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An a priori reduced order method based on the proper generalised decomposition (PGD) 
is proposed to compute parametric solutions involving turbulent incompressible flows of 
interest in an industrial context, using OpenFOAM. The PGD framework is applied for 
the first time to the incompressible Navier-Stokes equations in the turbulent regime, to 
compute a generalised solution for velocity, pressure and turbulent viscosity, explicitly 
depending on the design parameters of the problem. In order to simulate flows of 
industrial interest, a minimally intrusive implementation based on OpenFOAM SIMPLE 
algorithm applied to the Reynolds-averaged Navier-Stokes equations with the Spalart-
Allmaras turbulence model is devised. The resulting PGD strategy is applied to parametric 
flow control problems and achieves both qualitative and quantitative agreement with 
the full order OpenFOAM solution for convection-dominated fully-developed turbulent 
incompressible flows, with Reynolds number up to one million.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Parametric studies involving flows of industrial interest require robust computational fluid dynamics (CFD) solvers and 
efficient strategies to simulate multiple queries of the same problem.

Finite volume (FV) methods represent the most common approach in industry to perform flow simulations [1–8] and 
different strategies have been proposed to simulate flows in the turbulent regime [9–11]. A widespread approach is repre-
sented by the Reynolds-averaged Navier-Stokes (RANS) equations [12] coupled with the one-equation Spalart-Allmaras (SA) 
turbulence model [13]. This work focuses on such a strategy and relies on its cell-centred FV implementation available in 
OpenFOAM [14] and validated by the industry.

When the simulation requires testing a large number of different configurations - e.g. for shape optimisation, uncertainty 
quantification, inverse and control problems - numerical strategies to reduce the cost of the overall computation are critical. 
Reduced order models (ROM) [15,16] construct an approximation of the solution in a lower dimensional space, for which 
an appropriate basis needs to be devised.
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It is known that numerical difficulties arise when reduced basis (RB) and proper orthogonal decomposition (POD) tech-
niques are applied to convection-dominated problems [17–19]. This is especially critical in the context of flow simulations 
when the Reynolds number is increased and turbulent phenomena need to be accounted for. More precisely, the most 
relevant POD modes are associated with the highest energy scales of the problem under analysis, whereas small scales, 
which play a critical role in the dissipation of turbulent kinetic energy, are poorly represented by POD-ROM [20]. To rem-
edy this issue, closure models stemming from traditional description of turbulence have been extended to ROMs, leading 
to Galerkin projection-based POD with dynamic subgrid-scale [21], variational multiscale [22,23], k − ω SST [24] models 
and to a certified Smagorinsky RB strategy [25]. Moreover, strategies to improve efficiency and accuracy of POD-ROM in 
the context of realistic and turbulent flows have been proposed by coupling the projection-based framework with residual 
minimisation [26], nonlinear least-squares optimisation [27], interpolation based on radial basis functions [28] and a con-
strained greedy approach [29]. In the context of machine learning-based reduced order models [30–32], a strategy coupling 
a traditional projection-based POD for velocity and pressure with a data-driven technique for the eddy viscosity has been 
recently proposed in [33].

All above contributions involve the development of a posteriori ROMs, namely RB and POD, in which the basis of the 
low-dimensional approximation space is computed starting from a set of snapshots. On the contrary, PGD [34,35] constructs 
a reduced basis of separable functions explicitly depending on space and on user-defined parameters, with no a priori
knowledge of the solution of the problem. The resulting PGD computational vademecum provides a generalised solution which 
can thus be efficiently evaluated in the online phase via interpolation in the parametric space, that is, no extra problem 
needs to be solved in the low-dimensional reduced space as in POD. In the context of flow problems, PGD was originally 
utilised to develop efficient solvers for the incompressible Navier-Stokes equations by separating spatial directions [36] and 
space and time [37,38]. In addition, problems involving parametrised geometries have been solved using PGD [39,40], with 
special emphasis on incompressible flows in geometrically parametrised domains [41–44]. To foster the application of a 
priori model order reduction techniques to problems of industrial interest, a non-intrusive PGD implementation in the CFD 
software OpenFOAM has been recently proposed in [45] to solve parametrised incompressible Navier-Stokes equations in 
the laminar regime.

Following the work on PGD for convection phenomena [46,47] and for viscous incompressible Navier-Stokes flows [45], 
the present contribution proposes the first a priori ROM for turbulent incompressible flows. Similarly to the previously 
cited contributions on a posteriori ROMs [21–33], a priori ROMs can also be devised using a variety of techniques to model 
turbulence. The proposed PGD strategy considers the one-equation SA turbulence model and it constructs a separated rep-
resentation of velocity, pressure and eddy viscosity to solve the RANS-SA equations in OpenFOAM. More precisely, the 
PGD-ROM methodology mimics the structure of the simpleFoam algorithm with SA turbulence model, resulting in a min-
imally intrusive approach within OpenFOAM. The resulting strategy thus provides a generalised expression of the velocity, 
pressure and eddy viscosity fields, explicitly depending on user-defined parameters, for convection-dominated incompress-
ible flows. Alternative PGD-ROM strategies may thus be obtained by substituting the proposed separated form of the SA 
equation with an appropriate PGD solver for the selected turbulence model.

The remainder of this paper is organised as follows. Section 2 recalls the full order RANS-SA equations and the cor-
responding cell-centred FV approximation utilised by OpenFOAM. The rationale of the PGD-ROM for the turbulent incom-
pressible Navier-Stokes equations is introduced in section 3, where the details of the algorithms to devise the separated 
velocity-pressure approximation of the flow equations (PGD-NS) and the separated form of the eddy (PGD-SA) and tur-
bulent (PGD-νt ) viscosities via the SA equation are presented. Numerical experiments involving flow control in external 
aerodynamics, in two and three dimensions, with Reynolds number ranging up to 1,000,000 are reported in section 4. 
Finally, section 5 summarises the contributions of this work and two appendices report additional technical details on the 
employed PGD algorithm and on the expressions of the coefficients appearing in the spatial and parametric iterations of the 
alternating direction scheme for the PGD solvers of the RANS and the SA equations.

2. The Reynolds-averaged Navier-Stokes equations and the Spalart-Allmaras turbulence model

To simulate turbulent incompressible flows using the RANS equations, the velocity-pressure pair (u, p) is decomposed 
into a mean flow component (U , P ) and a perturbation (u′, p′), that is u=U+u′ and p=P+p′ . Given an open bounded 
computational domain � ⊂Rd in d spatial dimensions, the boundary ∂� is partitioned such that ∂�=�in ∪�w ∪�out, where 
the three disjoint portions �in, �w and �out denote inlet surfaces, material walls and outlet surfaces, respectively. The steady-
state RANS equations for the mean flow variables (U , P ) are given by⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∇·(U⊗U ) − ∇·((ν+νt)∇U ) + ∇P = 0 in �,

∇·U = 0 in �,

U = Uin on �in,

U = 0 on �w,

(ν∇U−pI )n = 0 on � ,

(1)
d out
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where Id denotes the d×d identity matrix, ν represents the physical viscosity of the fluid and νt is the turbulent viscosity 
introduced in the momentum equation to model the perturbations to the mean flow due to turbulence. The boundary 
conditions for the flow equations (1) impose the velocity profile Uin on the inlet surface �in, no-slip Dirichlet data on fixed 
material walls �w and homogeneous Neumann data on the outlet surface �out .

In order to describe the turbulent viscosity νt , the one-equation SA turbulence model [13] introduces the relation

νt = ν̃ f v1, (2)

where ν̃ is the eddy viscosity and f v1 is an appropriately defined spatial function, see e.g. [13,48,49], reported in equa-
tion (4). Under the assumption of fully-developed turbulent flows, the trip term controlling the transition between laminar 
and turbulent regimes in the SA model is neglected and the eddy viscosity ν̃ is obtained as the solution of⎧⎪⎪⎪⎨⎪⎪⎪⎩

∇·(U ν̃) − 1

σ
∇·((ν+ν̃)∇ν̃) − cb2

σ
∇ν̃·∇ν̃ = cb1 S̃ν̃ − cw1

f w

d̃2
ν̃2 in �,

ν̃ = ν̃D on �in ∪ �w,

∇ν̃·n = 0 on �out,

(3)

where ν̃D is the eddy viscosity Dirichlet datum, ̃d represents the distance of a given point in the domain from the closest 
physical wall and cb1, cb2, cw1 and σ are four scalar constants. Moreover, S̃ and f w are the spatial functions associated 
with the production and the destruction of eddy viscosity, respectively, whereas the operators on the left-hand side of 
equation (3) model convection, diffusion and cross-diffusion phenomena [13].

The SA turbulence model, derived by means of dimensional analysis and empirical observations [13], is thus closed by 
introducing the definition of the quantities

ω := ∇U − ∇U T

2
, S̃ := [2〈ω,ω〉F ]1/2 + ν̃

κ 2̃d2
f v2, χ := ν̃

ν
,

f w := g

[
1 + c6

w3

g6 + c6
w3

]1/6

, f v2 := 1 − χ

1 + χ f v1
, f v1 := χ3

χ3 + c3
v1

,

cw1 := cb1

κ2
+ 1 + cb2

σ
, g := r + cw2(r

6 − r), r := ν̃

S̃κ 2̃d2
,

(4)

where 〈·, ·〉F denotes the Frobenius inner product and the scalar constants σ=2/3, κ=0.41, cb1=0.1355, cb2=0.622, 
cv1=7.1, cw2=0.3 and cw3=2 are selected [13].

2.1. A finite volume formulation of the RANS-SA equations

In order to discretise the turbulent Navier-Stokes equations, OpenFOAM cell-centred finite volume rationale is consid-
ered [14]. The computational domain is subdivided in N cells V i, i=1, . . . , N such that V i∩V j=∅, for i �= j and �=⋃N

i=1 V i . 
In each cell V i , the integral form of equation (1) is defined as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫
V i

∇·(U⊗U )dV −
∫
V i

∇·((ν+νt)∇U )dV +
∫
V i

∇P dV = 0,

∫
V i

∇·U dV = 0,

(5)

where (U , P ) are cell-by-cell constant approximations of the velocity and pressure fields, respectively, and U =Uin on �in and 
U=0 on�w.

In a similar fashion, the cell-centred finite volume approximation of the SA equation (3) is: compute ν̃ constant in each 
cell such that ν̃ = ν̃D on�in ∪ �w and it holds∫

V i

∇·(U ν̃)dV − 1

σ

∫
V i

∇· ((ν+ν̃)∇ν̃) dV − cb2

σ

∫
V i

∇ν̃·∇ν̃ dV − cb1

∫
V i

S̃ν̃ dV + cw1

∫
V i

f w

d̃2
ν̃2 dV = 0. (6)

2.2. A turbulent Navier-Stokes solver in OpenFOAM

OpenFOAM strategy to solve the RANS equation with SA turbulence model relies on a staggered approach. First, the 
flow equations (5) are solved using a seed value of νt . More precisely, the integrals over each cell in (5) are approximated 
by means of the corresponding fluxes across the boundaries of the cell [4,5]. In addition, the semi-implicit method for 
3
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pressure linked equations (SIMPLE) algorithm [50], that is, a fractional-step Chorin-Temam projection method [51, Sect. 
6.7], is utilised to handle incompressibility. Also, a relaxation approach is employed for the nonlinear convection term. 
Second, the velocity field U obtained using simpleFoam is employed to compute the quantities in (4) and to solve the SA 
equation (6). It is worth noting that equation (6) is highly nonlinear and a relaxation strategy is also required in OpenFOAM 
to improve the convergence of the numerical algorithm [14]. Finally, the updated value of the turbulent viscosity νt is 
determined according to equation (2) and the simpleFoam routine is utilised to recompute the turbulent velocity and 
pressure fields.

3. Proper generalised decomposition for parametric turbulent flow problems

In the context of parametric studies, viscosity coefficient, reference velocity or boundary conditions of the problems may 
depend on a set of M user-defined parameters μ=(μ1, . . . , μM)T . The solution of the RANS-SA equations is thus denoted 
by the velocity-pressure pair (U (x, μ), P (x, μ)) and the eddy viscosity ν̃(x, μ), which are now functions of the spatial, 
x ∈ � ⊂Rd , and parametric, μ ∈ I ⊂RM , variables. More precisely, U (x, μ), P (x, μ) and ̃ν(x, μ) fulfil the high-dimensional 
RANS-SA equations obtained by integrating (5)-(6) in the parametric space I .

The PGD-ROM strategy described in this section relies on the construction of a separated approximation (U n
PGD

, Pn
PGD

)

of the velocity and pressure fields and a separated representation of any additional variable introduced by the employed 
turbulence model. The computation of the former is performed via a PGD solver for the incompressible Navier-Stokes 
equations, see section 3.3, whereas for the latter a separated formulation of the involved turbulence equations is required.

Considering the one-equation SA turbulence model introduced in section 2, a separated representation ν̃m
PGD

of the eddy 
viscosity is obtained from a PGD solver of the SA equation as described in section 3.4. In addition, a separated represen-
tation νq

t,PGD
of the turbulent viscosity is devised in section 3.5 exploiting its relation with the eddy viscosity. It is worth 

noticing that this framework is general and could be adapted to other descriptions of turbulence by devising separated 
representations of the involved variables via appropriately defined PGD solvers of the equations in the turbulence model.

The global set of variables involved in the PGD approximation of the RANS-SA equations is thus (U n
PGD

, Pn
PGD

), ν̃m
PGD

and 
νq

t,PGD
. As classical in PGD [34], each variable is constructed as a sum of separable modes, each being the product of functions 

that depend on either the spatial or one of the parametric variables μ j , j = 1, . . . , M . For the sake of simplicity, only space, 
x, and parameters, μ, are henceforth separated. It is worth noticing that the final number of modes needed for the PGD 
approximations, denoted by the super-indexes n for the velocity and the pressure, m for the eddy viscosity and q for the 
turbulent viscosity, is not known a priori and, in general, it is different for each of the involved variables. More precisely, the 
number of terms in the PGD expansion is automatically determined by the algorithm which stops the enrichment procedure 
when a user-defined stopping criterion is fulfilled [34]. Classical definitions of this stopping criterion include the relative 
amplitude of the last computed mode with respect to the first one or to the sum of all previously computed terms [45].

3.1. Separated representation of the flow and the turbulent variables

First, the rank-n separated representation (U n
PGD

, Pn
PGD

) of the flow variables is introduced. Following [45], the computation 
of each PGD mode is split into a prediction and a correction step. More precisely, the PGD approximation for the flow 
variables is defined as{

U n
PGD

(x,μ) = U n−1
PGD

(x,μ) + σ n
U

[
f n
U (x)φn(μ) + Δ( f n

U (x)φn(μ))
]
,

Pn
PGD

(x,μ) = Pn−1
PGD

(x,μ) + σ n
P

[
f n
P (x)φn(μ) + Δ( f n

P (x)φn(μ))
]
,

(7a)

where U n−1
PGD

and Pn−1
PGD

feature the contributions of the previous n−1 PGD modes, σ n
U f n

U φn and σ n
P f n

P φn represent the 
predictions of the n-th mode and σ n

U Δ( f n
U φn) and σ n

P Δ( f n
P φn) are the corresponding correction terms. The coefficients σ n

U
and σ n

P denote the amplitudes of the n-th velocity and pressure mode, respectively.
Similarly, the rank-m PGD separated form of the eddy viscosity is given by

ν̃m
PGD

(x,μ) = ν̃m−1
PGD

(x,μ) + σm
ν

[
f m
ν (x)ψm(μ) + Δ( f m

ν (x)ψm(μ))
]
, (7b)

with ̃νm−1
PGD

containing the previous m−1 terms in the PGD approximation, σm
ν f m

ν ψm and σm
ν Δ( f m

ν ψm) being the prediction 
and the correction of the m-th mode, respectively, and σm

ν its amplitude.
Both the PGD approximations of the flow variables (7a) and of the eddy viscosity (7b) are devised solving appropriate 

separated forms of the corresponding equations, as presented in the following sections. More precisely, U n
PGD

and Pn
PGD

are 
obtained from a separated form of the Navier-Stokes equations (5), see section 3.3, whereas ν̃m

PGD
is determined via a PGD 

projection of the SA equation (6), as reported in section 3.4.
Finally, a separated representation of the turbulent viscosity is obtained from the relation (2), leading to the rank-q PGD 

expansion

νq (x,μ) = νq−1(x,μ) + σ
q
t f q

t (x)ξq(μ), (7c)

t,PGD t,PGD

4
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where νq−1
t,PGD

represents the PGD approximation obtained from the previous q−1 terms, f q
t and ξq denote the q-th nor-

malised spatial and parametric modes, respectively, and σ q
t its corresponding amplitude. It is worth noticing that, contrary 

to the flow variables and the eddy viscosity, the computation of the turbulent viscosity νq
t,PGD

does not involve the solution 
of a differential equation and only requires elementary arithmetic operations, whence the predictor-corrector approach is 
substituted by the classical PGD separation in equation (7c).

Remark 1. Following [41], the same scalar parametric function φ(μ) is selected for both velocity and pressure. On the con-
trary, different scalar functions ψ(μ) and ξ(μ) are considered for the separated approximations of the eddy and turbulent 
viscosity, respectively.

The corrections of the PGD modes introduced in equation (7a) and (7b) for the computation of the current mode feature 
variations Δ in the spatial and in the parametric functions, namely⎧⎪⎨⎪⎩

Δ( f n
U (x)φn(μ)) := Δ fU (x)φn(μ) + f n

U (x)Δφ(μ),

Δ( f n
P (x)φn(μ)) := Δ fP (x)φn(μ) + f n

P (x)Δφ(μ),

Δ( f m
ν (x)ψm(μ)) := Δ fν(x)ψm(μ) + f m

ν (x)Δψ(μ).

(8)

Of course, higher order contributions (e.g., Δ fU (x)Δφ(μ) for the velocity) could also be considered in the definition of the 
corrections (8) of the PGD modes. Nonetheless, the importance of these extra terms is negligible with respect to both the 
predictions f n

U , f n
P , φn , f m

ν and ψm(μ) of the modes and the first-order corrections introduced in equation (8) and they are 
thus neglected henceforth. Finally, for the sake of readability, the following compact expressions are introduced to define 
the corrections of the velocity, pressure and eddy viscosity to be computed by the PGD algorithm⎧⎪⎨⎪⎩

δU n
PGD

:= Δ fU φn + f n
U Δφ,

δPn
PGD

:= Δ fP φn + f n
P Δφ,

δν̃m
PGD

:= Δ fνψm + f m
ν Δψ,

(9)

where the dependence of the spatial and parametric modes on x and μ has been omitted. A comparison of the classical 
PGD algorithm, see e.g. [34], and the predictor-corrector strategy employed in this work is reported in Appendix A.

Remark 2. Upon convergence of the alternating direction algorithm described in next section, the above mentioned predic-
tions and corrections are combined into the n-th spatial and parametric modes denoted by f n

U and φn , with ‖ f n
U ‖=‖φn‖=1. 

In this context, the coefficient σ n
U encapsulates the information on the amplitude of the mode. From a practical viewpoint, 

the solution of the alternating direction method is the pair ( f̃U
n
, φn), f̃U

n
being the spatial mode before the normalisation 

procedure. The corresponding normalised spatial mode is thus given by f n
U = f̃U

n
/σ n

U , with σ n
U :=‖ f̃U

n‖. The details of the 
normalisation procedure for the classical and the predictor-corrector PGD strategies are presented in Appendix A. For the 
simulations in section 4, the normalisation procedure has been performed using the L2 norm.

3.2. A minimally intrusive PGD implementation of a parametric solver for turbulent incompressible Navier-Stokes flows in OpenFOAM

The proposed minimally intrusive parametric solver for turbulent incompressible Navier-Stokes flows in OpenFOAM 
constructs the separated expressions U n

PGD
, Pn

PGD
, ν̃m

PGD
and νq

t,PGD
exploiting the numerical discretisation techniques natively 

implemented in OpenFOAM and validated by the CFD community. For this purpose, the PGD algorithm mimics the segre-
gated structure of simpleFoam with SA turbulence model which involves the following steps [14]:

(A) Compute velocity and pressure using a fractional-step projection approach to solve (5), given the current approximation 
of the turbulent viscosity (RANS solver via simpleFoam).

(B) Use the value of the computed velocity to solve (6) and determine the eddy viscosity (SA solver).
(C) Update the turbulent viscosity according to (2) and go to step (A) to restart the computation.

Following this rationale, the corresponding parametric solver is described in Algorithm 1. To this end, three routines are 
introduced to compute U n

PGD
, Pn

PGD
, ν̃m

PGD
and νq

t,PGD
:

• PGD-NS solves a separated form of the incompressible Navier-Stokes equations to determine the velocity-pressure pair 
(U n

PGD
, Pn

PGD
), given the current PGD expression νq

t,PGD
of the turbulent viscosity (Section 3.3);

• PGD-SA solves a separated form of the SA turbulence model to determine the eddy viscosity ν̃m
PGD

(Section 3.4);
• PGD-νt computes the updated approximation νq

t,PGD
of the turbulent viscosity by means of a separated expression of its 

relation with the eddy viscosity (Section 3.5) and go to PGD-NS to restart the computation.
5
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Algorithm 1 An OpenFOAM implementation of turbulent pgdFoam.
Require: Stopping criteria η�� (� = U , P ) and η�

ν for the PGD enrichment of the flow equations and the turbulence model. Initial accuracy level γ for the 
PGD enrichment of the turbulent viscosity.

1: Compute boundary condition modes: the spatial mode is solution of (5) using simpleFoam with SA turbulence model and the parametric modes are 
set equal to 1.

2: Set n ← 1, i ← 0 and initialise the amplitudes σ 1� ← 1.
3: while σ n� > η�� σ 1� do
4: Set the enrichment threshold ηi

t for the turbulent viscosity according to equation (10).
5: Call PGD-NS to compute the spatial, ( f n

U , f n
P ), and parametric, φn , modes of velocity and pressure and the amplitudes σ n

U and σ n
P .

6: if σ n� < ηi
t then

7: Set m ← 1 and initialise the amplitude σ 1
ν ← 1.

8: while σm
ν > η�

ν σ 1
ν do

9: Call PGD-SA to compute the spatial, f m
ν , and parametric, ψm , modes of the eddy viscosity and the amplitude σm

ν .
10: Update the mode counter m ← m + 1.
11: end while
12: Call PGD-νt to compute the spatial, f q

t , and parametric, ξq , modes of the turbulent viscosity and the amplitude σ q
t .

13: Increment viscosity update counter i ← i + 1.
14: Reinitialise the mode counter n ← 1. Reset U n

PGD
and Pn

PGD
.

15: else
16: Update the mode counter n ← n + 1.
17: end if
18: end while

The minimally intrusive PGD solver in OpenFOAM is thus obtained by integrating the PGD-NS, PGD-SA and PGD-νt rou-
tines in the following computational framework. More precisely, in step (A), the PGD algorithm solves the parametrised 
flow equations (Algorithm 1 - Line 5) via the non-intrusive PGD-NS strategy, given the current PGD approximation of the 
turbulent viscosity. The PGD enrichment procedure for the RANS equations continues by alternately solving the spatial and 
parametric problems until a user-prescribed threshold is achieved by the amplitude of the computed velocity and pressure 
modes. Once a sufficiently accurate PGD approximation of velocity and pressure is obtained, step (B) computes a separated 
representation of the eddy viscosity by means of the minimally intrusive PGD-SA block (Algorithm 1 - Line 9). In step (C), 
the separated representation of the turbulent viscosity is recomputed by means of the PGD-νt routine (Algorithm 1 - Line 
12). Finally, the PGD approximation of the flow equations is reset (Algorithm 1 - Line 14) and step (A) restarts the PGD 
computation of the flow variables using the newly computed separated expression of the turbulent viscosity.

Remark 3. The overall cost of the PGD solver for the parametric turbulent Navier-Stokes equations depends on the number 
of updates performed to correct the PGD expression of the turbulent viscosity (Algorithm 1 - Lines from 6 to 15). Indeed, the 
computation of the velocity and pressure modes is restarted from scratch after each update of the turbulent viscosity (Algo-
rithm 1 - Line 14). In this context, computing a large number of modes for velocity and pressure using early approximations 
of the turbulent viscosity might significantly increase the computational effort of the algorithm with limited accuracy gain. 
To remedy this issue, effective numerical strategies are devised by introducing an appropriately defined criterion that limits 
the number of velocity and pressure modes determined in the early stages of the algorithm while allowing a larger number 
of modes to be computed when the precision of the approximation of the turbulent viscosity increases. More precisely, the 
PGD enrichment of velocity and pressure for a given expression of the turbulent viscosity stops when the amplitude of the 
computed modes drops below a user-defined tolerance ηi

t (Algorithm 1 - Line 6). In addition, this threshold is gradually 
reduced after each update of the turbulent viscosity (Algorithm 1 - Line 4) allowing to increase the accuracy of the velocity 
and pressure modes computed by means of the PGD-NS routine, when the PGD-νt algorithm provides an improved PGD 
representation of the turbulent viscosity. In the simulations in section 4, the threshold to control the number of velocity 
and pressure modes computed by the PGD-NS algorithm at the i-th iteration is given by

ηi
t = 10−(i+γ ), (10)

that is, starting from an initial accuracy of 10−γ , an exponentially decreasing tolerance is defined after each update of 
the turbulent viscosity. An alternative approach to control the accuracy of the separated representation of eddy and tur-
bulent viscosities may be devised modifying line 6 of algorithm 1 and fixing a priori the number of modes in the PGD 
approximation of the velocity field required to run PGD-SA and PGD-νt routines.

In the following sections, the structure of the PGD-NS, PGD-SA and PGD-νt routines for the computation of (U n
PGD

, Pn
PGD

), 
ν̃m
PGD

and νq
t,PGD

, respectively, will be detailed.

3.3. Proper generalised decomposition of the flow equations

In this section, the spatial and parametric steps of the non-intrusive PGD algorithm applied to the turbulent Navier-Stokes 
equations (5) are presented. The integral form of the steady parametrised Navier-Stokes equations in the high-dimensional 
space � × I is given by
6
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫
I

∫
V i

∇·(U⊗U )dV dI −
∫
I

∫
V i

∇·((ν+νt)∇U )dV dI +
∫
I

∫
V i

∇P dV dI = 0,

∫
I

∫
V i

∇·U dV dI = 0,

(11)

for each cell V i, i=1, . . . , N of the spatial computational domain.
The PGD solver for the incompressible Navier-Stokes equations is obtained by replacing the separated approxima-

tions (7a) into equation (11). The first mode (U 0
PGD

, P 0
PGD

) is selected to verify the boundary condition on the inlet surface 
and, more generally, all inhomogeneous Dirichlet boundary data. It is worth recalling that, as classic in PGD approxima-
tions [34], the first mode only prescribes the Dirichlet boundary conditions and it does not fulfil the equation under analysis. 
Then, the following terms of the PGD expansion of velocity and pressure are computed following the greedy strategy de-
scribed in [45], henceforth named PGD-NS. To compute the n-th modes σ n

U

[
f n
U φn + δU n

PGD

]
and σ n

P

[
f n
P φn + δPn

PGD

]
, the 

high-dimensional problem is thus alternatively restricted to the tangent manifold associated with either the spatial or the 
parametric coordinate. More precisely, a first iteration of the alternating direction scheme is performed to determine the 
predictions (σ n

U f n
U φn, σ n

P f n
P φn) using the classical PGD algorithm [34,52], whereas the following iterations are devoted to 

compute the separated expressions of the corrections (σ n
U δU n

PGD
, σ n

P δPn
PGD

) [45].

Remark 4. The segregated algorithm employed by OpenFOAM to simulate turbulent flows requires an initial guess of the 
turbulent viscosity νt to solve the flow equations. The turbulent viscosity is later updated after the SA equation is solved. In a 
similar fashion, the proposed PGD solver utilises the last computed separated approximation νq

t,PGD
of the turbulent viscosity 

to solve the flow equations, before updating it with the result of the PGD-SA and PGD-νt steps. Thus, the turbulent 
viscosity νt in equation (11) is henceforth replaced by its separated approximation νq

t,PGD
.

Let U
n
PGD

:=U n−1
PGD

+σ n
U f n

U φn and P
n
PGD

:=Pn−1
PGD

+σ n
P f n

P φn denote the estimated rank-n PGD approximations for velocity and 
pressure obtained as the sum of the converged n−1 terms and the computed predictions of the n-th modes. The unknown 
increments (σ n

U δU n
PGD

, σ n
P δPn

PGD
) are determined from equation (11) solving⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
I

∫
V i

∇·(σ n
U δU n

PGD
⊗σ n

U δU n
PGD

)dV dI

+
∫
I

∫
V i

∇·(σ n
U δU n

PGD
⊗U n

PGD
)dV dI +

∫
I

∫
V i

∇·(U n
PGD

⊗σ n
U δU n

PGD
)dV dI

−
∫
I

∫
V i

∇·((ν+νq
t,PGD

)∇(σ n
U δU n

PGD
))dV dI +

∫
I

∫
V i

∇(σ n
P δPn

PGD
)dV dI = Ru,

∫
I

∫
V i

∇·(σ n
U δU n

PGD
)dV dI = Rp,

(12)

where the unknowns (σ n
U δU n

PGD
, σ n

P δPn
PGD

) have been gathered on the left-hand side, whereas the right-hand side features 
the residuals

Ru := −
∫
I

∫
V i

∇·(U
n
PGD

⊗U
n
PGD

)dV dI +
∫
I

∫
V i

∇·((ν+νq
t,PGD

)∇U
n
PGD

)dV dI −
∫
I

∫
V i

∇P
n
PGD

dV dI,

Rp := −
∫
I

∫
V i

∇·U n
PGD

dV dI.

(13)

Remark 5. It is straightforward to observe that the equations (12) mimic the structure of the full order Navier-Stokes 
equations (11). In order to devise a PGD algorithm non-intrusive with respect to the OpenFOAM spatial solver simpleFOAM, 
in [45] the authors proposed to relax the second and third terms in (12) during the PGD spatial step. More precisely, these 
terms were evaluated using the last known increment computed during the previous SIMPLE iteration. Hence, they were 
treated explicitly, as additional terms on the right-hand side of the momentum equation. This approach is also followed in 
this work, as detailed in section 3.3.1.

An efficient implementation of this strategy can be devised by exploiting the affine decomposition of the forms in (12)
and (13), see [53,54], and the separated structure of the unknowns (7a). Nonetheless, it is worth noticing that when the 
7
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number of modes in the separated representation grows, the overall cost of the PGD strategy may significantly increase. 
In this context, several variations of the above approach have been proposed in the literature, e.g. by performing a PGD 
compression step [55,56] to eliminate the redundant information in the previously computed modes or by introducing an 
update step [57,58] or an Arnoldi-type iteration [59,60] to exploit the intermediate solutions in the alternating direction 
algorithm.

In the following sections, the restriction of the high-dimensional problem (12) to the tangent manifold associated with 
the spatial and the parametric coordinates is described. More precisely, at each iteration of the alternating direction algo-
rithm, the spatial step is solved using simpleFoam, whereas the parametric step leads to an algebraic problem solved 
using a collocation approach.

3.3.1. PGD-NS: the spatial iteration
In order to construct a PGD approximation of the flow equations (12), a separated representation of the data is re-

quired [40]. More precisely, the form ν(x, μ)=D(x)ζ(μ) is assumed for the physical viscosity, whereas the PGD approxima-
tion νq

t,PGD
(x, μ)=∑q

j=1 σ
j

t f j
t (x)ξ j(μ) is considered for the turbulent viscosity.

The high-dimensional problem (12) is thus restricted to the spatial direction multiplying it by φn . In addition, setting 
the value of the parametric function φn , the increments (σ n

U δU n
PGD

, σ n
P δPn

PGD
) reduce to φn(σ n

U Δ fU , σ n
P Δ fP ), see equation (9). 

The spatial increments (σ n
U Δ fU , σ n

P Δ fP ) are thus computed as the FV solution of the flow equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α0

∫
V i

∇·(σ n
U Δ fU ⊗σ n

U Δ fU )dV −
∫
V i

∇·
((

α1 D +
q∑

j=1

α
j
7σ

j
t f j

t

)
∇(σ n

U Δ fU )
)

dV

+α2

∫
V i

∇(σ n
P Δ fP )dV = Rn

U −
∫
V i

∇·
( n∑

j=1

α
j
3σ

j
U f j

U ⊗σ k−1
U Δ f k−1

U

)
dV

−
∫
V i

∇·
(
σ k−1

U Δ f k−1
U ⊗

n∑
j=1

α
j
3σ

j
U f j

U

)
dV ,

α2

∫
V i

∇·(σ n
U Δ fU )dV = Rn

P ,

(14)

where Rn
U and Rn

P denote the spatial residuals of the momentum and continuity equations, respectively, and the coefficients 
αk, k=0, . . . , 3 and α7, reported in Appendix B, only depend on user-defined data and parametric functions and can thus 
be efficiently precomputed.

Following Remark 5, an implementation of the PGD spatial solver for the flow equations non-intrusive with respect to 
the OpenFOAM SIMPLE algorithm is obtained by relaxing the two linear contributions arising from the nonlinear convection 
term [45]. More precisely, the last two integrals on the right-hand side of the momentum equation in (14) are evaluated 
using the last increment σ k−1

U Δ f k−1
U computed in the SIMPLE iterations. It is straightforward to observe that the resulting 

structure of the left-hand side of equations (14) mimics the traditional Navier-Stokes equations (5), whence the PGD spatial 
iteration is solved using the simpleFoam algorithm, natively implemented in OpenFOAM [45].

The spatial residuals Rn
U and Rn

P on the right-hand side of equations (14) are determined starting from the previous PGD 
terms (U n−1

PGD
, Pn−1

PGD
) and from the predictions (σ n

U f n
U φn, σ n

P f n
P φn) of the n-th mode currently computed, namely

Rn
U := −

∫
I

φn
∫
V i

∇· ([U n−1
PGD

+ σ n
U f n

U φn]⊗[U n−1
PGD

+ σ n
U f n

U φn])dV dI

+
∫
I

φn
∫
V i

∇·
(
(ν + νq

t,PGD
)∇(U n−1

PGD
+ σ n

U f n
U φn)

)
dV dI −

∫
I

φn
∫
V i

∇(Pn−1
PGD

+ σ n
P f n

P φn)dV dI,

(15a)

Rn
P := −

∫
I

φn
∫
V i

∇· (U n−1
PGD

+ σ n
U f n

U φn)dV dI . (15b)

It is worth recalling that the factor φn in the expressions of Rn
U and Rn

P follows from the restriction of the residuals (13)
defined in the high-dimensional space �×I to the tangent manifold associated with the spatial direction [45]. In order to 
perform an efficient computation of such residuals, the separated expressions of (U n−1

PGD
, Pn−1

PGD
) as a product of spatial and 

parametric functions are exploited, leading to
8
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Rn
U = −

n∑
j=1

n∑
�=1

α
j�
4

∫
V i

∇·(σ j
U f j

U ⊗σ �
U f �

U )dV

+
n∑

�=1

∫
V i

∇·
((

α�
5 D +

q∑
j=1

α
j�
8 σ

j
t f j

t

)
∇(σ �

U f �
U )
)

dV −
n∑

�=1

α�
6

∫
V i

∇(σ �
P f �

P )dV ,

(16a)

Rn
P = −

n∑
�=1

α�
6

∫
V i

∇·(σ �
U f �

U )dV , (16b)

where the coefficients αk, k=4, . . . , 6 and α8 encapsulate the information of the previously computed parametric modes 
and are defined in Appendix B.

3.3.2. PGD-NS: the parametric iteration
In the parametric iteration of the PGD solver for the flow equations, the value of the spatial functions is updated and 

fixed, that is, (σ n
U f n

U , σ n
P f n

P ) ← (σ n
U [ f n

U +Δ fU ], σ n
P [ f n

P +Δ fP ]). It follows that the increments associated with the momentum 
and continuity equations in the parametric step are σ n

U f n
U Δφ and σ n

P f n
P Δφ, respectively.

Following Remark 1, a unique parametric increment Δφ is defined for both the velocity and the pressure mode. To 
compute �φ, an algebraic problem is obtained via the restriction of the high-dimensional equations (12) to the parametric 
direction I multiplying the momentum and continuity equations by the spatial functions σ n

U f n
U and σ n

P f n
P , respectively. The 

resulting parametric problem, solved by means of a collocation approach, is

a0(Δφ)2 +
⎛⎝−a1ζ −

q∑
j=1

a j
8ξ

j + a2 +
n∑

j=1

a j
3φ

j

⎞⎠Δφ = rn
U + rn

P , (17a)

where the residuals rn
U and rn

P of the momentum and continuity equations in the parametric space are given by

rn
U :=

n∑
�=1

⎛⎝−
n∑

j=1

a j�
4 φ j + a�

5ζ +
q∑

j=1

a j�
9 ξ j − a�

6

⎞⎠φ�, (17b)

rP := −
n∑

�=1

a�
7φ

�, (17c)

being ak, k = 0, . . . , 9 a set of coefficients which depend on user-defined data and on previously computed spatial modes 
as reported in Appendix B.

Remark 6. Contrary to the parametric problem in [45], the second-order term (Δφ)2 is maintained in equation (17a). Al-
though this term was negligible in laminar simulations, it has been verified numerically that its presence improves the 
stability of the solution of the parametric step of the Navier-Stokes equations in the turbulent regime.

The alternating direction algorithm in the PGD-NS routine stops when the relevance of the computed increment is 
negligible with respect to the amplitude of the corresponding mode. Similarly, the global enrichment procedure stops when 
the contribution of the current mode in the PGD expansion, measured by means of its relative amplitude, is negligible.

Remark 7. As shown in [45], the a priori PGD algorithm devised starting from the separated formulation of problem (12)
provides a stable approximation for both velocity and pressure, without the need for tailored pressure corrections required 
by a posteriori ROMs for incompressible flows [61,62].

3.4. Proper generalised decomposition of the turbulence model

The construction of a separated expression νq
t,PGD

of the turbulent viscosity using the SA model first requires determining 
the approximation ν̃m

PGD
of the eddy viscosity via a dedicated PGD solver. For this purpose, the integral form of the steady 

Spalart-Allmaras turbulence model in the high-dimensional space � × I is considered, namely∫
I

∫
V i

∇·(U ν̃)dV dI − 1

σ

∫
I

∫
V i

∇· ((ν+ν̃)∇ν̃) dV dI

− cb2

σ

∫ ∫
∇ν̃·∇ν̃ dV dI − cb1

∫ ∫
S̃ν̃ dV dI + cw1

∫ ∫
f w

(
ν̃

d̃

)2

dV dI = 0,

(18)
I V i I V i I V i

9
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for each cell V i, i=1, . . . , N in the computational domain.
The PGD solver for the SA equation is obtained by inserting the separated approximation (7b) of the eddy viscosity into 

equation (18). Following the rationale utilised for the flow equations, the first term ̃ν0
PGD

in the PGD expansion is selected to 
enforce the inhomogeneous Dirichlet boundary conditions on �in ∪ �w. More precisely, Dirichlet data for ν̃PGD are selected as 
full order solutions of the SA equation computed using the boundary condition modes of the velocity field. The following 
modes are determined using a greedy algorithm named PGD-SA: for each new mode σm

ν

[
f m
ν ψm + δν̃m

PGD

]
, the prediction 

σm
ν f m

ν ψm is computed by performing a first iteration of the alternating direction algorithm, whereas the following iterations 
allow to devise the corresponding correction term σm

ν δν̃m
PGD

.
It is worth recalling that OpenFOAM employs a segregated approach for the simulation of turbulent flows, by solving 

independently the flow problem and the SA equation. More precisely, the computation of the eddy viscosity is performed 
using the velocity field U obtained from the RANS equations as input for the solver. The proposed PGD strategy mimics this 
approach and replaces the velocity field U by its rank-n PGD approximation U n

PGD
constructed using the procedure described 

in section 3.3.
Let νm

PGD
:=ν̃m−1

PGD
+σm

ν f m
ν ψm denote the estimated rank-m approximation of the eddy viscosity obtained using the m−1

previously converged modes ν̃m−1
PGD

and the prediction σm
ν f m

ν ψm of the m-th term. From equation (18), it follows that the 
unknown increment σm

ν δν̃m
PGD

can be obtained by solving

∫
I

∫
V i

∇·
(

U n
PGD

σm
ν δν̃m

PGD

)
dV dI − 1

σ

∫
I

∫
V i

∇·
(
(ν + νm

PGD
+ σm

ν δν̃m
PGD

)∇(σm
ν δν̃m

PGD
)
)

dV dI

− 1

σ

∫
I

∫
V i

∇·
(
σm

ν δν̃m
PGD

∇νm
PGD

)
dV dI − cb2

σ

∫
I

∫
V i

∇(σm
ν δν̃m

PGD
)·∇(σm

ν δν̃m
PGD

)dV dI (19)

−2cb2

σ

∫
I

∫
V i

∇νm
PGD

·∇(σm
ν δν̃m

PGD
)dV dI − cb1

∫
I

∫
V i

S̃σm
ν δν̃m

PGD
dV dI

+cw1

∫
I

∫
V i

f w

d̃2

(
σm

ν δν̃m
PGD

)2
dV dI + 2cw1

∫
I

∫
V i

f m
w

d̃2
νm
PGD

σm
ν δν̃m

PGD
dV dI = Rν,

where the residual Rν is given by

Rν := −
∫
I

∫
V i

∇·(U n
PGD

νm
PGD

)dV dI + 1

σ

∫
I

∫
V i

∇·
(
(ν + νm

PGD
)∇νm

PGD

)
dV dI

+ cb2

σ

∫
I

∫
V i

∇νm
PGD

·∇νm
PGD

dV dI + cb1

∫
I

∫
V i

S̃νm
PGD

dV dI − cw1

∫
I

∫
V i

f w

d̃2
(νm

PGD
)2 dV dI.

(20)

Problem (19) can thus be efficiently solved by alternatively restricting it to the tangent manifold associated with the 
spatial and the parametric coordinates as described in the following sections.

Remark 8. Similarly to the observation in Remark 5, the first, second, fourth, sixth and seventh term in equation (19) mimic 
the original SA turbulence model (18). Since the remaining integrals are not accounted for in the full order model, and in 
order to minimise intrusiveness with respect to OpenFOAM core routines, these terms are relaxed during the spatial iteration 
of the PGD algorithm, by evaluating them using the last computed iteration. This approach is detailed in section 3.4.1.

3.4.1. PGD-SA: the spatial iteration
First, the convective velocity field is replaced by its separated approximation U n

PGD
(x, μ)=∑n

j=1 σ
j

U f j
U (x)φ j(μ). The SA 

equation (19) in the high-dimensional space � ×I is then restricted to the spatial direction multiplying it by ψm . Moreover, 
the value of the parametric function is set to ψm and, from equation (9), the increment σm

ν δν̃m simplifies to ψmσm
ν Δ fν .
PGD

10
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The increment σm
ν Δ fν thus acts as unknown of the spatial iteration of the PGD procedure for the parametric SA equation. 

More precisely, a cell-by-cell constant approximation σm
ν Δ fν is computed solving

∫
V i

∇·
(( n∑

j=1

β
j

1σ
j

U f j
U

)
σm

ν Δ fν
)

dV − 1

σ

∫
V i

∇·
([(

β2 D+
m∑

j=1

β
j

3σ
j
ν f j

ν

)
+β4σ

m
ν Δ fν

]
∇(σm

ν Δ fν)
)

dV

− β4cb2

σ

∫
V i

∇(σm
ν Δ fν)·∇(σm

ν Δ fν)dV − β5cb1

∫
V i

S x
PGD

(̃Sm)σm
ν Δ fν dV

+ β6cw1

∫
V i

S x
PGD

( f m
w )

d̃2

(
σm

ν Δ fν
)2

dV = Rm
ν + 1

σ

∫
V i

∇·
(
σ k−1

ν Δ f k−1
ν ∇

( m∑
j=1

β
j

3σ
j
ν f j

ν

))
dV

+ 2cb2

σ

∫
V i

∇
( m∑

j=1

β
j

3σ
j
ν f j

ν

)
·∇(σ k−1

ν Δ f k−1
ν )dV

− 2cw1

∫
V i

S x
PGD

( f m
w )

d̃2

( m∑
j=1

β
j

7σ
j
ν f j

ν

)
σ k−1

ν Δ f k−1
ν dV ,

(21)

where Rm
ν denotes the spatial residual of the SA equation and the coefficients βk, k=1, . . . , 7 depend on user-defined data 

and parametric functions as described in Appendix B. Moreover, the production, S̃m , and destruction, f m
w , coefficients are 

evaluated using the m previously computed modes of ν̃m
PGD

and S x
PGD

(̃Sm) and S x
PGD

( f m
w ) denote the corresponding spatial 

modes of these functions.
As commented in Remark 8, three terms appearing in the high-dimensional problem (19) do not have a counterpart in 

the original SA equation available in OpenFOAM. In order for the discussed PGD-ROM implementation to be non-intrusive 
with respect to the SA solver natively implemented in OpenFOAM, these terms are treated explicitly via a relaxation ap-
proach. Hence, the last three terms on the right-hand side of equation (21) are evaluated using the last computed increment 
σ k−1

ν Δ f k−1
ν in the iterative procedure to solve the SA equation. The left-hand side of the equation (21) thus presents the 

same structure as the original SA equation (6), where the spatial integrals are now weighted by means of appropriately 
computed parametric coefficients, and the OpenFOAM strategy for the solution of the turbulence model equation can be 
exploited.

The spatial residual Rm
ν on the right-hand side of equation (21) is obtained starting from the values of the previous 

terms ̃νm−1
PGD

in the PGD expansion of the eddy viscosity and the prediction of the m-th mode σm
ν f m

ν ψm currently computed, 
namely

Rm
ν := −

∫
I

ψm
∫
V i

∇· (U n
PGD

(̃νm−1
PGD

+ σm
ν f m

ν ψm)
)

dV dI

+ 1

σ

∫
I

ψm
∫
V i

∇·
(
(ν + ν̃m−1

PGD
+ σm

ν f m
ν ψm)∇(̃νm−1

PGD
+ σm

ν f m
ν ψm)

)
dV dI

+ cb2

σ

∫
I

ψm
∫
V i

∇(̃νm−1
PGD

+ σm
ν f m

ν ψm)·∇(̃νm−1
PGD

+ σm
ν f m

ν ψm)dV dI

+ cb1

∫
I

ψm
∫
V i

S̃m (̃νm−1
PGD

+ σm
ν f m

ν ψm)dV dI

− cw1

∫
I

ψm
∫
V i

f m
w

d̃2
(̃νm−1

PGD
+ σm

ν f m
ν ψm)2 dV dI,

(22)

where the parametric function ψm in the integrals above stems from the restriction of the high-dimensional residuals Rν

to the tangent manifold in the spatial direction. By exploiting the separated expression of ν̃m−1
PGD

in terms of its spatial and 
parametric modes, the residual can be rewritten as
11
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Rm
ν = −

n∑
j=1

m∑
�=1

β
j�

8

∫
V i

∇·(σ j
U f j

U σ �
ν f �

ν )dV

+ 1

σ

m∑
�=1

∫
V i

∇·
((

β�
9 D+

m∑
j=1

β
j�

10σ
j
ν f j

ν

)
∇(σ �

ν f �
ν )
)

dV + cb2

σ

m∑
j=1

m∑
�=1

β
j�

10

∫
V i

∇(σ
j
ν f j

ν )·∇(σ �
ν f �

ν )dV

+ cb1

m∑
�=1

β�
11

∫
V i

S x
PGD

(̃Sm)σ �
ν f �

ν dV − cw1

m∑
j=1

m∑
�=1

β
j�

12

∫
V i

S x
PGD

( f m
w )

d̃2
σ

j
ν f j

ν σ �
ν f �

ν dV ,

(23)

where the coefficients βk, k=8, . . . , 12, reported in Appendix B, can be precomputed for an efficient implementation of the 
PGD spatial iteration since they depend solely on user-defined data and parametric functions.

Remark 9. It is worth emphasising that neither S̃(x, μ) nor f w(x, μ) are separable exactly via an analytical procedure. It 
follows that equation (21) cannot be solved in a complete non-intrusive way using OpenFOAM. The resulting implemen-
tation of the PGD-SA algorithm in OpenFOAM is thus minimally intrusive as the structure of equation (21) is the same 
as the original SA equation (6) but a tailored numerical strategy is required to efficiently compute the coefficients and the 
integral terms involving S̃ and f w . Suitable procedures include a posteriori PGD separation [55,56] and high-dimensional 
reconstruction of the functions in the space � × I followed by an interpolation step in �. The latter strategy is employed 
for the simulations in section 4.

3.4.2. PGD-SA: the parametric iteration
The parametric iteration of the turbulence model is devised by fixing the newly computed spatial mode of the eddy vis-

cosity σm
ν f m

ν ← σm
ν [ f m

ν +Δ fν ]. The corresponding parametric increment Δψ is obtained by restricting the high-dimensional 
equation (19) to the parametric direction I multiplying it by the spatial function σm

ν f m
ν . It follows the algebraic equation

(−b4 + b6S μ
PGD

( f m
w ))(Δψ)2 +

⎛⎝−b2ζ − b5S μ
PGD

(̃Sm) +
n∑

j=1

b j
1φ

j −
m∑

j=1

(b j
3 + b j

7S μ
PGD

( f m
w ))ψ j

⎞⎠Δψ = rm
ν , (24)

in which bk , k = 1, . . . , 7 represent the precomputed coefficients reported in Appendix B, rm
ν is the residual of the SA 

equation in the parametric space and S μ
PGD

(̃Sm) and S μ
PGD

( f m
w ) denote the parametric modes of the non-separable functions 

S̃m and f m
w , respectively. It is worth recalling that ̃Sm and f m

w are evaluated using the m previously computed modes of ̃νm
PGD

and require appropriate numerical separation strategies to be computed, see Remark 9. Finally, the right-hand side rm
ν of 

equation (24) has the form

rm
ν :=

m∑
�=1

⎛⎝b�
9ζ + b�

11S μ
PGD

(̃Sm) +
n∑

j=1

b j�
8 φ j +

m∑
j=1

(b j�
10 − b j�

12S μ
PGD

( f m
w ))ψ j

⎞⎠ψ�, (25)

with the coefficients bk, k = 8, . . . , 12 depending upon data provided by the user and spatial functions, see Appendix B.
As for the PGD-NS routine, the alternating direction scheme in the PGD-SA algorithm stops when the computed incre-

ment is negligible with respect to the amplitude of the mode. Moreover, the PGD enrichment procedure finishes when the 
relative amplitude of the current mode is negligible with respect to the previously computed ones.

3.5. PGD-νt : devising a separated turbulent viscosity

The approximation ν̃m
PGD

of the eddy viscosity provided by the PGD-SA routine is employed to construct a separated 
representation νq

t,PGD
of the turbulent viscosity, according to the relation (2). This procedure is performed by the PGD-νt

routine, before going back to the PGD-NS algorithm for the RANS equations.
It is worth noticing that the function f v1 in equation (2) is not separable analytically. Hence, as detailed in Remark 9, 

either a numerical PGD separation [55,56] or a high-dimensional reconstruction of the function in the space � × I to 
perform interpolation in � and I separately, is required. The latter strategy is employed for the simulations in section 4.

For the sake of readability, consider f m
v1 obtained using the m computed modes of ̃νm

PGD
. The PGD separated expression of 

this function is given by

f m
v1 � S x

PGD
( f m

v1)S
μ
PGD

( f m
v1), (26)

where S x
PGD

( f m
v1) and S μ

PGD
( f m

v1) denote the spatial and parametric modes of the function f m
v1, respectively, obtained by means 

of either of the numerical strategies proposed above.
12
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Fig. 1. NASA wall-mounted hump: (a) representation of the experimental set-up and (b) 2D section of the hump, location of the jet (blue rectangle) and 
detail of the jet opening. (For interpretation of the colours in the figures, the reader is referred to the web version of this article.)
Source: https://cfdval2004 .larc .nasa .gov /case3 .html.

The separated expression νq
t,PGD

reported in equation (7c) can thus be devised in terms of elementary arithmetic opera-
tions of separated functions [56], exploiting the separated nature of all the involved quantities. More precisely, it holds

νq
t,PGD

(x,μ) =
q∑

j=1

σ
j

t f j
t (x)ξ j(μ), (27)

where the spatial modes f j
t can be computed as the product of the spatial functions S x

PGD
( f m

v1) and f m
ν , whereas the 

parametric terms ξ j can be obtained from the product of the parametric modes S μ
PGD

( f m
v1) and ψm . It is worth noting that 

the product of separated functions leads to a number of terms in the PGD expansion larger than the number of modes of 
its factors. Nonetheless, such operation can be efficiently performed via a separated multiplication [56] and the result can 
be compressed to eliminate redundant information [55,56].

4. Numerical experiments

In this section, numerical simulations of the NASA wall-mounted hump are presented to demonstrate the potential of the 
proposed methodology. This problem is a quasi-two-dimensional NASA benchmark devised to validate turbulence modelling, 
starting from an experimental set-up. The domain consists of a Glauert-Goldschmied type body mounted on a splitter plate 
between two endplates, see Fig. 1(a). Following [63,64], the characteristic length of the problem is set equal to the chord 
length of the hump c=0.42 m, whereas its maximum height is 0.0537 m and its span is 0.5842 m. Flow separation along 
the hump is controlled via a suction jet acting through an opening located at 65% of the chord c, as detailed in Fig. 1(b). In 
the experimental set-up the opening is connected to a plenum, on the bottom of which suction pumps are installed; for the 
numerical simulations in the following sections, the plenum is removed and the suction effect is imposed as a boundary 
condition on the opening via a mass flow rate of 1.518 × 10−2 kg/s for the jet.

In the analysis of this problem, the quantity of interest is represented by the effect of the suction jet on the flow sep-
aration and on the position of the reattachment point. Experimental and numerical studies [65,66] verified the quasi-two-
dimensional nature of the phenomena identifying minor three-dimensional effects located near the endplates. Henceforth, 
the PGD results will be compared to the full order OpenFOAM approximation, considered as reference solution.

The NASA wall-mounted hump problem being quasi-two-dimensional, in the following sections both the 2D and the 
3D cases are studied. A parametric flow control problem is devised by varying the maximum amplitude of the suction jet 
between 10% and 100% of the module of a peak velocity Û . In two dimensions, a sinusoidal velocity profile is defined as

U jet
ŷ

= μ
Û

2
(1 − cos(2π x̂)), (28)

where x̂ is the normalised curvilinear abscissa of the jet patch, that is x̂ ∈ [0,1], and the resulting jet is pointing in the 
direction ŷ orthogonal to the boundary. Similarly, in the 3D case the jet defined on the plane (x̂, ̂z) and pointing in the 
orthogonal direction ŷ is

U jet
ŷ

= μ
Û

(1 − cos(2π x̂))(1 − cos(2π ẑ)), (29)

4

13
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Fig. 2. Computational domain for the two-dimensional NASA wall-mounted hump.

where the normalised coordinate ẑ is

ẑ =

⎧⎪⎪⎨⎪⎪⎩
0 for z < 0.4c
5z − 2c

c
for 0.4c ≤ z ≤ 0.6c

0 for z > 0.6c.

(30)

It is worth noting that the module of the peak velocity Û is selected such that the ratio between the mass flow rate of 
the jet and of the inlet is 1.5 × 10−3, reproducing the value in the experimental set-up of the NASA wall-mounted hump 
with a plenum [63]. In addition, both in (28) and (29), the interval of the parametric variable is defined as I=[0.1, 1].

4.1. Two-dimensional NASA wall-mounted hump with parametrised jet

The computational domain for the two-dimensional NASA wall-mounted hump is a channel of height c, extending 6.39c
upstream and 5c downstream as displayed in Fig. 2. The resulting mesh consists of 114,000 cells. Homogeneous Dirichlet 
boundary conditions are imposed on both the velocity and the eddy viscosity on the bottom wall and on the hump. A sym-
metry condition is imposed on the top wall, whereas on the outlet free traction is enforced. At the inlet, a parabolic profile 
is imposed for both velocity and eddy viscosity. More precisely, the variables range between a null value on the bottom wall 
and a maximum value at y=0.02 m. For the velocity, the peak value is 34.6 m/s, whereas the free-stream eddy viscosity 
ν̃=3ν is selected. The kinematic viscosity is ν=1.55274 × 10−5 m2/s, thus the resulting Reynolds number is approximately 
Re=936,000. On the jet patch, the velocity profile (28) with Û=23.4 m/s is imposed and a homogeneous Neumann condi-
tion is considered for the eddy viscosity. It is worth noting that on the hump the mesh is such that y+ < 1, whence no wall 
treatment is required for the turbulent viscosity.

In order to impose the inhomogeneous Dirichlet boundary data, two modes are introduced. In particular, recall that the 
boundary condition on the jet patch depends upon the parameter μ. For this purpose, two spatial modes, associated with 
the extreme values of the parametric interval I=[0.1, 1], are computed using simpleFoam with SA turbulence model. The 
corresponding parametric functions are selected such that

φ1(μ) =
{

1, if μ = 1

0, if μ = 0.1
and φ2(μ) =

{
0, if μ = 1

1, if μ = 0.1
(31)

to define a linear variation of the Dirichlet data between the extreme values associated with the computed spatial modes. 
More precisely, the first spatial mode is a full order solution with the jet acting at 100% of the mass flow rate (μ=1) and 
the second one is associated with the jet acting at 10%, that is μ=0.1. The corresponding parametric modes are given by

φ1(μ) = 10μ − 1

9
and φ2(μ) = 1 − φ1(μ). (32)

The tolerance for the enrichment of the flow variables is set to η�
u=η�

p=10−4, whereas the tolerance for the turbu-

lence model is selected as η�
ν=10−2. The criterion to update the turbulent viscosity is detailed in Remark 3, with γ=1. 

The turbulent pgdFoam algorithm achieves convergence with eight velocity-pressure modes computed using PGS-NS and 
three corrections by means of PGD-SA and PGD-νt . Each PGD-SA loop reached the prescribed tolerance within three com-
puted modes. The relative amplitude of the computed modes, as the turbulent viscosity is updated, is reported in Fig. 3. 
Following [45], a measure of the relative amplitude accounting for both velocity and pressure modes is employed via the 
definition

σ n
(U ,P ) :=

⎡⎣( σ n
U∑n

j=1 σ
j

U

)2

+
(

σ n
P∑n

j=1 σ
j

P

)2
⎤⎦

1
2

. (33)

It is worth recalling that each time the relative amplitude of the modes drops by one order of magnitude, the separated 
representation of the turbulent viscosity is updated via the PGD-SA and PGD-νt routines (see Remark 3) and the PGD 
approximation for velocity and pressure is recomputed using the updated turbulent viscosity.

The importance of updating the PGD approximation of the turbulent viscosity to correctly compute the turbulent velocity 
and pressure fields is displayed in Fig. 4(a). Considering the result of the full order simpleFoam with SA turbulence model 
for μ=0.5 as a reference solution, Fig. 4(a) compares the relative L2(�) error of the PGD approximation computed via the
14
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Fig. 3. Relative amplitude of the computed velocity-pressure modes as the turbulent viscosity is updated.

Fig. 4. Accuracy of the PGD approximations of velocity and pressure with respect to the full order solutions as a function of the number of modes. (a) 
Influence of turbulent viscosity update for the case of μ=0.5. (b) Relative L2(�) error for different values of μ. The vertical lines separate the two 
boundary condition modes and the computed modes.

Fig. 5. Comparison of the PGD approximation (top) and the full order solution (bottom) of the recirculation bubble for μ=0.25, μ=0.5 and μ=0.75. The 
vertical line denotes the position of the reattachment point.

PGD-NS, PGD-SA and PGD-νt strategy described in Algorithm 1 with the one obtained by omitting the turbulent viscosity 
update. Without the PGD-SA and PGD-νt routines, the error of both velocity and pressure approximations stagnates from 
the first computed mode and the overall value is one order of magnitude larger than the one achieved by the methodology 
in Algorithm 1. Fig. 4(b) reports the relative L2(�) error of the PGD approximation with turbulent viscosity update for 
three configurations, that is μ=0.25, μ=0.5 and μ=0.75. The results clearly display that the PGD approximation achieves 
comparable accuracy throughout the parametric interval I using two boundary condition modes and three computed modes. 
The following modes only introduce minor corrections to the solution as identified by their corresponding amplitudes, see 
Fig. 3.

As mentioned in the problem statement, the quantities of interest in this study are the position of the reattachment 
point and the effect of the suction jet on the recirculation bubble. Fig. 5 displays the velocity field after the hump and the 
recirculation bubble for three values of the parameter μ. The influence of the jet in reducing the flow separation and moving 
the reattachment point towards the hump is well captured by the PGD approximation which is in excellent agreement with 
the full order solution.
15
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Fig. 6. Comparison of the PGD approximation (top) and the full order solution (bottom) of the pressure field after the hump for μ=0.25, μ=0.5 and 
μ=0.75.

Fig. 7. Comparison of the PGD approximation (top) and the full order solution (bottom) of the turbulent viscosity after the hump for μ=0.25, μ=0.5 and 
μ=0.75.

Table 1
2D NASA wall-mounted hump: position of the reattachment point 
computed using the PGD approximation and the full order solver 
for different values of μ.

μ 0.25 0.50 0.75

PGD 1.183c 1.156c 1.129c
full order 1.184c 1.154c 1.131c

Relative error 0.84 × 10−3 0.17 × 10−2 0.17 × 10−2

Qualitative comparisons of the pressure field and the turbulent viscosity for different values of the parameter μ are pre-
sented in Fig. 6 and 7, respectively. Using eight computed modes, the PGD approximation is able to accurately approximate 
localised variations in the flow pattern, throughout the interval I .

In addition, the accuracy of the PGD-ROM is evaluated by quantitatively comparing quantities of engineering interest with 
the reference values provided by the OpenFOAM full order solver. Table 1 reports the estimated position of the reattachment 
point using the reduced model and the corresponding value obtained using the full order simpleFoam solver with SA 
turbulence model. For the three values of the parameter μ reported, the online evaluations of the PGD-ROM with eight 
computed modes provide errors in the quantity of interest below 0.2%. The results show excellent agreement with the 
reference solution confirming the accuracy of the PGD approximation, even for the computation of surrogate models of 
relevant physical quantities.

Finally, Fig. 8(a) and 8(b) report the skin friction coefficient and the pressure coefficient, respectively. Both figures focus 
on the area after the jet and compare the PGD approximation using different number of modes with the full order solution. 
First, it is worth noting that the PGD results based on the boundary condition modes, i.e. n=2, provide approximations for 
the two quantities of interest which are qualitatively comparable with the full order solution. Introducing eight computed 
modes (n=10), the resulting PGD-based surrogate models for the skin friction coefficient and the pressure coefficient show 
perfect agreement with the full order solutions, confirming the capability of the proposed approach to construct accurate 
parametric representations of quantities of interest.
16
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Fig. 8. Comparison of (a) the skin friction coefficient and (b) the pressure coefficient of the full order solution and the PGD approximation, for different 
number of PGD modes and for the three values of the parameter μ.

Fig. 9. Computational domain for the three-dimensional NASA wall-mounted hump.

4.2. Three-dimensional NASA wall-mounted hump with parametrised jet

The computational domain for the three-dimensional problem, see Fig. 9, is obtained by extruding the 2D domain de-
scribed in the previous section in the z direction by 0.8 chord lengths. The problem inherits the set of boundary conditions 
utilised in the 2D case. On the additional external surfaces, slip boundary conditions are imposed. The peak value of the 
inlet velocity is set to 3.46 m/s and the profile of the jet suction is defined as in (29) with Û=2.34 m/s. The kinematic 
viscosity being ν=1.55274 × 10−5 m2/s, the Reynolds number for the 3D case is Re=93,600 and the computational mesh 
consists of 2.34 million cells.

Similarly to the two-dimensional case, the boundary conditions are enforced using the two parametric modes in (32)
and two spatial modes corresponding to the simpleFoam solutions with SA turbulence model for μ=0.1 and μ=1.

The values η�
u=η�

p=0.5 × 10−3 and η�
ν=10−2 are considered for the tolerance of the enrichment loops of the flow vari-

ables and the turbulent viscosity, respectively. To reduce the overall cost of the PGD-NS, PGD-SA and PGD-νt procedure, 
the number of turbulent viscosity updates is reduced by considering a lower initial tolerance in criterion (10), namely γ=2.

Algorithm 1 achieves convergence with four modes computed by the PGS-NS routine and two PGD-SA and PGD-νt

corrections. Each PGD-SA loop reached the prescribed tolerance within two computed modes. The PGD approximation is 
then compared with the corresponding full order solution provided by simpleFoam with the SA turbulence model: the 
relative L2(�) error for μ=0.25, μ=0.5 and μ=0.75 is displayed in Fig. 10, reporting that the reduced order model is 
able to provide errors in velocity and pressure below 0.1% and 0.5%, respectively. The resulting PGD-ROM is thus employed 
to analyse the physical phenomena involved in the turbulent flow over the hump. Fig. 11 displays the velocity profile on 
the hump, computed using the PGD, for different values of the parameter μ. In addition, a qualitative comparison of the 
streamlines and the recirculation effects computed using the reduced model and the full order OpenFOAM solution are 
reported in Fig. 12. The results display that the recirculation effects are reduced when increasing the suction jet and the 
PGD is able to capture the vortex structure with comparable accuracy with respect to the full order solution.
17



V. Tsiolakis, M. Giacomini, R. Sevilla et al. Journal of Computational Physics 449 (2022) 110802
Fig. 10. Relative L2(�) error of the PGD approximations of velocity and pressure with respect to the full order solutions as a function of the number of 
modes for different values of μ. The vertical line separates the two boundary condition modes and the computed modes.

Fig. 11. Comparison of the PGD approximation of the velocity profile on the hump for μ=0.25 and μ=0.75.

Fig. 12. Detail of the vortex structure in the recirculation region computed using the PGD approximation (top) and the full order solution (bottom) for 
μ=0.25 and μ=0.75.

The capability of the proposed PGD-ROM strategy to treat complex problems of engineering interest is thus confirmed 
by the following analysis focusing on relevant physical quantities. In Fig. 13, the top view of the wall shear stress on the 
bottom wall is reported in the region from the jet patch up to 1.6c downstream, highlighting the effect of the suction jet 
on flow recirculation. A qualitative comparison between the reduced order and the full order solution confirms the ability 
of the PGD to accurately reproduce the turbulent flow in the entire range of values I of the parameter. In particular, these 
conclusions hold true both for the flow variables and for given physical quantities computed starting from them.

Finally, the position of the reattachment point in correspondence of the location of the peak of the jet profile is reported 
in Table 2 for different values of the parameter μ. For each tested configuration, the PGD approximation with four computed 
modes shows excellent agreement with the full order solver, with relative errors below 0.5%. The results thus display the 
capability of the PGD-ROM strategy to devise a surrogate model for a quantity of physical interest, robust throughout the 
parametric domain I , and with an accuracy acceptable for industrial applications.
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Fig. 13. Comparison of the PGD approximation (top) and the full order solution (bottom) of the wall shear stress on the bottom wall for μ=0.25, μ=0.5
and μ=0.75. Detail of the region starting from the jet patch up to 1.6c downstream.

Table 2
3D NASA wall-mounted hump: position of the reattachment point 
computed using the PGD approximation and the full order solver 
for different values of μ.

μ 0.25 0.50 0.75

PGD 1.102c 1.062c 1.024c
full order 1.103c 1.059c 1.019c

Relative error 0.91 × 10−3 0.28 × 10−2 0.49 × 10−2

5. Conclusion

A PGD strategy to compute parametric solutions of turbulent incompressible flow problems in OpenFOAM has been pro-
posed. The methodology is based on the incompressible Reynolds-averaged Navier-Stokes equations with Spalart-Allmaras 
turbulence model and mimics the segregated approach implemented in the industrially-validated solver OpenFOAM to de-
vise a minimally intrusive PGD-ROM for convection-dominated flow problems of industrial interest. First, the velocity and 
pressure modes are computed using the non-intrusive PGD strategy PGD-NS developed in [45] using a seed value for the 
turbulent viscosity. The PGD approximation of the velocity is then used to improve the turbulent viscosity representation 
via the minimally intrusive PGD-SA and PGD-νt routines. Finally, the resulting separated turbulent viscosity is utilised to 
recompute the PGD expansions of velocity and pressure. The importance of an accurate approximation of the turbulent 
viscosity has been verified by comparing the solution of the above algorithm with the one computed without solving the 
SA equation: the latter solution quickly stagnates providing errors of one order of magnitude larger than the proposed 
methodology.

The developed strategy has been validated in two and three spatial dimensions using a benchmark problem of turbu-
lent external flow, the NASA wall-mounted hump, with Re=93,600 and Re=936,000. A flow control problem of industrial 
interest has been devised by introducing a suction jet on the hump to reduce the recirculation effects. The proposed PGD-
based reduced order model has proved to be able to compute a reduced basis with no a priori knowledge of the solution, 
for convection-dominated viscous incompressible flows achieving both qualitative and quantitative agreement with the full 
order solution computed via simpleFoam with SA turbulence model, throughout the interval of the parametric variable. 
More precisely, the reduced model provided accurate approximations of the velocity and pressure fields, with relative L2
errors below 0.1% and 1%, respectively. In addition, it proved to be able to capture localised flow features and estimate 
quantities of engineering interest with errors below 0.5%. The reported results thus highlight the robustness of the pro-
posed PGD methodology in presence of turbulent phenomena and its capability to devise accurate approximations of the 
physical variables involved in the parametric problem (i.e. velocity and pressure), the variables modelling turbulent effects 
(i.e. eddy and turbulent viscosity), as well as relevant physical quantities, including the position of the reattachment point, 
the skin friction coefficient and the pressure coefficient.

Finally, it is worth noticing that the minimally intrusive nature of the proposed method represents a promising starting 
point for the construction of PGD-ROM strategies based on CFD software validated by the industry, beyond incompressible 
flows. This may be of interest e.g. for parametric compressible flow problems with applications to the aerospace industry. 
In this context, future investigations will have to deal with the additional difficulty of the treatment of shock waves whose 
position and intensity may depend upon the value of the parameters of the problem under analysis.
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Appendix A. Classical and predictor-corrector PGD algorithms

In this appendix, a comparison of two PGD strategies, the classical one [34] and the one based on a predictor-corrector ap-
proach [45], is presented using an abstract variational framework with the goal of highlighting main differences, advantages 
and disadvantages of each solution.

Consider a, possibly nonlinear, partial differential equation (PDE) whose variational form is: seek v(x) ∈ V such that

A(w, v(x)) = �(w), ∀w ∈ V, (A.1)

where v(x) is the unknown solution belonging to an appropriately defined functional space V , w is a test function and A
and � account for the differential operator and the independent term of the problem, respectively.

Given the set of parameters μ ∈ I ⊂ RM , the solution of the corresponding parametric PDE is given by the function 
v(x, μ) ∈ Vμ := V ⊗L2(I1) ⊗ · · · ⊗L2(IM) satisfying

Aμ(w, v(x,μ)) = Lμ(w), ∀w ∈ Vμ, (A.2)

where

Aμ(w, v) :=
∫
I

A(w, v)dμ and Lμ(w) :=
∫
I

�(w)dμ. (A.3)

First, the classical PGD algorithm for the computation of the separated solution of equation (A.2) is recalled. The PGD 
approximation of the high-dimensional unknown function v(x, μ) is thus defined as

v(x,μ) � vn
PGD

(x,μ) = vn−1
PGD

(x,μ) + σ n
v f n

v (x)ϕn(μ), (A.4)

where f n
v (x) and ϕn(μ) represent the n-th spatial and parametric modes, respectively and σ n

v is its corresponding ampli-
tude. It is worth noticing that the previously introduced modes are such that ‖ f n

v ‖=‖ϕn‖=1, whereas the computed modes 
before the normalisation procedure are denoted by f̃v

n
(x) and ϕ̃n(μ).

Algorithm 2 reports the flowchart of the classical PGD algorithm described in [34]. A greedy strategy is employed to 
compute the terms in the rank-n PGD approximation. More precisely, the algorithm assumes that the approximation vn−1

PGD
is 

known to determine the n-th term in the PGD expansion using an alternating direction scheme. For this purpose, equa-
tion (A.2) is alternately projected upon the tangent manifold along the parametric (Algorithm 2 - Line 6) and spatial 
(Algorithm 2 - Line 9) directions to determine ϕ̃n and f̃v

n
, respectively. Several variations of Algorithm 2 have been proposed 

in the literature and great attention has been devoted to the control of the alternating direction loop (Algorithm 2 - Line 
4). The most common approach is to perform a fixed number of iterations in the alternating direction loop, see e.g. [34]. 
Arnoldi-type methods [59] only perform one iteration of the alternating direction loop and then eliminate the redundant 
information by means of a realignment procedure. Recently, stopping criteria for the alternating direction loop requiring a 
target accuracy on the relative increments between the last two computed modes and the relative variation in the amplitude 
of the modes were also explored [56].
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Algorithm 2 Classical PGD algorithm.
Require: Stopping criterion η�

v for the PGD enrichment. Stopping criterion AD_stopCrit for the alternating direction scheme.
1: Compute boundary condition modes.
2: Set n ← 1 and initialise the amplitude σ 1

v ← 1.
3: while σ n

v > η�
v σ 1

v do
4: while AD_stopCrit not fulfilled do

5: Set the value of the spatial mode f̃v
n

.

6: Compute the parametric mode ϕ̃n by solving Aμ(w, f̃v
n
ϕ̃n) = Lμ(w) − Aμ(w, vn−1

PGD
), projected along the parametric direction.

7: Normalise the parametric mode ϕn = ϕ̃n

‖ϕ̃n‖ .

8: Set the value of the normalised parametric mode ϕn .

9: Compute the spatial mode f̃v
n

by solving Aμ(w, f̃v
n
ϕn) = Lμ(w) − Aμ(w, vn−1

PGD
), projected along the spatial direction.

10: Compute the amplitude σ n
v = ‖ f̃v

n‖.

11: Normalise the spatial mode f n
v = f̃v

n

σ n
v

.

12: end while
13: Update the mode counter n ← n + 1.
14: end while

Algorithm 3 Predictor-corrector PGD algorithm.
Require: Stopping criterion η�

v for the PGD enrichment. Stopping criterion AD_stopCrit for the alternating direction scheme.
1: Compute boundary condition modes.
2: Set n ← 1 and initialise the amplitude σ 1

v ← 1.
3: while σ n

v > η�
v σ 1

v do

4: Set the value of the spatial mode f̃v
n

.

5: Compute the parametric prediction ϕ̃n by solving Aμ(w, f̃v
n
ϕ̃n) = Lμ(w) − Aμ(w, vn−1

PGD
), projected along the parametric direction.

6: Normalise the parametric prediction ϕn = ϕ̃n

‖ϕ̃n‖ .

7: Set the value of the normalised parametric prediction ϕn .

8: Compute the spatial prediction f̃v
n

by solving Aμ(w, f̃v
n
ϕn) = Lμ(w) − Aμ(w, vn−1

PGD
), projected along the spatial direction.

9: while AD_stopCrit not fulfilled do

10: Set the value of the spatial mode f̃v
n

.

11: Compute the parametric correction Δϕ̃ by solving Aμ(w, f̃v
n
Δϕ̃) = Lμ(w) − Aμ(w, vn−1

PGD
) − Aμ(w, f̃v

n
ϕn), projected along the parametric 

direction.

12: Update the normalised parametric mode ϕn ← ϕn + Δϕ̃

‖ϕn + Δϕ̃‖ .

13: Set the value of the normalised parametric mode ϕn .

14: Compute the spatial correction Δ f̃v by solving Aμ(w, Δ f̃vϕ
n) = Lμ(w) − Aμ(w, vn−1

PGD
) − Aμ(w, f̃v

n
ϕn), projected along the spatial direction.

15: Update the spatial mode f̃v
n ← f̃v

n + Δ f̃v .

16: Compute the amplitude σ n
v = ‖ f̃v

n‖.

17: Normalise the spatial mode f n
v = f̃v

n

σ n
v

.

18: end while
19: Update the mode counter n ← n + 1.
20: end while

Stemming from the above framework, the predictor-corrector PGD algorithm, see [45], replaces the separated approxima-
tion in equation (A.4) by

vn
PGD

(x,μ) = vn−1
PGD

(x,μ) + σ n
v

[
f n
v (x)ϕn(μ) + Δ( f n

v (x)ϕn(μ))
]
, (A.5)

where f n
v (x) and ϕn(μ) represent the prediction of the n-th modes, whereas the correction Δ( f n

v (x)ϕn(μ)) is defined as

Δ( f n
v (x)ϕn(μ)) := Δ fv(x)ϕn(μ) + f n

v (x)Δϕ(μ). (A.6)

In addition, the computed predictions before the normalisation procedure are denoted by f̃v
n
(x) and ϕ̃n(μ) and the corre-

sponding corrections are represented by Δ f̃v(x) and Δϕ̃(μ).
The predictor-corrector PGD strategy (see Algorithm 3) thus splits the computation of each new mode in two stages: first, 

the prediction step solves one parametric problem (Algorithm 3 - Line 5) and one spatial problem (Algorithm 3 - Line 8) to 
compute ϕ̃n(μ) and f̃v

n
(x), respectively; second, the correction stage performs multiple iterations of the alternating direction 

method to determine the best corrections Δϕ̃(μ) (Algorithm 3 - Line 11) and Δ f̃v(x) (Algorithm 3 - Line 14), given the 
base solution represented by the predicted modes ϕ̃n(μ) and f̃v

n
(x).

It is worth noticing that the predictor-corrector strategy in Algorithm 3 requires the solution of one extra set of para-
metric and spatial problems per mode with respect to the classical PGD procedure in Algorithm 2. Nonetheless, in presence 
of nonlinear problems like the RANS and the SA equations studied in this work, the predictor-corrector strategy provides 
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increased accuracy in the approximation of the high-dimensional nonlinear differential operator Aμ , by successively cor-
recting the base solution identified by the predictions. This allows to reduce the number of iterations required by the 
alternating direction method to converge and the overall cost of the PGD algorithm. On the contrary, numerical exper-
iments have shown that the computational gain of the predictor-corrector PGD is negligible when linear problems are 
treated. Finally, the predictor-corrector PGD algorithm also provides a natural stopping criterion for the alternating direction 
scheme, when the norm of the computed corrections is small with respect to the amplitude of the mode under analy-
sis.

Appendix B. PGD spatial and parametric coefficients

PGD for the Navier-Stokes equations

The coefficients for the spatial iteration (14) are

α0 :=
∫
I

[
φn]3 dI, α1 :=

∫
I

[
φn]2 ζ dI, α2 :=

∫
I

[
φn]2 dI,

α
j
3 :=

∫
I

[φn]2φ j dI, α
j�
4 :=

∫
I

φnφ jφ� dI, α�
5 :=

∫
I

φnφ�ζ dI,

α�
6 :=

∫
I

φnφ� dI, α
j
7 :=

∫
I

[
φn]2 ξ j dI, α

j�
8 :=

∫
I

φnφ�ξ j dI.

(B.1)

The coefficients for the parametric iteration (17) are

a0 :=
∫
V i

σ n
U f n

U ·[∇·(σ n
U f n

U ⊗σ n
U f n

U )
]

dV ,

a1 :=
∫
V i

σ n
U f n

U ·[∇·(D∇(σ n
U f n

U ))
]

dV ,

a2 :=
∫
V i

σ n
U f n

U ·∇(σ n
P f n

P )dV +
∫
V i

σ n
P f n

P ∇·(σ n
U f n

U )dV ,

a j
3 :=

∫
V i

σ n
U f n

U ·[∇·(σ n
U f n

U ⊗σ
j

U f j
U ) + ∇·(σ j

U f j
U ⊗σ n

U f n
U )
]

dV ,

a j�
4 :=

∫
V i

σ n
U f n

U ·[∇·(σ j
U f j

U ⊗σ �
U f �

U )
]

dV ,

a�
5 :=

∫
V i

σ n
U f n

U ·[∇·(D∇(σ �
U f �

U ))
]

dV ,

a�
6 :=

∫
V i

σ n
U f n

U ·∇(σ �
P f �

P )dV ,

a�
7 :=

∫
V i

σ n
P f n

P ∇·(σ �
U f �

U )dV ,

a j
8 :=

∫
V i

σ n
U f n

U ·[∇·(σ j
t f j

t ∇(σ n
U f n

U ))
]

dV ,

a j�
9 :=

∫
σ n

U f n
U ·[∇·(σ j

t f j
t ∇(σ �

U f �
U ))
]

dV .

(B.2)
V i
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PGD for the Spalart-Allmaras equations

The coefficients for the spatial iteration (21) are

β
j

1 :=
∫
I

[
ψm]2 φ j dI, β2 :=

∫
I

[
ψm]2 ζ dI, β

j
3 :=

∫
I

[
ψm]2 ψ j dI,

β4 :=
∫
I

[
ψm]3 dI, β5 :=

∫
I

[
ψm]2 S μ

PGD
(̃Sm)dI, β6 :=

∫
I

[
ψm]3 S μ

PGD
( f m

w )dI,

β
j

7 :=
∫
I

[ψm]2ψ jS μ
PGD

( f m
w )dI, β

j�
8 :=

∫
I

ψmψ�φ j dI, β�
9 :=

∫
I

ψmψ�ζ dI, (B.3)

β
j�

10 :=
∫
I

ψmψ�ψ j dI, β�
11 :=

∫
I

ψmψ�S μ
PGD

(̃Sm)dI, β
j�

12 :=
∫
I

ψmψ�ψ jS μ
PGD

( f m
w )dI .

The coefficients for the parametric iteration (24) are

b j
1 :=

∫
V i

σm
ν f m

ν

[∇·(σ j
U f j

U σm
ν f m

ν )
]

dV ,

b2 := 1

σ

∫
V i

σm
ν f m

ν

[∇·(D∇(σm
ν f m

ν ))
]

dV ,

b j
3 := 1

σ

∫
V i

σm
ν f m

ν

[∇·(σ j
ν f j

ν ∇(σm
ν f m

ν )) + ∇·(σm
ν f m

ν ∇(σ
j
ν f j

ν ))
]

dV + 2cb2

σ

∫
V i

σm
ν f m

ν

[∇(σ
j
ν f j

ν )·∇(σm
ν f m

ν )
]

dV ,

b4 := 1

σ

∫
V i

σm
ν f m

ν

[∇·(σm
ν f m

ν ∇(σm
ν f m

ν ))
]

dV + cb2

σ

∫
V i

σm
ν f m

ν

[∇(σm
ν f m

ν )·∇(σm
ν f m

ν )
]

dV ,

b5 := cb1

∫
V i

σm
ν f m

ν

[
S x
PGD

(̃Sm)σm
ν f m

ν

]
dV ,

b6 := cw1

∫
V i

σm
ν f m

ν

[S x
PGD

( f m
w )

d̃2
(σm

ν f m
ν )2

]
dV ,

b j
7 := 2cw1

∫
V i

σm
ν f m

ν

[S x
PGD

( f m
w )

d̃2
σ

j
ν f j

ν σm
ν f m

ν

]
dV ,

b j�
8 :=

∫
V i

σm
ν f m

ν

[∇·(σ j
U f j

U σ �
ν f �

ν )
]

dV ,

b�
9 := 1

σ

∫
V i

σm
ν f m

ν

[∇·(D∇(σ �
ν f �

ν ))
]

dV ,

b j�
10 := 1

σ

∫
V i

σm
ν f m

ν

[∇·(σ j
ν f j

ν ∇(σ �
ν f �

ν ))
]

dV + cb2

σ

∫
V i

σm
ν f m

ν

[∇(σ
j
ν f j

ν )·∇(σ �
ν f �

ν )
]

dV ,

b�
11 := cb1

∫
V i

σm
ν f m

ν

[
S x
PGD

(̃Sm)σ �
ν f �

ν

]
dV ,

b j�
12 := cw1

∫
V i

σm
ν f m

ν

[S x
PGD

( f m
w )

d̃2
σ

j
ν f j

ν σ �
ν f �

ν

]
dV .

(B.4)
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