
The application of computational

fluid dynamics to the modelling

and design of high speed boats

Jack Townsend

College of Engineering

Swansea University

2020

Submitted to Swansea University in fulfilment of the requirements

for the Degree of Doctor of Engineering.

Copyright: The author, Jack Townsend, 2021.

A.A.ZASHEVA
New Stamp

Abstract

Computational fluid dynamics solvers were applied to the field of high-
speed boat design. The lattice Boltzmann method was used to assess the
water-phase of the flow around a number of high-speed hullform geometries,
and was validated against empirical industry and literature data. A heave
dynamics capability was developed to assess the heave equilibrium position
of a high speed boat, showing close agreement with industry data. A mesh
movement and evolutionary optimisation software was applied to the aero-
dynamic optimisation of a high-speed catamaran using a Reynolds-averaged
Navier-Stokes solver for modelling of the air phase of the flow.

i

Dedication

I dedicate this thesis to my granddad James Sharp, my best and earliest in-

spiration for engineering (even if I didn’t know it).

ii

Declarations

This work has not previously been accepted in substance for any degree and

is not being concurrently submitted in candidature for any degree.

Signature

11/05/2021

Date

This thesis is the result of my own investigations, except where otherwise

stated. Other sources are acknowledged by footnotes giving explicit references.

A bibliography is appended.

Signature

11/05/2021

Date

I hereby give my consent for my work, if relevant and accepted, to be available

for photocopying and for inter-library loans after expiry of a bar on access

approved by the University.

Signature

11/05/2021

Date

iii

Acknowledgements

I would like to acknowledge my supervisor Dr Ben Evans for the endless supply

of opportunities, insight, knowledge, and support.

I would also like to acknowledge Dr Ian Mabbett for nautical advice and

contacts, Dr David Naumann for help with the use of his AerOpt programme,

Swetha Lakshmy for assistance in data gathering for the VWT catamaran

simulations, Mark Watkins and Mike Smith for experimental assistance, Dr

Mark Dawson and the wider SA2C community for programming advice, and

finally all my friends and family in and out of Swansea who have generally

put up with me for 4 years.

I would like to acknowledge the support of the Supercomputing Wales

project, which is part-funded by the European Regional Development Fund via

the Welsh Government, for providing the necessary computational resources

and advice to complete this work.

iv

Contents

Nomenclature xx

1 Introduction 1

1.1 Thesis motivation and structure 1

1.2 The historical context for computational ship design 3

1.3 Theory of planing hulls . 6

1.3.1 Modes of travel for surface vessels 6

1.3.2 Geometry of a planing hull 10

1.3.3 Analytical methods for planing hulls 12

1.3.4 The Savitsky semi-empirical method for planing hulls . 14

1.4 The state of the art in planing hull CFD 21

1.4.1 Existing software . 22

1.4.2 Shortcomings of modern computational hull design . . 30

1.5 The lattice Boltzmann method for planing hullforms 31

1.5.1 An introduction to the lattice Boltzmann method . . . 31

1.5.2 Lattice Boltzmann method theory 33

1.5.3 The case for lattice Boltzmann for the modelling of plan-

ing hulls . 38

1.6 High-performance computing resources 41

2 Boat hullform solver 42

2.1 Palabos . 42

2.2 Boat hullform solver . 42

2.2.1 Solver physics . 45

2.2.2 Boundary conditions 46

v

2.2.3 Absorbing zones . 48

2.2.4 Wave forcing . 50

2.2.5 Checkpoint restarting 50

2.2.6 Output files . 50

2.3 Grid convergence study . 51

2.4 Experimental validation – SB90E flume experiments 60

2.4.1 Experimental apparatus 60

2.4.2 The 3D-printed SB90E scale model 61

2.4.3 Acquiring pressure readings 62

2.4.4 Experimental procedure 64

2.4.5 Palabos numerical simulations matching the SB90E flume

conditions . 67

2.4.6 Comparison of experimental and CFD results 69

2.5 Validation of the Palabos LBM model against analytic and ex-

perimental data on a prismatic hullform 71

2.5.1 The Chambliss and Boyd experiments 72

2.5.2 Application of the Savitsky method 77

2.5.3 Palabos numerical simulations 81

2.5.4 Results and discussion 85

3 Addition of heave dynamics capabilities to the boat hullform

solver 93

3.1 Dynamic hullform solver introduction 93

3.2 V15 prescribed dynamics study 94

3.2.1 V15 prescribed dynamics sink sensitivity study 100

3.3 Heave dynamics . 102

3.3.1 Explicit and implicit numerical methods 102

3.3.2 Forward Euler method for heave dynamics 103

3.3.3 Heave dynamics implementation 105

3.4 V15 dynamic hullform drop test 109

3.5 Dynamic validation against industry data for the V15 hullform 116

3.5.1 Dynamic validation results – 35kts, 4.0° trim 117

3.5.2 Dynamic validation results – 45kts, 3.0° trim 119

vi

3.5.3 Dynamic validation results – 55kts, 2.2° trim 121

3.5.4 Heave dynamics convergence to equilibrium compared

across speeds . 123

3.6 Heave dynamics conclusions and recommendations for future

work . 127

4 Aerodynamic optimisation of an XCat-style catamaran 128

4.1 XCat racing boats as a platform for aerodynamic optimisation. 128

4.2 The 2D design baseline for optimisation 131

4.2.1 Leading and trailing body position optimisation 133

4.3 AerOpt . 138

4.3.1 Geometry parameterisation and mesh movement 138

4.3.2 Optimisation – modified cuckoo search algorithm . . . 139

4.3.3 CFD simulations – FLITE2D 140

4.3.4 AerOpt algorithm . 141

4.4 XC10 AerOpt optimisations and results 141

4.4.1 XC10 baseline optimisation 141

4.4.2 XC10 windscreen optimisation 146

4.4.3 XC10 vent optimisation 150

4.4.4 XC10 windscreen/vent combination 153

4.4.5 XC10 2D AerOpt optimisation results 154

4.5 XC10: 3D CFD assessment of 2D optimisation 155

4.6 XC10 optimisation conclusions and recommendations for future

work . 160

5 Thesis conclusions 161

5.1 Thesis conclusions . 161

5.1.1 Capabilities of the Palabos boatHullFormSolver code . 162

5.1.2 Commercial viability of the Palabos boatHullFormSolver

code . 163

5.1.3 Recommended future work for boatHullFormSolver . . 164

5.1.4 Closing statement . 165

vii

A Appendices 166

A.1 Digitron 2020P Manometer Specifications 167

A.2 Matlab files . 170

A.2.1 jobSubmitter.m . 170

A.2.2 funcReadParamVals.m 173

A.2.3 funcReadLastSim.m 175

A.2.4 funcReadVertices.m . 176

A.2.5 funcReadForcesAndPressures.m 177

A.2.6 funcMoveBoat.m . 180

A.2.7 funcManipulateSTL.m 181

A.2.8 funcFillBoatStlGaps.m 182

A.3 Palabos files . 183

A.3.1 boatHullFormSolver.cpp 183

viii

List of Figures

1.1 One of four original Raven (top) and Swan (bottom) hulls as

used by Froude in scale testing on the River Dart in 1867 [5]. . 4

1.2 (Left) CMB-4 on display at the Imperial War Museum, Dux-

ford. The 40ft (12.2m) wooden vessel armed with a single tor-

pedo and pair of Lewis machine-guns sank a 7,087 ton cruiser,

making it an early example of the military value of small, fast

attack craft [7]. (Right) A similar CMB planing at speed during

World War I [8]. 4

1.3 An illustration of the characteristic wave train pattern by Sir

William Froude, 1877 (illustration reprinted [16]). 7

1.4 An illustration of how the characteristic difference between the

design of a planing hull and a displacement hull affects resis-

tance as Froude number increases [17]. 8

1.5 Resistance components for various hull types [20]. 10

1.6 A planing monohull design is illustrated. 11

1.7 A double stepped planing monohull is illustrated. 12

1.8 An underwater still of a single-stepped hull, courtesy of Norson

Design. 13

1.9 A planing flat plate as described by Savitsky [30]. v is the

forward velocity, d the draft, τ the trim angle, and b the plate

beam (width). λ is the wetted length to beam ratio, such that

λb is simply the wetted length. The superscript ′ denotes wetted

length relative to the far-field undisturbed water level. 16

1.10 The general pressure distribution of a planing flat plate as de-

scribed by Savitsky [30] . 16

ix

1.11 A prismatic hull of deadrise angle β is depicted. d is the draft,

or the depth of the lowest point of the transom (rear of boat).

v is the forward velocity of the boat. Lc and Lk are the wetted

chine and keel lengths respectively. b is the beam (width) of

the boat. 20

1.12 An underwater shot of a planing hull being tested at the Steven’s

Institute of technology. 21

1.13 An illustration of LGA FHP process: (a): A node on the dis-

crete hexagonal grid has six links connecting it to neighbouring

nodes. Molecules populate the grid at these nodes. (b): Dur-

ing an iteration of the model, two example particles travel from

their node to a neighbouring node along a link. (c): Collision

takes place, and each molecule at the node is assigned a new

link depending on their initial state (either the blue or the or-

ange state would occur, with momentum, p, being conserved). 33

1.14 The D3Q19 stencil is depicted. Each arrow represents a lattice

velocity and depicts the connectivity to the neighbouring grid

node. Note that e1 is located at the centre with length zero,

representing particles at rest. 36

1.15 Palabos speed-up curves on a Blue-Gene/P supercomputer up

to 16,384 cores [89]. 40

2.1 The virtual tow tank domain (black outline), with free surface

interface (blue) and an example hullform (pink). 43

2.2 A 2-dimensional example of a immersed boundary method im-

plementation, as depicted by De Rosis [95]. The unstructured

Lagrangian mesh of the immersed body (red) is shown in rela-

tion to the Eulerian fluid grid (black). 47

2.3 The typical position and dimensions of the inlet/outlet absorb-

ing zone volumes are shown in red. 49

2.4 The typical position and dimensions of the lateral absorbing

zone volumes are shown in blue. 49

x

2.5 The typical position and dimensions of the ceiling absorbing

zone volume is shown in yellow. 49

2.6 Voxelisations of the boat geometry on the underlying grid seen

from below for each level of grid refinement. 55

2.7 A slice down the centreline of the hull for each level of grid

refinement shows the voxelisation of the hull geometry on the

underlying grid. 56

2.8 The trend towards the extrapolated value is shown in context

of the grid convergence simulations. 58

2.9 The Armfield S6 MkII tilting flume in the Swansea University

Civil Engineering Laboratory. 61

2.10 The custom-built flume rigging from Dr David Carswell’s ex-

periments [111], fabricated by Mr. Graham Foster. 62

2.11 Multiple views of the SB90E CAD geometry and reference pho-

tos of the SB90E, courtesy of Storebro [112]. 63

2.12 The SB90E 1:25 scale model as retrieved from the printer work

tray (left), and the coated model mounted on a stand (right). 64

2.13 The location of the pressure tappings on the underside of the

hull are shown (left), along with the tube attachment points on

the other end, inside the boat “cabin” (right). 65

2.14 A diagram of the experimental flume set-up is shown (not to

scale). 66

2.15 The numbering convention for the hull pressure tappings on

both port and starboard (stbd) sides. 67

2.16 Experimental flume pressure results. The mean average values

for the 60 second duration are given by the squares/circles, and

whiskers show the minimum and maximum pressures measured

in that period. The tapping position numbers refer to positions

shown in Fig. 2.15. 70

2.17 The pressure distribution across the hull is shown time-averaged

over the whole simulation. 71

xi

2.18 Chambliss and Boyd’s 20° deadrise hull cross section with di-

mensions converted to metric. 72

2.19 The 20° deadrise hull model, as depicted by Chambliss and

Boyd [29]. 72

2.20 The experimental setup, as depicted by Chambliss and Boyd. . 73

2.21 An example of the underwater photography that informed the

wetted length values of the keel and chines in the Chambliss

and Boyd experiment [29]. 74

2.22 A comparison of the experimentally measured draft versus the

computed draft in the Chambliss and Boyd experiments [29]

for trim angles of 6° and 12°. 75

2.23 Graphical representation of the relation given in Equation 2.29

derived by Savitsky and Ross [114, 30] for the range of 1.0 ≤

Fr ≤ 13.0. Here v1 is the mean bottom velocity. 79

2.24 The increase in non-dimensional wetted length-beam ratio due

to whisker spray (∆λ) is plotted as a function of deadrise angle

(beta) and trim (here denoted by t) [33]. 80

2.25 an example of the virtual flume setup in Palabos for the case

of scenario 4, both at initiation (above) and 1 second into the

simulation (below). The hull geometry (pink), free surface in-

terface (blue), and domain bounds (black) are shown. 83

2.26 The wetted keel length (Lk) and wetted chine length (Lc) for

both the Chambliss and Boyd experiments and Palabos numer-

ical results are shown. 85

2.27 Scenario 4 is depicted with the hull (pink) seen from the side

and a horizontal plane (grey) at y = 0.0001m to reveal the

pile-up of water (blue) ahead of bow. Flow is moving in the

x-direction. 86

2.28 Savitsky’s description of the regions on a planing hull compared

to observations from the Palabos numerical simulations. 88

xii

2.29 Coefficient of lift results from the Savitsky analytical predic-

tions, Palabos numerical simulations, and Chambliss and Boyd

experiments are compared for each of the six scenarios given in

Table 2.5. The coefficient is normalised by both beam (b) and

wetted area (S). 90

2.30 Coefficient of lift results from the Savitsky analytical predic-

tions, Palabos numerical simulations, and Chambliss and Boyd

experiments are compared for each of the six scenarios given in

Table 2.5. The coefficient is normalised by both beam (b) and

wetted area (S). 91

3.1 The V15 at sea, courtesy of Privinvest [115]. 94

3.2 The lift force response of the V15 for the prescribed dynamics

experiment. 96

3.3 The V15 hull is shown from the side at (from top to bottom)

t = 0.5s, t = 1.0s, t = 1.5s, and t = 2.0s through the prescribed

motion experiment. A slice made through the symmetry plane

of the hull is coloured by fluid velocity. The free surface is

depicted in blue with half opacity. 97

3.4 The lift force response of the V15 for the prescribed dynamics

experiment at 40mm less sink (i.e.: 40mm higher in the water)

is compared to the results at the original positions. 100

3.5 A flowchart detailing the workflow of the dynamics implementa-

tion. The process begins with the submission of the batchfile.job

file in the working directory to the HPC cluster job scheduler. 108

3.6 The heave motion response of the V15 hull is plotted, show-

ing the trend towards a steady-state equilibrium position. The

y-axis is based on sink measured at the lowest point of the tran-

som. The hull is dropped from a position of 560mm sink, and

reaches heave equilibrium at a position of 898mm sink. Note

the infrequent output of position data causes a low resolution

curve; this is resolved in later plots of heave motion. 110

xiii

3.8 The V15 drop test is seen from the side to illustrate heave

motion in snapshots of 0.5s intervals. The hullform is pink,

and the free surface blue with 50% opacity. 113

3.10 The V15 drop test is seen from the side to illustrate heave

motion in snapshots of 0.5s intervals. The hullform is pink,

and the free surface blue with 50% opacity. A slice through

fluid domain along the centreline of the hull is coloured by fluid

velocity. 115

3.11 The heave displacement (blue) and heave velocity (red) are

plotted against time for the 35kts scenario. The heave displace-

ment is zeroed to the industry estimated equilibrium value of

700mm sink measured at the deepest part of the transom. . . 117

3.12 The heave displacement (blue) and heave velocity (red) are

plotted against time for the 45kts scenario. The heave displace-

ment is zeroed to the industry estimated equilibrium value of

600mm sink measured at the deepest part of the transom. . . 119

3.13 The heave displacement (blue) and heave velocity (red) are

plotted against time for the 55kts scenario. The heave displace-

ment is zeroed to the industry estimated equilibrium value of

520mm sink measured at the deepest part of the transom. . . 121

3.14 The heave displacement for the dynamics simulations are plot-

ted together. The convergence to equilibrium patterns and time

taken can be seen. 123

3.15 The final timestep of each of the simulations is shown from

below, with hull geometry (pink) and free surface (blue with

50% opacity) shown. 125

3.16 The final timestep of each of the simulations is shown from

behind, with hull geometry (pink) and free surface (blue with

50% opacity) shown. 126

4.1 A typical XCat racing boat at speed [117]. 128

xiv

4.2 The area of aerodynamic interest in an XCat-style geometry is

depicted. Note that this geometry is modified from an XCat

class geometry by industry partners Norson Design and is re-

ferred to as the XC10. Modifications include a multi-wing aero-

foil cabin and leading/trailing bodies. 129

4.3 The A2V project prototype, a similar conceptual prototype ves-

sel that leverages aerodynamic lift for drag reduction [118]. . . 130

4.4 The 2D cross section of the XC10 centre body is depicted with

the x-axis pointing in the direction of relative airflow. This sec-

tion is along the centreline of the 3D boat. From left to right

the bodies are referred to as the leading control surface, the

cabin, the fixed secondary body, and the trailing control sur-

face. The leading and trailing control surfaces are depicted in

their high-lift position as found by analysis presented in Section

4.2.1. 132

4.5 The Latin Hypercube Sampling (LHS) points for design param-

eters φ1−3 is visually depicted scattered throughout the design

space. Exact values for each can be found in Table 4.3. 134

4.6 The physical context of the design parameters φ1−3 is shown.

The datum for each body is taken from the leading edge of the

aerofoil chordline. 135

4.7 The mesh is seen from the side and rear of the boat to depict

the mesh refinement zones for the VWT simulations. 135

4.8 The lowest and highest lift leading and trailing body configura-

tions are shown as simulated in FLITE2D, the solver that was

used for the optimisation described in Section 4.1. The 276.8%

increase in lift can be seen to arise mainly for the increase in

pressure within the tunnel. This is caused by the “open” con-

figuration at the leading body, and “closed” position of the

trailing body. Note the pressure plotted is total pressure minus

atmospheric pressure. 137

xv

4.9 The AerOpt mesh parameterisation scheme is depicted in a

general case [120]. The mesh is broken down into nodes at the

geometry surface, with all other nodes being considered domain

nodes. The control nodes are a special user-selected type of

nodes that are free to move with their user-defined constraints,

indicated by the red bounding boxes. 139

4.10 AerOpt’s procedure is depicted as a flowchart for n number of

generations (iterations) [119]. 142

4.11 The control node placement and bounds are depicted for the

optimisation of the baseline geometry. 143

4.12 The evolution of the nests across generations for the baseline

optimisation. In this case fitness is the lift coefficient. 144

4.13 The pre- and post-optimised meshes for the baseline optimisa-

tion are shown. The mesh refinement around points of expected

flow complexity and the consequences of the mesh movement

can be seen. 144

4.14 The pre- and post-optimisation geometry outlines are compared

directly. 145

4.15 The evolution of the nests across generations for the windscreen

optimisation. In this case fitness is the lift coefficient. 146

4.16 The pre- and post-optimised meshes for the windscreen opti-

misation are shown. The mesh refinement around points of

expected flow complexity and the consequences of the mesh

movement can be seen. 148

4.17 The pre- and post-optimisation geometry outlines are compared

directly. 149

4.18 The evolution of the nests across generations for the vent opti-

misation. In this case fitness is the lift coefficient. 151

4.19 The pre- and post-optimised meshes for the vent optimisation

are shown. The mesh refinement around points of expected

flow complexity and the consequences of the mesh movement

can be seen. 152

xvi

4.20 The pre- and post-optimisation geometry outlines are compared

directly. 152

4.21 The windscreen and vent optimisation results are shown with

their resulting combined geometry. 153

4.22 The incremental increase in Cl is shown through the 2D AerOpt

optimisation process. 154

4.23 The two 3D geometries are compared. Each is based on an ex-

trusion of the 2D baseline and optimised geometry respectively.

The basic extrusion is used rather than a realistic form tapered

towards the outside of the boat in order to best assess the 3D

performance of the 2D optimisation. 157

4.24 The velocity profile from the VWT simulations for both geome-

tries is shown. Large low velocity regions at the sharp edge of

the extruded centrebody side indicate separation of flow. . . . 158

4.25 The pressure coefficient distribution from the VWT simulations

for both geometries is shown. An increase in pressure in the

tunnel is visible in the optimised version. 159

xvii

List of Tables

2.1 Grid values for each grid convergence simulation and the mean

average time taken for a timestep iteration. 52

2.2 Grid convergence study control parameters. 54

2.3 Grid convergence simulation results. 57

2.4 SB90E validation simulation parameters. 68

2.5 Selected scenarios from the Chambliss and Boyd data set for

the 20° deadrise hull. 76

2.6 Chambliss and Boyd experimental measurement absolute error. 76

2.7 Prismatic validation Palabos simulation control parameters. . 82

2.8 Prismatic validation Palabos simulation parameters for each

scenario. 84

2.9 Prismatic validation results (C&B refers to Chambliss and Boyd

data). 92

3.1 Industry-provided V15 planing equilibrium position values for

various speeds. 95

3.2 Prescribed dynamics experiment parameters and computational

resource requirements. 99

3.3 V15 dynamics drop test parameters and computational resource

requirements. 111

3.4 Industry-provided V15 planing equilibrium position values for

various speeds. 116

3.5 V15 dynamics: 35kts, 4.0° trim – simulation parameters and

computational resources. 118

3.6 V15 dynamics: 45kts, 3.0° trim – simulation parameters and

computational resources. 120

xviii

3.7 V15 dynamics: 55kts, 2.2° trim – simulation parameters and

computational resources. 122

3.8 The mean average sink during the equilibrium period of each

simulation is presented with a standard deviation and percent-

age variance of the mean value against the industry-predicted

value. 124

4.1 Design space limits relative to the industry-provided baseline. 133

4.2 Simulation parameters for the VWT simulations informing lead-

ing and trailing body positions. 135

4.3 LHS scattered designs and their aerodynamic results as evalu-

ated by Virtual Wind Tunnel. Geometries 12, 22, and 23 have

no results due to their φ values producing self-intersecting ge-

ometries. S = frontal area, CD = coefficient of drag, CL =

coefficient of lift, L = lift force. 136

4.4 AerOpt and FLITE2D parameters for the optimisation of the

baseline XC10 geometry with leading and trailing bodies in

high-lift configuration. 143

4.5 AerOpt and FLITE2D parameters for the optimisation of the

windscreen of the post-optimisation XC10 geometry with lead-

ing and trailing bodies in high-lift configuration. 147

4.6 AerOpt and FLITE2D parameters for the optimisation of the

vent of the post-optimisation XC10 geometry with leading and

trailing bodies in high-lift configuration. 151

4.7 Results of the VWT testing of the 3D extruded geometries.

Note that a unitary reference area of S = 1m is used in calcu-

lation of the aerodynamic coefficients. 156

4.8 Simulation parameters for the VWT simulations assessing changes

between 2D and 3D modelling. 156

xix

Nomenclature

β Deadrise angle, °

γ Ratio of specific heats

λ Wetted length to beam ratio

λ′ Wetted length to beam ratio neglecting local wave rise

µ Dynamic viscosity, Pa− s

ν Kinematic viscosity, m2/s

φ Design parameter

ρ Density of fluid, kg/m3

σ Surface tension coefficient

τ Trim angle, °

e Particle velocity vector in LBM context, e = (ex, ey, ez)

u Macroscopic flow velocity in LBM context, m/s2

x Particle position vector in LBM context, x = (x, y, z)

b Beam (width) of boat

C∆ Load coefficient, C∆ = v√
ρb3

CD 3-dimensional drag coefficient, CD = D
1
2
ρSv2

Cd 2-dimensional drag coefficient, Cd = D
1
2
ρlv2

Cf Schoenherr friction coefficient

xx

CL 3-dimensional lift coefficient, CL = L
1
2
ρSv2

Cl 2-dimensional lift coefficient, Cl = L
1
2
ρlv2

Cv Speed coefficient, equivalent to Froude number

D Drag or resistance force

d Draft (depth) of boat

f LBM velocity distribution function

fCN Degrees of freedom per control node

Fr Froude number, Fr = v√
gL

g Acceleration due to gravity, m/s2

L 3-dimensional reference length, m

L Lift or heave force

l 2-dimensional reference length, m

Lc Wetted length of the chine

Lk Wetted length of the keel

m Mass, kg

Ma Mach number

NCN Number of control nodes

p Pressure, Pa(kg/m2)

R Universal gas constant, 8.314J/(Kmol)

Re Reynolds number, Re = ρvL
µ

= vL
ν

S Reference area, m2

T Temperature, K

t Time, s

xxi

uLB Lattice velocity in Palabos context

uref Reference velocity in Palabos context

V Volume, m2

v Velocity, m/s

xxii

Chapter 1

Introduction

1.1 Thesis motivation and structure

This work was motivated initially by industrial interest in developing tools to

predict high speed planing hull behaviour with the long-term goal of a water

speed record. The industry goals morphed throughout this project, changing

with the involvement of a secondary industry partner, Norson Design, to a

more general application of CFD to hullform design. Along with this second

partnership came interest in the topic of aerodynamic optimisation of a high

speed catamaran.

Throughout these directional shifts, the underlying goal remained: the

development of a modelling capability for high-speed boats in a manner that

would be useful to an industrial entity. This took the form of the novel

application of the Lattice Boltzmann Method (LBM) and High Performance

Computing (HPC) to the problem of planing hulls to overcome difficulties

associated with modelling high-speed hulls that were noted in the literature.

The scope of the physics experienced by the hullforms studied is limited to

calm water conditions as a result of the water speed record origins, in which

operation would only be conducted in such conditions. Largely because of the

calm water environment, interaction between air and water is assumed to be

negligible and the modelling complexity is reduced to a single-phase solution

(water only) with free surface modelling to capture the fluid interface between

air and water. The action of air on the fluid interface is captured by a constant

1

Thesis motivation and structure

atmospheric pressure term in the free surface modelling.

As Norson Design joined the project, interest in modelling the water phase

continued, and an additional work package on the modelling of the aerody-

namic performance of a novel catamaran design was undertaken. This work

focused on the aerodynamic modelling and optimisation of the unwetted por-

tion of a catamaran design. Novelty in this work lies in leveraging the aerody-

namic lift created in the “tunnel” area bounded by the catamaran hulls, water

surface, and main cabin. By modifying the cabin geometry, aerodynamic lift

could be increased, in turn reducing the water-wetted area and thus hydrody-

namic drag; this work is presented in a stand-alone chapter. The structure of

the thesis is briefly outlined as follows:

� Chapter One – planing hulls are defined and their physics described.

The process of selecting an approach to modelling them is described..

� Chapter Two – the solver and methods selected are described in detail.

The solver is validated against analytical and empirical data.

� Chapter Three – the addition of dynamics capabilities to assess the

heave equilibrium of a hull are described and results are presented. This

capability is validated against industry data.

� Chapter Four – a supplemental project on the aerodynamic optimisation

of the non-water-wetted portion of a racing catamaran is presented as a

stand-alone chapter.

� Chapter Five – an overall summary and conclusion to the thesis findings

is given.

Jack Townsend 2

The historical context for computational ship design

1.2 The historical context for computational

ship design

The design and use of ships has a long history before the advent of the com-

putational methods used in their design today. Prior to the 18th century,

shipbuilding was more of a craft than a science: designs were arrived at along

axioms of the institutional experience of shipwrights and their apprentices

rather than scientific principles and data [1]. Such a design philosophy was

not conducive to radical innovation as new ships were typically built immedi-

ately at full scale, making any changes outside of the traditional configurations

very risky.

In 1857 – prompted by concerns over the Great Eastern, by far the largest

ship built to date – William Froude was tasked with investigating ship stabil-

ity in rolling [2]. Froude presented a landmark paper on the stability of ships

at sea to the Institution of Naval Architects in 1861 [3] and was subsequently

tasked with finding the most efficient hull shape. To do this, Froude empiri-

cally tested a series of scale models and postulated the dimensionless Froude

number to relate scale test results to their full scale counterparts. Two models,

Raven and Swan, were assessed (see Figure 1.1). Although the sharper bow of

Raven conformed to John Scott Russell’s waveline theory [4], the blunt bow

of Swan produced less resistance [2]. This finding was successfully validated

by full scale tests carried out by the Admiralty, leading to the construction of

the first publicly financed ship testing tank [2]. The mathematical principles

and empirical procedures pioneered by Froude marked a new age in the un-

derstanding of ship physics, and form the basis of the design of modern ships

to this day.

At the turn of the 20th century, the development of smaller and more

powerful motors brought about the advent of planing vessels. A planing vessel

is primarily lifted – when at speed – by a hydrodynamic reaction force as

opposed to a traditional displacement hull, which is held up primarily by

hydrostatic force (i.e.: buoyancy). A full description of the physics of a planing

hull is given in Section 1.3. By planing, vessels could reach far greater speeds

Jack Townsend 3

The historical context for computational ship design

Figure 1.1: One of four original Raven (top) and Swan (bottom) hulls as used
by Froude in scale testing on the River Dart in 1867 [5].

Figure 1.2: (Left) CMB-4 on display at the Imperial War Museum, Duxford.
The 40ft (12.2m) wooden vessel armed with a single torpedo and pair of Lewis
machine-guns sank a 7,087 ton cruiser, making it an early example of the
military value of small, fast attack craft [7]. (Right) A similar CMB planing
at speed during World War I [8].

than their displacement hull contemporaries, making them highly valuable

military assets in the form of high speed torpedo boats that posed a danger

to larger and more expensive battleships and cruisers. For example the Royal

Navy’s World War I era Coastal Motor Boats (CMBs) were most distinguished

in 1919 when a team of CMBs (displacement of 5 tonnes each, see Figure 1.2)

sank Russian cruisers Oleg and Pamiat Azova (displacement 7,087 and 6,674

tons respectively), a significant achievement for small, fast, cheap attack craft

[6]. In World War II, German schnellboote used similar designs and tactics to

harass Allied convoys in shallow waters around Britain, turning British east

coast shipping routes into a perilous “E-boat alley” [6]. Fast attack craft have

since taken a permanent role in the composition of navies around the world.

Jack Townsend 4

The historical context for computational ship design

High-speed planing boats now make up nearly the totality of small to

medium recreational boats and a large portion of military patrol boats [9]. As

such, a great deal of modern ship design, including scale tow tank testing and

analytical techniques, are targeted at planing vessels.

Tow tank and basin tests for the design of hulls, planing or otherwise,

are typically labour and capital intensive, expensive, contribute to long lead-

times, and limit the scope for modification to the hullform [10]. Modern

maritime design is one of the many fields where computational techniques

have revolutionised the design process. Computational methods now play

some role – to varying degrees – in many ship designs. Few to no hullform

designs are solely evaluated using computational models, as is often the case

with CFD in general; sufficient uncertainty in the many complex input factors

to a given CFD simulation mean that for critical designs CFD is backed up by

experimental testing where possible. The advantage of CFD lies in the ability

to interrogate the flow field in ways experimental testing cannot, high degree

of repeatability, and (depending on the given case) cheaper experimentation

due to less expensive equipment and/or facility requirements. Thus the ability

to guide the design to a near-optimal starting point with CFD that can later

be confirmed and refined with experimental testing has the scope to greatly

reduce the cost and lead-time associated with physical tests [11]. Due to the

hullform design often being prerequisite to further ship design work, reduction

in the lead-time of hullform design is desirable from an economic perspective.

Despite the wide variety of computational techniques available to the modern

maritime industry, it has been suggested that the take-up of such techniques

has not reached its full potential [12, 13]. Reasons for this, and discussion

on the desirable features of future marine CFD capabilities are, is explored in

Section 1.4.2.

Jack Townsend 5

Theory of planing hulls

1.3 Theory of planing hulls

1.3.1 Modes of travel for surface vessels

Hullforms can be broadly grouped into displacement hulls and planing hulls.

Displacement hulls operate by displacing a mass of water equivalent to their

weight, thus providing hydrostatic lift to keep them afloat. Displacement

vessels are typically larger, slower or both: for example, container vessels and

cruise ships, or a simple rowboat.

Resistance on a displacement hull underway is composed of pressure drag

and viscous drag. The viscous component, Dv, is given by Equation 1.1.

Dv =
1

2
ρv2SCv (1.1)

where Cv is the coefficient of viscous drag and S is wetted area. The the-

oretically optimal shape to maximise internal volume and minimise wetted

surface area is a sphere, however this will incur high pressure drag due to

large separation. The optimal shape to minimise Cv is more complex [14],

but for a minimum internal volume will roughly approximate a thin, slender

body. Thus to reduce overall drag, naval architects must assess the trade-off

of reduction in Cv with reduction in surface area.

In the 19th century, John Scott Russell observed that by some component

of ship resistance must come from the making of waves, and asserted that by

using mathematically defined “wave-line” geometries this wave-making com-

ponent could be partly or wholly eliminated [15]. The wave-line theory was

supplanted by Sir William Froude’s philosophy of ship design following the

Raven and Swan scale model experiments, where Swan produced lower resis-

tance despite Raven conforming to wave-line theory. In these tests Froude set

out scaling and resistance laws and defined the speed-length ratio, given by

Equation 1.2

speed-length ratio =
v√
L

(1.2)

where v is velocity of the ship and L is the wetted length. This was later non-

Jack Townsend 6

Theory of planing hulls

Figure 1.3: An illustration of the characteristic wave train pattern by Sir
William Froude, 1877 (illustration reprinted [16]).

dimesionalised by adding a gravity term, g – thus defining the ratio between

inertial and gravitational flow effects – and became known as the Froude num-

ber [2]. In this manner it is analogous to the Mach number in aerodynamics.

The Froude number is given by Equation 1.3.

Fr =
v√
gL

(1.3)

The Froude number remains to this day a useful and universal tool for

naval architects in scale testing and flow regime definitions.

John Scott Russell’s observation of the existence of wave-making resistance

was not incorrect, wave-line theory was simply not the best way to minimise

it. A characteristic wave train from a ship, as illustrated by Froude, is shown

in Figure 1.3. The transverse wave starts at the bow, and can be assumed

to travel at roughly the same speed as the vessel; its length will increase as

speed increases, as given by the wave theory Equation 1.4.

λ =
2πv2

g
(1.4)

where λ is wavelength. As this bow wave pattern lengthens, either a peak or

trough will coincide with a similar wave generated at the stern. When the

wavelength of the bow wave matches the length of the vessel, the stern sits

Jack Townsend 7

Theory of planing hulls

Figure 1.4: An illustration of how the characteristic difference between the
design of a planing hull and a displacement hull affects resistance as Froude
number increases [17].

in a large trough of the bow wave, causing large constructive interaction and

sharply increasing wave-making resistance. The speed at which this occurs is

referred to as “hull speed”, and occurs at a Froude number of roughly 0.40.

Substituting in a value of 0.4 for Froude number and 9.81m/s2 for gravitational

acceleration (g), hull speed is given by Equation 1.5

Fr =
v√
gL

→ vhull ≈ 0.4
√
g
√
LWL ≈ 1.25

√
LWL (1.5)

where LWL is the length of the wetted waterline of the hull in meters and vhull is

the hull speed in meters per second. In Froude’s era hull speed was considered

effectively a “speed limit” for a hull, however with modern propulsion and

design this is no longer the case in practice. Regardless, this does mean that

displacement hulls become inefficient at higher Froude numbers.

Planing hulls, in contrast, can reach much higher Froude numbers rela-

tively efficiently by rising out of the water with their lift component dominated

by the hydrodynamic reaction force of the water as opposed to hydrostatic dis-

placement. In this sense a planing hull is designed to act as a lifting surface

as opposed to a displacement volume, and so the underlying physics qualita-

tively change. The character of the resistance acting on a planing hull versus

a displacement hull as Froude number increases is illustrated in Figure 1.4

[17].

Jack Townsend 8

Theory of planing hulls

In Figure 1.4 a “hump” region is seen for the planing craft as it approaches

its hull speed. As speed increases, the lifting nature of a planing hull leads

to an increase in lifting hydrodynamic force to the point the boat rises from

the water, reducing wetted area and displacement lift. It is at the point hy-

drodynamic lift exceeds hydrostatic that the boat is considered to be planing,

though this transition region is often considered a distinct mode of travel in

itself and gives the name to semi-planing (or semi-displacement) boats that

operate predominantly in this region. In this transition region the boat will

seem to be “climbing” its bow wave and trim angle will increase. As speed

further increases, the boat typically rises onto the surface with a reduced trim

angle and reduced wave making resistance, typically leading to a increase in

efficiency as seen by the post-hump dip in Figure 1.4. At this point the boat

is firmly in the planing regime, and resistance will once again increase with

speed as new terms like spray drag and appendage drag increase [18]. This

phenomenon has been observed in computational solutions of planing hull

behaviour [19].

Resistance in planing mode is characteristically different to resistance in

displacement as new terms become appreciable: spray drag caused by the

fine spray generated by high speed flow fore of the spray root, and appendage

drag caused by any protrusions from the smooth hullform (typically propulsion

components) [18]. A breakdown of resistance for various ship types is given in

Figure 1.5, where the tanker and container ship represent displacement vessels,

the fishing vessel is semi-displacement, and finally a generic planing vessel [20].

Note that flat plate friction (i.e., viscous boundary layer resistance) dominates

the resistance for the tanker and container ships due to their large wetted area.

Some forms of resistance are exclusive to the planing hull, namely spray drag

and appendage drag, while form resistance is negligible as the boat is planing

on the surface. It should be noted this is only inclusive of the resistance

associated with the water-wetted portion of the vessels, and aerodynamics for

the air-wetted portion can be significant.

Jack Townsend 9

Theory of planing hulls

7.5%

5%

15%

2.5%

5%

10%

2.5%

10%

15%

2.5%

25%

57.5%

5%

35% [R
f
]

15%

22.5% [R
l
]

20% [R
s
]

0

10

20

50

60

70

80

90

100

Flat plate friction

Roughness

Form e�ect friction

Form e�ect pressure

is
ta

n
c
e

G
ra

v
it

y

Tanker Container

ship

Fishing

vessel

Planing

boat

Figure 1.5: Resistance components for various hull types [20].

1.3.2 Geometry of a planing hull

Before a closer look at the physics of a planing hull, a rundown of the nomen-

clature attributed to planing hulls is necessary.

Figure 1.6 shows a simple planing monohull design. Monohulls are de-

fined by having a single hull, as opposed to catamarans (twin hull), trimarans

(triple hull), outriggers, or more exotic configurations. As is typical for most

monohulls, the keel can be seen to run along the axis of symmetry at the low-

est point, with the deadrise surface rising up to a sudden reflex that defines

the chine. The hull surface then rises from the chine approximately vertically

to the top of the hull. The area below the chine will be of most interest as

the wetted area is typically confined here when planing. This configuration

of deadrise surface from keel to a chine is typical, if not definitive, of planing

hulls and is referred to as a vee-bottom hull or, when particularly aggressive,

a deep-vee hull. The beam is defined as the width of the hull, and can be seen

to reduce towards the front as is typical of most hulls. The transom is the

Jack Townsend 10

Theory of planing hulls

flat end at the stern (rear) where propulsion devices are typically mounted/-

housed. Trim angle refers to the angle between the keel and the horizontal,

and is analogous to the angle of attack of a lifting surface.

Draft is the term used to described the maximum depth of the hull below

the waterline, and is used interchangeably with “sink”. Due to the typical

positive trim angle of planing boats, the deepest part of a planing hull will be

at the intersection of the keel with the transom, and thus the depth of this

point usually defines the draft or sink of the hull.

Deadrise angle often varies along the length of planing boats. Smaller

deadrise angles tend to produce lower resistance, but also poor stability and

seakeeping properties; thus the typical shape of a warped hull will have a

steep deadrise at the bow to assist with wave-piercing and directional stability,

flattening out to a shallower deadrise towards the stern to reduce resistance

where stability is less affected due to the stern typically being submerged

in planing, thus “biting” rather than “bouncing” off of incoming waves [21].

Extreme cases of this configuration are referred to as wave-piercing hulls.

In Figure 1.7 a more complex planing monohull is shown. In this design

a double-step is employed. Steps are transverse discontinuities in the planing

surface of the hull that usually run from chine to chine. At the chine the step

often cuts an opening into the chine line to encourage air entrainment aft of

the step (see side view in Figure 1.7). Steps have the effect of reducing the

drag-to-lift ratio by reducing wetted area as flow separates off the step edge

BOTTOM

SIDE

FRONT

BOWTRANSOM

KEEL

CHINE

DEADRISE

SURFACE

Figure 1.6: A planing monohull design is illustrated.

Jack Townsend 11

Theory of planing hulls

BOTTOM

SIDE

FRONT

STEP 1STEP 2

SPRAY RAILS

Figure 1.7: A double stepped planing monohull is illustrated.

and air is entrained via the opening at the chine [22]. On a hull with n steps,

there will be n+ 1 high pressure stagnation patterns aft of the step where the

flow reattaches. This has the effect of moving the overall centre of pressure

aft and limiting the trim angle variability with Froude number to near-zero

once planing, increasing comfort [22].

Spray rails can be seen to run longitudinally along the deadrise surfaces in

Figure 1.7. Spray rails can act to deflect spray away from the hull, reducing

spray drag and in some cases increasing lift, though this is dependant on many

design factors such as deadrise angle and spray rail cross section shape and

sizing [23].

An example of the flow separation aft of a single-stepped hull is shown in

Figure 1.8, where reduction in wetted area due to air entrainment can clearly

be seen. Some air entrainment along the spray rails can also be seen.

1.3.3 Analytical methods for planing hulls

There exists today a number of approaches to the analytic description of plan-

ing bodies, for example the Savitsky, Morabito, CAHI, Payne, and Shuford

methods. These methods generally have a theoretical basis centred on clas-

sical mechanics, and are then modified to fit empirical data. An analytic

approach to the complex flow around a planing body will necessarily require

a lot of simplifications and assumptions, as a great deal of the more complex

fluid behaviour cannot practically be fully captured. These assumptions may

Jack Townsend 12

Theory of planing hulls

Figure 1.8: An underwater still of a single-stepped hull, courtesy of Norson
Design.

be accurate under certain conditions or in specific ranges, or combinations of

the many relevant parameters. Fitting to empirical data goes some way to

correcting this, but makes the method reliant on the scope and accuracy of

the underlying empirical data.

The benefit of such analytic approaches is massively reduced order of com-

plexity and computing cost when compared to a full 3D fluid simulation of the

flow. They also allow designers without access to expensive tow tank testing

facilities to get rough estimates of craft behaviour and tailor a hull to certain

conditions. For this reason all of the above methods enjoy a degree of popu-

larity among designers of planing craft – especially smaller designers with less

access to expensive testing equipment – and serve as reasonable benchmarking

methods in the field of CFD for planing hulls.

The mentioned methods have known limitations, arising from either the

assumptions that underpin them, the range of results in the empirical data

they are fitted to, or even the accuracy of those experiments. For this work it

was determined that the Savitsky method would be used to benchmark solver

performance alongside a set of empirical data. Masri et al composed a review

of the mentioned methods [24], in which the following relevant properties of

the Savitsky method were outlined:

� It is the most widely used analytic method in speedboat design, with a

Jack Townsend 13

Theory of planing hulls

wealth of related work in the literature.

� Applicable to steady state conditions only.

� Irrational behaviour at high deadrise angles (β > 50°).

� Lack of spray drag accounting.

� Results begin to deviate from experimental data at high trim angles

(τ > 4°).

As this method will be used to benchmark against numerical results of a

solver that, initially, necessitates a fixed geometry, the limitation of steady-

state conditions only are not of concern for preliminary benchmarking. The

deadrise limit is not particularly restrictive, and selected empirical bench-

marking data is for a hull of 20° deadrise, well within the limit of β < 50°.

Spray drag accounting was added to the method later, as is expanded on in

Section 1.3.4, and will be included in the comparisons. The trim angle restric-

tion is not ideal, but if optimisation and modelling is targeted at a planing

cruise regime then trim angle should not be excessively beyond this limit for

most cases. In any case, comparisons can be made within the valid trim an-

gle range, but this known behaviour should be borne in mind for higher trim

angles.

Based on these considerations, benchmarking of the numerical methods

developed in this work will be made against the Savitsky method and a set of

empirical data (which is expanded on in Section 2.5.1). Due to the Savitsky

method being based on the simplified physics of a planing hull, the method is

expounded on in detail in the following section both to describe the method

and to give understanding of the terminology and physics surrounding planing

bodies.

1.3.4 The Savitsky semi-empirical method for planing

hulls

Planing hulls were the focus of a number of experiments performed at the

NACA towing tank in Langley and the Davidson Laboratory in New Jersey

Jack Townsend 14

Theory of planing hulls

in the mid-1900s [25, 26, 27, 28, 29]. In 1964 Daniel Savitsky published a

paper on the behaviour of prismatic planing hulls, defining semi-empirical

equations based on these experiments that describe lift, drag, wetted area,

centre of pressure, and porpoising limits (a mode of longitudinal instability)

as functions of speed, trim, deadrise angle, and loading [30]. This method has

since been added to: in 1976 the findings were relayed in a manner accessible

for designers [31] and Blount and Fox added power prediction [32]; in 2007 a

whisker spray drag term was added to improve the overall resistance evaluation

[33]; more recently new methods for warped hulls have been developed based

on Savitsky’s reduced method [21].

The Savitsky method begins by considering the physics of a planing flat

plate, as illustrated in Figure 1.9, before moving on to hulls with a deadrise

angle. In Figure 1.9, τ is the trim angle, d the draft (depth), and v the forward

velocity of the plate. Following Savitsky’s conventions, λ is the mean wetted

length to beam ratio taking into account the local wave rise, and λ′ is the

mean wetted length to beam ratio based on the undisturbed far-field water

surface; thus these values multiplied by beam, b, are simply the respective

wetted lengths. The way in which a wave rise is generated ahead of a planing

flat plate is shown in an exaggerated manner in Figure 1.9. Also depicted

is how this wave rise continues up the plate forming the spray region. The

contribution of this spray region is neglected for now, but is incorporated in

later Savitsky analysis [31].

The corresponding pressure profile is shown in Figure 1.10, with the stag-

nation pressure defined from Bernoulli’s principle.

The pressure on a planing hull is comprised of two component pressures,

the static pressure arising from displacement, and dynamic pressure arising

from the reaction of the hull against the water when moving. At low speeds,

the static pressure dominates; at high speeds, the dynamics pressure domi-

nates. Savitsky’s method takes into account both of these pressures, within

limits discussed later.

The fluid flow direction across the plate will be a mixture of longitudinal

and transverse flow. A planing boat geometry can be thought of as a very

Jack Townsend 15

Theory of planing hulls

Figure 1.9: A planing flat plate as described by Savitsky [30]. v is the forward
velocity, d the draft, τ the trim angle, and b the plate beam (width). λ is the
wetted length to beam ratio, such that λb is simply the wetted length. The
superscript ′ denotes wetted length relative to the far-field undisturbed water
level.

v

τ

pressure distribution

ρv2

stagnation line spray root

spray thickness

1
2

Figure 1.10: The general pressure distribution of a planing flat plate as de-
scribed by Savitsky [30]

low aspect ratio wing, with large chord and small span. From aerodynamic

theory, such wings have high transverse flow (i.e. parallel to direction of boat

travel), and very small chordwise flow (i.e. perpendicular to direction of boat

travel). For a zero aspect ratio plate of infinite length and zero span (λ =∞,

b = 0), Savitsky argues the lift is proportional to τ 2, and can be expressed as

in Equation 1.6.

CL = Aτ +Bτ 2 (1.6)

For λ values practical for planing hulls (assumed to lie in the range λ ≤ 4),

empirical testing showed that Equation 1.6 can be approximated using τ 1.1,

giving the relationship in Equation 1.7.

Jack Townsend 16

Theory of planing hulls

CL
τ 1.1

= f(λ,Cv) (1.7)

For the dynamic term, Sottorf [25], who’s method assumes negligible buoy-

ant pressure contribution, showed that dynamic lift (CL,dynamic) varies with

λ
1
2 for a given trim angle as in Equation 1.8.

CL,dynamic = cλ
1
2 τ 1.1 (1.8)

where c is an unknown constant to be solved for.

The buoyant lift term can then be calculated from the volume displaced

by the flat plate. This is calculated from the density of the fluid displaced

multiplied by the volume displaced.

Lbuoyant = V ρg (1.9)

where V is the displaced volume. Savitsky empirically determined that λ =

λ′ + 0.30 for wetted length ratios in the range of 1 ≤ λ ≤ 4. Rearranging this

for λ′ gives the following relationship for λ′, which is the mean wetted length

ratio neglecting wave rise.

λ′ = λ− 0.30 (1.10)

Thus the volume displaced by a flat plate of beam b, trim angle τ , and

wetted length λ′b, is that of a right-triangular prism as expressed in Equation

1.11.

V =
1

2
× λ′b tan(τ)× λ′b× b =

1

2
b3λ′2 tan(τ) (1.11)

Substituting Equation 1.11 and 1.10 into Equation 1.9 gives the equation

for the buoyant lift term.

Lbuoyant =
1

2
ρgb3(λ− 0.30)2 tan(τ) (1.12)

To non-dimensionalise 1.12 as a lift coefficient to be combined with the

dynamic lift coefficient, it is divided through by 1
2
ρv2b2, and the (λ − 0.30)2

Jack Townsend 17

Theory of planing hulls

term is expressed as Dλn, where K and n are constants to be determined.

CL,buoyant =
Dλn

C2
v

tan(τ) (1.13)

Assuming that, given the small angle τ , tan(τ) and τ 1.1 are equal, this can

be re-expressed as follows:

CL,buoyant =
Dλn

C2
v

τ 1.1 (1.14)

Thus a lift coefficient accounting for both buoyant and dynamic compo-

nents can be expressed by combining Equations 1.8 and 1.14.

CL = τ 1.1

(
cλ

1
2 +

Dλn

C2
v

)
(1.15)

Savitsky then evaluated the constants of c, D, and n from experimental

data, giving the readily usable semi-empirical expression given in Equation

1.16 in terms of commonly used parameters in boat design.

CL = τ 1.1

(
0.012λ

1
2 +

0.0055λ
1
2

C2
v

)
(1.16)

The fitting of the empirical data to Equations 1.10 and 1.7 is valid for the

regime of 0.60 ≤ Cv ≤ 13.00, 2° ≤ τ ≤ 15°, and λ ≤ 4, and so Equation 1.16

is limited to this regime.

Equation 1.16 is intended for a flat plate, which does not represent the

vast majority of planing vessels. The lift coefficient for a prismatic planing

hull of deadrise β was determined by Savitsky as a function of deadrise angle

β in degrees and the equivalent flat plate lift coefficient (Equation 1.16) at

equivalent τ , Cv, and λ values.

CL,β = CL0 − 0.0065βC0.60
L0 (1.17)

where CL0 is the lift coefficient of the flat plate equivalent as given by Equation

1.16. The generic prismatic hull geometry that is assumed is depicted in Figure

1.11.

Prismatic hulls are defined by a constant cross sectional area. In reality

Jack Townsend 18

Theory of planing hulls

few to no hulls are perfectly prismatic, and variable deadrise surfaces are com-

mon. Any discontinuities such as steps will also make a hull non-prismatic.

Despite this, many hulls can be approximated as prismatic, making the pre-

sented Savitsky method very popular among boat designers, as a reasonable

estimation of lift generation can be made at very low computational cost.

Compare Figure 1.11 with Figure 1.12 to visualise the similarities between

the prismatic idealisation and a “real” variable deadrise hull.

The Savitsky method is easy to use, computationally cheap, well estab-

lished in the literature, and has been used in the benchmarking of compu-

tational methods [34]. In Section 2.5 a benchmarking against the Savitsky

method is made for these reasons.

Jack Townsend 19

Theory of planing hulls

Figure 1.11: A prismatic hull of deadrise angle β is depicted. d is the draft,
or the depth of the lowest point of the transom (rear of boat). v is the
forward velocity of the boat. Lc and Lk are the wetted chine and keel lengths
respectively. b is the beam (width) of the boat.

Jack Townsend 20

The state of the art in planing hull CFD

Figure 1.12: An underwater shot of a planing hull being tested at the Steven’s
Institute of technology.

1.4 The state of the art in planing hull CFD

It is the last ten years that CFD (Computational Fluid Dynamics) for ship

hydrodynamics has made its greatest strides. This is primarily owed to ad-

vancements in the fields of free-surface tracking and capturing, turbulence

modelling, 6 Degree-of-Freedom motion prediction, adaptive grid refinement,

high-performance computing, and optimisation methods [35]. A comprehen-

sive evaluation of the history and current state of CFD in hull design is given

by Stern et al [35].

Since the inception of CFD in the 1960s, attempts to apply CFD tech-

niques to ship design have been made with increasing sophistication. Inte-

gral methods were popular up until the 1980s, utilising the momentum in-

tegral equation, entrainment equation and cross-flow momentum equations

[36]. This method fell out of favour due to the difficulty in extending the

cross-flow velocity profiles to three-dimensions and sensitivity of the poten-

tial flow to inflections in the fairness of the hullform [37]. This prompted a

move towards three-dimensional finite difference solvers for boundary layers,

which were apt for thin boundary layers, but failed on thicker boundary lay-

ers, separation of flow, and regions near the free-surface boundary [38]. To

improve on the consistency of the solution in these regions, partial-parabolic

Reynolds approaches were developed [39]. In the 1990s, full Reynolds Av-

eraged Navier-Stokes (RANS) solvers with viscous-inviscid non-zero Froude

Jack Townsend 21

The state of the art in planing hull CFD

number capabilities to solve hullform boundary layers and wakes [40]. Free-

surface tracking [41], improved 2-equation turbulence models, and body-force

propulsor modelling were subsequently developed [42].

The last ten years marked a significant increase in the sophistication of

CFD in ship modelling, and significant progress towards the “virtual tow tank”

has been made. The concept of the virtual tow tank is to create a software

suite that can accurately carry out experiments as one would perform in a

conventional tow tank. This would include free-surface fluid modelling with

dynamic interaction between a rigid hullform and the water, with various wave

patterns and conditions. Carrica et al [43] made a significant step towards this

goal in 2007, enabling wave breaking and ship pitch and heave motion to be

modelled concurrently using level-set free surface tracking, dynamic overset

grids, and inertial reference frames. This involved two reference frames, one

earth-based inertial frame on which the fluid flow was solved, and another

ship-based reference frame is used to compute the rigid body motion of the

ship, with interpolation occurring between the two at each timestep.

Numerically modelling the full (or even partial) physics of a ship is a highly

complex task which requires a great deal of computational power. To meet

this large computational requirement High Performance Computing (HPC)

clusters are employed. HPC clusters consist of a multitude of dedicated com-

puters linked through a LAN (Local Area Network) system, which can be used

to process computationally intensive tasks. The effect is one of having more

resources available to split the processing of calculations between, rather than

a more “powerful” processing capability, and so there is a reliance on the abil-

ity to distribute and communicate the task among the distributed processors.

Distribution and coordination of tasks is handled using a Message Passing

Interface (MPI), for which many open-source versions exists. Details on the

HPC system used are found in Section 1.6.

1.4.1 Existing software

There are a number of computational hydrodynamic software packages aimed

at ship design and optimisation currently in continuous development. The

Jack Townsend 22

The state of the art in planing hull CFD

tools are grouped here into three categories.

The first are continuum free surface single-phase solvers. These are mesh-

based continuum solvers that utilise some form of free surface modelling for

a single phase (the water). These solvers neglect the air phase, which is

acceptable in some applications due to the sometimes negligible impact on ship

performance by the air phase relative to that of the water phase. The air phase

is, however, very important to model for full understanding of phenomena

such as bubbly wake, air entrainment, cavitation, propeller modelling, wave

breaking, and wind-related seakeeping studies. Due to this, several of the

software packages in this category are expanding capabilities to model multi-

phase flow.

The second category are continuum multi-phase solvers. These are solvers

that are still mesh based continuum solvers, but are capable of modelling

multiple phases concurrently (air and water in the case of boat design). This

style of modelling is closer to the fundamental physics of hydrodynamics, and

therefore more desirable for attaining the virtual tow tank.

The final category considered here are Lattice Boltzmann Method (LBM)

solvers, which is the method that was selected for the modelling presented

later in this thesis. A full introduction to the LBM is given in Section 1.5,

and the rationale for using the LBM is given in Section 1.5.3.

The strengths, weaknesses, and primary features of each of these tools are

detailed in the following subsection. An overall assessment of the existing

software is given, along with an exploration of the capabilities desired in the

future.

Continuum free surface solvers

� CFDShip-Iowa [44].

Developed by University of Iowa’s Hydroscience and Engineering

group and sponsored by the US Office of Naval Research, CFDShip-

Iowa is a incompressible URANS/DES continuum solver with a variety

of turbulence models. A single-phase level set method with Volume of

Fluid (VoF) method [45] is used for free surface/interface modelling.

Jack Townsend 23

The state of the art in planing hull CFD

The solver is computed on a structured grid using the finite difference

method. Overset grids are used to accommodate complex geometries,

and dynamic overset grids allow motion of rigid bodies; it should be

noted that overset grids typically incur high computational costs in the

grid generation phase. Single-phase level-set approach is used for the

free surface tracking. CFDShip-Iowa is parallelised for HPC processing.

CFDShip-Iowa is generalised to a number of external flow problems,

but differs from STAR-CCM+ in the sense that it is specifically devel-

oped for surface-vessel performance analysis rather than multi-physics

capabilities. This means it has a hydrodynamic post-processor specifi-

cally tailored for ship design criteria such as skin friction, pressure drag,

wave profiles, 6-DoF seakeeping, and manoeuvring. Propeller modelling

and multiple wave profiles are also included.

Capabilities include fast model-scale sinkage, slamming/water im-

pact, trim prediction, wave breaking, wave-body interaction (for simple

geometries), and bubble/droplet size and distribution prediction.

CFDShip-Iowa has been developed over twenty years, with many

stages of validation performed across that time. The code has also been

proven to be viable for high-speed applications.

The primary downside to CFDShip-Iowa, however, is that its usabil-

ity is restricted due to its sponsorship by the US Navy ONR. Addition-

ally, CFDShip-Iowa is a free surface, single-phase solver; initially, this

limited its ability to directly model hydrodynamic phenomena where

mixing of the air and water occur, such as cavitation, bubbles, spray,

and droplets. Cavitation in particular - which can damage structures

and reduce the efficacy of hydrofoils, propellers, and rudders - proved

difficult to model initially. In CFDShip-Iowa v6.2, however, a sharp-

interface cavitation model using volume of fluid method was added [46].

The latest versions of CFDShip-Iowa (v6.1-3) aim to increase accu-

racy, robustness, and exascale HPC capability [47]. In v6.1, level set

based ghost fluid method is used for sharp interface treatment and two-

Jack Townsend 24

The state of the art in planing hull CFD

phase coupling with VoF method for tracking the interface. This was

extended from Cartesian grids to orthogonal curvilinear grids with im-

proved interface modelling in v6.2. Targets for v6.3 include fully coupled,

multi-scale, multi-phase, turbulent flows around immersed structures.

� CREATE-Ships (IHDE) [48].

The CREATE-Ships (Computational Research & Engineering for Ac-

quisition Tools & Environments) IHDE (Integrated Hydrodynamic De-

sign Environment) is a project under development by the United States

Navy to deliver rapid, early-stage ship design influence capabilities to

the US Navy, where empirical data, tow tank tests, and full model tests

are still relied on [49]. The US Navy has a limited ability to impact

early stage design, and greater abilities to do so could be economical in

terms of both financial expense and time. The IHDE aspect involves

streamlining workflow and minimising turn around time by integrating

all the tools into a single desktop application for easy usability; this

would ensure that analysis could be performed in the limited timeframe

of the pre-design phase.

CREATE-Ships has a suite of tools for resistance analysis, seakeep-

ing, hydrodynamic loads, and operability. In terms of hydrodynamics

modelling, CREATE-Ships uses: Total Ship Drag (TSD), a slender ship

model for resistance prediction [50]; Das Boot, a potential flow [51] code

with non-linear free surface boundary modelling for assessing sink and

trim [52]; AEGIR, a 3D potential flow solver for wave resistance, sink-

age, and trim [53]; as well as a number of seakeeping, hydrodynamic

loads and operability tools [49]. These tools may be accurate enough

when balanced against fast turn around times at the pre-design stage of

projects, but they lack the full physics capabilities of other solvers. Po-

tential flow solvers, for example, deliver an irrotational, steady solution

cannot simulate complex phenomena such as spray and wave breaking

[54]. Nevertheless, CREATE-Ships is still in development with targets to

expand the physics models and add features such as propeller modelling.

Jack Townsend 25

The state of the art in planing hull CFD

Sponsorship by the United States Department of Defence (DoD)

means that use of the system is limited for non-government bodies. A

public version containing limited features is available, although this is

restricted to authorised US institutions such as universities and research

centres on a case-by-case basis [49].

� FINETM/Marine [55].

FINETM/Marine is a suite of FINETM (Flow Integrated Environment)

from the CFD and multi-physics company Numeca. FINETM/Marine is

designed for free surface marine flow problems such as ships and offshore

installations, with single and multi-phase capabilities through a Graphi-

cal User Interface (GUI) for usability. A number of design studies based

on analysis by FINETM/Marine can be found in the literature [56, 57, ?].

FINETM/Marine uses a scriptable hexahedral unstructured mesh (thus

enabling complex geometry capture), and includes a dedicated post-

processing suite (CFViewTM) with marine orientated options. The solver

is capable of free surface capturing and 6DoF motion for rigid bodies,

with adaptive grid refinement, overlapping grids, and cavitation mod-

elling.

Continuum multi-phase solvers

� STAR-CCM+ [58].

A commercially available software suite developed by CD-Adapco,

STAR-CCM+ is an industry standard multi-tool for CAD that has been

used in a number of studies with marine application [59, 60]. The soft-

ware includes a polyhedral and hexahedral meshing algorithm with au-

tomatic surface repair that streamlines workflow. Overset meshes are

utilised; this involves placing one mesh over another, allowing tailored

precision for the range of motion that might be expected of a boat in

chop. Processing is performed on a client-server basis, enabling low-spec

laptops to connect to high performance computing (HPC) clusters (HPC

servers are a service also offered by CD-Adapco) to perform computa-

Jack Townsend 26

The state of the art in planing hull CFD

tions. A number of solvers are available depending on the problem at

hand, including multi-phase capabilities.

STAR-CCM+ offers a wide variety of solvers and techniques for many

engineering applications; all of these solvers are fundamentally mesh

based.

� ANSYS Fluent [61].

Fluent is a CFD solver and design environment from the CAD com-

pany ANSYS Inc, and is among the most-used CFD solvers in the world.

Fluent is well established and widely used in industry, offering a range

of functionality including free surface and multi-phase flows based on

volume-of-fluids models.

� OpenFOAM [62].

OpenFOAM is an open source CFD solver distributed under a GPL

v3 license. Due to OpenFOAM’s open-source nature, it is popular in

CFD research. A number of ship design studies using OpenFOAM can

be found in the literature [63, 64].

Lattice Boltzmann methods

� LaBS [65].

LaBS (Lattice Boltzmann Solver) is a commercial CFD code based

on the Lattice Boltzmann Method. It is developed within the framework

of a consortium including Renault, Airbus and CS Communication et

Systèmes, with CS Communication et Systèmes in charge of distributing

the software.

LaBS excels at solving compressible flows to a degree of accuracy that

allows study of aeroacoustic fields by directly modelling aeroacoustic

behaviour [66, 67], however no applications specific to maritime flow

problems or design are available.

� LBHydra [68].

Jack Townsend 27

The state of the art in planing hull CFD

LBHydra is a Lattice-Boltzmann simulation package capable of mod-

elling laminar and turbulent flows, heat and mass transport, and multi-

phase fluids in transient flow around 2D and 3D geometries [69, 70].

LBHydra is developed primarily by the University of Minnesota and

written in C++ and CUDA, allowing it to be run easily on GPUs [71].

� Palabos [72].

Palabos (Parallel Lattice Boltzmann Solver) is an open-source LBM-

based solver for general purpose fluid flow simulations distributed under

an AGPLv3 license. Although freely available, the company FlowKit

Ltd. offers professional support, training and consultation for the Pal-

abos platform. The native library interface is written in C++ with no

further external dependencies making it highly portable and easy to use.

Palabos takes particular advantage of the LBM suitability to paral-

lelisation, with optimisation techniques in I/O communication and mem-

ory access yielding excellent scalability [73].

Palabos supports a range of functionalities at present, and is in on-

going development. With regard to physics models, both single and

multiphase flows are implemented (Shan/Chen and He/Lee model [74]),

as well as volume of fluid method for free-surface flows and a static

Smagorinsky/Large Eddy Simulation (LES) model for fluid turbulence

[75].

Palabos is designed to receive input geometries in .stl format, which

are then voxelised to establish the computational domain; this pre-

processing stage is integrated into the Palabos workflow and takes place

in parallel, greatly reducing the time dedicated to pre-processing. Al-

ternatively, simple domains can be defined manually by the user.

Post-processing capabilities include direct writing of outputs to an

ASCII or binary file, or directly to GIF images or .VTK files, which can

later be processed by suitable software (e.g.: Paraview, EnSight, etc.).

To reap the benefits of parallelisation in post-processing as well as in pre-

processing, Palabos is also capable of natively computing streamlines,

Jack Townsend 28

The state of the art in planing hull CFD

isosurfaces, and contours.

� XFlow [76].

XFlow is a commercial LBM-based solver with suites for automo-

tive, aerospace, manufacturing, energy, civil, and marine applications

with user friendly GUI and built-in pre- and post-processing. XFlow is

distributed by Next Limit Technologies, and as a commercial software

package comes with an expensive license fee on a per-core basis; early

investigation revealed that a license would be prohibitively expensive.

Conclusions on existing software

There exist a number of software packages with varying degrees of capability

in modelling hydrodynamic studies. There is not, however, a software package

that clearly excels in all capabilities without downsides. Firstly, there is the

case of cost; the most sophisticated software consistently come at a very high

cost that may be acceptable to larger industries, but are not conducive to

research by smaller companies or in academia. Also, it should be considered

that some of these packages (e.g.: CFDShip-Iowa, CREATE-Ships) are off

limits to a wider user base due to their national restrictions.

Overall, prohibitively high cost (or special requirements for access) apply

to all the software packages that approach the level of sophistication required

to be considered virtual tow tanks. Those that are free and open, however,

lack specific features and capabilities. While most have some form of post-

processing for data visualisation and results, only CREATE-Ships endeavours

to provide geometry creation, modelling, optimisation, and geometry alter-

ation in a single, encompassing design environment. In this respect there is

great scope for a software package that delivers such a design environment

with a solver component that strives to act as a virtual tow tank.

Jack Townsend 29

The state of the art in planing hull CFD

1.4.2 Shortcomings of modern computational hull de-

sign

In a review paper on the state of CFD in maritime applications, Stern et al.

call for the following advancements [35]: preparation for the onset of exascale

HPC; better parallelisation and scaling for HPC systems; more efficient use

of computational power; a transition to first-principle based solutions; order-

of-magnitude improvement in accuracy, robustness and performance .

To fully exploit the benefits of exascale computing, current software may

require large changes or even complete overhauls [35]. This is due partly to

poor scalability, and the current dependence on phenomenological or empirical

models. Many RANS solvers are expected to reach a limit where increased

grid size no longer confers benefits to accuracy, as turbulence models remain

a limiting factor. Although discarding turbulence models in favour of Direct

Numerical Simulation (DNS) [77] of turbulence may solve this, it comes at

incredibly high computational cost. An alternate compromise is methods

such as Large Eddy Simulation (LES) [78], where the smallest spatial and

temporal scales are essentially averaged out to reduce computational cost of

fully resolving these lengthscales as in a DNS approach. Additionally, RANS

approaches do not inherently excel at free-surface modelling, and often rely

on simplifications of phenomena such as wave breaking, cavitation, and wake

bubbles.

In particular, it is the desire for first-principle models, better free-surface

modelling, and better parallelisation that make models such as the Lattice

Boltzmann Method (LBM) attractive. The theory of LBM and case for using

it in this application are made in the following section.

Jack Townsend 30

The lattice Boltzmann method for planing hullforms

1.5 The lattice Boltzmann method for planing

hullforms

On the balance of the findings in the previous sections, the Lattice Boltzmann

Method (LBM) was selected for this project as the technique with which to

approach the modelling of high speed planing hullforms. This decision was

made largely on the basis of its inherent parallelisation for running on HPC

clusters, ability to model free surface flows effectively, effective handling of

complex geometries, and second-order accuracy in solving the Navier-Stokes

equations. All these points are explained in detail in Section 1.5.3.

In Section 1.5.1, a brief introduction to LBM is given. In Section 1.5.2,

the theory of LBM is then described in detail, with attention given to the

particular model used for this work. Finally, in Section 1.5.3 the argument

for its use in modelling planing hullforms is made.

1.5.1 An introduction to the lattice Boltzmann method

Fluids can be described in terms of properties such as velocity, density, and

pressure. In a continuum modelling approach, these properties are assumed

to vary in a continuous manner across a spatial field. This grants the benefit

of being able to use methods based on differential equations to describe the

flow; examples of such methods are potential flow methods, Euler methods,

and Navier-Stokes methods. Applied with a variety of spatial and temporal

discretisation approaches, these methods enjoy widespread use as industrial

CFD tools.

Fluid behaviour adheres well to a continuum description on a macroscopic

scale, however this breaks down as the length-scale of a flow problem ap-

proaches that of the size of the constituent molecules. On a molecular length-

scale, fluids are made up of discrete molecules rather than continuous fields

and are fundamentally characterised as having large intramolecular distances

relative to their molecular dimensions: properties like density are zero at a

point between molecules, and very large at a point lying inside a molecule.

For the continuum approximation to be valid a sufficient density of particles

Jack Townsend 31

The lattice Boltzmann method for planing hullforms

is needed; as a result, methods arising from a continuum assumption are un-

fit for rarefied flows (extreme low density) or flows where the particle size

approaches the length-scale of interest (nanoscale applications).

Atomistic or molecular modelling approaches seek to describe fluids by

directly modelling the interactions of these molecules. The prohibitive pitfall

of atomistic approaches is the incredible amount of computer processing power

and memory required to model the huge number of molecules in applications

that do not have extremely rarefied flow.

A compromise between continuum and atomistic methods is a probabilistic

one, where the probability of finding particles at a given point is sought,

which is the basis of kinetic theory laid out by Boltzmann and Maxwell in the

1800s [79, 80]. A statistical model is a compromise between the macroscopic

continuum approach and microscopic atomistic approach, and due to this is

sometimes referred to as a mesoscopic method.

Historically, LBM is considered the successor to the Lattice Gas Automata

(LGA) of the 1980s [81]. The foremost LGA model was the FHP (Frisch-

Hasslacher-Pomeau) model, which was based on a discrete hexagonal grid.

At intersections on this grid are nodes, which have six links extending to

neighbouring nodes. Idealised gas molecules populate the grid, and can exist

on any one of the six links around a node. In an iteration, an idealised particle

will travel to one of the nearest neighbouring nodes along one of these links.

The next step is collision, where molecules on the node are redirected to

two different links on that node depending on their incoming state. This is

illustrated in Figure 1.13.

Given that enough molecules populate the grid, LGA FHP is capable of

fully modelling compressible fluid flow. There are, however, some serious

downsides to LGA that prompted the evolution to LBM: namely, a huge

number of molecules are needed for the model not to be dominated by nu-

merical noise, and discrete state calculation was not as quickly computable as

floating point arithmetic. The LBM resolved these issues by using a statistical

description of the molecules rather than discrete molecular states. The theory

of the LBM is described in the following section.

Jack Townsend 32

The lattice Boltzmann method for planing hullforms

(a) (b) (c)

Figure 1.13: An illustration of LGA FHP process:
(a): A node on the discrete hexagonal grid has six links connecting it to
neighbouring nodes. Molecules populate the grid at these nodes.
(b): During an iteration of the model, two example particles travel from their
node to a neighbouring node along a link.
(c): Collision takes place, and each molecule at the node is assigned a new
link depending on their initial state (either the blue or the orange state would
occur, with momentum, p, being conserved).

1.5.2 Lattice Boltzmann method theory

The lattice Boltzmann method is described with a focus on the specific manner

in which it is applied in the solver module used for this work [82]. A full, in-

depth theory of the lattice Boltzmann method is given by Krüger et al. [83],

including a full derivation of the distribution function.

While a finite volume Navier-Stokes (N-S) approach might directly dis-

cretise the N-S equations, the LBM approach consists of a first-order explicit

discretisation of the Boltzmann equation in a discrete phase-space. The move-

ment and collisions of these particles on the grid is computed, and the incom-

pressible N-S equations are replicated to second-order accuracy. This second

order accuracy is proved by Frisch et al. by way of Chapman-Enskog ex-

pansion [84], and by He and Luo by direct discretisation of the Boltzmann

equation [85].

The underlying kinetic theory for LBM relies on describing the position

and velocity of the particles. It is prohibitive to model every particle in the

flow, and so instead a statistical description is given by way of a velocity

distribution function. This function describes the probability of gas molecule

being found at a given point in space with a given velocity.

In a three dimensional model, the distribution function is dependent on

Jack Townsend 33

The lattice Boltzmann method for planing hullforms

seven variables: three for space, three for velocity, and one for time. This is

mathematically represented as:

f(x, e, t) (1.18)

where position and velocity vectors respectively are:

x = (x, y, z) and e = (ex, ey, ez) (1.19)

The x vector holds the three-dimensional position values, the e vector

holds the three corresponding velocity values, and t denotes time.

The macroscopic variables in which flows are typically thought of can be

recovered from this distribution function. Because the macroscopic variables

(density, velocity, temperature) are dependent on position and time, not ve-

locity, arriving at them from the distribution function typically requires inte-

grating over the velocity space.

Mass density, ρ, is found from the distribution function by integrating the

distribution function across the velocity space as in Equation 1.20, where m

is the molecular mass.

ρ(x, t) = m

∫
f(x, e, t) d3e (1.20)

The velocity of the flow, u, can be found by weighting this integral by the

velocity of the molecules, e, as in Equation 1.21.

u(x, t) =
m

ρ

∫
ef(x, e, t) d3e (1.21)

Temperature, T , arrives from the kinetic energy of the gas. For an ideal gas

the expected value of the square molecular velocity, as expressed in Equation

1.22, where R is the universal gas constant.

T =
m

3Rρ

∫
|e2|f(x, e, t) d3e (1.22)

The physical rules for the velocity distribution function come from the

Boltzmann equation that gives LBM its name. This equation is expressed in

Jack Townsend 34

The lattice Boltzmann method for planing hullforms

its general form in Equation 1.23.

df

dt
=
∂f

∂t

∣∣∣∣
force

+
∂f

∂t

∣∣∣∣
diffusion

+
∂f

∂t

∣∣∣∣
collision

(1.23)

The force term relates to external forcing, the diffusion term relates to

particles in free motion, and the collision term relates to the pairwise collision

of particles. Recall that f is the velocity distribution function. The forcing

and diffusion terms can be expressed such that the equation takes the form in

Equation 1.24.

df

dt
+

p

m
· ∇f + F · ∂f

∂p
=
∂f

∂t

∣∣∣∣
collision

(1.24)

where p is momentum (p = me), F is an external force. The collision term

is notably not expanded on here. Conceptually, the collision term describes

how the momentum of colliding particles is changed based on their initial

conditions. This term is usually complicated, even for a simple elastic collision

between spheres, and usually takes the form of a simplified expression that

achieves a replication of the macroscopic physics at reasonable computational

cost. The collision term used in this work is expanded on shortly.

The Boltzmann equation – as is typical of equations describing fluid dy-

namics – is too complex to be solved analytically for all but the most trivial

problems: instead, it must be solved numerically on a Cartesian grid of cell.

Each grid cell affects only its neighbouring cell. In this work, the D3Q19 sten-

cil [74] is used on a Cartesian grid of uniform grid cell size to discretise the

velocity-space. The D3Q19 stencil is so named for featuring 19 velocity vec-

tors in 3-dimensional space, and is a popular choice for solving incompressible

flows as it sits in a middle-ground between the less accurate D3Q15 and more

memory-intensive D3Q27 velocity sets [83]. The D3Q19 stencil is depicted in

Figure 1.14. Each arrow represents a variable located on that grid node, and

depicts the connectivity to the neighbouring grid node. There are many other

types of velocity stencils including 2D variants, though the most popular for

3D cases are D3Q15, D3Q19, and D3Q27. Larger velocity sets typically offer

smaller numerical error and better stability at a computational resource cost;

Jack Townsend 35

The lattice Boltzmann method for planing hullforms

Figure 1.14: The D3Q19 stencil is depicted. Each arrow represents a lattice
velocity and depicts the connectivity to the neighbouring grid node. Note that
e1 is located at the centre with length zero, representing particles at rest.

D3Q19 was chosen as it was more accurate than D3Q15, but D3Q27 was not

considered due to requiring 40% more memory for negligible benefits [86].

For each of the velocities e1−19 there is a floating point number f1−19 re-

spectively. These numbers represent the fraction of particles moving with that

velocity. For the sake of example, grid-cell size ∆x and time-step ∆t are nor-

malised to 1. Then, for the D3Q19 stencil, f1 is the fraction of particles at

rest, f2−7 the fraction of particles moving at speed 1, and f8−19 the fraction

of particles moving at speed
√

2, all in their respective directions.

The LBM algorithm has two main steps, streaming and collision. During

the streaming step, all the distribution functions (excepting f1) are advected

with their respective velocities. For an example case with unitary time-step

and cell size, this results in all the floating point values moving to their neigh-

bouring cells. This streaming step can be expressed as follows for the ith

direction where the ′ superscript denotes the post-streaming values.

f
′

i (x, t+ ∆t) = fi(x, ei, t) (1.25)

The collision step then takes place by weighting the distribution functions

of a cell with the equilibrium distribution function, f eq. The equilibrium

Jack Townsend 36

The lattice Boltzmann method for planing hullforms

distribution function is dependent on the macroscopic density and velocity of

the fluid, which are obtained by summing the distributions and the velocity-

weighted distributions respectively, as shown in Equations 1.26 and 1.27.

ρ =
∑
i

fi (1.26)

u =
∑
i

eifi (1.27)

For a given direction i, the equilibrium distribution function is given by

Equation 1.28 [82].

f eqi =wi

(
ρ+ 3ei · u−

3

2
u2 +

9

2
(ei · u)2

)
where:

wi =
1

3
for i = 1,

wi =
1

18
for 2 ≤ i ≤ 7,

wi =
1

36
for 8 ≤ i ≤ 19.

(1.28)

Thus the collision stage is defined by Equation 1.29, where each fi is

linearly relaxed towards their equilibrium state using the f eqi values. This step

constitutes the simplified collision term mentioned earlier for the particular

method used in this work. Other such simplified collision operators exist,

perhaps most commonly the Bhatnagar-Gross-Krook (BGK) operator [87].

fi(x, t+ ∆t) = (1− ω)f
′

i (x, t+ ∆t) + ωf eqi (1.29)

where ω is a parameter relating to the viscosity of the fluid according to

Equation 1.30, where ν is the kinematic viscosity of the fluid in LBM lattice

units [88].

ω =
1

ν
+ 0.5 (1.30)

The parameter ω must fall in the range of 0 ≤ ω ≤ 2, where 0 is highly

Jack Townsend 37

The lattice Boltzmann method for planing hullforms

viscous and 2 highly inviscid.

The further details of the theory underpinning the specific solver model

used for this work is further expanded on by Thürey et al. [82], including

the no-slip boundary condition, handling of the free surface interface, free

surface boundary conditions, and adaptive time-stepping. Further reading on

the broader theory of the LBM solver used for this work is available from

[89, 90, 88, 91].

1.5.3 The case for lattice Boltzmann for the modelling

of planing hulls

As noted in the literature review of existing solvers, there exists a number

of solvers available to industry for the solving of planing hull problems, none

without some drawbacks. The LBM offers a number of distinct advantages

that made it the choice of method for this work.

Comparisons between LBM and more traditional finite volume/element

solvers have been made in the literature [92, 93], with a general consensus that

LBM can offer a simpler algorithm that can be more computationally efficient

for given scenarios at the cost of higher memory use. This arises from, recalling

the previous section and using a D3Q19 model for example, using an array of

single precision floating point numbers of size (2× sizex× sizey × sizez × 19)

[82]. In contrast, a N-S solver might only require [sizex × sizey × sizez × 7]

floating point values. However, a N-S solver may require a higher resolution

to capture complex geometries to the same fidelity.

The simplicity of the underlying algorithm of LBM makes the implementa-

tion of boundary conditions simple [94]. Free surface flows, especially around

a planing hullform, are defined by complex and time-dependent interface ge-

ometry, for which LBM is inherently well-equipped to handle.

Computational efficiency on massively parallel computer architectures was

also a considerable draw. It was known that High Performance Computing

(HPC) resources would be available for this work (see the following section,

Section 1.6, for details), and LBM has been shown to work very efficiently on

massively parallel HPC computer architectures. This is in part due to most

Jack Townsend 38

The lattice Boltzmann method for planing hullforms

LBM solvers being specifically designed with such hardware in mind, but also

arises naturally from the very efficient domain decomposition. Because each

lattice grid-cell is influenced only by its neighbouring grid-cells, decomposi-

tion of the domain can be performed with less communication overhead than

is seen in finite volume methods. This parallel efficiency is demonstrated in

Figure 1.15, where a benchmarked case of flow in an artery using a BGK col-

lision operator is run on an increasing number of parallel HPC cores [89]. The

solver in question (Palabos) exhibits excellent parallel efficiency of 70% up to

16,384 cores on a Blue-Gene/P supercomputer. The example in Figure 1.15

is broken down into the main execution and the pre-processing to highlight

another benefit of LBM, which is avoidance of the pre-processing bottleneck.

Although other solvers may be parallelised, it is not uncommon for them to

require a non-parallel or weakly parallel pre-processing stage, for example in

mesh generation. For LBM solvers such as Palabos, it is easy to implement

fully parallelised pre-processing. This is due to no body-fitted meshes of com-

plex geometries being required in LBM; instead, LBM uses a homogeneous

grid and handles the data transfer between the grid and the boundary of the

geometry during runtime with appropriate interpolations [95]. Body-fitted

grids are, however, among the best ways for enforce the no-slip conditions at

the geometry surface. In this work an Immersed Boundary (IB) method is

used, which has been found to require, for example, 50 lattice nodes to resolve

a flat-plate boundary layer in a Re = 1, 000 flow to within 5% accuracy of the

analytical solution [96].

Jack Townsend 39

The lattice Boltzmann method for planing hullforms

(a) The speed-up curve for the execution of flow in an artery using a BGK
collision operator, excluding pre-processing. Note the acronyms, MLUPS
(Mega/Million site Updates Per Second) and GLUPS (Giga/billion site
Updates Per Second).

(b) The speed-up curve for the pre-processing of flow in an artery using a
BGK collision operator. Although not as strongly scaling as the execution
of the main solution, this pre-processing stage constitutes a small fraction
of overall run time.

Figure 1.15: Palabos speed-up curves on a Blue-Gene/P supercomputer up to
16,384 cores [89].

Jack Townsend 40

High-performance computing resources

1.6 High-performance computing resources

To take full advantage of the parallelisation efficiencies of LBM, the computer

simulations presented in this paper were conducted on a High-Performance

Computing (HPC) cluster. The label of HPC is given to computer systems

that have been aggregated to allow for faster computation of distributable

tasks.

For this work computing capacity was provided by Supercomputing Wales

(SCW), a project providing HPC resources to scientific and innovation projects

within the SCW consortium of universities [97].

The Swansea University branch of this project is the Sunbird HPC system,

a large cluster of computing nodes based in Swansea’s Dylan Thomas Data

Centre available remotely to Swansea and Aberystwyth SCW users. The

system specifications are as follows [97]:

� 126 nodes, totalling 5,040 cores, 48.384TB total memory:

– CPU: 2 x Intel®Xeon®Gold 6148 CPU @ 2.40GHz with 20 cores

each.

– RAM: 384GB per node.

– GPU: 8 x Nvidia V100 GPUs.

� Storage:

– 808TB (usable) scratch space on a Lustre filesystem.

– 231TB of home directory space on a Lustre filesystem.

It should be noted that the simulations in this paper are exclusively run

on CPUs rather than GPUs. The maximum limits of use per user on this

cluster define the effective limit of the resources available. User limits for this

project are as follows:

� Maximum number of cores requestable: 1,024.

� Maximum RAM per CPU: 9575MB.

� Maximum storage: 100GB user directory, plus temporary scratch space.

Jack Townsend 41

Chapter 2

Boat hullform solver

2.1 Palabos

The solver selected to conduct this work was Palabos (Parallel Lattice Boltzmann

Solver), a CFD solver with a kernel based on the Lattice Boltzmann method

[98]. Palabos was developed at Université de Genève and is available under

the open source terms of an AGPLv3 license. The Palabos library’s native

programming interface is written in C++, and is only dependent on Posix

and MPI, both common standards for Application Programming Interfacing

(API) and Message Passing Interfacing (MPI) respectively.

At the beginning of this project, the commercial aspects of Palabos were

managed by FlowKit Ltd, who have since been acquired by NUMECA Inter-

national [99]. The basis of the hullform solver environment was developed in

partnership with FlowKit, and is expounded on in the following section.

2.2 Boat hullform solver

The aim of this part of the project was to develop a general and reusable

free surface flow hullform modelling environment using the Palabos library.

Regardless of the specifics of the analysis of a given hullform, many parts of

the simulation will remain the same: for example, a hull geometry will be

imported, flow will need to move relative to the hull at a given inlet velocity,

domain bounds will be set, and boundary conditions will be prescribed. To do

42

Boat hullform solver

Figure 2.1: The virtual tow tank domain (black outline), with free surface
interface (blue) and an example hullform (pink).

this, a reusable, general executable written in C++ that calls on the Palabos

library was created to set up and run this virtual flume simulation. The source

code for boatHullFormSolver.cpp can be found in Appendix A.3.1.

The boatHullFormSolver code virtually replicates a tow tank testing envi-

ronment: water flows in the x-direction past a semi-submerged hullform de-

fined by the user, with inlet and outlet conditions upstream and downstream

respectively. Gravity acts in the negative y-direction. Pressure is projected

from lattice nodes adjacent to the hull surface on to the hull geometry. This

general configuration is shown in Figure 2.1.

The simulation parameters are configured in the input .xml file. The

parameters configurable in this file are as follows:

� Domain dimensions – this is defined by a minimum and maximum value

in x, y and z dimensions.

� Absorbing zone dimensions – the sizing of the numerical absorbing zones,

described in detail later.

� Fluid height – the height of the fluid measured from the minimum y-axis

domain limit.

Jack Townsend 43

Boat hullform solver

� Fluid density (ρ), kinematic viscosity (ν), and surface tension coeffi-

cient (σ) – physical fluid properties.

� Hullform geometry – the path and filename of the hullform geometry pro-

vided in .stl format.

� Geometry inflation parameter – a parameter for a tool used to improve

geometry import robustness by inflating the geometry to eliminate gaps or

holes.

� Characteristic length (Lchar) – the reference length, used to indirectly

determine grid size (see Equation 2.1) and Reynolds number.

� Resolution – a dimensionless parameter that indirectly determines grid size

(see Equation 2.1).

� Inlet velocity of fluid (uinlet) – the velocity of the fluid at the inlet boundary

condition is prescribed.

� Reference velocity (uref) – used to define the time-step (see Equation 2.2),

always set to match the inlet velocity at the recommendation of FlowKit.

� Lattice velocity (uLB) – this value determines the time-step (see Equation

2.2). It was recommended by FlowKit to kept this value small (0.01) to avoid

numerical instability and compressibility error.

� Maximum number of iterations – this determines the simulation length.

� Checkpointing options – the user can request that the simulation “check-

points” after a given number of iterations, saving the state of the simulation

to allow it to be restarted at a later time.

Note that gridsize and time-step of each simulation is determined by com-

binations of some of the above parameters as described in Equation 2.1 and

2.2 respectively [82].

dx =
Lchar

(resolution− 1)
(2.1)

dt =
uLBdx

uref
(2.2)

Jack Townsend 44

Boat hullform solver

where dx is the spatial discretisation of the lattice grid, Lcharacteristic is the

characteristic length (conventionally taken to be boat beam), dt is the simu-

lation time-step, uLB is the lattice velocity, and uref is the reference velocity.

The simplicity of editing this .xml file to make adjustments to the general

simulation setup eliminates the need to edit and compile source code for each

simulation.

2.2.1 Solver physics

The boatHullFormSolver uses Palabos’ free-surface model [82] on a D3Q19 (3

dimensions, 19 velocity vectors) lattice. The D3Q19 velocity set was chosen

as a compromise between the less accurate D3Q15 and more memory inten-

sive D3Q27 set [83]. In this model, the fluid phase (in this application the

water phase) is fully simulated, while the gas phase (air) is represented with

a constant pressure term set to simulate atmospheric pressure.

Surface tension is implemented by use of finite-difference stencils which

evaluate the local curvature of the free surface from a filtered volume-fraction

of interface nodes [82]. This algorithm is based on the Young-Laplace equa-

tion, shown in Equation 2.3.

∆p = −σ∇ · n (2.3)

where ∆p is the difference in pressure across the interface, σ is the surface

tension coefficient, and n is the normal vector perpendicular to the interface

in the direction towards the gas phase and away from the water phase. Di-

vergence of the unit normal vector relates to the local mean curvature of the

free-surface, which is calculated from finite difference stencils that operate on

a filtered volume-fraction field.

A Volume of Fluid (VoF) approach [82] is used to track the free surface

boundary of the single-phase flow. Turbulence is modelled using a Large Eddy

Simulation (LES) model [78]. The LES occupies a middle-ground solution

between Direct Numerical Simulation (DNS), where length and time scales

are fully resolved to the minute level at which turbulence can occur, and pure

Jack Townsend 45

Boat hullform solver

phenomenological/empirical models of subgrid turbulence such as k-epsilon

or Spalart-Allmaras which tend to have specific use-cases. The LES achieves

this by low-pass filtering of the fluid solution, which essentially spatially and

temporally averages the effects of the small-scale turbulent effects.

A classic static Smagorinsky LES model is used in which subgrid scales

influence the viscosity proportionally to the norm of the strain-rate tensor for

the filtered scales, as expressed in Equation 2.4 [100].

ν = ν0 + νT (2.4)

Where ν is the total kinematic viscosity, ν0 is the molecular-scale viscosity

(i.e., the fluid property viscosity), and νT is the turbulent viscosity correction

given by Equation 2.5.

νT = C2|S| (2.5)

Where C is the Smagorinsky constant and |S| the strain rate tensor-norm

such that |S| =
√
S : S. The value of the Smagorinsky constant typically

varies from 0.1 to 0.2 and is problem-dependent; in all cases in this work the

constant is kept at 0.11 on advice from FlowKit based on experience with

similar hydrodynamic simulations. This constant is independent with respect

to time, thus the model is “static”. No explicit wall modelling is made in the

Smagorinsky LES model used in this work, which is a notable weakness in

the method. One method of implementing wall treatment lies in varying the

Smagorinsky constant, C, depending on spatial proximity to a wall, which is

permitted by local nature of the dynamics class SmagorinskyDynamics [100].

Although desirable, this could not be achieved in the scope of the work and

the implications are discussed in Chapter 5.

2.2.2 Boundary conditions

Inlet and outlet conditions are applied upstream and downstream respec-

tively in the x-direction; flow is intended to always travel in the positive

x-direction. Periodic boundary conditions are enforced in the z-direction. A

Jack Townsend 46

Boat hullform solver

Figure 2.2: A 2-dimensional example of a immersed boundary method imple-
mentation, as depicted by De Rosis [95]. The unstructured Lagrangian mesh
of the immersed body (red) is shown in relation to the Eulerian fluid grid
(black).

free-slip boundary condition is applied to the bottom of the domain. A no-slip

wall condition is applied to the “ceiling” of the domain.

An Immersed Boundary (IB) condition as described by De Rosis et al. [95]

is applied at the hullform geometry. The IB condition is used as opposed to

a simple no-slip condition to allow for future expansion to Fluid Structure

Interaction (FSI) capabilities, as the IB can enforce a no-slip condition, sat-

isfy Newton’s law, and conserve mass. The IB method takes the Lagrangian

unstructured mesh of the body, in this case the geometry .stl triangulation,

and “immerses” it in the Eulerian LBM grid. This is visualised in Figure 2.2.

Interaction between the fluid and the body is then determined by interpolation

to enforce the no-slip rule (zero velocity) and momentum conservation [95].

The fluid phase is indirectly affected by the boundary in a manner analogous

to a source term added to the LBM distribution functions.

The IB method allows fluid to exist on the “inside” of the boat hull ge-

ometry surface, typically only one lattice node from the surface. To avoid

non-physical behaviour arising from excessive fluid mass inside the hull ge-

ometry, fluid nodes inside the geometry is excluded from contribution to the

pressure projected by the fluid onto the hull geometry.

The IB method has been found to be accurate and robust for moving,

immersed bodies in Fluid Structure Interaction (FSI) scenarios [95]. It is

for this reason that the IB method was chosen over alternatives such as the

Jack Townsend 47

Boat hullform solver

Bounce-Back method [101] and Ghost methods [102], which are less suitable

for moving geometries. The IB method does, however, have drawbacks noted

in the literature, namely first-order velocity accuracy [103]. This is considered

to be one of the necessary compromises in selection of LBM boundary meth-

ods, and the proven suitability to the modelling of immersed, moving bodies

in FSI problems cemented the choice of the IB method for this work.

2.2.3 Absorbing zones

Absorbing zones are numerical constructs which help implement the boundary

conditions by “absorbing” physical quantities at the edge of the domain. It

should be noted that these zones are purely artificial and do not represent

physical flow phenomena. There are two types of absorbing zone: free surface

sponge zones and pressure absorption zones.

Free surface sponge zones assist the implementation of the inlet and outlet

boundary conditions. The sponge zones smoothly converge the volume frac-

tion and velocity of the water phase back to the initial inlet conditions. This

ensures that the disturbed flow aft of the hullform does not affect the inlet

flow. Sponge zones are also applied at the “side” domain bounds to cancel

out periodicity in the z-direction. The free surface sponge zone applied to the

domain ceiling prevents the “wall” effect given by the no-slip wall boundary

condition.

The second form of absorbing zones, the pressure absorption zones, purely

dissipate pressure disturbances. These are applied within the same user-

defined space as the sponge zones, and can be activated by compiling the

executable with the macro WAVE ABSORPTION defined. These zones are

not always necessary, but assist in dissipating acoustic waves. Implementation

is complex, and therefore using these zones increase compute time and should

be avoided when not necessary.

The typical location and dimensions of these numerical absorbing zones

are progressively illustrated in Figures 2.3 – 2.5.

Jack Townsend 48

Boat hullform solver

Figure 2.3: The typical position and dimensions of the inlet/outlet absorbing
zone volumes are shown in red.

Figure 2.4: The typical position and dimensions of the lateral absorbing zone
volumes are shown in blue.

Figure 2.5: The typical position and dimensions of the ceiling absorbing zone
volume is shown in yellow.

Jack Townsend 49

Boat hullform solver

2.2.4 Wave forcing

A body forcing term can be used to induce waves in a select volume of the

domain. This volume should not intersect with the artificial absorbing zones,

and will typically be placed upstream of the hullform geometry to simulate a

boat passing through waves. The oscillating force F acts in the y-direction

(parallel to the gravity force) according to Equation 2.6.

F = A · g · sin
(

2πt

P

)
(2.6)

where A is the wave amplitude, g is the acceleration due to gravity, t is the

physical time, and P is the wave periodicity. This capability is not explored

in this work, but remains for future development.

2.2.5 Checkpoint restarting

Palabos features a checkpointing system that is implemented in the boatHull-

FormSolver code. Checkpointing the simulation saves the current state of

the simulation in a manner it can be restarted at a later point. To invoke

a checkpoint, either a file named abort is created by the user, which begins

the checkpointing process, or the user can set a fixed number of iterations

at which the simulation will checkpoint automatically. Once the checkpoint

files are written to the working directory, the original execution can be called

with the checkpoint.xml file appended after the original parameter.xml file.

This system is later used in the dynamics implementation of Section 3.3.

2.2.6 Output files

Each simulation exports an .stl file containing the geometry of the free sur-

face throughout the simulation, a .dat file containing average kinetic en-

ergy, force components, and total force experienced by the hullform, and .vtk

and .vti files containing fluid data and hull pressure distribution for post-

processing visualisation.

Jack Townsend 50

Grid convergence study

2.3 Grid convergence study

Numerical approaches that rely on spatial discretisation of the domain using

a grid will have an inherent discretisation error that is dependent on the grid

properties. As the grid is refined – that is, as the size of each grid cell is made

smaller – this discretisation error is reduced, theoretically approaching zero

as the grid cell size approaches zero.

A simulation is said to be grid independent when the outputs are negligibly

affected by variations in the grid resolution. It is important to achieve this

as the grid is a non-physical artefact required by the numerical approach and

should therefore not influence the physical results. Grid convergence studies

are thus very common in CFD and should be conducted not only to validate

a method or scheme, but to ensure that the particular case with its unique

parameters is grid independent.

The approach used in this section follows advice laid out by Roache for

standardised grid convergence assessment [104, 105, 106]. This method has

been taken up by the American Society of Mechanical Engineers (ASME)

[107] and by the American Institute of Aeronautics and Astronautics (AIAA)

[108], and has been applied, with further analysis, to fluid simulations of

marine craft [109]. It should be noted that criticism of the Roache approach

used here points out that the measured points must be relatively close to the

converged criteria in order to accurately assess it; this makes the approach

less useful in cases where there is little prior knowledge the the rough level of

grid resolution needed, and rather acts to confirm initial estimates. It should

also be considered that due to the larger scales of turbulent flow being highly

anisotropic, exploration of the anisotropy of the mesh is usually considered

when assessing grid quality for LES modelling [110]. The restriction of a

uniform grid in this work limits such an exploration.

The grid convergence study process is outlined as follows:

1. A set of three simulations are run with identical parameters excepting

grid resolution.

2. An output from these simulations is selected to be studied for grid con-

Jack Townsend 51

Grid convergence study

vergence.

3. A Richardson extrapolation is performed on the results to project an

estimated value at zero grid discretisation error.

4. A Grid Convergence Index (GCI) is calculated for each change in grid

size.

5. A check is performed to determine whether any of the simulations lie in

the asymtotic region of grid convergence.

The number of simulations conducted and the degree of grid refinement

in each case was considered. Practical limitations of compute time and clus-

ter availability had to be taken into account, resulting in three simulations –

coarse, medium, and fine – being conducted. The resolution of the finest grid

was determined by practicalities of the maximum amount of compute cores

available for a single simulation on the Swansea Sunbird system (1024 cores,

see Section 1.6). The limitation of having a globally uniform grid cell size

simplifies this study as no accounting for variable grid cells needs to be per-

formed. Exact grid data for each is given in Table 2.1; note the computational

cost is quantified by the mean average time per iteration, which is discussed

later.

The simulation output that is examined for convergence must be selected

appropriately, as some parameters may have more or less stringent grid conver-

gence requirements. As the goal for this work is to accurately predict dynamic

equilibrium in heave for planing hulls, integrated vertical force exerted by the

fluid on the hull (lift) is chosen.

Table 2.1: Grid values for each grid convergence simulation and the mean
average time taken for a timestep iteration.

simulation resolution dx (m) dt (s) Avg. time per iteration (s)

coarse 251 0.04 6.479e-05 0.5162
medium 501 0.02 3.240e-05 1.7153

fine 1,001 0.01 1.620e-05 4.8373

Note that “resolution” is a user input for each simulation and is used to

set the grid spacing (dx) as follows:

Jack Townsend 52

Grid convergence study

dx =
Lchar

resolution− 1
(2.7)

where Lchar is characteristic length. Note that resolutions were chosen such

that the ratio of dx between subsequent simulations was constant.

All other simulation parameters were kept constant as control parame-

ters. These parameters are given in Table 2.2. The boat geometry chosen, a

DV15 hullform, was placed in a flow speed and estimated equilibrium position

provided by Norson Design (trim angle of 6.2° and draft of 900mm). Visual

representations of the voxelisation of the boat geometry on the underlying

grid are depicted in Figure 2.6 and 2.7.

Jack Townsend 53

Grid convergence study

Table 2.2: Grid convergence study control parameters.

parameter units value

domain size:
x range (m) [−15.0, 3.0]
y range (m) [−2.0, 2.6]
z range (m) [−8.0, 8.0]

absorbing zone widths:
inlet (m) 0.5

outlet (m) 0.5
lateral (m) 1.0

top (m) 0.1
fluid properties:

density, ρ (kg/m3) 1, 030.0
kinematic viscosity, ν (m/s2) 1.0e− 6

fluid height (m) 3.0
surface tension (N/m) 0.0728

Palabos parameters:
characteristic length, Lchar (m) 10.0

inlet velocity, uinlet (m/s) 6.173
reference velocity, uref (m/s) 6.173

lattice velocity, uLB (m/s) 0.01

Jack Townsend 54

Grid convergence study

(a) coarse grid voxelisation, dx = 0.04m.

(b) medium grid voxelisation, dx = 0.02m.

(c) fine grid voxelisation, dx = 0.01m.

Figure 2.6: Voxelisations of the boat geometry on the underlying grid seen
from below for each level of grid refinement.

Jack Townsend 55

Grid convergence study

(a) coarse grid voxelisation, dx = 0.04m.

(b) medium grid voxelisation, dx = 0.02m.

(c) fine grid voxelisation, dx = 0.01m.

Figure 2.7: A slice down the centreline of the hull for each level of grid refine-
ment shows the voxelisation of the hull geometry on the underlying grid.

Jack Townsend 56

Grid convergence study

The lift results of these three simulations are shown in Table 2.3. In this

table the grid spacing is normalised by the finest grid.

Table 2.3: Grid convergence simulation results.

simulation dx (m)
normalised
grid size

integrated vertical
force (N)

coarse 0.04 h3 = 4 f3 = 107,440
medium 0.02 h2 = 2 f2 = 75,291

fine 0.01 h1 = 1 f1 = 61,790

A Richardson extrapolation was carried out on the values obtained from

the three simulations to evaluate an estimate of the continuum value (i.e.: the

theoretical value at zero grid spacing). To do this the order of convergence,

p, was first determined by:

p = ln

(
f3 − f2

f2 − f1

)
/ ln(r) (2.8)

where f1−3 are the lift results of each case and r is the ratio of grid refinement,

given by:

r =
h2

h1

=
h3

h2

= 2 (2.9)

Thus substituting this r value and lift results into Equation 2.8, the order

of convergence is evaluated as:

p = ln

(
107, 440− 71, 415

75, 291− 61, 790

)
/ ln(2) = 1.90 (2.10)

The Richardson extrapolation for a three-simulation case was then per-

formed as follows:

fh=0 = f3 +
f1 − f2

rp − 1
= 61, 790 +

61, 790− 75, 291

21.90 − 1
= 58, 267 (2.11)

The trend of the progressively refined simulations approaching this pro-

jected value is illustrated in Figure 2.8.

Although Figure 2.8 gives a visual indication of convergence, numerically

Jack Townsend 57

Grid convergence study

0 1 2 3 4

normalised grid size

5

6

7

8

9

10

11

in
te

g
ra

te
d

 v
e

rt
ic

a
l
fo

rc
e

 (
N

)

10 4

simulation results

extrapolated value

Figure 2.8: The trend towards the extrapolated value is shown in context of
the grid convergence simulations.

defining the degree of convergence allows for a more rigorous assessment of

whether acceptable convergence has been achieved. Continuing with the stan-

dardised structure of a grid convergence study [104], Grid Convergence Indices

(GCIs) were calculated for each step in grid refinement as follows:

GCI =
Fs|e|
rp − 1

(2.12)

where e is the error (difference) between adjacent grid resolutions and Fs is a

safety factor. The factor of safety for a three grid study is recommended to

be 1.25 by Roache [106]. The GCIs for grid spacing reduction from h3 to h2

(GCI2,3) and from h2 to h1 (GCI1,2) are acquired by:

GCI2,3 = 1.25

∣∣∣∣∣75, 291− 107, 440

75, 291

∣∣∣∣∣/(21.90 − 1) = 0.231 = 23.1% (2.13)

GCI1,2 = 1.25

∣∣∣∣∣61, 790− 75, 291

61, 790

∣∣∣∣∣/(21.78 − 1) = 0.071 = 7.1% (2.14)

The GCI is the standardised numerical value to quantify grid convergence

quality. For a three grid study the following relationship determines whether

solutions lie in the asymptotic region of grid convergence, where solutions very

Jack Townsend 58

Grid convergence study

close to 1 are considered converged:

GCI2,3

rpGCI1,2

(2.15)

In this case,

GCI2,3

rpGCI1,2

=
0.231

21.900.071
= 0.872 = 87.2% (2.16)

Although this value does not put solutions within the desirable 95% con-

fidence region, it does show reasonable convergence to grid independence on

which to develop capabilities with the assumption that better grid resolution

will be achievable in the future. This could be done with either an increase in

the computational resources available, or – more desirably – with local grid

refinement capabilities being added to the solver in future work.

As the uniform grid restriction stands, the impact on grid refinement on

computational cost must be observed. As is seen in Table 2.1, the timestep

(driven by Equation 2.2) is reduced as grid resolution increases, but so does

the average time taken per timestep iteration. The four times increase in

resolution between the coarse and fine simulations results in a 19,346% increase

in compute time taken to simulate the same physical time. This is clearly a

significant cost increase that affects the viability of simply scaling the available

compute power to the problem or grid resolution.

Jack Townsend 59

Experimental validation – SB90E flume experiments

2.4 Experimental validation – SB90E flume

experiments

A set of experiments were performed using a flume in the Swansea University

Civil Engineering Laboratory for the purpose of validating the ability of Pala-

bos to model free surface fluids in the context of a surface vessel. At the time

of this experiment, it was thought that a full scale Storebro Stridsb̊at Enkel

(SB90E) would be available for gathering sea trial data later in the project,

and so validation of this specific geometry was determined to be useful. This

was not the case, but the SB90E (see Section 2.4.2 for details) is typical of a

planing hullform and thus appropriate for validation purposes.

2.4.1 Experimental apparatus

The Swansea University Civil Engineering laboratory granted access to an

Armfield S6 MkII flume (see Figure 2.9). This flume has a 300mm wide

channel capable of a 32 litres per second volume flow rate through a closed-

loop system, with an adjustable ramp at the outlet to alter the flow height

throughout the channel. The 300mm width restriction of the flume impinged

on the wake of the model, which would otherwise be free to propagate in

open-water conditions. This was accounted for by also modelling this channel

width restriction in the equivalent computational simulations. Computational

simulations were also made at a 1:1 scale to avoid scaling.

A Stratasys Objet 1000 Plus 3D printer was used for fabrication of the

scale model (Figure 2.12). Use of a 3D printer conferred the advantage of

quickly fabricating a model that is accurate to the same CAD geometry used

for the numerical simulations. The size restriction of the Objet 1000 Plus

build tray (1000× 800× 500mm) easily exceeded the limitations imposed by

the width of the Armfield S6 MkII flume.

A previous experiment on validation of surfboard fin simulations conducted

in the Armfield S6 MkII flume by Dr David Carswell left a custom-built rig

for the flume [111]. This rigging allowed for isolating movement in principle

directions, or could be completely clamped to allow for static model tests.

Jack Townsend 60

Experimental validation – SB90E flume experiments

Figure 2.9: The Armfield S6 MkII tilting flume in the Swansea University
Civil Engineering Laboratory.

The rigging is shown in Figure 2.10.

A Digitron 2022P manometer was provided for pressure measurements.

This 2 port differential manometer has a maximum pressure capability of 2

bar and accuracy of 0.15%.

2.4.2 The 3D-printed SB90E scale model

The scale model used was of a Storebro Stridsb̊at Enkel (SB90E), which was

designed as a fast littoral combat craft for the Swedish Navy. A 3D CAD

model of the SB90E was created based on technical specifications and reference

photographs of the vessel [112]. The CAD model is shown in Figure 2.11

alongside photos of the full-scale boat for reference.

The printed model was made to a 1:25 scaling ratio (432mm in length

versus the 10.8m vessel) with the width restriction of the flume in mind.

This granted a 152mm beam, making the choke ratio for the 300mm wide

channel 0.51. The model was printed as a single piece of Stratasys Vero White

RGD825 photopolymer material. Due to the porous nature of this material

and the need to be partially submerged for extended periods of time, a water

Jack Townsend 61

Experimental validation – SB90E flume experiments

Figure 2.10: The custom-built flume rigging from Dr David Carswell’s exper-
iments [111], fabricated by Mr. Graham Foster.

resistant coating was required. A CopperCoat anti-fouling coating was applied

under the double chine by local marine services company Wray Marine, with

marine-grade paint applied on the remaining surfaces. The uncoated and

coated model is shown in Figure 2.12.

2.4.3 Acquiring pressure readings

It was determined that the most appropriate variable to measure in a flume

validation experiment would be pressure experienced at specific points on

the submerged portion of a scale boat model, rather than surge, heave, or

sway forces. This was due to the pressure profile being the more fundamental

variable in the sense that total heave or surge force is derived from the pressure

distribution and may match computational results only due to incorrect local

Jack Townsend 62

Experimental validation – SB90E flume experiments

Figure 2.11: Multiple views of the SB90E CAD geometry and reference photos
of the SB90E, courtesy of Storebro [112].

pressure differences balancing one another out. By measuring pressure as

opposed to forces, this validation provided more supplementary support to the

prismatic validation of Section 2.5, which only considered overall forces and

wetted lengths. Further, previous experimentation conducted by Dr Carswell

in the same Armfield S6 MkII flume experienced difficulties in measuring forces

due to vibrations induced by the tank that distorted the load cell readings

[111].

To measure the pressure on the hull of the boat model, a number of pres-

sure tappings were drilled into the model perpendicular to the hull surface.

Into these holes were placed brass tubes with an internal bore diameter of

0.5mm, which were filed flush with the hull on the end that protruded from

the principal wetted area. These tappings are shown in Figure 2.13.

The other end of these tubes protruded into the “cabin” of the model,

where 1.85mm bore PVC tubing could be firmly attached. This tubing was

then run along the rod connecting the model to the flume rigging, and con-

nected to the Digitron 2022P differential manometer (Appendix A.1). To

Jack Townsend 63

Experimental validation – SB90E flume experiments

Figure 2.12: The SB90E 1:25 scale model as retrieved from the printer work
tray (left), and the coated model mounted on a stand (right).

ensure the pressure at the hull surface was measured correctly it was required

that the tubing be filled entirely with degassed water with no air bubbles per-

mitted to enter the tubing. To do this, water was pushed through the tubing

using a syringe. To ensure no air entered the tubing when tubes were changed

over on the manometer connection, a water bath was required so that the

changing of tubes on the manometer could occur underwater. Further, the

locations of the pressure tappings on the hull had to be chosen such that at

no point are they above the water surface, allowing air bubbles to enter the

tubing. Not only did this require careful placement of the tapping points on

the hull, but also meant care had to be taken such that flow conditions did

not allow bow waves to dip under these points on the hull.

2.4.4 Experimental procedure

The model was suspended in the flume from the custom rigging, and the flume

was turned on and adjusted to the desired (maximum) flow rate. Flow speed

readings were taken, indicating an inlet speed of 0.76m/s. The end-ramp of

the flume was then adjusted such that the water level reached a representative

level on the boat model, which was observed to remain steady relative to the

boat throughout the experiment. Flow conditions in the tank were such that

small waves were generated along the length of the tank, though these waves

were small relative to the size of the model, and the profile of the flow was

Jack Townsend 64

Experimental validation – SB90E flume experiments

Figure 2.13: The location of the pressure tappings on the underside of the
hull are shown (left), along with the tube attachment points on the other end,
inside the boat “cabin” (right).

steady over the duration. To reduce these adverse factors, all measurements

were taken over a 60 second time period to average out fluctuations.

The manometer was zeroed to atmospheric pressure. The Digitron 2022P

differential manometer featured two pressure ports, marked positive and neg-

ative: the tubes from the SB90E model were connected to the positive port,

while the negative port was connected to a tube that was vented to atmo-

spheric pressure (doing so prevented water from coming in contact with the

negative port pressure membrane while the positive port tube changeover oc-

curred underwater). Thus the pressure read on the 2022P7 digital display will

be the total pressure on the hull surface plus the gravitational head pressure

induced by the height difference between the pressure tapping on the hull and

Jack Townsend 65

Experimental validation – SB90E flume experiments

Figure 2.14: A diagram of the experimental flume set-up is shown (not to
scale).

the position the manometer was held at, calculated as shown in Equation 2.17.

gravitational head = ρgh (2.17)

where ρ is the fluid density (1, 000kg/m3), g is acceleration due to gravity

(9.81m/s), and h is the vertical displacement between the pressure tapping

on the hull and the manometer membrane. The manometer was placed in

the same fixed position relative to the tank for the duration of the 60 second

recording period for every measurement.

Once the manometer was zeroed, the first tube from the boat model was

submerged in the water bath and water was forced through the tubing with

a syringe until the entire tube was filled. When the tube line was checked

and found to be clear of any air bubbles, the tube was connected to the

positive port on the manometer while submerged in the water bath. The

manometer was then placed in its fixed position relative to the tank, and the

60 second recording period began. The Digitron 2022P is capable of recording

the minimum, maximum, and average pressure recorded during this time, all

of which were logged. Once the 60 second period was over, the manometer was

disconnected, restarted, and re-zeroed to atmospheric pressure. The procedure

was then repeated for the other pressure tappings, the numbering convention

Jack Townsend 66

Experimental validation – SB90E flume experiments

Figure 2.15: The numbering convention for the hull pressure tappings on both
port and starboard (stbd) sides.

of which can be seen in Figure 2.15. The results of the experiment described

can be seen in Figure 2.16, where they are compared with CFD values.

2.4.5 Palabos numerical simulations matching the SB90E

flume conditions

A Palabos simulation was run at conditions matching the experiment. The

geometry used to print the experimental model was the same model used for

the CFD simulation. The inlet speed used was calculated using the volume

flow rate and cross sectional area of the flow in the flume. This approximation

gave an inlet speed of 0.76m/s based on the known velocity profile in the flume

as recorded previously by Dr David Carswell [111].

The simulation ran on the Swansea University Astute HPC Cluster, simu-

lating 11.9 seconds of physical time. The run parameters are detailed in Table

2.4, and the results are detailed in the following section.

Jack Townsend 67

Experimental validation – SB90E flume experiments

Table 2.4: SB90E validation simulation parameters.

parameter units value

domain size:
x range (m) [−0.30, 1.00]
y range (m) [−0.05, 0.15]
z range (m) [−0.17, 0.17]

absorbing zone widths:
inlet (m) 0.10

outlet (m) 0.10
lateral (m) 0.02

top (m) 0.00
fluid properties:

fluid inlet velocity (m/s) 0.76
density, ρ (kg/m3) 1, 000

kinematic viscosity, ν (m/s2) 1.0e− 6
fluid height (m) 0.07

surface tension (N/m) 0.0728
Palabos parameters:

resolution (−) 401
dx (m) 1.25e− 3
dt (s) 1.64474e− 5

characteristic length, Lchar (m) 0.5
lattice velocity, uLB (m/s) 0.01

computational resources:
HPC cluster used (−) Swansea Astute cluster

number of CPU cores (−) 500
memory per CPU core (Mb) 1024

total wall clock time (−) 6d : 22h : 10m : 01s
solver iterations (−) 857, 696

solver time (−) 105h : 16m : 48s

Jack Townsend 68

Experimental validation – SB90E flume experiments

2.4.6 Comparison of experimental and CFD results

The experimental results are plotted in Figure 2.16 alongside the CFD ex-

periments. The tapping position numbers refer to the positions shown in

Figure 2.15. The CFD values are consistently lower than the experimental

values, by approximately 100Pa. An explanation for this is that the crude

estimation of flow velocity in the tank is under-predicting the flow speed ex-

perienced in the portion of the tank occupied by the model. The volume flow

rate method of calculating flow velocity assumes a uniform velocity profile

across the cross-section of the flume tank, which is not the case for a viscous

fluid: the flow will be faster further from the walls, and slower closer to the

walls. Another potential cause for the consistent 100Pa difference between

CFD and experimental pressures is inaccuracies in the measurement of the

head height between manometer port and boat pressure tapping ports: given

by h in Equation 2.17, a 100Pa discrepancy would only require an error in

measurement of head height by 1cm. This is demonstrated in Equation 2.18.

Due to parallax issues in measurement of this distance, this is the most likely

systematic source for such a discrepancy.

p[Pa]

ρ[kg/m3]g[m/s2]
=

100[Pa]

1, 000[kg/m3]× 9.81[m/s2]
= 0.010[m] (2.18)

Also visible in Figure 2.16 is the pressure at each point along the hull

varying differently on each side of the boat, as well as for the mode of simu-

lation (CFD and experimental). These changes in the experimental case all

fall well within the error bands plotted. A likely cause of this is that the pres-

sure tapping locations have been chosen at positions on the boat hull which

– according to CFD results – should experience similar pressures. This can

be seen in Figure 2.17, where the pressure distribution on the hull is shown

time-averaged over the 11.9s period.

The pressure profile in Figure 2.17 shows trends that are dominated by

the static pressure, i.e. the pressure correlates strongly with depth. This

is to be expected, as the limitation in flume flow speed and zero trim angle

Jack Townsend 69

Experimental validation – SB90E flume experiments

position mean the boat is in a displacement position rather than planing.

This is further reinforced by the higher pressure stagnation seen at the front

of the hull, dropping off along the length of the hull: this is consistent with

displacement hull behaviour. A planing pressure profile would be characterised

more by a vee-shaped high pressure stagnation line. This is made impossible

in large part due to the fixed, zero trim angle position, but also due to the

flow speed. A 0.76m/s flow speed, using a reference length of the beam of the

boat (152mm), gives a Froude number of 0.62. Typically planing begins at a

Froude number of approximately 1.00 and higher.

In summary, this experiment provided an order of magnitude validation of

the basic free surface flow physics of Palabos. It also established the ability to

model a “virtual towing tank” in Palabos. In practice, the civil flume used for

this experiment was not appropriate for the modelling of high-speed planing

boats due to a low maximum flow rate. Validation of the solver for the more

specific design problem of high speed boats will require validation against data

from the literature that was collected with access to high-speed marine testing

laboratories, as is presented in Section 2.5.

Tapping Position # (1 fore, 4 aft)
1 2 3 4

P
re

ss
ur

e
at

 H
ul

l (
P

a)

0

50

100

150

200

250

Experimental Port
Experimental Stbd
CFD Port
CFD Stbd

Figure 2.16: Experimental flume pressure results. The mean average values
for the 60 second duration are given by the squares/circles, and whiskers show
the minimum and maximum pressures measured in that period. The tapping
position numbers refer to positions shown in Fig. 2.15.

Jack Townsend 70

Validation of the Palabos LBM model against analytic and experimental
data on a prismatic hullform

Figure 2.17: The pressure distribution across the hull is shown time-averaged
over the whole simulation.

2.5 Validation of the Palabos LBM model against

analytic and experimental data on a pris-

matic hullform

The complexity of modern high-speed boat hullform geometry today can vary

greatly, including features such as single or multiple steps, variable deadrise,

and air entrainment vents. For the purpose of initial validation of the Palabos

solver the simplest form of planing hull (beyond a flat plate) was determined

to be the logical starting point: a prismatic vee-hull with constant deadrise

angle, single chine, and no discontinuities (steps).

In this section Palabos results are compared to results of the semi-empirical

Savitsky method (detailed in Section 1.3.4), and against the empirical results

of the Chambliss and Boyd flume experiments [29]. The Chambliss and Boyd

experiments were part of a series of experiments carried out in the 1940s

and 1950s by the National Advisory Committee for Aeronautics (NACA) at

the Davidson laboratory to assess the performance and characteristics of vee-

shaped planing hulls. In these experiments, a prismatic vee-shaped hull was

positioned in flows of various speeds under various loadings, and data was col-

lected on the wetted hull lengths, resistance, and draft. The simple prismatic

hull geometry lends the data to cross-referencing with the Savitsky method.

The Chambliss and Boyd data has been used as benchmark data to assess the

performance of other computational methods, for example by Brizzolara and

Jack Townsend 71

Validation of the Palabos LBM model against analytic and experimental
data on a prismatic hullform

20°

50.8mm

101.6mm

19.1mm

Figure 2.18: Chambliss and Boyd’s 20° deadrise hull cross section with dimen-
sions converted to metric.

Figure 2.19: The 20° deadrise hull model, as depicted by Chambliss and Boyd
[29].

Serra [34].

2.5.1 The Chambliss and Boyd experiments

Figure 2.18 shows the cross sectional dimensions of the 20° deadrise prismatic

hull used in the Chambliss and Boyd experiment, and Figure 2.19 shows the

roughly 1 metre long (36 inch) hull with its mounting. This mounting was used

to pull the attached hull through stationary water. Aerodynamic shielding was

placed around the mounting and hull to reduce the impact of aerodynamic

resistance, though apart from this no further accounting for aerodynamic re-

sistance was made and it was simply assumed to be negligible relative to

the hydrodynamic resistance – this should be borne in mind when assessing

resistance values.

Figure 2.20 shows the experimental setup as depicted by Chambliss and

Boyd. This rigging allowed for the desired trim and loading to be fixed for a

Jack Townsend 72

Validation of the Palabos LBM model against analytic and experimental
data on a prismatic hullform

Figure 2.20: The experimental setup, as depicted by Chambliss and Boyd.

given test, but left the hull able to surge against the flow, varying its draft to

settle at an equilibrium position. In this sense the independent variables for

each experiment are the flow speed, trim angle, and load, while the dependent

variables measured after the hull reaches dynamic equilibrium are the draft,

wetted lengths, and resistance.

Wetted lengths of the keel and chines were measured using underwater

photography (see Figure 2.21 for an example). Dynamic drafts were considered

too difficult to measure without unacceptable error, and thus derived from

the fixed trim and more accurately measurable wetted lengths as defined in

Equation 2.19.

d = Lk sin τ (2.19)

where d is the draft, Lk the wetted keel length, and τ the trim angle.

A notable phenomenon brought up by Chambliss and Boyd is “pile up”

at the stagnation point at the keel. The pile up phenomenon is defined as a

local increase in the free surface height above that of the global free surface

level. Due to wetted keel lengths largely being collected from underwater

Jack Townsend 73

Validation of the Palabos LBM model against analytic and experimental
data on a prismatic hullform

Figure 2.21: An example of the underwater photography that informed the
wetted length values of the keel and chines in the Chambliss and Boyd exper-
iment [29].

photographs that gave a perspective from directly below the hull (see Figure

2.21), pile up was difficult to discern directly. It was, however, quantified by

comparing the difference between the measured wetted keel length and the

computed wetted keel length, which revealed greater pile up at higher trim

angles, as shown in Figure 2.22 [29].

The calculated draft refers to the draft derived from the wetted keel length

as per Equation 2.19, whereas the experimental values are the directly mea-

sured dynamic draft (values of which are not comprehensively provided due to

difficulty in measurement). In Figure 2.22 a distinct gap between calculated

and measured draft appears in the range of 6° ≤ τ ≤ 12°, and is seen to grow

even larger for higher trim angles [29].

The Chambliss and Boyd experiments were carried out wholly in imperial

units, though for consistency in this work have been converted to metric where

necessary. Some of the parameters used by Chambliss and Boyd are non-

dimensionalised, and their definitions are given by:

Load coefficient: C∆ =
∆

ρb3
(2.20)

Jack Townsend 74

Validation of the Palabos LBM model against analytic and experimental
data on a prismatic hullform

Figure 2.22: A comparison of the experimentally measured draft versus the
computed draft in the Chambliss and Boyd experiments [29] for trim angles
of 6° and 12°.

Speed coefficient: Cv =
v√
gb

(2.21)

where ∆ is the vertical load applied to the hull, b is the beam length, g is

acceleration due to gravity, v is the hull velocity, and ρ is the specific weight

of water, reported to be 63.4lb/ft3 or 1, 015.6kg/m3 in the Chambliss and

Boyd experiment. Note that the speed coefficient, Cv, is equivalent to the

Froude number, Fr. Also note that the lift force is not directly measured, but

rather assumed to be equal to the vertical loading (∆) applied to the hull.

The coefficients for lift (CL) and resistance/drag (CD) are defined as fol-

lows, with coefficients normalised by beam length (b), and also by wetted area

(S):

CLb =
∆

1
2
ρv2b2

(2.22)

CDb =
R

1
2
ρv2b2

(2.23)

CLS =
∆

1
2
ρv2S

(2.24)

Jack Townsend 75

Validation of the Palabos LBM model against analytic and experimental
data on a prismatic hullform

Table 2.5: Selected scenarios from the Chambliss and Boyd data set for the
20° deadrise hull.

property units
scenario

1
scenario

2
scenario

3
scenario

4
scenario

5
scenario

6

τ ° 2 2 4 4 6 12
C∆ - 4.26 4.26 6.39 19.17 36.21 87.33
Cv - 13.48 19.89 17.08 21.96 17.48 18.60
v m/s 13.46 19.86 17.05 21.92 17.45 18.57

CR - 5.56 2.06 1.48 4.94 7.90 22.79
lc/b - 5.50 0.68 0.38 3.00 7.12 5.50
lk/b - 8.42 3.70 1.80 4.42 8.12 5.98
lm/b - 6.97 2.19 1.09 3.72 7.62 5.74
lc mm 559 69 39 305 723 559
lk mm 855 375 183 449 825 608
lm mm 708 223 111 378 774 583
CLb - 0.0468 0.0216 0.0439 0.0795 0.2370 0.5049
CDb - 0.0262 0.0104 0.0103 0.0204 0.0516 0.1317
CLS - 0.007 0.010 0.040 0.021 0.031 0.088
CDS - 0.0038 0.0047 0.0094 0.0055 0.0068 0.0229

Table 2.6: Chambliss and Boyd experimental measurement absolute error.

Measured variable
Absolute

instrument error
Mean relative

error
Maximum

relative error

Load, lb ±0.15 0.76% 1.50%
Trim, deg ±0.10 2.92% 5.00%
Speed, ft/sec ±0.20 0.35% 0.45%
Resistance, lb ±0.15 1.83% 4.33%
Wetted length, in ±0.25 2.18% 5.73%

CDS =
R

1
2
ρv2S

(2.25)

Chambliss and Boyd tested two prismatic hulls of 20° and 40° deadrise at

dozens of combinations of speed, trim angle, and loading. Due to the limita-

tions of computational resources, only the 20° deadrise hull is considered at

the six scenarios detailed in Table 2.5. Some of the non-dimensional repre-

sentations of the wetted lengths have been converted to dimensional metric

lengths for conceptualisation and direct comparision to the lengths that are

later obtained from the Palabos numerical simulations.

Jack Townsend 76

Validation of the Palabos LBM model against analytic and experimental
data on a prismatic hullform

Absolute error attributed to the measurement equipment used by Cham-

bliss and Boyd as shown in Table 2.6. The relative errors given by these

absolute errors for the sampled scenarios is also presented.

The error accounted for here is related solely to error in the measuring

instrumentation. This does not account for any further error originating from,

for example, small variations in the equilibrium position of the hull or human

error in measuring wetted lengths where underwater photography was not

taken. Error in these experiments is expanded on in the discussion in Section

2.5.4.

2.5.2 Application of the Savitsky method

The Savitsky method – covered in Section 1.3.4 – is an analytical method

developed around empirical data for predictive analysis of planing hullforms:

equations were fit to empirical data gathered and published by Savitsky and

Neidinger [28]. An analytical approach like this is not best suited to a physical

problem as complex as the flow around a high speed planing boat, though the

method remains popular to this day among smaller boat designers. This is in

no small part due to the ease of application and minimal resource requirements

to apply the method in comparision to a more complex and compute-intensive

physics solver, or indeed an array of towing tank experiments.

The Chambliss and Boyd experiments were selected in part due to their

use of a very simple prismatic hullform that minimises the assumptions made

in the Savitsky method, as opposed to a complex hull with variable deadrise

angles, steps, or spray rails. In doing this, validation of the Palabos solver

could be made against two approaches that are well referenced within the field

of planing boats: that is, the Chambliss and Boyd data set and the Savitsky

method.

The following equations define the method applied to each of the six hull

scenarios sampled from the Chambliss and Boyd experiments.

Firstly, the flat-plate lifting coefficent is found for a reference hull at the

same trim angle, mean wetted length, and Froude number:

Jack Townsend 77

Validation of the Palabos LBM model against analytic and experimental
data on a prismatic hullform

CL0 = τ 1.1
(

0.0120λ
1
2 +

0.0055λ
1
2

F 2
r

)
(2.26)

The lift coefficient for a hull of deadrise angle β is empirically derived by

Savitsky from the lift coefficient of a flat plate (CL0) operating at the same τ ,

λ, and Fr values by:

CLβ = CL0 − 0.0065βC0.60
L0

(2.27)

Regarding drag, the following equation is used by Savitsky where whisker

spray drag is ignored:

D = ∆ tan τ +
ρv2

1Cfλb
2

2 cos β cos τ
(2.28)

where v1 is the mean bottom velocity and Cf is the Schoenherr turbulent

friction coefficent [113], for which the value was taken as used by Savitsky

[30].

The mean bottom velocity is expressed by Savitsky and Ross [114] as:

v1

v
=

√
1− 0.0120τ 1.1

λ
1
2 cos τ

f(β) (2.29)

where v1 is dependant on trim angle τ , mean wetted length λ, and a function

of the deadrise angle β. This relationship was determined empirically by

Savitsky and Ross [114] and is represented graphically in Figure 2.23 [30] for

a deadrise of 20°. Note that Equation 2.29 takes into account bouyant forces

and is thus only applicable for (1.0 ≤ Fr ≤ 13.0), as beyond that range the

bouyant forces being accounted for compose a negligible contribution to drag.

As all scenarios lie in a speed regime greater than Fr = 13.0, care should be

taken in using the Savitsky derived whisker spray resistance forces. This is

discussed in Section 2.5.4.

Savitsky later accounted for whisker spray drag in 2007 [33]. Whisker

spray drag is the drag attributed to the spray projected fore of the stagnation

line. Savitsky defines the following expression for whisker spray drag:

Jack Townsend 78

Validation of the Palabos LBM model against analytic and experimental
data on a prismatic hullform

Figure 2.23: Graphical representation of the relation given in Equation 2.29
derived by Savitsky and Ross [114, 30] for the range of 1.0 ≤ Fr ≤ 13.0. Here
v1 is the mean bottom velocity.

RS =
1

2
ρv2∆λb2Cf (2.30)

where ∆λ × b2 is the effective increase in wetted area attributed to whisker

spray contribution to total resistance, for which values were determined graph-

ically from Figure 2.24. In this case, Cf is the friction coefficient as defined by

Savitsky in the whisker drag formulation [33]. This friction coefficient is qual-

itatively determined by the turbulence of the flow, which is in turn influenced

by the geometry of the whisker spray such that:

ReWS =
vLWS

ν
(2.31)

whereReWS is the Reynolds number as determined by the characteristic length

of LWS, which is the length of the whisker spray drag determined geometrically

by:

LWS =
1

2

b/2

sin 2α cos β
(2.32)

where α is the angle between the keel and stagnation line in the horizontal

ground plane, and β is the deadrise angle. Thus the size of LWS will be

Jack Townsend 79

Validation of the Palabos LBM model against analytic and experimental
data on a prismatic hullform

Figure 2.24: The increase in non-dimensional wetted length-beam ratio due
to whisker spray (∆λ) is plotted as a function of deadrise angle (beta) and
trim (here denoted by t) [33].

substantially smaller than the mean wetted length – used to determine the

Reynolds number for the pressure area – in most cases, driving the need to

consider the turbulence of the whisker spray region seperately. In all cases

tested, the turbulence of the whisker spray region lay in the laminar region

(ReWS < 1.5× 106), and so the friction coefficient was determined by [33]:

Cf =
1.328√
ReWS

(2.33)

Rs =
1

2
ρv2∆λb2Cf (2.34)

Equation 2.34 for total drag associated with whisker spray can then be

summed with Equation 2.28 for drag in the pressure area to obtain overall

drag inclusive of whisker spray. Resistance values both with and without

whisker spray drag are presented and discussed in Secton 2.5.4.

The results of the Savitsky analysis for the selected scenarios are presented

in Section 2.5.4 where they are compared to Palabos numerical results.

Jack Townsend 80

Validation of the Palabos LBM model against analytic and experimental
data on a prismatic hullform

2.5.3 Palabos numerical simulations

The Palabos numerical simulation setup necessarily differed from the Chamb-

liss and Boyd physical experiments. The physical experiments involved towing

a hull through static water at a fixed trim, speed, and loading, then measuring

the wetted lengths and forces. The numerical experiments were conducted,

in contrast, on a static hull at a fixed trim angle placed in a flow of con-

stant velocity. This approach of a globally fixed geometry with moving flow

is common in both physical testing (tow tank or wind tunnel) and numerical

simulations, and is physically equivalent to a real boat moving across globally

stationary water. The differences arise not from the perspective of the relative

motion, but in the practicalities of the experimental setup: some parameters

will be dependent in one experiment, but independant in the other.

For example, in the Chambliss and Boyd experiment, dynamic draft and

wetted lengths are dependent, measured variables, while load is a dictated in-

dependent variable. In the Palabos numerical simulations, the wetted lengths

from the Chambliss and Boyd data are used to calculate the fixed draft of the

hull and position it in the flow, while the resulting vertical load is a dependent,

measured variable.

In the Chambliss and Boyd experiments the dynamic draft is calculated

from the wetted keel length, as mentioned in Section 2.5.1, due to the more

accurate measurements of wetted lengths versus direct observation of the dy-

namic draft. In determing the fixed draft of the hull in the Palabos simula-

tions, wetted keel length is used, though it should be kept in mind that “pile

up” may be included in these wetted lengths. Pile up is discussed in Section

2.5.1, and was found to occur measurably in the case of trim angles of 12°

or more. For this reason it is expected that scenario 6 will involve a hull

that has been given slightly greater draft than in the Chambliss and Boyd

experiements due to a keel length measurement inflated by pile up.

The control parameters of the Palabos numerical simulations are given in

Table 2.7. These values are constant through all scenarios. The parameters

that vary by scenario are then given along with the results in Table 2.8, and an

example visualisation of the setup of scenario 4 is given in Figure 2.25. Result

Jack Townsend 81

Validation of the Palabos LBM model against analytic and experimental
data on a prismatic hullform

Table 2.7: Prismatic validation Palabos simulation control parameters.

parameter units value

domain size:
x range (m) [−1.10, 0.50]
y range (m) [−0.40, 0.11]
z range (m) [−0.40, 0.40]

absorbing zone widths:
inlet (m) 0.05

outlet (m) 0.10
lateral (m) 0.10

top (m) 0.01
fluid properties:

density, ρ (kg/m3) 1, 015.57
kinematic viscosity, ν (m/s2) 9.801e− 7

fluid height (m) 0.4
surface tension (N/m) 0.0728

Palabos parameters:
resolution (−) 501

dx (m) 0.002
characteristic length, Lchar (m) 1.0

lattice velocity, uLB (m/s) 0.01

values of force have been converted to dimensionless lift and drag coefficients

normalised by beam.

These simulations were run on the Supercomputing Wales’ Sunbird HPC

system as detailed in Section 1.6. Each simulation was allocated 300 cores

with 4GB of memory per process for up to 72 hours wall clock time, during

which all simulations achieved convergence residuals of the order 10−3.

Jack Townsend 82

Validation of the Palabos LBM model against analytic and experimental
data on a prismatic hullform

Figure 2.25: an example of the virtual flume setup in Palabos for the case of
scenario 4, both at initiation (above) and 1 second into the simulation (below).
The hull geometry (pink), free surface interface (blue), and domain bounds
(black) are shown.

Jack Townsend 83

Validation of the Palabos LBM model against analytic and experimental
data on a prismatic hullform

Table 2.8: Prismatic validation Palabos simulation parameters for each sce-
nario.

property units
scenario

1
scenario

2
scenario

3
scenario

4
scenario

5
scenario

6

Variables

τ (°) 2 2 4 4 6 12
d (mm) 29.9 13.1 12.8 31.3 86.2 126.3
vinlet (m/s) 13.46 19.86 17.05 21.92 17.45 18.57

Results

Lift (N) 23.474 18.774 43.353 146.11 308.39 815.84
CLb (-) 0.02473 0.00908 0.02845 0.05799 0.19319 0.45139
Resistance (N) 2.1176 2.4152 4.2067 13.466 34.484 176.43
CDb (-) 0.00223 0.00117 0.00276 0.00534 0.02160 0.09761

Jack Townsend 84

Validation of the Palabos LBM model against analytic and experimental
data on a prismatic hullform

2.5.4 Results and discussion

In comparing the results of the three data sets, consideration should be given

to the necessary difference in the experimental setup of the Chambliss and

Boyd experiments versus the Palabos numerical simulations regarding pile-

up, discussed in Section 2.5.3. Evidence of a variation in the wetted chine

and keel lengths between the Chambliss and Boyd data and the Palabos sim-

ulations is presented in Figure 2.26. From Figure 2.26 it can be seen that

there is a consistent trend towards the Palabos simulations exhibiting longer

wetted lengths at the keel and chine by roughly proportional amounts for

each scenario. This consistent trend is in line with the prior assumption that

in placing the hulls at the positions determined by the Chambliss and Boyd

wetted lengths, the pile up effect, although small, would be compounded.

Further evidence of this is seen specifically for scenario 4 in Figure 2.27,

where an artificial plane (grey) is placed at 1mm above and parallel to the

free surface initial head, revealing any fluid (blue) rising above the far field

fluid height by more than 1mm. This reveals the expected local rise ahead

of the keel of the hull (pink) in excess of 1mm, consistent with the pile up

phenomena described by Chambliss and Boyd.

1 2 3 4 5 6

scenario #

0

1

2

3

4

5

6

7

8

9

w
e

tt
e

d
 l
e

n
g

th
/b

L
k
 experimental L

k
 palabos L

c
 experimental L

c
 palabos

Figure 2.26: The wetted keel length (Lk) and wetted chine length (Lc) for
both the Chambliss and Boyd experiments and Palabos numerical results are
shown.

Jack Townsend 85

Validation of the Palabos LBM model against analytic and experimental
data on a prismatic hullform

Figure 2.27: Scenario 4 is depicted with the hull (pink) seen from the side and
a horizontal plane (grey) at y = 0.0001m to reveal the pile-up of water (blue)
ahead of bow. Flow is moving in the x-direction.

The expected result of this – borne out by Equations 2.26 and 2.28 and

observed trends in the experimental data of Chambliss and Boyd – is that an

increase in the mean wetted length (i.e.: greater hull sink) as seen in all of

the Palabos simulations should result in an increase in both lift and resistance

above the expected results. This should be kept in mind when comparing

the Chambliss and Boyd data and Savitsky method results (which are based

on the Chambliss and Boyd wetted lengths) against the Palabos numerical

results.

It is also worth noting that, taking into account the overall increase as-

sumed to be arising from compounded pile up in the experimental setup, the

Palabos wetted lengths show a consistent trend in line with the Chambliss

and Boyd observations. This is indicative of some degree of accuracy in the

resolution of the free surface. A global grid resolution of dx = 2mm was

necessary due to limits in computational resources. Such a spatial resolution

means that physical phenomena that occur on a smaller lengthscale than 2mm

will not be captured. This is most noticably apparent with the whisker spray

region, which is absent ahead of the stagnation line, as seen in Figure 2.28.

The whisker spray region is defined by a very thin layer of flow in contact

with the hull surface projected forward from the stagnation line, and so it

Jack Townsend 86

Validation of the Palabos LBM model against analytic and experimental
data on a prismatic hullform

is not surprising that a 2mm grid resolution did not capture this. To assess

the capability to capture whisker spray drag with equivalent computational

resources, local grid refinement would need to be added to the current suite

of capabilities. This was deemed beyond the scope of this project, and would

be recommended for future work.

Full numeric data is presented in Table 2.9. The lift and resistance co-

efficients of the Palabos simulations are presented graphically in comparison

to the Chambliss and Boyd and Savitsky analytical method in Figure 2.29

and 2.30 respectively. In each case, coefficients of lift and resistance are given

normalised by hull beam (constant across all methods and scenarios), and

normalised by wetted area (varies from scenario to scenario and also between

numerical versus other methods). This is done to account for the inconsis-

tency in wetted area caused by pile up, though as can be seen by comparing

subfigures of Figures 2.29 and 2.30, the general trends are preserved with only

small variations in relative values between methods.

Regarding lift, the Palabos numerical results lie between the Chambliss

and Boyd data and the Savitsky predictions, though there is a large dis-

crepency between the Chambliss and Boyd data and the Savitsky predictions

themselves, with Savitsky underpredicting by a wide margin in all cases. This

is not entirely unexpected, as the underlying flat plate lift equation (Equation

2.26) is only valid for the regime defined by 0.60 ≤ Fr ≤ 13.00, 2° ≤ τ ≤ 15°,

and Lm/b ≤ 4. Although all scenarios chosen fall within the trim angle con-

straint, only scenarios 2 and 3 meet the mean wetted length constraint, and

all scenarios are in excess of the Froude number constraint. For this reason,

lift performance should only be meaningfully compared to the Chambliss and

Boyd empirical data set.

Regarding resistance, the Chambliss and Boyd and Savitsky data match

one another more closely, with the Palabos numerical results under-predicting

resistance. Recall that Chambliss and Boyd considered the aerodynamic resis-

tance of their rigging to be negligible, providing a possible source of additional

resistance that may in some part narrow the gap between the numeric and

experimental results. Little information is available about the rigging besides

Jack Townsend 87

Validation of the Palabos LBM model against analytic and experimental
data on a prismatic hullform

(a) A general example of the flow on the bottom of a simple planing hull of
constant deadrise and with no discontinuities according to Savitsky [30]. There
is a pressure region aft of the stagnation line, and a whisker spray region fore
of the stagnation line.

(b) Scenario 5 viewed from below. The hull is pink, and the free surface
blue with 50% opacity to reveal any whisker spray fore of the stagnation line.
The stagnation line and resulting pressure area are clearly defined, however no
whisker spray region is captured.

Figure 2.28: Savitsky’s description of the regions on a planing hull compared
to observations from the Palabos numerical simulations.

Jack Townsend 88

Validation of the Palabos LBM model against analytic and experimental
data on a prismatic hullform

the provided sketches (see Figures 2.19 and 2.20) and most importantly the

mentioned aerodynamic fairing is not detailed, leaving no way to accurately

account for possible misattributed resistance.

Total resistance inclusive of whisker spray drag is shown directly next to

resistance without whisker spray resistance in Figure 2.30. Whisker spray

resistance is also based on a mean bottom velocity derived from equations

valid only at Fr ≤ 13.00, while all scenarios are at speeds in excess of this. The

formulation of Equation 2.29 indicates that whisker drag will be overestimated

due to over accounting for negligible bouyanancy-caused resistance, so in this

case the already fairly negligible addition from whisker spray drag is expected

to be even smaller. The physical pheneomena of whisker spray drag was

not observed in the Palabos numerical simulations, and so the accompanying

addition to resistance would not be expected either. The lack of available grid

refinement to the physical lengthscale on which whisker spray drag occurs

inhibits any further investigation in this respect.

Both these trends for lift and drag are reported in similar comparisons be-

tween Chambliss and Boyd data and analytical methods (Savitsky and Shuford

methods) against numerical approaches; Brizzolara et al. found that numeri-

cal lift results for a RANS method most closely matched experimental values

(numerical underprediting versus experimental) rather than analytical results

(where numerical results over-predicted) [34]. Numerical resistance results

similarly saw a general under-prediction versus both experimental and ana-

lytical approaches, which agreed with one another more closely than in the

case of lift.

In general, the trends of lift and resistance in response to the tested pa-

rameters are captured, though lift and resistance are both under-predicted

(discounting the Savitsky lift predictions for the stated reasons). Free surface

behaviour shows close agreement with literature data once the compounding

pile-up effect is accounted for. This preliminary validation study indicated

promise in applying the Palabos Lattice Boltzmann method solver to the task

of modelling planing boats, and put in place confidence to expand on the

capabilities presented so far.

Jack Townsend 89

Validation of the Palabos LBM model against analytic and experimental
data on a prismatic hullform

1 2 3 4 5 6

scenario #

0

0.1

0.2

0.3

0.4

0.5

0.6

C
L

b

savitsky analytical

palabos numerical

chambliss & boyd empirical

(a) Coefficient of lift normalised by hull beam (CLb), which is constant between
all three data sets.

1 2 3 4 5 6

scenario #

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

C
L

S

savitsky analytical

palabos numerical

chambliss & boyd empirical

(b) Coefficient of lift normalised by wetted area (CLS), which differs between
the Palabos results versus the Chambliss and Boyd and Savitsky results.

Figure 2.29: Coefficient of lift results from the Savitsky analytical predic-
tions, Palabos numerical simulations, and Chambliss and Boyd experiments
are compared for each of the six scenarios given in Table 2.5. The coefficient
is normalised by both beam (b) and wetted area (S).

Jack Townsend 90

Validation of the Palabos LBM model against analytic and experimental
data on a prismatic hullform

1 2 3 4 5 6

scenario #

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

C
R

b
savitsky analytical

savitsky with whisker spray

palabos numerical

chambliss & boyd empirical

(a) Coefficient of resistance normalised by hull beam (CRb), which is constant
between all three data sets.

1 2 3 4 5 6

scenario #

0

0.005

0.01

0.015

0.02

0.025

C
R

S

savitsky analytical

savitsky with whisker spray

palabos numerical

chambliss & boyd empirical

(b) Coefficient of resistance normalised by wetted area (CRS), which differs be-
tween the Palabos results versus the Chambliss and Boyd and Savitsky results.

Figure 2.30: Coefficient of lift results from the Savitsky analytical predic-
tions, Palabos numerical simulations, and Chambliss and Boyd experiments
are compared for each of the six scenarios given in Table 2.5. The coefficient
is normalised by both beam (b) and wetted area (S).

Jack Townsend 91

Validation of the Palabos LBM model against analytic and experimental
data on a prismatic hullform

Table 2.9: Prismatic validation results (C&B refers to Chambliss and Boyd
data).

property
scenario

1
scenario

2
scenario

3
scenario

4
scenario

5
scenario

6

trim angle, τ (degress) 2 2 4 4 6 12
Froude Number, Fr 13.48 19.89 17.08 21.96 17.48 18.6

Lk/b

Chambliss & Boyd 8.42 3.70 1.80 4.42 8.12 5.98
Palabos 8.91 4.30 1.95 4.73 8.49 6.37
% error vs C&B 105.8% 116.3% 108.5% 106.9% 104.6% 106.5%

Lc/b

Chambliss & Boyd 5.50 0.68 0.38 3.00 7.12 5.50
Palabos 6.24 0.89 0.48 3.29 7.51 5.98
% error vs C&B 113.5% 130.7% 127.3% 109.5% 105.5% 108.7%

Lm/b

Chambliss & Boyd 6.97 2.19 1.09 3.72 7.62 5.74
Palabos 7.58 2.60 1.22 4.01 8.00 6.17
% error vs C&B 108.7% 118.5% 111.8% 107.7% 105.0% 107.5%

S, (m2)

Chambliss & Boyd 0.07185 0.02261 0.01125 0.03830 0.07866 0.05925
Palabos 0.07823 0.02680 0.01258 0.04135 0.08260 0.06372
% error vs C&B 108.9% 118.5% 111.8% 108.0% 105.0% 107.5%

CLS

Chambliss & Boyd 0.007 0.01 0.04 0.021 0.031 0.088
Palabos 0.00326 0.00350 0.02334 0.01448 0.02414 0.07313
% error vs C&B 46.6% 35.0% 58.3% 68.9% 77.9% 83.1%
Savitsky 0.00124 0.00134 0.00601 0.00453 0.00632 0.01758
% error vs Savitsky 264.0% 261.9% 388.3% 319.8% 137.3% 416.0%

CRS

Chambliss & Boyd 0.0038 0.0047 0.0094 0.0055 0.0068 0.0229
Palabos 0.00029 0.00045 0.00226 0.00133 0.00270 0.01581
% error vs C&B 7.7% 9.6% 24.1% 24.3% 39.7% 69.1%
Savitsky 0.00201 0.00294 0.00988 0.00275 0.00423 0.01983
% error vs Savitsky 14.7% 15.3% 22.9% 48.6% 63.8% 79.8%

Jack Townsend 92

Chapter 3

Addition of heave dynamics

capabilities to the boat hullform

solver

3.1 Dynamic hullform solver introduction

Planing boat dynamics are sensitive to wetted area and trim. For this reason

the solver as it has been presented in previous chapters (with a static hull

geometry) has limited use in the practical application of boat design. Based

on input from industry sponsors it was decided that the most useful first ex-

tension of the current capabilities would be to add the rigid body dynamic

heave response between the hull and the flow. Heave dynamics would allow

hullforms to settle to an equilibrium heave position for a given flow speed,

trim and weight, rather than being set at a fixed position and arriving at

non-equilibrium steady-state force values. This reduces the number of static

simulations that would be required to evaluate the heave equilibrium posi-

tion, as otherwise a range of heave positions would need to be tested with

interpolation between them to find the equilibrium position.

93

V15 prescribed dynamics study

Figure 3.1: The V15 at sea, courtesy of Privinvest [115].

3.2 V15 prescribed dynamics study

At the request of industry partner Norson Design, an experiment was carried

out to assess the lift and resistance prediction of the solver on a hullform that

they had design experience with rather than the simple prismatic hullforms

tested so far. The hullform selected was the V15, depicted in Figure 3.1. The

V15 is a high speed interceptor with a deep-vee hull and hard chines measuring

15.5m in length and 3m in beam, driven by twin propellors powered each by

two diesel engines [115]. Capable of over 50kts (57.5mph, 25.7m/s), the V15 is

an archetypical non-stepped high speed planing hullform and was thus a good

candidate for assessing the solver capabilities for high speed planing boats in

general.

This experiment was carried out as a prelude to dynamics capabilities, and

so a prescribed dynamics approach was taken instead: the hullform position

and flow speed was cycled through four prescribed positions and flow speeds

based on available analytical and sea trial data provided by Norson Design,

which is detailed in Table 3.1. Using an automated HPC submission script,

the position and flow speed was cycled through the configurations in Table

3.1 for half second periods. The hypothesis was that, as the positions in Table

Jack Townsend 94

V15 prescribed dynamics study

3.1 are for heave equilibrium conditions, the reactive heave force experienced

by the hull would remain constant at approximately the same magnitude as

the weight of the boat.

Table 3.1: Industry-provided V15 planing equilibrium position values for var-
ious speeds.

Speed (kts) Speed (m/s) Trim (°) Sink (mm)

25 12.86 5.0 800
35 18.01 4.0 700
45 23.15 3.0 600
55 28.29 2.2 520

The data provided by Norson Design features estimated equilibrium posi-

tion based on analytical calculations that were then confirmed by observations

of the vessel in near-still waters at high speeds. This project is seeking to re-

place/supplement the analytical method with a more accurate computational

prediction. Further, observational confirmation had an unquantified degree

of accuracy as factors such as inconsistent speed, small waves/disturbances,

and inherent oscillatory heave and trim motion meant the boat was never in

a perfect equilibrium condition. The boat weight was estimated at 10 tonnes

based on a known empty weight plus an approximated equipment weight.

The goal of this experiment was to assess whether Palabos could return a

reasonable lift force for each position given the estimates of real performance,

and also as a trial of moving the hull geometry within a simulation as a proof-

of-concept for the full dynamics implementation.

The results of this experiment are shown in Figure 3.2. The coloured bands

define the time windows spent in each of the four flow speeds and positions,

with the hull geometry and flow speed instantaneously changing to the next

configuration at each 0.5s interval. The red dotted line denotes the estimated

weight of the boat, which the lift response is expected to match. The raw lift

response data is given along with a smoothed 0.05s moving average to better

reveal trends.

From Figure 3.2 it can be seen that the lift response falls approximately

within a ±20% margin from the estimated equilibrium position, with lift re-

Jack Townsend 95

V15 prescribed dynamics study

Figure 3.2: The lift force response of the V15 for the prescribed dynamics
experiment.

sponse not drastically changing between each configuration despite significant

changes in flow speed. This granted confidence that this implementation was

matching the predicted behaviour in heave.

The prescribed dynamics method used to achieve this performed as in-

tended, allowing the position changes to happen as an automated checkpoint-

ing event within a single submitted job to the cluster. The job batchfile ran

a Matlab script on a single HPC core, which in turn submitted the Palabos

job to be run on the remaining allocated cores. This Matlab script submitted

the first Palabos simulation and at each 0.5s interval used Palabos’ native

checkpointing method to checkpoint the simulation, change the simulation

parameters to the next hull position and flowspeed, and resubmit the simula-

tion continuing from the checkpointed state. By automating this process the

full 72 hour cluster wall clock time limit could be used, reducing both time

spent queueing on the HPC system and any downtime caused by the user not

instantly submitting the follow-up job.

The change in hull position and flow speed is depicted in Figure 3.3, where

the hull is seen from the side (pink), with the fluid free surface depicted in light

blue with opacity, and a slice through the fluid domain along the centreline of

the hull plots the velocity of the flow. The four images show the simulation at

the end of each flowspeed region, from top to bottom: 0.5s(25kts), 1.0s(35kts),

Jack Townsend 96

V15 prescribed dynamics study

Figure 3.3: The V15 hull is shown from the side at (from top to bottom)
t = 0.5s, t = 1.0s, t = 1.5s, and t = 2.0s through the prescribed motion
experiment. A slice made through the symmetry plane of the hull is coloured
by fluid velocity. The free surface is depicted in blue with half opacity.

Jack Townsend 97

V15 prescribed dynamics study

1.5s(45kts), 2.0s(55kts). This allows the flow to be seen at the closest it

gets to steady state for each flow speed. Note that the legend is consistent

across all four images, and is intended more to show the progression through

different inlet speeds rather than to show variation in the velocity field for

each snapshot.

With each position change a minimal amount of fluid volume became

“trapped” inside the hullform geometry during the instantaneous position

changes. This is of small consequence, as when inside the hullform volume

this fluid is excluded from contribution to the pressure profile projected from

lattice nodes onto the geometry, thus having no effect on the pressure profile

from which the integrated heave force is obtained. Although the solver con-

tinues to model this fluid inside the hullform, this trapped fluid constitutes a

practical failure in mass conservation from the perspective of measuring fluid

force on the hull. The trapped mass of fluid is a consequence of the non-

physical, instantaneous position changes of the hull, and is thus reduced in

effect the smaller these position changes become.

Table 3.2 details the simulation parameters used for this experiment that

are not covered in Table 3.1 along with the computational resource details.

Note that the HPC cluster time limit per job was 72 hours, and so the run

times given neglect time spent in the cluster queue and the downtime between

jobs being terminated by the time limit and being resubmitted by the user to

continue.

In summary, this preliminary experiment showed that the Palabos solver

was capable of simulating the heave force on an industry hullform and that

prescribed hullform movement could be readily implemented. This gave con-

fidence to and laid the groundwork for the development of heave dynamics

detailed in Section 3.3.

Jack Townsend 98

V15 prescribed dynamics study

Table 3.2: Prescribed dynamics experiment parameters and computational
resource requirements.

parameter units value

domain size:
x range (m) [−15.0, 15.0]
y range (m) [−3.0, 2.5]
z range (m) [−5.0, 5.0]

absorbing zone widths:
inlet (m) 1.0

outlet (m) 1.0
lateral (m) 0.5

top (m) 0.1
fluid properties:

density, ρ (kg/m3) 1, 030
kinematic viscosity, ν (m/s2) 1.0e− 6

fluid height (m) 3.0
surface tension (N/m) 0.0728

Palabos parameters:
resolution (−) 801

dx (m) 0.01875
characteristic length, Lchar (m) 10.0

lattice velocity, uLB (m/s) 0.01
computational resources:

HPC cluster used (−) HPC Wales, Sunbird
number of CPU cores (−) 450

memory per CPU core (Mb) 1024
total wall clock time (−) 6d : 22h : 10m : 01s

solver iterations (−) 421, 011
solver time (−) 6d : 10h : 01m : 59s

% solver time (−) 92.70%
input/output time (−) 10h : 35m : 30s

% input/output time (−) 6.37%

Jack Townsend 99

V15 prescribed dynamics study

3.2.1 V15 prescribed dynamics sink sensitivity study

The heave equilibrium sink positions provided by Norson Design for the pre-

vious section were estimates that are difficult to accurately assess in sea trials

at full scale due to heave response, speed variability, water surface distur-

bances, and other practicalities that are hard to control outside of laboratory

conditions. To explore how sensitive the lift force is to changes in draft, and

therefore to what degree small errors in measuring draft may lead to large

changes in the expected force, a repeat simulation was made at 40mm less

sink. Excepting the 40mm raising of the hull position, the parameters for this

simulation were identical to those detailed in Table 3.2.

The results of this simulation are plotted in Figure 3.4 along with the

lift response at the original industry-provided positions. The −40mm sink

response matches the trends of the original position quite closely, though

there is some variation between different speeds. This is most likely due to

the equilibrium position also being a function of trim angle, which remains

constant here. In some cases the lift response from the −40mm sink case

better matches the expected position. This could be a result of inaccuracies

in measurement of the weight, trim angle, the sink of the boat, or combinations

of all three.

Figure 3.4: The lift force response of the V15 for the prescribed dynamics
experiment at 40mm less sink (i.e.: 40mm higher in the water) is compared
to the results at the original positions.

Jack Townsend 100

V15 prescribed dynamics study

For the highest speed case, 55kts, the sensitivity of lift to sink is calculated

by Equation 3.1 from the average lift values between 1.75s ≤ t ≤ 2s.

dL

dd
=

(117.6− 98.2)

40

kN

mm
= 485N/mm (3.1)

This indicates significant sensitivity in lift response for a small change in

vertical position. For example a 10mm vertical change in position – small con-

sidering the 15m length of the hull – would result in a change in lift response

equal to 4.9% of the boat weight.

This additional prescribed motion study indicates that the lift response is

very sensitive to the vertical sink of the boat. For this reason, a model in which

the hull is free to move to an equilibrium position in response to fluid forces

is considerably more valuable than the static hull simulations presented so

far. Addition of such a heave dynamics capability is detailed in the following

Section 3.3.

Jack Townsend 101

Heave dynamics

3.3 Heave dynamics

Informed by feedback from industrial sponsors the goal of developing a 1

degree of freedom (DoF) heave dynamics capability for the current solver was

arrived at. Though it would be a desirable feature to allow pitching motion

as a second degree of freedom to allow interaction between trim angle and

sink for a given speed, it was determined that the added complexity may

introduce the need for dynamics and solver tuning that would otherwise not

be necessary if trim angle remained fixed and heave displacement represented

the sole degree of freedom. Trim angle is also affected by boat features such

as the propulsion devices and trim tabs, the modelling of which is beyond the

scope of this project. Even with trim angle fixed, the ability to assess the

equilibrium sink of a hull was determined to be valuable to industry.

3.3.1 Explicit and implicit numerical methods

Many physical phenomena can be described using Ordinary Differential Equa-

tions (ODEs), including the heave dynamics of a planing hullform, which can

be derived from first principles of Newton’s second law, expressed in Equation

3.2.

Fz = mz̈ = m
dż

dt
(3.2)

where Fz is the heave component of the fluid force acting on the hull, m is

the mass of the hull, g is acceleration due to gravity, and z is displacement in

the heave direction.

If the dependent variables of an ODE can be computed from known values,

the method is said to be explicit. In a time-stepping scheme, this means

that the state of the system in the following time-step is calculated using the

values of the system in the current time-step. Conversely, an implicit method

uses a coupled system of equations dependent on parameters from more than

one time-step. Take for example a mathematical system describing physical

phenomena dependent on time where the current state of the system is given

by Y (t) and the next state is given by Y (t+dt), where dt is a small increment

Jack Townsend 102

Heave dynamics

in time. An explicit method would take the general form of Equation 3.3.

Y (t+ dt) = F (Y (t)) (3.3)

Here the state of the system at the next time-step can be defined by the

state in the current time-step. This is opposed to a implicit method, which

to find Y (t+ dt) would take the general form of Equation 3.4.

G(Y (t), Y (t+ dt)) = 0 (3.4)

Here the state of the system for the next time-step is dependent both on

the current time-step state and the state in the next time-step. For this reason

implicit methods are typically more difficult to implement. Explicit methods

are comparatively easier to implement, though in some cases will require very

small time-steps to remain numerically stable in the face of stiff systems [116].

Based on this, the Forward Euler method was chosen to solve the dynam-

ics in anticipation of a non-stiff response, with the alternative of exploring

implicit methods if numerical instability was encountered. This conferred the

advantage of simplicity and rapid implementation for turn-around to industry.

The disadvantage of being forced to use smaller time-steps versus an implicit

method is reduced by the insight given by earlier testing in Section 3.2, where

it was discovered that small time-steps in the dynamics would be desirable to

minimise water trapped in the hull geometry when position changes are made.

3.3.2 Forward Euler method for heave dynamics

For a time-stepping scheme where the nth time-step is given by tn, for which

the system state is given by yn such that yn = y(t = tn), the forward Euler

method can be written as in Equation 3.5.

yn+1 = yn + hf(yn, tn) (3.5)

where h is the step size such that h = tn− tn−1. The forward Euler method is

a based on a truncated Taylor series expansion such that expanding y in the

neighbourhood of t = tn gives Equation 3.6.

Jack Townsend 103

Heave dynamics

y(tn + h) ≡ yn+1 = y(tn) + h
dy

dt
|tn +O(h2) = yn + hf(yn, tn) +O(h2) (3.6)

Thus the step error is proportional to the square of the step size, O(h2),

and the method is considered first order.

From Equation 3.2 Newton’s second law can be expressed as an ODE by

rearranging for velocity (ż):

∆ż =
Fz
m

∆t (3.7)

Expressing this in Euler time-stepping terms:

∆żi =
Fi
m

∆t (3.8)

Then the velocity for the next time steps is calculated by summing the

previous velocity with the incremental change in this step:

żi+1 = żi + ∆żi (3.9)

For the position at the next timestep, given the following:

ż =
dz

dt
→ ∆zi = żi∆t (3.10)

Then similarly to Equation 3.9, the position in the next time-step can be

given by:

zi+1 = zi + ∆zi (3.11)

In the case of heave force acting on the hull, Fz is the resultant force of the

weight force of the boat and the vertical heave component of the force exerted

by the fluid on the hull such that:

Fz = z̈ = Fzpalabos −mg (3.12)

where Fzpalabos is the vertical component of the fluid force acting on the boat

Jack Townsend 104

Heave dynamics

hull according to the Palabos simulation for this dynamics time-step, m is

the mass of the boat, and g is acceleration due to gravity. Note that up is

considered the positive direction.

Thus by substituting Equation 3.7 into Equation 3.12 the change in veloc-

ity for this time-step is given by:

∆żi =
Fzpalabos −mg

m
∆t (3.13)

This can be substituted into Equation 3.9 to then solve Equation 3.11.

Thus with initial values determined by the user, typically as:

z(t = 0) = 0 and ż(t = 0) = 0 (3.14)

Thus the forward Euler method for the heave dynamics is fully defined.

This process is carried out in the Matlab subfunction funcMoveBoat.m, de-

tailed in Appendix A.2.6. This subfunction takes as inputs the time-step size

(dt), Palabos-calculated heave force acting on the boat (y forceAvg), mass

of the boat (m boat), and values of zi and żi (z, z dot); it returns the zi+1

and żi+1 values, and the position change for the hull geometry (z diff).

3.3.3 Heave dynamics implementation

The forward Euler dynamics requires the hydrodynamic forces acting on the

hull (Fzpalabos , Equation 3.13) to evaluate the hull movement. The hullform

geometry would then be moved incrementally in the Palabos simulations ac-

cording to the dynamics solution. To do this, a Palabos simulation is needed

for each iteration of the dynamics solution.

The approach taken to achieve this was an expansion on the method used in

Section 3.1, where a Matlab script is submitted to the HPC cluster on a single

core with the remaining cores reserved for running the Palabos executable.

This approach can be thought of as two concurrent simulations: a dynam-

ics simulation solved using the forward Euler method inline within the Mat-

lab script, and a Palabos simulation carried out by the boatHullFormSolver

executable. There are, therefore, two separate iteration counts for each simu-

Jack Townsend 105

Heave dynamics

lation.

In the following explanation, the working directory refers to the “hub”

directory containing the main executables. The contents of this directory are

as follows:

� boatHullFormSolver – the executable for the Palabos hullform solver,

see Appendix A.3.1. Compiled using the boatHullFormSolver.cpp

source using the Makefile.

� jobSubmitter.m – the Matlab job submission and dynamics script, see

Appendix A.2.1. Call on several Matlab subfunctions, see Appendices

A.1.2-A.1.8.

� <hullform>.stl – the hullform geometry to be simulated, in .stl for-

mat.

� batchfile.job – the batchfile for submission of the jobSubmitter.m

to the HPC cluster for execution. The contents of this will depend on

the HPC hardware and queue manager.

� params template.xml – an .xml formatted file containing the user de-

fined inputs for Palabos simulations.

� \tmp – a temporary directory that the simulation outputs are stored in.

� checkpoint xxxxxxxx x.plb/dat and continue.xml – in the case that

the simulation is being started from a previously checkpointed simula-

tion (at iteration number denoted by xs), these files left by the previous

simulation will be needed in the working directory.

The Palabos solver files and libraries then lie one level above the working

directory (path relative to working directory: ../palabos/).

The Matlab submission script (jobSubmitter.m) has a number of user de-

fined input parameters at its head, and also takes user input parameters from

params template.xml. Using these, the timestep of the Palabos simulation

is calculated by Equation 3.15.

Jack Townsend 106

Heave dynamics

dtpalabos =
uLBLchar

uref (resolution− 1)
(3.15)

where the right hand terms are Palabos input values discussed in Section

2.1. Note that for this section the dt terms will be subscripted to denote

whether they belong to the Palabos or dynamics simulations. As the user

also defines the physical time to be simulated and time-step for the dynamics

(maxTime and dtdynamics), the number of Palabos iterations that need to be

run to complete a single dynamics iteration can be calculated.

The Matlab submission script then iterates until the user defined time

limit is reached, with each iteration submitting a complete Palabos simula-

tion. When the Palabos simulation for the current dynamics time-step reaches

the number of iterations required it checkpoints, saving the outputs and cur-

rent state of the simulation in the working and /tmp directory. The Matlab

submission script then reads the force values from the Palabos simulation

outputs as an input for the dynamics calculations, using the forward Euler

method described in Section 3.3.2.

The dynamics calculations described in Section 3.3.2 are carried out in-line

in the Matlab submission script, and the resulting displacement of the hull

for the next time-step is calculated. Several subfunctions (Appendices A.2.4,

A.2.5, A.2.6, and A.2.7) then handle the translation of the .stl file to this new

position for the next dynamics time-step. The dynamics loop iterates, and

new values for the next Palabos simulation are streamed to the params.xml

file prior to submission.

This process is visually described in further detail in Figure 3.5. The full

Matlab submission script (jobSubmitter.m) is available in Appendix A.2.1,

with the Matlab subfunctions in Appendices A.1.2-8.

Jack Townsend 107

Heave dynamics

Figure 3.5: A flowchart detailing the workflow of the dynamics implementa-
tion. The process begins with the submission of the batchfile.job file in
the working directory to the HPC cluster job scheduler.

Jack Townsend 108

V15 dynamic hullform drop test

3.4 V15 dynamic hullform drop test

As an initial test of the dynamics an extreme case of heave motion was sim-

ulated: the V15 geometry was dropped from a high initial position (given

the flow speed), and allowed to settle to an equilibrium position. The hull

was positioned at a 5° trim angle and initiated at only 560mm sink below

the waterline measured at deepest part of the transom in a 10m/s flow. For

context, industry data indicated the equilibrium sink measured at the same

point in a 25kts (12.86m/s) flow would be 760mm, so although the hull is

partly wetted on initiation the hull is essentially being dropped relative to its

estimated equilibrium – significant motion was expected, akin to severe slam-

ming conditions. This test sought to identify whether the method described

in Section 3.3.3 was capable of accurate solving of the hydrodynamic forces

on the boat and, subsequently, accurate and robust capture of the dynamic

motion in response to these forces.

The input parameters and computational resources used for the simulation

are detailed in Table 3.3. In Figure 3.8 the simulation is visualised from a

side perspective of the hull (pink) with the free surface (blue, 50% opacity)

displayed to show the complex free surface behaviour being modelled. Figure

3.10 shows this again, with a slice through the fluid along the centreline of

the hull coloured by velocity to reveal complexity throughout the fluid. The

heave motion response is plotted in Figure 3.6.

From Figures 3.10 and 3.6 it can be seen that the dynamics method worked

as intended, as the hull settles to an equilibrium steady-state heave position

at a reasonable amount of sink. The drop height was quite significant, as

the whole hull is temporarily submerged in the initial oscillation as seen in

Figure 3.10. In these snapshots, velocity magnitude is plotted on a slice made

through the fluid domain along the boat centreline, revealing the complex

flow being solved by the Palabos solver that could not be accomplished in full

fidelity by an analytical method. The free surface is shown in 50% opacity

blue, revealing complex free surface flow with droplets and entrained air.

Although this kind of motion is possible in rough sea states, and may occur

after the hull pierces a wave and falls into the wave trough, such motion can be

Jack Townsend 109

V15 dynamic hullform drop test

Figure 3.6: The heave motion response of the V15 hull is plotted, showing
the trend towards a steady-state equilibrium position. The y-axis is based
on sink measured at the lowest point of the transom. The hull is dropped
from a position of 560mm sink, and reaches heave equilibrium at a position
of 898mm sink. Note the infrequent output of position data causes a low
resolution curve; this is resolved in later plots of heave motion.

considered on the bounds of the V15 performance envelope. This experiment

shows that the dynamics method is robust enough to handle hull motion far

beyond the necessary magnitudes to evaluate heave equilibrium in calm water.

Exact validation of the final position arrived at cannot be made from this

test case as the flow speed was arbitrarily set at 10m/s and did not exactly

match the given industry data, for which the closest estimate is only available

at 12.86m/s (25kts). The steady-state sink in this experiment was 898mm

compared to 760mm estimated by industry data at the same 5° trim angle.

Given how close these values are, and that the slower speed would be expected

to yield a greater sink, as is seen, this experiment gave reasonable confidence in

the accuracy of the heave force predictions on top of demonstrating robustness

in the face of large heave position changes.

To provide more rigorous validation against the industry data, a similar

set of simulations are performed in Section 3.5 for each of the conditions given

for the V15 by industry.

Jack Townsend 110

V15 dynamic hullform drop test

Table 3.3: V15 dynamics drop test parameters and computational resource
requirements.

parameter units value

domain size:
x range (m) [−20.0, 10.0]
y range (m) [−5.0, 5.0]
z range (m) [−4.0, 4.0]

absorbing zone widths:
inlet (m) 1.0

outlet (m) 1.0
lateral (m) 0.5

top (m) 0.0
fluid properties:

density, ρ (kg/m3) 1, 000
kinematic viscosity, ν (m/s2) 1.0e− 6

fluid height (m) 5.0
surface tension (N/m) 0.0728

Palabos parameters:
resolution (−) 301

dx (m) 0.05
characteristic length, Lchar (m) 15.0

lattice velocity, uLB (m/s) 0.01
dynamics parameters:

hullform geometry (−) V15
trim angle (°) 5

initial sink at transom (mm) 560
hull mass (kg) 9, 000

dynamics time-step size (s) 5e− 3
computational resources:

HPC cluster used (−) HPC Wales, Sunbird
number of CPU cores (−) 500

memory per CPU core (Mb) 4, 000
total wall clock time (−) 3d : 20h : 19m : 40s

Jack Townsend 111

V15 dynamic hullform drop test

Jack Townsend 112

V15 dynamic hullform drop test

Figure 3.8: The V15 drop test is seen from the side to illustrate heave motion
in snapshots of 0.5s intervals. The hullform is pink, and the free surface blue
with 50% opacity.

Jack Townsend 113

V15 dynamic hullform drop test

Jack Townsend 114

V15 dynamic hullform drop test

Figure 3.10: The V15 drop test is seen from the side to illustrate heave motion
in snapshots of 0.5s intervals. The hullform is pink, and the free surface blue
with 50% opacity. A slice through fluid domain along the centreline of the
hull is coloured by fluid velocity.

Jack Townsend 115

Dynamic validation against industry data for the V15 hullform

3.5 Dynamic validation against industry data

for the V15 hullform

To validate the ability of the heave dynamics method to assess the equilibrium

heave position of a hull, simulations were run matching the industry data used

in Section 3.2, reprinted in Table 3.4. Due to computer resource and time

limits, the 25kts case was skipped, as the case in Section 3.4 was considered

to sufficiently match the conditions with a satisfactory equilibrium position.

Validation at the higher speeds was considered more valuable by industry, as

designs would typically be optimised for near-maximum design speed.

A dynamics simulation was run for each of the cases in Table 3.4, simi-

larly to the prescribed dynamics experiment, though in this case the hulls are

allowed to move freely in heave. The validity of the simulations will then be

quantified by the steady-state heave position they reach compared to industry

sink estimates in Table 3.4.

Table 3.4: Industry-provided V15 planing equilibrium position values for var-
ious speeds.

Speed (kts) Speed (m/s) Trim (°) Draft (mm)

35 18.01 4.0 700
45 23.15 3.0 600
55 28.29 2.2 520

The force and displacement response for each of these cases are plotted

in the following respective subsections. As the vertical motion was minimal

due to the hull being initiated at near-equilibrium positions, no side-on visu-

alisations are shown as with the drop test in Section 3.4. Instead, a general

snapshot visualisation of the free surface wake at equilibrium is shown in Sec-

tion 3.5.4 for each case. Simulation parameters and resource usage are also

detailed in the accompanying tables.

Jack Townsend 116

Dynamic validation against industry data for the V15 hullform

3.5.1 Dynamic validation results – 35kts, 4.0° trim

The heave displacement and velocity responses are shown in Figure 3.11. The

heave displacement is zeroed to the predicted equilibrium position of 700mm.

The displacement initially surges and over-corrects in the first 0.7s, before

temporarily settling at a slightly surged state of approximately +80mm be-

tween 0.7s − 1.5s. It then settles to a steady value close to the industry-

estimated equilibrium sink value, indicating close agreement with industry

data. From 3.5s–4.7s the V15 was judged to have reached equilibrium; the

heave response averaged a mean value of +8.4mm with a standard deviation

of ±2.5mm during this period. This simulation took 144 hours of wall-clock

time to run on 700 cores.

V15 - 35kts, 700mm sink, 4.0° trim

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

physical time (s)

-0.5

0

0.5

1

he
av

e
di

sp
la

ce
m

en
t (

m
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

physical time (s)

-20

0

20

40

60

he
av

e
ve

lo
ci

ty
 (

m
/s

)

Figure 3.11: The heave displacement (blue) and heave velocity (red) are plot-
ted against time for the 35kts scenario. The heave displacement is zeroed
to the industry estimated equilibrium value of 700mm sink measured at the
deepest part of the transom.

Jack Townsend 117

Dynamic validation against industry data for the V15 hullform

Table 3.5: V15 dynamics: 35kts, 4.0° trim – simulation parameters and com-
putational resources.

parameter units value

domain size:
x range (m) [−20.0, 10.0]
y range (m) [−5.0, 5.0]
z range (m) [−4.0, 4.0]

absorbing zone widths:
inlet (m) 1.0

outlet (m) 1.0
lateral (m) 0.5

top (m) 0.0
fluid properties:

Fr (−) 3.31
Re (−) 36,000,000

density, ρ (kg/m3) 1, 030
kinematic viscosity, ν (m/s2) 1.0e− 6

fluid height (m) 5.0
surface tension (N/m) 0.0728

Palabos parameters:
resolution (−) 301

dx (m) 0.0333
dt (s) 1.8519e− 05

characteristic length, Lchar (m) 10.0
lattice velocity, uLB (m/s) 0.01

dynamics parameters:
hullform geometry (−) V15

trim angle (°) 4
initial sink at transom (mm) 700

hull mass (kg) 10, 000
dynamics time-step size (s) 0.005

computational resources:
HPC cluster used (−) HPC Wales, Sunbird

number of CPU cores (−) 700
memory per CPU core (Mb) 8, 000

total wall clock time (−) 144h : 00m : 00s

Jack Townsend 118

Dynamic validation against industry data for the V15 hullform

3.5.2 Dynamic validation results – 45kts, 3.0° trim

The heave displacement and velocity responses are shown in Figure 3.12. The

heave displacement is zeroed to the predicted equilibrium position of 600mm.

The trends closely match the previous 35kts case: the displacement initially

surges and over-corrects in the first 0.7s, before temporarily settling at a

slightly surged state of approximately +80mm between 0.7s − 1.2s. From

2.5s–3.0s the V15 was judged to have reached equilibrium; the heave response

averaged a mean value of +4.0mm with a standard deviation of ±7.0mm

during this period. This simulation took 144 hours of wall-clock time to run

on 700 cores.

V15 - 45kts, 600mm sink, 3.0° trim

0 0.5 1 1.5 2 2.5 3

physical time (s)

-0.5

0

0.5

1

he
av

e
di

sp
la

ce
m

en
t (

m
)

0 0.5 1 1.5 2 2.5 3

physical time (s)

-20

0

20

40

60

he
av

e
ve

lo
ci

ty
 (

m
/s

)

Figure 3.12: The heave displacement (blue) and heave velocity (red) are plot-
ted against time for the 45kts scenario. The heave displacement is zeroed
to the industry estimated equilibrium value of 600mm sink measured at the
deepest part of the transom.

Jack Townsend 119

Dynamic validation against industry data for the V15 hullform

Table 3.6: V15 dynamics: 45kts, 3.0° trim – simulation parameters and com-
putational resources.

parameter units value

domain size:
x range (m) [−20.0, 10.0]
y range (m) [−5.0, 5.0]
z range (m) [−4.0, 4.0]

absorbing zone widths:
inlet (m) 1.0

outlet (m) 1.0
lateral (m) 0.5

top (m) 0.0
fluid properties:

Fr (−) 4.26
Re (−) 46,300,000

density, ρ (kg/m3) 1, 030
kinematic viscosity, ν (m/s2) 1.0e− 6

fluid height (m) 5.0
surface tension (N/m) 0.0728

Palabos parameters:
resolution (−) 301

dx (m) 0.0333
dt (s) 1.4399e− 05

characteristic length, Lchar (m) 10.0
lattice velocity, uLB (m/s) 0.01

dynamics parameters:
hullform geometry (−) V15

trim angle (°) 3
initial sink at transom (mm) 600

hull mass (kg) 10, 000
dynamics time-step size (s) 0.005

computational resources:
HPC cluster used (−) HPC Wales, Sunbird

number of CPU cores (−) 700
memory per CPU core (Mb) 8, 000

total wall clock time (−) 144h : 00m : 00s

Jack Townsend 120

Dynamic validation against industry data for the V15 hullform

3.5.3 Dynamic validation results – 55kts, 2.2° trim

The heave displacement and velocity responses are shown in Figure 3.12. The

heave displacement is zeroed to the predicted equilibrium position of 520mm.

The displacement trends do not match as closely as the previous two cases:

there is no notable over-surge, but rather an over-sink period that slowly cor-

rects towards an equilibrium near the industry-estimated value. Once reached,

the equilibrium displacement is noticeably more consistent than the 45kts

case. From 5.50s–7.75s the V15 was judged to have reached equilibrium; the

heave response averaged a mean value of +73.0mm with a standard deviation

of ±1.7mm during this period. This simulation took 216 hours of wall-clock

time to run on 700 cores.

V15 - 55kts, 520mm sink, 2.2° trim

0 1 2 3 4 5 6 7 8

physical time (s)

-1.5

-1

-0.5

0

0.5

he
av

e
di

sp
la

ce
m

en
t (

m
)

0 1 2 3 4 5 6 7 8

physical time (s)

-20

-15

-10

-5

0

5

he
av

e
ve

lo
ci

ty
 (

m
/s

)

Figure 3.13: The heave displacement (blue) and heave velocity (red) are plot-
ted against time for the 55kts scenario. The heave displacement is zeroed
to the industry estimated equilibrium value of 520mm sink measured at the
deepest part of the transom.

Jack Townsend 121

Dynamic validation against industry data for the V15 hullform

Table 3.7: V15 dynamics: 55kts, 2.2° trim – simulation parameters and com-
putational resources.

parameter units value

domain size:
x range (m) [−20.0, 10.0]
y range (m) [−5.0, 5.0]
z range (m) [−4.0, 4.0]

absorbing zone widths:
inlet (m) 1.0

outlet (m) 1.0
lateral (m) 0.5

top (m) 0.0
fluid properties:

Fr (−) 5.21
Re (−) 56,580,000

density, ρ (kg/m3) 1, 030
kinematic viscosity, ν (m/s2) 1.0e− 6

fluid height (m) 5.0
surface tension (N/m) 0.0728

Palabos parameters:
resolution (−) 301

dx (m) 0.0333
dt (s) 1.1783e− 05

characteristic length, Lchar (m) 10.0
lattice velocity, uLB (m/s) 0.01

dynamics parameters:
hullform geometry (−) V15

trim angle (°) 2.2
initial sink at transom (mm) 520

hull mass (kg) 10, 000
dynamics time-step size (s) 0.005

computational resources:
HPC cluster used (−) HPC Wales, Sunbird

number of CPU cores (−) 700
memory per CPU core (Mb) 8, 000

total wall clock time (−) 216h : 00m : 00s

Jack Townsend 122

Dynamic validation against industry data for the V15 hullform

3.5.4 Heave dynamics convergence to equilibrium com-

pared across speeds

A comparison of the displacement trends from each of the three dynamics

simulations is presented graphically in Figure 3.14. The significant difference

between the 55kts and the two slower simulations can be seen: the 35kts

and 45kts simulations follow very similar trends and converge to equilibrium

in almost the same 2s time frame; the 55kts case takes much longer to con-

verge, though does not experience a significant overshoot as the other two

cases do. The 55kts case can be seen to have the greatest variance from the

estimated equilibrium position. The equilibrium position results for each case

are also compared numerically in Table 3.8. In Figures 3.15 and 3.16 the free

surface deformations at the final computed time-step for each speed case are

compared.

0 1 2 3 4 5 6 7 8

physical time (s)

-1.5

-1

-0.5

0

0.5

1

he
av

e
di

sp
la

ce
m

en
t (

m
)

V15 displacement trends across all speeds

25kts
35kts
55kts

Figure 3.14: The heave displacement for the dynamics simulations are plotted
together. The convergence to equilibrium patterns and time taken can be
seen.

Jack Townsend 123

Dynamic validation against industry data for the V15 hullform

Table 3.8: The mean average sink during the equilibrium period of each sim-
ulation is presented with a standard deviation and percentage variance of the
mean value against the industry-predicted value.

Speed (kts)
Industry-
estimated
sink (mm)

Mean
average

numerical
sink (mm)

Period of
averaging

(s)

Percentage
difference
relative to
industry
values

25 800 886.0±7.6 12.0–15.0 10.75%
35 700 691.7±2.5 3.50–4.70 -1.19%
45 600 596.0±7.0 2.50–3.00 -0.67%
55 520 447.0±1.7 5.50–7.75 -14.0%

Jack Townsend 124

Dynamic validation against industry data for the V15 hullform

(a) 35kts, 4° trim.

(b) 45kts, 3° trim.

(c) 55kts, 2.2° trim.

Figure 3.15: The final timestep of each of the simulations is shown from below,
with hull geometry (pink) and free surface (blue with 50% opacity) shown.

Jack Townsend 125

Dynamic validation against industry data for the V15 hullform

(a) 35kts, 4° trim.

(b) 45kts, 3° trim.

(c) 55kts, 2.2° trim.

Figure 3.16: The final timestep of each of the simulations is shown from
behind, with hull geometry (pink) and free surface (blue with 50% opacity)
shown.

Jack Townsend 126

Heave dynamics conclusions and recommendations for future work

3.6 Heave dynamics conclusions and recom-

mendations for future work

The implementation and validation of a heave dynamics capability for the

Palabos solver has been demonstrated. The validation against industry data

shows good convergence in the 35kts and 45kts speed regimes (3.31 ≤ Fr ≤

4.26, using boat beam as reference length), and although the higher 55kts

speed showed evidence of convergence to a reasonable equilibrium position,

this could not be confirmed due to high computational cost and time limita-

tions. The drop test in Section 3.4 exhibited the robustness of the dynamics

capabilities as the hull is dropped from a height near the limits of the de-

sign conditions expected in service, and successfully returns to an equilibrium

position.

This approach does incur high computational costs, as the grid size needs

to be driven towards a grid independent value (see Section 2.3) while also

keeping the domain size large enough for phenomena such as wake, spray,

and bow waves, all while being restricted to a uniform global grid size. This

cost is quantified in the grid independence study of Section 2.3, where a four

times increase in the resolution parameter results in a 19,346% increase in

the compute time required for a unit of physical time simulated. For this

reason, a significant step forward in future development of this work to make

the method more practical for industry use would be the implementation of

local grid refinement. Additionally, implementation of the dynamics natively

in the C++ script rather than requiring the Matlab “wrap” solution would

be desirable: doing so would allow some degree of parallelism in the dynamics

process rather than the constantly reserved single core for running the Matlab

script, which spends most of the runtime waiting. The capabilities presented

in this section are, nonetheless, useful to industry: accurate evaluation of the

equilibrium position of a vessel for a given trim angle and speed.

Jack Townsend 127

Chapter 4

Aerodynamic optimisation of an

XCat-style catamaran

4.1 XCat racing boats as a platform for aero-

dynamic optimisation.

The UIM (Union Internationale Motonautique) XCat Class 1 World Cham-

pionship is an international powerboat racing event hosted around the world.

In this event, 12 catamarans powered by 2 400hp engines exceed speeds of

200kmph around a marked course. The category of boats used for this event

are referred to as the XCat class, and as with most racing events optimisation

of their design is sought within very strict regulations. An XCat racing boat

is depicted for reference in Figure 4.1

Figure 4.1: A typical XCat racing boat at speed [117].

128

XCat racing boats as a platform for aerodynamic optimisation.

(a) The modified XCat geometry of the XC10. A cross section (blue) is taken along
the centreline to reveal the multi-wing configuration of the centre body.

(b) The frontal area with characteristic “tunnel” is shown
from the perspective of oncoming airflow.

Figure 4.2: The area of aerodynamic interest in an XCat-style geometry is
depicted. Note that this geometry is modified from an XCat class geometry by
industry partners Norson Design and is referred to as the XC10. Modifications
include a multi-wing aerofoil cabin and leading/trailing bodies.

Industry partners Norson Design were interested in developing an aero-

dynamically optimised boat with the XCat class as a platform. The primary

rationale behind this venture was the concept that, due to the high speed plan-

ing mode of operation, the appreciable aerodynamic effects could be leveraged

to minimise drag and increase performance. Specifically, optimisation of the

high-pressure “tunnel” region inherent in the catamaran configuration was

sought. To do this, Norson Design provided a baseline geometry of a catama-

ran based loosely on an XCat class vessel. This geometry, referred to as the

XC10, is depicted in Figure 4.2.

Aerodynamic optimisation of the XC10 presented several potential av-

enues of performance improvement including pitch control and stability, but

the main focus for initial optimisation was drag reduction. Industry partners

wanted to explore the possibility of reducing the hydrodynamic component of

drag, in turn reducing the total drag and increasing vessel speed for a given

propulsive power. The strategy was to optimise aerodynamic lift generated

Jack Townsend 129

XCat racing boats as a platform for aerodynamic optimisation.

Figure 4.3: The A2V project prototype, a similar conceptual prototype vessel
that leverages aerodynamic lift for drag reduction [118].

in the tunnel to lift the vessel out of the water, reducing the water-wetted

area. A net reduction in drag could be achieved this way in spite of increase

in aerodynamic drag so long as it is out-weighted by hydrodynamic drag im-

provements.

This concept of leveraging aerodynamic lift has precedent in existing projects,

for example the Advanced Aerodynamic Vessels (A2V) project [118], which

has produced a functioning prototype vessel to demonstrate the approach (see

Figure 4.3).

The focus of this work was to develop tools to allow industry to further op-

timise a potential prototype vessel (the XC10) for aerodynamic properties. To

do this, an existing 2D aerodynamic optimisation tool developed at Swansea

University, AerOpt [119, 120], was adopted and applied to the design prob-

lem. This tool relies on a novel mesh movement scheme not applicable to the

meshless LBM, and so 2D RANS simulations were used for the flow modelling.

In initial optimisation, the goal was maximised lift from the centre-body of

the XC10 geometry. The degree to which these 2D optimisations influenced

the performance when extruded onto a 3D geometry were then assessed by

Jack Townsend 130

The 2D design baseline for optimisation

3D CFD experiments.

4.2 The 2D design baseline for optimisation

Although AerOpt is capable of optimising across a global design space with

many degrees of freedom, starting from a strong baseline design and limiting

the scope of the design space remains beneficial in saving computer run-time

and avoiding impractical designs. The multi-disciplinary nature of vehicle

design must be considered: the aerodynamic optimisation does not occur in-

dependently of other design factors, and consideration needs to be given to

structural limitations, minimum internal volumes for crew/passengers/cargo,

etc.

Motivation for 2D optimisation arose from a desire to reduce the problem

to minimise design time. Not only would a design cycle for 3D optimisa-

tion involve 3D CFD experiments, which are time-expensive in themselves,

it would mean a large increase in the degrees of freedom in the optimisation

process. A 3D optimisation would require more control nodes to parameterise

the additional geometric dimension and an additional degree of freedom per

control node.

Flow under the centre-structure of the boat is “gated” by the twin hulls on

either side, and so spill of flow outside this ducted volume is minimised and

flow is expected to be highly axial. Due to the nature of this ducted space,

optimisation of the 2D cross section was assumed to translate aerodynamic

benefits to the 3D reality of the boat. Losses in this translation are later

assessed with a 3D CFD study of the optimised geometry against the baseline.

A 2D cross-sectional baseline geometry was arrived at with input from the

following people: George Robson, design engineer for Norson Design with a

background in composite materials; Dr Kyle Forster, former Mercedes-AMG

Petronas Formula 1 engineer and consultant aerodynamicist; and Dr Ben

Evans, doctoral supervisor for this work and CFD aerodynamicist for the

Bloodhound Land Speed Record vehicle. The cross section is depicted in

Figure 4.4.

Jack Townsend 131

The 2D design baseline for optimisation

Figure 4.4: The 2D cross section of the XC10 centre body is depicted with the
x-axis pointing in the direction of relative airflow. This section is along the
centreline of the 3D boat. From left to right the bodies are referred to as the
leading control surface, the cabin, the fixed secondary body, and the trailing
control surface. The leading and trailing control surfaces are depicted in their
high-lift position as found by analysis presented in Section 4.2.1.

The design is notably a multi-wing configuration of four bodies, and is

broken down into – from left to right – the leading body, the cabin, the fixed

secondary body, and the trailing body.

The design of the cabin is restricted by a minimum volume condition to

fit internal components and crew. The cabin shape itself is that of an aerofoil

to produce aerodynamic lift. The fixed secondary body behind the cabin

is a consequence of splitting the central body. This ventilation in the fixed

geometry was made to encourage high-energy flow from inside the tunnel to

energise flow over the top and back of the geometry. This was done to mitigate

possible separation of flow over the high-camber point of the aerofoil-shaped

cabin, especially at high trim angles.

The leading and trailing control surfaces were featured due to a desire from

industry to achieve active aerodynamic control of the vehicle in the future,

be that in a pre-set trim position or an active response system. Optimisation

of these bodies was beyond the scope of this project, and so optimal high-

lift positions for each were found where they remained fixed for the later

shape optimisation. In Figure 4.4 the control surfaces are in their high-lift

configuration. Determination of these high-lift positions is explained in the

following section.

Jack Townsend 132

The 2D design baseline for optimisation

4.2.1 Leading and trailing body position optimisation

Optimal high-lift positions of the leading and trailing surfaces were sought.

These positions would remain fixed for the later shape optimisation of the

fixed central bodies of the 2D baseline. Norson Design were consulted on

the scope of the optimisation, and it was determined that three degrees of

freedom would be practical: vertical displacement of the leading body, pitch

of the leading body, and the pitch of the trailing body (φ1−3 respectively).

See Figure 4.6. Pitch angles are taken about the leading edge of each aerofoil.

The datum for displacement and angles are based on the neutral positions

in the industry-provided CAD geometry. The limits for each parameter are

given in Table 4.1.

Table 4.1: Design space limits relative to the industry-provided baseline.

design parameter lower bound upper bound

φ1 -0.3m 0.05m
φ2 -45° 45°
φ3 -20° 45°

Latin Hypercube Sampling (LHS) was used to scatter 30 combinations of

design parameters φ1−3 throughout the design space. The LHS method allows

a near-random scattering through a n-dimensional design space in a man-

ner that ensures a degree of variability not guaranteed by random scattering

[121]. The combinations of design parameters are given in Table 4.3, and are

visualised in the 3D design space in Figure 4.5.

Each combination of design parameters was then applied to a CAD geome-

try that was submitted for steady-state simulation using HyperWorks Virtual

Wind Tunnel (VWT) [122]. HyperWorks VWT is a CFD software powered

by AcuSolve, a general-purpose, finite element based RANS solver. VWT was

used in large part due to the rapid setup for such a standard case, versus the

longer lead-time that would be associated with writing the C++ code for a

Palabos LBM simulation.

The VWT setup parameters are given in Table 4.2, and the results in

Table 4.3. Slip wall boundary conditions were applied at the top and side

Jack Townsend 133

The 2D design baseline for optimisation

Figure 4.5: The Latin Hypercube Sampling (LHS) points for design param-
eters φ1−3 is visually depicted scattered throughout the design space. Exact
values for each can be found in Table 4.3.

walls of the domain, no slip walls at the boat geometry and ground plane.

The ground plane was also modelled as moving at the inlet speed, which was

100kts (51.5m/s), the top design speed of the boat.

Jack Townsend 134

The 2D design baseline for optimisation

Figure 4.6: The physical context of the design parameters φ1−3 is shown. The
datum for each body is taken from the leading edge of the aerofoil chordline.

Table 4.2: Simulation parameters for the VWT simulations informing leading
and trailing body positions.

parameter units value

boat trim angle (°) 2
simulation type – steady-state, incompressible RANS

turbulence model – Spalart-Allmaras
domain size:

x range (m) [0.0, 25.0]
y range (m) [−4.0, 4.0]
z range (m) [0.0, 5.0]

mesh properties:
element count – approx. 6.4e6

boundary layer mesh – 10 layers, layer 1 y+ = 1.0
fluid properties:

density (kg/m3) 1.225
dynamic viscosity (kg/ms) 1.8e− 5

inlet velocity (m/s) 51.5
Reynolds number (L = 10m) – 35e6

freestream Mach number – 0.15

Figure 4.7: The mesh is seen from the side and rear of the boat to depict the
mesh refinement zones for the VWT simulations.

Jack Townsend 135

The 2D design baseline for optimisation

Table 4.3: LHS scattered designs and their aerodynamic results as evaluated by Virtual
Wind Tunnel. Geometries 12, 22, and 23 have no results due to their φ values producing
self-intersecting geometries.
S = frontal area, CD = coefficient of drag, CL = coefficient of lift, L = lift force.

geometry φ1 φ2 φ3 S (m2) CD CL L (kN)

1 -0.01763 -3.75207 10.39346 4.357764 0.167 2.392 16.93345
2 -0.10722 -28.8746 41.43307 4.750478 0.035 2.889 22.29489
3 -0.19256 34.49056 26.36133 4.506648 0.109 2.634 19.28368
4 -0.08594 37.24498 -2.05355 4.184257 0.147 1.897 12.89455
5 0.031956 15.68678 16.92107 4.382652 0.19 2.439 17.36478
6 -0.16602 -37.9217 -13.2056 4.09746 0.062 2.043 13.5989
7 -0.19636 -17.0178 -16.4405 4.09746 0.137 1.759 11.7085
8 -0.25921 20.94914 37.73823 4.630644 0.093 2.55 19.18236
9 -0.0702 12.30772 -10.3971 4.10986 0.178 1.952 13.03249
10 -0.23521 -14.6245 30.15641 4.556246 0.108 2.659 19.68095
11 0.004264 -6.92634 -13.8667 4.10986 0.16 2.048 13.67343
12 -0.10104 22.69079 0.289687 – – – –
13 -0.06192 -2.7488 -5.68859 4.134659 0.169 1.982 13.31263
14 -0.12896 31.22401 35.41774 4.612488 0.101 2.734 20.48587
15 -0.27433 8.096882 6.374643 4.233856 0.154 1.78 12.24268
16 0.020737 -44.8187 14.82905 4.357746 0.055 2.616 18.51911
17 -0.11611 -23.7185 23.95427 4.643044 0.064 2.892 21.81331
18 -0.18048 -40.6382 2.483685 4.38956 0.037 2.546 18.15515
19 -0.03103 -19.3529 39.37958 4.729841 0.076 2.85 21.89838
20 -0.25093 24.1543 28.45184 4.593445 0.098 2.61 19.47599
21 -0.21528 -9.37918 5.597893 4.295854 0.15 1.847 12.88953
22 -0.22857 4.304848 -9.12029 – – – –
23 0.04309 29.46097 13.68102 – – – –
24 -0.29454 2.718527 -3.59875 4.134659 0.142 1.346 9.040768
25 -0.03374 44.66157 8.817222 4.333053 0.124 2.181 15.35219
26 -0.15403 -26.7741 21.09875 4.506648 0.082 2.669 19.53992
27 -0.14071 41.74093 44.24382 4.690517 0.08 2.799 21.32771
28 -0.28449 -34.8832 -18.4881 4.09746 0.077 1.21 8.054167
29 -0.05005 -31.3081 33.70299 4.593357 0.048 2.898 21.62465
30 -0.00382 11.8671 21.33995 4.439424 0.181 2.55 18.39024

Jack Townsend 136

The 2D design baseline for optimisation

(a) The lowest lift configuration (geometry 28).

(b) The highest lift configuration (geometry 2).

Figure 4.8: The lowest and highest lift leading and trailing body configura-
tions are shown as simulated in FLITE2D, the solver that was used for the
optimisation described in Section 4.1. The 276.8% increase in lift can be seen
to arise mainly for the increase in pressure within the tunnel. This is caused
by the “open” configuration at the leading body, and “closed” position of the
trailing body. Note the pressure plotted is total pressure minus atmospheric
pressure.

The highest lift geometry (geometry 2) can be seen to be producing 277%

more lift than the lowest lift geometry (geometry 28). The two are compared

in Figure 4.8, where it appears that the bulk of the increase in lift comes

from increase in the high pressure below the boat rather than the lowering

Jack Townsend 137

AerOpt

of pressure across the top. This seems to be caused by the “opening” of the

front of the tunnel and “closing” of the rear. This gain in lift is not without

cost, as geometry 2 also sees a 220% increase in drag over geometry 28.

The high-lift leading and trailing bodies configuration of geometry 2 was

carried forward as the baseline positioning for the AerOpt shape optimisation

in Section 4.4.

4.3 AerOpt

AerOpt is an aerodynamic optimisation software developed by Dr David Nau-

mann at Swansea University [119, 120]. AerOpt is an automated, population-

based evolutionary optimisation algorithm that parameterises a search domain

and design geometry based on user-defined control nodes, and then uses a se-

ries of CFD simulations and mesh movement schemes to optimise the geometry

for a given objective function. The constituent methods used by AerOpt are

described in the following subsections, followed by description of how they are

combined to deliver optimised 2D aerodynamic geometries.

4.3.1 Geometry parameterisation and mesh movement

The mesh movement of AerOpt works by directly manipulating the mesh used

for the later CFD experiments that assess the aerodynamic properties of the

geometries, and so parameterisation is also applied directly to the compu-

tational mesh. To do this, mesh nodes are broken down into three types:

boundary nodes, which occur along the perimeter of the geometry being stud-

ied; domain nodes, which are the remaining nodes in the domain volume that

are not located at the boundary; and finally control nodes, which are select

boundary nodes that define the later mesh movement. The control nodes are

selected by the user, as are the limits of motion for each control node. This

scheme is illustrated in Figure 4.9.

The choice of how many control nodes are used, the positions they are

placed, and how limited their motion may be, are crucial to the degree of

flexibility the geometry has to be optimised. The total degrees of freedom of

Jack Townsend 138

AerOpt

Figure 4.9: The AerOpt mesh parameterisation scheme is depicted in a general
case [120]. The mesh is broken down into nodes at the geometry surface,
with all other nodes being considered domain nodes. The control nodes are
a special user-selected type of nodes that are free to move with their user-
defined constraints, indicated by the red bounding boxes.

this control node system defines the dimensionality of the design space, d, and

can be expressed as in Equation 4.1.

d =

NCN∑
k=1

fCN (4.1)

where NCN is the number of control nodes and fCN is the number of degrees

of freedom per control node.

The Delauney Condition requires that for a grid of triangles the circum-

circle of each triangle does not contain a point of another triangle [123]. This

condition is required for mesh validity for the later CFD simulations that will

take place on this mesh. Thus to move the control nodes meaningful distances

the boundary and volume nodes must also deform in a way that maintains

mesh validity. This is performed as described by Naumann et al. [120].

4.3.2 Optimisation – modified cuckoo search algorithm

The control nodes described serve a dual purpose in parameterising the ge-

ometry and as the design parameters for the optimisation process itself. As

Jack Townsend 139

AerOpt

the dimensionality of the optimisation problem, defined previously in Equa-

tion 4.1, could conceivably grow large for complex aerodynamic bodies, the

optimisation method used needed to be suitable for large design spaces and

not prone to localised solutions. This motivated the use of an evolutionary

algorithm, the Modified Cuckoo Search (MCS) [124].

The objective function informs the optimiser what is desired from the op-

timisation process. This may be a single factor or combination of weighted

factors that are to be maximised or minimised. The fitness of a solution is

a single quantity that describes the degree to which a given solution satisfies

the objective function. For this work the objective function is a simple max-

imisation of aerodynamic lift, and so the fitness of each solution is simply the

2D lift coefficient, Cl.

The MCS is a population based algorithm that mimics natural selection in

cuckoo bird reproduction. Iterations of the optimisation process are referred

to as generations. The first generation is made by sampling the entire design

space, producing combinations of design parameters referred to as eggs. The

fitness of these eggs are then assessed based on the criteria of the designer:

in the case for this work, fitness is aerodynamic lift as assessed by 2D CFD

simulations. A fraction of these eggs are then discarded based on their fitness,

and new eggs generated by a Lévy flight [125] through the design space replace

the discarded eggs. Among the retained eggs, a selection of the best are paired

and cross-bred to create a new egg which is retained for the next generation if

its fitness exceeds that of the parent eggs. The ratio of best to worst eggs for

this work is set at 1:3 based on empirical evidence that this is optimal [71].

4.3.3 CFD simulations – FLITE2D

The assessment of fitness of each geometry generated in the optimisation

stage was conducted by a 2D CFD simulations. The solver used to per-

form these simulations was FLITE, an in-house solver developed at Swansea

University. FLITE is an edge-based, vertex-centred finite volume discretised

solver of the compressible Reynolds-Averaged Navier-Stokes (RANS) equa-

tions [126]. In particular, the 2-dimensional version of FLITE, FLITE2D,

Jack Townsend 140

XC10 AerOpt optimisations and results

was used. FLITE2D features its own native mesh generator, which is used

to generate a 2D unstructured triangular mesh using a Delauney approach

[123], which was necessitated by the current implementation of the AerOpt

code. A Spalart-Allmaras turbulence model was used based on its applicabil-

ity to external aerodynamic flows [127]. The primary driver behind the use of

FLITE2D for CFD is that FLITE2D and its native mesher were the systems

currently programmed into the AerOpt programme. Although, theoretically,

AerOpt could be used with any “black box” CFD mesher and solver taking

inputs and returning solutions, it was determined that the work required to do

this was unnecessary, as FLITE2D was a suitable solver for the case presented.

4.3.4 AerOpt algorithm

The AerOpt process is outlined in Figure 4.10, where the context for each

sub-process described is given. This constitutes the design loop followed for

each of the design iterations discussed in the upcoming sections.

4.4 XC10 AerOpt optimisations and results

The optimisation of the XC10 geometry took place over several AerOpt opti-

misation cycles. These are presented in the following sections.

4.4.1 XC10 baseline optimisation

The first AerOpt optimisation used the baseline geometry with the leading

and trailing bodies set to the positions determined in Section 4.2.1. This

optimisation sought to maximise aerodynamic lift.

The first step in the AerOpt process involves determining the scope of the

shape optimisation via the choice of the position, limits, and number of the

controls nodes to be used. Control nodes given limits of zero act as anchor

points in the mesh movement process, and their placement is as important as

control nodes that are free to move. Moveable (free) control nodes should be

placed appropriately where deformation is acceptable, and have their limits

respect design constraints such as minimum internal volumes and structural

Jack Townsend 141

XC10 AerOpt optimisations and results

Figure 4.10: AerOpt’s procedure is depicted as a flowchart for n number of
generations (iterations) [119].

limitations. The position and limits of the control nodes used for optimisation

of the baseline geometry are depicted in Figure 4.11.

The parameters for both AerOpt and the FLITE2D simulations are given

in Table 4.4, and the control node positions are shown in Figure 4.11. The

pre- and post-optimisation meshes and geometry outlines are shown in Figures

4.13 and 4.14 respectively. The process ran on 21 cores, one for each of the

20 nests (thus 20 FLITE2D CFD simulations per generation) plus one for the

remaining processes. The requested 500 generations were achieved in 23 hours

22 minutes of wall clock time on the HPCWales Sunbird system.

Jack Townsend 142

XC10 AerOpt optimisations and results

Figure 4.11: The control node placement and bounds are depicted for the
optimisation of the baseline geometry.

Table 4.4: AerOpt and FLITE2D parameters for the optimisation of the base-
line XC10 geometry with leading and trailing bodies in high-lift configuration.

parameter units value

initial boat geometry – XC10 baseline
boat trim angle (°) 2

AerOpt parameters:
objective function – Cl

number of control nodes – 14
ratio of best:worst nests – 1:3

number of nests – 20
number of Lévy steps – 100

number of generations – 500
FLITE2D parameters:

compute cores per simulation – 1
domain x range (m) [−10.0, 22.0]
domain y range (m) [0.0, 10.0]

turbulence model – Spalart-Allmaras
Reynolds number, (L = 10m) – 3,500,000

freestream Mach number – 0.15
ambient temperature (K) 293

ambient pressure (Pa) 101,325
specific gas constant (J/kgK) 273

ratio of specific heats – 1.4
density (kg/m3) 1.225

inlet velocity (m/s) 51.5
convergence criteria – e-2

Jack Townsend 143

XC10 AerOpt optimisations and results

Figure 4.12: The evolution of the nests across generations for the baseline
optimisation. In this case fitness is the lift coefficient.

(a) The pre-optimisation mesh.

(b) The post-optimisation mesh.

Figure 4.13: The pre- and post-optimised meshes for the baseline optimisation
are shown. The mesh refinement around points of expected flow complexity
and the consequences of the mesh movement can be seen.

Jack Townsend 144

XC10 AerOpt optimisations and results

Figure 4.14: The pre- and post-optimisation geometry outlines are compared
directly.

The best nest, seen from Figure 4.12, after 500 generations produced a

geometry with a 19.76% increase in lift, increasing from Cl = 10.906 to

Cl = 13.062. The geometry changes that achieved this, as can be seen in

Figure 4.14, are an increased camber in the main cabin, and flattening of

the underside of the cabin that exaggerates the expansion in the tunnel after

x = −4m. The mesh movement influence of the control node at the rear of

the main cabin can be seen to have “jumped” across the gap between bodies

and deformed the fixed secondary body, causing a tightening of the ventilation

gap between the two. In doing this, a Venturi effect causes faster flow through

the constrained gap, feeding energised air to the top-side boundary layer and

delaying separation.

These geometry changes make sense for a fitness function of maximised

aerodynamic lift. The cabin, which is essentially an aerofoil, saw an increase in

camber, a trait that is typically associated with increased lift. The tightening

of the ventilation gap is also an exaggeration of a geometric property intended

to increase lift. With this in mind, this post-optimisation geometry was carried

forward as the baseline for the next AerOpt optimisation.

Jack Townsend 145

XC10 AerOpt optimisations and results

Figure 4.15: The evolution of the nests across generations for the windscreen
optimisation. In this case fitness is the lift coefficient.

4.4.2 XC10 windscreen optimisation

A more focused study was carried out to explore gains available in the flow

across the top of the boat. This allowed for concentrated control node place-

ment around a localised area, in this case the windscreen. The optimised

baseline geometry from the previous section was used as a starting point with

some minor changes: sharp edges, for example at the peak of the cabin, have

been smoothed, and the fixed secondary body has been restored to it’s original

form due to structural constraints. This sees a small drop in the starting Cl

to 12.397.

The parameters for both AerOpt and the FLITE2D simulations are given

in Table 4.5. The pre- and post-optimisation meshes and geometry outlines

with control node positions are shown in Figures 4.16 and 4.17 respectively.

The process ran on 21 cores, one for each of the 20 nests (thus 20 FLITE2D

CFD simulations per generation) plus one for the remaining processes. The

requested 500 generations were achieved in 26 hours 01 minutes of wall clock

time on the HPCWales Sunbird system.

Jack Townsend 146

XC10 AerOpt optimisations and results

Table 4.5: AerOpt and FLITE2D parameters for the optimisation of the wind-
screen of the post-optimisation XC10 geometry with leading and trailing bod-
ies in high-lift configuration.

parameter units value

initial boat geometry – XC10 baseline, post-optimisation
boat trim angle (°) 2

AerOpt parameters:
objective function – maximise lift

number of control nodes – 13
ratio of best:worst nests – 1:3

number of nests – 20
number of Lévy steps – 100

number of generations – 500
FLITE2D parameters:

compute cores per simulation – 1
domain x range (m) [−10.0, 22.0]
domain y range (m) [0.0, 10.0]

turbulence model – Spalart-Allmaras
Reynolds number, (L = 10m) – 3,500,000

freestream Mach number – 0.15
ambient temperature (K) 293

ambient pressure (Pa) 101,325
specific gas constant (J/kgK) 273

ratio of specific heats – 1.4
density (kg/m3) 1.225

inlet velocity (m/s) 51.5
convergence criteria – e-2

Jack Townsend 147

XC10 AerOpt optimisations and results

(a) The pre-optimisation mesh.

(b) The post-optimisation mesh.

Figure 4.16: The pre- and post-optimised meshes for the windscreen opti-
misation are shown. The mesh refinement around points of expected flow
complexity and the consequences of the mesh movement can be seen.

Jack Townsend 148

XC10 AerOpt optimisations and results

Figure 4.17: The pre- and post-optimisation geometry outlines are compared
directly.

The trends seen in the previous optimisation (Section 4.4.1) are seen, re-

strained to the local windscreen area: the optimiser is driving the aerofoil of

the cabin to a higher camber to increase lift. From Figure 4.17 it can be seen

that mesh movement has been restricted to the windscreen area.

From Figure 4.15 it can be seen that the geometry increase Cl from 12.397

to 13.282, an increase of 7.14%. An optimal geometry was achieved early in

the 500 generations.

Jack Townsend 149

XC10 AerOpt optimisations and results

4.4.3 XC10 vent optimisation

Similar to the windscreen optimisation, a focused optimisation study was

made in the tunnel around the vent between the cabin and fixed secondary

body. This was especially necessary as the deformation of the fixed secondary

body in the initial baseline optimisation had to be reverted for structural rea-

sons. The optimised baseline geometry from the previous section was used as

a starting point with some minor changes: sharp edges, for example at the

peak of the cabin, have been smoothed, and the fixed secondary body has

been restored to it’s original form due to structural constraints. This sees a

small drop in the starting Cl to 12.397.

The parameters for both AerOpt and the FLITE2D simulations are given

in Table 4.6. The pre- and post-optimisation meshes and geometry outlines

with control node positions are shown in Figures 4.19 and 4.20 respectively.

The process ran on 21 cores, one for each of the 20 nests (thus 20 FLITE2D

CFD simulations per generation) plus one for the remaining processes. The

requested 500 generations were achieved in 26 hours 07 minutes of wall clock

time on the HPCWales Sunbird system.

From Figure 4.18 it can be seen that an initial jump in fitness was later ex-

ceeded by a secondary jump resulting from cross-breeding with other designs.

Fitness increased from Cl of 12.397 to 13.849, a 11.71% increase. Although the

control node focus was on the tunnel part of the geometry, some deformation

is seen on the top of the cabin (see Figure 4.20).

Jack Townsend 150

XC10 AerOpt optimisations and results

Table 4.6: AerOpt and FLITE2D parameters for the optimisation of the vent
of the post-optimisation XC10 geometry with leading and trailing bodies in
high-lift configuration.

parameter units value

initial boat geometry – XC10 baseline, post-optimisation
boat trim angle (°) 2

AerOpt parameters:
objective function – maximise lift

number of control nodes – 13
ratio of best:worst nests – 1:3

number of nests – 20
number of Lévy steps – 100

number of generations – 500
FLITE2D parameters:

compute cores per simulation – 1
domain x range (m) [−10.0, 22.0]
domain y range (m) [0.0, 10.0]

turbulence model – Spalart-Allmaras
Reynolds number, (L = 10m) – 3,500,000

freestream Mach number – 0.15
ambient temperature (K) 293

ambient pressure (Pa) 101,325
specific gas constant (J/kgK) 273

ratio of specific heats – 1.4
density (kg/m3) 1.225

inlet velocity (m/s) 51.5
convergence criteria – e-2

Figure 4.18: The evolution of the nests across generations for the vent opti-
misation. In this case fitness is the lift coefficient.

Jack Townsend 151

XC10 AerOpt optimisations and results

(a) The pre-optimisation mesh.

(b) The post-optimisation mesh.

Figure 4.19: The pre- and post-optimised meshes for the vent optimisation
are shown. The mesh refinement around points of expected flow complexity
and the consequences of the mesh movement can be seen.

Figure 4.20: The pre- and post-optimisation geometry outlines are compared
directly.

Jack Townsend 152

XC10 AerOpt optimisations and results

4.4.4 XC10 windscreen/vent combination

The optimisations of the windscreen and vent both yielded lift increases with

geometry deformation in localised areas. To best take advantage of these, a

combined geometry was created, depicted in Figure 4.21. The vent-optimised

geometry takes precedence over the windscreen on the under-side of the ge-

ometry, and vice versa for the top. This is achieved without much conflict as

the local optimisations did not influence the geometry greatly outside their

focus.

The combined geometry was submitted for a FLITE2D simulation under

conditions matching those used in Sections 4.4.1-4.4.3, and returned a further

increased Cl value of 14.280, exceeding both the vent and windscreen optimi-

sations individually. The increase in lift throughout the optimisation process

is shown in Figure 4.22.

Figure 4.21: The windscreen and vent optimisation results are shown with
their resulting combined geometry.

Jack Townsend 153

XC10 AerOpt optimisations and results

4.4.5 XC10 2D AerOpt optimisation results

The AerOpt optimisation process applied to the 2D XC10 centreline geometry

successfully increased the lift coefficient, Cl from 10.906 to 14.280, a 30.9%

increase. The evolution of the Cl for each geometry change are graphed in

Figure 4.22.

As the fitness function throughout the AerOpt process has been an un-

weighted focus on maximising aerodynamic lift, these geometry changes have

– not unexpectedly – incurred an increase in drag coefficient, Cd, from the

baseline value of 0.87 to 1.05, a 21.0% increase. Though this was proportion-

ally less than the 30.9% lift increase, it was still an undesirable performance

penalty. The working theory remained, however, that aerodynamic drag in-

creases arising from an increase in aerodynamic lift would be offset by the

larger losses in hydrodynamic drag as a consequence of a reduced water-wetted

area.

The optimisation presented to this point has been limited to the 2D cross-

section, under the assumption that although some losses may occur in trans-

lating this to a real 3D geometry, this was minimised by the gated, duct-like

nature of the catamaran tunnel, and that losses would be outweighed by the

overall improvement. This assumption was analysed in the following section.

Figure 4.22: The incremental increase in Cl is shown through the 2D AerOpt
optimisation process.

Jack Townsend 154

XC10: 3D CFD assessment of 2D optimisation

4.5 XC10: 3D CFD assessment of 2D optimi-

sation

To assess the degree to which the 2D gains in lift translate back to the real

3D boat geometry, two 3D CFD simulations were carried out using Altair

Virtual Wind Tunnel (VWT). Two geometries were simulated, an XC10 ge-

ometry with a centrebody made of the extruded baseline geometry presented

in Section 4.4.1, and another with the centrebody made up of the extruded

optimised geometry.

The geometries can be seen in Figure 4.23. The choice to make the cen-

tre body a simplified extrusion of the 2D shapes was made to eliminate the

possibility that differences in the tapering of the prisms to more realistic ge-

ometries would be the source of the performance differences. Realistically, the

2D optimised shape would inform a 3D geometry that would then be tapered

towards the outside of the boat.

The results are presented in Table 4.7, and flow solution results can be

seen in Figures 4.24 and 4.25. The 2D optimisation has resulted in a 15.8%

increase in aerodynamic lift, though this comes at a cost of a 30.7% increase

in aerodynamic drag. This is not in line with the 2D drag cost, which was

smaller than the change in lift for the 2D optimisation (30.9% increase in lift

for 21.0% increase in drag). Some of this is due to the blocky prismatic shape

of the centrebody, which causes a lot of separation on its side due to its sharp

edges (see Figure 4.24). In practice, the optimised 2D cross section should

inform a 3D geometry rather than be simply extruded, reducing drag related

to separation at this face.

This study was predicated on the idea that aerodynamic lift could offset

hydrodynamic drag. For this reason, aerodynamic drag incurred by an in-

crease in the aerodynamic lift of the boat should be considered in absolute

terms, as it is expected that the resulting reduction in hydrodynamic drag

will greatly exceed it. At 51.5m/s, the estimated top speed of the XC10, this

yields an absolute lift increase of 3,700N at the cost of 1,050N in drag.

Jack Townsend 155

XC10: 3D CFD assessment of 2D optimisation

Table 4.7: Results of the VWT testing of the 3D extruded geometries. Note
that a unitary reference area of S = 1m is used in calculation of the aerody-
namic coefficients.

baseline optimised % change

2-dimensional
Cl 10.91 14.28 +30.9%
Cd 0.87 1.05 +21.0%

3-dimensional
CL 14.07 16.30 +15.8%
CD 2.08 2.72 +30.7%

Table 4.8: Simulation parameters for the VWT simulations assessing changes
between 2D and 3D modelling.

parameter units value

boat trim angle (°) 2
simulation type – steady-state, incompressible RANS

turbulence model – Spalart-Allmaras
domain size:

x range (m) [0.0, 25.0]
y range (m) [−4.0, 4.0]
z range (m) [0.0, 5.0]

mesh properties:
element count – approx. 10e6

boundary layer mesh – 20 layers, layer 1 y+ = 1.0
fluid properties:

density (kg/m3) 1.225
dynamic viscosity (kg/ms) 1.8e− 5

inlet velocity (m/s) 51.5
Reynolds number (L = 10m) – 35e6

freestream Mach number – 0.15

Jack Townsend 156

XC10: 3D CFD assessment of 2D optimisation

(a) The 3D geometry based on an extrusion of the 2D baseline geometry.

(b) The 3D geometry based on an extrusion of the 2D optimised geometry.

Figure 4.23: The two 3D geometries are compared. Each is based on an
extrusion of the 2D baseline and optimised geometry respectively. The basic
extrusion is used rather than a realistic form tapered towards the outside of
the boat in order to best assess the 3D performance of the 2D optimisation.

Jack Townsend 157

XC10: 3D CFD assessment of 2D optimisation

(a) The baseline 3D geometry.

(b) The optimised 3D geometry.

Figure 4.24: The velocity profile from the VWT simulations for both geome-
tries is shown. Large low velocity regions at the sharp edge of the extruded
centrebody side indicate separation of flow.

Jack Townsend 158

XC10: 3D CFD assessment of 2D optimisation

(a) The baseline 3D geometry is seen from below.

(b) The optimised 3D geometry is seen from below.

Figure 4.25: The pressure coefficient distribution from the VWT simulations
for both geometries is shown. An increase in pressure in the tunnel is visible
in the optimised version.

Jack Townsend 159

XC10 optimisation conclusions and recommendations for future work

4.6 XC10 optimisation conclusions and rec-

ommendations for future work

The AerOpt design process has successfully delivered a 30.9% improvement in

lift generation of a 2D geometry of a high speed catamarans centrebody lift,

translating to a 15.8% increase in lift for an extruded 3D equivalent.

The method is easily tailor-able to more complex, balanced objective func-

tions (for example taking a weighted drag or aerodynamic pitch moment into

account) depending on industry requirements. The method can run on par-

allel computer architectures and is relatively inexpensive, taking roughly one

day of runtime across 21 cores per optimisation.

The method shows promise for performance optimisation of a real cata-

maran, though certain additional steps should be taken. A thorough analysis

of the assumed total drag reduction by increasing the aerodynamic lift and

reducing the water-wetted area should be made, ideally by using the hydrody-

namic modelling capabilities detailed in Chapters 2 and 3. Longitudinal centre

of pressure should be included in the objective function to avoid geometries

that are impractically prone to longitudinal instability. A weighted drag term

would also be desirable, though the optimum weighting would rely on an

assessment of the trade-off between the aerodynamic lift and hydrodynamic

drag, which would vary for different hullform configurations and designs.

Jack Townsend 160

Chapter 5

Thesis conclusions

5.1 Thesis conclusions

The objective of this work was the development of tools for commercial boat

design by an industry partner, specifically in the more challenging arena of

high-speed planing boats. Notable areas of opportunity were discovered in

a literature review of the extant software, in particular costly commercial

licensing and the current inefficient parallelisation on future exascale HPC

clusters. For this reason, LBM (and Palabos specifically) was selected as

the method of choice for this work due to its open-source nature and proven

scalability to large numbers of compute nodes.

The development of the Palabos boatHullFormSolver programme delivers

an open-source, license-free tool that has been validated in its capability to

model the dynamic heave equilibrium of a planing monohull at high-speed.

The full capabilities of boatHullFormSolver are reflected on in Section 5.1.1.

Although no licensing cost is required to operate this tool, operational costs

in terms of computational resources are a consideration which are explored in

detail in Section 5.1.2. Recommendations for future work are given in Section

5.1.3.

Also presented in this thesis was a study on the aerodynamic optimisa-

tion of the centre-section of a high-speed catamaran. This work focused more

on the design problem specific to a particular boat geometry presented by

Norson Design, and as a consequence made best use of available tools to

161

Thesis conclusions

turnaround a design to industry partners; it is for this reason that a RANS

solver (FLITE2D) was used as a departure from LBM/Palabos. The aerody-

namic shape optimisation was successful in that it delivered significant im-

provements in the objective functions (30.9% lift increase in 2D), however the

originally-planned experimental testing on a scale model to determine the re-

sultant total drag reduction could not be achieved with industry during the

project lifespan.

5.1.1 Capabilities of the Palabos boatHullFormSolver

code

In Chapter 2 and 3 the capabilities of the water-phase CFD performed by the

Palabos boatHullFormSolver are presented. These are summarised as follows:

� Open source and free of licensing costs.

� A standard computational domain and boundary conditions that define

a “virtual tow tank”.

� The ability to import a user-defined .STL geometry that is pre-processed

in parallel with no meshing required.

� Single-phase free surface flow modelling based on the Palabos lattice

Boltzmann kernel, executed in parallel.

� Simple user customisation of the parameters most likely to be changed

between different simulations via an .XML file that does not require a

recompile.

� Both static and dynamic boat geometries (dynamics limited to heave

motion only).

� Determination of heave equilibrium of a high speed monohull validated

against industry data.

Jack Townsend 162

Thesis conclusions

5.1.2 Commercial viability of the Palabos boatHullForm-

Solver code

Regarding the delivery of a cost-effective tool to marine industry, an exami-

nation of the costs associated needs to be presented. The open-source nature

of the underlying Palabos libraries means that no software licensing is neces-

sary, which provides an inherent advantage over costly commercial software.

Commercial CFD software costs can vary greatly depending on the wide range

of package options available; some capabilities are added as optional extras,

discounts may be applied for research collaboration, and support technical

support packages may be required at cost. For this reason the cost to indus-

try of licensing a CFD package is case-dependent. During the initial search

for an appropriate CFD solution for this work, XFlow [76] was explored as

an option and a quote was provided by FlowHD for a 128 core license at a

commercial rate of £83,456, with a 50% discount applied due to being for

academic research. License costs on the order of tens of thousands of pounds

would simply be prohibitive for many small and medium size boat design com-

panies. The free and open-source nature of the Palabos solver eliminates this

cost.

The Palabos boatHullFormSolver code is computationally intensive, and

compute time has an associated cost. Amazon Web Services (AWS) provide

HPC services for commercial CFD, with costs being service-dependent. A cost

estimation from AWS for the running of OpenFOAM (also open source) in the

London region on a 64-bit Amazon Machine Image with 16GB memory and 8

virtual cores is $0.488USD per hour [129]. The 35kts and 45kts dynamic heave

cases presented in Section 3.5, for example, ran for 144 hours of wall clock

time on 700 cores on the Swansea Sunbird HPC cluster. Assuming a simple

scaling of number of cores and runtime to the AWS service, the equivalent

cost would be around $6,148.8USD. This is the estimated cost for a single

simulation determining the boat heave equilibrium at a single velocity and

trim angle combination. Whether this is cost-effective is dependent on the

value placed on that information by industry, however it can be seen that the

running of the presented software is far from cheap.

Jack Townsend 163

Thesis conclusions

Some of the flaws that drive the computational expense of boatHullForm-

Solver are identified in the following section; if achieved, these changes could

greatly improve the commercial viability of the boatHullFormSolver code.

5.1.3 Recommended future work for boatHullFormSolver

The boatHullFormSolver as presented in this work is computationally ex-

pensive, despite the underlying scalability of the Palabos solver discussed in

Section 1.5.3. The cost of this expense is detailed in the context of industry

use in the following Section 5.1.2. There are a number of areas in which im-

provement could drastically improve the accuracy and computational cost of

the solver.

Firstly, the parallelism is undermined by the use of the serial Matlab script

used to achieve the dynamics; this Matlab script reserves a compute node

that spends the whole compute wall-clock time processing the Matlab script

in serial, with the vast majority of this time spent waiting on the Palabos

simulations to finish. Tasks such as reading of the geometry vertices, forces

and pressures, and manipulation of the hullform geometry are all undertaken

by this Matlab script. By implementing these processes natively in the C++

script of boatHullFormSolver.cpp, the parallel potential of the solver can be

better taken advantage of. This is especially the case as the current implemen-

tation requires an initialisation of the Palabos simulation for every timestep

of the dynamics solver: initialisation of Palabos simulations is known to have

significantly worse parallel performance as compared to the compute stage

[89]. The reason for not doing this in the first place was the expected addi-

tional time it would take to deliver this more complex implementation, and

uncertainty that it would be deliverable in the project lifespan.

As mentioned in Section 2.2.1, no wall functions are implemented in the

LES scheme. This is an obvious weakness in the solvers ability to accurately

solve the flow conditions in the near-wall areas, and remains as a crucial piece

of future work to ensure the solver is useful in general, though especially for

modelling factors heavily influenced by the boundary layer, such as drag. As

described in Section 2.2.1, this could be achieved by varying the Smagorinsky

Jack Townsend 164

Thesis conclusions

constant, depending on spatial proximity to a wall, which is permitted by

local nature of the dynamics class SmagorinskyDynamics [100]. This was

attempted, but not successfully achieved, in this work.

Another improvement that would see increased accuracy at a reduced com-

putational cost is grid refinement. Due to the limitation of a constant global

grid size, simulations were unnecessarily finely resolved in areas far from the

complex near-hull flow, incurring high computational cost for little to no gain.

As a corollary, refinement around the bow spray and wake regions would allow

for capture of the finer free surface interface behaviour such as whisker spray,

which in the current implementation of the solver fall into subgrid scales and

are not captured. This basic premise was understood at the outset, however

was not pursued as FlowKit indicated grid refinement was a capability they

were currently working on, and it was determined that reproducing the same

capability in parallel would be a waste of time and effort. Unfortunately,

FlowKit did not develop such a capability for the free surface modules used

in this work, though mesh refinement is being actively worked on and may be

readily applicable in the near future [128].

5.1.4 Closing statement

This thesis describes the development and testing of a “virtual tow tank” for

the modelling and design of high-speed marine craft. The method shows good

prediction of the heave equilibrium of high-speed hullform against industry

data. It is reliant on purely open source and free software. Although it is

computationally expensive in its current implementation, there exist obvious

avenues to improving this in future work.

Jack Townsend 165

Appendix A

Appendices

166

Digitron 2020P Manometer Specifications

A.1 Digitron 2020P Manometer Specifications

Jack Townsend 167

Digitron 2020P Manometer Specifications

Jack Townsend 168

Digitron 2020P Manometer Specifications

Jack Townsend 169

Matlab files

A.2 Matlab files

A.2.1 jobSubmitter.m

%% RIGID BODY DYNAMICS JOB SUBMISSION SCRIPT.
% Handles job submission of the Palabos boatHullFormSolver executable and
% applies forward Euler method for rigid body dynamics.

% Instructions:
% The files the user will need to edit:
% - <geometry name>.stl
% Have this in the working directory. Also create a copy of this
% file of the format "<geometry name> init.stl". The init file will
% not be overwritten, and is used to reset the position of the
% other .stl after a completed run.
% - params template.xml
% This file configures all the paramters for the Palabos sims.
% - batchfile.job
% - /tmp directory
% Ensure this directory exists before running or an error will be
% thrown. Simulation outputs will be written here.
%
% The user will also routinely need to edit the parameters in the following
% section before each submission.

%% USER INPUT - CHECK THESE BEFORE EACH RUN
% General.
filenameSTL = 'dv15'; % .stl filename, no file extension.
restarting = false; % Restarting from a continue.xml file?

% Rigid body dynamics parameters.
maxTime = 5.0; % Duration of dynamic simulation.

dt = 0.005; % Timestep of dynamic simulation (i.e. length of each
% constituent Palabos sim).

CofG = [-5.0; % x-component.
0.8; % y-component.
0.0;]; % z-component.

m boat = 10000; % Mass of boat (kg).
Iyy = 1; % Second moment of area.

%% PRE-SUBMISSION.
% Calculate number of submits.
numOfSims = maxTime/dt;

% Read params template for necessary values.
[charL, resolution, uLB, uRef, outIter, cpIter] = ...

funcReadParamVals('params template.xml');

% Calculate Palabos timesteps.
dx palabos = charL/(resolution-1);
dt palabos = uLB*dx palabos/uRef;

% Calculate number of iterations required per Palabos sim to reach dynamics ...
dt for each sim.

max iter per sim = round(dt/dt palabos); % Each Palabos sim will run for ...
this many iters to reach user-set dynamics dt.

stat iter = round(max iter per sim/100)+1; % Rate of Palabos iteration ...
status write to output file.

Jack Townsend 170

Matlab files

out iter = round(max iter per sim/5); % Rate of Palabos iteration full ...
output to disk.

cp iter = max iter per sim; % Rate of checkpointing (once at ...
the end of each sim).

% If restarting, find the time at which the last sim finished.
if restarting

[restartIter,restartTime] = funcReadLastSim(restarting);
else

restartIter = 0; restartTime = 0;
end

% Initial values for dynamics.
z = [0,0]; z dot = [0,0];

theta = [0,0]; theta dot = [0,0];

%% SUBMISSION LOOP
for i = 1+restartIter : numOfSims+restartIter

% Calculate sim-specific iteration to terminate.
max iter this sim = max iter per sim*i;
cp iter = max iter this sim;
out iter = max iter this sim;

% Stream values to params.xml file from params template.xml file.
system('rm -f params.xml');
system(sprintf('sed ''s/MAX ITER/%d/; s/STAT ITER/%d/; s/OUT ITER/%d/; ...

s/CP ITER/%d/; s/YVEL/%d/;'' params template.xml > ...
params.xml',max iter this sim+1,stat iter,out iter,cp iter,z dot(2) ...
)); % +1 to max iter this sim to ensure checkpointing occurs correctly.

system(sprintf('echo ...
--\n'));

system(sprintf('echo ITERATION %d:\n',i));
system(sprintf('echo sim-%08d: running...',i));
system(sprintf('echo sim-%08d: iterations: %d - ...

%d\n',i,max iter this sim-max iter per sim,max iter this sim));
system(sprintf('echo sim-%08d: time: %.3f - %.3f ...

s\n',i,dt*i-dt,dt*i));

% Execute solver.
% On initial sim, do not use continue.xml as an input unless restarting ...

from existing continue.xml file.
if i == 1+restartIter && ~restarting

system(sprintf('srun ./boatHullFormSolver params.xml > ...
sim-%08d.out',i));

else
system(sprintf('srun ./boatHullFormSolver params.xml continue.xml > ...

sim-%08d.out',i));
end

system(sprintf('echo sim-%08d: COMPLETE.',i));

% Delete old checkpoint files (requires knowing last iter num).
if i+restartIter > 1 % No checkpoint files on initial loop.

% Get and format iteration number of sim i-1.
iter num old = max iter this sim-max iter per sim;
iter num old = num2str(iter num old,'%08.0f');
% Use this to remove the old checkpoint file.
system(sprintf('rm checkpoint %s *',iter num old));

end

Jack Townsend 171

Matlab files

% Move sim ouputs to /tmp.
system(sprintf('mv sim-%08d.out tmp/',i));

% DYNAMICS.
% Read .stl vertices and vertex normals.
[vertices, vertexNormals] = funcReadVertices(filenameSTL);
% Read forces and pressures.
[x forceAvg, y forceAvg, pressureCoords, pressureConnecs, pressureData] ...

= ...
funcReadForcesAndPressures(vertices,vertexNormals,max iter this sim,out iter);

M z = 0; % Not implemented.

% Determine boat motion.
[theta diff, theta, theta dot, z diff, z, z dot] = funcMoveBoat(dt, ...

y forceAvg, M z, m boat, Iyy, z, z dot, theta, theta dot);

% Tranform current STL CofG to origin.
[CofG, iterationNum] = funcManipulateSTL(filenameSTL, CofG, theta diff, ...

z diff);
end

%% POST-PROCESSING
% Replace moved .stl file with initial .stl file for next run.
system(['cp ',filenameSTL,' init.stl ',filenameSTL,'.stl']);
% Fill in Palabos output iterations that do not have a corresponding ...

boat.stl file.
funcFillBoatStlGaps();
% Move the params.xml file to /tmp.
system('mv params.xml tmp/');

fprintf('\n\n');
fprintf(' %%---%%\n');
fprintf(' The auto submission process is COMPLETE:-\n');
fprintf(' \n');
fprintf(' Geometry: %s\n', filenameSTL);
fprintf(' \n');
fprintf(' Starting time: %f s\n', restartTime);
fprintf(' Finishing time: %f s\n', restartTime+maxTime);
fprintf(' Total time: %f s\n', maxTime);
fprintf(' Time between restarts: %f s\n', dt);
fprintf(' Total number of sims: %d\n', numOfSims);
fprintf(' \n');
fprintf(' Palabos Stats:\n');
fprintf(' Palabos dt: %f s\n', dt palabos);
fprintf(' Palabos dx: %f s\n', dx palabos);
fprintf(' Resolution: %d\n', resolution);
fprintf(' Characteristic length: %f m\n', charL);
fprintf(' Lattice speed: %f m/s\n', uLB);
fprintf(' Reference speed: %f m/s\n', uRef);
fprintf(' Rate of output to disk: %d iterations\n', out iter);
fprintf(' \n');
fprintf(' \n');
fprintf(' %%---%%\n');
fprintf('\n\n');

Jack Townsend 172

Matlab files

A.2.2 funcReadParamVals.m

function [characteristicLength, resolution, uLB, uRef, outIter, cpIter] = ...
funcReadParamVals(paramsFilename)

% Search through .xml file to find important values for calculating ...
iteration steps.

fid = fopen(paramsFilename,'r');
if fid == -1

error('ERROR: cannot find params template.xml.');
end

% Search for parameter name then extract the relevant number or string
% following that regexp. Note format should be:
%
% <varName> varVal <varName>
%
% Note the spaces between the equals are important as the third space
% delimited item is taken.

% characteristicLength.
while ~feof(fid)

line = fgetl(fid);
lineIndex = regexp(line,'<characteristicLength>');
if lineIndex

characteristicLength = strsplit(line);
characteristicLength = str2double(characteristicLength{3});
break

else
% Not correct line, keep searching.

end
end
frewind(fid);

% resolution.
while ~feof(fid)

line = fgetl(fid);
lineIndex = regexp(line,'<resolution>');
if lineIndex

resolution = strsplit(line);
resolution = str2double(resolution{3});
break

else
% Not correct line, keep searching.

end
end
frewind(fid);

% uLB.
while ~feof(fid)

line = fgetl(fid);
lineIndex = regexp(line,'<uLB>');
if lineIndex

uLB = strsplit(line);
uLB = str2double(uLB{3});
break

else
% Not correct line, keep searching.

end

Jack Townsend 173

Matlab files

end
frewind(fid);

% uRef.
while ~feof(fid)

line = fgetl(fid);
lineIndex = regexp(line,'<uRef>');
if lineIndex

uRef = strsplit(line);
uRef = str2double(uRef{3});
break

else
% Not correct line, keep searching.

end
end
frewind(fid);

% outIter.
while ~feof(fid)

line = fgetl(fid);
lineIndex = regexp(line,'<outIter>');
if lineIndex

outIter = strsplit(line);
outIter = str2double(outIter{3});
break

else
% Not correct line, keep searching.

end
end
frewind(fid);

% cpIter.
while ~feof(fid)

line = fgetl(fid);
lineIndex = regexp(line,'<cpIter>');
if lineIndex

cpIter = strsplit(line);
cpIter = str2double(cpIter{3});
break

else
% Not correct line, keep searching.

end
end
frewind(fid);

Jack Townsend 174

Matlab files

A.2.3 funcReadLastSim.m

function [restartIter,restartTime] = funcReadLastSim(restarting)
% Reads the iteration value of the existing continue.xml file in the ...

instance of restarting.

% Find latest sim-xxxxxxxx.out file in /tmp and open for reading.
simFiles = dir('tmp/sim-*');
simFiles = struct2cell(simFiles);
% Check if sim files exist in case of restarting.
if restarting && isempty(simFiles)

fprintf('%s: No previous sim data found, check "restarting" ...
value.\n',mfilename);

end
% Pick out restart iteration from sim files.
numSimFiles = size(simFiles);
simFilesLast = simFiles{1,numSimFiles(2)};
restartIter = str2num(cell2mat(regexp(simFilesLast,'\d*','Match')));

% Open file.
fid = fopen(sprintf('tmp/%s',simFilesLast),'r');
if fid == -1

error('ERROR: cannot find latest sim file in tmp/');
end

% Skip to end of file.
offset = -750;
numLines = 10;
fseek(fid,offset,'eof');
text = cell(numLines,1);
for i = 1:numLines

text(i) = {fgetl(fid)};
end

% Concatenate into one string.
textCat = '';
for i = 1: numLines

textCat = strcat(textCat,text(i));
end
textCat = textCat{1};

% Search through to find 't = ' pattern and identify the time following it
% using regexp.
restartTime = str2double(regexp(textCat,'(?<= t = [ˆ0-9]*)[0-9]*\.?[0-9]+', ...

'match'));
% regexp usage:
% (?<= t = [ˆ0-9]*) : start matching after 't = ' followed by non-number
% characters.
% [0-9]* : then match 0 or more characters in 0-9 range.
% \.? : allow for an optional decimal point.
% [0-9]+ : catch the number characters after the decimal.

Jack Townsend 175

Matlab files

A.2.4 funcReadVertices.m

function [vertices, vertexNormals] = funcReadVertices(filenameSTL)
%% Read vertices and their normals from the active .stl file.

% Read .stl file.
[vertices, faces, faceNormals, nameSTL] = stlRead([filenameSTL,'.stl']);

% Get vertex normals.
fprintf('%s: Reading .stl vertices and vertex normals.\n',mfilename);
vertexNormals = zeros(size(vertices));
% Add the normals for each point of every triangle.
vertexNormals(faces(:,1),:) = vertexNormals(faces(:,1),:) + faceNormals;
vertexNormals(faces(:,2),:) = vertexNormals(faces(:,2),:) + faceNormals;
vertexNormals(faces(:,3),:) = vertexNormals(faces(:,3),:) + faceNormals;
% Calculate vertex normals.
vertexNormals = vertexNormals./repmat(sqrt(sum(vertexNormals.ˆ2,2)),[1,3]);
vertexNormals = -vertexNormals; % Invert to point inward of volume.

end

Jack Townsend 176

Matlab files

A.2.5 funcReadForcesAndPressures.m

function [x forceAvg, y forceAvg, pressureCoords, pressureConnecs, ...
pressureData] = ...
funcReadForcesAndPressures(vertices,vertexNormals,max iter this sim,out iter)

%% Reads forces and pressures from Palabos outputs.
% Forces are contained in total force on boat.dat file in /tmp.
% Pressures are contained in boat pressure xxxxxxxx.vtk (xxxxxxxx =
% iteration number of last output).

%% READ FORCES.
fid = fopen('tmp/total force on boat.dat');
if fid == -1

error('%s: ERROR tmp/total forces on boat.dat not found.',mfilename);
end
fprintf('%s: Reading forces...\n',mfilename);

% Determine how many outputs are made during this Palabos simulation.
num outputs this sim = floor(max iter this sim/out iter);
% Take the last 10% of force values to be averaged.
avgRange = floor(num outputs this sim*0.1);
% Rounded down, but must avoid zero val.
if avgRange == 0

avgRange = 1;
end

% Count total lines in force file.
totalLines = 0;
while ~feof(fid)

line = fgetl(fid);
totalLines = totalLines + 1;

end
beginRange = totalLines - avgRange;

% Rewind and count through to averaging range, pick values to be averaged.
frewind(fid);
lineCount = 0; avgIndex = 1;
x forcesToAvg = zeros(avgRange,1);
y forcesToAvg = zeros(avgRange,1);
while ~feof(fid)

if lineCount < beginRange
line = fgetl(fid);
lineCount = lineCount + 1;

else
line = strsplit(fgetl(fid));
x forcesToAvg(avgIndex,1) = str2double(line{1,3});
y forcesToAvg(avgIndex,1) = str2double(line{1,4});
lineCount = lineCount + 1;
avgIndex = avgIndex + 1;

end
end

% Average the values.
x forceAvg = sum(x forcesToAvg)/length(x forcesToAvg);
y forceAvg = sum(y forcesToAvg)/length(y forcesToAvg);
fprintf('%s: The average DRAG for the last %d Palabos iterations is ...

%fN.\n',mfilename,length(x forcesToAvg),x forceAvg);
fprintf('%s: The average LIFT for the last %d Palabos iterations is ...

%fN.\n',mfilename,length(y forcesToAvg),y forceAvg);

Jack Townsend 177

Matlab files

%% READ PRESSURES.
% First need to identify which is the latest boat pressure .vtk file.
% Format is: boat pressure xxxxxxxx.vtk
% Where xxxxxxxx is an eight-digit number of the last Palabos iteration at
% which output files were written.

% Find latest pressure.vtk file.
pressureFiles = dir('tmp/boat pressure *');
filenamePressure = pressureFiles(length({pressureFiles.name})).name;

% Open this file to read pressure data.
fid = fopen(['tmp/',filenamePressure]);
if fid == -1

error('%s: ERROR tmp/boat pressure xxxxxxxx.vtk not found.',mfilename);
end

% Read number of points.
regexpFound = [];
while isempty(regexpFound)

line = fgetl(fid);
regexpFound = regexp(line,'POINTS');
if regexpFound

% Found line for numPoints.
numPoints = strsplit(line);
numPoints = str2double(numPoints{2});

end
end

% Read all point coords.
fprintf('%s: Reading pressure coords...\n',mfilename);
pressureCoords = zeros(numPoints,3);
for i = 1:numPoints

line = strsplit(fgetl(fid));
pressureCoords(i,:) = str2double(line);

end

% Skip a line.
fgetl(fid);

% Read number of connectivities.
line = fgetl(fid);
numConnecs = strsplit(line);
numConnecs = str2double(numConnecs{2});

% Read connectivities.
fprintf('%s: Reading connectivities...\n',mfilename);
pressureConnecs = zeros(numConnecs,4);
for i = 1:numConnecs

line = strsplit(fgetl(fid));
pressureConnecs(i,:) = str2double(line);

end
pressureConnecs = pressureConnecs(:,2:4); % First column is redundant.

% Read up to "POINT DATA" and check that numPoint == numPressures.
regexpFound = [];
while isempty(regexpFound)

line = fgetl(fid);
regexpFound = regexp(line, 'POINT DATA');
if regexpFound

Jack Townsend 178

Matlab files

% Found line for numPressures.
numPressures = strsplit(line);
numPressures = str2double(numPressures{2});

end
end
if numPoints ~= numPressures

error('%s: Number of points does not match number of pressures in ...
boat pressure.vtk file',mfilename);

end
% Skip two lines.
fgetl(fid); fgetl(fid);

fprintf('%s: Reading pressure data...\n',mfilename);
% Read all pressure data.
pressureData = zeros(numPoints,1);
for i = 1:numPoints

line = strsplit(fgetl(fid));
pressureData(i,:) = str2double(line);
if mod(i,1000000) == 0
fprintf('%s: 1,000,000 of %d pressures read.\n',mfilename,numPoints);

end
end

fclose(fid);

end

Jack Townsend 179

Matlab files

A.2.6 funcMoveBoat.m

function [theta diff, theta, theta dot, z diff, z, z dot] = funcMoveBoat(dt, ...
y forceAvg, M z, m boat, Iyy, z, z dot, theta, theta dot)

% Determine 2DoF boat motion (heave and pitch) given the global timestep and ...
force/moment.

% Accel due to grav at sea level.
g = 9.81;

% Previous values of z and z dot are 1x2 vectors:
% z(1) = z i and z(2) = z i+1
% And likewise for z dot.

% Heave.
F z = y forceAvg;

delta z dot = ((F z-m boat*g)/m boat)*dt;
z dot(2) = z dot(1) + delta z dot;

z(2) = z(1) + z dot(1)*dt;

% funcManipulateSTL.m operates about the boat's previous position, not ...
global coords, so the difference between z values is needed.

z diff = z(2) - z(1);

% Iterate z values.
z dot(1) = z dot(2);

z(1) = z(2);

% Pitch (NOT IMPLEMENTED).
theta diff = 0;

Jack Townsend 180

Matlab files

A.2.7 funcManipulateSTL.m

function [CofG, iterationNum] = funcManipulateSTL(filenameSTL, CofG, theta, z)
%% Manipulates the .stl geometry by rotating and transforming in z-direction ...

according to dynamics.
% 1. Read in .stl file (binary or ASCII).
% 2. Move whole .stl so that the CofG is at the origin.
% 3. Perform rotation.
% 4. Tranform back to pre-rotation position.
% 5. Perform z translation.
% 6. Tranform CofG also.
% 7. Write to new .stl file and store a copy for post-processing later.

%% 1. Read .stl file.
[vertices, faces, faceNormals, nameSTL] = stlRead([filenameSTL,'.stl']);

%% 2. Move whole .stl file so that the CofG is at the origin.
vertices(:,1) = vertices(:,1) - CofG(1);
vertices(:,2) = vertices(:,2) - CofG(2);
vertices(:,3) = vertices(:,3) - CofG(3);

%% 3. Perform rotation.
% Define rotation matrix for 3D rotation about the z-axis.
Rz = [cosd(theta), sind(theta), 0 ;

-sind(theta), cosd(theta), 0 ;
0, 0, 1];

% Apply rotation to the vertices.
vertices = vertices * Rz';

%% 4. Return to pre-rotation position.
vertices(:,1) = vertices(:,1) + CofG(1);
vertices(:,2) = vertices(:,2) + CofG(2);
vertices(:,3) = vertices(:,3) + CofG(3);

%% 5. Z-translation.
vertices(:,2) = vertices(:,2) + z;

%% 6. Transform CofG identically (no rotation required as rotation is ...
effectively about CofG).

CofG(2) = CofG(2) + z;

%% 7. Write .stl files.
% Write an updated .stl file out in working directory.
stlWrite([filenameSTL,'.stl'], faces, vertices);
% Get iteration number from latest interface file to be written.
interfaceFiles = dir('tmp/interface *');
iterationNum = interfaceFiles(length({interfaceFiles.name})).name;
iterationNum = iterationNum(regexp(iterationNum,'\d'));
% Store a copy in /stl stored for paraview post-processing.
filenameSTL iter = [filenameSTL,' ',iterationNum];
stlWrite(['tmp/',filenameSTL iter,'.stl'], faces, vertices);

% Print iteration number out while we have it.
fprintf(' %s: Palabos iteration: %s\n',mfilename,num2str(iterationNum));

end

Jack Townsend 181

Matlab files

A.2.8 funcFillBoatStlGaps.m

function [] = funcFillBoatStlGaps()
% Boat geometry .stl files are only created and save when boat movement
% occurs. This can leave gaps in the output files where pressures .vtk
% files or interface .stl files do not have a corresponding boat.stl file.
% This function fixes that as a post-processing step.
% 1. Read from params.xml the frequency of Palabos output to disk and
% boat.stl file name.
% 2. Loop through all iteration numbers, noting where matching boat.stl
% files occur and where spaces are.
% 3. For every iteration number a boat.stl file does not exist for,
% copy to a file of that iteration number name the previous existing
% boat.stl.

% 1. Read from params.xml.
fid = fopen('params.xml');
if fid == -1

error('ERROR(funcFillBoatStlGaps.m): params.xml not found.');
end

% Get boat.stl name and frequency of Palabos output to disk.
while ~feof(fid)

line = fgetl(fid);
lineBoatName = regexp(line,'boatStl');
lineOutIter = regexp(line,'outIter');
if lineBoatName

boatName = strsplit(line);
boatName = boatName{3};

elseif lineOutIter
outIter = strsplit(line);
outIter = str2double(outIter{3});

else
% If neither found, do nothing.

end
end

% Remove .stl extension from boatName.
boatName = boatName(1:length(boatName)-4);

% Count number of output files in /tmp.
interfaceFiles = dir('tmp/interface *');
numPalabosOutputs = (length({interfaceFiles.name}));

% List boat.stl files in /tmp.
boatStlFiles = dir(['tmp/',boatName,' *']);
boatStlFileNames = struct2cell(boatStlFiles);
boatStlFileNames = boatStlFileNames(1,:)';

% 2. Loop through all iterations checking if a corresponding boat.stl file
% exists.
matchingBoatStl = zeros(numPalabosOutputs,1); % Pre-allocating.
for i = 1:numPalabosOutputs

palabosIterNum = i*outIter-outIter;
palabosIterNumPadded = num2str(palabosIterNum,'%08.0f');
matchedIndex = regexp(boatStlFileNames,palabosIterNumPadded);
if isempty(cell2mat(matchedIndex))

% No boat.stl file exists for this palabos iteration - index.
matchingBoatStl(i,1) = false;

Jack Townsend 182

Palabos files

else
% A boat.stl files already exists for this iteration - index.
matchingBoatStl(i,1) = true;

end
end

% 3. Fill in non-matching cases by copying forward the previous boat.stl file.
% Note: a special exception will be to be made for the first gap.
previousMatch = boatName; j = 1;
for i = 1:length(matchingBoatStl)

palabosIterNum = i*outIter-outIter;
palabosIterNumPadded = num2str(palabosIterNum,'%08.0f');
if matchingBoatStl(i,1)

% Match - set the corresponding filename as the new latest match.
previousMatch = cell2mat(boatStlFileNames(j,1));
j = j + 1;

else
% No match - copy previousMatch file to a new boat.stl name with
% appropriate iteration number.
if strcmp(previousMatch,boatName)

% Special case, copy main boat.stl file to iternumbered file.
system(['cp ',boatName,'.stl ...

tmp/',boatName,' ',palabosIterNumPadded,'.stl']);
else

system(['cp tmp/',previousMatch,' ...
tmp/',boatName,' ',palabosIterNumPadded,'.stl']);

end
end

end

A.3 Palabos files

A.3.1 boatHullFormSolver.cpp

/* This file is part of the Palabos library.

*
* Copyright (C) 2011-2017 FlowKit Sarl

* Route d'Oron 2

* 1010 Lausanne, Switzerland

* E-mail contact: contact@flowkit.com

*
* The most recent release of Palabos can be downloaded at

* <http://www.palabos.org/>

*
* The library Palabos is free software: you can redistribute it and/or

* modify it under the terms of the GNU Affero General Public License as

* published by the Free Software Foundation, either version 3 of the

* License, or (at your option) any later version.

*
* The library is distributed in the hope that it will be useful,

* but WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

* GNU Affero General Public License for more details.

*
* You should have received a copy of the GNU Affero General Public License

* along with this program. If not, see <http://www.gnu.org/licenses/>.

*/

Jack Townsend 183

Palabos files

emph# emphinclude "palabos3D.h"
emph# emphinclude "palabos3D.hh"

emph# emphinclude "pypal/headers3D.h"
emph# emphinclude "pypal/headers3D.hh"

emph# emphinclude <algorithm>
emph# emphinclude <cstdlib>
emph# emphinclude <cmath>
emph# emphinclude <string>

using namespace plb;

typedef double T;

emph# emphdefine WAVE ABSORPTION

emph# emphifdef WAVE ABSORPTION
emph# emphdefine DESCRIPTOR descriptors::AbsorbingWaveD3Q19Descriptor
emph# emphelse
emph# emphdefine DESCRIPTOR descriptors::D3Q19Descriptor
emph# emphendif

// Descriptor used for post-processing smoothing
emph# emphdefine SM DESCRIPTOR descriptors::AdvectionDiffusionD3Q7Descriptor

emph# emphdefine OUT 0
emph# emphdefine IN 1

struct SimulationParameters {

/*
* Parameters set by the user.

* All user input variables and all data in external input files must be ...
in the same system of units.

*/

T yVel;
std::vector<T> xDomain; // Extent in the x-direction ...

of the physical simulation domain.
std::vector<T> yDomain; // Extent in the y-direction ...

of the physical simulation domain.
std::vector<T> zDomain; // Extent in the z-direction ...

of the physical simulation domain.
T inletAbsorbingZoneWidth; // Absorbing zone widths.
T outletAbsorbingZoneWidth;
T lateralAbsorbingZoneWidth;
T topAbsorbingZoneWidth;
T fluidHeight; // Initial height of the fluid.

std::string boatStl; // Name of the file with the ...
boat hull form geometry.

T rho; // Fluid density in physical ...
units.

T nu; // Fluid kinematic viscosity ...
in physical units.

T surfaceTension; // Surface tension ...
coefficient in physical units.

Jack Townsend 184

Palabos files

T inflationParameter; // Parameter for the voxelizer.

T characteristicLength; // Length to define dx.
plint resolution; // Total number of lattice ...

nodes in the characteristic length.

T inletVelocity; // Inlet BC.

T u Ref; // Reference velocity.
T u LB; // Lattice velocity.

T A; // Wave generation force ...
parameters.

T P;
std::vector<T> xWaveDomain;
std::vector<T> yWaveDomain;
std::vector<T> zWaveDomain;

plint maxIter; // Maximum number of iterations.

T cSmago; // Smagorinsky parameter.

bool strongRepelling; // Parameter for the ...
Immersed Boundary method.

T ambientPressure; // Absolute pressure at ...
infinity.

std::string outDir; // Output directory.
plint statIter; // Number of iterations for ...

terminal output.
plint outIter; // Number of iterations for ...

disk output.
plint cpIter; // Number of iterations for ...

checkpointing.
plint abIter; // Number of iterations for ...

checking for user-driven program abortion.

bool excludeInteriorForOutput; // Exclude the interior of ...
the boat for pressure and force output or not?

int numPresLaplaceIter; // Number of Laplacian ...
smoothing iterations for the pressure post-processing.

bool outputInDomain; // Save data on disk in a ...
volume domain or not?

Cuboid<T> outputCuboid; // Volume domain for disk ...
output.

bool outputOnSlices; // Save data on disk on a ...
set of slices or not?

std::vector<T> xPositions; // Positions of the x-slices ...
for output.

std::vector<T> xyRange; // y range of the x-slices.
std::vector<T> xzRange; // z range of the x-slices.
std::vector<T> yPositions; // Positions of the y-slices ...

for output.
std::vector<T> yzRange; // z range of the y-slices.
std::vector<T> yxRange; // x range of the y-slices.
std::vector<T> zPositions; // Positions of the z-slices ...

Jack Townsend 185

Palabos files

for output.
std::vector<T> zxRange; // x range of the z-slices.
std::vector<T> zyRange; // y range of the z-slices.

std::string abortFileName; // File for signaling ...
program abortion.

std::string xmlContinueFileName; // XML file for restarting.
std::string baseFileName; // Basename of the ...

checkpoint files.
bool useParallelIO; // For a desktop PC this ...

should be "false", for a cluster "true".

/*
* Parameters NOT set by the user.

*/

T yVel LB;
plint nx, ny, nz;
plint fluidHeight LB;
Box3D fullDomain;
Box3D bottom, top;
Box3D initialFluidDomain;
T dx;
T dt;
T rho LB;
Array<plint,6> numAbsorbingCells;
plint totalNumAbsorbingCells;
T surfaceTension LB;
T inletVelocity LB;
T initialVelocity LB;
T gravity LB;
T A LB;
T P LB;
Box3D waveDomain;
T omega;
bool incompressibleModel;
Array<T,3> physicalLocation;
RawConnectedTriangleMesh<T>* connectedMesh;
std::vector<Array<T,3> > vertices;
std::vector<T> areas;
std::vector<int> flags;
Box3D outputDomain;
std::vector<Box3D> xSlices;
std::vector<Box3D> ySlices;
std::vector<Box3D> zSlices;
std::vector<Box3D> allOutputDomains;
std::vector<std::string> allOutputDomainNames;
bool saveDynamicContent;
plint fileNamePadding;

} param;

T toPhys(T lbVal, plint direction, T dx, Array<T,3> const& location)
{

PLB ASSERT(direction >= 0 && direction <= 2);
return (lbVal * dx + location[direction]);

}

Array<T,3> toPhys(Array<T,3> const& lbVal, T dx, Array<T,3> const& location)
{

return (lbVal * dx + location);

Jack Townsend 186

Palabos files

}

T toLB(T physVal, plint direction, T dx, Array<T,3> const& location)
{

PLB ASSERT(direction >= 0 && direction <= 2);
return (physVal - location[direction]) / dx;

}

Array<T,3> toLB(Array<T,3> const& physVal, T dx, Array<T,3> const& location)
{

return (physVal - location) / dx;
}

void setParameters(std::string xmlInputFileName)
{

XMLreader document(xmlInputFileName);

document["geometry"]["simulationDomain"]["x"].read(param.xDomain);
plbIOError(param.xDomain.size() != 2 | | ...

util::lessEqual(param.xDomain[1], param.xDomain[0]),
"The x-extent of the simulation domain is wrong.");

document["geometry"]["simulationDomain"]["y"].read(param.yDomain);
plbIOError(param.yDomain.size() != 2 | | ...

util::lessEqual(param.yDomain[1], param.yDomain[0]),
"The y-extent of the simulation domain is wrong.");

document["geometry"]["simulationDomain"]["z"].read(param.zDomain);
plbIOError(param.zDomain.size() != 2 | | ...

util::lessEqual(param.zDomain[1], param.zDomain[0]),
"The z-extent of the simulation domain is wrong.");

document["geometry"]["inletAbsorbingZoneWidth"].read(param.inletAbsorbingZoneWidth);
document["geometry"]["outletAbsorbingZoneWidth"].read(param.outletAbsorbingZoneWidth);
document["geometry"]["lateralAbsorbingZoneWidth"].read(param.lateralAbsorbingZoneWidth);
document["geometry"]["topAbsorbingZoneWidth"].read(param.topAbsorbingZoneWidth);

document["geometry"]["fluidHeight"].read(param.fluidHeight);

document["geometry"]["boatStl"].read(param.boatStl);

document["fluid"]["rho"].read(param.rho);
document["fluid"]["nu"].read(param.nu);
document["fluid"]["surfaceTension"].read(param.surfaceTension);

document["solver"]["yVel"].read(param.yVel);
document["solver"]["inflationParameter"].read(param.inflationParameter);
plbIOError(param.inflationParameter < (T) 0 | | param.inflationParameter ...

> (T) 1,
"The inflationParameter must take values between 0 and 1.");

document["solver"]["characteristicLength"].read(param.characteristicLength);
document["solver"]["resolution"].read(param.resolution);

document["solver"]["inletVelocity"].read(param.inletVelocity);

document["solver"]["uRef"].read(param.u Ref);
document["solver"]["uLB"].read(param.u LB);

document["solver"]["A"].read(param.A);
document["solver"]["P"].read(param.P);
document["solver"]["waveDomain"]["x"].read(param.xWaveDomain);

Jack Townsend 187

Palabos files

plbIOError(param.xWaveDomain.size() != 2 | | ...
util::lessEqual(param.xWaveDomain[1], param.xWaveDomain[0]),

"The x-extent of the wave domain is wrong.");
document["solver"]["waveDomain"]["y"].read(param.yWaveDomain);
plbIOError(param.yWaveDomain.size() != 2 | | ...

util::lessEqual(param.yWaveDomain[1], param.yWaveDomain[0]),
"The y-extent of the wave domain is wrong.");

document["solver"]["waveDomain"]["z"].read(param.zWaveDomain);
plbIOError(param.zWaveDomain.size() != 2 | | ...

util::lessEqual(param.zWaveDomain[1], param.zWaveDomain[0]),
"The z-extent of the wave domain is wrong.");

document["solver"]["maxIter"].read(param.maxIter);

document["solver"]["cSmago"].read(param.cSmago);

document["solver"]["strongRepelling"].read(param.strongRepelling);

document["solver"]["ambientPressure"].read(param.ambientPressure);

std::string outDir;
document["output"]["outDir"].read(outDir);
if (outDir[outDir.size() - 1] != '/') {

outDir += '/';
}
param.outDir = outDir;
abortIfCannotCreateFileInDir(param.outDir, "plb-checkfile.txt");

document["output"]["statIter"].read(param.statIter);
document["output"]["outIter"].read(param.outIter);
document["output"]["cpIter"].read(param.cpIter);
document["output"]["abIter"].read(param.abIter);

document["output"]["excludeInteriorForOutput"].read(param.excludeInteriorForOutput);
document["output"]["numPresLaplaceIter"].read(param.numPresLaplaceIter);

document["output"]["outputInDomain"].read(param.outputInDomain);
if (param.outputInDomain) {

std::vector<plint> x, y, z;
document["output"]["outputDomain"]["x"].read(x);
plbIOError(x.size() != 2 | | util::lessEqual(x[1], x[0]), "The ...

x-extent of the outputDomain is wrong");
document["output"]["outputDomain"]["y"].read(y);
plbIOError(y.size() != 2 | | util::lessEqual(y[1], y[0]), "The ...

y-extent of the outputDomain is wrong");
document["output"]["outputDomain"]["z"].read(z);
plbIOError(z.size() != 2 | | util::lessEqual(z[1], z[0]), "The ...

z-extent of the outputDomain is wrong");
param.outputCuboid.lowerLeftCorner[0] = x[0];
param.outputCuboid.lowerLeftCorner[1] = y[0];
param.outputCuboid.lowerLeftCorner[2] = z[0];
param.outputCuboid.upperRightCorner[0] = x[1];
param.outputCuboid.upperRightCorner[1] = y[1];
param.outputCuboid.upperRightCorner[2] = z[1];

}

document["output"]["outputOnSlices"].read(param.outputOnSlices);
if (param.outputOnSlices) {

document["output"]["outputSlices"]["xSlices"]["xPositions"].read(param.xPositions);
document["output"]["outputSlices"]["xSlices"]["yRange"].read(param.xyRange);

Jack Townsend 188

Palabos files

plbIOError(param.xyRange.size() != 2 | | ...
util::lessEqual(param.xyRange[1], param.xyRange[0]),

"The y-range of the x-slices is wrong");
document["output"]["outputSlices"]["xSlices"]["zRange"].read(param.xzRange);
plbIOError(param.xzRange.size() != 2 | | ...

util::lessEqual(param.xzRange[1], param.xzRange[0]),
"The z-range of the x-slices is wrong");

document["output"]["outputSlices"]["ySlices"]["yPositions"].read(param.yPositions);
document["output"]["outputSlices"]["ySlices"]["zRange"].read(param.yzRange);
plbIOError(param.yzRange.size() != 2 | | ...

util::lessEqual(param.yzRange[1], param.yzRange[0]),
"The z-range of the y-slices is wrong");

document["output"]["outputSlices"]["ySlices"]["xRange"].read(param.yxRange);
plbIOError(param.yxRange.size() != 2 | | ...

util::lessEqual(param.yxRange[1], param.yxRange[0]),
"The x-range of the y-slices is wrong");

document["output"]["outputSlices"]["zSlices"]["zPositions"].read(param.zPositions);
document["output"]["outputSlices"]["zSlices"]["xRange"].read(param.zxRange);
plbIOError(param.zxRange.size() != 2 | | ...

util::lessEqual(param.zxRange[1], param.zxRange[0]),
"The x-range of the z-slices is wrong");

document["output"]["outputSlices"]["zSlices"]["yRange"].read(param.zyRange);
plbIOError(param.zyRange.size() != 2 | | ...

util::lessEqual(param.zyRange[1], param.zyRange[0]),
"The x-range of the z-slices is wrong");

}

document["output"]["abortFileName"].read(param.abortFileName);
document["output"]["xmlContinueFileName"].read(param.xmlContinueFileName);
document["output"]["baseFileName"].read(param.baseFileName);
document["output"]["useParallelIO"].read(param.useParallelIO);

}

void computeOutputDomain(Cuboid<T> const& cuboid, Box3D& box)
{

if (!param.outputInDomain) {
return;

}

Array<T,3> llc = cuboid.lowerLeftCorner;
Array<T,3> urc = cuboid.upperRightCorner;

plint x0 = util::roundToInt(toLB(llc[0], 0, param.dx, ...
param.physicalLocation));

plint y0 = util::roundToInt(toLB(llc[1], 1, param.dx, ...
param.physicalLocation));

plint z0 = util::roundToInt(toLB(llc[2], 2, param.dx, ...
param.physicalLocation));

plint x1 = util::roundToInt(toLB(urc[0], 0, param.dx, ...
param.physicalLocation));

plint y1 = util::roundToInt(toLB(urc[1], 1, param.dx, ...
param.physicalLocation));

plint z1 = util::roundToInt(toLB(urc[2], 2, param.dx, ...
param.physicalLocation));

PLB ASSERT(x1 >= x0 && y1 >= y0 && z1 >= z0);

Jack Townsend 189

Palabos files

box = Box3D(x0, x1, y0, y1, z0, z1);

emph# emphifdef PLB DEBUG
bool intersectionOK =

emph# emphendif
intersect(box, param.fullDomain, box);

PLB ASSERT(intersectionOK);
}

void computeOutputSlices()
{

if (!param.outputOnSlices) {
return;

}

{
param.xSlices.clear();

plint y0 = util::roundToInt(toLB(param.xyRange[0], 1, param.dx, ...
param.physicalLocation));

plint y1 = util::roundToInt(toLB(param.xyRange[1], 1, param.dx, ...
param.physicalLocation));

plint z0 = util::roundToInt(toLB(param.xzRange[0], 2, param.dx, ...
param.physicalLocation));

plint z1 = util::roundToInt(toLB(param.xzRange[1], 2, param.dx, ...
param.physicalLocation));

PLB ASSERT(y1 >= y0 && z1 >= z0);

for (size t i = 0; i < param.xPositions.size(); i++) {
plint xPos = util::roundToInt(toLB(param.xPositions[i], 0, ...

param.dx, param.physicalLocation));
plint x0 = xPos - 1;
plint x1 = xPos + 1;
param.xSlices.push back(Box3D(x0, x1, y0, y1, z0, z1));

emph# emphifdef PLB DEBUG
bool intersectionOK =

emph# emphendif
intersect(param.xSlices.back(), param.fullDomain, ...

param.xSlices.back());
PLB ASSERT(intersectionOK);

}
}

{
param.ySlices.clear();

plint z0 = util::roundToInt(toLB(param.yzRange[0], 2, param.dx, ...
param.physicalLocation));

plint z1 = util::roundToInt(toLB(param.yzRange[1], 2, param.dx, ...
param.physicalLocation));

plint x0 = util::roundToInt(toLB(param.yxRange[0], 0, param.dx, ...
param.physicalLocation));

plint x1 = util::roundToInt(toLB(param.yxRange[1], 0, param.dx, ...
param.physicalLocation));

PLB ASSERT(z1 >= z0 && x1 >= x0);

for (size t i = 0; i < param.yPositions.size(); i++) {
plint yPos = util::roundToInt(toLB(param.yPositions[i], 1, ...

Jack Townsend 190

Palabos files

param.dx, param.physicalLocation));
plint y0 = yPos - 1;
plint y1 = yPos + 1;
param.ySlices.push back(Box3D(x0, x1, y0, y1, z0, z1));

emph# emphifdef PLB DEBUG
bool intersectionOK =

emph# emphendif
intersect(param.ySlices.back(), param.fullDomain, ...

param.ySlices.back());
PLB ASSERT(intersectionOK);

}
}

{
param.zSlices.clear();

plint x0 = util::roundToInt(toLB(param.zxRange[0], 0, param.dx, ...
param.physicalLocation));

plint x1 = util::roundToInt(toLB(param.zxRange[1], 0, param.dx, ...
param.physicalLocation));

plint y0 = util::roundToInt(toLB(param.zyRange[0], 1, param.dx, ...
param.physicalLocation));

plint y1 = util::roundToInt(toLB(param.zyRange[1], 1, param.dx, ...
param.physicalLocation));

PLB ASSERT(x1 >= x0 && y1 >= y0);

for (size t i = 0; i < param.zPositions.size(); i++) {
plint zPos = util::roundToInt(toLB(param.zPositions[i], 2, ...

param.dx, param.physicalLocation));
plint z0 = zPos - 1;
plint z1 = zPos + 1;
param.zSlices.push back(Box3D(x0, x1, y0, y1, z0, z1));

emph# emphifdef PLB DEBUG
bool intersectionOK =

emph# emphendif
intersect(param.zSlices.back(), param.fullDomain, ...

param.zSlices.back());
PLB ASSERT(intersectionOK);

}
}

}

void orderAllOutputDomains()
{

param.allOutputDomains.clear();
param.allOutputDomainNames.clear();

if (param.outputInDomain) {
param.allOutputDomains.push back(param.outputDomain);
param.allOutputDomainNames.push back("domain");

}

if (param.outputOnSlices) {
size t numXdigits = util::val2str(param.xSlices.size()).length();
for (size t i = 0; i < param.xSlices.size(); i++) {

param.allOutputDomains.push back(param.xSlices[i]);
param.allOutputDomainNames.push back(createFileName("slice x ", ...

Jack Townsend 191

Palabos files

i, numXdigits+1));
}

size t numYdigits = util::val2str(param.ySlices.size()).length();
for (size t i = 0; i < param.ySlices.size(); i++) {

param.allOutputDomains.push back(param.ySlices[i]);
param.allOutputDomainNames.push back(createFileName("slice y ", ...

i, numYdigits+1));
}

size t numZdigits = util::val2str(param.zSlices.size()).length();
for (size t i = 0; i < param.zSlices.size(); i++) {

param.allOutputDomains.push back(param.zSlices[i]);
param.allOutputDomainNames.push back(createFileName("slice z ", ...

i, numZdigits+1));
}

}
}

void setDerivedParameters()
{

// Derived quantities.
Cuboid<T> fullCuboid(Array<T,3>(param.xDomain[0], param.yDomain[0], ...

param.zDomain[0]),
Array<T,3>(param.xDomain[1], param.yDomain[1], ...

param.zDomain[1]));

param.dx = param.characteristicLength / (T) (param.resolution - 1);

T lx = fullCuboid.x1() - fullCuboid.x0();
T ly = fullCuboid.y1() - fullCuboid.y0();
T lz = fullCuboid.z1() - fullCuboid.z0();
param.physicalLocation = Array<T,3>(fullCuboid.x0(), fullCuboid.y0(), ...

fullCuboid.z0());
param.nx = util::roundToInt(lx / param.dx);
param.ny = util::roundToInt(ly / param.dx) + 1;
param.nz = util::roundToInt(lz / param.dx);
param.fullDomain = Box3D(0, param.nx - 1, 0, param.ny - 1, 0, param.nz - 1);

param.bottom = Box3D(0, param.nx - 1, 0, 0, 0, ...
param.nz - 1);

param.top = Box3D(0, param.nx - 1, param.ny - 1, param.ny - 1, 0, ...
param.nz - 1);

param.initialFluidDomain = param.fullDomain;
param.initialFluidDomain.y0++;
param.fluidHeight LB = util::roundToInt(param.fluidHeight / param.dx);
param.initialFluidDomain.y1 = param.fluidHeight LB - 1;

param.saveDynamicContent = true;
param.fileNamePadding = 8;

param.dt = param.u LB / param.u Ref * param.dx;

param.rho LB = (T) 1;

param.yVel LB = param.yVel * (param.dt / param.dx);

param.inletVelocity LB = param.inletVelocity * (param.dt / param.dx);

Jack Townsend 192

Palabos files

param.initialVelocity LB = param.inletVelocity LB;

param.surfaceTension LB = (param.rho LB/param.rho) * param.dt*param.dt / ...
(param.dx*param.dx*param.dx) * param.surfaceTension;

param.gravity LB = (T) 9.81 * (param.dt*param.dt / param.dx);

param.numAbsorbingCells[0] = ...
util::roundToInt(param.inletAbsorbingZoneWidth / param.dx);

param.numAbsorbingCells[1] = ...
util::roundToInt(param.outletAbsorbingZoneWidth / param.dx);

param.numAbsorbingCells[2] = 0;
param.numAbsorbingCells[3] = ...

util::roundToInt(param.topAbsorbingZoneWidth / param.dx);
param.numAbsorbingCells[4] = ...

util::roundToInt(param.lateralAbsorbingZoneWidth / param.dx);
param.numAbsorbingCells[5] = ...

util::roundToInt(param.lateralAbsorbingZoneWidth / param.dx);

param.totalNumAbsorbingCells = 0;
for (int iZone = 0; iZone < 6; iZone++) {

param.totalNumAbsorbingCells += param.numAbsorbingCells[iZone];
}

param.A LB = param.A;
param.P LB = param.P / param.dt;
param.waveDomain.x0 = util::roundToInt(toLB(param.xWaveDomain[0], 0, ...

param.dx, param.physicalLocation));
param.waveDomain.x1 = util::roundToInt(toLB(param.xWaveDomain[1], 0, ...

param.dx, param.physicalLocation));
param.waveDomain.y0 = util::roundToInt(toLB(param.yWaveDomain[0], 1, ...

param.dx, param.physicalLocation));
param.waveDomain.y1 = util::roundToInt(toLB(param.yWaveDomain[1], 1, ...

param.dx, param.physicalLocation));
param.waveDomain.z0 = util::roundToInt(toLB(param.zWaveDomain[0], 2, ...

param.dx, param.physicalLocation));
param.waveDomain.z1 = util::roundToInt(toLB(param.zWaveDomain[1], 2, ...

param.dx, param.physicalLocation));
emph# emphifdef PLB DEBUG

bool intersectionOK =
emph# emphendif

intersect(param.waveDomain, param.fullDomain, param.waveDomain);
PLB ASSERT(intersectionOK);

T nu LB = param.nu * param.dt / (param.dx * param.dx);
param.omega = (T) 1 / (DESCRIPTOR<T>::invCs2 * nu LB + (T) 0.5);

computeOutputDomain(param.outputCuboid, param.outputDomain);
computeOutputSlices();
orderAllOutputDomains();

}

T waveForce(T t)
{

static T pi = std::acos((T) -1);
return param.A LB * std::fabs(param.gravity LB) * std::sin((T) 2 * pi * ...

t / param.P LB);
}

void setupBoatGeometry(bool operateOnOuterBorder, MultiScalarField3D<int>& tags)
{

Jack Townsend 193

Palabos files

TriangleSet<T>* triangleSet = new TriangleSet<T>(param.boatStl);
triangleSet->translate(-param.physicalLocation);
triangleSet->scale((T) 1 / param.dx);

RawConnectedTriangleMesh<T>* mesh = 0;
{

RawTriangleMesh<T> rawMesh = triangleSetToRawTriangleMesh(*triangleSet);
mesh = new ...

RawConnectedTriangleMesh<T>(MeshConnector<T>(rawMesh).generateConnectedMesh());
}
inflate(*mesh, param.inflationParameter);
plint borderWidth = 1;
MultiNTensorField3D<int>* voxelMatrix = meshToVoxel(*mesh, ...

tags.getBoundingBox(), borderWidth);
delete mesh; mesh = 0;

setToConstant(tags, voxelMatrix->scalarView(), voxelFlag::inside, ...
tags.getBoundingBox(), (int) IN);

setToConstant(tags, voxelMatrix->scalarView(), voxelFlag::innerBorder, ...
tags.getBoundingBox(), (int) IN);

if (operateOnOuterBorder) {
setToConstant(tags, voxelMatrix->scalarView(), ...

voxelFlag::outerBorder, tags.getBoundingBox(), (int) IN);
}
delete voxelMatrix; voxelMatrix = 0;

plint maxRefinements = 100;
T targetLength = (T) 1;
bool succeeded = triangleSet->refineRecursively(targetLength, ...

maxRefinements);
if (!succeeded) {

pcout << std::endl;
pcout << "WARNING: The target maximum triangle edge length " << ...

targetLength
<< " for the immersed surface was not reached after " << ...

maxRefinements
<< " refinement iterations." << std::endl;

pcout << std::endl;
exit(1);

}

{
RawTriangleMesh<T> rawMesh = triangleSetToRawTriangleMesh(*triangleSet);
delete triangleSet; triangleSet = 0;
param.connectedMesh = new ...

RawConnectedTriangleMesh<T>(MeshConnector<T>(rawMesh).generateConnectedMesh());
}

plint numVertices = param.connectedMesh->getNumVertices();
param.vertices.resize(numVertices);
param.areas.resize(numVertices);
param.flags.resize(numVertices, (int) 1);
plint uniqueVertexIdTag = param.connectedMesh->getVertexTag("UniqueID");
RawConnectedTriangleMesh<T>::PVertexIterator ...

vertexIterator(param.connectedMesh->vertexIterator());
while (!vertexIterator->end()) {

RawConnectedTriangleMesh<T>::PVertex vertex = vertexIterator->next();
plint iVertex = vertex->tag(uniqueVertexIdTag);
param.vertices[iVertex] = vertex->get();
param.areas[iVertex] = vertex->area();

Jack Townsend 194

Palabos files

}
pcout << "The number of vertices on the boat surface (after refinement) ...

is: " << numVertices << std::endl;
}

void initialRhoU(plint iX, plint iY, plint iZ, T& rho, Array<T,3>& u)
{

rho = param.rho LB;
if (iY <= param.fluidHeight LB) {

rho = param.rho LB + DESCRIPTOR<T>::invCs2 * ...
std::fabs(param.gravity LB) * (param.fluidHeight LB - iY);

}
u = Array<T,3>(param.initialVelocity LB, (T) 0, (T) 0);

}

template <typename T>
class VelFunction {
public:

T yVel LB = param.yVel LB;
Array<T,3> operator()(pluint id)
{

return Array<T,3>(0.0, yVel LB, 0.0);
}

};

void printSimulationParameters()
{

pcout << "Physical simulation domain: [" << param.xDomain[0] << ", " << ...
param.xDomain[1] << "] x ["

<< param.yDomain[0] << ", " << ...
param.yDomain[1] << "] x ["

<< param.zDomain[0] << ", " << ...
param.zDomain[1] << "]" << ...
std::endl;

pcout << "inletAbsorbingZoneWidth = " << param.inletAbsorbingZoneWidth ...
<< std::endl;

pcout << "outletAbsorbingZoneWidth = " << param.outletAbsorbingZoneWidth ...
<< std::endl;

pcout << "lateralAbsorbingZoneWidth = " << ...
param.lateralAbsorbingZoneWidth << std::endl;

pcout << "topAbsorbingZoneWidth = " << param.topAbsorbingZoneWidth << ...
std::endl;

pcout << "fluidHeight = " << param.fluidHeight << std::endl;

pcout << "boatStl = " << param.boatStl << std::endl;

pcout << "rho = " << param.rho << std::endl;
pcout << "nu = " << param.nu << std::endl;
pcout << "surfaceTension = " << param.surfaceTension << std::endl;

pcout << "inflationParameter = " << param.inflationParameter << std::endl;
pcout << "characteristicLength = " << param.characteristicLength << ...

std::endl;
pcout << "resolution = " << param.resolution << std::endl;
pcout << "inletVelocity = " << param.inletVelocity << std::endl;
pcout << "u Ref = " << param.u Ref << std::endl;
pcout << "u LB = " << param.u LB << std::endl;
pcout << "maxIter = " << param.maxIter << std::endl;
pcout << "cSmago = " << param.cSmago << std::endl;
pcout << "strongRepelling = " << (param.strongRepelling ? "true" : ...

Jack Townsend 195

Palabos files

"false") << std::endl;
pcout << "ambientPressure = " << param.ambientPressure << std::endl;

pcout << "outDir = " << param.outDir << std::endl;
pcout << "statIter = " << param.statIter << std::endl;
pcout << "outIter = " << param.outIter << std::endl;
pcout << "cpIter = " << param.cpIter << std::endl;
pcout << "abIter = " << param.abIter << std::endl;
pcout << "excludeInteriorForOutput = " << ...

(param.excludeInteriorForOutput ? "true" : "false") << std::endl;
pcout << "numPresLaplaceIter = " << param.numPresLaplaceIter << std::endl;
pcout << "abortFileName = " << param.abortFileName << std::endl;
pcout << "xmlContinueFileName = " << param.xmlContinueFileName << std::endl;
pcout << "baseFileName = " << param.baseFileName << std::endl;
pcout << "useParallelIO = " << (param.useParallelIO ? "true" : "false") ...

<< std::endl;

pcout << "incompressibleModel = " << (param.incompressibleModel ? "true" ...
: "false") << std::endl;

pcout << "fluidHeight LB = " << param.fluidHeight LB << std::endl;
pcout << "rho LB = " << param.rho LB << std::endl;
pcout << "surfaceTension LB = " << param.surfaceTension LB << std::endl;
pcout << "gravity LB = " << param.gravity LB << std::endl;
pcout << "inletVelocity LB = " << param.inletVelocity LB << std::endl;
pcout << "initialVelocity LB = " << param.initialVelocity LB << std::endl;
for (int iZone = 0; iZone < 6; iZone++) {

pcout << "numAbsorbingCells[" << iZone << "] = " << ...
param.numAbsorbingCells[iZone] << std::endl;

}
T Re = param.u Ref * param.characteristicLength / param.nu;
pcout << "Reynolds number: Re = " << Re << std::endl;
pcout << "omega = " << param.omega << std::endl;
pcout << "tau = " << 1.0 / param.omega << std::endl;
pcout << "dx = " << param.dx << std::endl;
pcout << "dt = " << param.dt << std::endl;
pcout << "dt / dx = " << param.dt / param.dx << std::endl;
pcout << "dt / (dx * dx) = " << param.dt / (param.dx * param.dx) << ...

std::endl;
pcout << "physicalLocation = (" << param.physicalLocation[0] << ", " << ...

param.physicalLocation[1] << ", "
<< param.physicalLocation[2] << ")" << std::endl;

pcout << std::endl;
}

void applyAbsorbingZones(FreeSurfaceFields3D<T,DESCRIPTOR>& fields, ...
MultiScalarField3D<T>& targetVolumeFraction,

MultiTensorField3D<T,3>& targetVelocity)
{

if (param.totalNumAbsorbingCells == 0) {
return;

}

std::vector<MultiBlock3D*> args;
args.push back(&fields.volumeFraction);
args.push back(&targetVolumeFraction);
args.push back(&fields.rhoBar);
args.push back(&fields.mass);
args.push back(&fields.j);
args.push back(&targetVelocity);
applyProcessingFunctional(new FreeSurfaceSpongeZone3D<T,DESCRIPTOR>(

Jack Townsend 196

Palabos files

param.nx + 1, param.ny, param.nz + 1, param.numAbsorbingCells,
param.incompressibleModel),

fields.volumeFraction.getBoundingBox(), args);
}

void writeVTK(FreeSurfaceFields3D<T,DESCRIPTOR>& fields, ...
MultiTensorField3D<T,3>& force, MultiScalarField3D<T>& smoothVF,

MultiScalarField3D<T>& pressure, Box3D const& outputDomain, ...
ParallelVtkImageOutput3D<T>& vtkOut)

{
// CAUTION: If more entries are added to the VTK file in this function, ...

the variable "numEntries" in
// the "writeResults" function must be adapted accordingly.

vtkOut.writeData<float>(*extractSubDomain(pressure, outputDomain), ...
"pressure", 1.0);

vtkOut.writeData<float>(*copyConvert<int,T>(fields.flag, outputDomain), ...
"flag", 1.0);

MultiScalarField3D<T>* normalVF = ...
extractSubDomain(fields.volumeFraction, outputDomain).release();

boundScalarField<T>(*normalVF, (T) 0, (T) 1);
vtkOut.writeData<float>(*normalVF, "volumeFraction", 1.0);
delete normalVF; normalVF = 0;
vtkOut.writeData<float>(*extractSubDomain(smoothVF, outputDomain), ...

"volumeFractionFiltered", 1.0);
std::auto ptr<MultiTensorField3D<T,3> > v = ...

freeSurfaceComputeForcedVelocity(fields.lattice, force, fields.flag, ...
outputDomain);

vtkOut.writeData<3,float>(*v, "velocity", param.dx / param.dt);
}

void writeResults(FreeSurfaceFields3D<T,DESCRIPTOR>& fields, ...
MultiTensorField3D<T,3>& force,

MultiScalarField3D<int>& tags, plint iIter)
{

MultiScalarField3D<T>* smoothVF = ...
generateMultiScalarField<T>(fields.volumeFraction, 1).release();

copy(fields.volumeFraction, *smoothVF, ...
fields.volumeFraction.getBoundingBox());

lbmSmoothenInPlace<T,SM DESCRIPTOR>(*smoothVF);
lbmSmoothenInPlace<T,SM DESCRIPTOR>(*smoothVF);
boundScalarField<T>(*smoothVF, (T) 0, (T) 1);

T pressureScale = param.rho * (param.dx * param.dx) / (param.dt * ...
param.dt) * DESCRIPTOR<T>::cs2;

T pressureOffset = param.ambientPressure -
param.rho LB * param.rho * (param.dx * param.dx) / (param.dt * ...

param.dt) * DESCRIPTOR<T>::cs2;
std::auto ptr<MultiScalarField3D<T> > pressure = ...

computeDensity(fields.lattice);
pressure->periodicity().toggle(0, true);
pressure->periodicity().toggle(1, false);
pressure->periodicity().toggle(2, true);

Box3D smoothDomain(param.fullDomain);
smoothDomain.y0++;
smoothDomain.y1--;
for (int iSmooth = 0; iSmooth < param.numPresLaplaceIter; iSmooth++) {

lbmSmoothenInPlace<T,SM DESCRIPTOR>(*pressure, smoothDomain);
}

Jack Townsend 197

Palabos files

multiplyInPlace(*pressure, pressureScale);
addInPlace(*pressure, pressureOffset);

// CAUTION: If more entries are added to the VTK file in the "writeVTK" ...
function, the variable

// "numEntries" must be adapted accordingly here.

plint numEntries = 5;

for (size t iDomain = 0; iDomain < param.allOutputDomains.size(); ...
iDomain++) {
Box3D outputDomain = param.allOutputDomains[iDomain];
std::string domainName = param.allOutputDomainNames[iDomain];
std::string fname = createFileName(param.outDir + domainName + " ", ...

iIter, param.fileNamePadding);
ParallelVtkImageOutput3D<T> vtkOut(fname, numEntries, param.dx, ...

param.physicalLocation);
writeVTK(fields, force, *smoothVF, *pressure, outputDomain, vtkOut);

}

// Use a marching-cube algorithm to reconstruct the free surface and ...
write an STL file.

std::vector<T> isoLevels;
isoLevels.push back((T) 0.5);
typedef TriangleSet<T>::Triangle Triangle;
std::vector<Triangle> triangles;
Box3D marchingCubeDomain(param.fullDomain);
marchingCubeDomain.x0 += 2;
marchingCubeDomain.x1 -= 2;
marchingCubeDomain.y0 += 1;
marchingCubeDomain.y1 -= 1;
isoSurfaceMarchingCube(triangles, *smoothVF, isoLevels, marchingCubeDomain);
delete smoothVF; smoothVF = 0;
TriangleSet<T> set(triangles);
set.scale(param.dx);
set.translate(param.physicalLocation);
set.writeBinarySTL(createFileName(param.outDir + "interface ", iIter, ...

param.fileNamePadding) + ".stl");

// Export the pressure on the surface of the boat.

RawConnectedTriangleMesh<T> mesh(*param.connectedMesh);
plint envelopeWidth = 1;
std::auto ptr<MultiScalarField3D<int> > mask = ...

generateMultiScalarField<int>((MultiBlock3D&) fields.flag, ...
envelopeWidth);

setToConstant(*mask, mask->getBoundingBox(), (int) 0);
setToConstant(*mask, fields.flag, (int) freeSurfaceFlag::fluid, ...

fields.flag.getBoundingBox(), (int) 1);
setToConstant(*mask, fields.flag, (int) freeSurfaceFlag::interface, ...

fields.flag.getBoundingBox(), (int) 1);
if (param.excludeInteriorForOutput) {

setToConstant(*mask, tags, (int) IN, tags.getBoundingBox(), (int) 0);
}
for (plint iLayer = 0; iLayer < 3; iLayer++) {

applyProcessingFunctional(new ...
MaskedNTensorNeumannInLayersFunctional3D<T>(0, 1, -1),

pressure->getBoundingBox(), pressure->nTensorView(), ...

Jack Townsend 198

Palabos files

mask->nTensorView());
}
nTensorFieldToMesh(pressure->nTensorView(), mesh, "pressure");
mesh.scale(param.dx);
mesh.translate(param.physicalLocation);
std::string fname = createFileName(param.outDir + "boat pressure ", ...

iIter, param.fileNamePadding) + ".vtk";
writeVTK(mesh, fname);

}

int main(int argc, char *argv[])
{

plbInit(&argc, &argv);

std::cout.precision(10);

// Command-line arguments

if (argc != 2 && argc != 3) {
pcout << "Usage: " << argv[0] << " xml-input-file-name ...

[xml-continue-file-name]" << std::endl;
exit(1);

}

std::string xmlInputFileName;
xmlInputFileName = std::string(argv[1]);
abortIfCannotOpenFileForReading(xmlInputFileName);

std::string xmlRestartFileName;
bool continueSimulation = false;
if (argc == 3) {

xmlRestartFileName = std::string(argv[2]);
continueSimulation = true;

}

int nproc = global::mpi().getSize();

global::timer("init").start();
global::timer("totalTime").start();

// Set the simulation parameters.

setParameters(xmlInputFileName);
global::IOpolicy().activateParallelIO(param.useParallelIO);

setDerivedParameters();

// Setup the geometry.

pcout << "Total number of lattice cells: " << param.nx * param.ny * ...
param.nz << std::endl;

MultiScalarField3D<int> tags(param.nx, param.ny, param.nz, (int) OUT);
tags.periodicity().toggle(0, true);
tags.periodicity().toggle(1, false);
tags.periodicity().toggle(2, true);

pcout << "Setting up the boat geometry." << std::endl;
bool operateOnOuterBorder = true;
setupBoatGeometry(operateOnOuterBorder, tags);

Jack Townsend 199

Palabos files

emph# emphifdef PLB DEBUG
{

VtkImageOutput3D<T> vtkOut(param.outDir + "tags", param.dx, ...
param.physicalLocation);

vtkOut.writeData<float>(*copyConvert<int,T>(tags), "tags", 1.0);
}

emph# emphendif

// Free-surface blocks.

emph# emphifdef WAVE ABSORPTION
Dynamics<T,DESCRIPTOR>* dynamics = new WaveAbsorptionDynamics<T,DESCRIPTOR>(

new SmagorinskyDynamics<T,DESCRIPTOR>(
new TruncatedTRTdynamics<T,DESCRIPTOR>(param.omega, 1.1), ...

param.omega, param.cSmago));
param.incompressibleModel = false;
pcout << "Dynamics: Wave Absorption Smagorinsky TRT." << std::endl;

emph# emphelse
Dynamics<T,DESCRIPTOR>* dynamics = new SmagorinskyDynamics<T,DESCRIPTOR>(

new TruncatedTRTdynamics<T,DESCRIPTOR>(param.omega, 1.1), ...
param.omega, param.cSmago);

param.incompressibleModel = false;
pcout << "Dynamics: Smagorinsky TRT." << std::endl;

emph# emphendif

T contactAngle = (T) -1;
plint numIBIterations = 4;
int repelInterface = 0;
if (param.strongRepelling) {

repelInterface = 1; // 3;
}
FreeSurfaceFields3D<T,DESCRIPTOR> ...

fields(tags.getMultiBlockManagement().getSparseBlockStructure(),
dynamics->clone(), param.rho LB, param.surfaceTension LB, ...

contactAngle, Array<T,0>::zero(),
numIBIterations, param.vertices, param.areas, param.flags, ...

VelFunction<T>(),
repelInterface);

fields.periodicityToggle(0, true);
fields.periodicityToggle(1, false);
fields.periodicityToggle(2, true);

MultiTensorField3D<T,3> force((MultiBlock3D&) tags);
force.periodicity().toggle(0, true);
force.periodicity().toggle(1, false);
force.periodicity().toggle(2, true);
Array<T,3> bodyForce LB = Array<T,3>((T) 0, -param.gravity LB, (T) 0);
setToConstant<T,3>(force, force.getBoundingBox(), bodyForce LB);
if (!util::isZero(param.A LB)) {

bodyForce LB = Array<T,3>((T) 0, -param.gravity LB + waveForce((T) ...
0), (T) 0);

setToConstant<T,3>(force, param.waveDomain, bodyForce LB);
}

// Initialization

pcout << "Setting up initial condition." << std::endl;

Jack Townsend 200

Palabos files

setToConstant(fields.flag, fields.flag.getBoundingBox(), (int) ...
freeSurfaceFlag::empty);

setToConstant(fields.flag, param.initialFluidDomain, (int) ...
freeSurfaceFlag::fluid);

setToConstant(fields.flag, tags, (int) IN, tags.getBoundingBox(), (int) ...
freeSurfaceFlag::empty);

setToConstant(fields.flag, param.top, (int) freeSurfaceFlag::wall);

initializeAtEquilibrium(fields.lattice, force, ...
fields.lattice.getBoundingBox(), initialRhoU);

computeRhoBarJ(fields.lattice, fields.rhoBar, fields.j, ...
fields.lattice.getBoundingBox());

freeSurfaceAddForceToMomentum<T,DESCRIPTOR>(fields.lattice, ...
fields.rhoBar, fields.j, fields.flag, force,

fields.lattice.getBoundingBox());

bool useConstRho = false;
bool useZeroMomentum = false;
bool initializeCell = false;
fields.defaultInitialize(useConstRho, useZeroMomentum, initializeCell);

Array<bool,3> reflectOnAxis;
reflectOnAxis[0] = false;
reflectOnAxis[1] = true;
reflectOnAxis[2] = false;
defineDynamics(fields.lattice, param.bottom, new ...

SpecularReflection<T,DESCRIPTOR>(reflectOnAxis, param.rho LB));
setToConstant(fields.flag, param.bottom, (int) freeSurfaceFlag::slipWall);

emph# emphifdef WAVE ABSORPTION
if (param.totalNumAbsorbingCells != 0) {

setGenericExternalScalar(fields.lattice, ...
fields.lattice.getBoundingBox(), ...
DESCRIPTOR<T>::ExternalField::sigmaBeginsAt,

WaveAbsorptionSigmaFunction3D<T>(fields.lattice.getBoundingBox(), ...
param.numAbsorbingCells, param.omega));

emph# emphifdef PLB DEBUG
{

VtkImageOutput3D<T> vtkOut(param.outDir + "sigma", param.dx, ...
param.physicalLocation);

vtkOut.writeData<float>(*computeExternalScalar(fields.lattice, ...
DESCRIPTOR<T>::ExternalField::sigmaBeginsAt),

"sigma", 1.0);
}

emph# emphendif
setExternalScalar(fields.lattice, fields.lattice.getBoundingBox(), ...

DESCRIPTOR<T>::ExternalField::rhoBarBeginsAt, (T) 0);
setExternalVector(fields.lattice, fields.lattice.getBoundingBox(), ...

DESCRIPTOR<T>::ExternalField::uBeginsAt,
Array<T,3>(param.inletVelocity LB, (T) 0, (T) 0));

}
emph# emphendif

plint targetEnvelopeWidth = 1;
std::auto ptr<MultiScalarField3D<T> > targetVolumeFraction = ...

generateMultiScalarField<T>(
(MultiBlock3D&) fields.volumeFraction, targetEnvelopeWidth);

copy(fields.volumeFraction, *targetVolumeFraction, ...
fields.volumeFraction.getBoundingBox());

Jack Townsend 201

Palabos files

std::auto ptr<MultiTensorField3D<T,3> > targetVelocity = ...
generateMultiTensorField<T,3>(

(MultiBlock3D&) fields.j, targetEnvelopeWidth);
setToConstant<T,3>(*targetVelocity, targetVelocity->getBoundingBox(), ...

Array<T,3>(param.initialVelocity LB, (T) 0, (T) 0));

applyAbsorbingZones(fields, *targetVolumeFraction, *targetVelocity);

plint iniIter = 0;

printSimulationParameters();

// Checkpointing.

std::vector<MultiBlock3D*> checkpointBlocks;
checkpointBlocks.push back(&fields.lattice);
checkpointBlocks.push back(&fields.mass);
checkpointBlocks.push back(&fields.flag);
checkpointBlocks.push back(&fields.volumeFraction);
checkpointBlocks.push back(&fields.outsideDensity);
checkpointBlocks.push back(&fields.rhoBar);
checkpointBlocks.push back(&fields.j);
checkpointBlocks.push back(&tags);
checkpointBlocks.push back(&force);
checkpointBlocks.push back(targetVolumeFraction.get());
checkpointBlocks.push back(targetVelocity.get());

if (continueSimulation) {
pcout << "Reading state of the simulation from file: " << ...

xmlRestartFileName << std::endl;
loadState(checkpointBlocks, iniIter, param.saveDynamicContent, ...

xmlRestartFileName);
fields.lattice.resetTime(iniIter);
pcout << std::endl;

}

// File preparation.

FILE* fpEnergy = 0;
if (global::mpi().isMainProcessor()) {

std::string fileName = param.outDir + "average energy.dat";
fpEnergy = fopen(fileName.c str(), continueSimulation ? "a" : "w");
PLB ASSERT(fpEnergy != 0);

}

FILE* fpForce = 0;
if (global::mpi().isMainProcessor()) {

std::string fileName = param.outDir + "total force on boat.dat";
fpForce = fopen(fileName.c str(), continueSimulation ? "a" : "w");
PLB ASSERT(fpForce != 0);

}

global::mpi().barrier();
global::timer("init").stop();

pcout << "The full initialization phase took " << ...
global::timer("init").getTime() << " seconds on "

<< nproc << " processes." << std::endl;

Jack Townsend 202

Palabos files

// Starting iterations.

pcout << std::endl;
pcout << "Starting simulation." << std::endl;
pcout << std::endl;
bool stopExecution = false;
plint iIter = 0;
for (iIter = iniIter; iIter < param.maxIter && !stopExecution; iIter++) {

if (iIter != iniIter && (iIter % param.statIter == 0 | | iIter == ...
param.maxIter - 1)) {
global::timer("io").start();
pcout << "==== At iteration " << iIter

<< ", t = " << iIter * param.dt << std::endl;
T energy = freeSurfaceComputeAverageForcedEnergy(fields.lattice, ...

force, fields.flag) *
param.rho * (param.dx * param.dx) / (param.dt * param.dt);

if (!util::isFiniteNumber(energy)) {
if (global::mpi().isMainProcessor()) {

fprintf(stdout, "The simulation is unstable. Aborting ...
...\n");

}

Jack Townsend 203

Palabos files

global::mpi().barrier();
exit(1);

}
pcout << "Average kinetic energy: " << energy << std::endl;

bool isCompressible = !param.incompressibleModel;
MultiNTensorField3D<T>* stress = ...

pypal computeStress(fields.lattice, ...
fields.lattice.getBoundingBox(),

param.rho LB, isCompressible);

plint envelopeWidth = 1;
std::auto ptr<MultiScalarField3D<int> > mask = ...

generateMultiScalarField<int>((MultiBlock3D&) fields.flag, ...
envelopeWidth);

setToConstant(*mask, mask->getBoundingBox(), (int) 0);
setToConstant(*mask, fields.flag, (int) freeSurfaceFlag::fluid, ...

fields.flag.getBoundingBox(), (int) 1);
setToConstant(*mask, fields.flag, (int) ...

freeSurfaceFlag::interface, fields.flag.getBoundingBox(), ...
(int) 1);

if (param.excludeInteriorForOutput) {
setToConstant(*mask, tags, (int) IN, tags.getBoundingBox(), ...

(int) 0);
}
for (plint iLayer = 0; iLayer < 3; iLayer++) {

applyProcessingFunctional(new ...
MaskedNTensorNeumannInLayersFunctional3D<T>(0, 1, -1),

stress->getBoundingBox(), *stress, mask->nTensorView());
}

Array<T,3> force LB = surfaceForceIntegral(*stress, ...

*param.connectedMesh);
delete stress; stress = 0;

T forceConversion = param.rho * util::sqr(util::sqr(param.dx)) / ...
util::sqr(param.dt);

pcout << "Total force on the boat: ";
pcout << "(" << forceConversion * force LB[0] << ", "

<< forceConversion * force LB[1] << ", "
<< forceConversion * force LB[2] << ")" << std::endl;

if (global::mpi().isMainProcessor()) {
fprintf(fpEnergy, "% .8e\t% .8e\n", (double) (iIter * ...

param.dt), (double) energy);
fflush(fpEnergy);
fprintf(fpForce, "% .8e\t% .8e\t% .8e\t% .8e\n", (double) ...

(iIter * param.dt),
(double) (forceConversion * force LB[0]), (double) ...

(forceConversion * force LB[1]),
(double) (forceConversion * force LB[2]));

fflush(fpForce);
}
global::timer("io").stop();

if (iIter != iniIter) {
pcout << "Time per iteration: " << ...

global::timer("iterations").getTime() / (double) (iIter - ...

Jack Townsend 204

Palabos files

iniIter)
<< std::endl;

pcout << "Time per iteration considering the last " << ...
param.statIter << " iterations: "

<< global::timer("statIterations").getTime() / ...
(double) param.statIter << std::endl;

global::timer("statIterations").reset();
pcout << "Total run time: " << ...

global::timer("totalTime").getTime() << std::endl;
pcout << "Total I/O time: " << global::timer("io").getTime() ...

<< std::endl;
}

}

if (iIter % param.outIter == 0 | | iIter == param.maxIter - 1) {
global::timer("io").start();
pcout << "== Output to disk at iteration: " << iIter << std::endl;
writeResults(fields, force, tags, iIter);
pcout << std::endl;
global::timer("io").stop();

}

if (param.cpIter > 0 && iIter % param.cpIter == 0 && iIter != ...
iniIter) {
global::timer("io").start();
pcout << "Saving the state of the simulation at iteration: " << ...

iIter << std::endl;
saveState(checkpointBlocks, iIter, param.saveDynamicContent, ...

param.xmlContinueFileName,
param.baseFileName, param.fileNamePadding);

pcout << std::endl;
global::timer("io").stop();

}

if (iIter % param.abIter == 0) {
stopExecution = abortExecution(param.abortFileName, ...

checkpointBlocks, iIter,
param.saveDynamicContent, param.xmlContinueFileName,
param.baseFileName, param.fileNamePadding);

if (stopExecution) {
pcout << "Aborting execution at iteration: " << iIter << ...

std::endl;
pcout << std::endl;

}
}

global::timer("iterations").start();
global::timer("statIterations").start();
fields.lattice.executeInternalProcessors();
fields.lattice.evaluateStatistics();
fields.lattice.incrementTime();

if (!util::isZero(param.A LB)) {
bodyForce LB = Array<T,3>((T) 0, -param.gravity LB + ...

waveForce((T) (iIter + 1)), (T) 0);
setToConstant<T,3>(force, param.waveDomain, bodyForce LB);

}
freeSurfaceAddForceToMomentum<T,DESCRIPTOR>(fields.lattice, ...

fields.rhoBar, fields.j, fields.flag, force,

Jack Townsend 205

Palabos files

fields.lattice.getBoundingBox());

applyAbsorbingZones(fields, *targetVolumeFraction, *targetVelocity);

global::timer("iterations").stop();
global::timer("statIterations").stop();

}

// Solver execution statistics.

global::mpi().barrier();
global::timer("totalTime").stop();
global::timer("iterations").stop();
global::timer("io").stop();

double totT = global::timer("totalTime").getTime();
double iniT = global::timer("init").getTime();
double itT = global::timer("iterations").getTime();
double ioT = global::timer("io").getTime();

double iniPC = !util::isZero(totT) ? iniT / totT * 100.0 : 0.0;
double itPC = !util::isZero(totT) ? itT / totT * 100.0 : 0.0;
double ioPC = !util::isZero(totT) ? ioT / totT * 100.0 : 0.0;

pcout << "The solver finished executing successfully with " << nproc << ...
" processes." << std::endl;

pcout << "The total running time of the solver, was " << totT << " ...
seconds." << std::endl;

pcout << "The " << iIter - iniIter << " iterations of the solver, took " ...
<< itT << " seconds (" << itPC << "%)." << std::endl;

pcout << "The total I/O time, was " << ioT << " seconds (" << ioPC << ...
"%)." << std::endl;

FILE *fpExecStat = 0;
if (global::mpi().isMainProcessor()) {

std::string fileName = param.outDir + "solver execution statistics.txt";
fpExecStat = fopen(fileName.c str(), continueSimulation ? "a" : "w");
PLB ASSERT(fpExecStat != 0);
if (continueSimulation) {

fprintf(fpExecStat, "\nSummary (after restarting) of execution ...
of the solver: %s\n\n", argv[0]);

} else {
fprintf(fpExecStat, "Summary of execution of the solver: ...

%s\n\n", argv[0]);
}
fprintf(fpExecStat, "Number of processes: %d\n", nproc);
fprintf(fpExecStat, "Total execution time ...

: %g s\n", totT);
fprintf(fpExecStat, "Total time of the initialization phase ...

: %g s,\t%g%% of the total time.\n", iniT, iniPC);
fprintf(fpExecStat, "Total time of the pure solution phase (no ...

output): %g s,\t%g%% of the total time.\n", itT, itPC);
fprintf(fpExecStat, "Total time of I/O ...

: %g s,\t%g%% of the total ...
time.\n", ioT, ioPC);

fclose(fpExecStat);
}

if (global::mpi().isMainProcessor()) {
fclose(fpForce);

Jack Townsend 206

Palabos files

fclose(fpEnergy);
}

// Create a finish file on completion (Jack).
// std::string emptyFile = "finished";
// fopen(emptyFile.c str(), "w");

delete param.connectedMesh;
delete dynamics;

return 0;
}

Jack Townsend 207

Bibliography

[1] Pritchard James. From Shipwright to Naval Constructor : The

Professionalization of 18th-Century French Naval Shipbuilders.

Technology and Culture. 2012;28(1):1–25.

[2] Brown DK. The way of a ship in the midst of the sea: the life and

work of William Froude. Periscope Publishing Ltd.; 2006.

[3] Froude W. On the rolling of ships. Nature. 1861;45(1172):559–560.

[4] Russell JS. The Wave-Line Principle of Ship-Construction.

Transactions of the Institution of Naval Architects. 1860;12.

[5] Swan and Raven models used by William Froude on River Dart in

1867. Science Museum Group Collection - Objects. 2009. Available

from: https:

//collection.sciencemuseumgroup.org.uk/objects/co8040652/

one-of-four-original-swan-and-raven-models-used-by-froude-study-models-hydrodynamics-hydrodynamic-resistance.

[6] Preston A. Strike Craft. Hong Kong: Bison Books Ltd; 1982.

[7] Coastal Motor Boat (CMB 4). Imperial War Museum. Available from:

https://www.iwm.org.uk/collections/item/object/30004029.

[8] World War 1 at Sea - Ships of the Royal Navy, 1914-1919;. Available

from: https://www.naval-history.net/

WW1NavyBritishShips-Dittmar6MBNos.htm.

[9] Caponnetto M. Practical CFD simulations for planing hulls.

International Conference on High Performance Marine Vehicles

(HIPER’ 01). 2001. Available from:

208

Bibliography

http://www.caponnetto-hueber.com/Papers/Practical{_}CFD{_

}simulations{_}for{_}planing{_}hulls{_}HIPER{_}2001.

pdf.

[10] Ahmed YM. Determining Ship Resistance Using Computational Fluid

Dynamics (CFD). Journal of Transport System Engineering.

2015;2(1):20–25.

[11] Bertram V. Practical Ship Hydrodynamics.

Elsevier/Butterworth-Heinemann; 2012.

[12] Ang JH, Goh C, Li Y. Key Challenges and Opportunities in Hull Form

Design Optimisation for Marine and Offshore Applications. In: 21st

International Conference on Automation and Computing (ICAC).

Glasgow, UK; 2015. .

[13] Sharma R, Kim Tw, Storch RL, Hopman HJJ, Erikstad SO.

Challenges in computer applications for ship and floating structure

design and analysis. Computer-Aided Design. 2012;44(3):166–185.

[14] Palaniappan K, Jameson A. Bodies having minimum pressure drag in

supersonic flow - Investigating nonlinear effects. Collection of Technical

Papers - AIAA Applied Aerodynamics Conference. 2004;2:1224–1229.

[15] Ferreiro LD, Pollara A. Contested Waterlines: The Wave-Line Theory

and Shipbuilding in the Nineteenth Century. Technology and Culture.

2016;57(2):414–444.

[16] Lewis EV. Principles of naval architecture: Volume II - resistance,

propulsion, and vibration. vol. 2; 1988.

[17] Rosén A. Loads and Responses for Planing Craft in Waves; 2004.

Available from:

http://sh.diva-portal.org/smash/get/diva2:14900/FULLTEXT01.

[18] Gregory D, Beach T. Resistance Measurements of Typical Planing

Boat Appendages; 1979. December.

Jack Townsend 209

Bibliography

[19] Mansoori M, Fernandes AC, Ghassemi H. Interceptor design for

optimum trim control and minimum resistance of planing boats.

Applied Ocean Research. 2017;69:100–115. Available from:

http://dx.doi.org/10.1016/j.apor.2017.10.006.

[20] Larsson L, Raven HC. Ship Resistance and Flow - Principles of Naval

Architecture. Alexandria, VA: SNAME; 2010.

[21] Begovic E, Bertorello C. Resistance assessment of warped hullform.

Ocean Engineering. 2012;56:28–42. Available from:

http://dx.doi.org/10.1016/j.oceaneng.2012.08.004.

[22] De Marco A, Mancini S, Miranda S, Scognamiglio R, Vitiello L.

Experimental and numerical hydrodynamic analysis of a stepped

planing hull. Applied Ocean Research. 2017;64:135–154. Available

from: http://dx.doi.org/10.1016/j.apor.2017.02.004.

[23] Clement EP. Effects of Longitudinal Bottom Spray Strips on Planing

Boat Resistance. Washington DC: Department of the Navy - David

Taylor Model Basin; 1964.

[24] Masri J, Dala L, Huard B. A Review of the Analytical Methods used

for Seaplanes Performance Prediction. Aircraft Engineering and

Aerospace Technology. 2019;91(6):820–833. Available from:

https://doi.org/10.1108/aeat-07-2018-0186.

[25] Sottorf W. Experiments with Planing Surfaces. NACA Technical

Memorandum 739. 1934:1–37.

[26] Shoemaker JM. Tank tests of flat and vee-bottom planing surfaces.

NACA Technical Note 509. 1934:1–52.

[27] Sambraus A. Planing-surface Tests at Large Froude Numbers - Airfoil

Comparison. NACA Technical Memorandum 848. 1938:1–28.

[28] Savitsky D, Neidinger JW. Wetted area and center of pressure of

planing surfaces at very low speed coefficients. Stevens Institute of

Technology; 1954.

Jack Townsend 210

Bibliography

[29] Chambliss DB, Boyd GM. The planing characteristics of two V-shaped

prismatic surfaces having angles of deadrise of 20° and 40°. NACA

Technical Note 2876. 1953.

[30] Savitsky D, Others. Hydrodynamic design of planing hulls. Marine

Technology and SNAME News. 1964;1(04):71–95.

[31] Savitsky D, Brown PW, Others. Procedures for hydrodynamic

evaluation of planing hulls in smooth and rough water. Marine

Technology. 1976;13(4):381–400.

[32] Blount DL, Fox DL. Small-Craft Power Prediction. Marine

Technology. 1976;13(1):14–45.

[33] Savitsky D, DeLorme MF, Datla R. Inclusion of Whisker Spray Drag

in Performance Prediction Method for High-Speed Planing Hulls.

Marine Technology. 2007;44(1):35–56. Available from:

http://www.ingentaconnect.com/content/sname/mt/2007/

00000044/00000001/art00004.

[34] Brizzolara S, Serra F. Accuracy of CFD codes in the prediction of

planing surfaces hydrodyamic characteristics. The 2nd International

Conference on Marine Research and Transportation. 2007:147–158.

Available from:

http://www.icmrt07.unina.it/Proceedings/Papers/B/14.pdf.

[35] Stern F, Yang J, Wang Z, Sadat-hosseini H, Mousaviraad M, Bhushan

S, et al. Computational Ship Hydrodynamics : Nowadays and Way

Forward. 2012;(August):26–31.

[36] von Kerczek CH, MD SAIA. A New Generalized Cross-Flow

Momentum Integral Method for Three-Dimensional Ship Boundary

Layers. Annapolis: Defense Technical Information Center; 1982.

[37] von Kerczek CH, Christoph G, Stern F. Further Developments of the

Momentum Integral Method for Ship Boundary Layers. Annapolis:

Scientific Applications Inc.; 1984.

Jack Townsend 211

Bibliography

[38] Stern F. Effects of Waves on the Boundary Layer of a Surface-Piercing

Body. Iowa City: Iowa Institute of Hydraulic Research, University of

Iowa; 1985.

[39] Stern F, Yoo SY, Patel VC. Interactive and large-domain solutions of

higher-order viscous-flow equations. AIAA Journal. 1988

sep;26(9):1052–1060. Available from:

http://dx.doi.org/10.2514/3.10011.

[40] Tahara Y, Stern F, Rosen B. An interactive approach for calculating

ship boundary layers and wakes for nonzero froude number. Journal of

Computational Physics. 1992;98(1):33–53. Available from: http://

www.sciencedirect.com/science/article/pii/002199919290171T.

[41] Tahara Y, Stern F. A large-domain approach for calculating ship

boundary layers and wakes and wave fields for nonzero Froude number.

Journal of Computational Physics. 1996;127(2):398–411.

[42] Paterson EG, Wilson RV, Stern F. General-Purpose Parallel Unsteady

RANS Ship Hydrodynamics Code : Cfdship-Iowa. IIHR - Hydroscience

and Engineering Department, University of Iowa; 2003. 432.

[43] Carrica PM, Wilson RV, Noack RW, Stern F. Ship motions using

single-phase level set with dynamic overset grids. Computers and

Fluids. 2007;36(9):1415–1433.

[44] CFDShip Iowa Homepage; 2017. Available from:

http://www.iihr.uiowa.edu/shiphydro/.

[45] Hirt CW, Nichols BD. Volume of fluid (VOF) method for the

dynamics of free boundaries. Journal of Computational Physics.

1981;39(1):201–225.

[46] Michael TJ. Development and Validation of Multi-process Cavitation

Model. University of Iowa; 2013.

[47] Stern F, Wang Z, Yang J, Sadat-Hosseini H, Mousaviraad M, Bhushan

S, et al. Recent progress in CFD for naval architecture and ocean

Jack Townsend 212

Bibliography

engineering. Journal of Hydrodynamics. 2015;27(1):1–23. Available

from: http://dx.doi.org/10.1016/S1001-6058(15)60452-8.

[48] Wilson W, Quezon T, Trinh V, Sarles C, Li J, Tools EA. HPCMP

CREATE-SH Integrated Hydrodynamic Design

Environment;(December 2016):47–56.

[49] Wilson W, Gorski J, Quezon T, Trinh V. No Title. In: SNAME World

Maritime Technology Conference (WMTC). Providence, Rhode Island,

USA; 2015. .

[50] Bethesda W, Wilson W, Hendrix D, Noblesse F, Gorski J. Validation

of Resistance Predictions Using Total Ship Drag (TSD). Bethesda:

Naval Surface Warfare Center, Carderock Division; 2011.

[51] Hess JL, Smith AMO. Calculation of potential flow about arbitrary

bodies. Progress in Aerospace Sciences. 1967;8(C):1–138.

[52] WYATT DC. Development and assessment of a nonlinear wave

prediction methodology for surface vessels. Journal of ship

research;44(2):96–107. Available from:

http://cat.inist.fr/?aModele=afficheN{\&}cpsidt=1139101.

[53] Kring DC, Milewski WM, Fine NE. Validation of a NURBS-Based

BEM for Multihull Ship Seakeeping. In: 25th Symposium on Naval

Hydrodynamics. St John’s; 2004. .

[54] Larsson L, Regnstron B, Broberg L, Li D, Janson C. Failures,

Fantasies and Feats in the Theoretical/Numerical Prediction of Ship

Performance. Washington D.C.: National Academies Press; 1998.

[55] Numeca - FINE Marine Homepage;. Available from:

http://www.numeca.com/product/finemarine.

[56] Chen L, He G, Wang D, Zhang J. Computation of Wave-Making

Resistance on High Speed Catamaran Using FINE / Marine.

2015:880653.

Jack Townsend 213

Bibliography

[57] Dudson E, Harries S. Hydrodynamic Fine-Tuning of a Pentamaran for

High-Speed Sea Transportation Services. FAST 2005 the 8th

International conference on Fast Sea Transportation. 2005;(June).

[58] STAR CCM+ Homepage;. Available from:

https://mdx.plm.automation.siemens.com/star-ccm-plus.

[59] Donnelly DJ, Neu WL. Numerical Simulation of Flow About a

Surface-Effect Ship. FAST 2011 11th International Conference on Fast

Sea Transportation. 2011;1(September):57–64.

[60] Fonfach JMa, Sutulo S, Guedes Soares C. Numerical study of

ship-to-ship interaction forces on the basis of various flow models.

Second International Conference on Ship Manoeuvring in Shallow and

Confined Water: Ship to Ship Interaction. 2011;(May):137–146.

[61] ANSYS Fluent Homepage;. Available from:

https://www.ansys.com/products/fluids/ansys-fluent.

[62] Open FOAM Homepage;. Available from:

http://www.openfoam.com/.

[63] Jasak H. Open FOAM : Open sourcce CFD in research and industry.

International Journal of Naval Architecture and Ocean Engineering.

2009;1(2):89–94.

[64] Park S, Park SW, Rhee SH, Lee SB, Choi JE, Kang SH. Investigation

on the wall function implementation for the prediction of ship

resistance. International Journal of Naval Architecture and Ocean

Engineering. 2013;5(1):33–46. Available from:

http://dx.doi.org/10.2478/IJNAOE-2013-0116.

[65] McNamara G, Alder B. Analysis of the lattice Boltzmann treatment of

hydrodynamics. Physica A: Statistical Mechanics and its Applications.

1993 mar;194(1-4):218–228. Available from: http:

//linkinghub.elsevier.com/retrieve/pii/0378437193903569.

Jack Townsend 214

Bibliography

[66] Xu H, Sagaut P. Optimal low-dispersion low-dissipation LBM schemes

for computational aeroacoustics. Journal of Computational Physics.

2011;230(13):5353–5382.

[67] Augier A, Dubois F, Gouarin L, Graille B. Linear lattice Boltzmann

schemes for acoustic: Parameter choices and isotropy properties.

Computers and Mathematics with Applications. 2013;65(6):845–863.

Available from: http://dx.doi.org/10.1016/j.camwa.2012.06.025.

[68] LBHydra Homepage;. Available from:

http://lbhydra.umn.edu/LBHydra/Home.html.

[69] Davis MA, Walsh SDC, Saar MO. Statistically reconstructing

continuous isotropic and anisotropic two-phase media while preserving

macroscopic material properties. Physical Review E - Statistical,

Nonlinear, and Soft Matter Physics. 2011;83(2):1–11.

[70] Chun B, Ladd AJC. Interpolated boundary condition for lattice

Boltzmann simulations of flows in narrow gaps. Physical Review E -

Statistical, Nonlinear, and Soft Matter Physics. 2007;75(6):1–12.

[71] Walsh SDC, Saar MO. Developing extensible lattice-Boltzmann

simulationsfor general-purpose graphics-programming units. 2011.

[72] Palabos Home Page;. Available from:

http://www.palabos.org/index.php.

[73] Tian M, Gu W, Pan J, Guo M. Performance analysis and optimization

of PalaBos on petascale Sunway BlueLight MPP supercomputer.

Procedia Engineering. 2013;61:241–245. Available from:

http://dx.doi.org/10.1016/j.proeng.2013.08.010.

[74] Shan X, Yuan XF, Chen H. Kinetic theory representation of

hydrodynamics: a way beyond the Navier–Stokes equation. Journal of

Fluid Mechanics. 2006;550:413–441. Available from:

http://journals.cambridge.org/article{_}S0022112005008153.

Jack Townsend 215

Bibliography

[75] Deardorff JW. A numerical study of three-dimensional turbulent

channel flow at large Reynolds numbers. Journal of Fluid Mechanics.

1970;41(02):453–480. Available from:

http://journals.cambridge.org/article{_}S0022112070000691.

[76] XFlow Homepage;. Available from: http://www.xflowcfd.com/.

[77] Coleman GN, Sandberg RD. A primer on direct numerical simulation

of turbulence - methods, procedures and guidelines. 2010:1–21.

Available from: http://eprints.soton.ac.uk/66182/.

[78] Germano M, Piomelli U, Moin P, Cabot WH. A Dynamic

Subgrid-Scale Eddy Viscosity Model. Physics of Fluids A: Fluid

Dynamics. 1991;3(7):1760.

[79] Villani C. A review of mathematical topics in collisional kinetic

theory; 2002.

[80] Loeb LB. The Kinetic Theory of Gases. Courier Corporation; 2004.

[81] Frisch U, Hasslacher B, Pomeau Y. Lattice-gas automata for the

Navier-Stokes equation; 1986.

[82] Thürey N, Rüde U, Körner C. Interactive Free Surface Fluids with the

Lattice Boltzmann Method. Science. 2005;10. Available from:

http://graphics.ethz.ch/{~}thuereyn/download/nthuerey{_

}050607{_}tr1rtlbm.pdf.

[83] Krüger T, Kusumaatmaja H, Kuzmin A, Shardt O, Silva G, Viggen

EM. The Lattice Boltzmann Method - Principles and Practice.

Springer International Publishing; 2017.

[84] Frisch U, D’Humières D, Hasslacher B, Lallemand P, Pomeau Y, Rivet

JP. Lattice Gas Hydrodynamics in Two and Three Dimensions.

Complex Systems. 1987;1(4):649–707.

[85] He X, Luo LS. A priori derivation of the lattice boltzmann equation.

Physical Review E - Statistical Physics, Plasmas, Fluids, and Related

Interdisciplinary Topics. 1997;55(6).

Jack Townsend 216

Bibliography

[86] Krüger T, Kusumaatmaja H, Kuzmin A, Shardt O, Silva G, Viggen

EM. The Lattice Boltzmann Method: Principles and Practice. 1st ed.

Springer; 2017.

[87] Bhatnagar PL, Gross EP, Krook M. A model for collision processes in

gases. I. Small amplitude processes in charged and neutral

one-component systems. Physical Review. 1954;94(3):511.

[88] Latt J. Choice of units in lattice Boltzmann simulations. Freely

available online. 2008;(April):1–6. Available from:

https://www.semanticscholar.org/paper/

Choice-of-units-in-lattice-Boltzmann-simulations-Latt/

69588e58522de7e51e1a546590b462e026746b07.

[89] Latt J, Malaspinas O, Kontaxakis D, Parmigiani A, Lagrava D, Brogi

F, et al. Palabos: Parallel Lattice Boltzmann Solver. Computers and

Mathematics with Applications. 2020. Available from:

https://doi.org/10.1016/j.camwa.2020.03.022.

[90] Latt J, Chopard B. Lattice Boltzmann method with regularized

pre-collision distribution functions. Mathematics and Computers in

Simulation. 2006;72(2-6):165–168.

[91] Beny J, Latt J. Efficient LBM on GPUs for dense moving objects

using immersed boundary condition. 2019;(1):1–14. Available from:

http://arxiv.org/abs/1904.02108.

[92] Geller S, Krafczyk M, Tölke J, Turek S, Hron J. Benchmark

computations based on lattice-Boltzmann, finite element and finite

volume methods for laminar flows. Computers and Fluids.

2006;35(8-9):888–897.

[93] Al-Jahmany YY, Brenner G, Brunn PO. Comparative study of

lattice-Boltzmann and finite volume methods for the simulation of

laminar flow through a 4:1 planar contraction. International Journal

for Numerical Methods in Fluids. 2004;46(9):903–920.

Jack Townsend 217

Bibliography

[94] Körner C, Thies M, Hofmann T, Thürey N, Rüde U. Lattice

Boltzmann model for free surface flow for modeling foaming. Journal

of Statistical Physics. 2005;121(1-2):179–196.

[95] De Rosis A, Ubertini S, Ubertini F. A Comparison Between the

Interpolated Bounce-Back Scheme and the Immersed Boundary

Method to Treat Solid Boundary Conditions for Laminar Flows in the

Lattice Boltzmann Framework. Journal of Scientific Computing.

2014;61(3):477–489.

[96] SUZUKI K, OKADA I, YOSHINO M. Accuracy of the laminar

boundary layer on a flat plate in an immersed boundary-lattice

Boltzmann simulation. Journal of Fluid Science and Technology.

2016;11(3):JFST0017–JFST0017.

[97] Supercomputing Wales Portal; 2020. Available from:

portal.supercomputing.wales/.

[98] Palabos Webpage;. Available from: https://palabos.unige.ch/.

[99] Schelkens AM. Numeca and FlowKit Announce a Strategic

Partnership;. Available from:

https://www.numeca.com/readnews/article/314.

[100] Palabos User Guide. Release 1. ed. Geneva: University of Geneva;

2019.

[101] Gallivan MA, Noble DR, Georgiadis JG, Buckius RO. An evaluation

of the bounce-back boundary condition for lattice Boltzmann

simulations. International Journal for Numerical Methods in Fluids.

1997;25(3):249–263.

[102] Kaneda M, Haruna T, Suga K. Ghost-fluid-based boundary treatment

in lattice Boltzmann method and its extension to advancing boundary.

Applied Thermal Engineering. 2014;72(1):126–134. Available from:

http://dx.doi.org/10.1016/j.applthermaleng.2013.12.024.

Jack Townsend 218

Bibliography

[103] Zhu L, He G, Wang S, Miller L, Zhang X, You Q, et al. An immersed

boundary method based on the lattice Boltzmann approach in three

dimensions, with application. Computers and Mathematics with

Applications. 2011;61(12):3506–3518. Available from:

http://dx.doi.org/10.1016/j.camwa.2010.03.022.

[104] Roache PJ. Perspective: A Method for Uniform Reporting of Grid

Refinement Studies. Journal of Fluid Engineering. 1994;116:405–413.

[105] Roache PJ. Quantification of Uncertainty in Computational Fluid

Dynamics. Annual Review of Fluid Mechanics. 1997;29(1):123–160.

[106] Roache PJ. Verification and Validation in Computational Science and

Engineering. Computing in Science Engineering. 1998:107–240.

Available from: http://www.hermosa-pub.com/hermosa{\%}0Ahttp:

//scholar.google.com/scholar?hl=en{\&}btnG=Search{\&}q=

intitle:Verification+and+validation+in+computational+

science+and+engineering{\#}0.

[107] Celik IB, Ghia U, Roache PJ, Freitas CJ, Coleman H, Raad PE, et al.

Procedure for estimation and reporting of uncertainty due to

discretization in ${$CFD$}$ applications. 2008.

[108] Roache PJ, Celik IB, Ghia U, Roache PJ, Freitas CJ, Coleman HP,

et al. Procedure for estimation and reporting of uncertainty due to

discretization in CFD applications. Computing in Science Engineering.

2008;116(1):123–160. Available from:

http://www.hermosa-pub.com/hermosa{\%}0Ahttp://scholar.

google.com/scholar?hl=en{\&}btnG=Search{\&}q=intitle:

Verification+and+validation+in+computational+science+and+

engineering{\#}0.

[109] Xing T, Stern F. Factors of Safety for Richardson Extrapolation. Iowa

City: IIHR - Hydroscience & Engineering, University of Iowa; 2009.

[110] Tóth P, Lohász MM. Anisotropic Grid Refinement study for LES.

ERCOFTAC Series. 2008;12(January 2008):167–178.

Jack Townsend 219

Bibliography

[111] John D, Sc CB. Hydrodynamics of Surfboard Fins [Doctoral Thesis].

Swansea University; 2007.

[112] Storebro Homepage;. Available from:

http://storebro.se/index.php?page=storebro-90-e.

[113] Uniform procedure for the calculation of frictional resistance and the

expansion of model test data to full size. Bulletin No 1-2 of SNAME;

1948. .

[114] Savitsky D, Ross EW. Turbulence Stimulation in the Boundary Layer

of Planing Surfaces-Part II-Preliminary Experimental Investigation.

Stevens Institute of Technology Experimental Towing Tank Report

No. 1952;44.

[115] Privinvest - DV15; 2020. Available from: https:

//www.privinvest.com/naval-vessels/interceptor-dv15-rws/.

[116] Butcher JC, Goodwin N. Numerical methods for ordinary differential

equations. vol. 2. Wiley Online Library; 2008.

[117] Bastiani R.

Maritimo Web Page;. Available from: https://www.maritimo.com.au/

maritimo-racing-debut-new-r30-2019-uim-xcat-world-championship/.

[118] Advanced Aerodynamic Vessels (A2V) Project Webpage; 2017.

Available from: https://www.aavessels.com/concept/.

[119] Naumann DS, Evans B, Walton S, Hassan O. A novel implementation

of computational aerodynamic shape optimisation using Modified

Cuckoo Search. Applied Mathematical Modelling.

2016;40(7-8):4543–4559.

[120] Naumann DS, Evans B, Walton S, Hassan O. Discrete boundary

smoothing using control node parameterisation for aerodynamic shape

optimisation. Applied Mathematical Modelling. 2017;48:113–133.

Available from: http://dx.doi.org/10.1016/j.apm.2017.03.042.

Jack Townsend 220

Bibliography

[121] McKay MD, Beckman RJ, Conover WJ. A Comparison of Three

Methods for Selecting Values of Input Variables in the Analysis of

Output from a Computer Code. Technometrics, American Statistical

Association. 1979;21(2):239–245.

[122] Virtual Wind Tunnel webpage;. Available from:

https://altairhyperworks.com/product/virtual-wind-tunnel.

[123] Delauney B. Sur la sphère vide. Otdelenie Matematicheskii i

Estestvennyka Nauk. 1934;7:793–800.

[124] Walton S, Hassan O, Morgan K, Brown MR. Modified cuckoo search:

A new gradient free optimisation algorithm. Chaos, Solitons and

Fractals. 2011;44(9):710–718. Available from:

http://dx.doi.org/10.1016/j.chaos.2011.06.004.

[125] Viswanathan GM, Raposo EP, da Luz MGE. Lévy flights and

superdiffusion in the context of biological encounters and random

searches. Physics of Life Reviews. 2008;5(3):133–150. Available from:

http://dx.doi.org/10.1016/j.plrev.2008.03.002.

[126] Sørensen KA. A multigrid accelerated procedure for the solution of

compressible fluid flows on unstructured hybrid meshes [Doctoral

Thesis]. University of Wales, Swansea; 2001.

[127] Allmaras PRSSR. A one-equation turbulence model for aerodynamic

flows. La Recherche Aerospatiale. 1994;1:5–21.

[128] Latt J, Malaspinas O, Kontaxakis D, Parmigiani A, Lagrava D, Brogi

F, et al. Palabos: Parallel Lattice Boltzmann Solver. Computers and

Mathematics with Applications. 2021;81:334–350. Available from:

https://doi.org/10.1016/j.camwa.2020.03.022.

[129] Amazon Web Services marketplace: CFD Direct from the Cloud; 2021.

Available from: https://aws.amazon.com/marketplace/pp/

CFD-Direct-CFD-Direct-From-the-Cloud/B017AHYO16.

Jack Townsend 221

