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Abstract—The recent explosion of demand for Explainable AI
(XAI) techniques has encouraged the development of various
algorithms such as the Local Interpretable Model-Agnostic Ex-
planations (LIME) and the SHapley Additive exPlanations ones
(SHAP). Although these algorithms have been widely discussed
by the AI community, their applications to wider domains
are rare, potentially due to the lack of easy-to-use tools built
around these methods. In this paper, we present ExMed, a tool
that enables XAI data analytics for domain experts without
requiring explicit programming skills. In particular, it supports
data analytics with multiple feature attribution algorithms for
explaining machine learning classifications and regressions. We
illustrate its domain of applications on two real world medical
case studies, with the first one analysing COVID-19 control
measure effectiveness and the second one estimating lung cancer
patient life expectancy from the artificial Simulacrum health
dataset. We conclude that ExMed can provide researchers and
domain experts with a tool that both concatenates flexibility and
transferability of medical sub-domains and reveal deep insights
from data.

Index Terms—Explainable AI, Medical Data Analytics, Ex-
plainability, Interpretability, COVID-19, Cancer.

I. INTRODUCTION

Explainable AI (XAI) has drawn tremendous attention in
the recent years [1]. XAI systems not only aim to make
intelligent decisions or accurate predictions, but also provide
an insight into the process of AI decison making [2]. A goal of
enabling explainability in AI systems “is to ensure algorithmic
predictions and any input data triggering those predictions can
be explained” [3]. In the context of Machine Learning (ML),
XAI focuses on developing human-understandable prediction
models producing explanations, along with predictions and
model agnostic techniques that generate explanations to ex-
isting ML models.

From a data science perspective, equipped with its “expla-
nation power”, XAI is not only useful in bringing trust to
AI models [1], but is also about providing deeper insights
from data. By explaining why an AI model makes a certain
prediction, one also gains knowledge about the underlying
data used to build the model. Explanations thus can reveal
previously unknown patterns in the data and may facilitate new
discoveries. As a relative new field in AI, current development
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in XAI software is fragmented in the sense that various
algorithm implementations are scattered in multiple libraries
written in different programming languages. As various levels
of coding are often required for using such libraries, they are
predominately intended for data science developers rather than
domain experts. The lack of easy-to-use XAI tools hinders
further development of XAI and its applications in the wider
context.

In this paper, we present ExMed, a self-contained XAI
toolkit for domain experts. ExMed performs XAI analysis for
prediction models. With its simple user interface, it supports
both global explanations presenting patterns of the entire
dataset and instance explanations that are local to individ-
ual predictions, for both classification and regression tasks.
Although various XAI techniques have been proposed in
recent years – e.g., a good overview of these techniques is
presented in [4] – we focus on feature attribution explanation
techniques [5] due to the transparency of their explanations,
their computational effectiveness and general popularity.

To better illustrate our work, we present two real world
case studies that demonstrate ExMed’s functionalities. In case
study I, a COVID-19 transmission study reveals how different
COVID-19 control measures were used and impacted the
virus transmission rates. In case study II, we examine lung
cancer patient life expectancy using the Simulacrum dataset.1

Through the two case studies, we illustrate how ExMed can
be used for making predictions and generating explanations.

The rest of this paper is organised as follows. Section II
reviews some research in the area of XAI and medicine. We
present background on feature attribution XAI algorithms in
Section III before introducing ExMed in Section IV. Section V
and VI discuss the two application cases studies, respectively.

II. RELATED WORK

The use of Machine Learning (ML) has become more
prominent in several areas of healthcare, such as diabetes,
arthritis, cancer [6]–[8], with varying input formats ranging
from tabular data in stored in relational databases to large scale
image datasets [9]. Stemming from the involvement of data
sensitivity in the medical domain is the necessity of gaining
human trust towards ML application [10]. Thus, we see a
recent surge in the production of interpretable results using

1https://simulacrum.healthdatainsight.org.uk/
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state-of-the-art models such as Local Interpretable Model-
Agnostic (LIME) and SHapley Additive exPlanations (SHAP)
to supplement the outputs provided by black-box algorithms,
with much work showing the intent of XAI expansion through
new prediction model architectures [11], [12].

XAI aims to improve the usability of AI by providing
justifications behind a given ML prediction [13]. It is a field
of exploration by creating a framework to cater for usability
adhering to each step of an ML pipeline, including data ma-
nipulation, pre-processing methods and explainability. Whilst
yielding the same prediction performance, the explainable
aspect helps reduce bias and promote fairness of the prediction
model. This interpretable aspect in junction with human input
can then create an optimal pipeline of fairness whilst obtaining
best results by providing various reasons that can provide an
insight into the decision making process.

Currently, many ML pipelines are especially designed for an
identified problem with a high degree of specificity. In other
words, there is the necessity of alteration when it comes to
rebuilding a pipeline for new data. Therefore, without a basic
knowledge of ML, accessibility to ML applications can be
limited if data interpretation is not outsourced to ML domain
experts. In addition, there is a demand for more human-input
and interaction within the AI model to support explainability
[14], [15], with the exploration of explainable architectures
having received recently some important development from
web-based interfaces supporting image segmentation with a
readily available interface [16].

A few open-source applications have been created to ease
the application of AI to datasets, e.g., [17]–[20]. Much data
in biology is stored as images and Fiji [17] is an example
of an open-source tool designed from biological-image anal-
yses that aims to prototype algorithms for image-processing.
WEKA [18], [19] is another workbench designed to combine
different ML libraries for supporting various analysis through
a graphic user interface. WEKA creates fast access to the
information within the datasets, allowing selection of areas
of interest. WEKA however does not provide both merging
and concatenation of datasets, which is often required when
introducing new medical data. None of these tools has focused
on explanations.

III. FEATURE ATTRIBUTION ALGORITHMS

Before introducing ExMed, this section present first the
two main feature attribution XAI algorithms used in this
paper. Feature attribution algorithms compute explanations for
predictions of data instances in the form of “feature weights”.
For some prediction model f ∈ F with F a set of models
that takes input x ∈ Rn and produces output y ∈ Rn, a
feature attribution algorithm is a function Π : F ×Rn 7→ Rn.
In other words, given a prediction model f , for each input
x = 〈x1, . . . , xn〉, a feature attribution algorithm computes an
explanation φ = 〈φ1, . . . , φn〉 for y = f(x). Each φi in φ
represents the “weight” of xi in the prediction.

Local Interpretable Model-Agnostic Explanations
(LIME) is a feature attribution algorithm that explains

individual predictions of black-box machine learning models.
LIME is model-agnostic, so it is applicable to any classifier
[21]. LIME tests how predictions change when a user perturbs
the input data. Given a black-box model f and a data instance
x, LIME generates a set of perturbed instances around x and
compute their corresponding predictions with f in order to
explain the prediction of x made with f . LIME then creates
a linear model g from some interpretable model class G as a
local surrogate to f based on generated data, such that:

g(x) = arg min
g∈G

(L(f, g, πx) + Ω(g)) (1)

where L is an error function with respective inputs f , g, πx as
the size of the locality around x and Ω(g) as the complexity
of g. Using parameters of g, LIME returns an explanation as
a list of feature contributions to the prediction f(x).

SHapley Additive exPlanations (SHAP) [5] is based on
the coalitional game theory concept Shapley value, assigned to
each feature of a data instance. A Shapley value is defined to
answer the question: “What is the fairest way for a coalition
to divide its payout among players”? It assumes that payouts
should be assigned to players in a game depending on their
contribution towards total payout. In machine learning terms,
the features are the “player”’s characteristics and the “total
payout” is the value that needs to be predicted. In this setting,
the Shapley value of a feature represents its contribution to the
prediction and thus explains the prediction. For a data instance
x, SHAP computes the marginal contribution of each feature
to the prediction of x as its feature weight.

Specifically, given an explanation model g, for an input x
with n features, there is a corresponding z ∈ {0, 1}n such that
SHAP specifies g being a linear function of z:

g(z) = φ0 +

M∑
j=1

φjzj (2)

where φj(j > 0) is the Shapley value of feature j and φ0
is the “average” prediction when none of the feature in x is
present, both computed with the original model f . The idea
is that if zj = 0, the corresponding feature value is absent in
x. Otherwise, the corresponding feature value is present in x.

In this work, we use the tree-based model, TreeSHAP, for
estimating Shapley values of features introduced in [22], as
which is shown to be a superior method than the KernelSHAP
introduced in [5].

IV. EXMED WORKFLOW

When sending medical data to an ML model, complications
unhinging the ubiquity between data and the applied model can
arise from issues with the records such as noise and human-
induced errors. Therefore, providing clean datasets would
provide the best possible results. Moreover, as one of the
leading challenges in medical data analysis is to aggregate
data from multiple data sources for performing joint analysis
[23], it is crucial for medical data analytic platforms to support
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Fig. 1: ExMed Activities. ExMed provides the user with a
sequence of simple actions, including loading, merging and
editing data, and creating prediction as well as explanation
models. Various visualisation techniques are supported in
several stages of this pipeline.

such functionalities. Our new application ExMed [24] ad-
dresses both challenges and makes the integration of data pre-
processing tools easy in order to minimise error and increase
the baseline ML performance of the model. Overall, ExMed
provides explanations through both data exploration and data
processing using state of the art methods to unravel the
black-box models applied to medical data that are potentially
collected from multiple sources.

ExMed’s main functionalities, architecture and selected in-
terface illustrations are shown in Figure 1, 2 and 3, respec-
tively. ExMed implements a wide set of tools to load, process,
predict, interpret and explain data. Its back end design is
modular so that more tools can be easily added at a later stage.
ExMed can accept most common data files as input (e.g. Excel,
CSV, or SAS, and XPT files) with the possibility for easy
integration of new file types. Input data can be then combined
through classic database join operators, whether or not a
common key exists. This gives users the potential to create
larger datasets from different file types - potentially collected
from different sources - rapidly. Cells, rows, columns and
data types can be edited by the user directly within ExMed,
allowing greater freedom for data manipulation and quality
checks. Data validation is supported by various visualisation
tools included with the interface. These tools can represent
data trends in many ways (see Fig 4 for a few examples) to
provide fast data insight to users and can be applied to either
the entire dataset or just part of it.

Creating a model can easily be done by selecting a target
label (i.e., column) in the interface. Non-categorical columns
selected from inference can be edited and transformed into a
category (e.g., using a thresholding operator, Fig. 3) prior to
creating the model. Once data has been finalised and validated,
and a target label has been created, a range of machine models
can then be applied, including SVM, Random Forest Classifier,
MLP Regression and XGBoost. There is also an option to
apply dimensionality reduction by preprocessing data with
an automated Principal Component Analysis (PCA) process.

Fig. 2: ExMed Operation Overview. This figure shows the flow
of ExMed operations, along with the key features available
in the interface. Once the ”Application” is running, the first
window ”Data Dashboard” is shown. Black arrows denote
event-driven actions that take the user to the next window
in chronological order. Colours highlight the Key features for
each window, along with a short description provided for each
feature. The indentation of boxes represents a dependency be-
tween windows. For instance, the ‘Feature Dashboard’ window
can lead to the ‘Edit Table’ window, which subsequently can
open the ‘Plot Viewer’ window. The dotted line represents a
database extension that is to be added in the future.

Moreover, the result of the PCA can be visualised in 2D or
3D from the two or three largest eigen vectors respectively.

To interpret data, individual models have their own functions
to offer specific explanations. SHAP dot plots, SHAP bar
plots, SHAP dependence plots and LIME plots can be used
for this purpose. This will show different ways of explaining
the reasoning behind the results. We explore explanations and
ExMed capabilities on two case studies in sections V and
VI. LIME and SHAP – introduced in section III – adhere to
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(a) File Joining and Concatenation (b) Data Pre-Processing (c) Model Selection and Construction

Fig. 3: ExMed interface for some of the main activities as describe in Fig. 1. (a) Data from various supported file types is
loaded, with the option to combine this data with other datasets. (b) Data is optionally pre-processed with some of the plugins
available. (c) A model is created, with the option of reducing the number of features with a PCA algorithm and explanation
generation with SHAP and LIME.

(a) Data Editor (b) Data Visualiser - Line Plot (c) Data Visualiser - Violin Plot

Fig. 4: Data exploration tools in ExMed. (a) is the Data Editor that supports standard data editing functions. (b) and (c) are
the Data Visualiser that supports different plots types such as Line, Scatter, Bar, Histogram, Violin Plots and Pie chart. For
each plot type, various customisation options are implemented, including changing the axes, layout, and adding texts.

ML local interpretability requirements for patient instances;
expressed as a necessity from clinicians [10], whilst also
producing global explanations. To invoke trust, we provide
explanations from both LIME and SHAP as both models see
a lack of ubiquity in feature priority, but may still provide
valuable insight into the data as these methods still often
see the same trend in feature attribution [25]. Also, feature
attribution algorithms allow for a better understanding of data,
as we are able to visualise bias, error, and gain insight into
patient instances.

V. CASE STUDY I: COVID-19 CONTROL MEASURES

In this case study, we demonstrate how ExMed can be
used in investigating relative effectiveness of COVID control
measures used in the UK.

From the Public Health England website2, we collect daily
infection numbers reported across 9 regions in England East
Midlands, East of England, London, North East, North West,
South East, South West, West Midlands, and Yorkshire and the
Humber, as well as and the other three nations in the UK:
Wales, Scotland and Northern Ireland. Non-pharmaceutical
control measure data were collected based on UK’s COVID
policies as summarised in Table I. Data are collected from
from various sources including the Wikipedia and major news
agencies such as BBC. Control Measures are coded based on

2https://www.gov.uk/government/organisations/public-health-england

TABLE I: Non-pharmaceutical COVID Control Measures.

Control Measures Type
Meeting Friends / Family (Indoor) Categorical

Meeting Friends / Family (Outdoor) Categorical
Domestic Travel Control Categorical

International Travel Control Categorical
Cafes and Restaurants Control Categorical

Pubs and Bars Control Categorical
Sports and Leisure Closure Categorical

Hospitals / Care and Nursing Home Visits Categorical
Non-Essential Shops Closure Binary

School Closure Binary

the level of severity (“High”, “Moderate” or “Low”) for all
control measures excluding Non-essential shops and School
closures, which are coded as binary choices (“Open” and
“Closed”). Temperature and humidity data obtained from the
weather website Raspisaniye Pogodi Ltd3 were also included.
This represents a total of 4,257 data points that were collected
between February 2020 and February 2021.

We study the effectiveness of control measures by observing
their impacts to the virus transmission rate Rt. Specifically,
from daily infection numbers, we estimate Rt using the
method reported in [26], [27]. Rt is one of the most important
quantities used to measure the epidemic spread. If Rt > 1 ,
then the epidemic is expanding at time t, whereas if Rt < 1,

3https://rp5.ru/Weather in the world
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Fig. 5: Example of an Explanation computed with SHAP and
LIME. For this instance, both explainers consider top measures
contributing to this prediction being Domestic Travel, Cafes
and Restaurants Closure and Pubs and Bars Closure.
then it is shrinking at time t. A serial interval distribution,
which is a Gamma distribution g(τ) with mean 7 and standard
deviation 4.5, is used to model the time between a person
getting infected and he/she subsequently infecting another
person on day τ . The number of new infections ct on a day t
is computed as:

ct = Rt

t−1∑
τ=0

cτgt−τ , (3)

where cτ is the number of new infections on day τ ,

g1 =

∫ 1.5

τ=0

g(τ)dτ,

and for s = 2, 3, . . .,

gs =

∫ s+0.5

τ=s−0.5
g(τ)dτ.

From Equation 3, we have:

Rt =
ct∑t−1

τ=0 cτgt−τ
(4)

For x = t and τ , cx is the difference between the confirmed
case on day x and the confirmed case on day x− 1, which is
available from the dataset directly.

Using this data, we pose a simple classification question:
Given the infection number and control measures
implemented on a day t, can we predict Rt ≥ 1?

As control measures take time to affect the infection rate,
we expand the dataset to include the duration of control
measure implementation for all control measures. For example,
“Meeting Indoors (High) = 2” means that “it is the second
week that meeting indoors has been banned completely”.
Similarly, “International Travel (Low) = 0” means that “there
is no restriction implemented on international travel”. We also
drop instances before March 15, 2020 across all 12 regions and

Fig. 6: Global explanations generated using SHAP on our
COVID dataset for the prediction whether Rt ≥ 1. We see that
closing down cafes and restaurants as well as pubs and bars
are the most effective control measures. When their feature
values are high (red), they have string negative impact to the
prediction; whereas when their feature values are low (blue),
they have strong negative impact to the prediction.

nations in our dataset due to the low number of infections.4

In this way, we form a data file with 18 features and 3,937
instances with 1,550 positive ones.

TABLE II: Prediction performance on the COVID dataset with
four different classifiers.

Classifier MLP Random Forest SVM XGBoost
Precision 0.87 0.90 0.87 0.87

Recall 0.79 0.84 0.78 0.79
F1-score 0.83 0.87 0.83 0.84

The classification results are summarised in Table V. We
can see that all four classifiers are able to achieve good
performance on this dataset with a 70/30 training/testing split.
As an illustration, for a prediction query instance such that:
• all control measures shown in Table I except International

Travel (IT) and Hospital / Care and Nursing Home Visits
(HCNHV) are implemented for more than 35 days at the
level High;

• IT has been implemented for more than 35 days at the
level Moderate; and

• HCNHV implemented for 20-25 days at the level High.
Using Random Forest as our prediction model, it correctly
predicts that Rt < 1; and SHAP and LIME explanations are
shown in Figure 5. We see that SHAP and LIME produce
similar explanations for the instance. In addition to local
explanations, ExMed can also use SHAP to compute global
explanations for the entire dataset - describing the “trend”
of all instances - as illustrated in Figure 6. We observe that
control measures Cafes and Restaurants Control and Pubs and

4As can be seen from Equation 4, when cx is small, Rt can flatten in a
unrealistically large range and generate noises in the dataset.
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TABLE III: Each patient is described with 20 features.

Feature Value Feature Value
ACE 2.0 T Best 0.0
Sex M M Best 3.0
CNS 9.0 N Best 4.0
Age 68 Cycle Number 0.0
Grade 0.0 Ethnicity 1.0
Height 1.6 Cancer Plan 1.0
Weight 75.6 CReg Code 4.0
Morph 8041.0 Chemo Radiation N
Laterality 901.0 Regimen Time Delay N
Performance 1.0 Regimen Stopped Early N

Bars Control have the most influence to predictions made with
this dataset, this can be interpreted as:

From February 2020 to February 2021, the most
effective non-pharmaceutical COVID control mea-
sures implemented in the UK are closing cafes and
restaurants as well as pubs and bars.

VI. CASE STUDY II: LUNG CANCER LIFE EXPECTANCY

Our second case study investigates the application of XAI
to electronic patient records for cancer research instead of
using public health epidemiology data in order to emphasise
the transferability provided by ExMed. Especially, we use
artificial data from the Simulacrum5, a synthetic dataset devel-
oped by Health Data Insight CiC and derived from anonymous
cancer data provided by the National Cancer Registration and
Analysis Service6, which is part of Public Health England.
This dataset contains 1,322,100 cancer patient instances.

We first isolate a cohort of interest, opting for lung cancer
patients as they represent a large portion of cancer-based
deaths [28]. With lung cancer patients, we define the medical
question as a prediction of patient survival time, and pose the
following multi-class classification question:

Given a set of features for a patient, what will be
the predicted survival time for the patient? Under six
months, six to twelve months, or more than twelve
months?

To study this, we first identify the subset of lung cancer
patients in the Simulacrum with an ICD-10 code “C34”
Malignant neoplasm of bronchus and lung and a deceased
status, and includes 108,282 patients in total. We removed
records from the original dataset with obvious errors and
included only patients with a vital status date posterior to the
diagnosis date.

A major challenge in medical data analytic, as exemplified
in the Simulacrum, is missing or incomplete patient records.
This results in a large number of “null” entries in the dataset.
To address this, we identify a smaller cohort of patients
such that each patient contains 20 features, with each patient
instance only able to contain a maximum of one “null” value.
This explicit filtering isolates a cohort of 2,260 patients.
This also provides a well-balanced dataset with each group
containing a similar amount of patients as shown in Table IV.

5https://simulacrum.healthdatainsight.org.uk/
6http://www.ncin.org.uk/

TABLE IV: Survival Time Feature Value Count

Survival Time Value Count
Greater than 1 Year 842

Between 6 Months and 1 Year 748
Less than 6 Months 670

TABLE V: Prediction performance on the Lung Cancer dataset
with four different classifiers.

Classifier MLP Random Forest SVM XGBoost
Precision 0.86 0.90 0.77 0.69

Recall 0.76 0.90 0.98 0.66
F1-score 0.81 0.90 0.86 0.67

We first provide a local explanation example using both
SHAP and LIME for a patient instance as shown in Table III.
We observe that both explainers give similar explanations
as shown in Fig 7. Using the entire dataset, we produce a
global explanation determining feature importance towards
each output class in Fig 8 (a). We then provide granularity
to feature value importance towards each class with Fig 8 (b)
- (d). We interpret these results as:

Cancer grades, BMI, age, patient performance and
the absence of distant metastatic spread are key
indicators for estimating patients survival time.

Fig. 7: Local explanation on the Lung Cancer life expectancy
data set for a patient instance. We see that the most impactful
features amongst SHAP and LIME are the same: “Grade” How
the cancer cells act; the higher the grade the less normality the
cell resembles and it may act more aggressive and “M Best”
Presence or Absence of Distant Metastatic Spread, followed
by a disagreement on age attribution.

VII. CONCLUSION

In this paper, we present ExMed, a self-contained software
package that enables Explainable AI data analysis for medical
domain experts without the need for explicit programming.
With the development of ExMed, we aim to provide a
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(a) We see that the largest impact towards the survival boundaries
greater than 1 year and less than 6 months is the cancer grading -
having direct impact on the longest and least time survived. This,
followed by an associative relationship between height, weight and
the patient age determinants of body mass index (BMI), having high
attribution towards each class. This, then followed by cancer specific
traits such as “M Best” and laterality of the tumour.

(b) Global explanation for feature attribution measured against the
class Survival time of less than 6 months, where we see the cancer
grade of higher value - indicative of cell abnormality and more
aggressive, followed by “M Best” Presence or Absence of Distant
Metastatic Spread, with the associative BMI attributes “height”, “age”
and “weight” following this.

(c) Global explanation for feature attribution measured against the
class Survival time of greater than 12 months, we see an inverse plot
of cancer grade to that shown in Fig.8 (a), such that a lower grade
and what seems to be a better controlled BMI and a lower “M Best”
contributing to a longer survival time.

(d) Global explanation for feature attribution measured against the
class Survival time between 6 and 12 months, we see that a controlled
BMI and lower cancer grade are attributive to this survival boundary,
whilst the distributive “M Best”, performance and cancer grade
containing high values in both positive and negative impacts on the
model are likely the reason for the central survival boundary.

Fig. 8: Global explanations on the lung cancer life expectancy data set.

tool that both concatenates the flexibility of medical sub-
domain transferability and obtain an essence of trust through
explainability using XAI methods. ExMed accepts multiple
data input types and supports several standard pre-processing
operations. It employs a number of different prediction models
and visualisation techniques, while implementing two popular
feature attribution XAI algorithms.

We have experimented ExMed with two real-world case
studies in the domains of epidemiology in public health and

cancer research with electronic patient records. In particular,
we have studied effectiveness of COVID control measures in
the UK using data from March 2020 to January 2021 and the
life expectancy of lung cancer patients using the Simulacrum
dataset. From the COVID case study, we observed that closing
down cafes and restaurants as well as pubs and bars had the
most impact in reducing the virus transmission rate. From the
cancer case study, we saw that cancer grades, BMI, age and
M Best are amongst the most influential factors for survival.

7



In the future, we plan to (1) experiment ExMed with
healthcare professionals and conduct user studies to evaluate
effectiveness of various XAI approaches; (2) further expand
the functionality of ExMed and explore features such as
parameter tuning; (3) incoporating additional missing value
imputation techniques such as MICE [29] and SICE [30]; and
(4) introducing additional XAI techniques such as Anchors
[31] in ExMed.
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