parts

of this amplitude:

dtq; ' 1
Idlscont ~ /H 27:14 HV H 2 H (_72 —m2- ‘ ‘
(2m) j= k_m +1 1k { : (6.1)

< I (zw)%(qr)a(qr-m)

7'——m2+1

when the (or1g1nal uncut) diagram has n vertices V; and m propagators Q. qm1 and

le +1. qm2 are the momenta of propagators on the left and right sides of the cut respec—

tively; the remaining are those which cross the cut.

»

I left Jright

Figﬁrené.B: The su’b-diagrams on either side of the cut in fig. 6.A.

o . a § A . . .
It is easy to see that this expression splits into two distinct parts — one for each of the

SUb~diagrams on either side of the cut — and leads to the integral

Idiscont ~ /dLIPS(EJ, n) Ile“(gla n,Qh ’qml) : (62)
X I“ght(——él Zna Imy+1, - ,sz)

Where [left and Irlsht are the values of the sub dlagrams on the left of the cut and the

2 ln) represents an integral over the

rlght of the cut (as infig. 6.B. ) and deIPS(El’
-y ¥, with the added

LOrentz Invarlant Phase Space That is, over allowed values of ly,..

' COIlstralnt that €2 = m2 for every i
We can use thls method in precisely the same way with full amphtudes as we do with

Feynman dia, s [17 10]. For instance, we can find the discontinuities of a one- loop
iagram

: amplitude by sewing together pairs of on-shell trees. This is obv1ously a more efficient

91
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application of the rules — the full amplitudes will generally be simpler than the contributions

from individual diagrams (in particular, many sets of diagrams sum to give vanishing

92

amplitudes) and we are only requlred to carry out a small number of calculatlons This

has been used successfully to calculate a wide range of one-loop amphtudes in QCD [17,10].

It is this ‘amplitude level’ option which we implement here for gravity. As well as

being a more efficient application, we will find that this will enable us to constraiﬁ the
amplitudes more tightly. In fact, in some cases we can, produce a ‘uniqueﬁese theorem’
That is, a theorem which allows us to identify those resﬁlts Whieh are

for our results.

. determined uniquely by their cuts.

6.2 Application to One-Lolv(‘)p‘ Calculations

i
m, I’/%ﬂ (my+l)

‘ ] ,

’nl ‘ Vl (ml"l)
2 . .

Figure 6.C: Generic cut in a one-loop amplitude.

~ Now we look in more detail at the way these rules are applied to calculations. At this stage
loop amphtudes with external gravitons. We also restrict ourselves

We concentrate on one-

to massless part1cles In the cases we are lookmg at here — simple phys1ca1 amphtudes -

- the dlscontmuous parts are e all products of terms '
" 16(z) | (6.3)

8(2) is defined to be O" o <0 and 1if £ > 0. z is one of the momentum invariants of the

amplitude. For simplicity, and without loss of information, we copsider one channel of the
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amplitude at a time. We can regard this as taking the momentum invariants corresponding

93

to all other channels to be negative so that their discontinuous parts vanish. We are then o

lookmg for terms precisely hke (6.3).

Consider domg this for the amphtude and channel given in ﬁg 6. C The Cutkosky'

rules for this give

ﬁ /dLIPS(—él,ez) Atre?(—él,ml, . ,mg,eg) ‘Atree(___e%‘mz + 1, ey My — 1‘, 61) (64)

 As we have indicated, the f dLIPS( {1,£,) is the integral over all allowed values of El and

£y W1th 62 = {2 = 0 Rather than calculate thrs mtegral d1rectly, We relate it to another‘

.

Whlch we know has the same cuts. ThlS enables to us 1dent1fy more clearly Wh1ch terms

are lmked Wlth the dlscontmultles The 51mplest ch01ce is the off—shell scalar 1ntegral

d4€1

1 .
1 Atree(_ez’m2 +1,._.}’m1 _ 1’61)2—2— S (65)
(@m)t |

Atree( ‘v£1;m17"',m2362)€_2 2
cuts

(From the above cl1scussmn of Cutkosky rules, it is clear that this leads to (6 4)). So, we.

| can calculate this 1ntegral and extract the terms which we would have found from (6.4).

Durmg the calculation we may use 2 = {3 = 0 in the numerator at any point since

y these terms cancel a propagator and the result will not produce a d1scont1nuous factor. (If
| ‘this were not the case, then we would find an mconsmterlcy betxy‘veen (6.4) and (6.5).)

This calculation allowe us to find terms of the form (6.3} With z=(my+- + ma)2.

We can immediately relate these to terms

w

It’may also be ptjsSible to extend .these relations to other terms,‘ but in many cases ambi-

8uities restrict th1s
S1nce we require all the dlscontmmtles ina channel we must sum over contributions

for all relevant partl cles in the loop. The result will give us a large part of the amplitude,

% which point we can deduce how much, if anything, is still undetermined in our results.
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6.3 Uniqueness
In order to determine how much of the complete amplitude we have constructed we can

“look to the ‘uniqueness theorem’ [17]. This result states that

v

An m-point 1-loop amplitude can be determined completely from its cuts

(it is ‘cut-constructible’) if its integral has at most m — 2 powers of the loop

momentum in the numerator of the integrand.

(The exception is the two—point amplitude which is cut-constructible if the 'integrand has
| at most one power of loop moment um in the numerator ) The proof can be Summarlsed
. as follows: All m- pomt tensor 1ntegra1s in 4 — 2 d1mens1ons can be reduced (by, for
* instance, Passarino- Veltman [85] techniques) to a sum of scalar box, tensor triangle and

tensor bubble integrals. If we restrict ourselves to integrals which obey the condition in

- the theorem then we can make this more prec1se all m-point tensor integrals reduce toa

sum of scalar box and hnear tr1angle and bubble mtegrals If we define 7, to be the set of

functions relating to these integrals then the cuts of an amplitude, A,, can be described

P .
as

An = Z ailil . | (6.7)

i|[;€Fn cuts

If there is another combination
A, = Z 'C:'Ii cr | (68)
then we know that

Y (e —)L| =0
- ‘i(I"E}-"‘ cuts ' (69)
Z (ci — ¢ )I, = rational function
= |1 €Fn Z ' of momentum invariants
i|[:€Fn : ‘ | Y |

94



Cutkosky' R{Lzes :

By looking at the' places in Fy Where logarithms and d1loga,r1thms are found and the

’ polynormals associated with these it is possible to show that the right hand side of the last e o

equation vanishes. So,

L eFn

To see this expl1c1tly, let us restrict ourselves to calculatlons W1th four external partl—

cles. In this case all integral funct1ons requ1red to construct an a,mphtude can be ertten o

as hnear combinations of only ten. These are the scalar box, I4(a:, y), tr1ang1es Is(ac), and

bubble I(z), integrals, plus a linear comblnatlon of bubbles, Ja:

; ‘1’4(3;,?;) = rr %{5_[(_ )"—é +(—y)" ] 1? (__—) - 7r }

‘fs(x):’ill—)‘l ff‘—z(é—mf” w (f)) B o
L) *'é<i L (o = (G () ?)

2 Wlth T,y c {s t, u} (This produces a total of ten when we censider;all possible choices

"’fOr T and Y. ) , : ‘ : :
| Nearly all the expresslons in (6 11) are Ident1ﬁable by one logarlthmlc term Whmh ®

, IUquue to that functlon at O(e) The exceptlon 1s the last It is this Whlch will cause

‘ it allows the poss1b

' PrOblems in general 111ty of polynom1a1 terms Whlch cannot be 1den-
| lf we could dxscard th1s we would be able to ﬁnd amphtudes

' t1ﬁ6d by cut results Clearly
Th1s is prec1sely What we can do for the

‘,,_Wlth no amblgultles When we know the1r CutS

ST BN

eut- constructible’ cases | |
| phtudes We are lookmg at here, the number which fill the criterion

Wlthm the set of am
on- Supersymmetnc) grav1ty amphtude has 2n powers

: V. are small since a general 1- loop (n
ct1ble amphtudes they will be the ones for

Of 1°0P momentum If there are cut-constru
poly nomlal gets smaller with -

| SUSY multlplets since the degree of the loop momentum

95'
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increasing N. In fact, N = 8 and N = 6 multiplets have a reduction of 8 and 6 powers

~of loop momentum respectlvely For the N = 8 case this means that an amplitude is

cut-constructible if 2n — 8 <n-2, 1mplymg that we will be able to obtam the 4 and 5

graviton amplitudes completely. For N = 6 multiplets only the 4 grav1ton amphtude will

be obtainable in its entirety.

»

6.4 External (}raviton Calculations

As an example of this method let us look at some of the amplitudes found ﬁsing the

string-based rules.
First note a trivial result Consider the amphtudes Al+,+,+, +) and A( s+ 4+, +).

; The cut dlagrams for these amphtudes must be of the form in fig. 6. D (Smce we take all
partlcles to be 1ncom1ng the hehc1ty of a partlcle in the loop ﬂ1ps as We cross the cut )
It is 1mposs1b1e to choose partlcles on the internal lines such that both trees are non-
| Vamshlng (see appendlx v and ref. [28]); our 1ntegral is tr1v1a11y Zero and we deduce that :

" the amplltudes should have no loganthms Thls is cons1stent w1th our strmg calculatlons

for these hel1c1ty ch01ces

These cases give a simple example of the uniqueness condition: The cuts are zero in

' &Hcases. In particular, they are zero for the N = 8 and N = 6 multiplets. Using th_e

et in the previous section we deduce that the whole amplitude should be zero. This is

confirmed by both the SUSY identities and the string calculations.
The cuts of A(17,2" .37, 4+) are more complex Let us begm with those in the

‘ S"Channel. In this case equatlon (6.4) becomes .

/ dLIPSA“ee(l 2t L)AL, 4,37, 47) (6.12)

mtetna.l
partxcles

¢ The only 1nternal part1cles which give a Lon-vanishing result are gravitons. Fermion con-

o trlbutmns vanish because the1r helicity is not flipped by the grav1ton vertex, implying that

A(g, g, 9%, ) = 0. The same holds for Vector and scalar amphtudes at tree level (taking
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- +

- + o+ -+
(b) !

ible helicity configurations in the cut calculations of (a) A(+,+,+,+)
In all cases the tree on the right-hand side vanishes.

+ +

"Figure 6.D: Poss
and (b) A(—,+, +,+).

|

: . L. ’ . . e e ! y . ;

particle/antiparticle instead of positive /negative helicity in the latter) [86]. These results oy

can be déducéd from SUSY relations (see appendix IV). T his implies that the only place ;

Ibgarithmictern‘ls (:8;1'1 appear is in amplitudes with gravitons in the loop. Let us look in .

] W . ®

detail at this case — the simplest non-trivial example of applymg cut rules — depicted in .

fig. 6.E. b

| o 5 o
. 4+

: | s o
Figure 8.E: Helicity configuration for the A(l ,27,3 ’ ,47) s-channel cut

one defined in (5.51):

. Sl a2t Vs
At’ee,<1"2'73+’4+’?%(zri>’<§s‘>’@4‘>@> (613).

" The tree expression is the



,’Cutkosky Rvu‘le;s | | :

5 Inserting this in (6.12) we find the cut equation for this process

(12) | 2,3(k2.£é')a,-, | .
/ dLIPS<<12) Ea) L) (G 1)) (hf) (614) .
: lx’( (01 £)" ) o e
o BHBL) (6663 (b )
Which We can rearrange fo bé, | | ,,”’ '
16t 612>4 ’ (ky - 0g) (ks -£2) (6162)4’ e |
-5y <34>) / TIPSt ) R 6 D GO G
—%—A”ee(l_,2",3+,’4+)3~3tu/dLIPSEkl £2§Ek4 62; e | ‘(6.15) |

16(k2 fz)(kl 51)(’93 52)(’% 91)
K2 reéh—- —at 4+ SRS g
AT, AT ’“‘“/ S TN (OB (ORI Ty

Recall that in the d1scuosmn of the unlquenes ’
be reduced to scalar boxes plus tensor triangles and bubbles In this case we can reduce it
- tofour scalar boxes using the relyath’n“ =
(k1 62)(k4 eg)(kl el)(m ) S

o 4 TR SURR RO
e ((k BB FEEE)

x o1 =1
: L + '
SO +, (k1 L1)(ka - £2)  (Ra "32)(‘%4'32))
= s\ (k- 131)2(164 —Ffl)2 (kl ‘MZ) (a +£1)

1
———:——————:r YRR
MCE R >>(616)

(Thls depends on the tlees bemg on—shell )

To see e p1 1tly that thls gwes the sum of scalar boxes, we can carry out the substi-
. X IC ’ ‘
| t‘\l’clons which turn the dLIPS mtegral to the off- shell 1ntegra1 as in (6.4) and (6.5). So, for -

s cbﬁditidﬁ,’ 'We said that amplitudes could
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owm Y@, 0

" Figure 6.F: Boxes which contribute to the A(lT, 27 3 ,4%) calculation.
Note that (a) is related to (b) and (c) to (d) by redeﬁmtlon of Ioop momenta,

- &xample, the ﬁrst term in (6.16) Ieads to

d4zl 1 . . w | |
N/ (27 ) llz(kl — 0282 (kg + 01)% | 1 | o e
- iy, , |
(2w )2 {6y — ey )2 (by ~ by — 2 )2 (L — by — ]gz — k3 )2
Wthh Jé the box mtegral depxcted in fig. 6. F(b) In this way, We can clearly see‘ that {6.15)

L]

t
can be expressed as the sum of the ques m;ﬁg. 6F ‘Wlth (:oeﬂicuen s

ﬁAtree(l“’2'73-“-,4+)8tu.‘ E , ‘ (6,18)
8 :

‘ We ser the figure that there are two indepéndent boxes we must consider — thqse with

e ee in the figu G L , . : ,

Ordering 4f ternal ylegsh 1234 and 2134. The integral for these orderings evaluates to,
ering of externa , v

- TeSpectively,

e ro(4r)* 1{ 2{( )"‘+(~t) } — In*(~s/ -—t)—?rz} |

(4m)2 st

_ ) l{w,(ln( s)+1n( t))+21n( ~5ia(- -}
(@) st

(6.19)
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and

133 = riii)ﬂz)e slt {_25 [(_3)“ + (—u)"‘} -elnz(-s/ - ul)’— 7r2} " '(6 20) E
= %)—;E { —63‘—- -z-(ln(~,s) + ln(—u)) + 21n(—s)In(—u) — 7r2} .

This allows us to deduce that the cuts in the s-channel are,

2 .
2’—;—,4“%(1”, o=, 3+, 4F)stu (11234 + I'%4)

ok TF(47T) tree + 4+
T (471')2 — - AY*¥(17,27,3 , 47 )stu

(E(e2) o (e3) (5 )|

cuts

cuts

IZ T‘1(’~i4’/)1'2) Atree(l—-, 2"‘$+,4+)stu (23 +2(tln(~u) +u In(— t))) In(~s)
e o , : (6.21)

The t- and u- ehannel cufs require essentially the sdme calculations since" the helicify '
w oo

COnﬁguratlons are the same in both cases. We W1ll calculate the t channel case and deduce

- the y-channel result fromm this. In thls case the poss1ble hehcﬂ:y conﬁguratmns of the trees

are those in ﬁg 6.G. Since hehaty is no longer ﬂ1pped on either tree, the cuts do not vanish

as before; we must include the contribution from all relevant particles across the cut. In
theory, we could calculate the eontribﬁtion from each particle in the loop individually by
Cons1der1ng the cut with only that particle on the 1ntermediate lines. (The structure of

the trees discussed in appendlx IV implies that only one partlcle type will be involved at
a time.) However,, these calculatlons are qmte complex in practice and we find that it is
more eﬁiclent to cons1der a supersymmetrlc decomposmon of the amplitudes (appendix V).
}A\s with the string-based rules, calculatlons for SUSY multiplets in the loop prove to be

simp] 61; than those for ‘individual partldes' As before, we can reconstruct amphtudes for

any other particle combmatlons from the SUSY results.
ent particle types 1n the loop, we will require all tree

Smce we are calculatmg for differ
pazr‘of non-grawton particles; each pair

- amplitydes 1nvolv1ng one pair of graviton and one

W111 have one parti cle of each he11c1ty To obtain these expressxoos, observe that these can -
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./+ :+/' : 2'

i

4+
Figure 6.G: Helicity conﬁguratlons for the A(l 3+ 4+) t-channél cut
~all be related, via supersymmetric, Ward identities (See refs. [22 23,2] and Appendix IV)

to the two grawton/ two scalar amphtude

A, 9m,0"at )—y"A(g*,¢“,¢+,g+~)

CA(gT ¥ ¢+,g+)—y3/1(9 467,87, 97)

A A At ) =P A4 4%,6%)

JA(g‘,A‘,AJf,g*') =y AlgT,¢7,¢797)
Wheey=(2/08) .. o

When we mclude all internal he11c1ty conﬁguratmns, cuts fOIT the supersymmetric N=n

‘ (matter) multiplet are then

/ dLIPSA(4+ - qs(ez) ¢(€1)+)A(¢(€1) BE2)*,2 3+)Pn

(6.23)
' in‘* (11«’1) (231) (152) (252} (k1 - £2)(k2 - £3) i
.:_ 32 (23) 41 /d LIPS (361) (461) (l’lé;)'* (Fy - ﬁl)(kz €1)yp
Wwhere p,, = —xl,’fmth |
Teem i T aeee) (g

N ERTETIRE T AR T :m

We restrict ourselves to choicés with even 1, n = 2m. We can simplify pn as followg

(27— 1P ((16) (20) = (Lhr) (265D
T = T (k) (26) (1) 26)"
(12)° (0 &)™
= ((16) (26) (14) (26)"

(o= (6.25)

(6.22)
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So, the integral becomes

ikt . (12)>™ (ko -0) (k2 - £) (£162)°7% ((L21) (22))*~™
5 Gyt | TS 6) (e ) 66 4) GAIF (1 2]

The cases for the N =28 multlplet and the N = 6 matter multiplet are the most inter-

(6.255

~esting here since, for the four-point amplitude, they fulfil the conditions of the uniqueness

W

theorem in the previous section. The N =8 (m = 4) case is particularly simple; in this

case, (6.26) becomes

ili42 128 ‘4 (kléz)(kzgz) : <£1£2>4 A .
— % <2 ) - 2./dLIPS(k1 21) (k2 1) ((142) (6a 4) (€5 2) (35})‘)2 (6.27)

.

. which gives the cut to be

1K 12 i (12) | .
32t ((12)2<23>2( >2(41>2) | | (6.28)

ky - 02) (k2 - 42) 1.
/dLIPSE’fl fj) (ky - €1) 16(ky - £2)(ka - £1)(k2 - £2) (ks - £a)

. That is

: . ‘
— a— 6.29
8 Atree(4+ 1 2 3+)t23u/dLIPS 16(k’1 51)(762 fl)(k4 f])(k3 el) ( )
As before we can turn th1s into a sum of boxes. Giving a final result for the N = 8 case of
- _' ) rr(47r) tree 1~ 2 3+ 4+)
AN_S(I 9 3+ 4+)___ ,g (4 )2 A ( B "
(23 In(—s) + 2t In(—1) + 2u In(—u). | (6.30)
_______________—_________
€

+ 23 ln( ~1) ln(——u) + 2t ln(——u)ln(—- $) + 2uln(—s) 11}(—-25))

For the other ‘choices 6f N note that we can réarrange pr to glvE :

8t1‘+(41121113) ‘ (631)
pn=2 = ts? ‘
implying that KR e . |
pam =\ T 42 | ,

W ONERF R LA =
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We use the notation

tihimhe) = w(BhbEahbs)  (63)

and SR T C
Ctra(o)=He((LEw)e). (634
| The integral for N = 2m can then be written
£ pree(qt 1= 9m 3%)%su [ dLIPS= B |
—g AT 1,25 5“/, T60k 0 (Fa - E0)(ka - L0)(ks - 61)
y <8tr+(41121113))4‘m

(6:35)

t s?
We can deal with this by first expanding the trace using commutation relations of ¥
matrices [1,17] to rewrite

try(412103) = (ky .0y Jbry (4203) — (ko D )try (410:3). (6.36)

~ We can also express the traces over four momenta as {10,1]

= Lt(42,3) + 3€(4243)
tr+(42113) (42 (637)
tr+(41l13) = Ler(410,3) + 5€(41023),
‘where ¢(ijkl) is defined by
e(z’jkl) = 44i€ﬂypykiﬂkfukmpk”" (6.38)

o L - : titutions for (i k1)? in appendix VI
We can deal with terms contaimng ¢'s by gsmg the substi (i7 k) P

-and the observation that

/ dLIPS 421 3) f(1234h) 0 / LIPS €(4143) f(1,2,3,4,h) =0 (6.39)

menta (le it has no €e-tenors), so we can ignore any

: lf f COntams only dot products of the mo | . .
an further simplify the resulting expression

terms contammg odd powers of e(ijkl). We e .
¢ left with a (relatively) simple sum of

We ar
In the same way as previous cut calculatlons

¥ OHREA DB d M w

B



Cutkosky Rules

boxes, triangles and bubbles. In all cases the cuts confirm the results found in the string

calculations (up to finite polynomials in the momentum invariants).

' In this chapter we have been able to use the constraints identified by the Cutkosky rules to

reconstruct four-graviton amplitudes, confirming the results found by the string-inspired

teclmiques In most cases it has not been possible to find complete amplitudes by this’

“method - there is always some ambiguity due to polynom1al terms Wthh are not identified

by the cuts. We might Wonder if we can overcome this problem and ﬁnd unamb1guous '

information for a wide range of amplitudes. This is the issue which we will address in

.

| ehapters which follow.
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Divide and conquer.

_Proverb

7. Interlude: Analysis of Inﬁnities

At this point, let us make a short detour from the main work to look at the structure of
lnﬁmtles in the amplitudes we are calculatmg The divergent parts of scattering amplitudes

~. can be split into two distinct: P&Fts - the ultraviolet and infrared — which come from the

‘ dlvergences due to hlgh and Iow momentum limits respectively. In general we are only

lnterested in the ultraviolet contrlbutlons since they are the one which determine Whether

a theory is renormalisable or not. (IR divergences are known to cancel in the S-matrix [67).)

It will, therefore be useful to have some way to distinguish the two contributions in our

calculations. Thls wﬂl a,dew us to conﬁrm that our result for the pure grav:ty amphtude is

UV ﬁmte, as Jmphed by our theoretlcal dlscussm

chapter, where we will look e*<phc1’cly for UV dlvergences
y to tell the IR and UV contnbutlons apart.

ns. It W111 also be lmportant in the next

In many calculatmnal techniques it s eas
However in the Cutkosky rules there is some amblgulty in the source of 1nﬁmt1es It mlght
e ultraviolet dlvergences from the infrared ones by

be expected that we could separate th
ome large, as would be the case in

100k1ng at the limit in which internal momenta bec
We can easily show that this is not a legitimate step in a

Feynman diagram calculations.
“We know that we can add or subtract multiples

) cut calculamon with a simple example ‘ ’
loop cut calculation without affecting the result

of £% and € to the numerator in a one-
:der adding £ to the numerator in a triangle

(since the internal lines are on- -shell). Cons
e one dep1cted in fig. 7.A. Thi

s will give an extra term
Calculatlon, for example the ;

Q/dfzm

4 (1)

Tk R e TR eAmed o me A



, SmCe the overall effect of £2 is zero,

Interlude: Andlysis of Inﬁnizgs;'ss ‘

3

’ Figure 7.A: An example triangle calculation.

We know that £; = k; + kz + £2. So, we can rewrite £ as

2 = (ki + by + 02)°
= (5+2k'1 by + 2k - &) | |
‘ (7.2
= (21{32 Ez)(2k1 62) -+ 3(2k2 52) + 5(2k1 Eg) ( )

+ 5%+ (2ky - 22) +(2k2 62)2

- If we took the approach of Iookmg at the £3 — oo limit for uv divergences,' then adding

(7'2) would iraply an extra ultraviolet dwergence (from the ﬁrst term) of

2 e (7.3)

this divergence is cancelled by an additional apparent

1nfrared infinity. So, addmg €1 makes an a,pparent shift between ultraviolet and infrared
e of mﬁmtles in cut calculations is ambxgu-

dlvergences Clearly this Jmphes that the sourc
,Ous while we can identify the dlvergences Of amph’ﬁUdf?S by this method we cannot use it

to Separate them mto ult*avmlet and mfrared contmbu’mons

e useful we must be able to ide
¥ snrnple to obtain IR divergences by another method,

" For our results to b ntify or calculate one of the two
\ lnﬁnite sectors. It ’is in fact relatlvel
- Namely by looking at the soft limits of the amphtudes. That is, the limits obtained when

the momentum of mternal propadators goes to zero
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Interlude: Analysis of Inﬁniiies

7.1 Infrared divergences/Soft Limitsf

| " In order to find the infrared limits of an amplitude we must look at the effect of lettiné
internal momenta tend to zero — so—called ‘soft’ limits. (In general, we must also cons1der

1!

the effect of two external partlcles become colhnear, in the cases cons1dered here these

do not contribute.

) In fact, we need only consider the zero momentum limit of those_‘_

107

: PfOpagators on the ‘edges 6f the diagram’. By this we mean those for Which ‘both ends

meet an external line at some (3-point) vertex.

| Figure 7.B: A.sub-diagram including a soft graviton.

To see th1s con51der the sub d1agram in fig. 7.B. Asp—0 the‘dovminz;‘mt contribution
frOm the p mtegral will be

d4—2€p

/H(er/’cl)zzvz(’f?‘p)2 | (74

d4—'2€
o /(k2+2k1 p)p? (kg = 2h2 'P)

L]

I either k1 or k2 (or both) are oﬁ'—shel

1 then thls mtegral will not be infrared d1vergent

So, & tor ot on the edge of the diagram will not produce a contribution to the
» @ propagator no 4

On the other hand, if both k; and k2 are external

infrared divergenceé, of an ampliwde'

The major difference in our analysis here is the use of

f In this section we follow ref. [40] ‘closel).r.

dimensional regularisation.

O BMOW IR W
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Interlude: ‘Analysz's of Inﬁnztzes

on-shell lines, then the integral will be

N/ d4 2ep . |

ky-pp?ks-p - | :

. ! N/ d4——2ep ) e S o (75)
p|*

Which produces a logarithmic infrared divergence.

w

Having established that only outermost propagators are relevant it is clear that the
s1mplest Way to find the soft limits of a particular amphtude is to start W1th the amphtude
~ with one less loop and look at the effect of adding a soft particle between two of the
| external lines. As an examplé, Wé”look first at an individual diagram rathér than a whole

amplitude. (It will be seen that the result does not depend on the diagram and can be

applied in the same way at an amplitude level.) Let us look first at a diagram containing

only gravitons. '

Gravitons

Con31der addmg a soft grav1ton to an (n—1)-loop gr aviton diagram. To do th1s In practice,
“We connect two of the external lines with a virtual grav1ton and let the momentum of this
partlcle (say p) tend to zero. If we attach such a particle line between legs with momentum

ki and k,, then we must add a propagator for the graviton, two three point vertices and
? .

two extra propagators with momenta &y + p and k2 —p to the normal Feynman diagram

eXpression for the (n — 1)-loop amplitude.

................

LETENURUSY 4

~

ks kP ' )
Figure 7.C: Representation of the soft limit calculation.
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Interlude: Anelysis of Inﬁnz’tﬂies

Our construction can be pictured as the n-loop diagram in fig. 7.C. As p— 0, we can

express the integral for this as

1 . d4~2praﬁuu(k1,k2ap) A(n—l)—-loop ‘ o i
v (n)iE (p+ k1)2p%(ky — p)2 ~ @Pm o (1)

Where
5 (5,05575 + 5p7550 - 7550/1) Vulviapuzt/z (klapa ky — p)

(1)
(5ﬂ2lt51/21/+6/421151/w 5#2'/2 MV) ’ 3

X % (602015/32/9 + 5ﬂ’2ﬂ5ﬂ2a - 602,32 50/,3)

- (where V is the 3-gravitor1 vertex) and .

v (n=1)-loop __ (n—1)~loop |
flaelﬂfzwfzuAaﬂw o kzliclgl oA (kl k2) (7.8)

Al 1)-—100p(k1 k) is the (n 1) loop amplitude for Whlch the external legs with momenta
k1 and k&, are off-shell. In general, the right hand s1deof (7.8) may not be equal to the
on sliell (n—1)-loop anriplitude (See for instance [11], Which includes explicit examples of
lntegral functions in which the limitmg case does not equal the equivalent on- shell result.)

3 SlnCe we Will only be cons1der1ng trees here, thls W1ll not be a problem

0—loop — Atree ‘ (79)

61 a61ﬂ62762ﬂ Aaﬂ’/w

When we look at the p — 0 limit of (7.7), we find that the dominant term is

aﬁvu(khki’) = i’ 51a51ﬂ€2752p(k1 k2)
‘ (=2k; - ko) (7.10)

2
| = K 61a€1ﬂ62762p ‘ 4
Note that we can discard all terms in WlllCh one or more momenta are contracted with

the lndlces on A(n ~1)—loop smce o this is known to be zero (see, e.g., appendix III) All p

dependent terms in the numerator can be dlsregarded since e it would cause (7.5) to converge
ral we , need to look at is

d4 26 ' :
(27T)4 2‘/(p+k1)2 2(ko — p)? (7.11)

for small p, Hence, the only mteg

Baﬂ"ﬂl = €lgy 61,3162u1€21/1 Va1ﬂ15’70¥2ﬁ2(k2) —Py— k2 +p) e ’ Y
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. graviton connecting one pa

Intﬂerlude:‘ Ayn'aly.‘sis of Inﬁnyz'tﬂz'es

' This can be evaluated by usual Feynnian parameter method. The resultls’ [' 4

(471')2 f( 2]61

LR

i Combining this with (7. ‘10) we ﬁnd that the d1vergence due fo a soft grav1ton between e

110

I SeY +0(eo))\ v

external legs 1 and 2 for an n- loop grav1ton scatterlng dlagram is glven by N "‘ 5 u
1€ ERRE : :
) 7"1‘5;2 (——2]{,‘1 . k‘z) hm A(n 1) loop(k_ kz) L (713) o
(4m)?=¢ 4e2 . . k2 k2->0 " | e

In general, we reqmre all the IR dlvergences for a diagram, rather than that due to a

ir of legs To obtain this we s1mply sum over the above result

for all pairs of adJacent external legs connected by a grav1ton hne '

Z( 2k & )1 ¢ lim A(“ U 1°°P(k1 kz) o (119)
i N2—€ 462 ’ | o | o - |

k2 kZ__,O :

P

(1,5

o As indicated above,
‘) ‘Nelther does 4 have any dependence on n. We can therefore apply 1t at the amphtude

‘ level In this case, the sum will be over all palI‘S of external legs For 1nstance we can now
"': k“deduce that the soft d1vergence in a general one—loop pure graVIton ELmpht‘lde Wlﬂ be '

T]__'ﬁ: Z( 2k- o -5Atree ‘ “ ,1‘ S (715)
2 e 4.2 L S e :
47r 46 #] o ,

- As well as the pure gra.v1ty contnbut:on calculated above, we will also need fo identify the

| 1nfrared 1nﬁn1t es in amplltudes contalnmg both external graVitOnS and matter particles.
i

ternal scalars and grav1tons Fig. 7. D shows all the

" Let us begln wrth the case Wlth ex
| vergences The analysm in all cases closely

; pOSsﬂole dlagrams whlch could contrlbuted IR d]
nd (c) all give the same result

| b
g fOllows the pure grawty calculatlon We ﬁnd that (a), (b) &

trib t1on
‘ag the pure grav1ty case, (7 13) (d) and (e) glve no soft contri butio

we, ﬁnd that this result is not dependent on the form of A(“ 1)~loop

FE G ook smavowesm Wwe mm

e



Interlude: Aﬁalysis of Inﬁnit;es

ft "contributio‘ns to gryaviton-matte’r amplitudes. Solid

Figure 7. D P0551ble SO
itons and matter particles,'respectively.

and dashed lines represent graw

Fermions"
We have tb be slightly more caréful when looking at amplitudes containing fermions,
though again the essentlal method is the same. In an ana,logmls way to the scalar case, the

‘Only relevant diagrams are those in which a grawton JOIIIS two fermion legs (fig. 7. D(b))

leg (ﬁg 7.D(c))- Consider
of the form

or a graviton an‘d‘ a fermion (b) As before we must add three

Propagators and two vertices and have an integral

"

4-~2¢€ C k ,k ) n~-1)~loo '
d D abZ( 1) R2 p;)z ¢(zb P . (716)
(p-l-kl) (kZ P)
Where (Writingﬁ the spinor indiceé éxp}icitly)
—1)-loop | . i (7.17)

(1, <216A(“

I8 the the limit of the n — 1 loop amplitude when the two ex‘ter.n’al legs go on shell.
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Interlude: Analysis of Inﬁniiiés

Cap takes the form

< {1 (2%(2%1 +9)= @k + ), — 2k ) ith + )}
L (=Ounbup+ Spabos +6ugbia) (1)
{(2|8(2naﬂ(2;éz — ) — (2k2 - p)cma (2kz p)ﬂ'ra) i(F2 = 75)}

‘We can take the p — 0 limit of this straight a\ﬁay . We also know that'
(il fi =0 R ()

»

via the definitions of the spinors (they must obey the massless Dirac equation), leaving us

‘with

f | 2 : ‘
Cab-’_-‘ 128 {< [( 2;"1#7"—%1”7"’)}61}“ , e
X (bpabvp + Supdva) ‘ (7.20)
X {(2](—2/(32/;’)’9 - 2]620/}’5) %Z}b
Now reca,ll'tha,t | :
TuTv =‘ =YY+ 29uv (7.21)
ilhplying th.at‘ :
7#}{: - _k7ﬂ + 2k# (7.22)
COuphng this with (7 19) we ﬁnd that (7.20) reduces t0
.. 2 k ok
—z{ 1' klukiv} (6""6”5)“ [ : Zﬂ}b ‘ (7.23)

= z(kl . /CZ) <1‘a (2’6 c

< So, we can see that we get the same result as that for gravitons, equ. (7.13)

OI1 a8 apov
In the me way, e cail cons1der case (c). Carrying out 2 similar caleulation as above,
sa, )

e find that, again, we recover eXpreSSI(,)fln (7.13)
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- Interlude: "Analy{sis of Inﬁmtzes 3

Photons

" The method for photon-graviton amplitudes follows the above analysis é}};{act»ly' The Vér;:: ; S

tices and propagators will differ in places and consideration of helicities 1s slightly difféi‘eht,‘ o e

113

but we find that the final results are pfe;:isely the same: For diagra,iﬁs of the form’ ﬁg.’ 7.D(b) : ’

- and (c) we recover (7.13); diagrams (d) and (e) vanish.

Clearly, for all cases 1nvolv1ng external matter and external grav1tons We can generahse o

"

- ’from single dla,grams to full amplitudes. F or one- loop results, we W1ll obtam express1ons

o REN

similar to (7.15), possibly Wlth some, restnctlon on the sum. So, we now have the infor- - -

mation we requ1re to 1dent1fy the SOft d1vergences in our calculatmns | e

7.2 One-Loop Amphtudes Wlth External Grav1tons i :’

. Let us use this analysw to look at the four grav1ton amphtude Our calcula‘uons in chap-

: 5;“"ter 3 showed that this has a d1vergent contribution of

B

»

When there are gravitons are in the loop, Where Fis

: 2
ifi4(47r)frp st (12) ) = /
- 16(4m)? \(12)(28)(34) <41> . 4(47)
s 1mphed that thls should be pure IR. We can now confirm

Theoretical cons1derat1on
mmmg over all pairs of legs we find that the

‘thls using the results from the Iast section: Su

’ tO’Cal IR divergence is. .

W ‘ 1 vtree____‘_ N . .
(2(=s)' " +2(-t )1 f+2(— )1 E) W‘le (==++) | (7.26)

,SOV, the divefgent part is

B _‘;Lf‘ " (sln(-s)+t1n(-t)+u1n(—u))) Ate. (rar) |

- n(—u ln t) o In(-s)\ |
A[2](1-’2—’3+’4+,.)k= (6(1 (St ) gu ’)., m_‘) (2

MA“EGH > 3t A (1)
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Interlude: Analyszs of Inﬁmtzes

The infinite part of the amphtude exactly matches our soft result conﬁrmmg that all

observed divergences are IR.

We can also confirm that as observed, there should be no soft contmbutmns When

other particles are in the loop. All these cases would involve trees like ﬁg 7. D(d) Whlch

vanishes. ‘ ‘ | %

7.3 Extracting UV Contributions’ =

In the nex.t section we vx;ill be considering amplitudes Which contain both UV and IR
divergences. Our interest will be in the UV component, as we discussed in chapter 3. The

path we must take is now clear We can obtam the IR d1vergences very easﬂy by the above

| technique so having found the total d1vergence by Cutkosky methods, we can go on to
b .

Sépa.rate the two types and extract the part we are interested in.

¥ LJ

. ar ument
" Thanks to Lance Dixon [87] for pomtmg‘ovu‘t this argy ‘
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Old Bear was in the dining room, cuiting ...

Jane Hissey in “Jolly Snow’

8. Cutkosky Rules I1I: Ultrav1olet D1vergences

»

“In chapter 6, we saw that we can obtam complete amphtudes in certain spec1ﬁc cases
usmg cut techniques. In all other cases, the information obtamed lel nge us only a small
part of the answer requlred T hlS might lead us to conclude that Cutl-.osky rules are only
Of use in a few special situations. In fact we find that even when the condltzons of the
unlqueness theorem’ described earlier are not fulfilled We can olotaln ueeful mformetzon
| from cut calcnlations ln this cha‘pterlvve will sliow ‘hbw' we can use cut results to determine
’ exactly the infinities in grawty calculatlons, in the next we W111 show how similar reasoning -

0 dltlons are not fulfilled.
can glve us complete amphtudes when the uniqueness ¢ n e ‘

Recall thet we proved that "certain supefsymrnetric amplitudes could be obtained exactly

, from the cut results This result was obtained by looking at a basis covering all possible

eXpresszons requxred to construct particular classes of one- -loop amplitudes. In the cut-

COnStructlble cases the relevant ba31s did not allow any amb1gu1ty in the polynomial terms
~ the terms whicl could not be obtained directly by using the Cutkosky rules. Let us now

; IOOk o d this restrict ed set to any amplitude, but centre on the infinite parts. Following
yond this r

. the Sam e route as before we can 100k at the Ways that these occur in a general basis. For
?

the fo t know that the reqmred basxs is the one given in (6. 11). Exammlng
» ur point case, we

‘the form
hls» it is clear that inﬁnite terms onlywappear in the

o _ (st 3 g+ 45 1’) In(~si5)" + (8.)

e - en e"



Cutkosky Rules II: Ultraviolet Di'vergehces
and, conversely, that In(—s;;) only results from terms

| (—sij)'e=1—eln(—'3ij)+~--.‘ o | 1””(8.2)

b

The implication is that we can easily identify, with no ambiguity; polynomial terms at

order ¢~™ by looking for occurrences of In(—s;;) at order € =(n=1), (In fact, lookmg at the

~ complete set of expressmns required for one-loop calculatmns we see that this will be true

part1cles ) So, to examme UV and IR 1nﬁn1t1es in amphtudes

. .
dor any number of external

we can simply look at the cut results in the same way as chapter 6; we do not require

further technology of any kind. |

In this chapter we will use this method to look at divergences in theories of gravity

" COupled to scalars fermions and photons By lookmg at scattering a,mplitudes involVin'g
- external matter partlcles we will be able to identify some of the problematlc infinities in
- PQG theories. The answer Wh1ch we will find will e

c denvations of the o unt er_Lagranglan for each of these theorles We know from chapter 3,
- what form the counterterms should take, up to numerical coefﬁments Havmg identified the

lnﬁmte components of an amphtude we W111 be able to deduce the coefficients necessary

- to remove the divergences.

8.1 Gravity Coupled to Scalars =
Let us start with the case c‘onsidpred by ’t Hooft and Veltman — gravity coupled to scalars.

ntrate on 2 theory mvolvmg
der real scalars. ). We know that dlvergences will only

Initially’ rwe will conce only one scalar type. (Note that in

 this chapter we will implicitly consi
et us Iook at the scattering of four on-

be Seen in amphtudes W1th externa,l scalars s0 1
n be spht into two part

g. 8.A).

| Shell scalars. The calculatlon ca s — the cut contr1but10ns from (a)

gravitons and (b) Scalars in the loop’ (568 f

he latter; it requires us to sew together two trees with four

The easier of these tvvo is t

&
Xtel“nal scalars Since there is a symme

nable us to confirm or extend previous

try amongst the external particles, we expect to.
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- Cutkosky Rules II: Ultra{/ialet Dz"ve‘rgeb:cgs

@ | - B
Figure 8.A: Cut contributions required for the

four scalar calculation.

'

‘have to carry out essentially the same calculation in all channels. Hence, for simplicity, we
?

will look at the s-channel case and deduce the total result from this.

The tree amplitude needed for this cut can be found by direct ca,lculatlon It is
- ak? (11, 2 172 2 Lio | 2
A<¢1,¢2,¢3,¢4> --= (;(t r) 41 (FH) 1 (F42)). @)

- Clearly, this leads to the cut expression UL
‘ A(]' 2 ll)IZ)A(l23l1>3 4) ‘
K1 ) )L (a1 +
(S( (2. Ly +4(1 11) ?) +2(2.21),(5+ (14)?) +2( (4(2 h) ))
1

(*+ a(a ?)- 2040 (43.0) + 32))
‘ (8.4)

« (%(4(3.11) 44 h)) 2(3)

It is straightforward to expand this. We find a sumy of scalar boxes, quadratic triangles, and
quartxc bubbles. The process of mtegratmn follows the graviton scattering calculation: We

COIlvert the f dLIPS to f d4l1 by mtroducmg extra propagators and evaluate this directly.

We find that the s-channel cuts mth scalars in the loop are

| (;fi)?F (21 (3u 2t2+2u3t+2ut3+“ +t4)1n(3)— -
m)iTe\2ut ‘
¥ In(s)In(t) e /
+£(3ut+2u P2l + g 89

+___< 1614% 4 39ut — 161u )In(s)-l— 5y

we must consider sewing trees with two external

To “obtain the gfa,viton contribution,
we will have a contribution in every channel. .

8 .
“alars and two external gravitons. As before,
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Cutkosky Rules II: Ultmﬁiolet Divéfg;'yr‘;cés

But, again, symmetry implies that we can concentrate on the s-channel and deduce the

others from this. The subtlety in this case is that we must take into account the different

possible choices of graviton helicities acro

‘are the same then the tree amplitudeé vanish

A(d1,2%,3%,6a) = A(41,27,87,84) =0. - (86)

ss the cut. In fact, if the helicities of the grai}ifdnS‘

118

So, we need only look at the two cases in which the 1nternal legs have differing hehcmes '

(Cf the graviton scattermg case; fig. 6.G). The two hel1c1ty cho1ces are

‘Awp¢;gzﬁJAwm¢bG3¢) (8.7)

and | PR - j
A(¢1,¢2al;"l;)A(¢3a¢4;li*-’l2—)' ) (88)
We can show that these are equivaleht if we make the substitutions I, — —I; and I; — —1Is.
‘ TheSe Substltutlons leave the mtegratmn unchanged so the

k be the sa,me We WIH calculate the cuts for one ch01ce &nd dOU—ble the result to get‘, the

required contribution. : . .
| -needed for this calculation already; it was used

‘We have dérived the tree amplitude n
litudes. Recall that it is

. Wllen we looked at cuts in grav1ton scattermg amp
- SRR ' (12) (42) st | "
T W ZYIVZEN AN 8.9
(¢1,2 3*, s 4 ((12)(23)(34)(41>) (89)

The resulting cut expression is

(‘251, 2,lf,l+ Al 3,¢4a2211 ) | S 4
e | éz><21\ R URIR LY LV G2V
- e 0 R )6

Kkt (tr+(2124ll))

T 256 2 (1.1)(h-2)(-3)(h 4)

‘ TO evaluate this recall that

ey (2124h) = Lr(2h4h) + 3 Le(2ath)-

result from both choices will ‘

(8.11)



Cutkosky Rules I Ultmmolet Dwergences :

Using the on-shell condition of the trees lo =1y + ki + kg, we can write 6(2124l1) as

20,41y) = €(21 4hy) + e(2144) i
(204l ) = e(2l,4 ’ i

= ¢(214L)
and | “ | -
—tr(212411 = 3tr(2141) +4(4h)(2h). (8_13)
Hence, . - : ’
In addition, we know that e
| /dLIPS €(2144,) f(1,2,3,4,44)=0 (8.15)

Mif £ containe only 'dot_products of‘ the momenta (ie it has no e-tencrs) and that a product

B Ofé € tensors looks like a sum of dot-products (see appendix VI). This implies that we can

. | ‘ e | 4
| ignore products of an odd number of ¢’s, allowing us to ?Xpand‘ (tr+(2lz4ll )) as

(( ltr(214llj)2 " (16(214"11))2 +(4(4h J20))* +4 (&) )tr(zl%)) (8.16)

+ 4( (2141, ((4(41)(20)) +4(40)2 ll)tr(21411 y+ (2 5tr(21411))%).
ded as
In appendix VI we show how ( 26(21411))2 can be expanded as

2,2 2u2 . (ll 4)2 2 o ‘
e 6(21411))%4 (4 2)t + ()W (8.17)
( v 2(11 2)t(lx 1)u — 2(h.2)t(h4)s — 2(L.1)u(l 4)3)

| ' ’ 4l
IIlSertmg this, together 1 wn-,h the expanswn for tr(21 1)
s ki )(ks - 1n)), 8.18
t (2141 ) ‘4((]62‘-]1,‘1‘)(]{,'4'll)‘:—(kQ'k‘i)(kl'yll)-F(k‘i kl)( 2 1)) ( )
I 1)} =

i (8‘ ) B , t tg 10) can be written as a sum of scalar boxes, quadratic triangles
16), we can see tha

%4 quartic bubbles.
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- Cutkosky Rules II: Ultrdviqlét‘Dz've"?‘g;é"rﬂz',cé.; | 120

D - . . : . B .
oubling this, as discussed, and carrying out the integrations ‘we find th 1t f, :
! tions, we e cuts for

~ internal gravitons to be
iktrr (1 o 1, )
(4 (? th)ln() ————O-(u +41ut+t2)1n(s)

+ #3 1n(2tlln(§) N u? ln(;g ln(s)) ,

i

‘(8 '19)'*'} :

Adding the mternal scalar (8. 5) and mternal grav:tton (8 19) contrlbutlons W ﬁ d B
g e nn o

o

\.‘the total s-channel cuts to be
iktrp ((u +2u3t+2ut3—I—3u2t2+t4)1n(3)1 | o
(47)2-6 Tut — + (3u + 2ut+3t2) 1n(3)2
(2t* + wt + dut® + 4u3t +6 u2t2) ln(s)ln(t) :
- 2ts i
N (4ut® +4u’t+6 u2t2 it 4 2ut) ln(s)ln(u) - (820)
' 2us byey
B ( 163wt — 43u2t? — 163 ut3) ln(s))

+§4_:6 ’ ‘ut .

- AS we 1nd1cated the total contr1but1on comes

es are found snnply by subst1tut1ng
iull result, we can 1dent1fy a soft term of the form

| 'nels
: (The t and u cas § & 1 and s e, respectWely)

: AS eXpected when we recon:truct the

) ( + 0(e)> A”"e( ++)
(u +2u3t F2utd + 3u2t2 + t4)

-2_6_2—%;7?(5 1n(8)+t1n(t)+“1ﬁ(ﬁ)) st

( )2 K (s P (1 e+(~U> :
| (8.21)

‘ l‘elated to the 1 Je term in (8 20) If we remove th1s IR contribution, then we can deduce

t
hat the uv mﬁmte component in this amphtude is
m 4rp 203 1 2, .2
1 +u
47r)2 160 e( * )
S ; . . T . '. . : .
SO by looking at the straightforward cut qalculatlon we have found a complete, and im-

, DOrtant part of the amphtude T
Lagrangian [56] It should

oft and Veltman'’s counter-

- We can use th1s asa test of 't Ho
om the new terms Wh1ch they derived. To see

be
remOVed exactly by a tree contnbutlon fr

from the combmed contr1but1on in all cha,n- ‘f

(822) |

s " 5 A S

P

S



Cutkosky Rules II: Uliraviolet Diverge};,ces

Sae (k- kbt b + B Fibm - By o+ ki ki by B)

1 m
Figure 8.B: The four-point scalar vertex,

Ay

 that this is the case, note that, to ﬁrst order, (3ﬂ¢8"¢) produces a four pomt Feynman

“Vertex (ﬁg 8.B). So, the counterterm

VWL R o -
Aﬁf‘"(47r)2~so e}? T T T(@m)? 320€ ( k99 ¢) L (8.23)
- will produce a term R |
?:KZ4 2031 2 . TR . R
(4«)2 ‘1'662(32 4 (8.24)

. This does cancel (8.22), as
regularisatioﬁ on K do :hot effect the dxvergent terms.) Thus we have conﬁrmed the result

In vef. [56] for the on-shell case.
We can also look at the résult of addihg extra scalars to our theory. The cut technique
the above calculation Wﬂl diﬁ'er only by the

| allOWS us to see th1s effect with relatlve eas&

om an mternal loop of the new scalars.

addltmn of an extra cut contrlbutlon commg fr
; TO obtain fuller mformatmn we must also look at the mteractlon between two pairs of

differert scalars We will see that we call use pa,rts of the above calculation to reduce the

‘ Work required here. *
ve an exphcxt result for the counter—Lagrang1an in the

't Hooft and Veltman d1d not gl
onsidering what their method implies that

theory with mult1p1e scalars, so let us begm by c
man’s counter-Lagrangian, let

"e should see in thlS case. Starting with 't Hooft and Velt

alar, ¢ to @ vector of scalars, @;. There are three

us C0ns1der the effect of chqng,mg the s

,dlﬁerenCeS which we must take into account

requlred (Note that rp=1 + (’)(e) and effects of dimensional

‘ 121
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Cutkosky Rules II: Ultrai)iolet Dieefge;ces

Figure 8.C: One channel cut for four scalar amplitude with G

internal loop of another scalar type.

First, we know that from their argument that we must also add a factor of

(4m)F e \1447 " 120

t0 the counter—Lagranglan for each extra degree of freedom in the vector We can conﬁrm
thls step by looking at the effect of addmg an mternal loop of a new scalar to d1agrams

| Wlth four external sca,lars For this we have a cut of the form shown in fig. 8. C Calcula,tlon

111 One channel produces the infinite con’crxbutlon ’
.
(& 480 p

aﬂd summmg over all channels, we find the total dzvergence
.

ikt 2 e ‘
+
G 06( Fu 3) - (8.27)

AThiS corresponds correctly to the results expected from the new term (8.25)
Socon We. should note that the equations of motion will become
u_D,,D”qﬁi“‘O gas ‘
RS (8.25)
Poaento e ;—-f"-(w,xw)
Thud we must be careful about the occurrence of terms like (D, ¢D ¢)(D/‘¢D”¢)

ang ( Dﬂ ¢ D " ¢) ( D ¢ D ¢) These are eqmvalent when ¢ is a smgle scalar, but differ when

it ig a vector. S o the re will be Cancellatlons in the derivation of the counter-Lagrangian
?

f
°F one scalar which aren’t seen when we add more favours to the theory.

',/’“1( 2 1 w1
2+ i3 R“”R‘ 360R) - G

Ly U (8.26)
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~ Cutkosky Rufeé II: _Ultrdviolet Divergeeces

The combination of these observations leads us to expect the counter-Lagrangian to

take the form . ' o
SATRYER LT s 3 S an"‘(am,a% ck 4533%)
(4m)2 e\ 240 = .120

+ ﬁﬂ“(anéfayéa)(a“%@”éj) —-R(Buﬁéta”ﬁ* )+ 2"’2(9 D‘"éz)z)

- for a general ¢;. Note that the cancellations seen in the single scalar case have left us

: with an ambiéuity _ & and B cannot be deduced directly from the previous result. We

-I will determine them here usmg cut results We can ﬁnd a useful condmon by compa.nng

- (8.29) with the smgle scalar expresswn Settmg @5: =¢

oe+ﬂ

" We will be calc . o o | |
form of e above lcoﬁnte.r-Lagrangim expression. If we insert the field equations, then we

u]atieg ‘;n. shell amplitudes, so we should look at the expllicit on-shell

find this simplifies to become

AL o EVETL((2E ) (0,60%0(0,8,076)
'AEH*(KM)?——&(( 560 fa)( @ )0y 930" 0; o |
+ (L )@ 80,804,087 ).

So, our goal ef ﬁn dm g the count;I’ Lagrangian for multiple scala._rs_ now reduces to
o, N ‘ _
ne these, let us turn to an amplitude with two

_ ﬁndmg the va.lues of & , and 8. To determi
| and ko are the momenta, of one pair and k3 and

 different pairs of external scalars If k1

then we must con51der (a) the s-channel cut with gravitons

kq the momenta of the others,
m th 1 (b) the two s- channel cuts with 1dent1ca1 scalars in the loop (one dlagram for
e loop e two
_ each t of scal ) d (c) the + and u- channel cuts W1th one scalar of each type in the
, sort of sc a,r an _

o ._ | _ _ .
p (see fig. 8 D). case with a single scalar (8.20). The

the
(&) will be preCISely the Sa.me as the result in

' m ilar steps to those above: (b)
al 1]131;10118 follow simi
' ‘cher two are stra.1 htf Ward and the caiC S _
ghtior .

eva«llla.tes to gwe

iktrp iu Ins _.tuln(3) -
(4m)2=e ( ) | -

(530

___-(21t - 139ut 4 21u )ln(s)) (8.31) |

123

(8.29)

a,nd n=1 Ieads us to deduce tha.t o



Cutkosky Rules II: Ultrdviolet Divergé;ceg

(@) (v)
Figure 8.D: Cut contributions for an amplitude

with two paurs of different external scalars. -

"

o and the u-channel part of (c) 18

iktrp [tu?l u? u® u? =
———-—«—(47r)2_e ( 25 e = In(u) — -Z—ln(u) - é—gln(u)ln(s) + " 1§(u)2) _’ (8.32)

S s ol o ]
ymmetry implies that the s-channel contribution can be deduced directly from this b
| L ¥

m&kmg the substitution ¢ © U

total divergent contribution. We can

- Summing over all channels we can ﬁnd the

They resemble those in the siﬁgle scalar case, but

eXtract the IR infinities as before

restricted to the s-chag,nel. This leaves us with a UV divergence of

- — 7:’{’4 1(.._.1_(_.).—]:“2_{._%9—52__]:9}-162 - . .
(@t e\ 120 1200 120 co e (839)

T
. »

(Note that since
| Z<a(a $:0" 4 o, ¢,a"¢ )+p(a,l¢ 26)(0" ¢;8 4)

= Z(‘”FP) “Wza W | : (8.34)

3 (0200400

‘ z'r‘J : ,
. )
e haVe an easy check that thls is conSIStent with the single scalar results — the sum of the

$;0" ;) + p(0,$i0$:)(0" ;0" ¢5))

¢ result for four eicternal scalars of the same type (in a

¢
Oefﬁments must be the same as th
m to be the case. )

) Tlns we can conﬁr
y equatmg ‘coefficients of s and t in the

’theOry with 2 scalars

fon to find o and f b

We are now m a pos1t
). The resultmg equations are

qulred to cancel (8.33

c
ounter-Lagranglan Wlth those e
2442 8 (42+2 )2_1_91 \
2 ( 960 +a> = 7120 ' 480 _H? 120’ (8.35)/
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Cutkosky Rules II: Ultraviolet Diverge?;cés

which imply that
- (8.36)

S

i

!

i
T ™
I

> |

(As expected, a + 8 = 3.) ‘So, we can deduce that the coﬁﬁter—Lagryangian fof n scalars

takes the form

V= (2 t g, 427 SR B - -—(a $:0"4:)(00810"45)

€ 240 120

4 n (a m 4 )(a#¢,a”¢j)+ 12R(8 ¢,aﬂ¢ )-}-252(1) Drg, )2)

8.2 Gravity Coupled to Fermions

‘ The process for obtammg fermlon cuts follows the scalar calculatxon very closely Agam

we 1ook at the case W1th four external matter partlcles and, agam, we have contr1but10ns
| from the gravitons ‘in the loop and fermmns in the loop’ cases EDlagrammatically, these
are the Same as the scalar case, ﬁg 8. A ) The subtlety 1s that the matter particles in this
_Case aiso have ‘hellgcity‘\:zv‘hich must be taken into- account As with gramton scattermg
amplitudes, we can consider the different helicity conﬁguratlons of the externa,l part1cles

It is easy to show that all cuts vanish for ‘external helicities (—— +,+,+) and (+,+, +,+),

ivergence free. We will concentrate on the case

| 1mplylng that the amphtudes will be di

(1 ,2%,37,4%) (with ch1ra1 ferm1ons)
ternal helicities in A(17,2%,37

the scalar amplitude, different channels will have dncferent contributions. In fact, there are
. 1 P

ST o
,The asymmetry of the ex ,47) implies that, unlike in

tWo cases which must be considered: the t- and s-channels. ‘(The % and t caleulations will
be related by éymmetry:) ‘ : :
ntribution is zero; there is no internal helicity

In the u- channel the 1nternal graVIton co
alculation are non-zero. So, the only

' COnﬁgumtlon for Whlch all the trees mvolved in the ¢
al fermions. The building

“ontribution which we ust calculate is the one with intern

.block for that case will be the tree Wlth fo

ur extemal fermlons The only choice of external
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Cutkosky Rules II: Ultraviolet Divergeﬁces

helicities for which this is non-zero is A"**(—,+,—,+). We can find this from direct

calculation:

-— —_— +~—
A(1—,2%,3 ’4)f gt

4

~ Sewing two such trees together gives us the cut contribution»

) A(rz;*s-z;)A(z;zﬂ‘zl*) , ‘.
o 2Ll ‘ 2
r* (13)° [l by ( + 12(11 1)2 + 12(hs- 3)2)4(l 0 4>)( +12(11.2)7 +12(11.4)%)

16 4(l. 1)(11 3) :
(u +12(5.1)2 + 12(4.3) 12) (u? + 12(. 2) +12(11.4)?)

=% S24(13) 16 (. )(L-2)(13)(l4)

o chd (w124 1)% + 12(41. 3)%) (u? + 12(41. 2)2 +12(4. 4)2)

= - 162030, .
(8.39)

16 (24)[13]

| SAO, ’expa,nding this and integrating in the usual way gives us.thezv total u-channel cuts to

P Y

‘b.e: '
irp kb 1 (M 1 2yt In(u)In(t)
-~ t
(4m)2=< 16 (24) [1 3] b .(8.40)
RN N Eﬁﬁ&%ﬁﬂ@ + —g-u3ln(u)2 - -:-zﬁ 1n(u)>.

‘ ' B
ributions for both partlcle types in the loop Let us begin with

| The s-channel has cont
we use (8. 38) as our buﬂdmg block. The cut expression
1,

Fhé fermion contribution. Agal
_ in this case is
A2 T A 34T =

wt (Lh) [25] (30} h ](35 +12(2 L) +4(1 1) 2) (35 +4(4 11)2+12(3 L)?)

e 32(1;3 ll()l(lzilz)z 3‘) (Ss 2 4 12(2.0) +4(L )’ )(3sl+4(4 1)+ 12(3, IJ")
k* tr_(134203).19° T %131,
- R sy

- We can expa,nd th‘e‘ tracé as | |
‘ aong)— (b (8.42)

Cte (12142223) tr- b ;
r(141,3) — 2(24)r(11:43).

= 2([1 )tr(12123) -— 2(211)

M@—L(z +st+2t) B  (8’.‘38) 
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Using this we can evaluate the cut as before and find

ikt rp 1 1u® (20 +3ut+3t2) (£ + 2ut? + 20t — u3) .
-3 In(s) — In(s)?
(47)2—€ 16 (24) [1 3] t 2 o
2 (202~ u (274 ut — 53u? + 60t?)
k _.S_—(——%—-——)—ln(s)ln(t)—k (2 - ki )ln(s)>.

| - (843)
The tree used for the cut with mternal gravitons was used in chapter 6. We can write

it as ‘
a8 - _ }i w220y’ st
A(g 7f f+3g+) = 21—27—14( 2 g Y 79 ) (23> (34> (14>2 .

This is very s1m1lar to the tree 1n the four scalar calculatlon W1th internal grawtons In

(8.44)

| fact, the calculatlon process here follows that case‘Vel“Y closely, so we will not give details.
" The result is ; P | |
it 1 (uw'la()la() L4948 11187 + 8t5%) In(s)?
T\ 8 0 (8.45)
w_}}_(_zu_) Lo sts s
163 | 960
we see that the total s- channel cuts are

SUmmmg (8 43) and (8 45), |
istrr (1W1 a(s) + 7 Ly (21s 4+ 48)In(s)
(47r)2 £16(24) [13] t. s o

243 In(s) In() (26* 4 91s® — t2s? +2s1° 421 ) In(s)In(t)
g — st
L] . 1
+ 5 (3 s2 4108t + 6t2) ln(s)z) .
| (848)

¥y makmg the exchange s & t. If

We can find the t- channelv contribution from th1s b
uce the total expression. As

We COmbme the results from the three channels we can ded

eXPec‘ced we have an IR contrlbutlon,

NG 2(3t+2t2+28)
—'-“sz B e+ o)+ 00§ e O
79

ponent easily identifiable. We find this to be

59 iKre 1w (8.48)
T128 (47r)2 e (24)[13] | |

‘ RenflOVlng this leaves the UV com
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17 3-

9F ' 4—|—

Figure 8.E: Four-point counterterm vertex for fermions. S :

This expression must be cancelled by a four-point counterterm. This case has not been
2 . R P ; ; : [ e el : i c - .
- considered before, so we can use our result to deduce new information about the Dirac-

- Einstein counter-Lagrangian. The general on-shell counterterm which we must consider

takes the form

k¥ e/ 2 \? . ‘
(Note that other‘all other possibilitieé éan be related to th‘iswby a yclombination of on-shell

¢conditions, integration by parts &

the vertex in fig. 8E We can deduce a counte

t) - <4+|’)’u|1+> <2+'l7#l,3+> (u— s))

rterm contribution

1K 2(<2+|7y11+> <4+l7u|3+> (u —

(4#)26 ‘
<ii§z-[241<31>2(2u—f*3> o e
4 6o R |
in” 8% o) (18) u= 6oz m EaIs] ¢

(47r)2 €
s vanish. This also confirms our asser-

(Note that (z lyuls = 0 so all other contnbutlon
one loop.) Comparing

tlon that any other hehc1ty choice will have no UV divergences at

59 ° - (8.51)

this with (8.48) 1mphes that
*= " 768
 The fact that this coefﬁcmnt is non—zeéo i confirmation that the Dirac-Einstein system is

n0n~renormahsa,b1e Note ‘that we have evaluated part of the counter-Lagrangian which
“Could not be determined from the calculation in rfzf- [42]-

nd the‘ Fiefé theorem.) At lowest order, this leads us to
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8.3 Gravity Coupled to Photons

We could tak
e the same route as we have with i ‘
other particles to find the infinitie
e infinities in photo
n

amplitud i
P es, but we can re(%uce the work by a judicious use of SUSY identities Wv il
entities.. We wi

lool ' . . e
k at the four point amplitude with no external gravitons. Although our ai : t' fi
‘ our aim is to nd-

the inﬁ I . . e ‘ '
nities in a system containing photons and gravitons, let us begin by considering th
wdering the

N = . . ..
2 supersymmetric multiplet contamning 2 photon a graviton and two gravitinos. The
: 08. e

Cut f ’ " . ' . '
~cut for this amplitude is the sum of the cuts with photons, gravitinos and gravitons in th
S 1in e

N Ny
ZY/L g

i= Y,‘V, g

e 8.F: Cut contributions required for the one loop

einan V= 2 SUGRA theory.

loop (fig. 8.F)

w !
Y cut

Figur
_ - four photon amplitud

Notice that the tree amplitudes 47°(%,7,7:7) and A"**(g,¢,9,9) do not include
itinos must form a complete

an ) . . s . N ‘ - N
¥ contribution due to gravitinos (since any internal grav
bution is contained in the second term in the sum

o _ «

: op.) Hence, the only gravitino contri
he cuts for the am
photons, are equal to the cuts of the N = 2 amplitude

in . . ‘ - .
fig. 8.F. We may deduce that t plitude in which we are interested

‘ th o,
at containing only gravitons and

m- " o . ;‘ o
inus the cut containing gravitinos (g. 8.G).

N/
|
-

b v cut

" cut .
Figﬁre 8.G: Cut equation for the one loop four photon
de in Einstein-Maxwell theory.

amplitu
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Now, using supersymmetr1c relatlons between amphtudes (see Appenchx IV) we can G

' make the following deductlons Flrst for cho1ces of external hehc1t1es (7 ’y 7+7+) and

i (yryt 7"’7"’) the gravitino contrlbutlons vanish and the cuts W111 be prec1sely equal to the E

cuts in the N

~and, hence, there W111 be no uv mﬁmte components in the photon grav1ton amphtudesV P

=2 arnphtude VVe know the N = 2 amphtude contalns only IR d1vergences‘ S

’Wlth those helicity choices.

This implies that. the amphtude of 1nterest to us here is A(')f 7 i 7+) 50 let us',

‘concentrate on th1s hehc1ty conﬁguratmn SUSY relatlons glve us. o

(43 i
CAN=2 (Tt 7*)*<~—>—AN’2(Q T ) s (8.52)
Implymg the relatlon in ﬁg 8. H The ﬁrst term on ’che r1ght hand s1de of that relatmn

~ gives us the cuts‘ - T s e RIS
. . A g

”F <6<In(——u) ln( t)’ lngus))

st § o SuU ‘ | ’
2h(wh(d) | g_l_<_z>1_<.__> JNETIEO R
L ts (8.53)
+ 5
(t—-u)(26t2+46tu+25“ )1n( t/—U))

+ ) 45 B

«WhereF’ here is e , ‘ ‘
st(12)* ) ___itf_’“__(@—ﬁ ATy 7 ,7 ,77). (8.54)

| iy (43
T o (e ann)

If we compare this W1th the results of the last chapter

| ) .
here are the complete IR contnbutmns expected there are 10

V d1vergence we are looklng for will be found in

1t 18 clear that the divergences seen

V contr1but10ns from this

‘ N =2 part Of the ca,lculatlon So, the U

the Subtracted grav1t1no contrlbutlon ’

ut one calculatlon to find the divergences in the
ry © |

I fact, we only need to car
| e helicities on one side of the c

vgra“’iti‘no contrib‘ution., Note that, if th

ut are the same
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¥ Y g g ‘ ‘-
Y

43)? "Nav_a"

o 48 L J
) Iy BN S
g Y/k ae \7

v 7 cut‘. ’ g Acut

1}

H: Cut equation for the one loop four photon

Figure 8.
ell theory (rewritten). .

~ amplitude in Einstein-Maxw:

" then at least one tree will vanish. .Also,

-cut contributions — those in the t-
divergences, we will have the complete result. Using a combination of SUSY and previous
results, we have reduced our work to one calculation. |

o ) Let us look at the t-channel contribution. For this we will need the photon-gravitino

 tree. This can be found via another supersymmetric relation: -

| ’AN=2(7‘¢'7’"+W) %%JAN‘Z’(Q 97q 9*) | | (8.55)

S0, we require the dLIPS iﬁtegral of ‘ |
1 ~ 44y (1h)’ (3.17)2 (215)°
~ =t (&b v
An Yrvdon) Alvr ¥, tbu) "6 (1,4)7 (1) (14) (1;3)% (211) (2.3) @ =
P tr+(41221113) try(1i20) | 56)
Te (21)” 34 (1R)(2h)

We can deal with the traces in a simildr way to the scalar case:

tI‘+ (1[12[1) + tr+(11123)

t1‘+(1l12l2) =
= 4(1.1)(2- lh) +tr+(11123) | (8.57)
_ 4(1.11)(2 )+ 1tr(11123) + —6(11123)
and .,
& tr+(41221113) tr+(4112ll 3)+ tr+(432ll13)
1)1)1‘.}.(42[13) + 2tr+(21l13)(4 3)
(8.58)

= 9(1y.2)tr4 (41h3) — 2(11

;‘ (11 )(tr(41l13) + 5(41113)) . ’
~(h 1)(tr(42113) 4 (420,3)) + (4:3) (pr(2103) + 210 3)).

there is a symmetry between the two non-zero

and u-channels.’ So, if we calculate the t-channels
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_——————- -

Figure 8.I: Extra cut required when a second photon flavour
is added to the theory. =

As before, we need only take into account terms with an even number of epsilon tensors;

.Palrs of these tensors can be expanded using the relations in appendix VI to glve us

' an expression which we can mtegrate in the usual way. When this is done, we get cut

[ 2}

‘ COntrlbutlons

ixtr “54 | 137  '2 ‘ T
(47r)21:f (21)? (34 (960 (t)+9601“(“) ~ln W“))' o (859)

We must double this result smce there are two grav1t1nos in the SUSY multiplet- the

contr1but1ons from both should be subtracted So we deduce that the UV dlvergence is
137 i&* 1 st ‘ :
. . (8.60)

e = T T fa A2
240 (47)7 € 21)° B
compare this with the theoretical derivation of the coun-

A? with the scalar case, we can
at these terms do, indeed, cancel this, as

‘terterms (see ref. [71]”). W? can confirm th

Tequired.

ent) U(1) particles to the system.

We can also look at the eﬁ‘ect of adding more (mdepend
sider n dlagrams of the form fig. 8.I, where the

, T add n more photons, We must con

but a different ﬂavour to the external one. Thls requires us

?nternal particle is a photon,
t ' .
9 evaluate the cut expression :
‘ K tr+(41221113) | (8.61)
6 (21)2 34" | |

factor of 4. Thls is simply due to a difference

T 71] by a ;
hls actually differs from the resg}lltelge;iiltfon] lni’phat in our calculatlon

etween their definition of & and
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We require one copy of this for each extra photon included in our analysis. If we carry

out the usual analysis, and sum over all channels, we find that n extra photons produce

an added UV infinite contribution of

n ikt 1 st
0{E) < 217 B (562

“Again we can compare. this with the theoretical results [72] and ﬁnd that the der1ved

L

_counterterms will remove this divergence. -

So we have been able to use the cuts to ﬁnd useful information in situations where we could

not obtam complete amphtudes In partlcular, we have been able to conﬁrm theoretlcal _

-‘derlvatlons of divergences in theories Wlth scalars and photons coupled to gravity. We

counterterm coefficients for the Fermion-Einstein system
have also been able to determine cot ’ ‘ ‘ e

Which’ have not be fonnd before. ’ ,
All of these calculatlons have Worked W1th the fact that ‘we can completely determlne

terms an order of € -1 hlgher than the order at Whlch we are working. In the next chapter

we will show how this can be used to obtain complete amphtudes
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When you ezpect nothing and get
e’uerythmg, that’s destzny

Damian Chapa in ‘Bound by Honor

. 19. CutkOSky Rules III: Complete AmplltUdeS ‘

" In the previous section we saw that there are certain parts of any amplitude for which we

‘ : el : 0 .
" can ﬁnd complete expressions. In particular, if,we are working at order €°, then we can

find the total coefficient of €71, It is clear from looking at the basis of functions which

‘we use to construct the amplitudes that this can be generalised to all orders in e. That
s, if We find a cut expression at order €® then we can find exactly the coefﬁc1ent of e L,

The next step is to consider Whether we can use this to help us find complete results for

any amplitude even those which do not fulﬁl the conditions of the uniqueness theorem In
?

‘ fact, wo can. The C utkoskY rules are not dependent on the dimension in which we Work

$0 We can try to use these rules in 4 — 2€ d1mens1ons ThlS will give us the cuts correctly to

all orders in € and so will also give us the complete amplitude to all orders as well. At one

loop there is only one part of the process which depends on the dimensions — the integral.

So, we expect th

derivations, but with 1ntegrals carrled out in 4 — 2¢ dimensions.

f finding complete amplitudes was originally demonstrated by Bern

This method o |
and Morgan; in ref. [18] they were able to find four gluon amplitudes which were not cut-

constructible by the earlier crlterla In ‘addition they were able to use the method to obtain
four gluon amphtudes with 1nternal massive particles. In this chaPter we fOHOW a s1m‘1la,r »
Path for grawton amplitudes. We w111 see that, while the process allows us to deduce far
more 1nformat10 n than other cut calculatlons we have cons1dered it is not significantly

more complicated.



- 1nternal particle,

Let us begin by con31der1ng the new technologles required for thls calculation. As:

Cutkosky Rules III: Complete Amplitudes

9.1 Cut Calculation of A}71°°P(4+ + + +)

Let us look at the way this combination of dimensional regularisation and Cutkosky rules
can be used to find one of the amplitudes which we were able to calculate using the string
* rules, but which was not recoverable using the earlier cut calculations. We will consider
the four graviton amplitude At-loor(4 4+ 4 +). Recall that this could not be calculated
usmg Cutkosky methods before because, for all 1nterna1 particles, at least one of the trees

vamshed giving no cut contribution at O(¢). Here we will consider that case with internal

" scalars. We know from SUSY decomposition that the result is the same for each type of

<o the scalar calculation will be sufficient to find the complete result.

we have remarked the difference which we must introduce is to carry out our 1ntegra1 in -

D= 4 2¢ dimensions. In practlce, we do this by the following method (see, for instance,

ref. [8]): We begin by splitting the momentum vector into to two parts
i

pD=P4+N e (9

Y

Where piisa four—dlmensmnal part, only the usual 4 space tlme components are non- zZero,

and M a =92 d1men510nal part only the extra -—26 components are non-zero. p is made

up from the space like components of | PD only, and we explicitly chose to work with a

' Minkowski metric of negathe 51gnature. So 7 p can be expressed as

ph =pi— | 9.2)

- Tt is clear that this add1t1onal plece now looks like a mass, and 1ndeed single powers of 1

do not appear in our calculations, so we can cons1stently treat it this way. The subtlety is
that th et otal D-dimensional vector is integrated over, so there must be some rntegratlon
vover this mass-like plece To do thls we begin by splitting up the integral as

| dD d'p d7 (9.3)
/(ZW)D (Q?r)zl (27)—26 PRI
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We can then deal with the [d™¢u by considering changing to spherically symmetric
coordinates in our (—2¢)-dimensional subspace. Since the integrand is only dependent "ori X

©2, we do not need to worry about angular dependence and can integrate this out explic'itlyr' |

The general expression for a solid angle in (d 4 1)-dimensions is

136

| op(@t)/2
o | ,/‘md: My R
Sé,;.we find | ”» | o | | PR
R A 2ef(M )= / 4012 / BN SG) o
"5(4”) 2/, 2y—1—¢ | il
m (# ) f(:u ) ‘ 3

ThlS process allows’ us to deal with our D dlmensmnal integral in a fairly stralghtforward o

“way

with a partlcular measure, to give the requlred result AN ‘ N
: o L

The only other subtlety Wh1ch we must conader is the expressmn for the trees. The

i i

trees requ1red are Atree(t"'

sphttmg of the D- dlmenswnal momentum means that we must cons1der the express1on for X

a tree Wlth Scalar of mass g To simplify our calculat;ons we would hke to use the spinor -

he11c1ty techmque as before
on- shell massless part1cles To get around th1s restr1ct1on we can erte the momenta of

i the scalars as a sum of two null four vectors [88]

Ps1 =1 +ozq2j[ “ Psz? agtq o (98)

with the condition o o ,
: B psz——n —2aq1 G e
Thrs expresses the system as four null Vectors Whlch allovvs us to 1mplement the spmor

helici ty me tho d in the usual way We s1mply convert the resultlng expressmn by usmg the

e end of our calculat1on We ﬁnd the result

| e (23 1 e
'A4(1s’2f’3+’48‘);,—‘,~‘4 %—T((k1+k2) — 12 (k1+k3)2‘ﬂ2)' (9:8)

: ‘above relatlons at th

_ the extra dimensions can be made to look like a mass which will be mtegrated over, : .
qﬁ ¢) These vamshed for a massless scalar however our o

The problem here is that th1s is constructed for use W1th :
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(Clearly, this vanishes for = O as expected. )

137

./ We now have reduced the ‘4 — 2¢ d1mens1onal’ calculation to somethmg Wh1ch looks‘ -

very ‘similar to our earher ‘4 dlmensmnal’ calculatmns The only subtlety Wh1ch we have ‘ I

. is the extra parameter ;2 which must be 1ntegrated out.

S1nce we are cons1der1ng the A1 1°°P(-{— + + +) amphtude we need only consider one o

channel — all others Wlll be the equlvalent by symmetry Let us look at the s- channel As

‘with earher calculat1ons we Sew. together two trees

] "”’LIPS<—‘£1; B) A0, 2 6) AT St ) 09

Agam rather than a d1rect calculatmn we look at an 1ntegral Wh1ch we know W1ll glve us" ,

~the correct cut contrlbutlon

P (Czlﬂ-fl? Atree( f 1+ 2 22) Atree( £ 3+ 4 l?l)eg Cug. ‘w, (910) ‘
If we carry out the above rewr1t1ng of the 1ntegral th1s now becomes
d4:€1 —e(4m)e ( )_1 e - : ’ i
(%)4 e o (1
Atree( 51 )m (9.1]

Insertmg the express1on for the trees (9 8) we ﬁnd two box contr1but1ons - correspondmg fo

to boxes with external leg ordermg 1234 and 1243 Consider the first of these we get an

1ntegral expressmn ,
; o

fan) [P [ [ s _____
“T5 -9 (12 (34)° /(2@ /1/~‘(M) u x(p "'”)1
ARG |

((p~fk1)2-‘/«f") ((P kl*kz) "H?) -k kz‘——k3)2‘_u‘2)

After carrymg out a Feynman parameterlsatmn, yve can rewr1te th1s as’ |

m e(47r)f /Hdaz5(z aj — 1)

16r(1—e)< 2

=1 =1 S - (9.13)
ut

~1-—€
/ dﬂ ('u ) (sa1a3 —+ ta2a4 - 2)2

(9. 12)’
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At this point we may carry out the ‘mass’ integration
8

. poo 27,.2\—1—¢ H = B(4 — ¢, —4 + €)(—sayas — tasa 2_€‘> ‘
/0 a7 () (saya3 + tazay ~ p?)? ( ’ X 1 ? 4) (9.14)
- Lo 7r(3—e) Co N

~ sin(me)

(—sajas — taga, )¢
(B(x, y) is the conventlonal Beta-function), allowing us to write the s- channel cut (mclud—

1ng both box orderlngs) as

1234 1243

138

it [12)° [34] (3 —¢) | v(l‘—e)( 2-¢) ( yD=12- 2 ;I_ID . 26)’”1 (915) .

TT6(am)E< (12)(34)? sin(me) T(1—T(L +¢)
~ where I?,, mdlca’(es the four point box integral in D dimensions with external legs ordered
i

. o e

IDu =T34~ D/Q)/da" 6(Zqi—1)(—s,~ja1a3—Sjka2a4)4—D/2 (9.16)

?

'Note that (9.15) is valid to all ordersin €. An exammatlon of the coefficient of the mtegrals

in (9.15) shows that we have an , overall ¢ there so, since we only require the loop ’amphtude

IP=12-2¢ This can be done very

to O(e®), we need only evaluate the divergent parts of

easily since it is the same form as the mtegrals we requlred in earher chapters We find
b=12- 26 ‘ P( 2+€)fdal Ea, - 1)(—‘5611613 ~ta2a4)2 €
= ——/da, Ea, -1 (—sa1a3 —tazaq)? + O(°) o (9.17)
28 -Jr-St + 2t 4 0(60)

- 5040¢

Inserting this into (9 15) and summing over channels, as usual, we obtain the total expres-

ton e >2(32+t2+u2) 3 -
(47r)2(( 2) (23) (34) (41) 3840

We can see that this confirms our earher calculatlon using the Strlng 1nsp1red techmques

(5.47). | | |
So. it is clear that we Can‘ uée the cut technique in this way for any amplitude and
o, it is ¢
t just the ‘cut- constructible’ ones identified earlier. Surprisingly, the method is not
no JuS e
ifi atl re complex than the earlier cut calculatlons, all we require is a wider
significantly mo

knowledge of integrals and trees which include massive particles.
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9.2 Loops with Internal Massive Particles « .

In the previous section we calculated one loop results by introducing what mighf be re—
garded, in some senses, as a ﬁctltlous mass. We might wonder Whether, since we can do
‘ such calculations with comparatlve ease, it would be poss1ble to do a s1m11ar calculatlon

for internal particle with a real mass. Up to now all our results have been restricted to

massless theories so this would be a useful extension. We will see that a calculation with

a massive scalar is well within our reach.

Let us consider the amplitude above, but Witl} the internal scalar having a mass m.
S We can do this very easily by sﬁbstituting all ocgeurrences of u? with 12 +m?2 in our snitial

exprese‘ions.‘ The 8 term in the numerator' will become (u? + m?)%, so we will have a
| serles of terms with dlﬂ'erlng powers of u2 There will also be changes in the denommator

changmg the ,u integration (9. 14) The general integral which we must, consider now

becomes -
2n

7

2

/daz Eaz"‘l / dﬂ (lu‘ (sa1a3+taza4—,u _m2)2 ‘
—Bm—a—n+a/ﬁm 2%—1wﬁm%—wwrmﬁwfe (9.19)

Nrr(n—e—1) 1 D=2n—2¢t+4(,
- )Sm(m) 1 ey

If we e};éand the 1ntegra1 and sum over ‘the 3 channels then we find a total contribution

which looks like ,
: i [1 2]2 [34]2 Tome -
T 16(am)—< (12)% (34)" sin(re)[(1 — Or(1+ €)
y ( (1 - (2 - 93 = T () - (9.20)

IDSZE

+4m 6(1-‘6)( —¢) 1D23410 *(m )+6m (1 —e)135s “(m)

+4m eI’ésf “(m) 334“ 26(m)+{1243}+{1324})

As before, ';hls is valid to all orders in 2 but we W111 restrict ourselves to O(e®). Since

D=12-2
sm(7re) e, the overall coefﬁc1ent Wlll be (9(60) So, we see that we require I “(m),
~ TE,

[P=10-2¢(y) [D=8-2¢(yn) and ID=6-2¢(m) to (’)(e 1); and IP=%2¢(m) to O(e%).
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- The first of these, IP=12=2¢(m), evaluates to give

(1 —-¢€)(2 - G)ID =12-2¢ __ /da,' 5(2@ — 1)(=sara3 —tazay + m?)>~ :
(9.21)

F(l + 6) 1234
. . 252 4 st 2t2 - m?(s + t)
= —+0
2520 60 5 6 + ().
‘We can find the others by differentiating with respect to m?2 to give
| 6(1 - 6) D=16-—€ s +1 ___2_ O
O R 120 7T +0(0 i
€ _[D=8-2% _4 6+ O(e 9.99
I‘(l +e) Ii3s / () | ( )
I p=g-2c NI
— ] = O(e").
P(l + 6) 123% (‘ )
So, we find an expression for the amplitudﬂeif
ikt ! Y<W+ﬂ+w) o
fux@w2<a2)@3)@4>gl) 240 e (o)

+ %m‘l (I123 4(m) + 1124?:1(777’) + 1324 (m)) )
| :

We might ékpect that this expre«s'sion for amplitude should also contain terms of the form

lﬁ(mz) which would not hd{re been recovered in thg above analysis. However, we can
3 . : . .

deduce ’that no such terms appear by applying the arguments outlined in ref. [18]:

In(m?) terms only appear in two integral functions
2—2:L(1+¢€)

hEm ey B (9.24)
. ‘ __2‘EF(1+6)
B(0) = m™ ==

= 1 . [18], and can be expfessed as
! The integral 1254 (m) has been calculated in ref. [18], an ‘

| : 2" 2 ‘ 2 .
RLI 57 o (. L +H( 2t m’ ,m )} +O(e)
z]kl (m) .5'1] s | 8ij 8il S“ Sij S 84l ‘

vhere. | 2 ’[1 (1 X)ln(—x;)—Liz( - )
) = 1 -5 -
. .H(X;Y)‘—— T4 — T ! Y z4 y—zy

S . T . T4 )—I—Liz ( T4 )J’
N - . =Lis (:c_-—y)+L12 (:c+—y P

las m y=11+ J/1=4Y) and ng (z) is the dilogarithm.
T4 = 5 - 3 -
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(In fact, there is a third, limy_.o IS ~2¢(k?), but this can be related to the others by
IS7%(k?) = I + 1k212(0) + O(k*).) These contaln infinities, so we must take them
into account if we wish to get the correct dlvergences in our result Rather than takmg

the answer to be just the cut-constructed part, we must look at the general expression

Cut-constructed part + dif1 + da1(0). | e (925)

‘We can find d; and ds by choosing values which give the correct infinite terms. Since there

- are two types of divergence to be considered — quadratic and logarithmic ultraviolet — this

will determme the coefficients umquely Once we have the divergences correct we know

 that we will also have the correct In(m?) terms and the complete amplitude.

In the case which we are considering here we know that there should be no Uuv

divergénces (using the arguments in chapter 3), and we can confirm tha'q (9.23) already

fulfils this condition. So we can deduce that dy = dz = 0; there are no In(m?) terms.

" As a check of our result, we carl make a large m expansion of (9.23): In this limit -

ID=% becomes

‘ /da,- 6(3a; — 1)(—saras — tazaq + m?) 77
' 2

= /da; (> ai — 1)(m?)~* (1 —(2+ 6)-755 +(2+¢€)(3+ e)—2§m—4

@Bt g 2+ I+ B+ (9.2

‘ o . 55
4B+ N5+ 6+ g )
1 s+t+232+st+2t2 3s3+st2+sl2:+3t3+O(m_12)m
1T gome - 840m® - 7560m ‘

— tagas. Sb, thé amplitude becomes

ﬁgr?<<1z><23;§34><41>)2<55i +O(m”4>) IR

ds to zero as m — 00 as expected. It is also in agreement with m — oo

where S = —saja3

This amplitude ten
results obtained by other methods [87).
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C’utkoéky Rules III: Complete Amplitudes

Clearly, this implementation of the Cutkosky rules in 4 — 2¢ dimensions is a powerful
technique; for a small increase in the complexity of the integral which we must evalﬁdfe,

we can find complete expressions for any-amplitude. Here we have shown how it can

be used to reproduce results found using the string-inspired rules and to calculate 4-
graviton scattering amplitudes with massive particles in the loop. However, this method

of reconstructing results is not restricted to amplitudes of a particular kind and we éﬁcpect ‘

that it will be useful in the derivation of a wide range of PQG calculations.
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Think about the Juture. ..

Jack Nicholson in ‘Batman’

10. Conclusion and Future Work:.

Gauge theories, and particularly quantum gravity, cause significant problems for those

W1sh1ng to carry out calculations. The conventlonal method — F‘eynman dlagrams ~ seems
- to magnify the problems to the point where a lot of amplitudes are practically unobtamable
In recent years there have been a number of attempts to find alternatives to Feynman s
Mmethod In QCD especially, this has produced new techniques which can be used to

determine results in a far more éffective way. In this work we have looked at how these

new techniques in QCD can be adapted for PQG and SUGRA.

'We began by showing how strmg theory can be used to develop tools for gauge the-

ory calculatlons String theories contain gauge theones in their infinite tension limit. By

choosmg a sultable string and 100k1ng at this limit, we ¢an construct an alternatlve method

for finding one-loop results.” In the case of PQG, a closed bosonic string is one possible -

choice. With this starting point we showed how to derive the ‘Master Formula’, which

contains all the amplitude information, and a set of rules for extracting the required re-

sults. As presented here, these two components can be used to find any one-loop graviton
?

scattering amphtude ‘Note that whlle the string theory roots of the method remain clear,

the formula and rules can be used W1thout reference to their source.

que appears to inherit many of the simplifications found in string am-

This technl

litud th umber of dlagrams which must be considered is 51gn1ﬁcantly less than in
plitudes — the n

F thod and the expressmns . which must be integrated are particularly compact.
eynman 's me

This ted th o amount of computation requlred considerably. We found that calculations

is reduces

are simplified further if we use another method suggested by string theory - - the SUSY
re simp .~
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decomposition. This suggests that the most efficient way to calcule,te a full set of results is
to concentrate on SUSY multiplets; contributions for any choice of particles can be found
as linear combinations of the SUSY expressions. Using both the string-based rules and the
SUSY decomposition we were able to find all one-loop four-graviton amplitudes in PQG.

We have also looked at methods which 1mplement the Cutkosky rules. These take
"a very different approach to the techniques above: Rather than a d1rect calculat1on,
Cutkosky-based methods look at the analytic constraints which can be.’ placed on an ampli-

“tude. These constraints can then be used to reconstruct some or all of the result. S1nce 1t

s used at an amplitude level, this method avoids many of the problems encountered When

using Feynman diagrams.  Using the Cutkosky rules at one-loop, we were able to confirm
‘rnany of the results found by the string-based method. For the majority, this conﬁrmation
. was lirnited to an agreement in the logarithmic parts of the amplitude. However in two
cases, we were able to re-derive complete expressions; using a ‘uniqueness theorem’, we

could deduce that the N = 6 and N = 8 SUSY matter multiplets are precisely determined

by the1r cuts. .
Except for the few spec1al SUSY amphtudes, the naive application of the Cutkosky

rules seems to be of l1m1ted use. However, there are situations in which the 1nformat1on it
provides is valuable. Even When we cannot obtain cornplete amplitudes we know that the
infinite terms we recover will b‘e‘ correct. Using the method for this purpose, we were able
to innestigate some of the divergences in PQG. It is not possible to distinguish between UV

and IR contr1but10n8 in Cutkosky calculat1ons but we were able to separate them W1th an
1ndependent investigation of IR infinities. The uv dlvergences Wthh we found allowed us
" to confirm previo us denvatlons of the counter-terms in grav1ty—scalar and grav1ty photon

systems. In the Dirac-Einstein theory we were able to use our calculation to obtain new

1nformat10n about the counter- Lagranglan

We can get round the limitations of the Cutkosky-based method if we turn to a
more sophisticated approach: Rather than calculating in 4 dimensions, we can work with
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a dimensional regularisation scheme and consider contr1but1ons at all orders in e, the
regularisation parameter. It is clear from looking at 1ntegral functions that knowmg cuts to
all orders allows us to reconstruct the ent1re amphtu_de to all orders, with no ambiguitiés.
Using this method we were able to confirm another of the expressions obtained by the

string-based method and find an additional result for gravity coupled to a massive scalar.

So, with this comblnatlon of new techniques, we have been able to derive a number

of amplitudes in PQG and SUGRA. The majority of these results have not been obtamed

" before. This lack of previous calculations can be attributed to the difficulties 1nvolved
~ with convent1onal methods. Clearly, these new techniques are a powerful extension to our

- calculational tool-kit and should enable many new quantities to be obtained. o

So Whét ‘of the future‘? How can this work be extended? Clearly the results we have
presented here are only a small subset of the one—loop amplitudes Wthh could be calculated
by these methods. Both the string- based methods and the Cutkosky rules can be used for
any number of external partlcles (Though of course, there will be an increase in algebram
complexity.) The strmg -based rules presented here are restricted to external grav1tons
but itr?vould be poss1b1e (and useful) to look at extensions to other external particles. The
Cutkosky rules have no re‘striction on external particles; the combination of this method

with dimensional regularisation provides the means to obtain a wide range of complete

results at one-loop..

 So, the add1t10nal technology requlred for more one-loop results is minimal.  Also
useful, but less stralghtforward nre extensmns for higher order calculatlons Whlle there
has been some work which looks at the str1ng based methods at n- loops [89], 1t is not clear
at the present t1rne how a set of rules as useful as those for one-loop could be developed.
Another approach to thls —the Worldhne formahsm [6] — takes the philosophy of the string-

inspired technique and uses it with ﬁrst quantlsed particle calculations. This method has

Joop string-based rules. There has also been some success with

"

been used to reproduce one-
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Figure 10.A: Two-loop cut with a three-particle intermediate state

this alternative derivation at two- loops [7] and 1t 1s poss1ble that this W1ll provide the best

route for n-loop extensions. In hght of thls an adaptation of the worldline formahsm for

“usein PQG and SUGRA theories would be useful, prov1d1ng grounding for the explmtatlon

»
]

T of hlgher loop methods as they are developed
| The Cutkosky rules appear to be the most promising path for extens1ons to hlgher
‘or‘der in the near future. The method is not dependent in any way on the number of loops
in the ‘diagram being considered. 'Theonly increase in complexity comes from the number
of cuts being considered and the integrals which must be carried out.  As an example
of the potential of this technique at Itigher loops, let us consider the 2—loop pure gravity
amphtude A2‘1°°P(+ + —|— +). If we concentrate on the d1vergence terms in the result and
.

carry out a naive cut calculatlon in the same way as chapters 6 and 8, then we ﬁnd that,

for th1s partlcular amphtude, we can make a small amount of headvvay without further
technology of any sort [90]

When applying the Cutkosky rnles at two-loops we must consider contributions from three-
part1c1e 1ntermed1ate states (ﬁg 10. A), as well as the two- partlcles ones found in the one-
loop case. (Though for two-loop cuts the latter 1nvolves sewing together one one-loop and

one tree amp'htude, as in fig. 10.B). In genera}, this will increase the complexity of the

)
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Figure 10.B: Generic two-loop cut with a two-particle intermediate state
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F1gure 10.C: Possible helicity conﬁguratlons of the three particle cut
of A2710°P(- 4+ +,4). In both cases the tree on the
* right- hand side vanishes.

- calculation considerably. However, with the helicity conﬁguratmn which we are cons1der1ng

- here We can avoid many of the problems Note, that the possible helicity conﬁgurat1ons

for the three part1cle cuts of th1s amphtude are in those fig. 10.C. Since we know (from
SUSY Ward Ident1t1es) that A“ee(-l- + 4+ + —) and A"ee(+ +++ +) are both zero, it is
clear that these cuts all vanish trivially. So, we are left with two-particle cuts similar to

found in one;loop calculations. We can deal with these as before; we simply sew one-loop

amplitudes to trees (fig. 10.D). '

1+

(b)

~ Figure 10.D: Non-zero contributions to the s-channel cut

; calculatlon of A2 loop (4| +,+, +)

If we carry out the calculations using the express1ons for one-loop amplitudes in chap-

"

ter 5, we find 'a divergent cohtribution of

~AT loop(1+ 2+ 3+ 4+) |
< (5 i () ()

2¢.

((——3)1_6 + (-—t)l’f + (—u)l“f)). (10.1)

2e?,
Referrmg back to the dlSCUSSlOIl of soft limits, it is clear that we have the correct IR

contribution here. Unfortunately, we can not be so certain that the UV component 1s
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complete; there are contributions which we have not considered Wnich could be important
For example the one- loop express1ons which we used are only determined to O(e’). If we
look at the one—loop integrals, we see that the missing O( e) parts of these express1ons m1ght
also be relevant. To be sure of a full result we should look at Cutkosky calculatmns in

4— 26 d1mens1ons for all the diagrams. Clearly, this will require a complete set of two-loop

integral functions.

While we have only found a small part of the final result in this example, the po-

“tential of this approach should be obvious. The restriction has been the difficulty of the

integrals rather than problems with the technique. Given an improvement in integral tech- |

nology‘ the Cutkosky-based rnethod will be a useful aid in obtaining higher order amplitude

contributions.
*

In conclusion: We now have a powerful set of new techniques for one-loop amplitude cal-

culations. These methods overcome the complexities Whieh have hampered the traditional

Feynrnan diagram methods and, as a consequence, have allowed us to find a large set of pre-

viously unknown results. Thel‘e is room for optimism goncerning the developrnent of this
technol'o'gy for an increasingly wide range of cases. At one-loop the majority of amplitudes
should be caleulable using these methods, though further adaptatlons may be necessary.

At hlgher loops there are st1ll problems wh1ch must be overcorme; it seems that the most

significant impediment at the present t1me is the lack of necessary mtegral technology We

may hope that this is a restriction which will be overcome in the nenr future.

e -
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Appendix I. Quantities in General Relativity

In this appendix we give general definitions of some of the relevant quantities requifed in
GR and PQG. We also give a brief overview of the eScApansions used in PQG; that is‘, when
we make small perturbations of the metric tensor (see, e.g., refs. [28,29,32 56]).

1.1 Definitions

As usual, we represent the non-covariant derivative by

VOO b B = OV g5 o
.0 EIERY (I1)
=35V T B
and the covariant derivative by
Vllvala‘zmanﬁlﬂz...ﬂm — Va'la'.)‘..anﬂll[’b“’.ﬂm;u
S E;E—U'Valmanﬂl---ﬁm N . N |
: (1.2)

+ F",‘,‘,,V”,"'a"ﬁl...ﬂm +o TRV Py g
FV’@I Valmanp...ﬁm _1“1;‘3 Val...énﬂl...p,
where the metric connection, I'g., is defined by

‘ 1, ‘
F% = §g ”(g,,ﬂ,», +9pv.8 — gﬂ%p)- , (1-3)

From this, we also construct the Riemann tensor

RE%EF%M Pﬂ76+rarp - T5s T8y (1.4)
The Ricci tensor and scalar are then deﬁned as
Ro =By e i
: T T e
,"szv—'rﬂ"p'i"r F F/wFrp :
~and ' N |
k= aﬂR ap = 9 Ry | - (L6)

The Eiﬁstein tensor is made up of a linear combination of the Ricci quantities
(1.7)

. | )
Gop = Rop — ’2'901[33
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1.2 Expansions

We now give the perturbative expansions of the GR quantities when the metric tensor

undergoes small perturbations of the form .
Guv = gpu + K huu (18)

where, & = v/87G and, in all ‘cases, X will indicate that X depends enly on the classical |
background metric. We use this classical metric to raise and lower the indices on A,,. |

We can find the inverse metrlc tensor, g*¥, by requiring that g,,g*% = 6f. Thls

1mpl1es tha’c

" =GP — kB 4 K2RERSY — kSRERSHAY 4 O(x) )
We ‘can also find the expansion of 1/—g from this as follows: v e
Note first thaf ’ S ; .
’ gigzt(X) = exp(Trin(X)) (1.10)
and that (I.8) can be _rewritteri . R
‘ guu = Jua(8y + € A7) - (L1

Then we can expand it as

\/'—_.\/-—det = sexp(= Trln( ))

=z-exp( Trin() + & Trln(é"wh ))
(lTr'(fchS_— -f~c‘h hﬂ+— Sh hﬂ+0(f€4)))
2

: 1 o1 1 31« B 4
gexp(—émh —Zﬁzh hﬂ-f—gﬂ h”h’éha—i-(?(/c ))

v—\/‘<1+ h+——(h2 215 hj)

+ (h3—-6hhﬂhﬂ+8h”h )+0(f€4))'

—gJ exp
(L12)
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Similarly we can expand the other GR quantities in terms of h,,. First, the Christoffel

symbol can be expressed as

R N N S A () I ( & T

where
I‘(O)",,a = f*,;:a

= gé”" (hau;a + haa;u - hau;a)
. : (114)
h,,gpa (hau;oz :1‘ haa;u - hau;o-) » \ ‘

1"(1)",,0,

2
K
F(2)“,,a =5

3 .
I‘(3)MV = %hgh‘ggﬂa‘-.(hgy;a + ha'a;r/ - hau;a)

o

From this we find that the Ricci tensor becomes

R,y = R + R + RE) + B + O(x*) (1.15)

o

Where, as before, REJZ) ~ (9(&’_‘). Specifically,

RELOV) = Ruy N
RE}V) — p(l')f\#/\;y — F(l)’\,w;A

K , B B
=3 (hﬁ}a;uu - hﬁu;m —h vipa T hl“’; ﬂ)

REAZV) = I‘(2)/\u>\;; - F(z)'\;w;/\‘ w10
+ F(I)T;Apr(l)pru _ F(I)TMVF(I)pr |

R](,LSV) = F(3)/\;L)\;l) - F(B)ANVM

Lo, r®e , 4 T, TWr,,

- F(I)TWF(Z)PW — F(2)TWI‘(1)”W

e

And so, the Ricci scalar 1s

R=RO® +RY +RP +R¥+0(x") RSt
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‘where,

RO =FR
RW = —nhaﬂRaﬂ + flaﬂ(r(l)?‘ak;ﬂ - F,(I)Aaﬂ;'\)
= w(h8.% —hEE) | (118)

R® = §°RC) — kh*PR}) + s?hEh*P Ry

| R(3) :kgzaﬂR((ng _ lﬁhaﬂR((fg + fc2hﬁh”ﬂng _ m3hghghﬁ:}]%aﬂ-



Appendix II. Expansions of Green Functions

In the derivation of the string-based rules we need expressions for the string Green functions

and the1r derlvatlves in the limits v — 0 and T,v — oo. Here we give the relevant parts of

these expressions (see ref. [3]).

II.1 Open String Green Functions

As discussed in the text, the basic Green function in the open string case is defined via

“the two-point correlation function (4.18):

(Ku()Xo () =G (i) ~
(IL.1)

‘ o .. )2
S _5’“/ <log ‘2 Sinh(l/ij)" —_ Qﬁfl_ — 4qsinh2(1/,'j)> + O(q2)
(Where 1/,] =uv;—v) | .
The infinite tension limit 1ncludes the derivatives of thls GB(V) ‘3VG1'9(V) and

GB(V) 1 102Gp(v). The second is removed by integration by parts, so we only need

b, . . .
11m1tmg expressions for the Green function and its first derivative.

In the limit v — 0, we have y S
| exp(Gp(v)) ~ v71m
Gp(v) ~ v}
In the limit 7,v — 00 | ‘
xp (Gs(v)) ( v lvl) x constant ,
ex g(v)) —exp| —— { ,.
- , o (IL2)

GB’(V)‘ — ;_V- — sign(v) (-21- +exp(—2|v|) — qegp(2 [v])) .

(recall that ¢ = eXp(f2T))

L}

I1.2 Closed Strmg Green Functlons

In the closed strlng case the Green functlon is defined in the same way, but is now a

functlon of a complex variable.
(X, (V,. V,)X (1/],1/])) = 5WGB (Vz f‘ VJ) o ‘ | ‘
3 V)2 .
= 6,0 (log |2 smh(lv,]l)l - (l ;l) —~4q s1nh2(|v,~j|)> + 0(¢®)
- - (IL3)
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(where vi; = vy — v;). As well as the Green function and first derivatives, G B(v) =
- 18,Gp(v) and GB(V) 13;Gp(v) we must also include Hp = 10,0,Gp(v)
In the limit ¥ — 0, we have ) |

exp(Ga(v) ~ | H/"
s~y G -r (I

(We do not require the v — 0 limit of H g.) In the limit 7,v — oo

exp (Gp(v)) — exp <( V)’ - 13 1) > constant

| Gp(v) — %— — sign (Sv) (% + exp(—2[Sv|) — gexp(2|Su|)) i (IL.5)
GB(D) —g{— — sign (Jv) (%— + exp(—2(37|) — lep(2 (%ﬂl)) :

To find Hp in this limit we need only consider the first terms in the expansions of G 8(v)

and GB(V) Notmg that v—i= 2\s(1/) it is clear that

vV—v 1 '
%:C5(v) = 2,65 =0 (557 ) =357 )
So,
- Vi, j. (I
HE =557 - i, ] : (IL7)

Lookmg at (I11.5) we would e\:pect that there should be a é-function included in (IL.6).

Work in ref. [13] implies that this can be ignored for our purposes. We have confirmed this

(in calculations of physmal amphtudes) with exp11c1t tests: D1ﬁ'erent choices of the way we

mtegrate by parts will produce different o occurrences of Hp. Any omitted §-function would

be seen in inconsistencies between the results found.

In our description of the string-bas'ed‘rules, we have adjusted the location of some minus

signs for the sake of simplicity. Note that we define the variables z; by

i
&2

&2

,l

T;

i - (11.8)
T - ~ ; ~
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This would imply the limit
Gp(zij) ~ — 1 sign(zij) + zi;
- '1 . . (II.Q)
GB(zij) ~ = (=3 sign(zy) + i) .
We have actually chosen to make the two substitutions the same. Changing the sign of

the second term requires us to change the H substitution (IL.7) to

' 1

5T (11.10)

iy
Hy =

- (Each occurrence of an H effectively replaces one Gp and one Gp.) We also require an

additional overall (—1)", where n is the number of external legs.



Appendix IIl. Spinor-Helicity Techniques

One major simplification which has been widely used both in QED and QCD caleulations
“and in the work presented here'is the spinor-helicity technique. In this method we calculate
amplitudes for specific choices of external helicity. Since there is né interference between
different helicity configurations, the total cross-section can be found by summing“ over
all possible helicity amplitude's; Working with specific helicity choices allows significant
.Simpliﬁcations to be made in the calculation process. In particular, for external on-shell
. particles we can use the representation for the I{eliéity vectors introduced by Xu, Zhaﬁg

and Chang [19,2]. In this representation helicity vectors are written as products of spinors

dependent on the particle momentum and an arbitrary reference momentum.

The basic notation which we use is o
(p+19=)=Ipd

g (I11.1)
(p—lgt)={re)

"o

with |¢g—) and |¢+) are pésitive and negative helicity rfla_ssless Dirac spinors respectively

(ie. g-v|gE) =0and|¢t) = 1(1£19s)|g£)). The normalisation is chosen to be such

that

(p£ |’Y# [p£) = 2pu (II1.2)
It is possible to show that we can relate vectors and spinors of the same helicity by a

linear transformation: - _
er (p) ~ ur(P)1uv (IIL3)

where v is a second spinor and v, are the usual gamma matrices. Further, we can always

%, such that v = | k+) (with k> =0 and k- p # 0).

choose an arbitrary momentum,
In‘Cludin‘gﬂvsuitable normalisations we can define the helicity vectors by

(p £ lyulkt) ‘
R =F ok ) o

L
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The choice of k is related to the gauge. So, a change of k leads to a gauge transformation

Hip k) = et p: V2 (g k)

Note that this shows clearly an assertion which we make in the text: If we replace an

| (iII.5)

epsilon vector with its equivalent momentum vector, the result will vanish. If this was not

true then (IIL.5) implies that amplitudes will not be gaugé invariant.

Having set this representation up, we find that judicious choices of reference momenta,

can simplify many calculations. If we represent the polarisation vector for a particle of

o momgnta k; with reference momenta ¢, then we find |
et (ki g) = (g k) [kjki] ki e (kia) = [a k5] (k; ki)

R 177~ R T
_ (%5 kil (g p)
et (ky;p) - et (ki;q) = p) ki)
N = (k; ki) [ap]
ki) 0 = o)

? (ki;p) e+(kz,9)*‘ <q}_“) [k; )

" (11L6)

From these we can deduce usefﬁl identities for specific choices of reference momenta
et (kj;q) - 5 (kis) =0
eX(kjiq) €7 (kis k) =0 | (II1.7)
g- e (kjzq) =0

Also, as required, we confirm that these definitions imply

k;- et (kj39)=0 - - (I11.8)

We can also extend the spinor—hélicity technique so that it can be used in PQG and SUGRA

theories [20,21,88]. Gravitons are spin-2 particles, so their helicities are represented by rank

2 tensors rather than vectors. We can, however make direct use of the above method by

Q@

noting that the tensors can be written as

€ur = €uCy (111.9)
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e and € can be treated independently as helicity vectors during the calculation (in particu-

lar, implementing the above techniques) and the full tensor reconstructed at the end [84].
We can take a similar route for gravitinos [88]. i
 While these techniques are useful in all amplitude calculations, they are particularly
relevant for the teéhniques we have focussed on. Note that in st‘ring calculations all helicity
vectors occur in terms like ¢; - €jor k- ¢; at the beginning of the calcul.a,tion. If we use the
above, with clever choices for reference momenta, we can significantly reduce the nuﬁlber
of terms we must deal with before we start. Also, in the cut techniques the helicity

“method provides a very compact way of repfesentlng the tree amplitudes, simplifying the

subsequent work.
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Appendix IV. Supersymmetric Identities

Supersymmetric theories are constructed with symmetries between particlesvof different
types, so 1t is not surprising that they generate relations between different amplitudes in
the theory. As expected, we can use these symmetries to find a large set of supersymmetric
results given a small number of amplitudes [22].” More sﬁrprisingly, we also find th;it it
is possible to use these to rel.ate some non-supersymmetric amplitu(;les [23,2]. Here ﬁe
show how these relations can be constructed and give the results which we uéed in ouf

calculgtions. We begin with a reminder of the essentials of supersymmetric theory.

IV.1 Amplitudes in Supersymmetry

Supersymmetric theories are theories containing one or more charges, Q¢ .which have
spin oné half. (The number of such charges in a theory is generally denoted by N; The
most common supersymmetric fheories‘ considered are those with N < 8.) These charges

will take fermions to bosons are vice versa. The @'s transform as spinors under Lorentz

transformations, so we can define )

Q'(n) =7" Q4 v

where Q¢ are generators which form a Majorana spinor and 7, is a fermionic spinor

parameter.

If we then look at the case of an N = 1 supersymmetric multiplet containing a

graviton, g, and a gravitino, P, (Thls is the example used in ref. [22] However, here we

carry out the analysis using the sp1nor-hehc1ty formulation as in ref. [2]. This formulation

fits more closely with the presentation of our string 1nsp1red and Cutkosky results.) The

commutatlon relations of the creation operators with Q(n) are

[Q(n), aF] = £T*(p,n)a};
v (IV.2)

[Q(n), aZ] = £TF(p, n)ag
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postive

negaﬁve) helicity graviton and af}f is the creation

Here a;“ is the creation operator for a (
operator for a (P"Sti?’e ) helicity gravitino. As elsewhere, we take all particles to be in-going

negative

(so we will not consider equivalent formulae for annihilation operators).
We may define the I" terms in a ‘spinor-helicity way’ as

I*(p,n) = fu—(p) ' (1V.3)

.

(Note it must be both a spinor and linear in 7.) 7 is completely arbitrary, up to having

zero norm, so we can choose it to be the product of a Grassmann parameter, 6, and a

| positive-helicity spinor of momentum k, u_(k), implying

() = 6us(Ru(p) =0k (Iv.4)
Simil@r'ly, we can put

I~ (p,n) = Gu—(k)us(p) = 8 (kp) (IV.5)

Then; with a slight change of notation,

I't(p,q) =0 [kp]

I (p,q) =6 (kp).

IV.2 Construction of Identitiés
The starting point for us1ng supersymmetry to relate amplitudes is to notice that in an

unbroken supersymmetnc model the supersymmetric operator anmhllates the vacuum,
Qil0) =0
(Ol Qi =0,

(IV.7)
where Q; is a supersymmetric operator. Hence, if {a;} is a set of n supersymmetric creation
13

and annihilation operators, then

(0[Qirar @z ... an]|0) = 0. (1V.8)

]

(IV.6)
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This can easily be expanded to giw}e the Supersymmetric Ward Identity
n | . .
z (Olar---aj—1{Qi,a;] ajy1 - an |0) = 0. - (1v.9)
j=1 ! . B -

By astute choices of a;’s and use of the above commutation relations it is possible to

construct a number of useful relations between various amplitudes.

As an example of the pdwer of these relations, let us consider a number of derivations

using the technique with V = 1 (9,%) and N =2 (g,%, 7) supersymmetric multiplets. .
N=1

First, we can easily show that A(g*, g%, g%, ¢%) and A(g™, g%, g%,9%) are trivial in any

supersymmetric multiplet. .
- From equ. (IV.8) we have

Which gives, expanding as in ¢qu._(IV.9) ‘
D= (ks,0)(0l (k) (k) af (k) (k) )
+r+(k2,q)<o[ag(k1)a$(k2)¢;(k3)a;r(k4) o)
F b, (01 k1) o k) k) (B 0 -
+T7* (ks, 0)(0] a;',(k:)a;*(kz) agf (k) a(k4)[0) =0.
The three terms wi.th fermions c_;f th.e_ same helicity vanish since inféfactions with gravity
conserve helicity. Hence, | h

Agt, g9t 0t) =0 (IV.12)

Similarly, consider -

Ol af ) BRI =0 (V1Y

(01[Qs, a (k1) af (k2) af (ks) af (k)] [0) = . . (Iv.10)
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which implies
D™ (k1,901 0 (k1) a (k) o (ks) ay (k4) [0)

T (ka, 0)(0] (k) af (ka) a5 (ks) ay (k) [0

\ (IV.14
+T7 (ks, 9){0] af (k1) af (k2) a (ks) a; (ko) |0) )
-I- (k4,Q)(Ol b (kr) ag (k2) af (ks) ay (ks) |0) =0.
Again, the middle two terms vanish by helicity conservation. So,
~I7(k1, )A(g 9%, 97,97 ) I~ (k4,q)A(¢+,g *,97)=0. (IV.15)
If we choose q = k4, then ['~ (A4, q) 0 and we obtain
Algtigt,9%,97)=0 © ' (IV.16)

(NB. Choosing, instead, ¢ = ky gives us A(gt,gt, 9, ™) = 0.

As well as identifying trivial amplitudes, the same method gives relations between

non-zero amplitudes. As above, we begin by considgring

011Quaf () e ()af (h)ay BT =0, (v

imply‘ing
T=(ks, )(0] a3 (k) 0 (k2) f (ks) ay (ki) [0)
~T~(ka, @)(0] @ (k) @y (k2) af (ka) a5 (k) 0)
. (IV,18)
+I (b, 0] (k) 25 (k)85 (k) 2y () 10) |

~T~ (ks, 4)(0) a;(ki)a;(kz)q;(ks)a;(h) 0} =0.

The third térin vanishes as before; choosing ¢ = k4 and using relation (IV.6) we find

(14) A(g*,97,97,97) = (24) A(«ﬁ*qﬁ‘,g*,g") ~(IV.19)
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N=2

If we wish to consider amplitudes with gravitons and particles other than gravitinos then
we must use a SUSY multiplet with N > 1. For instance, let us consider amplitudes
with photons and gravitons. For this we need to use the N = 2 multiplet which is con-
structed from a graviton, two gravitinos and a photon. First we must note that the N = 2

Lagrangian is invariant under the infinitesimal chiral transformation [49]

&/’u = i’75¢,u 0d = _i75¢u (IV.QO)

»

where z/)# and ¢, are the two grav1t1no ﬁelds
We deduce that 1-1-boson and ¢-¢-boson vertices conserve hel1c1ty, Whereas a Ph-¢-

boson vertex will violate helicity maximally. It then follows that, .

A(*,4*,B,B')=0 A(¢*,¢%B,B)=0

- A(Y*,4%,B,B") =0

(IV.21)

where B and B’ are bosons of either helicity. .

We may proceed as before, but must keep watch on which gravitino field is involved

in any partlcular SUSY transformatmn (Recall that we now have two SUSY generators.)
We work with the following notat1on: |
(Q1,0%] = +T%(p,q)a% [Q2,a7] = £T¥(p, )a
[Q1,a%] = TF(p,q)af  [Q2,a3] = £ (p,q)aj ’
v T (IV.22)
(Qs,a%] = T%(p,q)aT  [Qi,dy) = 215 (p,q)a3

[Q1,05] = +I%(p, g  [Q2,03]=FTF(p, g)at

As b_efore we begin with a trivial result Alg= 97,77 Y) = 0. Qur startihg point for

this is
Ol[Qn oz ()t (k) af () as (RN =0 (V.23)

*
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implying,
D= (ky, 9)(0] a3 (k) a2 (k2) a3 (ks ) a7 (ko) )
T (k2 0)(0 a3 (K1) (k2) (ks ) a5 (ke) [0
T (ka, (0] a3 (k) aF (ka) o (ks ay (ko) [0

=T ke, (0] 0 (k) a5 (k2) af (k) g (k) [0) = 0.

(IV.24)

By the above observation, we can immediately see that the all terms bar the third vanish.

"This 1mp11es that the third term must also by equal to zero, proving the result.
-For the Cutkosky calculations, we also require the equivalent relation to (IV. 19) for

other particle types. Here we look at the result for A(y+,7=,g*,97). This amplitude can
be found from
| (011Q2, a5 (k1) ay (ks) af (ks) at (k) ]10) = 0. " vas)
which expands to give :
I (kl’Q)<0,a¢(kl)a¢U”2)a (kS)a (k4)10>
Tk, 0)(0] 65 (k) a5 (k) af k) af (k) [0)

: - (IV.26
+T (s, 0)(0 a (1) ag (kz) ag (ks) a5 (k1) 0) V20
T (kay )01 a5 (ky) g (k2) a5 (ks) af (E4) 0) = 0.

The third term vanishes and we take ¢ to be k1, giving -

(12) A(g™,7 7,97, 7") = (19 Alg™ ¥ 7,97, 97) (IV.27)
Whlch combined with (IV. 19) glves
L 14

Alg™, v 9T 7) = ( >2 Alg™,9 9% 9") - (IV.28)

These results can easily be extended to different multiplets to give a wide range of

results.
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I1V.3 Applications
There are a number of ways we use these identities in our calculations. First, we noté that

the results obtained above,

ASUSY(9+ gt,gt,97)=0

(IV.29)
AU (g%, g%, g%, 9%) =0
are in agreement with our result that, at 1-loop,
Afermlon(g-l- + +7g ) _ Aboson(g+ + +’g ) .
(IV.30)

Afer“‘i“(g*,g““,g*,g*) = —Abeson(gt gt gt gt
for any boson aﬁd fefmion in the loop. This can be deduced from the SUSY identities
and noting fhat every multiplet has an equal number of fermions and b'osons‘?and'that the
SUSY amplitudes factor into a sum of amplitudes from individual particleé. The latter is
becaﬁée a éné-loop émplitude can only include at most one other particle together with
the gréviton. (This can be.seen by looking at the matter-gravity vertices.)

So, for instance, for the (¢, %) multiplet | v

‘ASUSY(g-!-,g g+,g+) =0
(Iv.31)
= A%(gt, g, 0T,0) + AV (g, 9T 0T 9h) =0
Which generalises if we look at other possible SUSY multiplets. Thus, we have a simple

confirmation between theory and Calculation.

Second, there is e)ict’ensive use of these results in the Cutkosky derivation of the one-
1oop graviton- scattering amphtudes For this we require A"**(g~ g%, X~ X71), where

X is any particle. By using supersymmetrlc identities, we can easily see that for any

supersymmetric multiplet containing X and ¢

% ‘ 1 ree
S AT,y + X" X+)_§ 3§ A" (g ,9Y,97,9%) (Iv.32)

- (where y depends on the type of particle X ).
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In the Cutkosky calculations we used this result outside a supersymmetric context.
This is justified by the following argument: The minimal coupling of gravity to other fields
implies that each vertex containing both gfavity and some other field, X, must have at

least two X particles. Since only one of these particles can be internal (more than this

would imply a loop in the bdiagram), the only possible contributions to A*%(g,¢,X,X) .

are those in fig. IV.A. .

X X
g \\\ - g \\\ X
+ + N
g .’ X g .’ X

Figure IV.A Contributions to A**%(g,¢, X, X)

If is clear that the trées depend only on the"éxter.nal particles involved (ie they are
independent of any particular supersymmetric multiplet.) and‘ca,n be used in a general
way. _ - B | o
We saw above that A(g*,g%,9v%,¢7) = 0, which is the first confirmation of our
assertion that gravity does not.‘ﬁip particle helicities at tree level. We can use SUSY
identities to show this is true for other particlesh. For instance, consider repeating (IV.25)

with the change a;, - a;};. If we note that; at tree level, (0]g¢1g|0) = O then a similar

»

argument leads to the deduction .

Algm gt =0
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Appendix V. Supersymmetric Decomposition

We ﬁnd that the most useful way to organise one—loop graviton amplitudes is with a ‘SUSY
decomposition’ inspired by strlng theory. (For use of this method in QCD and electroweak
theories see [15,24].) Rather than calculating amplitudes for individual particles, we do so
for certain combinations. In particular, we choose certain SUSY multiplets. Results for
any combination of particles réquired can then be found from the SUSY amplitudes. This
method allows us to express a set of results in its most compact form and simplifies the
. calculations 31gn1ﬁcantly when a suitable calculatmnal technique is used. In the Cutkosky

rules, amplitudes containing the larger multiplets can be constrained more strongly than

those for individual particles.

. 8 ‘
Figure V.A Vertices containing gravitons (solid line)
plus other particles (broken line).

.
To see how such a decomposition is possible, coﬁsidef that particles coupled to gravi-
tons come in pdlI‘S (fig.V.A). So, if we consider one loop diagrams in which the only external
particles are grav1tons then we know that they must be constructed from the (one particle
irreducible) building blocks in ﬁg.V.B. Clearly, this means that, for this subset of ampli-
tudes, only one pa,rticle_otherr than‘the gravitons can be involved at a time. So, amplitudes
involving specific choices of internal Rartigle types are independent from each other.
While we can cs,lculate tl‘lev contributions from individual particles, the independel.lce‘
of the amplitudes implies that we can calculate linear combinations of the contributions
and extract the individual‘ answsrs at the end. We might hope that, with good choices
of the lihezir ct)mbinations, we could reduce the necessary calculations to a small simple
set. Sirtce SUSY has simpler results than those from its constituent particles, we might

expect the linear combinations of SUSY multiplets to be the most profitable. We find
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N ’ '.‘: .
- - - '-o , ’
_________ Pure graviton trees

Figure V.B Building blocks for a one-loop graviton amplitude.
Gravitons and other particles are represented by solid and
broken lines respectively.

in our calculations that this is indeed the case. The multiplets which we choose are the |

N = 1, 4, 6, 8 multiplets centred around the scalar. That 1s, the multiplets in table 5.2.
S‘o, in practice We calculate for each ef theee SUSY fnultiplets and find expressions for
specific individual particles by using ~ . | .
: | A[o]‘z AN:O - |
All/2] — gN=1 _ 4lo]
Al = gN=t _ g 4N=1 4 4l0] (V.1)

AlB/2] _ gN=6 _ g N=4 L g N=1_ ;1[0]

| A2l = gN=8 _ 8AN=6v + 2QAN=4 — 164N=1 4 4l0]

With F eynm;n diagram methods it is hard to see the advantage of euch an approach,
since particles of different types are treated differently and Feynman diagrams invelving dif-
fefent particles are eva,l}lated sepa;ately. HoWever, in both the string-based and Cutkosky
methods all particles are treated in es§entially the same way and significant simpliﬁcations-
are seen within diagrams when we use this approach. (There are also simplifications seen
in superfield calculations when the background field method is employed [91,92].)

" In the string-based rules we eee the ’simpliﬁcations as cancellations between the com-
mon confributions within multiplets. In terms of the notation from chapter 4 and Feynman
paramektvers, we can deduee that for a general n-point diagram S there will be a polynomial

of degree n; the cycle contributions, Cy and Cr will be of degree n—2 and Cv — 4CF will

[ ]
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be of degree n — 4 (the 2- and 3-cycle contributions will cancel in the combination). For
each particle type, there is a scalar contriBution N,[S,S] where N, counts the degrees of
freedom (with fermions having neéétive Weiéht). Hence, for any supersymmetric multiplet
the [S, S] term will cancel and the Feynman parameter polynomial will be simplified. For
higher N supersymmetric multiplets, we see combinations which leave precisely factors of
the form Cy — 4CF (see table 5.3 for explicit détails of this). Sé, for increasing N, the
degree of polynomials which appear in calculations decreases and the cycle contributions
‘which must be considered are simplified. .

In fhe Cutkosky method ‘We find that‘ th‘e SUSY multiplets produce particularly com-
pact expressions, reducing the complexity of the cut calculations. We also Jfi‘nd that the
ﬁ.rliqueness‘ theorem (see section 6.3) implies that it is the amplitudes for multiplets of

higher N which are most tightly constrained by the cut results.

»
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Appendix VI. Epsilon Tensor Expansions

Many of our cut calculations require us to consider traces of the form

tra(Fifafsfa o) = 3tr((1 +ys)fa fafsfa ) (VL)

(We often abuse notation and write this as tri(1,2,3,4,...),‘ tra(f1fafsfs---) or some

combination of the two.) For a trace of this kind involving four momenta, we can write

this as

tra(Frfofafa) = gtr(Frfafsfe) = fe(ke, ko, ks, ky) (VI.2)‘

with
| 6(]{71, kz, k3, k4) = —4ie""””k1#k2yk3¢k4p . (VI3)

L

The tr(f1 f2f3fa) is easy to deal with, it becomes [1]

)

(R kabo) = 4((ky - Ba)(ks ™ ka) = (ky - Bo)ka - Ba) + (ky - ka)(ka - ks)) (VIL4)

L]
The e-functions require slightly more work: Note that we are considering amplitudes with

four extérnal‘ morgenta. These are related by
itk ks + ke =0, (VL5)
s0 we énly have three indepéndent‘ momenta in the theory. This implies that [17]
| /d‘*le(l, ki ki km)=0. B (VI_.6)‘
Mofe generally, | | |
/ AU elly i, by k) B R B ) =0, )

unless f contains something which will alter the e(l, ks, kj, km ). In fact, another e-function

will do 'f‘his since producfs of e-tensors produce sums of Kronecker deltas. So, we can
b

discard products of odd nuniBers of e-functions. We will expand a product of an even
L]
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number as dot-products of momenta. To enable us to do this, we list here explicit results

for the products of e-functions required in the text.

A product of 2 e-functions can be written explicitly as
e(a,b,c,d)e(e, f,g,h) = —16 e“"”"e"'"l”l"’a“b,,c,,d,,eﬂ,f,,,gp/har (VL.8)

So,we can use [1]

¥

(VL9)

hvroen'v'ele! ~det(nae’) » @ =p,v,p,0
a=uy, v p, o
t(; rewrite this as‘ an expression consisting only of dot products. Obviously this v.vill be a
large and compiicated expression indgeneral, but if some of the momenta are shared between
the epsilon functions and are on-shell, itc.is possible to obtain surprisingly compact answers.

Consider first the case with two shared on-shell momenta
e(k1, ko, ks, ka) e(p1, o2, Fay ka) (VL.10)

with k3 =0 and k2 = 0.
We find this to be

16 (_(kl.p1)(k2.p2)((c3.k4)2 + (kl.p2)(p1.k2)(‘k3.k4)2
+ (k1.p1)(K2.b4)(p2.k3)(k3.k4) — (K1.k4)(p1.k2)(p2.k3)(k3.k4)
— (FLES)(pLk2)(p2 k) (K.4) — (kT.p2)(p1k3)(k2h4)(k3.b4)
T (kL ha)(pLE)(p2k2)(k3.k4) + (k1.E3)(pL.R3)(k2.ke)(p2.4) (VL11)
L (kLk4)(p1.k3)(K2.k3)(p2k4) — (KLp2)(p1 F4)(R2RB)(E3RE)

| ‘”+ (k1.£3)(p1.k4)(k2.p2)(k3.k4) — (k1.k3)(pLk4)(k2.k4)(p2.k3)

+ (kL1p1)(k2.k3)(p2.k4)(k3.k4) + (k1.k4)(p1.k4)(k2.k3)(k3‘.p2))
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Similarly,
e(ky, ko, ks, ka) €(p1, ko, k3, ka) =

16 (Q(kl.p1)(k2.k4)(}c2.k3)(k3.k4) + (kl.ké‘)(pl.kQ)(k3.k4)2

— (k1.k4)(pLk2)(k2.k3)(k3.k4) — (k1.k3)(pl.k2)(k2.k4)(k3.k4)
— (kLE2)(pL.k3)(K2.k4)(3.k4) + (k1.k3)(pL.k3)(k2.k4)?
- (1h4)(pLk3)(h2.h3)(h2.h4) — (K1.k2)(pLk4)(h2.k3)(k3.k4)

— (k1.k3)(pl.k4)(k2.k4)(k2.k3)+ (kl.k4)(p1.k4)(k2.k3)(k3.k2))
o (VL12)
Ob';fiously, the simplest form comes from the case where all momenta are shared and
ori—shell:’ ]
e(kl, kz, k3, k4) 6(kl) kZ’ k3a k4)
=16 ((kl.k2)2(k3.k4)2 — 2(k1.k4)(k1.k2)(k2.k3)(k3.k4)
| : " N (VI.13)
+ (k1.k3)*(k2:%4)? — 2(k1.k3)(k1.52)(k2.k4)(k3.k4) o

+ (k1.k4)%(k2.k3)? — 2(k1.k4)(k1-z!c3)(k2.k4)(k2.k3)).
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