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Abstract

The calculations of scattering amplitudes in gauge theories are well-known 
for the difficulties which they present. Traditional methods for obtaining per-
turbative results (e.g., Feynman diagrams) are often impractical in all but the 
simplest cases. This has led to searches for new techniques which simplify the 
calculational process and allow a wider set of results to be obtained. In recent 
years these searches have produced a number of new methods which have been 
used successfully to find many amplitudes in QCD.

Scattering amplitudes in perturbative quantum gravity are among the most 
difficult to calculate. The success of the new techniques in the standard model 
scenario suggests that it would be profitable to look'at extensions of these to 
PQG. Here we look at the ways in which two of these methods -  the string- 
inspired and Cutkosky rules -  can be applied in the new situation. We show 
how a set of string-inspired rules for one-loop graviton amplitudes can be derived 
by looking at a closed bosonic string and how we can use information provided 
by the Cutkosky method. As an example of > the string-inspired technique we 
calculate all one-loop four graviton amplitudes with massless internal particles. 
An application of the Cutkosky rules allows us to check these results as well as 
to obtain information about divergences in PQG theories. A combination of the 

- Cutkosky rules and dimensional reduction enables us to re-derive some of the 
string-based results and to extend these to cases with massive internal particles.

*
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Are you sitting comfortably?

Then I ’ll begin.

Julia S. Lang

1. Introduction

The ability to carry out calculations is an important part of physics. Whether we are 

interested in the formal aspects of a theory or its value as a model, calculations will be a 

prime source of information. Moreover, if we cannot use a theory to produce quantitative 

predictions then it will be practically useless. Consequently, the development of efficient 

calculational methods is vital for the continuing progress and serviceability of physics.

In quantum field theories (QFTs) the calculation of physical quantities is often a

difficult process. A large proportion of results cannot be obtained precisely, so we rely on

perturbative expansions to give us some approximation. These are expressed as a series in

some small parameter of the theory. Rather than looking for the whole result, we try to find

terms in this series. The conventional way for finding terms in such an expansion is the well-

known ‘Feynman Diagram’ method [1]. This involves drawing graphical representations of

all processes -  constructed from ‘propagators’ and ‘vertices’ . Each vertex and propagator

is related to an algebraic expression, derived from the Lagrangian of the theory. These

relations allow us to construct an integral expression for each diagram. We can class the

integrals according to perturbative order. The sum of all the integrals in a particular class

gives us the required term in the expansion.
■*

In principle, Feynman rules are applicable for all orders in the perturbative expansion. 

However, it will be clear to anyone who has attempted to use them for gauge theory 

calculations that they have severe limitations. In all but the simplest cases the method 

proves to be prohibitively complex; the combination of a large number of diagrams and 

difficult algebra often make the computation of any results beyond leading order (tree
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level) impractical. We might accept this as an inherent difficulty with the theory if the 

resulting expressions for amplitudes were equally complex -  a result of many pages length 

might be expected to require pages of calculation. In practice," this does not seem to be the 

case. There are many cancellations in the final sum of integrals, so that, while calculations 

can be very long, they typically produce results which can be written compactly. It seems 

that Feynman diagram techniques are a particularly inefficient way to carry out amplitude 

calculations.

This inefficiency is a severe drawback for particle physics. In quantum chromodynam-

ics (QCD) especially, higher order corrections are important in comparisons with experi-

ment and the lack of.results has left large theoretical uncertainties. In recent years, these 

problems have led to a search for alternatives to Feynman’s method; techniques which pro-

duce results by a more efficient means. At tree level there have been developments such 

as the spinor helicity method, colour decomposition and supersymmetric (SUSY) Ward 

Identities (see, e.g., the review in ref. [2]). In this work we will be concerned with methods 

for one-loop calculations (Next to Leading Order, or NLO). In QCD, two techniques have 

been particularly effective at this order -  the string-inspired rules [3,4] and an investigation 

of unitarity constraints [5], (Though we will not discuss them here, we should also mention 

other developments -  the worldline formalism (e.g., [6,7]), Mahlon’s recursive methods [8] 

and the investigation of collinear limits [9,10,11] -  which have proved useful.)

The string inspired technique was first developed by Bern and Kosower [3]. The 

essence of the method is the observation that string theories contain gauge theories in 

their infinite tension limit [12,13]. By choosing a suitable string and looking at this limit, 

it is possible to derive an alternative set of rules for amplitude calculations. These rules 

inherit many of the simplicities of one-loop string calculations. In particular, they seem 

to reorganise the contributions so that many cancellations occur early in the calculation, 

rather than in the final stages. Consequently, the amount of computation required is 

significantly less than with Feynman diagrams. In fact, the method is quite a contrast to



Feynman’s. It begins with a kinematic expression -  the ‘Master Formula’ -  which contains 

all the information for the amplitude. The rules are simply manipulations which allow 

results to be extracted from this. The exact forms of the ‘Master Formula’ and the rules 

depend on the initial string theory. Though the original manifestation was developed from 

a fully consistent heterotic string [3], it was later shown that an alternative version could 

be obtained by analysis of the simpler open bosonic string [14,15]. This, in turn, produces 

a simpler Master Formula and set of rules.
it

The second technique takes a completely different approach to the ‘direct calculations’ 

of both the Feynman and string-inspired rules. Instead, it focusses on the mathematical 

restrictions which can be placed on amplitudes. With the information which these provide, 

some attempt can be made to reconstruct expressions for the results. In this case, the 

mathematical restrictions are found using the Cutkosky rules [5,16,1]. These rules allow 

us to find discontinuities of an amplitude by looking at integrals involving amplitudes of 

lower order. If we can relate these discontinuities to other terms which might appear, then 

we can begin to reconstruct the full expression. So, for instance, we can determine the 

absorptive parts of a one-loop amplitude from our knowledge of tree results [17,10]. From 

this we can deduce which logarithmic terms must be present and place strong constraints 

on the total form. This provides a good check on calculations by other methods but, 

generally, ambiguities prevent us from determining the complete result.

The advantages of this Cutkosky-based technique are clear -  since it can be used purely 

at the amplitude level, it circumvents many of the problems associated with Feynman 

diagrams; trees can be simplified before the calculation and late cancellations are reduced.
- it*

The limitation of the method seems to be the ambiguities in the results. However, there are 

two ways in which this limitation can be overcome: First, looking at the basis of functions 

required to construct one-loop amplitudes, it becomes clear that many SUSY results are 

uniquely specified by this method [17]; the combinations of functions which cause problems 

are not relevant in these cases. Second, all results can be found precisely if the method is

Introduction



carried out in a dimensional régularisation scenario (i.e. 4 —2e dimensions) [18]; analysis of

the basis functions implies that knowledge of the discontinuities at O(e) gives the complete

amplitude at O(e0). By using the Cutkosky-based approach in these ways, we can go

beyond merely checking previous calculations and find new results.

The two one-loop techniques also allow us to incorporate other simplifications. For

example, the tree-level techniques mentioned above can be used to great effect. The spinor

helicity method [19,20,21] expresses helicity vectors as products of Weyl spinors. In this » .
form many inner products involving these vectors vanish. In addition, expressions for 

amplitudes can be written in a particularly compact form. Using this method, the ‘Master 

Formula’ in the string-inspired rules and the trees in the Cutkosky method can both be 

simplified greatly. The SUSY Ward Identities [22,23,2] are also useful in applications of 

the Cutkosky rules. In SUSY theories, it is possible to relate amplitudes with different 

external particles. At tree level, the difference between SUSY and non-SUSY amplitudes 

is largely cosmetic, so we can use these SUSY relations in a more general context. As tree 

amplitudes are the basic building block in the Cutkosky-based one-loop calculations, these

relations are a useful tool for simplifying the process.
* *

A further application of SUSY which comes in at the one-loop level is the super-

symmetric decomposition [15,24]. This is another technique inspired by string theory. It 

suggests that the most efficient way to calculate a complete set of amplitudes is to concen-

trate on those for SUSY multiplets and then to reconstruct others with linear combinations 

of these. We have already mentioned that considering SUSY multiplets in Cutkosky cal-

culations is one of the ways of finding complete amplitudes. In addition, for both the 

string-based and Cutkosky methods these results involve the simplest calculations.

The combination of the string-inspired rules and the Cutkosky-based method (together 

with the SUSY and spinor helicity simplifications) have led to a range of new results. In 

QCD, they have produced all one-loop four- and five-gluon amplitudes [3,4,25] and one- 

loop n-gluon amplitudes with specific helicity configurations [10,17,26]. They have also

Introduction 4
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contributed to the calculation of QCD amplitudes with two external quarks [27] and some 

electroweak results [24].

Even within QFTs, quantum theories of gravity -  for instance perturbative quantum grav-

ity (PQG) [28,29] and supergravity (SUGRA) [30] -  are renowned for the calculational dif-

ficulties they present. The large number of different processes and the algebraic complexity 

of contributions conspire to make the majority of calculations practically impossible. A 

comparison with QCD shows the problems clearly: The Feynman rules for PQG include 

more vertices than QCD and the vertex formulae are more complex. In addition, PQG 

integrals typically involve more powers of loop momenta. Clearly, quantum gravity am-

plitudes will be harder to obtain than the (already difficult) QCD equivalents. As before, 

we can contrast the computational difficulties with the relatively simple results found for 

typical amplitudes. . .

Given the success of the new techniques for QCD, we might wonder if we can use

similar methods for quantum gravity. This is the question which will be addressed in this

thesis. We will take the work outlined above and look at the ways it can be adapted for ,
♦

PQG and SUGRA calculations. We will see that both string-based and Cutkosky-based 

methods can be used successfully in this new situation. As in the QCD case, these two 

methods will also allow us to use spinor helicity and SUSY methods to simplify amplitudes 

further and calculate more efficiently.

1 The development of string-inspired rules for gravity closely resembles the QCD case. 

Again, we find a relevant string theory and look at the infinite-tension limit [31]. Again, 

we find a ‘Master Formula’ and a set of rules which can be used to extract amplitude 

expressions. The primary difference between the two cases is the starting point; open 

bosonic strings do not include the spin-2 graviton required by PQG. Instead, we must look 

at a closed bosonic string [12]. While the derivations in these two cases are similar, we 

find the closed string case includes some complications: The closed string has two sets

*
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of variables -  left- and right-moving -  where the open string has one. Consequently, the 

string expression will include components of both sets, as well as interactions between 

them. Thus, we expect the string-based rules for gravity to resemble, but differ from, 

those for QCD. *

The Cutkosky rules can be used in precisely the same way for any theory, so we do 

not need to make changes for gravity; the difference will be the amplitudes which we use as

building blocks. We will look here at analogous exercises to those carried out in QCD -  the
» .  ,

reconstruction of one-loop amplitudes from trees. As in QCD, we can use this to find some 

SUSY amplitudes exactly, though the number in gravity is reduced significantly. In gravity, 

the method is useful-even when we cannot find complete amplitudes; the Cutkosky rules 

can be useful for investigating the problematic divergences which plague these theories. If 

we are interested in obtaining a wider range of complete amplitudes then we can again 

turn to the combination and dimensional régularisation.

As examples of these methods we will look at the calculation of one-loop amplitudes
»

with external gravitons. We will also use the Cutkosky rules to investigate some of the 

one-loop divergences in PQG.

The work presented here is structured as follows: In the next chapter we outline the 

conventional construction of perturbative quantum gravity and give a brief discussion of 

supersymmetry and supergravity theories. Since the major problems in quantum gravity 

are related to divergences and renormalisability, we go on to look, at these in chapter 3; 

calculations later will help to confirm or extend existing results in this area. In chapter 4 

we review the string-inspired technique for QCD and include a sample calculation. This 

introduces, in a simpler case, many of the ideas required in the extension to gravity. We 

discuss this extension in chapter 5. Using the string-inspired rules we are able to calcu-

late all the one-loop four graviton amplitudes; that is, all amplitudes with four external 

gravitons and any choice of internal (massless) particles.
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In chapter 6 we introduce the Cutkosky rules. We use these as check on the amplitudes 

which we have calculated by the string-inspired techniques. We follow this with a short 

interlude discussing how to find infrared divergences in one-loop quantum gravity ampli-

tudes. We can use this to confirm that only IR divergences occur in the one-loop graviton 

amplitudes but, more importantly, it prepares us for chapter 8 in which we calculate di-

vergences in a wider range of gravity amplitudes using the Cutkosky techniques. Since we 

can identify IR divergences independently, we can use these results to find UV divergences 

in quantum gravity. We use these to confirm earlier derivations of counterterms and to 

obtain new information about those previously unknown.

We end our calculations in chapter 9, where we look at the extension of the Cutkosky 

technique commented on above. Combining Cutkosky rules with an explicit use of dimen-

sional régularisation gives us the potential to recover any one-loop amplitude efficiently. 

As an example of this we re-derive one of the earlier results found with the string-inspired 

rules. We also find an expression for a four-graviton amplitude with internal massive 

particles. 1

After a concluding chapter, we end with a series of appendices which describe some of 

the less important techniques which we implemented in the preceeding calculations (SUSY 

Ward identities, SUSY decomposition and Spinor Helicity methods), as well as outlining 

some of the more technical aspects of the work.

«



We know that we live in contradiction, but 

that we must refuse this contradiction 

and do what is needed to reduce it.

Albert Camus

2. Gravity in Quantum Field Theory
* ; ' ; 

Gravity has long posed a problem for particle physicists. While we have a successful

classical theory in General Relativity (GR), this does not fit with our quantum theories of

matter in a neat ‘philosophical’ way. This is a puzzle which cannot easily be side-stepped

since matter is related directly to GR quantities in Einstein’s field equations (2.9). So, we

would like to find some consistent method to link GR to quantum field theories, preferably

by quantising gravity itself. The difficulty is that it is not clear what form such a quantum

theory of gravity should take -  all those proposed have flaws of some sort. A continuing

problem in all investigations in this area is the difficulty of calculating quantities, as we

discussed in the Introduction. In particular, this has made hard work of attempts to

understand the formal problems such as renormalisation (see next chapter). Hopefully,

some of these restrictions will be relieved by the work presented here.

Before we look at the new calculational techniques, let us sketch the scenario in which 

we will be working. We will begin in the next section by giving a brief outline of GR. 

Following this, we will go on to discuss some of the conjectures for describing gravity in a 

way consistent with theories of matter. We will then look in detail at those to which our 

calculations will apply -  the Lagrangian-based theories. This will involve short descriptions 

of the approach which we take with the pure gravity Lagrangian, the ways in which bosons 

and fermions are coupled to gravity and extensions to SUGRA. Finally, we will give an 

overview of the previous calculations which have been carried out.
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2.1 General Relativity

Let us begin with a very brief overview of the essential aspects of General Relativity to 

establish notation (for all full discussion see, e.g., [32]). GR is an extension of Special 

Relativity (SR) which includes gravity. To begin with, the Lorentz transformation of SR 

is replaced by a general coordinate (gauge) transformation:

x'1 —> x'^ix) *'•
- (2.1)

. . d x * d x 1* =  A» Ax'".
•*

(That is, transformations under the group GT(4,TV}.) Scalars, vectors and tensors in the 

theory are then quantities which transform under the gauge transformations as 

p(V) -> d'(x') =  (f>(x)

Afi(x)

4 =  a «  ■ ■ ■ a %
y, ■ : #

x i A - 1) ^ ,

(2.2)

(A ~1 ) " mT '1” '**(s)\ * Vm & 1 • V '

Gravity comes into the theory as a result of the curvature of space-time. This is encoded 

in the metric tensor, (together with an inverse g s.t. g^gav =  $„)• The curvature 

is then seen in a typical lihe element, defined as

dr2 =  g^dx^dx” . (2.3)

The metric is used to raise, lower and contract indices on tensors (e.g., A^ =  gll„A v).

As with all gauge theories, we must define a covariant derivative. This is the con-

ventional derivative plus extra terms which produce the correct transformation properties. 

For example, for scalars and vectors we define it to be

V,tp =  dpQ

V f A ,  =  A „„ . =  3 „ .4 „ -  r * A x .
(2.4)

(For a more general expression, see appendix I.) T is the connection, which is defined in 

such way as to give the correct transformation properties to V^. In GR we assume that

* *
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the theory is ‘torsion-free’ , that is, that The usual choice for T is

h ¡it/ — 2 9 T dvgati dag ĵ,) (2.5)

This is the ‘metric connection’ and, in this case, T is referred to as the Christoffel symbol. 

This choice is made so that

■Va 0„ „= O . (i (2.6)

, The other quantities which we define are curvature tensors. These give a guide to 

the geometry of the space we are working in. The most usual choices are the Riemannian 

tensor .

- (2.7)=  r> _  f) a. r a — r a'crp i,p v p i / c r  i v a 1- ap  i»pA acr

and the Ricci tensor and scalar
R f i  v — R f io t  v

(2.8)
i: .• ...............

The dependence of the curvature on the matter in the universe is expressed in the 

Einstein field equations:

RpV -  \gpVR =  SnGT^. (2-9)

Tpy is the energy-momentum tensor of the matter. Clearly, this is a non-linear equation 

in gpi; y making explicit our contention that this is what encodes the curvature.

2.2 Particle Physics Approaches to Quantum Gravity

There have been a number of attempts to include gravity in a quantum theory; all have

problems of some sort. The theories which we will discuss here are perturbative quantum

gravity (PQG) [28,29,33], supergravity (SUGRA) [30] and string theory (ST) [34].-We will 
* ■

look at string theory later; this forms the basis for one of the new calculational techniques. 

String theories include gravity with matter in a way which avoids the theoretical problems 

present in other models. However, they have their own difficulties: At present it is not 

clear how to construct a ST which fits with experimental results. In this chapter we give

«



an overview of PQG and SUGRA. It is these theories at which our calculations will be 

aimed.

PQG takes the most obvious path to a quantum theory of gravity: A Lagrangian which 

leads to the Einstein field equations, or some generalisation of these. The Lagrangian which 

gives the left hand side of (2.9) exactly is the Einstein-Hilbert action,

£  =  • (2.10 )

Gravity in Quantum, Field Theory

(This is the case for a theory with no matter; Tpv — 0. A non-zero energy-momentum 

tensor will be present in (2.9) when we couple this with matter Lagrangians.) gpV is 

taken to be the fundamental field in the theory and represents the spin-2 graviton. The 

Lagrangian is quantised in a way analogous to other field theories and so fits neatly with 

our theories of matter, as hoped. Unfortunately, it can be shown that this theory is non- 

renormalisable; that is, it includes divergences which cannot be removed by the addition 

of a finite number of counterterms (see next chapter).
t

It is possible to find a Lagrangian which is renormalisable. For instance, Lagrangians 

of the form [35,36]
*

JC =  - 2 ^ ( K - 2R +  aR2 +  f3Rlil/Rtlv). (2.1 1 )

These theories have their own problems. To see this note that the propagator will look 

like
1 _1_ _  1

p2 +  /? « 2p 4 p 2 p 2 +  k 2 /  ¡3
(2. 12)

The second term here is a propagator for a massive ghostlike particle, which implies that 

the theory violates unitarity (see ref. [36] and chapter III of ref. [33]).

| The other method which tries to extend (2.10) in a way which deals with the renor-

malisation problem is supergravity. As is well known, SUSY and SUGRA theories (see 

refs. [37,30]) include symmetries between fermions and bosons. These symmetries would 

be expected to reduce the divergences in the theory, and maybe remove them completely.



does not exist any satisfactory quantum theory of gravitation, and in lieu of such 
a theory it would seem well to gain what experience we can by solving any problems 
that can be solved with the limited formal apparatus already at our disposal. ’

A better understanding of gravity amplitudes and the low energy limit of quantum gravity 

theories may give pointers to the form of a full consistent theory.

Apart from the direct applications to gravity, this work enables us to explore and
«1

develop the scope of the new techniques which we are using. It shows the power of these 

methods and makes clear the ways they can be generalised to a wider range of situations.

In this work, we will consider calculations for gravity coupled to a range of particles. 

This includes theories containing spin 0, |, 1 and § particles and, in particular, super- 

gravity theories. Before discussing any calculations let us briefly look at the methods for 

quantising theories involving gravity.

2.3 Quantisation of Pure Gravity [28,29,33]

Let us begin with the quantisation of pure gravity theory. As we have said, the starting 

point is the Einstein-Hilbert action

S g ra v  =  ~ ~ 2  J d * x ^ - g R .  (2.13)

Here g =  det(g^v) and R is the Ricci scalar, defined above.

In order to quantise the theory we expand the metric as small perturbations around 

a classical background.

S f iv  =  9fu> “b f t h f i v  , (2.14)

We will use this to expand all quantities in the theory, the expansion parameter being k . 

k  -■ VSttG, where G is Newton’s gravitational constant. Note that this implies that k  is 

a dimensional parameter. It is this property which is at the root of the renormalisation 

difficulties, will be the quantum of our theory. The indices on are raised and

Gravity in Quantum Field Theory
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lowered by g ^  and its inverse:
h ^ - g ^ h j

= r a r llK ii .

The inverse metric is similarly expanded as
it

g‘‘" = >!>"' -  k +  k2 hi h'"' -  r? hi /.¡J + 0 ( k ' ).

(2.15)

(2.16)

This enables us to expand the quantities in the Lagrangian as follows: The square root of 

the determinant becomes •

=  s R i  ( l  +  f  h +  ^ (h ?  -  2 hi h i) +  ^ ( h 3 - 6 h h i h i  +  & hi h i f t ') )  (2.17)
* "

and inserting the above definition in (1.3) gives the expansion for the Ricci scalar

R = R + K{,hl’t .aa - h % i )

, +  K , ,  -  < - , * )
(2.18)

(see appendix I for details of these expansions).

For our purposes, we will always tabe the classical background to be flat Minkowski 

spaceh Hence,

Qnv =  V/iv ■ (2.19)

Including this choice of classical background, the action becomes

Sgrav =  ~̂ 2 j  ^  ® (,hfi0 ,aa hpa,Pot)

T K  ̂2  ̂i.̂ PP,oia hpa,pa) 4* ĥcr\,tih(7\,ii T 2^T PiP̂  pP iT (2.20)

h\<T,\hcrii}n T ^hflfltrhin,iT̂  T 0 ( k )^ .

t We choose to define the Minkowski metric, r;Mt, , with the signature (H---------- ).



This will be the implicit starting point in all our calculations. We quantise as usual.

For instance, we can define Feynman rules from this Lagrangian, in the same way as we

do for other quantum field theories, to allow us to find scattering amplitudes. Note that

we have an infinite number of terms in the action; these will lead to interactions with any

number of gravitons. It is here that we already begin to see the difficulty of calculations in

gravity -  with each increase in the number of external particles or number of loops being j

considered in an amplitude calculation the number of possible interactions in the theory

also increases. We can also see hints of the complexity of interaction terms: the low orders

shown here already have a large number of terms which must be considered.

As in other field theories, calculations by conventional methods require us to include

a gauge fixing term, —|C^, together with ghost contributions. A usual gauge choice is the

de Donder gauge [29], =  dah® — ^d^h. In fact, none of the new methods here require

an explicit choice of gauge or any involvement of ghost contributions. This is one of the
* *

many simplifications in the new techniques as compared to the conventional ones.

Gravity in Quantum Field Theory 15

dr #
2.4 Coupling to Other Particles: Bosons

To include other particles in our theory we add suitable Lagrangians to the pure gravity , 

one. Clearly, when adding other particles to our theory we must couple them in some way 

to our graviton field. In non-supersymmetric quantum gravity, we do this with a ‘minimal 

coupling’ . In the case of bosons, this simply means making all derivatives in the added 

Lagrangian covariant with respect to Lorentz transformations and including the metric 

explicitly where vertices are contracted. For instance, the Lagrangian for a free massless 

scalar is

U  =  (2.21)

So, for a theory containing scalars coupled to gravity we just add the term

£* =  §■ J
= | J d*x

(2.22)

#
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to Sgrav Including the expansion (2.14) and condition (2.19), this becomes 

f  d4x +  k  (^ ‘npffhp<Triltv ~ hpv) d ^ d v^
J V (2.23)

+  k 2 (| ((r}p°h po)2 -  2hapha^) rjpv -  haphai/) d ^ d v^  +  0 ( /c 3).

The graviton and $  fields are then quantised.

We will also consider the cases with gravity coupled to massive and complex scalars.

As might be expected, the first merely involves adding an extra term to the action

• 5  = Sgrav +S<t>- j  dAx \f—g m2$ 2. (2.24)

For the second the scalar component of the action becomes

* 5$ =  F J d ^ x ^ g ^ d ^ d , , ®  . (2.25)

The practical effect of this will be extra particles in loop calculations and different combi-

natorics in Feynman rules.

We can include spin 1 particles in an analogous’way. The starting point in this case 

is the Lagrangian

with

(For photons [A^Aj,] =  0.) So, coupling of this field to gravity requires the addition of 

the term

SA =  ~\  j  d4x vA ^ ^ V I/tr ((V /,A i / - V „ A /i +  ^ [A /t,A I,])

x (V q.A  ̂ — V aA/? +  ¿(/[Aq., A^])^ 

to the pure gravity action and quantisation of the graviton and Ap fields. We can expand 

this as above and quantise.

Note again that in both these cases we must consider interactions between two, three 

or four matter particles and any number of gravitons. Even in the coupling to matter, the 

calculational problems will increase considerably with higher order calculations.

La  = (2.26)

=  dpAv dvAp A ig[Ag,i Aj/]- (2.27)

(2.28)
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2.5 Coupling to Other Particles: Fermions

For fermions, the coupling to gravity is more complex [41,42]. Unlike the Lorentz group, it 

is not possible to construct spinor representations of the local coordinate transformation 

group (GL(4, TV)). The coordinate transformation group is the basic symmetry of GR, so 

we must find some way to overcome this problem if we wish to include spinors, and hence 

fermions, in our theory. In order to deal with this we find that we must formulate GR in a 

slightly different way; in order to obtain a spinor representation we set up a locally inertial
! 4

space at each point. Since this is Lorentz invariant, we can define representations within 

it for all quantities, including spinors.

To carry this out in practice, we set up a system of vierbeins, e“ , which take us from 

our original coordinates, x^, to coordinates, £a, which are local inertial at each point. In 

< effect, we place all of the coordinate dependence in the vierbeins, leaving us to deal only 

with the Lorentz aspects of fields. We can then include spinors in the theory with relatively 

little trouble.

The e“ ’s are defined by

a ~ dxa

and produce a transformation of the metric

(2.29)

C

! ea 4 r/«& =  y«?- (2-30)■ ■ ■’ ■>. V. . . ■ ■  ■■ ./■'.■■■ 1 ■' 1
I ■ ' ■J  (Note that the vierbeins can be thought of as the matrix square root of the metric.) We 

j raise Greek indices using the metric tensor and Roman indices using the Minkowski tensor. 

The vierbeins can be shown to be both Lorentz and GL(4, TV) (coordinate) vectors,

< ( x )  =  L ;(x )e‘ (x) < ( * ) = .  a i ? 4 ( * )  ■ (2-31)

, and hence we can use them to transform coordinate tensors into Lorentz tensors and 

coordinate scalars, e.g., a coordinate vector becomes a set of four coordinate scalars which 

1 form a Lorentz vector,
f ■ ' ' 1 .

j , T  =  e ; / .  (2.32)

h : ;



When this is done for all tensors, spinors can be brought into the formulation in a way- 

analogous to any other field -  as a set of coordinate scalars which transform as a Lorentz 

spinor. .. .

As with the metric formulation of GR, we must introduce a covariant derivative. WeI 1 '
define this to be

V lt =  dlt +  ^aabuliab. (2.33)

The e ah are generators of a representation the Lorentz group. The representation depends 

on the type of quantity being acted on. (The significant case here being spinors, where 

aab =  1[7<*>7&].)
* ■

(¿/tab is the ‘spin connection’ ; it plays an analogous role to the connection in (2.4).

We can define this in a number of ways; the two main conventions are the ‘first’ and 

‘second’ order formalisms. These give two different ‘minimal couplings’ of fermions to
n * •

gravity. In the first order formalism we begin by taking to be an independent field 

and subsequently eliminate it by solving its field equation, SS/Sû at, =  0. We will use this 

method in the next section to construct the simplest form of N  =  1 SUGRA. Here, we
*

outline the second order formalism. This is the usual choice for fermions in non-SUGRA : 

theories. The definition follows the method for defining the metric connection in the metric 

formulation of GR. In that case we require that the covariant derivative of the metric tensor 

vanishes. Here, we define the the second order spin connection, w^a^e), by

=  ' (2.34)

Which implies that

bJfiab =  6a T g (̂ P̂ ci* t  (® H )̂- (2.35)

(This is, in fact, the solution of SS/Su^b =  0 when S is the pure gravity action.)
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In order for us to use the correct measure in the action integration, we must also 

define y/—g in terms of the vierbeins. We find, in agreement with the suggestion that the 

vierbeins are the ‘matrix square root’ of the metric, that it is simply

Gravity in Quantum Field Theory

* V ' V~9  =  e =  det(ea) •

In terms of the vierbein formalism the pure gravity Lagrangian becomes

(2.36)

Jg rav
2 k 2 e R = - 2 ^ eR > a < - (2.37)

Once we have written quantities in this vierbein formalism of GR, we can easily find 

the minimally coupled Lagrangian as before -  we simply change derivatives to covariant 

derivatives wherever they occur. However, before we-discuss the details of this, we must 

look at how we handle the gravitons in this formalism. The gravity field is now represented 

by the vierbeins, so we would expect that these should be expanded in some way. Obviously,
"II '

for the simplest application of the theory we would like to expand the vierbeins in a way 

which meshes with our formulation for bosons. If this were not possible we would have 

to rewrite the bosonic terms (and, in, particular, the pure gravity terms) using vierbeins 

whenever we included fermions in our theory. While this is possible it is not ideal by any 

means. Fortunately, it has been shown that, for suitable gauge choices, we can write the 

vierbeins so that the metric is the field variable, i.e., we can expand e“ in terms of h ^  

and use both GR formulations in parallel [43]. The expansion of the vierbein is

2

<  =  5“. +  §■K a g -1̂  -  y  +  0(K3) (2.38)

where g^v and eaa are respectively the metric and vierbein fields representing the classical 

background.

With our choice of gPv =  this expansion is

.2K K
^  =  ^  +  ^ K - - - h liahaa +  o { ^ ) . (2.39)

(It is trivial to check that (2.39) and (2.30) imply (2.14).)



Having constructed a way of introducing fermions into GR and found the above expansion 

to relate this to our other results, we are now in a position to define our theory with 

gravity-fermion couplings in a way which fits with the boson couplings of the last section.

We begin with spin-| fermions.
tr ■■ ’
As is well known, the Lagrangian for a free massless spin-4 fermion is

Lv =  \ ~ {dufj^r}) . * (2.40)

We must convert the derivatives, d ,̂ to covariant derivatives and insert vierbeins 

where appropriate. So, the extra term to be added to the action is

[t , Sv =  ^ J d i x e ( f j jae^(Vllr ])- (e^ V lxf})yar]). (2.41)

7 “ are the usual constant 7 -matrices. We can use (2.39) to give us an action which can be 

quantised as before. *

Similarly, we can look at spin-3/2 fermions. The kinetic-energy term which we must 

, use for this field is the Rarita-Schwinger term [44]:

=  757^ ^ .  . (2.42) *

Again, to couple this to gravity, we must convert the derivative to a covariant one. For 

simplicity of description we initially mix the two GR formulations in our description of this 

i  field [45,46]; we consider the field to have a coordinate vector index and a Lorentz spinor 

index, i.e., \Er =  4/̂ a.

I Then, the action of the covariant derivative on this term must take the form

’ tux — 4" ~^W6 (cr“6)^ ^fifi (2.43)

where oĵ ab and cra& are those defined above. Note that in the Lagrangian the symmetric 

: indices on F are contracted with the Levi-Civita tensor and so the middle term on the 

right-hand side vanishes in the Lagrangian -  we may regard the derivative to be with
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respect to the spin-| content of T only. Hence, we can ignore the rtf term and need not 

worry about the mixing of the GR formulations.

Assuming, tliis definition for X>, we can write the complete action for the gravity- 

gravitino system as:il

■ W /»  = I  dlx ( ' " 'T ' / i  . (2.44)

This can then be expanded and quantised.

2.6 Supergravity [30,46]

: As we have already mentioned, supersymmetric theories are theories which contain symme- 

tries between bosons and fermions. These symmetries imply that there will be cancellations 

in amplitude calculations and simplifications in final expressions. The hope that cancella-

tions will remove problematic divergences has generated a great deal of interest in SUSY 

theories which contain gravity.

; A While a spin-2 (graviton) field can be included in a global SUSY theory (see, e.g., 

ref. [46]), the typical way of creating a theory with gravity and SUSY is to use local 

supersymmetry (see ref. [?0]). In fact, it is easy to show that a gauged supersymmetric 

theory requires the introduction of a spin-2 boson and its spin-| partner. We can identify 

I the spin-2 particle with the graviton and so find that theories with local supersymmetry 

must contain gravity. We name this class of theories ‘supergravity’ (SUGRA).

The simplest SUGRA theory is one containing a ‘single supersymmetry’ and a single 

doublet containing a graviton and a gravitino (the spin-| particle). Evidently, the starting 

point for such a theory will be the Lagrangian found in the final last section for a theory 

| coupling these two particles (2.44). There are then two ways to approach the problem of 

j ‘supersymmetrising’ this. The first historically was to add interaction terms which make

| the Lagrangian invariant under SUSY transformations [45]:
j , ■11 r ’ :1 ■ 1

I Lint =  ~  ( t V ’T  (T a76T c +  2 4 -V ^ c) -  4 (^ a7 • ^ )2)  • (2.45)
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The Lagrangian is then invariant under the local SUSY transformation:

K  -
8 %  =  -V „e .

K

(2.46)

It is, however, possible to construct a simpler form of the action if one takes oĵ ab to 

be an independent field from the beginning [47]. Then we find that our supersymmetric 

Lagrangian is just.

L n =zi =
(2.47)

(2.48)

This is invariant under the transformations

8̂ 1» =  -p u t
K

+

This is the so-called second order formalism for the spin connection. If we solve the field 

equation

* . 7r~~ =  0 (2.49)■ .. .  ouĵ ab ■ .

we find that to^ab is given by

t̂iab • ^itabip) “b ¡̂xab- (2.50)

] Here, w^aj(e) is the connection defined in equation (2.34). is defined as

i ■
Kliab =  Y  ( ^ f i j a ^ b — ^ v l b ^ a  +  ^ a 7 ^ b )  • (2.51)

h This extra term can be interpreted as implying that gravitinos add torsion to our theory, 

i Note that the two actions are equivalent on-shell. Since our calculations are restricted to 

on-shell amplitudes, we will not need to distinguish between the different formulations in 

the results discussed here. Thus, we have formulated a theory with a single local SUSY 

invariance.



Gravity in Quantum Field Theory 23

We can also regard this from an operator perspective. In this view, we have an 

operator, Q, which transforms between the creation and annihilation operators of the 

theory. So, in the theory above we would have a Q such that

\Qia ±<*i

{Q > «i} =  ± « 20^
(2.52)

where a^ and are creation and annihilation operators for gravitons and gravitinos (of 

helicity ±1) respectively. Since we have only one operator this is designated to be a N =  1

SUGRA theory. In this formulation we implicitly have two SUSY doublets, one containing 

the positive helicity particles and the other containing the negative helicity ones. We can 

easily extend the theory by coupling other N  =  1 SUSY doublets [48]. These need not 

necessarily be (2r §) doublets.

It is possible to create theories containing more than one SUSY operator -  that is, with

more that one supersymmetry between particles. Starting with our N  =  1 Lagrangian, it

can be shown that, if we couple a (|, 1) doublet, it is possible to extend the Lagrangian in

such a,way that the two spin-| fields can be rotated into each other. This implies that the

theory has a second SUSY transformation similar to the original one but with the spin-| *
*

fields swapping roles. From an operator point of view we now have two SUSY operators; 

the theory is IV =  2 SUGRA [49]. The four particles comprise a complete N — 2 multiplet.

(In general, we will include two multiplets containing sets of positive and negative helicity 

particles.)

In this way, we can continue to add more particles and increase the number of op-

erators [50,51]. The Lagrangians become increasingly complicated, so we will not give 

any of them in detail here. A theory can contain any number of multiplets with different 

combinations of particles related by the supersymmetry. So, for instance, in an IV =  2 

theory we may have the 2 multiplets described above plus a matter multiplet containing 

two scalars and a spin-| fermion. The natural limit of increasing SUSY operators seems 

to be N  =  8 SUGRA. Beyond this point we must add a spin-| particle into the theory.



There are difficulties in coupling such a field with other particles and, anyway, there is no 

reason to believe that nature contains anything beyond spin-2 [30,52].

The N =  8 SUGRA [53] has one possible multiplet containing the particle content:

1 graviton, 8 gravitinos, 28 vectors, 56 spin-1 fermions and 35 (complex) scalars. This 

SUGRA has been of great interest to theorists. Since it contains a very high degree of 

symmetry it could be that this overcomes completely the problems of infinities found in 

quantum gravity. Also, we might hope that the theory has a symmetry group which could 

be broken to give the standard model and all its particles. Unfortunately, the second of 

these seems to be untrue in practice [46]; the first we will discuss later.

2.7 Previous Calculations in Perturbative Quantum Gravity

There are two sets of calculations which are relevant in quantum gravity, perturbative 

amplitudes and counterterms. Obviously, these, are, strongly intertwined, the first often 

giving information for the second. We will leave the problem of counterterms to the next 

section, where we discuss the divergences and renormalisation in PQG. Here we look at 

explicit calculations of amplitudes. »

Due to the difficulties involved in calculating quantities in quantum field theories, we 

often consider a perturbative expansion. That is, we take a small parameter (usually, a 

coupling constant) and limit our calculations to specific orders in that parameter. This 

is the most widespread way for finding scattering amplitudes for particle interactions.

The, majority of these calculations are carried out using the Feynman diagram technique 

(though we will also mention cases where string theory has been used in the past). Since 

this technique is widely used in particle physics we will only give a brief review of the 

essential aspects of the method.

| ! The Feynman rules are constructed to provide a straightforward, graphical and com-

pact way of calculating Green functions or scattering amplitudes in quantum field theories.

1 The rules are constructed from the Lagrangian of the theory being considered (including
I
|

1

1
1
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a suitable gauge fixing condition and ghost contribution). They consist of a set of ‘ver-

tices’ and ‘propagators’ ; the former describing the point interactions of the particles in the 

theory and the latter their movement between these interactions. These components are 

used to construct diagrams representing perturbative processes in the theory. Each vertex 

and propagator is associated with an algebraic formula; these are used, together with the 

diagrams, to construct integral expressions for the Green functions of the theory.

Since each vertex carries a power of one of the coupling constants of the theory we 

can easily separate Feynman diagram results into contributions at the same perturbative 

order. For a fixed number of external particles the diagrams can be classed according to 

the number of loops which they contain; the higher the number of loops, the higher the 

perturbative order a diagram will contribute to. So, the lowest order is found be summing 

all tree diagrams -  that is, those with no internal loops; the next will be the sum of all 

diagrams with one loop; and so on. , *

In PQG we can carry out this process in precisely the same way as other field theories; 

the rules are derived from the Lagrangian and calculations at a particular perturbative 

order can be carried out. (For an example of a complete set of Feynman rules see ref. [54].) .

We have already hinted at the significant difference between this and most other field 

theories -  the expansion of the Lagrangian contains an infinite number of terms, so we will 

have an infinite number of vertices which must be considered. Each vertex is also typically 

more complex than analogous ones in other theories and integrals will contain more powers 

of momenta, in general. These all work to increase the difficulty of calculations in PQG.

There is one further step which is often made in gravity formulations: the background 

field method [55]. This simplifies calculations and retains some of the symmetry of the 

theory. It is primarily used to produce an effective action with has the same symmetries 

as the theory. It is particularly useful when considering counterterms, since it allows us to 

write them in a form in which all symmetries are seen explicitly [56].

This method is formulated within an effective action description of the theory and
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so is relevant, in the first instance, for 1 particle irreducible diagrams. The basic step in 

the background field method is to make a split of the fields into background and quantum 

parts. So in gravity we will have an additional split to the one in (2.14):

hfiu = 9¡iv 4" <f>¡iv (2.53)

{guv is the ‘background’ field and (f)^ the ‘quantum’ one). (We will use to indicate 

quantities which depend only on background quantities.) The effective action is considered 

to be an integral only over the quantum fields; only these can appear in loops. Conversely, 

only background fields have source terms; only these can appear as external lines in dia-

grams. So, our 1PI diagrams consist of external v particles with loops of <j)̂ v particles.

We find that, the theory now has two gauge symmetries: one in which the background 

fields do not transform and the other in which all fields transform, the background ones 

with the original gauge symmetry of the theory. So, we can just break the first symmetry 

and leave all the results as functions of the background fields which retain the symmetries 

of the theory. This way we will recover an effective action which obeys all the theory’s 

symmetries. ■

We can use this for general amplitude calculations, as was shown in ref. [57]. Breaking 

the second gauge symmetry allows us to introduce a propagator for the background field 

with which we can join the 1PI diagrams. So, we will have loops containing quantum 

fields joined by background field propagators. As we have broken the quantum field and 

background field symmetries independently, there is no reason that they should have the 

same gauge choice. So, surprisingly, we find that we have a method in which we can use 

different gauges in the loop and tree parts of our calculations.

j1 It is in this background gauge method form that we will implicitly consider the counter-

Lagrangian; In this way the counterterms retain the symmetries seen in the underlying 

theory. It also seems that this is the gauge implied by the string rules; to find a field theory 

mapping for these rules we are required to formulate our theory in precisely this way (see
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ref. [58]). The field theory mapping for the QCD rules implies that the most efficient 

method of calculation in that situation is to use the background field method plus the 

Gervais-Neveu [59] gauge on the trees. In the string-inspired rules for gravity, we require 

the background gauge plus the de Donder gauge and a slight redefinition of the fields [31].

Now let us catalogue the previous calculations in PQG. As with all field theories, the calcu-

lations of gravity tree amplitudes are reasonably straightforward using Feynman diagrams. 

There is no integration required, so the results come almost immediately after the rules 

have been derived. There are two cases which are of interest here because o f  their use of 

string theory. In ref. J60], Sannan obtained the tree-level 4-graviton scattering amplitude 

both directly and by looking at the infinite tension limit of a closed string theory. The 

latter is close in spirit to the work which we will present here. Berends, Giele and Kuijf [20] 

combined this with the fact that open and closed string tree scattering amplitudes could 

be related [61]. This allowed them to relate gluon and graviton amplitudes and find new 

graviton results at tree level. By this method, they obtained a conjecture for n-graviton 

amplitudes of the form Atree( l _ , 2“ , 3+ , . . . , n+) and confirmed it numerically for n <  1 1 .

The majority of one-loop calculations using Feynman diagrams in perturbative gravity  ̂

have been corrections to the propagator. These have been calculated for all particles types 

jin refs. [62,63]. Corrections to the propagator are the simplest calculations at any order,

| so this is perhaps the obvious starting point. The results found gave some indication of

I
 the divergences in PQG.

Probably the most heroic attempt at using the traditional methods for one-loop gravity

f calculations was by Grisaru and Zak in ref. [64]. They calculated all one-loop four graviton
I ■ . ...........
|amplitudes with internal massless scalars. We reproduce these results, using the string- 

!inspired and Cutkosky rules, as part of a more general set of one-loop results.

!j The calculation which is closest in spirit to the work done here is that by Green, 

¡Schwarz and Brink in ref. [65]. They obtained the four-graviton N =  8 supersymmetric
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amplitude by looking at the field theory limit of a closed string theory. Again, we reproduce 

this result with both the string-inspired and Cutkosky rules.

The other Feynman diagram calculation at one-loop was carried out by Deser and van 

Nieuwenhuizen [42]. They looked at the scattering of eight fermions. Their purpose was 

to identify non-zero counterterms in the Dirac-Einstein system and so they concentrated 

only on the divergent contribution of the diagram. We will look at this in the next section 

where we consider the wider issue of divergences and counterterm determination in PQG.
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I  can’t help it, the idea o f the 

infinite torments me.

Alfred de Musset

3. Divergences and Renormalisation *

Any discussion of gravity in quantum field theory must include some consideration of 

renormalisability, since this is one of the major problems for anyone wishing to construct 

a quantum gravity theory. Our work here will be no exception: many of the results will 

relate directly to the problem and we must keep it in mind even when they do not. For 

this reason, we will devote this chapter to an outline the issue of renormalisation and
, ;v  V

! divergences in PQG and SUGRA.
'< *'

3.1 Renorm alisation [66]

' In general, if we write down some Lagrangian for a quantum field theory we will find

that infinities appear in calculations we carry out. These infinities come in two forms
*■ ■' , . c

, -  infrared and ultraviolet (coming from the low and high momentum sector of integrals,

respectively). We will discuss the infrared divergences in chapter 7; they do not concern

; us too much since we know that they will eventually vanish in the S-matrix [1,67]. If the

I only divergences in a theory are IR then the theory is finite and we have no problems. If,

on the other hand, the theory contains ultraviolet divergences, we will have problems if we

cannot deal with them in a sensible way.

; j c The usual method for removing any UV divergences which occur in a particular theory 

is to add ‘ counterterms ’ to the Lagrangian. These are extra terms which act to remove the 

infinities from the results. In perturbative calculations it may be that counterterms must 

be added at each order. This process of adding counterterms is fine if the new terms are 

the same as the terms already in the Lagrangian or if we only need to add a finite number.

#



The first case merely implies that the ‘physical’ parameters which we chose were wrong; 

the second that we chose the wrong Lagrangian. In both these cases we call the theory 

renormalisable.

The problem comes if an infinite number of counterterms is required to make a theory 

finite. This will happen if, for instance, we must add a new type of term at each perturba-

tive order. In this case we lose predictability (since, in effect, we must rewrite the theory 

at each order) and the theory is non-renormalisable.

Any theory containing perturbative gravity will theoretically be non-renormalisable, a 

fact which can be attributed to its dimensional coupling constant: At each order we must 

add an additional momentum in the numerator to balance the extra power of the coupling 

constant. Hence, as the number of loops being considered gets larger there is potential for 

increasingly divergent contributions to the amplitude. As divergences at each order will 

be of different type, their presence will require an infinite set of counterterms.

Of course, this non-renormalisability would not be a problem if these potential diver-

gences vanish order-by-order in the theory and the perturbative expansion was finite. In 

this case all potential counterterms will have zero coefficients and be irrelevant. Proof or 

disproof of this has been a significant area of research in gravity, especially for the case 

of SUGRA theories. Here we give a brief review of the results obtained. We begin with 

general 1 -loop results, followed by two-loop pure gravity and finish with a discussion of 

the status in SUGRA.

Before we start, note that in all calculations and discussions of divergences we will 

implicitly assume that régularisation is carried out by use of a dimensional régularisa-

tion [68] or dimensional reduction [69] scheme. In both these schemes we analytically 

continue the dimension we are working in away from 4 to 4 — 2e. In the former we decrease 

the number of states accordingly; in the latter we assume the change in dimensions is due 

to compactification, so that the number of states is constant. Dimensional reduction is 

important in the supersymmetric theories, since it retains supersymmetric cancellations.
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It can be shown that the two are equivalent (up to redefinition of the coupling) [69]. In 

both schemes divergences are seen as poles, l /e n. Note further, that when calculating in 

4 — 2e dimensions, the dimension of k  will change. To compensate for this we should make 

the redefinition n ¿A«, where fj, is some arbitrary mass scale [63]; k  can then retain its 

four-dimensional value throughout. However, for simplicity, we will not make this change 

explicitly, but will assume that it can be done where necessary. *

3.2 O ne-Loop Divergences

When it was realised that gravity was potentially a non-renormalisable theory, it was

hoped that there might be some ‘hidden symmetries’ in the theory which would force it
»

to be finite at all orders. To make some progress towards discovering whether this was 

true, a number of calculations of one loop results were carried out. The first of these 

was by ’t Hooft and Veltman. They were able to show via simple arguments that pure
' ■■ '»I' —

gravity is in fact finite on-shell at one-loop [56]. Unfortunately, this success did not carry 

over to other situations. A simply algorithm showed [70] that pure gravity off-shell and 

gravity coupled to scalar particles are both divergent [56]. Deser and van Nieuwenhuizen
*

[71] used this algorithm ta show the same for gravity coupled to a photon and (together , 

with Tsao) for gravity coupled to Yang-Mills particles [72]. They also found, this time via 

direct calculation, that the Einstein-Dirac system is no better [42].

j We will describe these calculations below, but first let us begin with the proof of a 

useful theorem: When dealing with external on-shell particles, we can use the classical 

field equations to simplify the counter-Lagrangian. This was shown b y ’t Hooft [70]:

Consider a general Lagrangian, dependent on fields fi,
..

£ ( ^ ,A ) = £ 0(<?l) +  A£(d,;,A) (3.1)

. AC is the counter-Lagrangian, A £ ~  1 /e, and is dependent on a parameter A, AC ~  A.

We will consistently discard terms ~  0 ( A2). A field redefinition should not affect any
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results, so let us look at the effect of changing <pi by

<j>i +  &<f>i (3-2)

with 6(f>i ~  A. Inserting this into the Lagrangian gives

Do{<f>i +  —* Do{4>i) +  D'o{_<j>x)8<f>i +  0(A2) (3-3)

8(j>i can contain poles of e and, if so, will require a change in the counter-Lagrangian of 

—£'0((j)i)8<f)i. £'0 =  0 are the classical field equations, so this suggests that we can use these 

to simplify the counter-Lagrangian.

On-shell Pure Gravity

It is, in fact, quite straightforward to show the on-shell finiteness of pure gravity by simple 

arguments concerning the counterterms:

To find all possible one-loop counterterms consider first that the degree of divergence 

of a one-loop calculation will be 0(fc4). We must therefore look for counterterms containing 

four derivatives. We can restrict our search to terms which are invariant functions of the
V . <

background field, since the counter-Lagrangian should have the same symmetries as the 

bare one. ♦ .

A moment’s thought shows that this implies we must build terms containing just two 

' Riemann tensors or one Riemann tensor and two covariant derivatives. Further, it is easy 

to see that any term with derivatives must be exact derivative, and so will not affect the 

action. We are left with three candidate counterterms:

R2

(3-4)

ft ft^VP

(In all cases these terms depend only on the background fields.) We can simplify this 

further by implementing the well-known Gauss-Bonnet formula

I J (R llvlTpiVlvap -  ARlxvIVlv +  R2)  =  0 (3.5)
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This allows us to remove one of the three terms in the action in favour of the other two. 

Thus, we find our counter-Lagrangian must take the form

AL  ~  (a R ^ R ^  +  PR2') . (3.6)

In general, when we are considering external on-shell particles, we can use the classical 

field equations of the theory to simplify the counter; Lagrangian. In this case the field 

equations are simply R^^g) .= 0. Clearly, inserting these into (3.6) will give the result 

AL  =  0 implying that any pure gravity amplitudes with external on-shell gravitons are 

finite. ' ’i':' 1 ' ■ ■■ : , '■/■: , ,■ .....

OfF-shell Pure Gravity

I
f:

If we wish to consider the divergences for amplitudes which axe not on-shell we must find 

the values of a and f3. In general this involves a complicated calculation, but th e ’t Hooft- 

Veltman algorithm reduces the work considerably by recasting the theory in the form of a
‘ ' v Ki - .

Lagrangian of scalar fields. With only the calculation of simple vacuum energy diagrams, 

they showed that a Lagrangian of the form

C = +  (3.7)

- (where and M. are functions of external fields) will have the counter-Lagrangian

(3.8)

In ref. [56], this was applied to pure gravity by carrying out a background field ex-

pansion of the gravity field, arranging the Lagrangian in a suitable form and identifying 

the ten independent fields in hij (recall that hij is symmetric) with <j> 1 , . . . ,  <j>\o- 

1 This gives the counter-Lagrangian for off-shell gravity to be

S | ALgrav = ~ (4 ^  (l20^ + 2 0 ^ ^ )  (3'9)
¡(Note that this is of the form (3.6), in agreement with the general arguments given above.)

Divergences and Renormalisation

A£ = 0 e ( T2y^  + + + D ~ 5R

+^ { R^ - \ R2
with -  DvNp +J\fllAfv -  NvAfu



Gravity coupled to Bosons

’t Hooft and Veltman also applied the same algorithm to a theory with one scalar coupled 

to gravity.

L =  - h E l R ^ ^ - d a^giiVd A  (3.10)

Divergences and Renormalisation 34

k2 2

To do this, they simply extended the set of fields <j>i by identifying the extra scalar with 

<f>n- In this way, they found the counter-Lagrangian

(3.11)
+ ^ R  ( d j g ^ d j )  +  2k 2 (D p D ^ y

A  L =
(47r)2e \720

(4> is the background scalar field). Note that in this case there are divergences for on-shell

as well as off-shell particles; unlike the previous case, the classical field equations do not

remove all the terms in the counter-Lagrangian. We can, however, use the field equations
*

to simplify (3.11) when the external particles are on-shell. The relevant equations in this 

case are
=  0

Rpv —
*■ 1 "

A  =  y  (D j)(D > })

Implying the counter-Lagrangian can simplified as

(3.12)

A L
yT -j 203A2 = (3.13)

(47r)2e 80 (47r)2e320

T h e ’t Hooft-Veltman algorithm was also used to show that gravity coupled to elec-

tromagnetism and gravity coupled to Yang-Mills fields both contain divergences [71,72]. 

rhe counter-terms for an Einstein-Maxwell Lagrangian are

A L
1 - 0  K2 - — R 2 J____ R

40 + 3 ^

+ y  k4T'„„T<“' -  y t r  ( d -‘ F01,D3F ;)  )
(3.14)



where, as usual, =  d^A» -  dvAM and T^  -  F ^ F *  -  \gpvF a^Fag (À^ is the back-

ground photon field). Using the field equations, we can simplify this to ;

AL = ~ 0 ^ &̂  <3'15>

when the external particles are on-shell. This can be generalised to the (on-shell) Yang- 

Mills case as ».

where r is the dimension of the gauge group, /  is the Yang-Mills coupling constant and 

rC =  C abcC a bc, the product of the structure functions.
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Gravity coupled to Fermions

The ’t Hooft-Veltman algorithm is not applicable to the calculation for the Dirac-Einstein 

Lagrangian without significant adaption; it cannot be used in the form above when fermions
i
are involved. Deser and van Nieuwenhuizen [42] were able to show that one of the coun- 

(terterni coefficients can be calculated by looking at one set of diagrams -  those with eight 

external fermions and internal gravitons. (In fact, only the divergent parts of this diagram 

[are needed to extract the relevant information.) The coefficients found in this calculation 

are sufficient to prove that this system will also contain divergences.

In general, we would expect the counter-Lagrangian to take the form

r« i  +  «2  R2 +  atzKi(fj'ytlD1/r))2 +  a4K4(fj'y,lDIJirj)2 

+  Rpv pa(fjapv r}){f]crp<T Tg) +  a6K2 Rpv
4

+  « 7 « 8 +  a8K10(rjD1/T])2(fjF5r])2
¿=1

+  aQ^((r]Fer))(fiF7r})y'(rj'yllDl/r)) +

AC
(47r)2e -

(3.17)

(Our splitting of the fermion fields differs from that used in ref. [42]; here, we choose 

0 =  7/-f  x- So, Tj and fj are the fermion background fields.) The FCs are expressions which
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contain 7 -matrices, but no derivatives. (Note that the F^s may include suppressed indices. 

For example, the raised indices in the a g  term are shared in some way between F& and F 7 . )  

As usual, for on-shell amplitudes, we can implement the field equations:

Rfiv =  ft T,lv

R =  0

^D^rj =  0
(3.18)

Tfu, ~  ■qĵ DuT].

1 These imply that the «2 and 0:4 terms vanish on-shell, and that the 0 1 , a 3 and terms 

are all equivalent. The only term which neither vanishes nor is mixed with others due 

to these equations is 'the «7 one. For this reason Deser and van Nieuwenhuizen focussed 

on this part of the counter-Lagrangian. Their method was to considered the diagrams 

described by fig. 3. A. Power counting implies that the only parts of (3.17) which can act as 

counterterms for this diagram are the «7 and a% terms. (The other parts have divergences 

which will introduce too many powers of momenta.) It can be shown that the latter will 

only be,relevant if we include antisymmetric components of the vierbein in our calculation. 

It is easy to exclude these contributions. (In fact, we can define the vierbein in a symmetric 

way and ignore them completely.) So, we find that we can relate the 0:7 term to this simple 

, set of calculations. In ref. [42] the relevant calculation was considered and it was shown 

that 0:7 must be non-zero; there must be a term in the counter-Lagrangian

~  " * 4 ((V7a75V)(fn bj5r])Vab)2 (3.19)

Clearly, knowledge of the existence of this term is all we require to deduce that the

Dirac-Einstein system is neither finite nor renormalisable (it can not be absorbed into the

Lagrangian or removed by the field equations). Fermions coupled to gravity do not solve 
i .jthe problems with the theory. (We should note that this calculation was restricted to the

theory based on the second order formalism for the spin connection. The situation for a
.  ■theory based on the first order formalism remains an open problem.)



(
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Figure 3.A: The diagram calculated by Deser and van Nieuwenhuizen. 
The bottom figure shows the combination of vertices which the ‘dot’ represents

So, various calculations have lead to the conclusion that pure gravity is finite at one-loop 

(on-shell), but that this does not generalise to simple cases with a coupling to matter. To 

overcome this problem, we must look to theories in which the matter fields are included 

ln the same SUSY multiplet as the graviton, as we discuss below.

Before we look at the situation at two-loops and in SUGRA, let us make a small detour to 

consider where the one-loop divergences in these theories will appear. We can show that 

infinities will not be seen in amplitudes with only external gravitons. We follow the proof 

of Grisaru et al [73]. For a general set of matter fields, <f>\ we expect to have a counter 

Bagrangian of the form:

M  - . —  („  (Rftu)2 + m 2 + 7 e) + S N (f,e))  (3.20)
(47r)2e V

Where M  and N  are polynomials of the ^  fields and their derivatives. (The vierbein, e£,

outers since the derivatives must be covariant.)

#



As in the case of pure gravity, we can always insert the field equations for the back-

ground field into our counter-Lagrangian. The general form for these is
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Raß g 9aßR  ̂ Taß:

Contracting the indices allows us to deduce that

(3.21)

R =  -K 2T<,W “ ', =  -K 2T. (3.22)

and that

R,aß K2 [T aß : 9 a ß J (3.23)

The counter-Lagrangian can then be recast as

A L =  -   ( K4a {Tfiv)2 +  e) +  ¿Nty',  e)) (3.24)
(4 -)2e V ,

We can find the tree .level results (which is all we need at this stage) by inserting iterative 

solutions of the field equations:

i e „ W  = C W  + ' ' / D(I - I ' W i’ e)dl' (3 25)

....=

, , i „ •£ fields’ will give the terms which contributemto AL. Collecting the relevant number of m-tieids win yve

. Note from equation (3.24) that there are noto the S matrix for any particular process
• i iH *  not possible to find non-trivial terms wiPurely gravitational terms, implying that it is not possm 

°nly external gravitons. .

with

This is a completely general result we can always eliminate the Ricci quantities

from the counterterms in favour of the energy
-momentum tensor using the field equations.

This w ill be relevant both to the 

divergences below.

results of our calculations and the discussion of SUGRA



3.3 T w o-L oop Divergences
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The finiteness of pure gravity at one-loop led to the hope that this might also be the 

case at higher orders. Unfortunately, a problem occurs as soon as we look at the two- 

loop counter-terms. There is one independent counter-term which cannot be dismissed for 

on-shell gravitons

Ra{,ilvRill’a?RaB*P- (3.26)

(By ‘independent’ we mean that any other possibilities can be related to this one.)

The only way for amplitudes to be divergence-free at this order is if the coefficient of 

this term vanishes. A number of calculations have shown that this is not the case [74]. We 

find that we have the two-loop counter-term:

=  (3 -27)
* . , «  -

So, not only does gravity coupled to matter diverge at one-loop, but pure gravity is 

not much better -  diverging at the two-loop level.

3.4 SUGRA ■ ; "V

As we have stated, SUGRA theories contain a significant number of symmetries and our 

hope is that these symmetries will completely remove the problems of divergences in the-

ories including gravity. We can show that this hope is realised at low orders.

We can use the symmetries in, SUSY theories to relate the amplitudes for different sets 

of external particles (see appendix IV). We can use these ‘SUSY Ward identities’ [22,23,2] 

to deduce that there are no divergences at one-loop m SUGRA theories [73]: First, we 

note that these relations imply that all non-zero amplitudes within a SUSY multiplet are 

equal up to a phase. This phase cannot introduce a divergence into an amplitude, so if we 

ean find one finite amplitude in a particular multiplet then we know that all amplitudes 

in that multiplet will be finite. Recall that we were able to show that one-loop amplitudes 

with external gravitons were finite in all cases. So, any amplitudes between particles in

t



the same multiplet as the graviton are finite and, consequently, any theories which contain 

only gravity multiplets will be finite at one-loop order. Unfortunately, this fact does not 

carry over to theories also containing pure matter multiplets [75].

We do find, however, that for theories with pure gravity multiplets the finiteness goes 

further — all two-loop divergences also vanish. We can show this in a similar way to the 

above [76]; the two loop counterterm ,

R ° \ VR T  *P ' (3.28)

represents a flipping of graviton helicity [77]. We can show using the SUSY Ward identities 

that supersym m etry does not allow this flipping, so this term must vanish. Another way 

of looking at this is to notice that it is not possible to adjust this term, or add other 

contributions to it, in such a way as to create a SUSY invariant quantity [78]. This implies 

that it cannot be a counterterm in a SUSY theory. So, at tWo loops our hopes about 

SUGRA seem to be justified; at the very least the extra symmetries have postponed the 

onset of divergences.

The situation becomes more complicated at three-loops. It has been shown that it 

is possible to construct counterterms at this order which obey all the necessary symme-

tries' [78]. This would suggest that divergences are theoretically possible at this order. 

There may, of course, be some hidden symmetry which causes these to vanish, but di-

vergence in two-loop pure gravity has led to pessimism regarding this. However, as with 

that case, the only true test is to carry out explicit calculations. The complexity of such 

calculations in PQG and SUGRA has inhibited investigations which may shed light on 

this. It is to new, ways of carrying out such calculations that we begin to look in the next 

chapter. .
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I  don’t want reality,

I  want magic.

Vivien Leigh in ‘A Streetcar named Desire5

4. String-Based Rules I: QCD

4.1 Introduction

As we have said, calculations in field theories are typically computationally complex. While 

the basic theory of the conventional Feynman techniques for these calculations is fairly 

straight-forward, its application soon leads to very complex calculations. In the Introduc-

tion, we discussed the incongruity of the complexity of QCD and'gravity calculations with 

the simplicity of the answers. This leads us to the obvious questions: ‘Isn’t there a better 

approach to field theory calculations?’ and, if so, ‘ Where do we look for this new approach?’

< When comparing the processes of perturbative calculation in point-particle field theory 

(using Feynman techniques) and string theory we notice that the latter has a number of 

advantages over the former:

• In Feynman calculations there are typically a large number of diagrams which must 

be considered at each order, in string theory there is only one;

• In string theory one loop amplitudes can be the formulated in such a way that the 

loop momenta are.implicitly integrated out, in the Feynman diagram method this 

integration must be done explicitly;

• Simplifications due to spinor helicity techniques can be used at an early stage in string 

theory, whereas most can only be used at the end in field theory;

• Symmetries (such as SUSY) seem to simplify the calculation process in string theory 

rather than merely producing cancellations at the end.



These hint that string theory could be a promising place to look for alternative methods 

of calculations to the traditional Feynman diagram methods; if we could find a relation 

between the results of string calculations and field theory amplitudes then we could carry 

some or all of these advantages over.

In fact, it can be proved that string theories contain gauge field theories in the infinite- 

tension limit [12,13]. Hence, we have a clear connection between the theories with simpler 

calculation techniques and the theories for which we would like results. This connection 

was exploited by Bern and Kosower to develop a new, simpler calculation technique for 

one-loop QCD [3 ,4]. The result was a "straightforward set of rules which could be used 

easily without knowledge of the development details. These rules have successfully been 

use to carry out one-loop 4- and 5-gluon amplitudes [3,4,25] and many of the techniques 

derived from the rules have been used in electroweak calculations [24]. Since gravity is also 

contained in the infinite-tension limit of certain string theories [12], it is natural to try to 

apply the same techniques to this more c o m p l e x  case. The results from such an attempt 

are even more dramatic than the QCD case. The first steps in this application were made 

by Bern, Dunbar and Shimada in ref. [311. We wiU Present a comPlete dlSGUSSlon m the 

next chapter.

' In this chapter we will give a.brief description of the relevant elements of string theory 

and the Mnite-tension limit, followed by a discussion of the way the rules for QCD are 

derived. As would be expected these rules are simpler than those for gravity. However,

i 1 1  t noon flm twn sets and an introduction to thesemany of the significant ideas are shared between the two sets, ana

. j : c„„co;nri We finish with a summary of the QCDm the simpler case will aid the latei discuss

rules and an example of calculations using this metho

The ‘string-inspired’ rules for QCD were originally developed using a heterotic string the-

°ry [3], This allowed a direct derivation of a complete set of rules from a f y

string in four dimensions. We will concentrate on an alternative derivation using bosonic

String-Based Rules I: QCD
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strings [15,14]. Bosonic string theory is one of the simplest available and, hence, engenders 

the simplest derivation and a particularly compact form of the field theory rules. There 

are potential problems in using bosonic string theories as our starting point -  they do not 

contain all necessary particles and are formally inconsistent in four dimensions -  but a cor-

rect and complete set of rules can be constructed by comparison with the heterotic-based 

result. For theories containing particles of spin less than or equal to one (e.g. QCD, QED) 

the formulation can be carried out using an open string theory. (For the case of perturba-

tive gravity, where the gauge boson has a spin of 2, we must look at closed string theories.

There are both obvious and subtle differences in the construction of these theories which 

must be taken into account while developing field theory rules from them.)

4.2 Amplitudes in String Theory*

It is well-known that string theory models particles as excitations of one-dimensional ob-

jects — ‘strings’. Strings can either be closed or open*, i.e., they have two free ends or they 

are loops with no free ends, respectively (fig. 4.A).

(b)
■> ' a i

Figure 4 .A: (a) Open and (b) closed strings and example world-sheets 
• for each freely propagating.

S e e ,  f o r  i n s t a n c e ,  r e f .  [3 4 ] a n d  r e f e r e n c e s  t h e r e i n .

All particle trajectories in a string theory are represented by two-dimensional ‘world-

sbeets’; the area mapped out by the strings as they move through space (fig. 4.A). We

*



parameterise the world-sheets with a space-like and a time-like parameter, a and r. We 

can then describe the string trajectory mathematically by X fl(cr, r), a vector giving the 

space-time position of the string at world-sheet position (a, r). We also introduce a metric, 

on the world-sheet. This allows us to write the action of the free string as

5  =  ( 4 W ) - 1 j (4.1) -

(Note that the integral and the a and /? indices are on the two-dimensional world-sheet; 

the n index is on the physical space.)
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Figure 4.B: World-sheets representing the joining of two strings to form a third for
(a) open an<j (b) closed strings

' An interaction in string theory can be pictured as the world sheet in fig. 4.B; i.e., 

those which describe the joining of two strings to form one new string (or, equivalently, 

one string splitting into two). We.find the string diagrams for a perturbative expansion in 

an analogous way to point-particle theory: The interactions are used as the building blocks 

for diagrams with the required perturbative order and number of external particles. In the 

' case of open strings, the result will be world-sheets with a number of ‘holes’ and ‘strips’ 

extending to the far past and far future. The holes correspond to loops in Feynman 

. diagrams and the strips to external particles. In the same way, for closed strings we 

will have ‘handles’ (corresponding to loops) and ‘tubes extending to the p

(corresponding to external particles).

*
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Figure 4.C: Contributions to four-point tree amplitude in 
. point particle theory.

The major difference between point-particle and string theory (as far as perturbation

theory goes) is that the latter.has only one diagram at each perturbative order; since

manifolds are completely determined by the number of loops and holes they have, we need

only consider diagrams which are topologically distinct. There is also no need to consider

diagrams with different internal particles propagating since all particles described by the
* • •’

string are included. For example, consider a simple 4-point tree amplitude. In Feynman 

calculations we would potentially require all the diagrams in fig 4.C, including a sum over 

all particles in the theory propagating along the internal lines. In string theory all these 

possibilities are included in one tree diagram (fig. 4.D). The different contributions will be

found as different regions of integration in the string amplitude.

Figure 4.D: Contribution to four-point tree amplitude in
string theory.

To begin calculating string amplitudes in practice, we make use of a conformal invari- 

ariCe of the string action to manipulate the diagrams into a more manageable form. We 

Can make a conformal rescaling of the world-sheet metric which takes the world-sheets to
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Figure 4.E: Conformal mappings taking the external strings of a tree to 
points on a (a) disc and (b) sphere. :

M . Figure 4.F: Conformal mapping taking a one-loop diagram to
points on (a) an annulus and (b) a torus.

compact manifolds with tie  external particles mapped to points on the surface (e.g. see 

figs. 4.E and 4.F). We are interested here in one loop amplitudes (fig. 4.F). In the case of 

the open string, this mapping takes a one loop diagram to an annulus with vertex operators 

distributed over the two edges. Similarly, for a closed string we obtain a torus with vertex 

operators distributed over its surface. Sake this process maps external states to points, 

the quantum numbers for these must be retained in some way. We find that there are local 

operators -  Vertex operators’ -  at each point encoding this information. For a particle, 

A, with momentum k„, the vertex operators are of the form

y^(fc)=  JdvVhW\(v)etakX ' (4-2)

WA contains the quantum number information for the particle (ie the spin dependence, 

etc). The integral is over the locations of emission points on the world-sheet. X '  and V  

« e  the same quantities as those found in the action (4.1). u' is a string parameter whidr 

c can identify as the reciprocal of the string tension.

One way in which we can express an amplitude using the vertex operators is via the 

Polyakov formalism, in which the amplitude is the expectation value of the vertex operators



summed over all possible string topologies:

String-Based Rules I: QCD

An(A i, k\; . . . ;  An, kn)

v ■ . . ’ '
where the average is weighted as

E
topologies

IIM*0
JS—1

(4.3)

(v , . . .Vn) ~ J  [D-Y] [D/,„„,] expi-S )!’, (/„-,) . . .  VJkn) (4.4)

and S is the string action defined earlier (4.1). This is-the form we will use. In one-

loop calculations the functional integral over the metric is essentially an integral over

conformally inequivalent tori (or annuli), specified by a parameter r. The metric on each

of these tori (annuli) is haß ~  rjaß. So, J[Dhaß] will be reduced to /  d r /(r ) . In order to

manipulate this into a more convenient form for calculations, we can use Wick’s Theorem

to re-write the average. The most useful expression of this for our purposes is (from
» • •

appendix 7. A of ref. [34])

, (: eA eB ■.} =  (4.5)

which can be generalised as

(: eAl :: e^2 : ••• : e/lw :} =  (4<6)
*<j

Thus, if we can express the V ’s in the form V — f  d2v eB (4.3) will become (in the one-loop 

case)

' ^ ! ° op. r 7 ^ / w n / A * n ^ ) . (4.7)
J k J i<j

This will be our starting point for the development of the Bern and Kosower method. We 

whl look at the infinite tension limit of this expression to construct a new set of rules for 

0lie-loop calculations.

Before we go on to look at the effect of this limit, we must make a short comment about 

dimension in which our strings live. It is well known that bosonic string theories are 

0nly consistent in a 26 dimensional space-time. However, we are interested in amplitudes
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in 4 — 2e dimensions (working in a dimensional régularisation scheme). This might appear 

to be a problem, but, for our purposes, we find that we can simply truncate the number of 

dimensions in a naive way from 26 to 4 -  2e with only a minor adjustment. We can easily 

confirm that this is sufficient for the purpose of our analysis by comparing the results with

the fully consistent heterotic string construction.

4.3 The Infinite Tension Limit!: a
 ̂ ....

In order to obtain the particle amplitudes required we must consider the field theory or 

‘infinite tension’ limit of our string amplitude [12,13,3]. The conventional string parameter 

a' is the reciprocal of the string tension, so ‘infinite tension’ corresponds to taking

« '-> 0  (4.8)

We must look carefully to find all the contributions in this limit: in both the open and 

string cases we find that the amplitude has an overall factor of (a')™, (m > 0), so we must 

look at the regions of r and p integration which produce compensating powers of •

We will see that there are twq regions which must be considered. The first is where the 

position of two vertex operators come close -  or are pinched .

\vi -  Vjl -»  0 some i j  (4.9)

in  and are the positions of two emission points, cf. (4.2).) In the infinite tension limit, 

this corresponds to extracting massless poles. We can regard it ‘diagrammatically’ as two 

external legs coming together to produce a tree attached to the loop (fig. 4.G). Each pinch 

'c f this form will contribute a leading (o ') - 1 to the amplitude expression. In practice we

. . n _  -u P combinations of pinches. These combinations will find that we must consider all possible combination p

ot he considered -  all one-loop e>3 diagrams with the give us a set of diagrams which must be considered
- 1 1 ;• This mav seem surprising since the theories we arec°rrect number of external particles. 5

!  T h i s  s e c t i o n  f o l l o w s  r e f .  3  c lo s e ly .
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l - , '
Figure 4.G: A diagrammatic representation of the effect of the

limit |Vi — Vj\ —► 0.

<

considering have vertices where more than 3 particles meet. In fact, gravity has n-point 

vertices for all n > 3. This reduction of vertices to be considered is a simplification 

reflecting the string theory roots.

The second integration region is the one in which ‘

r oo. (4.10)

(In the closed string case this will translate to Qfr) —*• oo.) ‘Diagfammatically’ we can 

think of this as shrinking the annulus or torus to a thin circular wire (fig. 4.H). We find 

that this limit leads üs to consider an integral of the form

/
o° #

d r ( r r + e/2e - “/AV (4.11)

f°r some m >  0. This gives a contribution (to leading order in a1) of

T(m +  1 +  e/2)
. (0,//i”)m+l+€/2 ’ (4.12)



So, we have (a ') - 1  contributions from the r integration and from combinations of 

pinches. We might wonder if these all give non-zero contributions as a -»  0. Let us 

consider the open string case: Here we have an overall factor of (ct ) (n is the number 

of external legs). Whatever choice of ‘pinches’ we are considering, the combination of these 

two contributions cancels these n — 2 powers completely; the pinches give (n — n{) and 

the loop integration (nj -  2) powers of (a ') " * 1 (nl is the number of legs attached to the 

loop). In the closed string case the situation is slightly more complicated but essentially 

the same. In both cases, the implication is that we must include all pinch combinations1,

and that these give the complete non-vanishing contribution as a  —> 0-

After considering the r integration we are left with the integrals over the remaining 

z/j’s. As the zVs always appear with 1 /r  and 0 < uy <  r, the only region of ^  integration 

with non-zero contribution in this limit is
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\vi\ —»■ co s.t. — /  0 Vi (4.13)
<1 . . . . .

(In the case of closed strings it is the. limit in which the imaginary part of these quantities 

goes to infinity which must be considered!) We will find that these amount to Feynman 

Parameter integrals. (K in equation (4.12) will be seen to be a typical Feynman parameter 

denominator.) The numerator of the integral will depend on the explicit form of the vertex 

operators and the particle content of the theory.

It is the a' —> 0 limit which allows us to control the particle content. The limit causes

all massive states to decouple so that we are left only with the massless states and the

1 achy on. So, for a particular spectrum, we merely select theory with a suitable massless
• ■

sector. The tachyon is a potential problem; we do not want it to feature in our final results, 

but it is present in all bosonic theories and produces exponentially large contributions in 

the limit (4.8). In fact, since it is clear which contributions come from the tachyon, it is

t iOOD i s o l a t e d  o n  a n  e x t e r n a l  l e g .  T h e s e  v a n i s h  b e c a u s e
1 W e  o m i t  t a d p o l e  d i a g r a m s  a n d  t h o s e  w i t h  t h e  lo o p  l s o ld  f

w e  i m p l e m e n t  t h e  u s u a l  d i m e n s i o n a l  r é g u l a r i s a t i o n  p r e s c r i p t i o n  [ 1 3 j .
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sufficient for us merely to drop these as we go along. As with the truncation of dimension 

we need not worry since the final results can be shown to work.

So, we begin to see; the form that our method must take: we expect to look for a number 

of <f>3 diagrams corresponding to pinch contributions, plus a set of rules which lead to a 

Feynman parameter integral for each diagram. Summing over all the contributions will 

give us an expression for the amplitude.
<1 j :
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4.4 Derivation o f  QCD Rules from  Open Strings [14,15]

We now turn to an explicit discussion of this limit in the open bosonic string case. We 

know from earlier in this chapter that amplitudes in this theory can be described by a set

of vertex operators sitting on the boundaries of an annulus.

Open bosonic string theory has a massless sector which contains only a spin one Yang- 

Mills particle, so in the first instance we can use it to produce rules for use in pure QCD 

gauge calculations. Note that amplitudes in QCD must include traces of colour factors, so 

before discussing the rules let us see how these would enter in the string-inspired method. 

There is a very simple way of expressing these amplitudes which comes out naturally from 

open string theory:

' A n = g n NcTr{Ta°^
a£Sn/Sn;i

l n / 2 1 ( 4  1A.)
■ '_l- g11 Xy 2V(Ta<r(1)...  Ta'T(m_1))Tr(T<lfl'(m).. .  T"“»("))  ̂ ' '

tr£Sn / Sn;m
; X An-,m{k<j(\)i ecr(l) j • • • > t̂r{n)i e<r(n))

where the traces are over colour matrices. This is a ‘colour decomposition’ of QCD ampli-

tudes [79], In this method, rather than calculating the full amplitude, we need only 

'■ calculate the simpler ‘colour-ordered’ sub-amplitudes, An;m. In the field theory limit of 

open string theory this occurs naturally due to Chan-Paton [80] factors of the string (these 

* *  quantum numbers which sit on the ends of the string). These factors produce the traces

*
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seen in the above sum. We know that vertex operators sit on the edges of an annulus. If 

all vertex operators are located on one edge of annulus then we have one trace; terms with 

two traces occur when vertex operators are shared out between the two boundaries. Since 

our aim here is to 'give pointers to the closed string development for gravity we will not 

discuss this further: Closed strings do not have Chan-Paton factors and the world-sheets
' : 'fll .

do not have edges; these differences are consistent with our understanding of gravity since 

it has no equivalent to colour and we expect to have to sum over all orderings. Instead, 

we concentrate on the calculation of A^i since this is closest in form to the approach for 

, gravity. , . ‘

For the calculation of An; 1 we must consider an open string amplitude with all vertex 

operators located on the same boundary of the annulus (as in fig. 4.1). Since the operators 

are restricted to one-dimensional spaces, there is an implicit ordering of the vertex opera-

tors. (It is this ordering which allows us to use Wick’s theorem.) We must integrate over 

all positions of the vertex operators consistent with this ordering.
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Figure 4.1: The string diagram relevant for the calculation of An-i.

For external vector particles, the vertex operators required are

. , y .  „  J L e i .
a'

V gj(\/ö(^fei-X+€ ¡-9X) 

a'

(4.15)

linear

where, by ‘ linear’ , we mean ‘keep only terms linear in «¿’ . Since we have </, in a suitable 

“ exponentiated’ form we know from section 4.2 that we can express the amplitude an

j^l  —lo o p /  n dvt  n
j  i<j

, ((y / jk i -X+ei-dX)(VZrkj--X+ei -8X))
multi-linear

(4.16)

*
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‘Multi-linear’ is the natural generalisation of the condition in (4.15) we keep all terms 

containing one of each et. We can expand a generic term in the product as

exp ^(iV cdki • X{vi) +  e,- ■,dUiX (v i))(iy/a'kj ■ X (v j) +  kj • dVjX {v j))^ j

=  exp ( c / i f i *  {X „(Vi)X„{i>i)) +  V d k t q ( X f (vi)d¥jX,<j,j)) (4.17)

+ Vtikfei (d^X̂ vJX̂ Vj)) + (a„X,(^)0.,X„(^)>)

a function of the two-point correlation function. This correlation function can be evaluated 

as

( X fi i l/i )  X  v ( V j  ) } —  Sf u /G  [) ( V{ V j  )

=  —Sjj,, ^log |2 sinh(i/ij)| -  -4gsinh2(zqy)j +  0 {q 2)

(vij =  Ui -  vj and q =  exp - 2 r). In general we will write this as Gb  since we will only 

require certain limits of the function. In this way (4.17) becomes, . % .

exp • kjG sivij) +  Vo7(&i • ej -  kj • ej)Gs(i/,j) -  e* • ejGB(vij)J (4 .19 )
Imulti-Iinear

With (? * (* /)  =  \dvGB{y) and GB{v) =  Inserting this in (4 .1 6 ), and  filling  in

the m issing term s, gives us a com plete  expression  for  the n po in t am plitude

An:t -  f°°dT  f Y l d n e i v i  -  « t . ) ^ n ' , V I / ( i r 2,1- ‘ * ' ,!)
l G x 2 : , ■ ; Jo r ' J i—1 •

n

x jQ exp (a'ki • kjG b {v ij) -f- VcJ{ki • tj — kj • ei)GB{vij) — £i ' ejG B(vlj
' <<i ' ■■■■ , multi-line

(4 .20 )

where f(q ) is the  partition  function

/(? )= I h 1 ~ (4 .2 1 )

and there is an arbitrariness in the zq’s which has allowed us to set v„ equal to r. We 

einPhasise again that the v's are implicitly ordered in this expression (r =  un <  Vn_ x < 

< vx <  1 ). /Note that, as discussed earlier, this is a naive truncation of the bosonic



string expression from 26 to 4 — 2e dimensions. The subtlety is that we keep the leading 

V 1 by hand in order to obtain a sensible limit as r -> oo.

We could use this expression ‘as it is’ as our starting point for the rules. However, 

before looking at the limits it is useful to remove all Gb  factors by integrating by parts. 

Doing this will enable us to find a particularly simple form of the rules. For each Gb ^ j ) 

we integrate by parts with respect to one of the variables iq and V j .  For example, in a four 

point calculation a simple term would be one such as
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Gb (v i2)Gb (v23)Gb (v u )2 exp (4.22)
i<j

0

We can remove Gb (v  1 2 ) by integrating by parts w.r.t. v\ to give*

G s(i/i2)Gfl(^23)GB(^34)2exp
i<j .. . : (4.23)

x (ki • k2 GB(vi2 ) +  &1 ■ k^CrBi^ls) +  &1 ■ k ± G '

In many cases such a manipulation will create another Gb , but iteration of the process 

will eventually lead to an expression with no Gb 's*. (It was proved in ref. [79] that this
tt

process always ends.)

Having carried out the integration by parts we will be left with an integral over 

exp(Gb ) and ¿ V s . We can now look at the effect of a' -> 0. When (4.20) is expanded 

out fully, the leading power of 01 will be (o:,)n So, to find the non-zero factors in the

f  O n e  m i g h t  e x p e c t  b o u n d a r y  t e r m s  t o  a p p e a r  h e r e ,  b u t  w e  c a n  d i s p a t c h  t h e s e  e a s i l y :  A l l  b o u n d a r y  

t e r m s  w i l l  c o n t a i n  a  f a c t o r  o f  t h e  f o r m  | *  -  . t f — *  k> : k* U r * r  ( S o m e  t e r m s  w i l l  r e q u i r e  t h e  u s e  

o f  p e r i o d i c i t y  =  1/ +  i/„ t o  e n a b l e  t h e m  t o  b e  s e e n  i n  t h i s  f o r m . )  W i t h  a  s u i t a b l e  a n a l y t i c

c o n t i n u a t i o n  o f  k{ • fcy [ 1 3 , 7 9 ,8 1 ]  t h e s e  w iH  v a n is h .

1 F o r  e x a m p l e ,  i f  w e  h a d  . ( u n w i s e l y )  c h o s e n  t o  i n t e g r a t e  ( 4 .2 2 )  b y  p a r t s  w . r . t .  , 2 w e  w o u ld  h a v e  

o b t a i n e d

4 " . \

( 0/ T ,  k‘ ' ( « ' Y , k' ■ k‘ ° B i -  6 B( » 3))
v i=2

Integrating the the second term by parts 
will eventually give a Gb  -free expression

w . r . t .  t/3 f o l lo w e d  b y  a  f u r t h e r  i n t e g r a t i o n  b y  p a r t s  w . r . t .  v  
e q u i v a l e n t  t o  ( 4 . 2 3 ) .  4
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limit, we must look for places where inverse powers of a1 are produced to cancel this. As 

we discussed in section 4.3, there are two types of contribution, ‘pinch’ and ‘loop’ , which 

we must consider.

The first of these comes from the integration regions where Ui —> Uj. In this limit the 

exp (o ' Y^i<j k% • kjG'fi) term looks like i/ - a'* ;-b /7r and each <7g produces a factor of v~d 

(see appendix I). So in general we will have an integral of the form
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ch' ( i'ij ) -  n~a ki’ k> !n n > 0 (4.24)

In the a' —>■ 0 limit this will only produce a lasting contribution if n — 1 :

/
du

ir
1 l + afki*kj/n —

v a
a 'ki • ki

a (4.25)

For n ^  1 the resulting denominator will be (af — integer) which will not survive a' —> 0 

due to the the overall powers of a'. We can recognise (4.25) as a ‘massless propagator’ like 

term, confirming our.earlier assertion that pinches extract massless poles.

The practical effect is that, when considering a pinch contribution in which -+ 0 

we will drop all those terms which do not have exactly one power of Gs(uij). Where single 

Powers of Gsi^ij) do occur they will be replaced by the massless pole 1/k, ■ kj; v, will be 

substituted for vj in all other factors.

After carrying out a series of pinches we will have introduced a factor of (a ' ) -n+n> 

is the number of legs still attached to the loop after pinching). We will also have 

reduced the number of v integrations to nr, we will now only need to integrate over a

how this reduction of variables changes the exponentialsubset {un , Uj2, . . . , uin!}. (Note 

term,

■ exp

form is the same, but the momenta are now 

loop.)

ni \
(4.26)

the momenta of the legs attached to the
f<m

*



Once we have considered the pinch contributions we must look at the r, \ v\ —► oo limit. 

Note first that the string amplitude contains an overall of q_1; an exponential function of 

r. In the r  —► oo limit we must find a single power of q to cancel this and produce finite 

contributions. Terms with higher powers of q will vanish in the limit. (There is a component 

of the amplitude which has no q's to cancel this factor, leading to a exponentially growing 

term. This is the tachyonic contribution referred to above which can simply be discarded 

for our purposes.)' There are two places in our expression where we can find this q; the 

partition function (4.21) and the Green functions (appendix II).

; First let us look at the partition function. If we expand f(q ) it is clear that this will 

introduce an overall factor of 2 ( 1 -  but have no other effect. We then only need

the 0(q°) terms in the the GB expansion (appendix II) leaving us with

Gb {v ) -----|sign(t/) +  n (4.27)
* ■ *  -

So, this contribution will simply consist of an overall factor plus the above substitution for

each of the Green functions.

From (II.2) we s^e that every Green function also has a term including q which could 

potentially contribute, so this is the second possibility which we must consider. This O(q)

Part of the Green functions is takes the form

. ' ' - q e x p ( 2 r | x i  -  X j | ) .  ( 4 . 2 8 )

where we have defined *  ee n/r. When considering this, we are in a similar situation to the 

overall the term contributes an exponentially growing factor to the r integral which 

we discard as part of the tachyon contribution, but it also produces finite contributions 

which we must take into account.. The finite contributions must come where this term is 

multiplied by a factor which cancels the exponential growth exactly. In a general product 

of G B’s, equation (4.28) will be multiplied be factors of ex p (-2H ) to give an overall

contribution of
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-qexp ( |a2r[ \Xi Xj -  X) |x*
pairs(M)

Xi\ (4.29)



This can only give a finite (and non-zero) contribution if the sum exactly cancels \xi — Xj\.

This can only happen if the sum follows the ordering of the external legs and takes the 

form

 ̂ |xk  x11 = |xi  xij j T jgii Xt21 “f”

' (4.30)

■ ' ‘ T \Xir_ i Xir j ¡Xir Xj |

which clearly cancels \xi - Xj |, leaving us with -q. This will be true if we have a ‘cycle’ of 

G/j’s. That is, a product of Gb’s with indices arranged as

G .. .GB(vin_1in)GB{yini1). (4.31)
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with Vi1 < ui2 < ... < uin_1 < vin. Such a cycle with more than two GB’S will give a 

contribution of 1 in the limit; a cycle with exactly two Gb’s will contribute 2 (since both 

Gb can contribute a q and the ‘cycle’ criterion will be fulfilled).

Again, once we have cancelled the $_1 the remaining Gb’s can be expanded as (4.27). 

Note that if more than one cycle can be identified in any term then each can contribute a 

q\ the term produces a sum over the contributions from each cycle. (Note also that they 

must only contribute~one at a time - this is in contrast to cycle contributions from other 

Particles, as we will see later.)

Once we have dealt with the dominant q~l we can consider the r and vt integrations. 

The first step is to change to the new variables Xi = Vijr. In these variables (II.2) and 

(4.27) become

(4-32)

GB{xij) ~ ~\sW*«j)+.xv:- «

TTexp (a'GB{vij)ki • hj) ~ H exp {a'  ‘
i<j ! . i<j ' ■ ■ l<m ■

where the sum only includes those legs remaining after pinches have been carried out.
*  . .  ■

The only r contribution is now the exponential plus the explicit factors in (4.20). This 

contribution i. Independent of the Gb content, so we can carry out the integration now 

cather than include it explicitly in the rules. The resulting integration is simply

/
drrni

-1 -2-H/2exp

nt

(«'EtV
•XilirD)

l<m

(4.33)



Note that the r ni-1 term here comes from II ̂  = II dxiTni~l . Equ. (4.33) is recognisable 

as (4.11) with K  =  a' Plt ■ Pim(x2ilim -  so we get the answer
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r(n , — 2 -f- e/2)
(a ,r , - 2+./2 . —2-f-e/2 (4.34)

Finally, we integrate over the region 0 < < %i2 <  •■• < <  £ini — 1.

Note that we can relate the parameters to conventional Feynman parameters. Setting 

X{ =  ¿2j= 1  aj shows (4.34) to be a typical Feynman denominator with parameters aj.

As required, the combination of pinch and loop contributions has given us an overall 

factor of (a)~n+n'(a ) ~ n , + 2 =  (q;)" ”+2- This is independent of the number of pinches 

which we carried out, which implies that we must consider all possible pinch combinations 

to obtain the complete result.

So, we can see the basic plan for the rules: We can take into account the various pinch 

contributions by considering all the diagrams coming from the different ways of pinching 

(as in fig. 4.G) -  that js, all ^  one-loop diagrams (except tadpoles and those with the loop 

on an external leg). For each diagram we begin by looking at the effect of pinches present 

and then look at the two ways the loop contributes. This produces a Feynman parameter

integral which we can easily evaluate. Then a sum over all contributions from diagrams 

gives the required amplitude.

As we said, this string contains only a spin-one particle in its massless sector, so the 

analysis above will only lead to rules for pure gluon amplitudes. We may wonder if we 

can derive rules for other particles ‘circulating in the loop’ . We find that we can do this 

V/ith relatively small changes. The simplest case is for scalar particles in the loop. We 

Can find the rules for these by making a small adaption of the string: If we compactify 

some dimensions before making our ‘naive truncation , we will introduce scalars into the 

sPectrum [82,65]. We find that (4.20) changes by an overall factor of

1 +  nsq +  0 (q2)

♦
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(ns is the number of scalars). From this we can easily deduce that scalars will have similar 

rules to gluons, but without cycle contributions.

The bosonic string spectrum does not contain fermionic particles, so we cannot deduce 

rules for fermions in the loop directly by the above method. We can, however, find such 

a set of rules indirectly by looking at the superstring rules. The superstring expression 

has an extra component constructed from fermionic Green functions, GlJ,. It was noted in 

ref. [3] that (after "removing Gq  terms via the integration by parts process) the kinematic 

function found in the superstring rules would vanish if the substitution Gp —> —G^ was 

made. This suggests that all the information we need is in some way encoded in the bosonic 

component of the superstring, and hence in our bosonic string expression. By looking at 

the superstring rules, we can deduce rules which extract this information.

4.5 QCD Rules [14]

After considering the analysis from string theory, we can simplify the procedure to give 

& simple set of rules which encode the calculational steps required while discarding the 

unwanted string theory artifacts. In this way the method can easily be used by those who 

do not have a prior knowledge of string theory. Here we give these rules in their simplified 

form'.'.We also detail the differences required for particles other than gluons in the loop.

, The starting point for the rules is to identify all relevant diagrams. Recall that we must 

include diagrams corresponding to,all pinch combinations. In practice, this means drawing 

all 1-loop diagrams with the correct number of external legs (except ‘tadpole’ diagrams 

and those with bubbles on external legs). Since we are considering the colour ordered form 

°f the amplitude, only labellings ¿f the external legs which follow the cyclic ordering of 

the colour trace need be included. Internal legs are labelled according to the pinch rule -  

at a three point vertex the internal leg is given the label of the most clockwise of the two 

°uter legs. We then derive an expression for each diagram and sum the contributions at

*-he end. . ■

*
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For each diagram we have the integration

V

-̂ ■red(a'h ■>••"> xinf )X ------------------— --------- :— -zzi------ (4.35)
til —2-f-e

where n\ is the number of legs attached to the loop.

/ i red is the ‘reduced kinematic factor’. To obtain the this we begin with the full 

kinematic expression

£  = exp hi • kjG*ß — (kj ei €i GB
multi-linear

(4.36)

which will be recognised as a simplified form of the numerator in the string integrand, with 

Gb  =  Gnivij).

While we know from earlier sections that G B and its derivatives are string theory 

Green functions, in these simplified rules we can regard them simply as functions o f Feyn-

man parameters. It is useful to note that G B and G b  are symmetric, while G B is anti-

symmetric. *

As in the derivation, we begin by integrating by parts to remove the Gb ’s from the 

expression (in the same way as our earlier example, (4.22) and (4.23)). Once this has been

done we can drop the n < te .I I « P  exPreSsion' (“ * » “  from

‘ he derivation that the only explicit contribution from this term was in the denominator

^suiting from the r  integration; this has already been accounted for in (4.35).)

, , So, we are now left with a kinematic expression consisting of a sum of products of 

Feynman parameter functions’. Our next step is to deal with the pinch, or tree, contribu-

t e s .  For any tree attached to the loop we consider each vertex in turn, beginning with 

t5:iose outside and working in. At each vertex we make the substitutions in fig. 4.J.

Once we have done this for every tree in the diagram being considered, we move on 

t® the loop rules. We saw in the derivation, that there are two types of loop contribution
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Direction of loop

t in , l

’ k2

tin, 1

2ki • kj

i —*■ j  ■. in remaining terms

F ig u re  4 .J : The Tree Rules. Note that leg i
appears before leg j  in the (clockwise) cyclic ordering. .

«

we must consider. For the first, we multiply the kinematic expression by 2(1 -  \8 Re) and 

make the substitution

G b  —* — ̂  s ig n (x ij)  +  x ij . » (4 .3 7 )

The second contribution comes when we have terms containing cycles of Green func-

tions. As we discussed in the last section these are products of Green functions with

indices: ,

(*%'*(*£* • • • Gg~itnG'jij*1 (4-38)

We must only consider cycles which M ow  the ordering of the legs. There are two possible 

contributions, dependent on the length of the cycle. For a cycle containing two G s ’s we

make the substitution
G'b ^ G b '1 ->2, (4-39)

f°r one with more than two we substitute

G V 2 G%h 1
(n >  2). (4 .40 )

rB U B

must consider the cycles contributions in each term one at a time. After a cycle 

Substitution has been made we substitute for all other Gb  s as m (4.37).
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1 Let us consider a typical term as an example of the loop rules:

G ÿ G ÿ  ' (4.41)

»
with the legs ordered as xi <  x 2 <  xz < x± <  x5- The non-cycle contribution will be

2(1 -  +  zi2)2( !  +  *34)(| + *45)(-5 + ^ 53) (4.42)

We then have two cycles contributions

( à ' i y ^  - G ÿ  & ,} -> -2  \  - (4.43)

and

G ÿ  Ô ÿ G ÿ  -> 1 ' (4.44)
* ♦ ■

giving a total loop contribution of

2 ( 1 -  \6 Rt ) { \ ±  ^12) 2(| -b ^34)(| +^45)(-|

— 2 x (| + %u){\ +  x±s) { ~ ~ 2  4"3:53) T x (2 T £12)
*

Having carried out all the rules and obtained an expression for K „ d, we can insert this 

into (4.35) and integrate to obtain the contribution from the diagram being considered.

(We can, if we wish, male the substitution «  =  £ } . .  W to'obtain a Feynman parameter

, •! r- rr« frnm all diagrams we simply sum to get an integration.) Once we have contributions irom an ui ë

expression for the full amplitude.

The loop rules above ¿ive the contribution for a complete gluon (with two degrees of 

freedom). In general, it will be useful to express the rules for one gluon degree of freedom.

B we choose the dimensional régularisation scheme where fa  =  0 then we simply omit the

■ /  1rs Wrrw and the cycle substitutions becomeoverall factor multiplying the non-cycle terms and tne y

. . ¿ M .é g h  •_ 1, (4.46)



(

and
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G*1*2
B

QÎ 2*3 ŷ r*n— 1 *n /Ôin ¿1
t*B t*B

1
2 (n >  2). (4.47)

As we mentioned in the last section, we can also find rules for scalars easily. The
\ ■' i . . . . . .

result is that we follow the above prescription precisely, but omit cycle terms; after dealing 

with pinches, we merely make the substitution (4.37) and multiply by an overall factor of 

Ah', the number of real scalars. For instance, our previous example term (4.41) would give 

us the scalar loop contribution

Ns{ l - \ 8 Re){^ +  x i2 ) 2 {\ + x z i ) {\ Js -x ^ ){-\  +  x53).

For fermions, we again find that the only change is in the cycle contributions. Unlike 

the gluon case, where only cycles of a particular ordering are included, we include cycles 

of all orderings. The actual contribution for each cycle also differs slightly. For fermions,

"we make the substitution

. G%i2 G^ iz... GiB ' limGig il -> - ( ~ f ) m JJ s*Sn(xMA+i) (4.48)
k* 1

» ■■

The other difference from the gluon case is that cycles no longer contribute one at a 

time, So, if a term has more than one cycle, we must include all possible combinations 

of contributions. For example, consider again the sample term (4.41); in the fermion case 

this will give a loop contribution

~ ^ / ( ( |  + £ l2)2(§ + Z 34)(| + Z 45)(-|  +*53) (4.49)
■- i*X (5 +  * 3 4 )( !  + . * « ) ( - !  + * 5 3 ) +  f  X (|  +  * 12)2 +  i )

^ave also multiplied by an over all factor of minus the number of fermionic degrees of

freedom, —Nf .

fr is useful to note at this point that the only momenta which appear in these rules are the 

°n-shell external momenta. We can therefore make full use of the spinor-helicity technique

#



described in appendix III to simplify (4.36) at the start of the calculation. An astute choice 

of reference momenta will significantly reduce the number of terms which we must consider 

from that expression. This allows significant simplifications over Feynman diagrams, where 

off-shell loop momenta occur explicitly and restrict the use of spinor-helicity until the end.
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4.6 Sample Calculation [15]

As an example of this method, let us consider the one-loop four gluon helicity amplitude 

A i~io°P(l-)2+ ,3+ ,4+ ). As specified in the rules, we begin the calculation by identifying 

relevant diagrams. In this case we consider those in fig. 4.K. They are the diagrams with 

no pinches -  (a); with one pinch -  (b), (c), (d) and (e); and with two pinches -  (f) and (g).

Before considering the kinematic expression, let us try to simplify things by using 

spinor helicity relations. A useful choice of reference momenta for this amplitude is 

(h ,  k i ,h ,h )  (by which we mean, the first particle has reference momentum k4, the second 

h ,  etc.). We can see immediately that this allows us to identify the following as trivial

ei ■ ej =  0 V i, j

h  • =  0 V i (4.50)*

k'4 • ei == 0,

and, using (4.50) together with momentum conservation, to equate

k2 ■ ti =  —k3 • ei k3 • e2 =  - k 4 • e2  

• k2 • e3 =  —k4 • e3 k2 • e4 =  —k3 • e4. 

^Vith these simplifications (4.36), with n =  4, becomes

(4.51)

> 4 4
K =  H  dri l l  «cp

 ̂ j=l i<j

/ 4 4
=  /  j j e x p

 ̂ ¿=1 • i<j

n - k j G l - ( k r ei -  k i-e jj& l multi-linear

h  ■kjG ‘¿ ]  (*2 ■ £1 ( g #  -  <?y)

x k3 • e.2 f 6 2J  -  G2b )  2̂ • £3 (G 2b  + &b )  ■ e4 ( g 2b  -  G ß )  )
V (A(4.52)

m
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F ig u re  4 .K : Relevant* diagrams for the A 1  loop( l  ,2 + ,3 + ,4 + )
gluon calculation.



Using the spinor helicity expressions to express the dot products in terms of spinor ii 

products,
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mner-

¿2 • ej —

k2 ' É3 =

[42] (2 1 ) 
V2[14] 

(12) [23]

k3 -e2 =  

k2 -e4 =

(13) [32] 
y/2 ( 1 2 ), 
(12) [24]

y/ 2  (13) \/2 ( 1 4 ) ’

we can rewrite (4.52) in a form which is both compact and independent of our choice of 

reference momenta,

/c =  l4 [1 2 ] (f223^( Ì i  [41] / n ^ i  n - P  h

y ^ - V j k ^ G g - G ^ ^  +  G i ^ G g - G « ) .

We have no need to integrate by parts here, so we can drop the integral and exponential

terms, / n  dx{ J][ exp ki ■ kjG% , immediately to give the kinematic factor

. ï î î i m S mïiï  (6* -  ^  ^ + ^  -  * » ) (4-53>

Looking at the effect of pinch rules for the various diagrams, we can instantly see that
«

diagram (c) vanishes: there is no G# term in (4.53), so the pinch contribution vanishes. 

Also (e) and (g) vanish: when a 2-3 pinch occurs (G ÿ  -  G ^) becomes (G^3 -  G1̂ )  =  0, 

since we must set 2 —* 3. In the same way, (d) and (f) have zero contribution because 

(¿ 5  -  G2J)  vanishes when there is a 3-4 pinch. These can all be dismissed before the loop 

rules are applied and so give no contribution, scalar or cycle.

So, we are left with (a) and (b). Let us look first at the scalar contribution to these, 

beginning with (a). This has no pinches, so we go straight to the loop rules. The. loop

substitutions give us

=  - ____ [24] ts-—----- /  _  X\3){x23 -  x24) (1 +  x23 +  x34) (%24 ~  x34)
re 4 [12] (2 3) (34) [41] (4.54)

=  1 f2 4 ] 2^ 2_______( X 2 - x 3 ) ( x 3 - x 4 ) ( 1  +  x 2 - x 4 ) ( x 2  ~ x s )

4 [12] (2 3) (3 4) [41]

♦



String-Based Rules I: QCD 67

Substituting this into (4.35) gives us

£>(“) r (n _ ;-2  +  i e ) l  [24 f t 2s
(47r)2-€/2 4 [12] (2 3) (3 4) [41]

x 7*1 , f X3 i f X2 j  ( x 2 -  X zf  ($3 -  l ) x 2

l  3 1  X2L  dXl----------5 ^ 7 5 —

(4.55)

Where X4 has been set to 1 and

B) — ^  ̂kì ' kjxij(l xtĵ ) 
i>j

=  ( - S X i («3 -  X2) -  t(x2 -  X i)(l -  X3) )

(4.56)

We can convert (4.55) into a Feynman parameter integral with the substitution Xj =  ]!F*. ■ a .. 

r(n ; — 2 +  |e) 1 [24 }2 ts2

=)[41]
(4.57)

V [a) =
(47t)2-6/2 4 [12] (2 3) (3 4) [41]

f 1 4x a3 ai^ai + 02)/  ]T  daiS (  1  — y  ai - ----------— -------- -
Jo \ J  ( s a i a 3 -  ta2a4)2+e/2

This can then be integrate (for example, with an integral table constructed by the methods 

outlined in ref. [83]) to give:

£>(“) _ r(n; — 2 +  |e) 1 [24f t s 2 x(47r)2-e/2 4  [! 2] (2 3) (3 4) [41] 6 st

For (b), we must first apply the pinch rules. So, we substitute

f in , i  fin, 1

(4.58)

2 ki • k2 s

aud change the indices 1 —» 2 in remaining terms. This gives 

■ 1 [24] V .

(4.59)

4 [12] (23) (34) [41] 3 
1 . ' [24]2ts2

4s [12] (2 3) (3 4) [41] 

Then, sim ilar to (a), we get

1 -u 1 [24]2is2

\ (o f  -  ¿%4) (à2J + 0%) (Ó11 -  4 4)

(x3 -  l)(x 2 -  2 )(x2 -  x3)
(4.60)

p (6) _  T(n/ -  2 +  ~e) 1

(4?r)2 e/2 4 [12] (23) (34) [41]

x J ! d x 3 i

X3 (x2 - x 3 ) ( x 3 - l ) x 2 

dx2 £)l + e/2

(4.61)



String-Based Rules I: QCD 68

where £4 has been set to 1 and

D —  i *

. i>j=2
(4.62)

IQ is the momentum in the leg attached to the loop with label i, so this evaluates to

D  =  sx2 (x 2 -  £3)

and the integral, in the Feynman parameter form, is

1 p (5) _  F(n; -  2 +  |e) JL______[24]2ts2
s ~  (47r)2-e/2 4s [12] (2 3) (34) [41]

• • fl  4 f  4
x p - E '

i=2 V i=2

(4.63)

x

Which gives
,w&) _  r(n / —2 + | e ) l [24] ts2 __

(47r)2-i/2 4 [12] (23) (34) [4 1]  ̂ 6s2

Combining (4.58) and (4.65) we get the result

: ; - r(ni -  2 +  ±e) M [24]2ts2
F  ̂ —■

a3a4(a2 -  2)
(—sa2 a3 y + e/ 2

1

(4.64)

(4.65)

(4.66)(4tt)2" c/2 24 [12 ] (2 3) (3 4) [41]

Now let us look at the extra cycle contributions for the gluon. If we expand (4.53),

1 [24]V  ( d !2 _  G i3)  ((G 2b3)2Gb  -  (Gb )2Gb  + G ' ^ ) 2
32 [12 ] (2 3) (34) [41] V B B )  V *

1 - ( G i 4)2G b  -  (G2b )2GZb  ~ Gb (G3b)2 +  Gb Gb Gb  +  G2bGb Gb ) ,
(4.67)

we can identify cycles in every term -  two-cycles in the first six here and three-cycles in 

the remaining two. Making the cycle substitutions, this becomes 

1 [24]2fs2 (M 2 _  r l3\
' 32 [12] (23) (34) [4 if \ B B '  . C4-68)

■' X ( - 2  (< $  -  <?s + «B  -  Gb -  G% -  GM) -  1 -  1)  •

We then make the loop substitutions and obtain

JL [24]2ts2 / v \(-2(2(l  + X24)-2(l + ^23)-2 (|  + X34))- 2 ) ,  (4.69)
3 2 [ i^ ] (2 3 > (3 4 )M (

which is clearly zero.



The gluon cycles for (b) also vanish since it has essentially the same sum of contri-

butions. Similarly, there will be no fermion cycle contribution for any of the diagrams. 

So, the total loop contribution is the same for every particle content (up to a numerical 

constant): '
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V  =  N,
V(ni — 2 +  |e) u [24]2ts2

(4.70)(47r)2- e/2 3 [12] (2 3) (3 4) [41]*

Where Ns -  Nb -  Nf, the number of bosonic minus the number of fermionic degrees of 

freedom. , .

So, we have shown how we can use an open bosonic string to simplify QCD amplitude 

calculations. By looking at the infinite tension limit of such a string we can construct a set 

of rules for finding gluon scattering amplitudes. These rules prove to be significantly more 

efficient than conventional techniques, such as Feynman diagrams, as we demonstrated 

with a sample calculation. In the next chapter we will look at the ways in which we can 

Use this type of analysis to help us in PQG.



(

Remember that what pulls the strings 

is the force hidden within; there 

lies the power to persuade . . .

Marcus Aurelius Antoninus

5. String-Based Rules II: Gravity,

In. the previous chapter we used open bosonic strings to construct rules for the one-loop 

amplitudes with external spin one particles and particles of spin one, one half and zero in 

the loop. We now turn to the case of gravity; for this we need a system which includes 

particles of spins up to two. This entails a switch from using open bosonic strings to closed, 

since the former only includes particles of spin < 1. As might be expected, this leads to 

us a set of rules which have a similar structure to the QCD rules outlined in chapter 4, 

but for which there axe also significant differences. In the next section we will outline the 

derivation in the closed string case. We will pay particular attention to ways in which it 

differs from the open string analysis. Once we have considered the essential features of 

the derivation, we will give the complete set of rules for one-loop calculations containing 

external gravitons and present the results which have been obtained using these.

Before we look at the derivation let us identify the differences we expect to see. We know

that one loop closed string amplitudes can be described as a torus with vertex operators on

,, ,,  ̂ with vertex operators on the boundaries inthe external surface, rather than the annulus witn vei y

fu . are now located on a two-dimensional surface wethe open string case. Since the operators are now

describe their locations by eomplei variables instead of red ones. The closed nature also

leads to different boundary conditions which generate ‘left’-a n d ‘right’-moving components

■m the string theory and deft’- and ‘right’-’ moving variables. As a result, we will find that

' 1 • • flora Tworluct of two copies of the open string expression,°ur starting amplitude expression is the product ox w  y
,, , . ,c nll„  an interaction term. So, we expect that ourthe left- and right-moving component , P

0



kinematic term will resemble that in the QCD rules squared plus terms which mix the 

left and right moving variables. The pinch rules will require a contribution from both 

components; the loop rules look very similar to the open rules applied to each component 

independently. We also find that we must express our kinematic factor in a different way; 

the mixing terms introduce extra powers of r - 1  which will adjust our use of (4.11). In 

order to take this into account we find it is necessary to postpone the r integration and 

include it as an explicit feature of the rules.

Since our calculation is on a torus the vertex operators are not restricted to lie in a 

certain order. This will be reflected in the rules by a sum over all orderings of external 

legs.
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5.1 D erivation o f  G ravity Rules from  Closed Strings

In this section we look at the derivation of the gravity rules from closed strings. As there 

are many similarities to the QCD/open string case, we will concentrate on the differences 

outlined above.

In this case the particle structure is slightly more complex than that seen in the last 

chapter; the massless sector of the closed bosonic string contains a symmetric tensor — the 

graviton -  as expected, but it also includes an antisymmetric tensor and a scalar. In four 

dimensions, the antisymmetric tensor has only one independent component and so looks 

like a second scalar. So, initially we will be constructing rules which will be valid for a

graviton plus two (real) scalars in the loop.

In order to carry out a one-loop closed string amplitude we map the torus onto the 

complex plane. We then integrate over all positions of vertex operators. The vertex

°perator for the graviton is

can factorise

dx* dxv Jk.x .e,.„-------- —— e (5.1)
^ du dû

? rewrite this as

X + e-dvX + ë-dtX) : (5.2)

♦
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The ‘linear’ condition implies that we keep terms linear in e and e. We then insert this 

into (4.6). Again, let us begin by looking at a generic term. We find that we have two 

copies of the closed string result, one dependent on Vij and the other on ¿/¿j, plus an term 

which mixes the left- and right-movers

• kjGsivij) + (ki ■ ej - kj ■ ei)GB(vij) -ei ■ ejGB(vij)  :

+ (ki • ej - kj • ei)Gs(vij) - e, • tjGB{vijfj  (5-3)

x exp ̂ — (ej ■ €j + ej ■ ei)Ĥj
I multi-linear

(‘Multi-linear’ is the generalisation of ‘linear’ above.) G b is defined as before as

(XftX,,) = Ŝ Gb (Vi — uj)

, and

Gb(v) = ^Qi'GBiv)

Gb{u) = \dlGB{y)

Gb(v) =^9hGb(v) 

1 ' Vb(v) = JdlGB(v)

(5.4)

(5.5)

The mixing term comes from the part of the expansion which looks like

- «flf + «?<£ faX^X,)

= .(ef :

= -(ef£- +£tep^

(see appendix II).

So, we eventually end up with an expression for the amplitude'

(5.6)

16?r2
roo

'¿\]-2(l-6Rt/2)
poo p 71 — 1

j d2r(5r)~2+e/2 j JJ d2UiO(iuil - \vi+i\)q~l 
■ * ■  ■ ¿=1 

71
x  exp (a'ki • kjGB̂ij) + \fod{ki ■ ej — kj • ej)Gs(ni-7) — e* • ejGs{vij) 

i<j

+ \ioi'(ki ■ ej — kj ■ ei)GB(kij) ~ ' ̂ĵ B(̂ij) ~ (ei' ¿j + * ej)Hj)
multi-linear

(5.7)

< Recall, from chapter 3, that we have chosen  » write the coupling explicitly as  in 4 - 2c

dimensions.  ,

*

i
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q and q are defined as exp (-2r) and exp (-2 f), respectively. Note that we have an implicit 

ordering of the ids in the integral: \ux \ < . . .  <  \un\ =  |r|. This has been imposed to allow 

us to use Wick’s Theorem. Closed string amplitudes do not have any natural ordering of 

the legs (since they are located on the surface of a torus); we will take this into account in 

the rules by summing over contributions from all orderings of the external labels.

As with open string case we begin by integrating by parts to remove G b  and Gb  

terms. We can do this for the left and right terms in turn, ,but must be careful to look out 

for those places where a differentiation with respect to (right) moving variables hits ( ^  ) 

moving functions to produce Hb ’s - We will give an example of this when we give a final 

version of the rules.

Assuming we have carried out this process, let us look at the effect of the a' -> 0 

limit. It is easy to check that, when the exponential is expanded to fulfil the multi-lmear’ 

condition, a term containing k H e's will have a overall factor i f  ( ¿ T ' ‘ ~2-  As before, 

we will find ‘pinch’ and ‘loop’ contributions which produce sufficient powers of (o ' ) ' 1 to

cancel this. First, let us look at the way the pinches work in this case.

Pinch contributions come from the effect of |* -  v,\ -  0. Evidently, this also means 

that \Pt -  vt \-  0, so we expect contributions from both Gg and G%. In the limit we will

find integrals of the form .

v?tv?•» «
(5.8)

(cf (4.24)). The comes from the exp(Gg) term; each G% and G $  produces

a and P.V respectively. This integral will only give a contribution which survives as

a' ^  o ;f  „  =  m -=  1; if n- +  m then the integral vanishes and if n =  m +  1  then the

x , . , • contribution in the limit as a' —» 0. Forresult will be l ¡ {a ’ -  integer) which gives a trivial contrmu

A =  m =  1 (5.8) becomes:

1
l +  a'krkj/2ir

2 n
a'ki • kj

a' —> 0 (5.9)

*
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So, a pinch contribution in the closed string rules will arise when we have exactly one 

GB anci one Gb  'm a term- W ecan compare this to the open string case in which a pinch 

contribution occured for a term containing exactly one Apart from this difference, the 

pinches will function in precisely the same way as the previous case: we must substitute 

vi —* vj in all other terms, the number of integrations will be reduced to ni (the number 

of legs remaining attached to the loop), the exponential will look like (4.26) and we will 

generate an overall factor of (a ')~n+n‘ .

We now turn to the loop contributions. Here we find that the relevant portion of the r 

integral is that in which Sir —► oo. This implies that we also restrict the Pj integrations to 

the regions where JSsp ,-/ —► oo. As with the open string case, we must deal with exponential 

; functions of r. In this case, we see that (5.7) has factors of both q_ 1  and q~l . We treat 

barred and unbarred variables independently, so, up to the point at which we carry out 

the Sir integration, we can follow the open string analysis for the loop contributions on 

the left and right movers independently: For each ‘half’ we must include the gluon cycle 

and non-cycle contributions that we used before. When applying these loop rules we can 

treat the Hb 's as constants, since they have no relevant contribution. The only subtlety, 

in this process comes when making the substitution for Gb  and Gb  in terms of x,’s. Since 

both are dependent on Siî  =  —SiP, both have the same substitution:

GB(xïj)----fsign(:ry) + *0'
. GH(x i j ) ----- i  sign(zij) +  xij

(There is a relative minus sign ignored here, but this is absorbed into other factors; See 

aPpendix II.) *

The significant difference comes when we have carried out this analysis and try to 

integrate over Sir. The remaining terms with Sir dependence are

J dS>r(Sir)n'(S ir)"2+e/2 n e xP ( a'ki ‘ ki(xh ~  ^  ' ëj ' €̂ Hb )  (5.11)
i<3 ■

Recall that we must impose the ‘multi-linear' condition. This implies that, in general, we

(5.10)



will have a product of RA ’s. So, a generic integral will be

J d^T(^T)nt(Q T y 2 +e/2 J J ex p (a lk i-k j ^T(x]j -\ xij \)Sj H ^ llHg2 l2 ---'H ^ lr (512)
i<j.

\ ■'

We know that in the |r| —► oo limit Hg ~  1 / ŝr (appendix I), so this integral becomes

~  f  d ^ r(^ r)n((^ r )_2+£/2(9;r )“ fc JJexp (a ’h  ■ -  |a^|)) (5>13)
i<j

Referring back to (4.33) and (4.34), we can see that the integral will introduce (o'')~ni+2+*:.

This, coupled with the (a')~n+nt from pinches, will exactly cancel the leading (a ')n~2~k
*

in each term. The number of powers of the Feynman denominator will also depend on 

the number of Hb 's ." So, whereas in the open string case we did not have to include the 

t  integration in the rules, here it will be necessary to do so. (Note that we could have 

included the r integration in the open string rules and obtained a ‘Schwinger proper-time’ 

form of the calculation such as that used in ref. [58].)

As with the open string case we can adapt the cycles rules to include other particles.

For vectors and scalars in the loop, we can find rules by using compactification arguments 

again [82,65], The result for a vector is that we must apply the open string scalar rules to 

°ne, component and the open string vector rules to the other. For a scalar we simply apply

°Pen string scalar rules to both components.

For the fermions, we must look to superstrings for our motivation. The Dirac (spin-i) 

fermion has the rules one would expect after examining the vector and scalar cases: we 

aPply open string scalaf rules to one component and open string fermion rules to the other.

P°r a Rarita-Schwinger (spin-f) fermion we might expect to apply open string fermion and 

°Pen string vector rules to each component respectively. This is almost right -  m fact, like 

':^ e  graviton, this includes slightly more than the particle required. In this case we will 

W e  one spin-f and one spin-| particle. So the Rarita-Schwinger fermion will be found

V  subtracting the Dirac result from this.
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Given these adjustments, we can now construct a full set of rules for graviton scattering 

amplitudes which, as in the QCD case, can be used without knowledge of their string theory- 

source.
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5.2 Gravity Rules

As with the QCD rules, our starting point for an amplitude is to draw all the relevant 

diagrams -  that is all those constructed from <f>3 vertices. (Excluding tadpoles and diagrams 

with the loop isolated on an external leg.) The difference here is that we must include

diagrams with all orderings of the external labels. The internal lines are labelled according
* ■' ” ■

to the pinch rules -  at a three point vertex the internal leg is given the label of the 

most clockwise of the two outer legs. The contribution from each labelled n-point >̂3-like 

diagram with ne legs attached to the loop is

( ^  (5.14)
X exp( — 7" ^   ̂Pj( ~  ; • • • > x i „ t > T)

Km.
#

(where n; is the number of legs attached to the loop). In order to evaluate K Ted, we start 

Wlth the graviton kinematic expression

T>c : ( ~ K) 
(47r)2

n f 1 ri f Xinl ~ 1 f Xh  fOO

-'J o  Jo Jx‘ ‘ l  d T X “
-3+e

ni

K
a n n

— /  J j  dxidxi exp 
»<;,?

ki ■ kj& i

x'exp I (ki • lj —

exp (ki • ej -  kj • €i) Gg — e» • ej G#

kj • eì)G lÌ  -£ i  ■ tjG 'l exp (cj * €j -f" €j ' Hq
I multi—linear

(5.15)

have factorised the graviton polarisation tensor as described earlier; we will recover it 

at the end by taking efe-' efv. GB s can be regarded as nothing more than ‘Feynman

Parameter functions’. GB and GB are derivatives of these with respect to left-moving 

Variables (e.g. G12 =  and GB and GB are derivatives with respect to right -moversV *o‘? B 2 dxi /
(e-g., Gh2 =  l-SJjn) The term H r  is the derivative of the Green function with respect

2 oil ! ’
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to one left-moving and one right-moving variable. The functions GlB,GlB and are 

symmetric in the i and j  indices while Gb  is antisymmetric.

We can begin by using spinor-helicity simplifications where possible (appendix III). 

This entails choosing a particular helicity configuration and relevant reference momenta. 

Repeating the calculation for all helicity configurations will give us the complete amplitude. 

Though it is not a necessary part of the rules, the .spinor-helicity method, will, with a good 

choice of reference momenta, remove a number of terms in (5.15) and cut down the work 

in evaluating the expression.

The first step in the rules is to remove all of the GB and GB by integrating the
• -

kinematic expression by parts with respect to the variables x% and X{ where necessary. 

While carrying out this process we must be careful to take into account the cross-terms 

where a left-mover derivative hits right-mover terms 5 and vice versa. This can be done by
i' . *

using the results

ox k W

d
dxk B 
d—--- (jt o

dxk

Gli  =  6 kiH ^ ~ 6 kjHB

§*¿ =  0

For example, if  the expression

, 4 4
/  II d x i d x i  n exp

d ¿=1 i<j
k, ■ k f i t GB CrB (j-s fGB )

is integrated by parts with respect to x i ,  the result is

(5.16)

(5.17)

/ ni~l
d x i d x i  J J  exp 

i<j
h  ■ kjG'l G%&gQB% ) 2

(5.18)

x ( ¿ i  • ^2G1b  +  • kz&B +  k\ • k̂ G1̂ j G3b  -j- HB5
y

(Repeated integrations by parts may be needed to remove the Gb  and Gb ’s completely ) 

Once all GB and G g ’s have been dealt with we can drop the integral and exponential 

terms, leaving us with a function consisting of Gb  and G5 ’s. Using this function, we can

*



go on to find an expression for K XeA for each diagram in turn. We begin with the pinch 

contribution: For every tree attached to the loop we make the substitution in fig.5.A. As 

in the QCD case, we begin with the outermost tree vertices and work inwards applying 

the rule where appropriate.
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k2 2ki ■ kj

in remaining terms

' F igu re  5 .A : The Tree Rules. Note that leg i . 
appears before leg j  in the (clockwise) cyclic ordering.

Once the tree rules have been carried out for a diagram, we apply the loop rules. The

first step is to replace all occurrences of Hg with x ♦

(5.19)

We then turn to the remaining derivatives of Gb - From earlier discussions, we know that 

the rules for G g  and Gb  replacements will depend on the particles which are circulating 

111 the loop. As suggested in the derivation, our building blocks are the open string loop 

rules. We can obtain the full spectrum of particles (spin <  2) ‘in the loop’ by applying 

combinations of the QCD rules to the left and right components of the kinematic function.

In table 5.1, we give the combinations required for the different particles. By [AT, Y]

1 > e  mean that rules X  should be applied to the Gb 's and rules Y  should be applied to the 

Gb ’s . S, F  and V represent the scalar, fermion and vector loop rules respectively. (The 

Vector rules we require here are those for a single vector state, equs. (4.46) and (4.47).)
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Substitution Particle Content
2 [S, S] complex scalar

- 2  [S,F] Weyl Fermion
2{S,V] Vector ,

-i\V,F] gravitino and Weyl Fermion
4[V, VI graviton and complex scalar

4[V ,V ]-2 [S ,S ] graviton
-4 [V ,F ] +  2 [S,F] gravitino

T a b le  5 .1 : Applying the substitution rules on the left corresponds to having the particle 
content on the right circulating in the loop. [x , y] denotes applying 
substitution rules x and y to barred and unbarred terms, respectively.

The scalar contribution, 5 , simply requires us to make the substitution

— » 2 ^~s[gn X̂î  +  2xij  ̂

s i S n ( x * i )  +  2 x i j )

(5.20)

B 2 '

We know that -F and V each produce two types of contribution; scalar, S, and cycle. 

A cycle contribution is found whenever we have a ‘cycle’ of Gb  or G s '  s:

G%Ì2 G Ì 2 Ì 3 . . .  G ^ ^ G ^ 1 o r  G 'p G # * . . .  .

Let'us write the cycle contributions as Cv and Cf • So,

F =S  +  Cf  

V = S  + Cv

(5.21)

(5.22)

For Cy, the substitution rules are

(5.23)
: G%'2G%'*. . .  G i£~'limG 'g 1' -► 1 /2 .  ( m > 2 )

Wkere all the cycles must follow the ordering of the legs and only one cycle at a time 

contribute to any term. Once these substitutions have been made all remaining GB’s

should be replaced as in equ. (5.20).
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For Cp the following substitution is made , ■
m

—l/2 )m JJ sigxi(.r,-,;-,+1) ' V f - (5.24)
. . k = 1 - ■ ,

In contrast to the V rules, all cycles contribute in the F  case regardless of ordering. Also, 

all combinations of one or more cycles from each term contribute. Again, once these 

substitutions have been made all remaining G g’s should be replaced as in (5.20).

Once we have carried out the pinch and loop rules for the diagram and particle content 

we are considering, we obtain an expression for K Tea. We then insert this into (5.14) and 

carry out the integrations. In contrast to the QCD case, we have an extra T integration 

which must be evaluated. If we do this first we will find a similar denominator to the 

QCD case, possibly with a differing exponent. (After carrying out the T integration, a 

substitution X{ =  Yl)=i ai will show that again we have recovered a Feynman parameter 

integration. T is, in some senses, the Schwinger proper time.) Once we have carried out 

all integrations, we can sum the results from all diagrams to obtain the full amplitude.

. .. . i  • : ■ .a.* v ■'■■■' . , v  . y  , .

One reason for expressing the loop rules in the form (5.22) is that it allows us to make

explicit the simplifications in a SUSY decomposition (appendix V). This involves calcu-
# ...

lating amplitudes for specific SUSY multiplets rather than for individual particles. The 

individual contributions can then be reconstructed from the SUSY results. In this way,

^e can exploit SUSY simplifications during the calculational process; they are seen as

cancellations between common contributions in the multiplets.

Lt b  Ltb — 1 /~1îm UlrB CrB

N  ■'■■■■■■'• scalars spin-1/2 spin-1 spin-3/2 spin-2

N  =  0 1

N - 1 1 l '

; n  -  4 3 ' 4 ' 1

N  -  6 . 10 '*■ 15 6 1

N -  8 ; -.35 ... : r  56 ■■ 28 8 1

r  article content u i u k  -  -
complex, and the fermions are Weyl.



Here, we chose to calculate amplitudes for the N  =  0 ,1 ,4 ,6,8 multiplets centred 

around the scalar (ie, those in table 5.2). The cancellations for these multiplets leave a 

simple contribution to be calculated and a reduced degree of Feynman parameter poly-

nomial (see table 5.3, and note that in the combination Cv — 4Cp the 2- and 3-cycle 

contributions cancel). Clearly, this will be a particular efficient way to carry out the one 

loop amplitude calculations.
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N Contribution Degree

N =  0 2[S,S) 2n

N =  1 2 [Cf ,S\ 2 n — 2

N =  4 2 [Cv ~ 4Cf , S] 2n — 4

N =  6  ' - 4  [Cy — 4Cf ,C f ] 2 n — 6

N = 8 4[Cv ~ 4Cf , Cv  — 4Cf \ 2 n — 8

Table 5.3: The String rules appropriate for the multiplet are given and the degree 
o f  the Feynman parameter polynomial for an n-point loop integral.

Using the stringy rules in this way gives a further simplification compared to Feynman 

techniques.
«

5-3 Sample Calculation*

ket us look now at an example of a typical calculation using this technique. We will 

choose the four-point amplitude with helicity configuration A 1~loop(l~2+3+4+); the grav- 

hy equivalent to the QCD example in the previous chapter.

We begin by identifying the relevant diagrams; these are depicted fig.5.B. These are
"I ■ ' » Ï

essentially the same as those in the QCD example, but recall that we must now include 

ah orderings of the external legs.

We go on to look at the use of the spinor-helicity technique. The most suitable choice 

helicity reference momenta for this configuration is (k4, fa, h ,  ¿i). This allows us to

This was originally calculated in ref. [3 1 ]
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F ig u re  5 .B : Relevant diagrams for the A 1  loop( l  2+ 3 + 4 + ) 
graviton calculation.
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deduce the formulae:

ei ■ ej =  0 e. • ey =  0 <
 

e*.

• e. II 0 V*,J

d • €j =  0 ki -€j =  0 V j

’4 ‘ Cl =  0 ¿ 4  • ëi =  0.

(5.25)

(Recall that we can factorise the polarisation tensor as two vectors, e^  =  elxell.) If we 

combine these results with momentum conservation, then we can equate

&2 • Cl =  —¿3 • €\ kz ■ 62 =  —ki ■ t2 ¿2 * h  =  . — ̂ 3 ‘ h  &3 ' 62 =  ~&4 • 62
v (5.26)

k2 • e3 =  —&4 • e3 ¿2 • 64 =  — &3 • e4 ¿2 • e3 =  —£4 • e3 &2 • e4 =  —&3 • e4.

Using these results in the kinematic expression (5.15) and expanding to fulfil the multi-

linear condition gives us » .

4 4
1C= / , JJ dxidxi JJ exp 

J ¿=1 ¿<i
X ¿ 2  • 6i ¿ 3  • e2 ¿2 • 6 3 &2 ■ e4 &2 ‘ 1̂ &3 2̂ &2 ’ 63 ¿ 2 • €4

X

X

' ( - ( ? £  +  G y )  (-<?B +  <??) (fffi +  à B )  ( GB -  G“  ) j

:(_B ÿ+èy) (-sy .+ $?) (b ?+ ® ï ) ^ (5.27)

/ n¿=1 

X

X

( T  [12] (23^(34) [41])

(-¿y+¿y) ( - ¿ f + g b ) (¿y+cy) (<?y -  <?y) 

(-èy+¿y) (-c.y+sy) (éy+?,;?) (èy - èy)

Note that this is simply a double copy of the kinematic expression in the QCD example, 

So by comparison with that case we know immediately that there is no contribution from 

Pinches (e), (f), (g), (h), (j) and (k). In this case, however, we are left with five other 

diagrams which we must consider. We have more here because we are considering all



orderings of the external legs, so there are three boxes to be considered rather than the 

one in the QCD case, plus an extra pinch diagram.

Let us look first at the scalar contributions from the contributing diagrams. The boxes 

have no pinches, so we can look at the loop rules straight away. We begin with (a). The 

scalar loop contributions depend on the ordering of the external legs through the sign(xjy) 

in (5.20). (a) has the ordering 0 < x3 < X2 < x 3 <  £4 =  1, which is the same as the 

QCD box in the previous example. Hence, the reduced kinematic factor which we obtain 

is precisely the square of (4.54):
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^ red 16 ( [12] (23) (34) [41]

Substituting this into (5.15), and carrying out the T integration, gives us

£>(“) =  -  2 +  |e) 1 /  [24f t 2s \
(47r)2_€/2 16 \ [12 ] (23) (34) [41] J ... »

K
/ v 2

I r i i i L t f l u J  ( -  ^ 12 (I2 -  ^ (5.28)

ei rx 3 rx*
dx2 /  dxx f  dx 3 /

. Jo Jo

(X2 -a?3)4 (^3 -  l )2 #2
(5.29)

lo 1 ( - s x 1 ( x 3 - x 2 ) ~  t ( x 2 - a r i) ( l -  x 3 ) )
2 + e /2

Which, use the Feynman parameter form is

2>(a) _  r(2 +  le ) (  [ 2 4 ]V  «Y
(47r)2-e/2 16 ( [12] (2 3) (3 4) [41 ]J

x
f 1 * ' /  A  A (afa4(ai + « 2) ) '

/  I I  ^  \ ( — S<X\Ct3 — i a 2 o 4 ) 2  +  e/ 2
Jo ' ¿=1 : *=1 '

(5.30)

We obtain from this
i k '1 1  i  [24]2ts2 

(47r)2 840st ( [12] (2 3) (3 4) [41]V[a) =  rr (5.31)

(5.32)
where rp is given by » ■ ■ .6 , .... r2(i-e)r(i +e)

• rr '  f ( T ^ 2Q
. „ . ^ =  1 which leads to a reduced kinematic

For (b), the ordering is 0 < xi <  *3 .<*2 < 3:4

expression (after loop substitutions) of

= è ( M m è m ) ((*3 r  *2)(2 " Is) ( _ 1 + 12) (I2 ~  *3)):
(5.33)



The relevant denominator in the integral is now (—uxi(a;3 — x2) — t(x2 — x i) ( l  — x3))2+e/ 2.

So we obtain the integral (in Feynman parameter form)
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2 + „2
•nW _ £ (£±M il ( M J iQ / . \n . !rt -« s* I r-1 i~\ 1 l C\ 0\ / O ,(47r)2_e/2 16 l [12] (2 3) (34) [41]

x
[ ' t T j  s f ,  ^  ^ (a|a4( a i+ a 2 ~ 2) )Z

J 0 U  a‘ I . ^ a' J  (-uaia3 - i a 2a4)2+£/2

(5.34)

Which gives

=  (  J24!2̂ 2 _ ) '
s r (4tt)2 840ut \ [12] (2 3) (3 4) [41])

(5.35)

*  . . .
The final box is (c), with ordering 0 < xx < x 2 < x4 < x3 =  1. The reduced kinematic 

expression for this is

K-Ac) _  1 l  [24]2̂ ------  ̂ f ( 1 _ X2) ( x 4 - l ) ( x 2 - x A) x 2f  (5.36)
red — 16 V [12] <23) (34) [41] ̂

and the denominator required is ( - * * , ( *  -  « )  "  “ ( ^  -  ^ X 1 "  ^  these

we obtain the Feynman parameter integral

r(2 + \t) ka (  [24f t s 2 \
Vs ~  16 \ [12] (2 3) (34)[41]y

1 4/
, ,X

f 1  TT J  c  (1 ^ (q3q4(Qi +Q2 2))
Jo l r i S \ (- 'saia3 -  wa2a4)2+£/2

(5.37)

living the result
t > ( c )  _  ^  1 /  [24] ts2

s ”  rr (4ir)2 252.su 1 [12] (2 3) (3 4) [41]
(5.38)

Now we must look at the pinch diagrams. We begin with (d), the 1-2 pinch. Recall 

hat we must now look for terms containing exactly one and one Gtf, the substitution

ule in this case is

( Gb )  { ° b )  -  2 h - k 2

m ¿m,l ̂ n,l l^n,l (5.39)
s



and change the indices 1 —> 2 in remaining terms. This gives

1 (  [24] ts2 ^ 1 23 ^24  ̂ ( niz i r*34̂ \ ( r<2 i ’
16 \ [1 2 ] <2 3) (3 4) [41] J - ^ B - G B ) ( G B + G Bj ( G B - G B )

X (51? -  B|4)  ( S 2b3 +  5 g )  (51? -  51?) (5.40)

With the relevant denominator, this becomes

r(l +  f e) k4 [2 4]2ts2
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j)(d)
(47r)2-e/ 2 16s [12] (23) (3 4) [41]

where, as usual, we have converted to Feynman parameters. This evaluates to

(5.41)

v [d) ==
IK 1 _ J _ (____ [24]l2is2

(5.42)
(4t )2 360s2 l [12] <2 3) <3 4) [41]'

Finally, we have the 1-3 pinch diagram (i). After applying the pinch rules we obtain 

the expression

i  ( _ _ M ! i i _____) 2 1  ( 6 ?  -  o f )  (61? +  61?) (& b  -  61?)
16 \ [1 2 ] (2 3) (34) [41] J u \ J V J V ,

x ^ - ^ ^ b + S b4) ^ - ^ 4) (5-43)

— t V ( ( ^ - i ) ^ ( ^ - i s))2
— 16u 1 [12] (2 3) (3 4) [41])

rhe denominator which require in this case is (-<m2<>3)1+</2- Clearly we have the same 

ntegral as in (d) up to a factor of ( s ju f .  Hence we find

w,-J *'*4 1 1 /  [24 fis2 y
s ' (4tt)2 360w2 \ [12] (2 3) (3 4) [41]y

(5.44)

Summing the various contributions gives us the final result of

¿«4 fs t\ 2(  [2  ̂2 (s2 +  si +  ¿2)

’ (i^p
?«4 ( s t y

A ( l - X , 3 +A +) =  N*T Z Â ï{ïï) 5760
(5.45)



5.4 Results
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Here we give a complete set of results for 4-graviton amplitudes. We express them using 

the spinor-helicity terminology and making use of the SUSY decomposition described in

appendix IV.

For the ( - , + , + , + )  and (+ ,+ ,+ ,+ )  one-loop amplitudes all the supersymmetric 

components in the decomposition vanish due to supersymmetric Ward identities. This is 

related to the fact that all cycles vanish, so that the contribution for every particle is just

a multiple of the scalar one. The results are

, , , N iK l i S t \ * f  [24]2 \2( j 2 + 3<-H2)
A(1 ,2+ ,3+ ,4 ) =  ( ,[ !2] (23) (34) [41]/ 5760 (5.46)

and

/ S t  \2 ( i2 +.st +  t2)
4 ( l+ ,2 + ,3+ ,4+) =  - i V . ^ 2 (i-(12) (23) <34) (4 iy )  1920 (5.47)

where
■Ns = Nj,- Nj, (5.48)

the number of bosonic states in the loop minus the number of fermionic states, s =  [ki +  

h ) 2, t =  ( k i+  k4 ) 2 and a =  (&i +  k3)2. So, for instance, since a graviton is made up of two

helicity states the amplitudes for pure gravity are found by putting Ns =  2 in the above 

expressions.
For the A (l~ , 2“ , 3+, 4+) amplitude, none of the cycle terms vanish. We express their 

contributions using the supersymmetric decomposition given in the previous section. The

(complex) scalar amplitude is ' '

F u 3t3(ln(—t /  — u )2 +  7T2)
A[°](l~ ,2~ ,3+ ,4+ ) =  ------------~ . . 5—

W G -  «1 (t4 4- 9 ut3 +  46 uH2 +  9 u3t +  u4) In ( - ¿ /  -  u)
+ 30 s7

-l  9.3 ut3 +  222 u2 t2 +  23 u3t +  2 u4)A



where F  is
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iK4 (4:7c)err (  st( 12 )4 \ 2 stuK2 (47ryrr .tree/1 -
16(4tt)2 ((1 2 ) (23) (34) (4 1 ) /  4(4tt) 2 ^  ’ 2 ’ 3 ’ 4 ^ (5-50)

and 4 tree( l - , 2 “ ,3+,4+) is

4 tree(l-,2 ' -,3+, 4+) =  ^ - , (124
,(12) (23) (3,4) (41).

st x —. 
u (5.51)

(This tree amplitude has been calculated previously in refs. [64,60] and was given in this 

helicity basis form by Berends, Giele and Kuijf in ref. [20].)

The amplitudes for the supersymmetric multiplets given in table 5.2 are

l Nz : 1  F (t2 +  14 tu +u2) Ft 2 u2 (ln2 ( - t / - u )  +  ir2"j
24 s4 2s6

F(t — u) (t2 -f- 8 tu +  u2) ln(—t/ — u)
1 2 5 s

A ^ 4 =  ~ u) -  tu (ln2(~ V  -  U) +  TT2) +  -S2 j

- F  fln2( - t f  -u )  F i:2\N=6

_  2F / ln (-u ) | ln (-t) +  ln (-s) 
e \ s t  su tusu

+
2 r f H - t ) l n ( - s )  +  ln (-u ) ln (-t) +  ln (-s )ln (-u ) 

V st tu us

(5.52)

We chose to express the amplitude in the (unphysical) regime where all momentum vari-

ables s, t and u are négative. One can obtain expressions in the physical region by the
* ■

substitution ■

ln (-s )  -*  ln(|̂ |) -  ¿7t0 (æ). (5.53)

®(5) is the Heavyside function where Q(x) — 1 , x > 0 and 0 (x ) 0, x < 0.

The pure gravity amplitude can be found from (5.52) using the expression in equ. (V .l),



which gives the result

String-Based, Rules II: Gravity

4 [2]( l - ,2 ~ ,3 + ,4+ )

=  f ( - / ln( - ^ )  J H - t )  ! W - * ) '
\ e \ st su tu

2 ln(—u)ln(—s) 2 ln(—t)ln(—u) 2 ln(—t)ln(—s)------------------------- 1_ ----------------------- 1-----------------------
su tu ts

(4t6 +  14 ut5 +  28u2t4 +  3513«3 +  28u4t2 +  14u5f +  4u6)
(ln2(—f /  -  u) +  7T2)

+

(t -  ù) (261 i4 +  809 t3u +  1126 t2 u2 +  809 tu3, +  261 u4)
----------------------------------- 3 0 7 ----------------------------------- M - V  -  U)

168214 +  5303 t3u +  7422 t2 u2 +  5303 tu3 +  1682 u4 ' 180
180 s6

: ' (5.54)

It is clear from (5.52) and (5.54) that only amplitudes containing gravitons have 

divergent components. In chapter 3, we showed that amplitudes in which the only external 

particles are gravitons should be UV finite. If this is true then, the, divergences seen here 

should be purely IR.. We will confirm this in chapter 7.

We have shown how we can use a closed bosonic string to construct a set of rules for the

efficient calculation of one-loop graviton scattering amplitudes. These rules are applicable 

to any combination of particles in the loop and any number of external gravitons. We find 

that the method constitutes a powerful alternative to the conventional techniques and, as 

a result, allows us to carry out many calculations which have not been practical up to now.

Using this string-inspired method, we were able to produce a complete set of four- 

gr avi ton one-loop amplitudes. In order to confirm the validity of these results, it would 

be useful to have independent checks. There are a few we can consider. First, it is clear 

that these amplitudes exhibit the correct symmetries. Second, we can confirm that our 

resnlt for internal scalars agrees with the one found by Grisaru and Zak [64]. Finally, we 

' °an consider the information provided by the Cutkosky rules. This will be the focus of the

chapter.



Jolly agreed, so the toys set to work. 
Little Bear cut . . .  and Rabbit fixed 

them in place with glue and pins.

: Jane Hissey in ‘Jolly Tali’

6. Cutkosky Rules

The Cutkosky rules [5,16,1] allow us to find the discontinuities of an amplitude. If we 

can take these discontinuities and relate them in a unique way to other terms which can 

appear in an amplitude, then the rules will allow us to constrain or reconstruct the form 

of the amplitude to some extent. We will use these ideas to obtain parts of amplitudes we 

are interested in. Some we can construct completely; for the others we find parts which 

provide a check on the string calculations. , „

6.1 Introduction s

We can formulate the rules in the following way (see. e.g.. [1]): Consider ‘cutting’ a Feyn-

man diagram into two separate parts (e.g,, as in fig. 6. A). Then we can find the disconti-

nuities in channel x associated with that cut.

The normal Feynman rules should be used, except that all legs which are ‘on the cut’ 

should be taken to be on-shell -  where we would use their propagator in the calculation 

*0 insert ~  W f(*» - m*) instead . (Here, k and m are the momentum and mass of the



propagating particle respectively.) This gives us an equation for the discontinuous parts 

of this amplitude:
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/discos ~  j  n  (2^)4 n  vi n  &  _  n
, =1 tV i «  -  mi fc=“ +1 Vi -

m

II
(6.1)

X m2r)
r—m 2 + 1

when the (original, uncut) diagram has n vertices VJ and m propagators. q\ . . .  qmi and

i+i •.. q,n2 are the momenta of propagators on the left and right sides of the cut respec-

tively; the remaining are those which cross the cut.

. F ig u re  6 .B : The sub-diagrams on either side o f the cut in fig. 6.A .

It is easy to see that this expression splits into two distinct parts -  one for each of the 

sub-diagrams on either side of the cut -  and leads to the integral

Fdiscont~ f  dL1PS(eU . . . , e n ) I leit( t l , - - - £n , q i , - - - , V m 1)
J  (6 .2)

■x / nght(-^i,.. •, - 4 ,  qm i + i , ■.. , q m2).

Where / left and I ri8ht are the values of the sub-diagrams on the left of the cut and the 

right of the cut (as in’ fig. 6.B.) and / dLIPS^i,.. .  J n) represents an integral over the 

Lorentz Invariant Phase Space’. That is, over allowed values of t \, . . .  with the added 

constraint that i\ — m] for every i.

We can use this method in precisely the same way with full amplitudes as we do with 

Feynman diagrams [17,10].' For instance, we can find the discontinuities of a one-loop 

^rnplitude by sewing together pairs of on-shell trees. This is obviously a more efficient



application of the rules -  the full amplitudes will generally be simpler than the contributions 

from individual diagrams (in particular, many sets of diagrams sum to give vanishing 

amplitudes) and we are only required to carry out a small number of calculations. This 

has been used successfully to calculate a wide range of one-loop amplitudes in QCD [17,10].

It is this ‘amplitude level’ option which we implement here for gravity. As well as 

being a more efficient application, we will find that this will enable us to constrain the 

amplitudes more" tightly. In fact, in some cases we can, produce a ‘uniqueness theorem’ 

for our results. That is, a theorem which allows us to identify those results which are 

determined uniquely by their cuts.
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6.2 Application to One-Loop Calculations

F igu re  6 .C : Generic cut in a one-loop amplitude.

Now we look in more detail at the way these rules are applied to calculations. At this stage

We concentrate on one-loop amplitudes with external gravitons. We also restrict ourselves
.1 * '°  massless particles. In the case? we are looking at here -  simple physical amplitudes -  

*he discontinuous parts are all products of terms

i6(X) (6.3)

is defined to be 0 if x <  0 and 1 if x >  0. x is one of the momentum invariants of the 

amplitude. For simplicity, and without loss of information, we consider one channel of the



amplitude at a time. We can regard this as taking the momentum invariants corresponding 

to all other channels to be negative so that their discontinuous parts vanish. We are then 

looking for terms precisely like (6.3).

Consider doing this for the amplitude and channel given in fig. 6.C. The Cutkosky 

rules for this give

Cutkosky Rules 93

~ J  dU PS(-£i,£2) Atiee( - i 1,r m ,... ,m 2,£2 ) A tiee( -£ 2 ,m 2 +  l , . . . ,m 1 ~ l ,£ 1). (6.4)

As we have indicated, the J  dLIPS(~ i\, £2) is the integral over all allowed values of £x and 

£ 2  with l\ — £\ =  0. Rather than calculate this integral directly, we relate it to another 

which we know has the same cuts. This enables to us identify more clearly which terms 

are linked with the discontinuities. The simplest choice is the off-shell scalar integral

I

d %
(2tt)4

Atree( - £ u mu . . . ,m 2,£2) ^  AtTee( -£ 2,m 2 +  1, • • - ~ M i ) ^
2

• (6.5)
cuts

(From the above discussion of Cutkosky rules, it is clear that this leads to (6.4)). So, we 

can calculate this integral and extract the terms which we would have found from (6.4).

During the calculation we may use £\ =  £\ =  0 in the numerator at any point since 

these terms cancel a propagator and the result will not produce a discontinuous factor. (If 

this were not the case, then we would find an inconsistency between (6.4) and (6.5).)

This calculation allows us to find terms of the form (6.3) with x — (mi +  • • ■ -f m2 )2. 

We can immediately relate these to terms

ln (-x ) =  ln(|x|) -in 6 {x )  (6.6)

■̂t may also be possible to extend these relations to other terms, but in many cases ambi- 

S^ities restrict this.

Since we require all the discontinuities in a channel, we must sum over contributions 

f°r all relevant particles in the loop. The result will give us a large part of the amplitude, 

at which point we can deduce how much, if anything, is still undetermined in our results.
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6.3 Uniqueness

In order to determine how much of the complete amplitude we have constructed we can 

look to the ‘uniqueness theorem’ [17]. This result states that

An m-point 1-loop amplitude can be determined completely from its cuts 

(it is ‘cut-constructive}) if its integral has at most m — 2 powers of the loop 

momentum in the numerator of the integrand.

(The exception is the two-point amplitude which is cut-constructible if the integrand has

at most one power of loop momentum in the numerator.) The proof can be summarised 

as follows: All m-point tensor integrals in 4 — 2e dimensions can be reduced (by, for 

instance, Passarino-Veltman [85] techniques) to a sum of scalar box, tensor triangle and 

tensor bubble integrals. If we restrict ourselves to integrals which obey the condition in

the theorem then we can make this more precise: all m-point tensor integrals reduce to a
1 •'

sum of scalar box and linear triangle and bubble integrals. If we define to be the set of 

functions relating to these integrals then the cuts of an amplitude, A n, can be described

as

(6.7)
l’ | I i G ^ n  I CUtS

If there is another combination

( 6 .8)

I c u t S

then we know that

(6.9)



By looking at the places in \Fn where logarithms and dilogarithms are found and the 

polynomials associated with these it is possible to show that the right hand side of the last 

equation vanishes. So,

A n  =  X /  C ili. (6.10)
¿|h'£̂ n

To see this explicitly, let us restrict ourselves to calculations with four external parti- * 

cles. In this case all integral functions required to construct an amplitude can be written 

as linear combinations of only ten. These are the scalar box, I±{x,y)\ triangles, -^(x); and

bubble,/¿(x), integrals, plus a linear combination of bubbles, J2:

1
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4 0 ,  y ) 2 \ ( - x f  e +  ( - y ï In 2( — ) - ^

xy

h {x )  =  ~ { - x )

rr —i  T r w  I — v / I >xy ( e- L J - y  J
1 ( 4  21n(-x) +  21n ( - y )  , , . 2)

=  rr —  { - 2 -------- ----- ---------------- +  21n(—x) ln(—y) -  tt2 l
■r>i I p4 € J

ln (-x ) , ln2( -x )

I2(x) =  :
rr ; ( - x y

_IEY_L
x V e2

' c =  rr -  h i(-x ) +  2̂

)
(6 .11 )

............ e ( ï - 2 6 ) ’ .

. h  =  rr ■■

with x,y  ç  (This produces a total of ten when we consider all possible choices

f°r x and y.)
... Nearly all the expressions in (6.11) are identifiable by one logarithmic term which is 

unique to that function at G(e). The exception is the last. It is this which will cause 

problems in genera) -  it allows the possibility of polynomial terms which cannot be iden-

tified by cut results. Clearly, if we could discard this we would be able to find amplitudes

"’with no ambiguities when we know their cuts. : This is precisely what we can do for the
< * ' . . .
cut-constructible’ cases.

Within the set of amplitudes we are 
are small since a general 1-loop (non-supersymmetric) gravity amplitude has 2n powers

oi loop momentum. If there are cut- 

USY multiplets since the degree

; looking at here, the number which fill the criterion 

upersymmetric) gravity amplitude has 2n powers

-constructible amplitudes they will be the ones for

of the loop momentum polynomial gets smaller with



increasing N. In fact, N  =  8 and N  =  6 multiplets have a reduction of 8 and 6 powers 

of loop momentum respectively. For the N =  8 case this means that an amplitude is 

cut-constructible if 2n -  8 '<  n -  2, implying that we will be able to obtain the 4 and 5 

graviton amplitudes completely. For N =  6 multiplets only the 4 graviton amplitude will 

be obtainable in its entirety.

6.4 External Graviton Calculations

As an example of this method let us look at some of the amplitudes found using the 

string-based rules.

First note a trivial result: Consider the amplitudes A(+, + , ■+, + ) and A(~,  + , + , +).

The cut diagrams for these amplitudes must be of the form in fig. 6.D. (Since we take all 

particles to be incoming the helicity of a particle in the loop flips as we cross the cut.)

It is impossible to choose particles on the internal lines such that both trees are non-

vanishing (see appendix IV and ref. [28]); our integral is trivially zero and we deduce that 

the amplitudes should have no logarithms. This is consistent with our string calculations

for these helicity choices. -
# '
nf the uniqueness condition: The cuts are zero in These cases give a simple example oi me umq

' . , fnr the N =  8 and N  =  6 multiplets. Using theall cases. In particular, they are zero lor me iv

result in the previous section we deduce that the whole amplitude should be zero. This is 

confirmed by both the SUSY identities and the string calculations.

The cuts of i ( l - , 2 - . 3 +,4+) are more complex. Let us begin with those in the 

.«■channel. In this case equation (6.4) becomes r

LIp ir i“ » ( r . 2 - , i i , 4 ) ^ r . ^ 3 + , 4 + )  (6.12)

^  intern al 
p a r tic le s

rp, . , t • 1 ff:ve a non-vanishing result are gravitons. Fermion con-only internal particles which g
i r •+, :a not flipped by the graviton vertex, implying that ‘ ributions vanish because their helicity is not mppea y

- , e t and scalar amplitudes at tree level (taking
A(9,g,i>+ ,^ + )  =  0. The same holds tor vector
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-  +

Figure 6.D: Possible helicity configurations in the cut calculations of (a) ri(-f-, -f-, + , -f-) 
and (b) ri(—, -f, + , +). In all cases the tree on the right-hand side vanishes.

particle/antiparticle instead of positive/negative helicity in the latter) [86]. These results 

can be deduced from SUSY relations (see appendix IV). This implies that the only place 

logarithmic terms can appear is in amplitudes with gravitons in the loop. Let us look in 

detail at this case -  the simplest non-trivial example of applying cut rules -  depicted in

% . 6.E.

Figure 6.E: Helicity con

is the one defined in (5.51):

figuration for the r l ( l " ,  2 “ , 3 + , 4 + )  a-channel cut

The tree expression is
(12)'■ , , IK* ( \*■“ /

Atree(l  ,2 ,3 ,4+) ~  4 \^(i2) (23) (34) (41)

st
x

u
(6.13)
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Inserting this in (6.12) we find the cut equation for this process

... ( 12 )4 \ 2 s ( k  2 - 4 )IK
"32 / dLIPS

i l 2 ) ( 2 t 2) { i 2 i i ) { i i l ) J  i h - h )

(  (4 4 > 4x

which we can rearrange to be,

* 4IK (  (12)
4 \ 2

32 ’ \ (12) (34)
dLIPS

___________  ___ V S i h M
V<34> (4^i) (̂ 1 2̂> (-¿2 3) /  \ U - i 2)

(¿1 £2y(k2 • I2) (fa • h ) ___
( h  • t2) ( h  - i2) (2 ¿2 f  {¿1 1>*(4*i ) ' ( * 2 3)'

=  —— A tree( l _ , 2_ ,3 + ,4
8

+ A+ )s*3tu j dLIPS
( k2 ' I 2) (&3 ~ h )  
(fci • -¿2) (̂ 4 ‘ 2̂)

X

/c
"8

16(&2 • 2̂)(^l ' ^l)(^3 ‘ X2X&4 ' ^l) 

.^ » “ ( 1 - . 2 " ,  3+ , 4+ ) i ’ tu J  4UPS-16(jfci. t l ) {h  . * ,)(* , . ^ ) ( t 4 . <,)

(6.14)

(6.16)

Recall that, in the discussion of the uniqueness condition, we said that amplitudes could 

be reduced to scalai boxes plus tensor triangles and bubbles. In this case we can reduce it

to four scalar boxes using the relation * 52

■ 4 (  —1 "
52 + (fei • ^

+ T +

s
16

2

(fci •¿l)(fc4 -¿2) (¿I -4)(&4 ^ 2)

+  ( fci + £2)2^ 4 + 01)2

+
+ (h  - £ i ) 2( h  - h ) 2 { h + t 2 ) 2( h  - e 2)

(6.16)

(This depends on the trees being on shel )
To see explicitly that this g i -  the sum of scalar boxes, we cars carry out the substi-

tu tion s which turn the dLIPS integral to the off-shell integral as in (6.4) and (6.6). So, for
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Figure 6.F: Boxes which contribute to the A(1 ,2 , 3+,4+) calculation. 
Note that (a) is related to (b) and (c) to (d) by redefinition of loop momenta.

example, the first term in (6.16) leads to

d%  1
(2*r)4 l l i h - i . f l K h + h f  

dlh
•/

■ / ;
; • 1 (6-17)

(27r)4 lj(£i -  ki ) 2(/} - k i -  k2y2(Ji - k i -  k2 -  k{j2 ’ 

w -̂ich is the box integral depicted in fig. 6.F(b). In this way, we can clearly see that (6 15) 

Can be expressed as the sum of the boxes in fig. 6.F with coefficients

y4tree( l~ ,2 - ,3 +,4+>tu.g -  V -  -  /  '  (6.18)

We see in the figure that there are two independent boxes we must consider -  those with 

0rdering of external legs' 1234 and 2134. The integral for these orderings evaluates to, 

respectively, '

I \ 2U  ~  f(-s)~e + ~  in2( -V  ~ *) ~  x2 }
(4tt)2 st \ tl . >

~  1  -  -  fln (-s ) +  ln(-<)) +  2 ln (-s ) ln (-i)  -  x21
(4tt)2 s t\ e2 e V ■ ■ '  J

(6.19)
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and

7-2134 _ M — | ÿ ; { ? [ (" r ' + ( - “ r 1  - ' ■ K - l  ~ o) -
rr(4ir)e 1 f 4 . 2 
(47r)2 su  \ e2 e

-^ln(—s) + ln (—u)j +  2ln(—s)ln(—u)

This allows us to deduce that the cuts in the s-channel are,

2 ^ 4 tree( l “ ,2~,3+,4+)sfu (J1234 + / 2 1 3 4 ) j  
8 I

7r
(6.20)

cuts

K rr(47r)€
4 (4ir)* A " " ( 1 - , 2 - ^ A + ) Stu

\e2 \ st ~  su J e K Vst su/ s \ u t cuts

K_  4̂tree/j -  2- ,  3+, 4+)siu f  - s  +  2 (tln (-u ) +  U In(-* ))  ) ln (-s )
4 (4tt)2 v Ve / (6.21)

The t- and u-channel cuts require essentially the same calculations since the helicity 

configurations are the same in both cases. We will calculate the ¿-channel case and deduce 

the u-channel result from this. In this case the possible helicity configurations of the trees 

are those in fig. 6.G. Since helicity is no longer flipped on either tree, the cuts do not vanish 

before; we must include the contribution from all relevant particles across the cut. In 

theory, we could calculate the contribution from each particle in the loop individually by 

considering the cut with only that particle on the intermediate lines. (The structure of 

the trees discussed in appendix IV implies that only one particle type will be involved at 

 ̂time.) However, these calculations are quite complex in practice and we find that it is 

more efficient to consider a supersymmetric decomposition of the amplitudes (appendix V). 

As with the string-based rules, calculations for SUSY multiplets in the loop prove to be 

simpler than those for individual particles. As before, we can reconstruct amplitudes for

aily other particle combinations from the SUSY results.

Since we are calculating for different particle types in the loop, we will require all tree 

Aptitudes involving one pair of graviton and one pair .of non-graviton particles; each pair 

W«1 have one particle of each helicity. To obtain these expressions, observe that these can
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(6 .22)

Figure 6.G: Helicity configurations for the .4(1 ,2 , 3+ , 4+) ¿-channel cut

all be related, via supersymmetric, Ward identities (See refs. (22,23,2] and Appendix IV), 

to the two graviton/two scalar amplitude.

A(g-,g- ,g+,g+) = y4A(g- , (l>-,<f>+,g+)

A(g~,tp'',^+,g+) = y3A(g ,<i> ,<f>+,g+)*

A(g~, A ' ,  A+, g+) = y2A(g~, (¡>~, <t>+,g+)
3

"  A(g~,A',A+,g+) = y A(g-J-,<i>+,g+)

Where y =  (12) /  (13). . (|
When we include all internal helicity configurations, cuts for the supersymmetric N=n 

(matter) multiplet are then

l-  j  dLIPS A(4+ , 1” , 2~’ 3+) pn

Î - ______ _ / d L I P S w * '  ' . ■ 7 7 ~  — r t  P »

>2 (4 1  Ÿ  J  .

( U i ) 4 { 2 e 1 ) 4 ( l £ 2 ) 2 ( 2 i 2 ) 2 ( k 1 . e 2 ) ( k 2 .¿2) (6.23)

32 (2 3)* (41 )2 J  (34 )2(4^}2(/i ^ )4 (k F I I X h ^ )
i/v4

^ere pn =  (x -  x_1)n with
, (1 4 ) W

*
(6.24)

, . „VPT1 n n =  2m. We can simplify pn as follows
^  restrict ourselves to choices with even n, n

( r 1 -  l )2m (AQ-l) (2fl)  — (111) (2 I2)) m
=  (*■ -  * - 1)2m -  i ^ i )  w r

=  i ^ i W '

(6.25)
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So, the integral becomes 

(12}2mIK f  • & )(* » -6 )  ({h  1 )(2 4 ) )4- " 1I  aLlrcv--------------------- ~ ~~
32 ‘ (2 3)2 (4 1)2 J “ “ “  " (* i ' <>) (*» ' <0 «<*4) <3^))2 ( « 4  1) ( 2 4 » ”- 2' V ' /  

The cases for the N =  8 multiplet and the IV =  6 matter multiplet are the most inter-

esting here since, for the four-point amplitude, they fulfil the conditions of the uniqueness 

theorem in the previous section. The N =  8 (m =  4) case is particularly simple; in this

case, (6.26) becomes «

IK ( 12)1
3 2 " ( 2 3 )2 <41 )2 j  

vhich gives the cut to be

' ' (12)8

dLIPS
( * i - 4 ) ( 4 - 4 ) {£i Z2)4
M ) M )  ((1 4 )(4 4 ) (4 2 ) (34 ))a

(6.27)

IfC
32 (12)2 (23)2 (34)2 ( 4 1 ) /  >■

r  •4 ') ( f a  - 4 )  1 * _________________ .

X j  dLIPS(A:1 .4)(jfc2 - 4 )  l6(Ai - 4 X ^ 4  - 4 X ^ 2  *4X ^3  * 4 ) '

(6.28)

‘hat iis

- ^ lr“ (4+,l - ,2 ',3 +)t2i « 7  .<i)(*2 -¿i)(*4 -<i) (6’29>
8 J

' . . , _  unYP£; Giving a final result for the N =  8 case of
i before, we can turn this into a sum of

^ =8( i - , 2 - , 3 + ,4+ ) =  « 2!^ r ^ tree(1 ’ 2 ,3+’ 4 }

,'2sln(-.s) +  2 tln (-t) +  2Mln(_jO (6.30)

+  2s ln (-i)  ln (-« )  +  2 < *” ( - » )  +  2“

the other choices of N note that we can rearrange pn to give

8tr+(4/i21/i3)
Pn—2 ts 2

~Pni (6.31)

lrnPlying that / 8tr^(4f121i13 ) y ~ " „ .
pirn ~~~ l

(6.32)
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We use the notation
(6.33)

and

tr±(cr) =  |tr((l ±  75)0-)- (6.34)

The integral for N =  2m can then be written

- ! ^ « . ( 4 + / i - , 2 - 3 + ) î V  JdUPSu(kl-e1)(k2-el)(k 4 -h)(h-h)
 ̂ ^8tr+(4/!2U i3)x 4~ m

t s 2

(6.35)

(6.36)

We caa deal with this by first expanding the trace using commutation relations of 7 

matrices [1,17] to rewrite

•tr+(4fi21/i3) = ( k i . h ) t v + ( 4 2 h 2 )  -  ( k 2 . h ) t v + ( 4 U i 3 ) .

We can also express the traces over four momenta a [ , ]

tr+(42/i3) =  |tr(42/i3) + 

tr.f.(4l713) =  |tr(4i/i3) +

(6.37)

where e(ijkl) is defined by

e(ijkl) =  -M ^^ ki ç k i k m p kr (6.38)

We can deal with terms containing e s 

and the observation that

by using the substitutions for e (ijk lf  in appendix VI

f  :  , q\ 9 , 4 M  = 0 /  ¿LIPS e(41h 3) / ( 1 ,2,3,4, h ) =  0 (6.39)
/ dLIPSe(42h3)/(l,2 ,3 ,4 ,h ) v. J

of the momenta (ie it has no e-tenors), so we can ignore any 

We can further simplify the resulting expression
^ /  contains only dot-products 

gratis containing odd powers of e(ijkl).

the same way as previous cut calculations.
We are left with a (relatively) simple sum of



boxes, triangles and bubbles. In all cases the cuts confirm the results found in the string 

calculations (up to finite polynomials in the momentum invariants).

In this chapter we have been able to use the constraints identified by the Cutkosky rules to 

reconstruct four-graviton amplitudes, confirming the results found by the string-inspired 

techniques. In most cases it has not been possible to find complete amplitudes by this' 

method — there is always some ambiguity due to polynomial terms which are not identified 

by the cuts. We might wonder if we can overcome this problem and find unambiguous 

information for a wide range of amplitudes. This is the issue which we will address in 

chapters which follow. *
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Divide and conquer.

Proverb

7. Interlude: Analysis of Infinities

At this point, let us make a short detour from the main work to look at the structure of 

infinities in the amplitudes we are calculating. The divergent parts of scattering amplitudes 

can be split into two distinct parts -  the ultraviolet and infrared — which come from the 

divergences due to high and low momentum limits respectively. In general we are only 

interested in the ultraviolet contributions, since they are the one which determine whether 

a theory is renormalisable or not. (IR divergences are known to cancel in the S-matrix [67].)■a - * ■

It will, therefore, be useful to have some way to distinguish the two contributions in our 

calculations. This will allow us to confirm that our result for the pure gravity amplitude is 

UV finite, as implied by our theoretical discussions. It will also be important in the next

chapter, where we will look explicitly for UV divergences.

In many calculational techniques it is easy to tell the IR and UV contributions apart. 

However, in the Cutkosky rules there is some ambiguity in the source of infinities. It might 

he expected that we could separate the ultraviolet divergences from the infrared ones by 

Poking at the limit in which internal momenta become large, as would be the case in
in a, 1 .. e ran easily show that this is not a legitimate stepnman diagram calculations. W e can easny &

7„. U/r know that we can add or subtract multiples calculation with h simple example. We kn ow n»
calculation without affecting the result 

| and if  to the numerator m a omeloop cut care
, ,  Consider adding if  to the numerator in a triangle

ce the internal lines are on-sheiij.
j  in fie:. 7.A. This will give an extra term

ulation, for example the one depi

1
2

(7.1)
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' Figure 7,Ai An example triangle calculation.

We know that ~  ¿1 -f ¡¿2 +  I2 ■ So, we can rewrite l\ as

el =  ( k i + k 2 +t2 )2

. ={s-\-2kl - h + 2 h - £ t f

=  (2*2 • 2̂)(2^1 • if )  +  5(2^2 ' 2̂) +  s(2k\ • Ifi)

-f S2 -f (2&1 • Iff" +  (2*2 • t%Ÿ

(7.2)

K we took the approach of looking at the l\ ~+ 00 limit for UV divergences, then adding 

(7.2) would imply an extra ultraviolet divergence (from the first term) of

$
r*.1 —

e
(7.3)

Since the overall effect of t\ is zero, this divergence is cancelled by an additional apparent 

infrared infinity. So, adding i\ makes an apparent shift between ultraviolet and infrared 

divergences. Clearly this implies that the source of infinities in cut calculations is ambigu- 

°us; while we can identify the divergences of amplitudes by this method, we cannot use it

f°  separate them into ultraviolet and infrared contributions.

For our results to be useful, we must be able to identify or calculate one o f the two 

infinite sectors. It is, in fact relatively simple to obtain IR divergences by another method, 

tamely by looking at the soft limits of the amplitudes. That is, the limits obtained when

tlle momentum of internal propagators goes to zero.



7.1 Infrared divergences/Soft Limits*

In order to find the infrared limits of an amplitude we must look at the effect of letting 

internal momenta tend to zerp -  so-called ‘soft’ limits. (In general, we must also consider 

the effect of two external particles become collinear; in the cases considered here these 

do not contribute.) In fact, we need only consider the zero momentum limit of those 

propagators on the ‘edges of the diagram’. By this we mean those for which both ends
n

meet an external line at some (3-point) vertex.
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Figure 7.B: A  sub-diagram including a soft graviton.

To see this, consider the sub-diagram in fig. 7.B. As p —* 0 the dominant contribution 

n the p integral will be

df-
/  (p +fa)2p2 (fa - p ) 2 

f  d4~2€p
J (kj +  2fa •

(7.4)

• P)P2 (^2 _  ^ 2 ' P)

her *, or *, (or both) are off-shell then this integral will not be infrared divergent.

. propagator not on the edge of the diagram will not produce a contribution to the

• vx j  Dn the other hand, if both fa and fa are external
red divergences, of an amplitude. On the oui

-------- ~ -----------------------------  "  r„ n1 r l o „ i v .  T h e  m a j o r  d i f f e r e n c e  in  o u r  a n a ly s i s  h e r e  i s  t h e  u s e  o f

in  t h i s  s e c t i o n  w e  f o l lo w  r e f .  [4 0 ] 

i i m e n s i o n a l  r é g u l a r i s a t i o n .



on-shell lines, then the integral will be
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f  d4~2ep

J  ki ■ p p 2 k2 • p

I  d4~2ep

J I pF
(7.5)

Which produces a logarithmic infrared divergence.

Having established that only outermost propagators are relevant, it is clear that the 

simplest way to find the soft limits of a particular amplitude is to start with the amplitude 

with one less loop and look at the effect of adding a soft particle between two of the 

external lines. As an example, we‘look first at an individual diagram rather than a whole 

amplitude. (It will be seen that the result does not depend on the diagram and can be 

applied in the same way at an amplitude level.) Let us look first at a diagram containing 

only gravitons.

Gravitons

Consider adding a soft graviton to an (n -l)-loop  graviton diagram. To do this in practice, 

we connect two of the external lines with a virtual graviton and let the momentum of this 

Particle (say p) tend to zero. If we attach such a particle line between legs with momentum 

and k%, then we must add a propagator for the graviton, two three point vertices and 

two extra propagators with momenta, ki P and k2 — p to the normal Feynman diagram 

expression for the '(n -  l)-loop amplitude.



Our construction can be pictured as the rc-loop diagram in fig. 7.C. As p —> 0, we can 

express the integral for this as
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(2*)
1___  f  d4 2epB a0tlu(k1,k2,p) . (n—l ) —loop

)4- 2V J  ' "  "(p -f- k\)2p2{k2 — p)2 (7.6)

Where

Bat/3-ffi — el »! el /?! ̂ 2 !̂ e2i/x WiPi67a2^2 ( 2̂? P> &2 4" p)

X — (SpgSyS -j- SpySgff $y8$<rp) ^/il I'l 0pH2 v2 (^1 ) Pi -- p)

X 2 (d/t2/idJ/2̂  "h î V2tt
(7.7)

X 2 (da2adp2p +  da2pd^2a — da2/?2<W )

(where V is the 3-graviton vertex) and

b4(n-i)-ioop^i  ̂¿2) ] s the (n _  l)-loop amplitude for which the external legs with momenta 

and ¿2 are off-shell. In general, the right hand side of (7.8) may not be equal to the 

0n-shell {n — l)-loop amplitude. (See, for instance [11], which includes explicit examples of 

integral functions in which the limiting case does not equal the equivalent on-shell result.) 

Since we will only be considering trees here, this will not be a problem,

i0— loop   a tree
eiaeMe27e2/i AaPiiv ~ (7.9)

(7.10)

When we look at the p -*  0 limit of (7.7), we find that the dominant term is

B ap1„ (t i ,k 2 )  =  iK2ela e1/se2y‘ 2ii(lti ■ h ) 2
( - 2 i ,  ■ k2)2

' —  I K € i a e i ^ e 2 y € - 2 p —  —

that we can discard all terms in which one or more momenta are contracted with

the indices on X(n- i)_loc’p since this is known to be zero (see, e.g., appendix III). All p

^Pendent terms in the numerator can be disregarded since it would cause (7.5) to converge

for small p. Hence, the only integral we need to look at is
d4~2fp

(27r)4~2i j  (p +  h  )2p2(h  ~  p)2
(7.11)
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This can be evaluated by usual Feynman parameter method. The result is,

r —ii'r ( 1 + 0(e°) (7.12)
(47r)2- e( - 2 ^  •'k2)1+e\e2

l' i • ' ' i •.......  ■ r-
Combining this with (7.10), we find that the divergence due to a soft graviton between 

external legs 1 and 2 for an n-loop graviton scattering diagram is given by

(4
lim ^ (n~1)_loop(&1, &2)

:7T\2 —e 4e2 kl,kj-*0
(7.13)

In general, we require all the IR divergences for a diagram, rather than that due to a 

graviton connecting one pair of legs. To obtain this we simply sum over the above result

for all pairs of adjacent external legs connected by a graviton line:

rr« 2 1
(7-14)

(4x)2" 4e2. ( t ) ...

As indicated above, we.find that this result is not dependent on the form of ¿ C -» - lo o r . 

Neither does it haïe any dependence on n. We can therefore apply it at the amplitude 

level. In this case, the sum will be over all pairs of external legs. For instance, we can now 

deduce that the soft divergence in a general one-loop pure graviton amplitude will be

rr*,2 1
(47r)2- e 4e2

$ > 2ki • M 1_e< ee- (7.15)

Scalars
U well as the pure gravity contribution calculated above, we will also need to identify the 

» W e d  infinities in amplitudes.containing both external gravitons and matter particles.

, .„ „ „ t  «calars and gravitons. Fig. 7.D shows all the
*t us begin with the case with external scalars an g

, .1 m  divergences. The analysis in all cases closely 
)0ssible diagrams which could contnb
allows the pure gravity calculation: We find that (a), (b) and (c) all give the same result

* ‘ he pure gravity case. (7.13); (d) and (e) give no soft contribution.
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Figure 7.D: Possible soft contributions to graviton-matter amplitudes. Solid 
and dashed lines represent gravitons and matter particles, respectively.

Fermions

We have to be slightly more careful when looking at amplitudes containing fermions, 

though again the essential method is the same. In an analogous way to the scalar case, the 

only relevant diagrams are those in which a graviton joins two fermion legs (fig. 7.D(b)) 

0r a graviton and a fermion leg (fig. 7.D(c)). Consider (b). As before we must add three

Propagators and two vertices and have an integral of the form

f  d 4~ 2ep C a b ( h , h , P )  ¿ ( n - ^ - l o o p

h f T k - b ( 6)

Where (writing the spinor indices explicitly)

*s the the limit of the n — 1 loop
amplitude when the two external legs go on shell.
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Cai takes the form

K2 {<1| | (^2^(2^! + f )  -  (2h +  p ) ^ v -  (2A:i +  p)„7#«) K h  + $ ) } a

X 2 ( ¿ar/3 +  &na&vß +  fi/ißd va) (7.18)

X |<2| i  (2i]aß ( 2 h - f j - V h - p ) al e  -  ( 2 f t -p )ß la )  i ( h - / > } ,
*r

We can take the p —■> 0 limit of this straight away. We also know that

< *m = o (7.19)

via the definitions of the spinors (they must obey the massless Dirac equation), leaving us

with
IK

C«6 =  ^  {(1| -  2k'O e )  f t } .

Now recall that

x (Spaövß +  i/tt)

X {(2J (~2k2ß7a -  Zfaalß) h ) i

lv.lv ~lvlfi +

(7.20)

(7.21)

implying that

Iv f  = (7.22)

(7.23)

Coupling this with (7.19), we find that (7.20) reduces to

C ab =  i  { { 1 | . ~  ( <W <W ) { ( 2 ! ~

=  ¿(^l • ^2)3 (Ma (~ll

S°> We can see that we get the same result as that for gravitons, equ. (7.13)

In the same way, we can consider case (c). Carrying out a similar calculation as above,

e find that, again, we recover expression (7.13).
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Photons

The method for photon-graviton amplitudes follows the above analysis exactly. The ver-

tices and propagators will differ in places and consideration of helicities is slightly different 

but we find that the final results are precisely the same: For diagrams of the form fig. 7.D(b) 

and (c) we recover (7.13); diagrams (d) and (e) vanish.

Clearly, for all cases involving external matter and external gravitons, we can generalise 

from single diagrams to full amplitudes. For one-loop results, we will obtain expressions 

similar to (7.15), possibly with some,restriction on the sum. So, we now have the infor-

mation we require to identify the Soft divergences in our calculations. *

7.2 One-Loop Amplitudes with External Gravitons

Let us use this analysis to look at the four-graviton amplitude. Our calculations in chap-

ter 5 showed that this has a divergent contribution of

(7.24)„ “ _ /2 /T n (—u) , ln (-t) ,
: ^ P l(l-,2 -,3 +,4+) = F ( - ( ^ r -  + - S r + tu )

• V'
when there are gravitons are in the loop, where F  is

zV(47r)err f  *t (12)1 V _  s t u f f i e r  A ^ - ^  2-, 3+, 4+). (7.25)
16(4tt)2 V (12y(23H 34H ^/ 4(4?r) :

Theoretical considerations implied that this should be pure IR. We can now confirm 

this using the results from the last section: Summing over all pairs of legs we find that the

total IR divergence is.

(2 (—s)1"  +  2 ( - i ) J- ' + 2( - ” )1T x ( 4 ï f r Î4 £2
-Atree( -  -  + + ) (7.26)

°̂> the divergent part is

rr
(4x) 2—e

~ ( S H - * )  +  * ]nH )  +  U H - U ) )  \  j tree
2e )

(7.27)
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The infinite part of the amplitude exactly matches our soft result confirming that all 

observed divergences are IR.

We can also confirm that, as observed, there should be no soft contributions when 

other particles are in the loop. All these cases would involve trees like fig. 7.D(d), which 

vanishes.

7.3 Extracting U V  Contributions^

In the next section we will be considering amplitudes which contain both UV and IR 

divergences. Our interest will be in the UV component, as we discussed in chapter 3 The 

Path we must take is now clear: We can obtain the IR divergences very easily by the above 

technique so, having found the total divergence by Cutkosky methods, we can go on to 

separate the two types and extract the part we are interested in.

■ f *

£i

*

I
ft

ifl
4\sriî*

*
I
iff
$

*
*
«■
I

Thanks to Lance Dixon [87] for pointing out this argument.



Old Bear was in the dining room cutting__

Jane Hissey in ‘Jolly Snow ’

8. Cutkosky Rules II: Ultraviolet Divergences

In chapter 6, we saw that we can obtain complete amplitudes in certain specific cases 

nsmg cut techniques. In all other cases, the information obtained will give us only a small 

Part of the answer required. This’ might lead us to conclude that Cutkosky rules are only 

° f  use in a few special situations. In fact, we find that even when the conditions of the 

uniqueness theorem’ described earlier are not fulfilled we can obtain useful information 

from cut calculations. In this chapter we will show how we can use cut results to determine 

exactly the infinities in gravity calculations; in the next we will show how similar reasoning 

can give us complete amplitudes when the uniqueness conditions are not fulfilled.

Recall that we proved that certain supersymmetric amplitudes could be obtained exactly 

from the cut results. This result was obtained by looking at a basis covering all possible

expressions required to construct particular classes of one-loop amplitudes. In the cut- 

c°nstructible cases the relevant basis did not allow any ambiguity in the polynomial terms 

~~ the terms which could not be obtained directly by using the Cutkosky rules. Let us now 

frok beyond this restricted set to any amplitude, but centre on the infinite parts. Following 

the same route as before, we can look at the ways that these occur in a general basis. For 

the four point case, we know that the required basis is the one given in (6.11). Examining 

this, it is dear that infinite terms only appear in the form

(8.1)
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and, conversely, that ln(—st*y) only results from terms

( - « i j ) ' e =  1 -  +  ■■■■ (8.2)

The implication is that we can easily identify, with no ambiguity, polynomial terms at 

order e~n by looking for occurrences of ln(-Sij) at order e~(n~1K (In fact, looking at the 

complete set of expressions required for one-loop calculations we see that this will be true
n

for any number of external particles.) So, to examine UV and IR infinities in amplitudes, 

We can simply look at the cut results in the same way as chapter 6; we do not require 

further technology of any kind. ^

In this chapter we will use this method to look at divergences in theories of gravity 

coupled to scalars, fermions and photons. By looking at scattering amplitudes involving 

external matter particles we will be able to identify some of the^problematic infinities in 

PQG theories. The answer which we will find will enable us to confirm or extend previous 

derivations of the counter-Lagrangian for each of these theories. We know, from chapter 3, 

what form the counterterms should take, up to numerical coefficients. Having identified the 

infinite components of an amplitude, u»e will be able to deduce the coefficients necessary

remove the divergences.

Gravity Coupled to Scalars
r h . , i v.r u Hnoft and  Veltman -  gravity coupled to scalars.Pet us start with the case considered by t tioon anu

T ... ,, - , „ itipnrv involving only one scalar type. (Note that in
initially, we will concentrate on a theo y

. ' . 1 ,  TP9| cralars ) We know that divergences will only
^ 8  chapter we will implicitly consider real scalars.,
, . oralars so let us look at the scattering of four on-

e seen in amplitudes with external ’ .
, ’ . . xwo parts _ the cut contributions from (a)

sl>ell scalars. The calculation can be split into two pax S

Sravitons and (b) scalars ‘in the loop (see fig- 8 )
is the latter; it requires us to sew together two trees with four

expect toThe easier of these two is 

eternal scalars. Since there is a s
ymmetry amongst the external particles, we
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m

(a) (b)
F igu re  8 .A : Cut contributions required for the '

four scalar calculation.

have to carry out essentially the same calculation in all channels. Hence, for simplicity, we 

wiU look at the ^-channel case and deduce the total result from this.

The tree amplitude needed for this cut can be found by direct calculation. It is

^W1̂ 2.*,^) = - ^ ( j ( <2+“2) + i(<‘2 + “2) + «(a2+Î2)) ' i8-3)

Clearly, this leads to the cut expression ,, f

■̂ ■(1» 2, l\, I2 ) A(J,2, h , 3,4)

= ~  +4(L,‘)2) + * k k ’ + 4(lii)2) + m >  (4(2ii>2+*2))
x ( U i ( 3 - h f  + 4 (4 .i,)2)  -  ~ (** +4(4./1) !)  -  (*(3-h)2 +  s2) y

■■■- ' (8-4)

is straightforward to expand this. We find a sum of scalar boxes, quadratic triangles, and 

Partie bubbles. The process of integration follows the graviton scattering calculation: We 

convert the J  dLIPS to f  d4h by introducing extra propagators and evaluate this directly, 

find that the ¿¡-channel cuts with scalars in the loop are

T Î S - /  J _ ( 3  „  V  +  2 u H  +  2 a i3 +  +  f ‘ ) l n ( S) i  
( 4 j r ) 3 - « V 2 u t v . . . ;

+  t ( 3 u t  +  2u> +  2t ’ ) H * r + S~ ^ ^

-f- —Lf-JC l t2 -f ZOvt -  161u2)In(s) +  M T n(a)
’ ^  240{ 2;

(8.5)

lu

m ’ , ., „ r~ must consider sewing trees with two externalTo obtain the graviton contribution, we must consi &
Sc l a  c hpfore we will have a contribution in every channel,

and two external gravitons. As ’



agciiri. symmetry implies tlint we cail conce 111r at (' on the “̂channel and deduce the 

others from this. The subtlety in this case is that we must take into account the different 

possible choices of graviton helicities across the cut. In fact, if the helicities of the gravitons 

are the same tlien the tree amplitudes vanish
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i,2+,3+,<^) = ^ i > 2 ,3 (8.6)

So, we need only look at the two cases in which the internal legs have differing helicities

(cf, the graviton scattering case; fig. 6.G). The two helicity choices are

-4(^1 ; ¿2 > > (i ’ 2̂") (8.7)

and

A{<j>i, <t>2y i t i  h  )^(^3; lt-> h  )• (8.8)
■

We can show that these are equivalent if we make the substitutions /2 —> —l\ and l\ —> —l2. 

These substitutions leave the integration unchanged, so the result from both choices will 

be the same. We~will calculate the cuts for one choice and double the result to get the

required contribution. * •
We have derived the «ree amplitude needed for this calculation already; it wan

»hen we looked at cuts in graviton scattering amplitudes. Recall that it is

used

IK (12/ (42) st 
A (^ ,2 ~ ,3 + , ^ )  =  U'

(8.9)

suiting cut expression is

> <j>2? 11 , l2 ) A[<f>3, <f>4, ¿2 > Ì )  

( l / i ) 4 (2 /t )4 "
l2 )  ̂ .93, r<t, '"¿i x ,

( u 1}4 (2h )4 s(i.h ) r  a  ( i h r o h r  8(3j 2) (̂{Ih)(hl2){h2)(2l)f ( l . / 2)  m)(hh)(hAp̂ y-̂ j (8>10) 

-4 (tr+(2/24/,))4
~ ~256s2 (ih: l) {h .2 ){h .W iAY  

3-te this recall that

^¿.(2 1 2 ^ 1 )  — jtr(2/24h) -f |e(2/24/i



Using the on-shell condition of the trees, J2 =  l i+ h -\ -k 2, we can write e{2l24lx) as

' e{2l24l\) =  e(2/i4/x) -f~e(214/i)

(8.12)=  e(214ix) ;ü
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and

Hence

2tr(2/24/x) — ~tr(214h) -f-4(4.li)(2.li).

H+(2/24/i ) — 4(4.li)(2.li) +  |tr(214h) +  |e(2141x). 

In addition, we know that ‘ »

(8.13)

(8.14)

/ (/UPS £(214/! ) / ( l ,  2,3,4, /, ) =  0 (8.15)

if /  contains only dot-products of the momenta (ie it has no e-tenors) and that a product 

of 2 e tensors looks like a sum of dot-products (see appendix VI). This implies that we cam 

ignore products of an odd number of e’s, allowing us to expand ( t r + W M  ))< as

((^tr(214fi))2 -f- (h(214/i))2 +  (4(4Ji)(2./i))2 +  4(4./i)(2./i)tr(214 /i))2 ^

+  ̂ h p U / , ) ) 2 ((4(4.fi)(2./i))2.+ 4(4./1)(2./,)tr(214/1) +  (jtr^M /r))2) .

In appendix VI we show how ( §e(214/1))3 can be expanded as 

{ \ e ( 2 U h ) f  = 4 ( ( / , .2 )V  +  ( M ) V  +  ( M ) V

-  2(/1.2)i(l..l)« -  2(1,- W  .4)* -
' *

Inserting this, together with thè expansion f (

(8.17)

tr(214/x) =  4 ((k2 ■ k1)(k4 ■ h )~  (fa • h ) ( h  \h ) +  (h  * ¿1X 2̂ * /1 ) ) ,  (8.18)

111 (8-16), we can see that (8.10) can be written as a sum of scalar boxes, quadratic triangles

and Ouartic bubbles.
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Doubling this, as discussed, and carrying out the integrations, we find the cuts for 

internal gravitons to be

2 —— (u2 +  41 ut + t2) ln(s)
120 V 'i é r ?  - f 1-  ( u 1 -  U t + i2) Ms)- 1

(4tt)2 e \4
f3ln(f)ln(>) , u3 ln(u) ln(s) 

+  - '  2s "~  +

(S.19)

2s

Adding the internal scalar (8.5) and internal graviton (8.19) contributions, we find 

the total «-channel cuts to be

i4rr f ( u 4 +  2 u3t + 2 ut3 + 3 u 2t2 + t 4)ln(s)_l +  1 ^ 2  +  2ut +  3t2) lnfsl2 
" ~~2ut■ / : ' ■ ■ ,e" v' 4 . v 'T w .y .

(nf4 ^„ i '+Ani3 + 4 u 3t +  6u2t2) ln(s)ln(t)
: “  2ts (8.20)

( H'v** +  A ,,*t + 6 u2t2 +  t* +  2 n4) H s ) In(u)

ÎK4
(47r)2~e

+

+ 2 us

+
I (-163 u3t -  43 u2t2 -  163 ut3) ln(s)

240 1 . u t  7

, .. n _nTT1pS from the combined contribution in all chan-
As we indicated, the total contribution comes irom

; -  , , -rnn1v bv substituting 5 ^  t and 3 <-»■ «, respectively.)
nels. (The t and u cases are found simp y y
As expected, when we reconstruct the full result, we can identrf, a soft tenu of the form

■ ((_ . )* -  +  H ) . - .  +  ( - ) - )  ( ?  +  + + )

A . , \ ---------------------------------------■
2(47r)

rr 2lK ‘2—e

=  J A É —  (s ln(s) + 1 ln(f) +  «  M “ )) 
2e(4x)2-< ^

stu

related to the 1 /e  term in (8-20).. If we remo

that the UV infinite component in this amplitude is

this IR contribution, then we can deduce

¿ft4rr 203 1 /  2 ¿2 +  u2)

'(4tt)2 160

(8 .22)

, . calculation we have found a complete, and im
S°, by looking at the straightforward cut

Port ant, part of the amplitude 

■"We can use this as a
test o f ’t Hooft and Veltman’s counter-Lagrangian [56]: It should

. . ,  the new terms which they derived. To see
b<? Amoved exactly by a tree contribution r
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8a(ki • kj ki • km +  ki • ki km • kj T kj • km ki • kj^

F ig u re  8 . B :  The four-point scalar vertex.

1 2 ' :i '
that this is the case, note that, to first order, produces a four point Feynman

vertex (fig. 8.B). So, the counterterm

AC = (47r)2* SO e (4tt)2 320 e
(8.23)

will produce a term '
.... L ' l . - 1- '1 ( /  ■ H • «•!• ' (8.24)

(4jt)3 160 € '  . . ;

This does cancel (8.22), as required. (Note that rr =  1 + 0(e) and effects of dimensional 

r e g u la t io n  on s do not effect the divergent terms.) Thus we have confirmed the result

lli ref. [56] for the on-shell case. ‘ ,
* .

We can also look at the result of adding extra scalars to our theory. The cut technique

allows us to see this effect with relative ease; the above calculation will differ only by the

QJ,.' . , yominff from an internal loop of the new scalars,addition of an extra cut contribution coming iron
rrt , : „icn look at the interaction between two pairs of
To obtain fuller information we must also io o k ai
,. ' ■ ■ , ,,cp carts of the above calculation to reduce the
different scalars. We will see that we can use parts o

w°rk required here. *
* . result for the counter-Lagrangian in the

’t Hooft and Veltman did not give an explicit result
, , be£dn by considering what their method implies that 

theory with multiple scalars, so let us oegm y
. .,t Hooft and Veltman’s counter-Lagrangian, let

should see in this 'case. Starting with t Hoolt an
i i t n f ,  vector of scalars, <j>i. There are three 

us consider the effect of changing the scalar, d a

Terences which we must take into account.
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Figure 8 .C : One channel cut for four scalar amplitude with 
interna] loop o f another scalar type.

First, we know that from their argument that we must also add a factor of

1
w K ^ 2 +i io ^ 360

R2 (8.25)

to the counter-Lagrangian for each extra degree of freedom in the vector. We can confirm 

this step by looking at the effect of adding an internal loop of a new scalar to diagrams 

with four external scalars. For this we have a cut of the form shown in fig. 8.C. Calculation

in one channel produces the infinite contribution

1 1IK
■ (4x)M 80e (i2 +  " 2 +  >2h

ail<T summing over all channels, we find the total divergence

(8.26)

IK 1 1 (t2 + u2 +  s2)
(4tt) 2 160 e

Is c°nresponds correctly to the results expected from the new term (8.25). 

Second, we should note that the equations of motion will become 

■ ; ‘ D .D ^ i  =  0

(8.27)

RpV — (8.28)

Third, we must be careful about the occurrence of terms like (D^ (kDvfyil)11 <j>Dv(fj) 

a'nd These are equivalent when 4> is a single scalar, but differ when

is a vector. So, there will be cancellations in the derivation o f the coimter-Lagrangian 

°«e scalar which aren’t seen when we add more flavours to the theory.for
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The combination, of these observations leads us to expect the counter-Lagrangian to

take the form

y/~9 1 (2 + n  _l 42 + n
-R? -)--------~r—RfivRtlv~kaK {pp<i>id,)‘<!>i)(dv<i>jd 4>j)

(4tt)2 t V 240  .120

+ + ̂ (D^faf

(8.29)

for a general fa. Note that the cancellations seen in the single scalar case have left us 

with an ambiguity - a and  cannot be deduced directly from the previous result. We 

will determine them here using cut results. We can find a useful condition by comparing 

(8.29) with the single scalar expression: Setting fa = <f> and n = 1 leads us to deduce that

o + /3 = \.

' We will be calculating on-shell amplitudes, so we should look at the explicit on-shell 

form of the above counter-Lagrangian expression. If we insert the field equations, then we

find this simplifies to become

a r _ 4-cA (dafad f̂aXdvfad  fa)

960  / v ' x  (8.30)
.. . ( B  ̂  + A id.fa dvfa W fad ^i)).

T V 480  / j

,* T «cranrian for multiple scalars now reduces to
So, our goal of finding the counter-Lagrangian

„ '  . let us turn to an amplitude with two
finding the values of a and fa To determine these,

. f  i ¿ are the momenta of one pair and fa and
different pairs of external scalars. If l

4̂ the momenta of the others, then we
must consider (a) the ¿-channel cut with gravitons

ln the loop (b) the two s-channel cuts with identical scalars in the loop (one diagram for

each sort of scalar) and (c) the t- and «-channel cuts with one scalar of each type in the 

■ * ,

IooP (see fig. 8.D).  i

/  (a) will be precisely the same as

°ther two are straightforward and th

ev&luates to give ■ ■ ■

the result in the case with a single scalar (8.20). The

calculations follow similar steps to those above: (b)

■4  /. / \2   ̂(‘lit2 — I39«t + 21« )ln(s) j  (8.31)
z«4rr /iw in(Æ) _ iwln(3)2 )

(47r)2"€ \2e

123
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\

f i U

.....

(a) (b) (c)

Figure 8 .D : Cut contributions for an amplitude 
with two pairs o f different external scalars.

*

and the «-channel part of (c) is 

iK4rr (  1_______ , ln(„ )  _  t .  ln(u) -  y  M “ ) ln(3) +  \  M « )2)  •
(4*y- l 2s e 4 13

(8.32)

lymmetry im piL  that the f-channel contribution can be deduced directly from this by

naking the substitution t ^  u.
' . ,, rhannels we can find the total divergent contribution. We can
Summing over all channel , ■ ' ■

, , TbPv resemble those in the single scalar case, but 
extract the IR infinities as before. , They resem

, . This leaves us with a UV divergence of
“estricted to the s-channel. Th

-  - ^  ( - 1 2 0 "  +  120 120 J

(Note that since

\2

(8.33)

M

' +  £  {a{a ^ ) ( a A ^ h ) +

(8.34)

• consistent with the single scalar results -  the sum of the 
have an easy check that this ls _ ^  scalars of the same type (in a

efficients must be the same as the resu
‘ confirm to be the case.)

?°ry with 2 scalars). This we can co ^ eqUating coefficients of s and i in the

We are now in a position to n resulting equations are
cvmiired to cancel (8.3oj. ri

unter-Lagrangian with those r q ^ ^  ^  ̂ ^  ^  ^
~  120’

2 | 'i± iH  + o
1 960 /

49 < * 1 + 1 + 0 )  =  ^ ,  (8'35>
¡20 A 480 /
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which imply that

<* =  " 4 „ 4 (8.36)

(As expected, a +  fi =  §.) 'So, we can deduce that the counter-Lagrangian for n scalars 

takes the form

v ^ / 2 + jj  2 42+J1R
e . t  240 120 '  4

+ - ¿ ( d r t id .k W  + 2«2(Z>„.D'V,f j .
4 ■ A  ' f - '  (8.37)

8.2 Gravity Coupled to Fermions

The process for obtaining fermion cuts follows the scalar calculation very closely. Again, 

We look at the case with four external matter particles and, again, we have contributions 

from the gravitons ‘in the loop’ and fermions ‘in the loop’ cases. (Diagrammatically, these 

are the same as the scalar case, fig. 8.A.) The subtlety is that the matter particles in this 

case also have helicity which must be taken into account. As with graviton scattering 

Amplitudes, we can consider the different helicity configurations of the external particles, 

fr is easy to show that all cuts vanish for external helicities (—, + ,+ ,+ )  and (- f , + , + , -f ), 

implying that the amplitudes will be divergence free. We will concentrate on the case

^  ?2+,3~ ,4+ ) (with chiral fermions).

The asymme.try of the external helicities in A( 1 , 2+, 3 , 4+) implies that, unlike in 

t3le scalar amplitude, different channels will have different contributions. In fact, there are 

tw°  cases which must be considered: the «- and ¿-channels. (The s and t calculations will

related by symmetry:)
In the «-channel, the internal graviton contribution is zero; there is no internal hehcity 

d u r a t i o n  for which all the trees involved in the calculation are non-zero. So, the only 

c°ntribution which we must calculate is the one with internal fermions. The building 

biock for that case will be the tree with four external fermions. The only choice of external

#



helicities for which this is non-zero is Atree( -  + , -  +)• We can find this from direct 

calculation: . ■ ■

4 1 - , 2 W )  -  - i M M V  + «  +  «*).; . (8-38)

Sewing two such trees together gives us the cut contribution

4(l-i+3-i+)4(/r2+i 4 +)=  , 2

_  + 12(i,.2)2+12(M )J)
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K*
16

('ll2 4- 12(U.l)2 -f l2(?i-3)2)(w2 + 12(/i-2)2 -f 12(/i.4)2) 
[24] (13) u ----------

.A ..3  (■„* 4 - 7 2th.ll2 + 12(/i-3)2) ( » 2 +  12(ii-2)2 + ■ 12(/i-4)2)

---------- : ie T M X ^ K ^ -3) ^ - 4)~  16 (24) [13] l o v n ^ A ^ /—  -2 (8.39)

o thp usual way gives us the total «-channel cuts toSo, expanding this and integrating m the usual way g .

be:

!  / t i»  ( 2 t*+st +  2s 2) Info) 1 h

’ (4 * )^ «  16 {24} [13] V St „  * o q2u4h ( ^ J u 3 l , ]2 _ 9 3

irp k
. (8.40)

.. + +  ^u3ln(u)2 - ^ u 3ln(u)J.

, w h  naxticle types in the loop. Let us begin with 
The , -channel has contributions for both paxtici yP

/a o o 'a as our building block. The cut expression 
he fermion contribution. Again, we use (8.38) as

1 this case is

A ( l -2 + /1" /+ )A ( / '/ i3 '4 + )  =
-  KH U , ) \ 2 h ] ( 3 h ) V i M ' i ^  +  I2 ( 2 .a )2 +  4 (1 .U )2) (3a2 +  4 (4 .a ) 2 +  1 2 ( 3 . y 2)

; 64 s2(3tiX3-(>) ^  +  12g A ^ ( L ! i a ( ^ 5 4-,>)a +  1?h3-h_>!2 ,
K M l / i f gjzgU-----— --------—  ~ ~  ...

~  64 (24) [13] (8.41)

expand the trace as

tr_(lU42i23) =  tr_ (ia 42ii3) M 1'142 1 (8.42)
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Using this we can evaluate the cut as before and find

rr 1 1 u2 (2u2 +  3ut + 312) ^  (¿3 +  2 ut2 +  2u2t — u3)

(47r)2-e 16 (24) [13] \e t
s 2 ( 2 u 2 < - t 2 )

_
u (2 7 4 u f-5 3 u 2 + 60f2) . A

ln(s) ln(t) +  ^ ------------g5-------------- L M * ) l

ln (sf

(8.43)

The tree used for the cut with internal gravitons was used in chapter 6. We can write

it as

A ( s ~ , r , f + ,g+ ) <13> V , * - ^ +) =
IK‘ (12}3{13)3 si

(8.44)
( l 2p “ «  -  -  ' 4 (2 3 > 2<34)2(14)2 u

This is very similar to the tree in the four scalar calculation with internal gravitons. In 

fact, the calculation process here follows that case very closely, so we will not give details.

The result is
1 / u4 ln(s) ln (u )__ L (4t3 +  2 s3. +  l l f 2s + 8 is2) ln(s)2

~ (47r)2~€ (2 4) [13j V 32
t2 (2 is 4- 2 12 +  52 ) H s) ln(^ . J _  „ (7  *2 -  51 s +  4812) inis'))

i e T “-  960 j

Summing (8.43) and (8.45), we see that the total ¿-channel cuts are

Ol u2 (2 u2 +,3 ut +_3f )  ]r)(^  +  (21s +  4 1) ln(s)

(8.45)

¿K4rr
(4x)2-t 16 {24) [13] Ve ' 4 5 _  ¡2,2 + 2sl’ + 2 ( ‘ ) ln(s)ln(i)

■' 2u3ln(s)ln(») ^ ------ ------------- ------- “

■ 5 + i  (3 ¿2 +  10 si +  6 12) ln(s)2

can

(8.46)

\ „ from this by making the exchange s *-» i. If
- ^  find the t-channel contribution from tn

,  three channels we can deduce the total expression. As
?e combine the results from the t

xPected, we have an IR contribution, , 2 9
1 u2(st +  2t + /s  ) /g_47\

_ :_ ^ H - i ( M l n ( « )  +  5 ln (« )+ <lll^ 8  (24) [13]si

, 2(47F- 6 npnt easily identifiable. We find this to be
^moving this leaves the UV compo ^

59 ¿/c4rr 1 .
128 (4tt)2 e (2 4) 3]

(8.48)
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3“

4+ '

Figure 8 .E : Four-point counterterm vertex for fermions.

This expression must be cancelled by a four-point counterterm. This case has not been 

considered before, so we can use our result to deduce new information about the Dirac- 

Einstein counter-Lagrangian. The general on-shell counterterm which we must consider

takes the form

(Note that other all other possibilities can be related to this by a combination of on-shell 

conditions, integration by parts and the Fierz theorem.) At lowest order, this leads us to 

the vertex in fig. 8.E. We can deduce a counterterm contribution

[24] (31)2(2 u - t - s )  (8.50)

i+ |y|3+) ( „ _ ( ) -  (4+|t *|1+> (2+h '‘ |3+> (»  -  *))

T/c4 a 
(47r)2 
¿/î4 60

(47r)2 €
[42] (13) u — —6a

IK
(4tr)2 (24) [13] e

(Note that {i-|7,|i+) =  0, so all other contributions vanish. This also confirms our asser- 

«oa that any o t t o  helicity choice will have no UV divergences at one loop.) Comparing

^¡s with (8.48) implies that .
_  59_

“  "  768
(8.51)

. . ;3 confirmation that the Dirac-Einstein system is
fact that this coefficient is non- ,

1 r,art of the counter-Lagrangian which
^renorm alisable. Note that we have eWnated part 

not be determined from the calculation in ref. [42].

ft
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8.3 Gravity Coupled to Photons

We could take the same route as we have with other particles to find the infinities in photon 

amplitudes, but we can reduce the work by a judicious use of SUSY identities. We will 

look at the four point amplitude with no external gravitons. Although our aim is to find 

the infinities in a system containing photons and gravitons, let us begin by considering the 

N  =  2 supersymmetric multiplet containing a photon a graviton and two gravitinos. The 

cut for this amplitude is the sum of the cuts with photons, gravitinos and gravitons in the 

loop (fig. 8.P)

cut

I

i= W g
Figure 8.F: Cut contributions required for the one loop 

„ four photon amplitude in an N  =  2 SUGRA theory.

Notice that the tree amplitudes Atrce(7 ,7 ,7 ,7 ) and Atiee(g,g,g,g) do not include 

any contribution due to gravitinos (since any internal gravitinos must form a complete 

IooP-) Hence, the only gravitino contribution is contained in the second term in the sum 

in %• 8.F. We may deduce that the cuts for the amplitude in which we are interested, 

Ulat containing only gravitons and photons, are equal to the cuts of the N  =  2 amplitude

^finus the cut containing gravitinos (fig. 8.G).

I



Now, using supersymmetric relations between amplitudes (see Appendix IV) we can 

make the following deductions: First, for choices of external helicities (t " 7+7+7+) and 

(7+7+7+7+) the gravitino contributions vanish and the cuts will be precisely equal to the 

cuts in the N =  2 amplitude. We know the N = 2 amplitude contains only IR divergences 

and, hence, there will be no UV infinite components in the photon-graviton amplitudes 

with those helicity choices.

This implies that the amplitude of interest to us here is A (7 - 7 + 7 ~ 7 + ), so let us 

concentrate on this helicity configuration. SUSY relations give us

<43)2
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AN- 2(7 7 * 7+7 +)
( 12) '

A n = 2 ( 9 ~ 9 ~ 9 + 9 + )- (8.52)

t , . , , c o u The first term on the right hand side of that relationImplying the relation m fig. 8.R. ilie nrsl

gives us the cuts . ( p ’

F' ( ?  ( ln( - u) , ln(~ 0  +  H ~ s)
st , <" tu

+

t ,.f S  It IU /

2 ln (-u )ln (-s )  2 ln (-t) ln(-i<) ^  2 ln (-t)ln (-.s ) 
su y ' tu ■ " ts :

(3t4 + 3t3u - f u 2 + 3tu3 + 3u4) (ln2(~t/ -  u))

(t -  u) (2612 +  4Qtu +  26 u2)  ln(-t/ -  u)

(8.53)

^ere F 1 here is

^ (47r)err (4 3)2 (  st (1 2)4 A 2 _ stuK2{̂ Tr)erT t̂ree/ -  -  + . (
16(4tt)2 (22) 2 ((12 )723^ 34^ 41 )"/ 4(4tt)2 ’ ’ ’ ' ' ^

f  compare this with the results of the last chapter it is clear that the divergences seen

lere are the complete IR contributions expected; there are no UV contributions from this

2’ part of the’ calculation. So, the UV divergence we are looking for will be found in

e subtracted gravitino contribution.
In fact, we only need to carry out one calculation to find the divergences m the 

'ravitino contribution. Note that, if the helicities on one side of the cut are the same

t:
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F igu re  8 .H : Cut equation for the one loop four photon 
amplitude in Einstein-Maxwell theory (rewritten).

then at least one tree will vanish. Also, there is a symmetry between the two non-zero 

cut contributions — those in the t- and u-channels. So, if we calculate the f-channels 

divergences, we will have the complete result. Using a combination of SUSY and previous

results, we have reduced our work to one calculation.

Let us look at the ¿-channel contribution. For this we will need the photon-gravitino

tree. This can be found via another supersymmetric relation:

a N = 2 ^ - j +^+) = ® B a n=2( ? ì -<?+s +)
<12>2

(8.55)

So, we require the dLIPS integral of
*4 ( 4 J 2)2 ( l h ) 3 x  ( 3 i i ) 2 ( 2 / 2 ) _ _

=  7 Ï6  (h 3)2 (2 /i) (2.3) (a56)
r4 tr jU hï l h3)2tr+(lh 2h)

=  ~ Ï 6 f 2  ( 2 1 ) 2 [34]2 ( l d 2) ( 2 . / i )

We can deal with the traces in a similar way to the seal

= 4(l.i1)(2.II) + t ,+(li123) (8.57)

' =  4 ( l . f O ( 2 . U )  +  | t r ( l U 2 3 ) +

^ ^ ( 4 / 2 2 1 ^ 3 )  =  t r + (4 h 2 U i 3 )  +  t r + (4 3 2 1 h 3 )

=  2(/1.2)tr+(41h3) -  2{l1.l)tr+(42l13) +  2tr+(21l13)(4.3)

== (Ì!.2)(tr(41/i3) +
-  (Ii.l)(tï(42lj3) +  ¿(42^3)) +  (4.3)(tr(21li3) +  e(21l13)).

(8.58)
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F ig u re  8.1: Extra cut required when a second photon flavour 
is added to the theory.

As before, we need only take into account terms with an even number of epsilon tensors; 

pairs of these tensors can be expanded using the relations in appendix VI to give us 

an expression which we can integrate in the usual way. When this is done, we get cut
• ' i  :

contributions

itér-ç ( i s k(i)+^ i1Il(“)“ ln2(</" ))- <8-59)(47r)2- e (21)2 [34Y

must double this result since there are two gravitinos in the SUSY multiplet,' the 

contributions from both should be subtracted. So, we deduce that the UV divergence is

As with the scalar case, 

^rterms (see ref. [71]*)-

137 ¿k 4 1 s4
' 240 (4rr)2 e (2 l)2 (8,60)

we can compare this with the theoretical derivation of the coun- 

\ye* can confirm that these terms do, indeed, cancel this, as

re(iuired.

t . , .  „ more (independent) £1(1) particles to the system. 
We can also look at the effect o a m ^ ^  ^  form flg. g.,, where the

add n more photons, we mus external one. This requires us
• , , V  „ different flavour to tne c a
internal particle is a photon, bu

to evaluate the cut expression ^  ir+(4l221/i3)2

■ i e c l H E N 5 -
(8.61)

T h i s  a c t u a l l y  d i f f e r s  f r o m 4 h e  i m p l i c i t
b e t w e e n  t h e i r  d e f i n i t i o n  o f  ft a n d  t

I t  in  r e f  f 7 l l  b y  a  f a c t o r  o f  4. T h i s  i s  s i m p l y  d u e  t o  a  d i f f e r e n c e  

resU . . i m p l i c i t  in o u r  c a l c u la t i o n .

*
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We require one copy of this for each extra photon included in our analysis. If we carry 

out the usual analysis, and sum over all channels, we find that n extra photons produce 

an added UV infinite contribution of
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' 4 1 4n ik  1 s 
40 (4tr)2 e (21)2 [34]2 (8.62)

Again we can compare this with the theoretical results [72] and find that the derived 

counterterms will remove this divergence.

So, we have been able to use the cuts to find useful information in situations where we could 

not obtain complete amplitudes. In particular, we have been able to confirm theoretical 

derivations of divergences in theories with scalars and photons coupled to gravity. We 

have also been able to determine counterterm coefficients for the Fermion-Einstein system 

which have not be found before.

All of these calculations have worked with the fact that we can completely determine 

terms an order of e "1 higher than the order at which we are working. In the next chapter 

we will show how this can be used to obtain complete amplitudes.



When you expect nothing and get 

everything, that’s destiny.

Damian Chapa in ‘ Bound by H onor’

9. Cutkosky Rules III: Complete Amplitudes

In the previous section we saw that there are certain parts of any amplitude for which we 

can find complete expressions- In particular, if,we are working at order e , then we can 

find the total coefficient of e"1. It is clear from looking at the basis of functions which 

we use to construct the amplitudes that this can be generalised to all orders in e. That 

is, if we find a cut expression at order e'* then we can find exactly the coefficient of f’- \  

The next step is to consider whether we can use this to help us find complete results for 

any amplitude, even those which do hot fulfil the conditions of the uniqueness theorem. In 

fact, we can. The Cutkosky rules are not dependent on the dimension in which we work, 

so we can try to use these rules in 4 -  2e dimensions. This will give us the cuts correctly to 

all orders in e and so will also give us the complete amplitude to all orders as well. At one 

loop there is only one part of the process which depends on the dimensions -  the integral. 

So, we expect that we can find complete amplitudes by following a similar path to earlier

derivations, but with integrals carried out in 4 -  2e dimensions.

This method of'finding complete amplitudes was originally demonstrated by Bern 

and Morgan; in ref. [18] they were able to find four gluon amplitudes which were not cut- 

constructible by the earlier criteria. In addition they were able to use the method to obtain 

four gluon amplitudes with internal massive particles. In this chapter we follow a similar

i-r j  will see that, while the process allows us to deduce farpath for graviton amplitudes. We will see mat,

cut calculations we have considered, it is not significantly 
more information than other cut calculation

more complicated.



9.1 Cut Calculation o f  A1-loop(+, + ,+ ,+ )

Let us look at the way this combination of dimensional régularisation and Cutkosky rules 

can be used to find one of the amplitudes which we were able to calculate using the string 

rules, but which was not recoverable using the earlier cut calculations. We will consider 

the four graviton amplitude 4̂1_loop(+, -f, + , +). Recall that this could not be calculated 

using Cutkosky methods before because, for all internal particles, at least one of the trees
«1 ,

vanished, giving no cut contribution at 0(e). Here we will consider that case with internal 

scalars. We know from SUSY decomposition that the result is the same for each type of 

internal particle, so the scalar calculation will be sufficient to find the complete result.

Let us begin by considering the new technologies required for this calculation. As ; 

we have remarked, the difference which we must introduce is to carry out our integral in 

D =  4 —2e dimensions. In practice, we do this by the following method (see, for instance, 

ref. [8]).’ We begin by splitting the momentum vector into to two parts

PD =  1M -r ll (9-1)
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where Pl is a four-dimensional part, only the usual 4 space-time components are non-zero, 

and p“  a ‘ -2 e ’ dimensional part, only the extra -2c components axe non-zero, p“  is made 

up from the space-like components of pD only, and we explicitly chose to work with a 

Minkowski metric of negative signature. So p2D can be expressed as

. ’ ' r l - A - f  <9-2)

It is dear that this additional pieci now looks like a mass, and indeed, single powers of 

do not appear in our calculations, so we can consistently treat it this way. The subtlety is 

that the total D-dimensional vector is integrated over, so there must be some integration 

over this mass-like piece. To do this we begin by splitting up the integral as



We can then deal with the J d~2tp by considering changing to spherically symmetric 

coordinates in our (—2e)-dimensional subspace. Since the integrand is only dependent on 

//2, we do not need to worry about angular dependence and can integrate this out explicitly.

The general expression for a solid angle in (d +  l)-dimensions is

f 27T(rf+1)/2 .
j  d^d =  ~^T£Tj~ (9-4)

So. we find *

/  T irrrrX ih2) = i d i t . ^ 2,  f

• (2X) 7 {  (9.5)
=  w r ^  w r ' - n s ) .1(1 - e )  io

This process allows us to deal with our D-dimensional integral in a fairly straightforward 

way -  the extra dimensions can be made to look like a mass which will be integrated over, 

with a particular measure, to give the required result.

The only other subtlety which we must consider is the expression for the trees. The 

trees required These vanislled for * ” >“ 8k»  scalar> however our

splitting of the D-dimensional momentum means that we must consider the expression for 

a tree with scalar of mass p. To simplify our calculations we would like to use the spinor 

helicity technique as before., The problem here is that this is constructed for use with 

on-shell, massless particte. To get around this restriction we can write the momenta of 

the scalars as a sum of two null four vectors [88].

■ (9.6) _

with the condition

-- hi- • /•'. -- ■ (9:7)

This expresses the system as four null vectors, which allows us to implement the spinor

, , , ,vnv w e simply convert the resulting expression by using thehelicity method m the usual waj/. vve simp ^

i f  calcu lation . We find the resultabove relations at the end ox our

, V ( P ) [ 2 3 ] V _ _ J ______ + --------
A4(1s ,2+ ,3+ ,4“) =  - ^ ----- { (k l +  k2)2 - ( ‘2 (h  +
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2 ______ y
W 2 - W

(9.8)



(Clearly,,this vanishes for p =  0, as expected.)

We now have reduced the ‘4 — 2e dimensional’ calculation to something which looks 

very similar to our earlier ‘4 dimensional’ calculations. The only subtlety which we have 

is the extra parameter p2 which must be integrated out.

Since we are considering the j41_loop( + ,+ ,+ ,+ )  amplitude we need only consider one

channel -  all others will be the equivalent by symmetry. Let Us look at the .s-channel. As

with earlier calculations, we sew together two trees * ,

; l-  j c/DLIPS(—C, t2) , l lree( - ^ , l + ,2+, i 2) A ,ree( - * 2,3+ 4+ ,^ ). (9.9)

Again, rather than a direct calculation, we look at an integral which we know will give us 

the correct cut contribution
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- J  0 L  Atree(_£1, 1+,2+ , 4 ) ^  Atree( - 4 ; 3+,4+ , £ i ) i

If we carry out the above rewriting of the integral, this now becomes 

d4£ i —e(47r)e /‘°°

(9.10)
cut

f  —e(47r y  r
J (2*)*r(i ~t)]„ 2/ *.2\—1 —e

¿ f c V )
(27r)4 T(1 — e ) ......................................

> - ( - 4 , 1 + ^ ^  1
i -  p

(9.11)

cut

Inserting the expression for the trees (9.8), we find two box contributions -  corresponding 

to boxes with external leg ordering 1234 and 1243. Consider the first of these; we get an

integral expression
• 4tK* e< i * Y  [1 2 ]2 [3 4 ]2 f  d4p ¡<~ , _e 8

'1 ~ e) C ?.)2 ( 3 4 ) 2 J  (2-t )4 l  dfl (/'  ̂ fl X16 T ( l - e )  (12 )2 (34)
1

(p2 -  p2)

-X
i * ______ X ,

j y Z Z y )  X ((p -  fci -  h ) 2 -  P2) ((P -  -  k2 - h f -  p2)^((p — / v v- . ,(9.12)

After carrying out a Feynman parameterisation, we can rewrite this as

(9.13)
f1 f3 41_ . f  T \  ¿ a - 8 { Y  a  • -  1)

16 T(1 — e) ( i  2)2 (34)2 J * [U  3
/*OC

/  ¿ p v r 1-
Jo (50103 +  <«204 — p2)2
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At this point we may carry out the ‘mass’ integration
r o c  „ 8

/  djx2 ----------—------------ —  =  B(4 -  e, - 4  +  e )( -s a!a 3 -  ia2a4)2_i
J0 v '  (saiaz + ta 2aA- ¡ jl1Y

‘ 7r(3 — e) 
sin(7re) (—5ai a 3 — ta2a,4 )

(9.14)
2 - 6

(B(:r, y) is the conventional Beta-function), allowing us to write the 5-channel cut (includ-

ing both box orderings) as

I K ' [1 9]2 [34l2_7re i3 -j) e(l -  e)(2 -  e) ( rp = u - 2 e +
(9.15)

16(47r)2_e (12)2 (34)2 sin(Tre) T(1 -  e)T(l +  e) V 1234 ' 1243

where lfjkl indicates the four point box integral in D-dimensions with external legs ordered

ijk l: : : 1 : * ' ' ' '  ' '

J?jhi =  r <4 -  J dai 6^ ai ~ l \ - s ijaiaz -  sjka2a4y~D/2 (9,16)

Note that (9.15) is valid to all orders in e: An examination of the coefficient of the integrals 

in (9.15) shows that we have an overall e there so, since we only require the loop Amplitude 

to 0 (e°), we need only evaluate the divergent parts of / D=12_2e- This can be done very 

easily since it is the same form as the integrals we required in earlier chapters. We find 

jD = i2- 2e _ p(_2  +  e) j  da{ ¿ (£ > i ~  l ) ( - 5« i G3 “  ta2a4)2~e

=  1 . J  dai 8{Yjai ~  1)(—'sotlC*3^ -fa2a4)2 +  0(e°) (9.17)

+  0 ( e°)2s2 +  st +  2f2
5040e

Inserting this into (9.15) and summing over channels, as usual, we obtain the total expres-

sion
in4 f st \2(s2 + i 2 -f u2)

(47t)2 1(12) (23) (34) (41) J  3840
(9.18)

We can see that this confirms our earlier calculation using the string-inspired techniques

(5.47). ' ' ;

So. it is clear that we can use the cut technique in this way for any amplitude and

not just the ‘cut-constructible’ ones identified earlier. Surprisingly, the method is not

significantly more complex than the earlier cut calculations; all we require is a wider

knowledge of integrals and trees which include massive particles.



9.2 Loops with Internal Massive Particles

In the previous section we calculated one loop results by introducing what might be re-

garded, in some senses, as a fictitious mass. We might wonder whether, since we can do 

such calculations with comparative ease, it would be possible to do a similar calculation 

for internal particle with a real mass. Up to now all our results have been restricted to 

massless theories so this would be a useful extension. We will see that a calculation with
«1 .

a massive scalar is well within our reach.

Let us consider the amplitude above, but with the internal scalar having a mass m.

We can do this very easily by substituting all ocpurrences of p? with ¡i2 +  m2 in our initial 

expressions. The pft term in the numerator will become (/i T m )4, so we will have a 

senes of terms with differing powers of ft * There will also be changes m the denominator, 

changing the ft integration (9.14). The general integral which we must.consider now
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2̂ n —6—2 (9.19)

becomes
f  f ° °  i ’ tJ‘2n

J dcii “  1) ¿ft (ft.) (5aia3 +  ta2a.i -  fj,2 - m 2)2 ,

=  B(n -  e, - n  + e) J  den -  l ) ( - 5«i«3 -  ta2a4 +

(—l ) " T ( n - c - j ) _ _ ^ j -------- 4 2" - 2e+4H
sin(~e) r(2 + e - n )

If we expand the integral'and sum over the 3 channels then we find a total contribution 

which looks like
- 4 [12]2 [34]2 :

16(47t)2~* (12)2 (34)2 sin(7re)r(l -  e)T(l +  e) 

x ^e(l -  e)(2 -  e)(3 -  e)I?2u 2~*(m )

r +  4m2e(l “  e ) ( 2 - e ) / 1̂ 410" 2e(m) +  6m4e ( l - e ) / ^ = 8~2e(m) 

+  4m6e /S J " 2e(mj -  r o ^ S ? “ 2> )  +  i 1243} +  {1324}

(9.20)

As before, this is valid to all orders in e, but we will restrict ourselves to 0(e°). Since 

sin(7re) ~  * e, the overall coefficient will be 0(6°). So, we see that we require I D=12~2̂ m), 

J D = 1 0 - 2 * ^  7£>=8-2e(m) and I D=6~2e(m) to C ^ '1); and I D=i- 2e(m) to 0(e°).

*
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The first of these, I D~12~2e(m), evaluates to give

e(l e)(2 e) jp~\2 —2e f  , c/v"' , 9
^  ^1234 ~~ J  dO-i C (2 -^ai — lj(  — « -----i ~—2''2 - «-5<iia3 — ¿0204 -f m2/

-  2s2 +  st + 2t2 m2(s +  t)
2520 60

We can find the others by differentiating with respect to m2 to gi

< !  - e )  rD=io-e 5 +  * ■
r(i + / ) 1234 =

m4
+  T  +  0(e).

(9.21)

give

120 +  6 +  ^(e)

-I■D=8- 2t
r(l + e) 1234

1

1/6 +  O(e) (9.22)

^ ? r 2e =  0(e°).T(1 +  e)

So, we find an expression for the amplitude^

IK st ' (s2 -j-t2 +  u2)
24016(47r)2 \ (12) (23) (34) ( 41) /  V

+  (A m 4 ("0  +  ¿m s (” 0  +  / m 44(^ ))
(9.23)

we can

We might expect that this expression for amplitude should also contain terms of the form 

ln(m2), which would not have been recovered in thç above analysis. However, 

deduce that no such terms appear by applying the arguments outlined in ref. [18]: 

ln(m2) terms only appear in two integral functions

r 2- 2er (1 +  i )

• m o

(9.24)

1 The integral has been calçulated in ref. [18], and can be expressed

1

as

&ij & il

n f  sji™2 j +H  m2
<Sij 8U Sij s%j s il su

+  0 ( e )

where

v>5 ï / b r  ['” ( ‘  "  v ) ln ( v r )  - Lis ( ¡ f f l r )

' Li2 ( f f i ï)+ Lij +Li2 ( / i r ) ] ;
x ±  =  |(1 ±  s/\ -  i X ) ,  y  =  f  (1 +  \A ~ 4 Y ) and Lin (z ) is the dilogarithm.



(In fact, there is a third, \xmk-*o ll~ 2€(k2), but this can be related to the others by 

l 2 ~2t{k2) — Ii +  |k2l2(0) +  0 (k 4).) These contain infinities, so we must take them 

into account if we wish to get the correct divergences in our result. Rather than taking 

the answer to be just the cut-constructed part, we must look at the general expression !
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Cut-constructed part +  d\I\ +  ¿ 2/ 2(0). (9.25)

We can find ¿1 and d% by choosing values which give the correct infinite terms. Since there 

are two types of divergence to be considered -  quadratic and logarithmic ultraviolet -  this 

will determine the coefficients uniquely. Once we have the divergences correct we know 

that we will also have the correct ln(m2) terms and the complete amplitude.

In the case which we are considering here we know that there should be no UV 

divergences (using the arguments in chapter 3), and we can confirm that (9.23) already 

fulfils this condition. So we can deduce that *  = d2 =  0; there are no ln(m2) terms.

As a check of our result, we cad make a large m expansion of (9.23): In this limit 

1(234 becomes

/
2\—2 —e

/ '

d û i 6(^2a,i — 1 ) (—s a ia s  — ta2Ct\ -\-m 2)

dai ¿ ( X X  ~  l )(m 2 Y 2~ € ^1 ~  (2  +  e ) ^ j  +  ( 2 +  e )(3  +  e)

(2  +  e )(3  +  e )(4  +  +  ( 2 +  eX 3 +  eX 4 +  eX 5 +

' S5 \
(2  +  e )(3  +  e )(4  +  e)(5  +  e)(6  +  e) )

S2
2m4

(9 .26 )

where S

1 s -f-1 2s2 -f- st -j- 2t2 3<s3 T st2 -j- s2t -f- 3t8
6m4 +  60m6 +  840m8 + .“  7560m10*

-sa\a3 — ta2 a .̂ So, the amplitude becomes

+  0 (m ~ 12)

( st stuZK f di' \ I  ̂~
1 6 ( 4 ( 1 2 ^ 2 3 ) 7 3 4 ^ ^ 7  \504m

+  0{m  4) (9.27)

This amplitude tends to zero as m 00 as expected. It is also in agreement with m -+ 00

results obtained by other methods [87].



Clearly, this implementation of the Cutkosky rules in 4 — 2e dimensions is a powerful 

technique; for a small increase in the complexity of the integral which we must evaluate, 

we can find complete expressions for any • amplitude. Here we have shown how it cant
be used to reproduce results found using the string-inspired rules and to calculate 4- 

graviton scattering amplitudes with massive particles in the loop. However, this method 

of reconstructing results is not restricted to amplitudes of a particular kind and we expect 

that it will be useful in the derivation of a wide range of PQG calculations.
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Think about the future... 

Jack Nicholson in ‘Batman’

10. Conclusion and Future Work
# ,fc

Gauge theories, and particularly quantum gravity, cause significant problems for those 

wishing to carry out calculations. The conventional method -  Feynman diagrams -  seems 

to magnify the problems to the point where a lot of amplitudes are practically unobtainable. 

In recent years, there have been a number of attempts to find alternatives to Feynman’s 

method. In QCD especially, this has produced new techniques which can be used to 

determine results in a far more effective way. In this work we have looked- at how these

new techniques in QCD can be adapted for PQG and SUGRA.

We began by showing how string theory can be used to develop tools for gauge the-

ory calculations. String theories contain gauge theories in their infinite tension limit. By 

choosing a suitable string and looking at this limit, we can construct an alternative method 

for finding one-loop results. In the case of PQG, a closed bosonic string is one possible 

choice. With this starting point we showed how to derive the ‘Master Formula’ , which 

contains all the amplitude information, and a set of rules for extracting the required re-

sults. As presented here, these two components can be used to find any one-loop graviton 

scattering amplitude. Note that, while the string theory roots of the method remain clear, 

the formula bnd rules can be used without reference to their source. ■

This technique appears to inherit many of the simplifications found in string am-

plitudes -  the number of diagrams which must be considered is significantly less than in 

Feynman’s method and the expressions which must be integrated are particularly compact. 

This reduces the amount of computation required considerably. We found that calculations 

are simplified further if we use another method suggested by string theory -  the SUSY



decomposition. This suggests that the most efficient way to calculate a full set of results is 

to concentrate on SUSY multiplets; contributions for any choice of particles can be found 

as linear combinations of the SUSY expressions. Using both the string-based rules and the 

SUSY decomposition we were able to find all one-loop four-graviton amplitudes in PQG.

We have also looked at methods which implement the Cutkosky rules. These take

a very different approach to the techniques above: Rather than a direct calculation,
• ,to

Cutkosky-based methods look at the analytic constraints which can be placed on an ampli-

tude. These constraints can then be used to reconstruct some or all of the result. Since it 

is used at an amplitude level, this method avoids many of the problems encountered when 

using Feynman diagrams. Using the Cutkosky rules at one-loop, we were able to confirm 

many of the results found by the string-based method. For the majority, this confirmation 

was limited to an agreement in the logarithmic parts of the amplitude. However in two 

cases, we were able to re-derive complete expressions; using a ‘uniqueness theorem’, we 

could deduce that the N  =  6 and JV =  8 SUSY matter multiplets are precisely determined 

by their cuts. ' "

Except for the few special SUSY amplitudes, the' naive application of the Cutkosky 

rules seems to be of limited use. However, there are situations in which the information it 

provides is valuable. Even when we cannot obtain complete amplitudes we know that the 

infinite terms we recover will be correct. Using the method for this purpose, we were able 

to investigate some of the divergences in PQG. It is not possible to distinguish between UV 

and IR contributions in Cutkosky calculations, but we were able to separate them with an 

independent investigation of IR infinities. The UV divergences which we found allowed us 

to confirm previous derivations of the counter-terms in gravity-scalar and gravity-photon 

systems. In the Dirac-Einstein theory we were able to use our calculation to obtain new 

information about the counter-Lagrangian.

We can get round the limitations of the Cutkosky-based method if we turn to a 

more sophisticated approach: Rather than calculating in 4 dimensions, we can work with
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a dimensional régularisation scheme and consider contributions at all orders in e, the 

régularisation parameter. It is clear from looking at integral functions that knowing cuts to 

all orders allows us to reconstruct the entire amplitude to all orders, with no ambiguities. 

Using this method we were able to confirm another of the expressions obtained by the 

string-based method and find an additional result for gravity coupled to a massive scalar.

So, with this combination of new techniques, we have been able to derive a number 

of amplitudes in PQG and SUGRA. The majority of these results have not been obtained 

before. This lack of previous calculations can be attributed to the difficulties involved 

with conventional methods. Clearly, these new techniques are a powerful extension to our 

calculational tool-kit and should enable many new quantities to be obtained.

So what of the future? How can this work be extended? Clearly the results we have 

presented here are only a small subset of the one-loop amplitudes which could be calculated 

by these methods. Both the string-based methods and the Cutkosky rules can be used for 

any number of external particles. (Though, of course, there will be an increase in algebraic 

complexity.) The string-based rules presented here aie restricted to external gravitons, 

but it would be possible (and useful) to look at extensions to other external particles. The 

Cutkosky rules have no restriction on external particles; the combination of this method 

with dimensional régularisation provides the means to obtain a wide range of complete 

results at one-loop.

So, the additional technology required for more one-loop results is minimal. Also 

useful, but less straightforward; are'extensions, for higher order calculations. While there 

has been some work which looks at the string based methods at n-loops [89], it is not clear 

at the present time how a set of rules as useful as those for one-loop could be developed. 

Another approach to this -  the worldline formalism [6] -  takes the philosophy of the string- 

inspired technique and uses it with first quantised particle calculations. This method has 

been used to reproduce one-loop string-based rules. There has also been some success with
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Figure 10.A: Two-loop cut with a three-particle intermediate state

this alternative derivation at two-loops [7] and it is possible that this will provide the best 

route for ra-loop extensions. In light of this, an adaptation of the worldline formalism for 

use in PQG and SUGRA theories would be useful, providing grounding for the exploitation 

of higher loop methods as they are developed.

The Cutkosky rules appear to be the most promising path for extensions to high 

order in the near future. The method is not dependent in any way on the number of loop 

in the diagram being considered. The only increase in complexity comes from th*e number 

of cuts being considered and the integrals which must be carried out. As an example 

of the potential of this technique .at higher loops, let us consider the 2-loop pure gravity 

amplitude A2_loop(- f , + , +, +)• If we concentrate on the divergence terms in the result and 

carry out a naive cut calculation in the same way as chapters 6 and 8, then we find that, 

for this particular amplitude, we can make a small amount of headway without further 

technology of any sort [90]: ;

When applying the Cutkosky rules at two-loops we must consider contributions from three- 

particle intermediate states'(fig. lO.A), as well'as the two-particles ones found in the one- 

loop case. (Though for'two-loop cuts the latter involves sewing together one one-loop and 

one tree amplitude, as in fig. 10.B). In general, this will increase the complexity of the

< 0 *

Figure 10.B: Generic two-loop cut with a two-particle intermediate state
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Figure 10.C: Possible helicity configurations of the three-particle cut 
of yl2~loop(+ , + , -f, + ). In both cases the tree on the 

right-hand side vanishes.

calculation considerably. However, with the helicity configuration which we are considering 

here we can avoid many of the problems. Note, that the possible helicity configurations 

for the three particle cuts of this amplitude are in those fig. 10.C. Since we know (from 

SUSY Ward Identities) that Atree(+  +  +  +  - )  and Atree(+  +  +  +  + ) are both zero, it is 

clear that these cuts all vanish trivially. So, we are left with two-particle cuts similar to 

found in one-loop calculations. We can deal with these as before; we simply sew one-loop 

amplitudes to trees (fig. 10.D).

Figure 10.D: Non-zero contributions to the s-channel cut 
calculation of A2~loop( + ,+ ,+ ,+ ) .

If we carry out the calculations using the expressions for one-loop amplitudes in chap-

ter 5, we find a divergent contribution of 

~ A 1- Ioop( l + ,2+ ,3+ ,4+ )
'(_ * ) ! -«  +  (-()» -<  +  ( - u ) 1-* 3 ( ( - s )1- « + H ) 1- < + ( - « ) 1- t) \

~ ~  2e /

( 10 .1 )

x

Referring back to the discussion of soft limits, it is clear that we have the correct IR

contribution here. Unfortunately, we can
not be so certain that the UY component is
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complete; there are contributions which we have not considered which could be important.

For example, the one-loop expressions which we used are only determined to 0(e°). If we 

look at the one-loop integrals, we see that the missing 0(e) parts of these expressions might 

also be relevant. To be sure of a full result we should look at Cutkosky calculations in 

4 — 2e dimensions for all the diagrams. Clearly, this will require a complete set of two-loop 

integral functions.

While we have only found a small part of the final result in this example, the po-

tential of this approach should be obvious. The restriction has been the difficulty of the 

integrals rather than problems with the technique Given an improvement in integral tech-

nology the Cutkosky-based method will be a useful aid in obtaining higher order amplitude 

contributions.

In conclusion: We now have a powerful set of new techniques for one-loop amplitude cal-

culations. These methods overcome the complexities which have hampered the traditional 

Feynman diagram methods and, as a consequence, have allowed us to find a large set of pre-

viously unknown results. There is room for optimism poncerning the development of this 

technology for an increasingly wide range of cases. At one-loop the majority of amplitudes 

should be calculable using these methods, though further adaptations may be necessary.

At higher loops there are still problems which must be overcome; it seems that the most 

significant impediment at the present time is the lack of necessary integral technology. We 

may hope that this is a restriction which will be overcome in the near future.
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Appendix I. Quantities in General Relativity

In this appendix we give general definitions of some of the relevant quantities required in 

GR and PQG. We also give a brief overview of the expansions used in PQG; that is, when 

we make small perturbations of the metric tensor (see, e.g., refs. [28,29,32,56]).

1.1 Definitions
* !

As usual, we represent the non-covariant derivative by

' V * '« ' - « ” pxp2...pm,v =  dvV ° ' a>~a’' '

T/Ol.-O-r>
QXVV fil-Pr,

and the covariant derivative by

d

V uV a'a* - a"p1p2...pm =  V a'a> -a” 0102—0m’,V

+  n \ V ‘ + ■ • • + Pl-Pr.

r % v ° — %...pm - . . .  -

where the metric connection, is defined by

T% = \gap(gpii,T + 9n,f>-9Pi,p\

From this, we also construct the Riemann tensor

Rp-yS =  ^06,7 “  ^07,6 ^  ^P7^0S ~

The Ricci tensor and scalar are then defined as
R = R P-- ■lLHpI/

_ rp -vp _l rr rp -  rr Tp=  I pp,u 1 pv,P J '1 PP

nd

( i .i)

(1.2)

R  =  g ° P R ap =  g ^ K pP

’he Einstein tensor is made up of a linear combination of the Ricci quantities

Gag =  Rap .jQaliR

(1.3)

(1.4)

(1.5)

(1.6)

(1.7)



We now give the perturbative expansions of the GR quantities when the metric tensor 

undergoes small perturbations of the form

9tiu — 9¡w T K hpi/ (1.8)

where, k =  VSvrG and, in all "cases, X  will indicate that X  depends only on the classical

background metric. We use this classical metric to raise and lower the indices on h„u.

We can find the inverse metric tensor, g(iv, by requiring that =  6£. This
*

implies that

g*v = g * v - K h * v + K 2h*hav-K*h*h%hpv +  0(KA) (1.9)

We can also find the expansion of yf^g from this as follows:

Note first that

det(X) =  exp(Trln(W)) (1.10)

and that (1.8) can be rewritten *

g ^  =  ff/taitf +  k K )  (I-ll)
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1.2 Expansions

Then we can expand it as

g =  y/ - d e% ) = * exp(i Trln(g))

=  i exp ^  Tr ln(g) +  -  Tr ln(£“  +  k  h“ )^

=  v C j  exp l \  Tr ( «  K  -  ~*2 A ? #  +  AJ h> +  0 ( k 1) ) \
(1.12) *•

*• =  v C | (l +  i A + y ( A 2 - 2 A f A ? )

+ ^ ( h 3 -6hhZh%+$h>h%h0)  +  O(Kt ) Y  :

W i exp ( X  k  -  Y 2 ^ + r 3K  *? * +



Similarly we can expand the other GR quantities in terms of h^u. First, the Christoffel 

symbol can be expressed as

k
r \a = r(0)%a + r(1)%a + r(2)%a + r<3)̂ a + o (k 4) (1.13)
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where
p(°)/j _  f / ‘UOi « p(x

^  vex =  —<7̂  (hcrv;a d" h<ra;v hav;a)

Y ^ va =  ( K v,a +  hoa,v -  hav;iT)

r(3)/*v« = (hav'a + h(Ta’v ~ h<*v\°)

From this we find that the Ricci tensor becomes

Rr„ =  R $  +  4 * ’ +  4 V  +  4 V  +  ® («4)
■O' ■■

Where, as before, R $  ~  (9(/<n). Specifically, 

p(°) _  R

=  r(1)W  -  r(1)V,-A

■ =  2 ~ 1̂*;*'« ~ 

nf$ = r(2)'W  -  r(2)Â .A- (
.. ' + r(1)%Pr(1)pri/ -  v r (1)%

,, ^  = r(3̂ V;, - r(3)V;a  ̂ #
+ r(1)rMr<2>'„ + r<2>%Pr<»'>r„

- ^ ‘ ’ V r ^ V - r ' V 11'
' f' ’ ,

And so, the Ricci scalar is

i j  =  *<“> +  B (1) +  Rm  +  Rw  +  0 (k “)

(1.14)

*

(1.15)

(1.16)

(1.17)

*



R(0) = R

Rm = ~ Khai,Raf) + -  r(1>-
k

=  4 h% l  - h t f a) (1.18)

R(2) =  ~afiRW _  Kh°PRW +  K2hâ R al3

R (Z) =  ~afiRg )  _  Kh«fi ]g)  +  K2h ° h ^ R §  -  K3h ^ h ^ R afi.
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where,

#



Appendix II. Expansions o f Green Functions

In the derivation of the string-based rules we need expressions for the string Green functions 

and their derivatives in the limits v -+ 0 and r, v -> oo. Here we give the relevant parts of 

these expressions (see ref. [3j).

II.1 Open String Green Functions

As discussed in the text, the basic Green function in the open string case is defined via 

the two-point correlation function (4.18):

( X ^ u ^ X ^ V j ) )  =  S p v G s i v i  ~  V j )  t ,

=  -S'pu ^.log |2sinh(i/y)| -  -  4gsinha(i/,-y)  ̂ +  0 (q2)

(where i/ij =  i/i — i/j)

The infinite tension limit includes the derivatives of this G B (v) =  \d vG B (v) and

Gb (v ) — \81Gb (v ). The second is removed by integration by parts, so we only need

limiting expressions for the Green function and its first derivative.

In the limit v —>• 0, we have ............
exp(Gb (v )) ~  v-1/*»

Gb (v ) ~  v 1

In the limit r, v —> oo

exp (Gb (v )) exp - > | ) x constant

Gb (v ) -»■ ^ sign(z/) (| +  e x p (-2 \v\) -  qexp(2 |z/|))

(recall that q =  exp(—2r))

(II.2)

II.2 Closed String Green Functions .

In the closed string case the Green function is defined in the same way, but is now a

function of a complex variable.

(X^Vi^viJX^Vj, Vj)) =  ¿ ^ G b  (w ~ vi)

- V (  log |2 sinhd^ij |) -
(k b !)2 Aq sinh2(|z/jy |) ) +  0(q2)

(II.3)



(where Uij -  vx -  Uj). As well as the Green function and first derivatives, GB(v) =  

\dv G B { v )  and G B (v)  =  \ d v G B {v)  we must also include HB =  \ d „ d v G B ( z/)

In the limit z/ —► 0, we have ,
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exp{Gb {v )) ~  M 1̂  
1 
v V

G b ( u ) ~  —-  G b {v )

(We do not require the v 0 limit of HB.) In the limit r, z' —> oo

f(^su)2 \
exp (Gb (i/)) -*■ exp ( -  |$M 1 x constant

\ *

C?b (i/) -»■ ^  -  sign (3fy) (| +  exp( -2  |3z/|) -  q exp(2 |$z/|))
’ >JT „ „

GS(P) ^  -  sign(Oi) (5 +  exp( -2  |3i/|) -  q exp(2 |3p|))

(II.4)

(II.5)

'«I *
To find He in this limit we need only consider the first terms in the expansions of GB(v) 

and Gb (v ). Noting that u -  v =  2S(vj, it is clear that

1
a -G s M  = d,GB W  =  d„ ( ~ )  = 2 S t

(II.6)

So,

« ‘¿ = - 2 ^  • V i ’ j - <IL7) 

Looking at (II.5) we would expect that there should be a ¿-function included in (II.6). 

Work in ref. [13] implies that this can be ignored for our purposes. We have confirmed this 

(in calculations of physical amplitudes) with explicit tests: Different choices of the way we 

integrate by parts will produce different occurrences of HB. Any omitted ¿-function would 

be seen in inconsistencies between the results found.

In our description o f the string-based rules, we have adjusted the location o f some minus

signs for the sake of simplicity. Note that we define the variables by

Xi
Svj
S t  '

(II.8)



This would imply the limit
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G b ( x ì j )  ~ - \ sign(:Tjy) + X tJ  

G b ( x ì j ) ----- ( - f  sign^y) +  X i j )
(II.9)

We have actually chosen to make the two substitutions the same. Changing the sign of 

the second term requires us to change the H  substitution (II.7) to "

n
_i_
2 T ‘ (11.10)

(Each occurrence of an H  effectively replaces one Gb  and one Gb -) We also require an 

additional overall ( - l ) n, where n is the number of external legs.



Appendix III. Spinor-Helicity Techniques

One major simplification which has been widely used both in QED and QCD calculations
l

and in the work presented here is the spinor-helicity technique. In this method we calculate

amplitudes for specific choices of external helicity. Since there is no interference between

different helicity configurations, the total cross-section can be found by sum m ing over
• •

all possible helicity amplitudes. Working with specific helicity choices allows significant 

simplifications to be made in the calculation process. In particular, for external on-shell 

particles we can use the representation for the helicity vectors introduced by Xu, Zhang 

and Chang [19,2]. In this representation helicity vectors are written as products of spinors 

dependent on the particle momentum and an arbitrary reference momentum.

The basic notation which we use is * *

{p + \ q - )  =  b<i\

„  {p -  19+) =  (P?>

with |g-) and |g+) are positive and negative helicity massless Dirac spinors respectively 

( i.e. q ■ 7 I q±) =  0 and | q±) =  f  (1 ±  7s) I ?±))- The normalisation is chosen to be such

that

(p ±  \y»\p±) = 2pn (III.2)

(III.l)

It is possible to show that we can relate vectors and spinors of the same helicity by a 

linear transformation: '

' eJO) ~  u+(Ph»v ( in -3)

where v is a second spinor and 7  ̂ are the usual gamma matrices. Further, we can always 

choose an arbitrary momentum, k, such that v =  | k+)  (with k2 =  0 and k • p ^  0). 

Including suitable normalisations we can define the helicity vectors by

4  (P, k) =  ±
(p ±  \nrn\k±)
\/2 (fc =F |P±>

(III.4)



The choice of k is related to the gauge. So, a change of k leads to a gauge transformation
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(III.5)

Note that this shows clearly an assertion which we make in the text: If we replace an

epsilon vector with its equivalent momentum vector, the result will vanish. If this was not

true then (III.5) implies that amplitudes will not be gauge invariant.
« «

Having set this representation up, we find that judicious choices of reference momenta 

can simplify many calculations. If we represent the polarisation vector for a particle of 

momenta ki with reference momenta q, then we find

kj ■e+ (ki;q) =
(q kj) [kj kj

(q ki)

e+{kj\p) • e+{ki\q) =  

e~~(kj;p) • e~{ki]q) =

e e+(ki;q)

v 2  [Aj <2]
[kj kj) (qp)
(kj P) (ki q)
(kj h )  [qp]
[kj p] [fcj 9]
(q kj)[pki]

(III.6)

(qki)[kjp]

From these we can deduce useful identities for specific choices of reference momenta

e± (kj ]q ) -e± (ki;q) =  0

e± ( k j - , q ) - e ^ ( k i - , k j )  =  0  (III. 7)

q -e± (kj]q) =  0

Also, as required, we confirm that these definitions imply

kj • e± (kj ;q) =  0 (III.8)

We can also extend the spinor-helicity technique so that it can be used in PQG and SUGRA 

theories [20,21,88]. Gravitons are spin-2 particles, so their helicities are represented by rank 

2 tensors rather than vectors. We can,' however, make direct use of the above method by 

noting that the tensors can be written as

(III.9)€[iv — eitev

«
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e and e can be treated independently as helicity vectors during the calculation (in particu-

lar, implementing the above techniques) and the full tensor reconstructed at the end [84]. 

We can take a similar route fo  ̂ gravitinos [88].

While these techniques are useful in all amplitude calculations, they are particularly 

relevant for the techniques we have focussed on. Note that in string calculations all helicity 

vectors occur in terms like • ej or k • ei at the beginning of the calculation. If we use the 

above, with clever choices for reference momenta, we can significantly reduce the number 

of terms we must deal with before we start. Also, in the cut techniques the helicity 

method provides a very compact way of representing the tree amplitudes, simplifying the 

subsequent work.

9

«



Appendix IV . Supersymmetric Identities

Supersymmetric theories are constructed with symmetries between particles of different

types, so it is not surprising that they generate relations between different amplitudes in

the theory. As expected, we can use these symmetries to find a large set of supersymmetric

results given a small number of amplitudes [22]. More surprisingly, we also find that it
* «

is possible to use these to relate some non-supersymmetric amplitudes [23,2]. Here we 

show how these relations can be constructed and give the results which we used in our 

calculations. We begin with a reminder of the essentials of supersymmetric theory.

IV .l Amplitudes in Supersymmetry

Supersymmetric theories are theories containing one or more charges, Q\-which have 

spin one half. (The number of such charges in a theory is generally denoted by N; The 

most common supersymmetric theories considered axe those with N  <  8.) These charges 

will take fermions to bosons are vice versa. The Qts transform as spinors under Lorentz 

transformations, so we can define

Qi(v) =  r Q ia (IV .l)

where Q*a are generators which form a Majorana spinor and T}a is a fermionic spinor 

parameter. '

If we then look at the case of an N =  1 supersymmetric multiplet containing a 

graviton, g, and a gravitino, ip. (This is the example used in ref. [22]. However, here we 

carry out the analysis using the spinor-helicity formulation as in ref. [2], This formulation 

fits more closely with the presentation of our string inspired and Cutkosky results.) The 

commutation relations of the creation operators with Q(t}) are

[Q(n)iat ] =
[Q(r}),a±] =  ± r :t(p,v)af

(IV.2)



Here a f is the creation operator for a (Dpe°gl% ee) helicity graviton and a j  is the creation 

operator for a (np“ a\\vyee) helicity gravitino. As elsewhere, we take all particles to be in-going 

(so we will not consider equivalent formulae for annihilation operators).

We may define the T terms in a ‘spinor-helicity way’ as
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r+(p,r]) = r]û(p) ' (IV . 3 )
* ,

(Note it must be both a spinor and linear in rj.) 77 is completely arbitrary, up to having 

zero norm, so we can choose it to be the product of a Grassmann parameter, 6, and a 

positive-helicity spinor of momentum k, u-(k) ,  implying

r +(p,?7) =  6u+(k)u-(p) =  0 [kp]

Similarly, we can put

r~(p,»?) =? Ou-(k)u+(p) =  6 (kp)

(IV .4) 

(IV .5)

Then, with a slight change of notation,

T+(p,q) =  6 [kp]

T~(p,q) = 0 ( k p ) .
(IV.6)

IV .2 Construction o f  Identities

The starting point for using supersymmetry to relate amplitudes is to notice that in an 

unbroken supersymmetric model the supersymmetric operator annihilates the vacuum,

Qi |0) =* 0

(0|<& =  0,
(IV.7)

where Qi is a supersymmetric operator. Hence, if {a,-} is a set of n supersymmetric creation 

and annihilation operators, then

( 0 \ [ Q i , a 1 a 2 . . .  a n] ¡0) =  0. (IV.8)

#
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This can easily be expanded to give the Supersymmetric Ward Identity

n

 ̂y (°| «1 • • • dj-i [Qit Q>j\ &j+1 • ■ • an |0) = 0.
j=i  ‘

(IV.9)

By astute choices of ay’s and use of the above commutation relations it is possible to

construct a number of useful relations between various amplitudes.

* •

As an example of the power of these relations, let us consider a number of derivations

using the technique with N = 1 (g, VO and N = 2 (g, ip, 7) supersymmetric multiplets. .

•

N = 1

First, we can easily show that A(g+, g+, g+, g+) and A(g~, g+, g+, g+) are trivial in any 

supersymmetric multiplet.

From equ. (IV.8) we have

(0|[Çi,aÎ(fciK(fe)a+(̂)«+(fc4)]|0)=0. (IV.10)

(IV.ll)

Which gives, expanding as in equ. (IV.9)

r-(fc1,i)(0|a+(A:1)a+(A:2)a+(fc3)a+(̂)|0)

+r+(k2,q)(0\a+(k1)a+(k2)aj(h)aj(h)\0)

+T+(k3,q){0\q+(k1)aj(k2)a+(k3)a+(k4)\0)

'  +T+(ki,q)(0\a+(k1)aj(k2)a+(k3)a+(h)\0) =0.

m

The three terms with fermions of the same helicity vanish since interactions with gravity 

conserve helicity. Hence,

A(g+,g+,s+,9+) = 0 (IV.12)

Similarly, consider

(0| [Qi, (h)a+(k2) a+ (h) ag (h) ] |0) = 0. (IV.13)



which implies

r-(Ari,9)(0|a+(fc1)a+(fc2)a+(A3)a;(A;4)|0)

+r+(k2,q)(0 \a+(t1)a+(k2)a+(k3)a;(h)\0 )
+r+(h,q)(0 \a+(k1)at(k2)a+(h)a;(k4)\0 )

- r ~(h,q){0\a+(k1)a+(k2)a+(k3)a~(k4)\0) =  0.
a* ■

Again, the middle two terms vanish by helicity conservation. So,

Supersymmetric Identities 162

- F  (h ,q )A (g+ ,g+ ,g+ ,g ) - T  (k4,q)A(tp+ ,g+ ,g+,tj> ) =  0.

If we choose q =  k4, then T (k4,q) =  0 and we obtain

(IV. 14)

(IV.15)

) =  0 (IV.16)

(NB. Choosing, instead, q =  ki gives us A(g+,g + ,ÿ>+ ,i/>~) =  0.)

As well as identifying trivial amplitudes, the same method gives relations between 

non-zero amplitudes. As above, we begin by considering

(IV.17)

implying

r - ( k u q)(0 \a +(h )a ; (k2)a^(k3)a - (k 4m

—r - (&2, <?){0| a^(ki) a^(k2) a'j'(k3) a~(k4) |0)

+T+( h , q)(0\ aJ ( h ) a~(k2) dJ (k3) a~(k4) |0)

- r - ( f c 4,i)<0|a+(fc1)a7(fe2)a+(fc3)a^(fc4)|0)=0.

The third term vanishes as before; choosing q =  k4 and using relation (IV.6) we find

(IV,18)

(14}A (g+, g - , g +,g~) =  { 2 ^ ) A ^ + ,^ ,g+ ,g ) (IV.19)

♦



N =  2

If we wish to consider amplitudes with gravitons and particles other than gravitinos then 

we must use a SUSY multiplet with N >  1. For instance, let us consider amplitudes 

with photons and gravitons. For this we need to use the N  =  2 multiplet which is con-

structed from a graviton, two gravitinos and a photon. First we must note that the N  =  2 

Lagrangian is invariant under,the infinitesimal chiral transformation [49]
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^ = * 7 5 ^  H  =  (IV. 20)

where ^  and are the two gravitino fields.

We deduce that ip-i])-boson and <̂ -<̂ -boson vertices conserve helicity, whereas a 

boson vertex will violate helicity maximally. It then follows that, • •

A(<fr± ,<P± ,B ,B ')  =  0 A(<fr± ,<f,± ,B ,B ')  =  0

~ A(<fr± , ^ , B , B ’ ) =  0
(IV.21)

where B  and B' are bosons of either helicity. *

We may proceed as before, but must keep watch on which gravitino field is involved 

in any particular. SUSY transformation. (Recall that we now have two SUSY generators.) 

We work with the following notation:

[Q i■,a*] = ±r±(p,i)aj [Q2,af] =

[Qi-.,aj] = ±rT(p,g)af. [Q 2,o J] = ± r T (p ,g )a ^

!1aJ] = ± r ± (p ,? )a ^ = ±r ±(p,q)a±

[Qu a±] = T^(P^)at [ g 2,a ^ ] = =FrT (p ,g )a J

(IV. 22)

As before we begin with a trivial result A ( g ~ , 1 +) =  0- Our starting point for 

this is

♦

(0\[Q2,ag ( h ) a 1 ; ( h ) a^ (h )ag (k4 ) ] l0 } - 0 .  _ (IV.23)

I
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implying,

T~(ku q)(01 ( h ) a+ (k2) aJ (k3) a~(k4) |0)

—r - (Ar2, g)<0| a - ( h )  a+(fc2) « J (¿3 ) a ~ ( k 4 ) |0)
(IV.24)

+ r +(fc3,g){0|a5 (ki)a+(k2)a+(k3)ag (fc4)|0)

-T ~ (k4,q)(0\a^(k1)a - (k 2)a+(k3)a - (k 4)\0) = 0 .
* *

By the above observation, we can immediately see that the all terms bar the third vanish. 

This implies that the third term must also by equal to zero, proving the result.

For the Cutkosky calculations, we also require the equivalent relation to (IV. 19) for 

other particle types. Here we look at the result for A(7+ , 7 - ,g+ ,<?“ ). This amplitude can 

be found from

{0\[Q2,aJ(k1)a^(k2)a ^ (h )a + (k 4)]\0) =  0. (IV.25)

which expands to give »

r_(&i, ?)(0| (h ) a y  (k2)a+ ( h )  ( h )  |0) -
* t

-r -(* 2 , g){0| a - ( h ) a - { k 2) 0 + { h )  a+(k4) |0)

+ r +(k3,q){0 \a;(k1)a^(k2)a+(k3)a+(k4)\0)

+T~(k4, 5)(0| aj(ki)a^(k2) a j ( h ) a + ( k 4) |0) =  0.

The third term vanishes and we take q to be ¿ 1 , giving

(IV.26)

(12) A(g- ,  7~,g+ , 7+ ) =  (14) A ( g ~ ^ ~ ,g +, ^ ) (IV.27)

Which, combined with (IV.19), gives

A{g ,7  >0+>7+ ) = M !
(12)2

A(g ,g ,g+ ,g+ ) (IV.28)

These results can easily be extended to different multiplets to give a wide range of 

results. .
«
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IV .3  Applications

Supersymmetric Identities

There are a number of ways we use these identities in our calculations. First, we note that 

the results obtained above, '

ASVSY(g+,g+,g+,g-) = o 

ASUSY( ^ +,s + ,ff+) =  o
(iy.29)

are in agreement with our result that, at 1-loop,

.4 '"mi“ (!7+ ,S+ , i + , ir )  =  - A ^ ( g* tg+ ,g+ ,g - )
(IV.30)

^ ermion( j +,y + ,y+, i +) = - ^ b“ °"(i(+ .i/+ , »+ ,#+ )

for any boson and fermion in the loop. This can be deduced from the SUSY identities 

and noting that every multiplet has an equal number of fermions and bosons and̂  that the 

SUSY amplitudes factor into a sum of amplitudes from individual particles. The latter is 

because a one-loop amplitude can only include at most one other particle together with 

the graviton. (This can be seen by looking at the matter-gravity vertices.)

So, for instance, for the (g,tp) multiplet *

'As™Y(g+,g+i9+,g+) = 0

=» A*(g+ ,g+ ,g+ ,g+) +  A*(g+,g+ ,g+ ,g+ ) =  0
(IV.31)

Which generalises if we look at other possible SUSY multiplets. Thus, we have a simple 

confirmation between theory and calculation.

Second, there is extensive use of these results in the Cutkosky derivation of the one- 

loop graviton scattering amplitudes. For this >ve require AtTee(g~, g+ , X ~ , X + ), where 

X  is any particle. By using supersymmetric identities, we can easily see that for any 

supersymmetric multiplet containing X  and g

(where y depends on the type of particle Y ).

"  At" * ( , - , g + , X - , X + )  =  ^ A M’ (9- , 9 +, 9- , g + ) (IV.32)

à



In the Cutkosky calculations we used this result outside a supersymmetric context.

This is justified by the following argument: The minimal coupling of gravity to other fields 

implies that each vertex containing both gravity and some other field, X, must have at 

least two X particles. Since only one of these particles can be internal (more than this 

would imply a loop in the diagram), the only possible contributions to Atiee(g, g, X, X )  

are those in fig. IV.A. . .

Supersymmetric Identities 166

Figure IV.A Contributions to Atree(<7, g, X, X )

It is clear that the trees depend only on the external particles involved (ie they are
*

independent of any particular supersymmetric multiplet.) and can be used in a general 

way.

We saw above that A(g+ ,g+, =  0, which is the first confirmation of our

assertion that gravity does not flip particle helicities at tree level. We can use SUSY 

identities to show this is true for ôther particles. For instance, consider repeating (IV.25) 

with the change a^ -> a j. If we note that, at tree level, <0|^fli0) =  0 then a similar 

argument leads to the deduction * ,

A(g~,'y+,g+ , j + ) =  °-

L



Appendix V . Supersymmetric Decomposition

We find that the most useful way to organise one-loop graviton amplitudes is with a ‘SUSY
» 'i

decomposition’ inspired by string theory. (For use of this method in QCD and electroweak 

theories see [15,24].) Rather than calculating amplitudes for individual particles, we do so 

for certain combinations. In particular, we choose certain SÜSY multiplets. Results for 

any combination of particles required can then be found from the SUSY amplitudes. This 

method allows us to express a set of results in its most compact form and simplifies the 

calculations significantly when a suitable calculational technique is used. In the Cutkosky 

rules, amplitudes containing the larger multiplets can be constrained more strongly than 

those for individual particles.

F ig u re  V .A  Vertices containing gravitons (solid line) 
plus other particles (broken line).

t

To see how such a decomposition is possible, consider that particles coupled to gravi-

tons come in pairs (fig.V.A). So, if we consider one loop diagrams in which the only external 

particles are gravitons, then we know that they must be constructed from the (one particle 

irreducible) building blocks in fig.V.B. Clearly, this means that, for this subset of ampli-

tudes, only one particle other than the gravitons can be involved at a time. So, amplitudes 

involving specific choices of internal particle types are independent from each other.

While we can calculate the contributions from individual particles, the independence 

of the amplitudes implies that we can calculate linear combinations of the contributions 

and extract the individual answers at the end. We might hope that, with good choices 

of the linear combinations, we could reduce the necessary calculations to a small simple 

set. Since SUSY has simpler results than those from its constituent particles, we might 

expect the linear combinations of SUSY multiplets to be the most profitable. We find
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F ig u re  V .B  Building blocks for a one-loop graviton amplitude.
Gravitons and other particles are represented by solid and 

broken lines respectively.

in our calculations that this is indeed the case. The multiplets which we choose are the 

N  =  1, 4, 6, 8 multiplets centred around the scalar. That is, the multiplets in table 5.2. 

So, in practice we calculate for each of these SUSY multiplets and find expressions for 

specific individual particles by using ,

A [0] =  A N=0

A[l/2] =  A N=1 _  A [0]

A[1] _■ a n =4 _  4AN=1 _|_ A[0] . ■ (V<1)

¿[3/2] =  ¿iV=6 _  qA N=4 +  gAJV=:l _  A[0]

A[2] _  ¿iV=8 _  8An =s +  20An=4 ~ W AN=1 +

With Feynman diagram methods it is hard to see the advantage of such an approach, 

since particles of different types are treated differently and Feynman diagrams involving dif-

ferent particles are evaluated separately. However, in both the string-based and Cutkosky 

methods all particles are treated in essentially the same way and significant simplifications 

are seen within diagrams when we use this approach. (There axe also simplifications seen 

in superfield calculations when the background field method is employed [91,92].)

In the string-based rules we see the simplifications as cancellations between the com-

mon contributions within multiplets. In terms of the notation from chapter 4 and Feynman 

parameters, we can deduce that for a general n-point diagram S there will be a polynomial 

of degree n; the cycle contributions, Cy  and Cf  will be of degree n -  2 and Cy -  4CF will



be of degree n — 4 (the 2- and 3-cycle contributions will cancel in the combination). For 

each particle type, there is a scalar contribution Na[S, S'] where Ns counts the degrees of 

freedom (with fermions having negative weight). Hence, for any supersymmetric multiplet 

the [S', 5] term will cancel and the Feynman parameter polynomial will be simplified. For 

higher N  supersymmetric multiplets, we see combinations which leave precisely factors of 

the form Cv ~  4Cf  (see table 5.3 for explicit details of this). So, for increasing N, the 

degree of polynomials which appear in calculations decreases and the cycle contributions 

which must be considered are simplified.

In the Cutkosky method we find that the SU*SY multiplets produce particularly com-

pact expressions, reducing the complexity of the cut calculations. We also find that the

uniqueness theorem (see section 6.3) implies that it is the amplitudes for multiplets of
• •

higher N which are most tightly constrained by the cut results.
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Many of our cut calculations require us to consider traces of the form
»

t e ± { h h h h - - - )  =  \te{0- +  l 5 ) h h h h - - - )  (VI. l)

(We often abuse notation and write this as tr± (l,2 ,3 ,4 ,...) , tr± (^ ^ 2^3 4̂ • • •) or some 

combination of the two.) For a trace of this kind involving four momenta, we can write 

this as

^ ± { h h h h )  = \ ^ { h h h h ) ± \e{ki,k2,k3,k4) (VI.2)

with

e(ku k2,k3,k4) =  (VI.3)
* *

The f,2 fi3fc4) is easy to deal with, it becomes [1]
. . .  'ji

tr(^i^2^3^4) =  4((&1 • k2)(k3 ■ k4) -  (k4 • k3)(k2 • k4) +  (kx • k4){k2 • k3)) (VIA)

»
The e-functions require slightly more work: Note that we are considering amplitudes with 

four external momenta. These are related by

Appendix V I. Epsilon Tensor Expansions

k\ +  k2 +  k3 +  k4 — 0, (VI.5)

so we only have three independent momenta in the theory. This implies that [17]

kij kj, km) =  0. (VI-6)

More generally,

J d 4le(l,ki,kj, km)f(l, h , k 2,k3,k4) =  0, (VI.7)

unless f  contains something which will alter the e(/, &m)* In fact, another e-function

will do this, since products of e-tensors produce sums of Kronecker deltas. So, we can 

discard products of odd numbers of e-functions. We will expand a product of an even



number as dot-products of momenta. To enable us to do this, we list here explicit results 

for the products of e-functions required in the text.

Epsilon Tensor Expansions 171

A product of 2 e-functions can be written explicitly as

e(a,b,c,d)e(e ,f,g,h) =  -1 6  eM'v‘p'a'a^Cpd^e^fv,gp,ha< (VI.8)

So,we can use [1]

e ^ e '*  " '  * =  -  det(Vaal) . a =  p,p,p,a

a  =
(VI.9)

to rewrite this as an expression consisting only of dot products. Obviously this will be a
• »

large and complicated expression in general, but if some of the momenta are shared between 

the epsilon functions and are on-shell, it is possible to obtain surprisingly compact answers. 

Consider first the case with two shared on-shell momenta

e ( k i , k 2, k 3, h ) e ( p u P 2 , h , k 4) (VI.10)

with k 3 = 0  and k \  =  0 .

We find this to be

16(-(kl .pl)(k2.p2)(k3M)2 +  (kl.p2){pl.k2)(k3.H)2

+  (kl.pl)(k2.H)(p2.k3)(k3M) -  (klM)(pl.k2)(p2.k3)(k3M) 

- (k l .k3 ) (p l .k2 ) (p2M )(k3M )-(k i .p2 ) (p l .k3 ) (k2M )(k3M )

+  (k lM ) (p lM ) (p 2 M ) (k 3 M )  +  (kl.k3)(pl:k3)(k2M)(p2M)  (V I.ll)

-  (klM){pl.k3)(k2.k3)(p2M) -  (kl.p2)(plM)(k2.k3)(k3M)

+  (kl.k3)(plM){k2.p2)(k3M) -  (kl.k3)(pl.k4)(k2M)(p2.k3)

+  (kl.pl)(k2.k3)(p2M)(k3M)  +  (klM)(plM)(k2.k3)(k3.p2)^
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Similarly,

e(&i, h , h , h )  e(Pi > ¿2, h , fa) =

16 (2(kl.pl)(k2M)(k2.k3)(k3M)  +  (Jfcl.fc2)(pl.Jb2)(Jfe3.Jfe4)2

- (k lM )(p l .k2 ) (k2 .k3 ) (k3M )- (k l .k3 ) (p l .k2 ) (k2M )(k3M )

-(k l .k2) (p l .k3) (k2M )(k3M ) +  (kl.k3)(pl.k3)(k2M)2 
*

■ -(klM)(pl.k3)(k2.k3)(k2.H)-(kl.k2)(plM)(k2.k3)(k3.k4:)

-  (kl.k3)(plM)(k2M)(k2.k3) +  (klM)(plM)(k2.k3)(k3.k2)^  •

(VI.12)

Obviously, the simplest form comes from the case where all momenta are shared and

on-shell:

e(ki,k2,k3,k4:)e(ki,k2,h,ki )

=  16^(kl.k2)2(k 3 M )2 -  2(klM)(kl.k2)(k2.k3)(k3M)

+  (kl.k3)2(k 2 M )2 -  2(kl.k3)(kl.k2)(k2M)(k3M)

+  (k l .U )2(k2.k3)2 -2(klM )(khk3)(k2M )(k2 .k3)

(VI.13)
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