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Abstract. Due to the intrinsic link with (kinetic) nonlinear Fokker-Planck equations

and many diverse applications, distribution dependent stochastic differential equations

have been investigated intensively in recent years. The appearance of the probability

distributions (or laws) of the random variables of solutions in the coefficients is a distinct

feature of distribution dependent stochastic differential equations. In this paper, under

certain averaging conditions, we establish a stochastic averaging principle for distribution

dependent stochastic differential equations.

1. Introduction

In the seminal papers [4, 5], Kac proposed the “propagation of chaos” of mean field par-

ticle systems in order to study nonlinear PDEs in Vlasov’s kinetic theory. This motivated

McKean [9] to study nonlinear Fokker-Planck equations utilising stochastic differential

equations with distribution dependent drift coefficients. In general, nonlinear Fokker-

Planck equations can be characterised by distribution dependent stochastic differential

equations (DDSDEs for short), which are also named as McKean-Vlasov SDEs or mean

field SDEs. A distinct feature of such systems is the appearance of probability laws in the

coefficients of the resulting equations. Let (Ω,F , {Ft}t≥0,P) be a given complete, filtered

probability space with filtration {Ft}t≥0 satisfying the usual conditions and let d,m ∈ N be

fixed. We use the following standard notations: E is used for the expectation with respect

to P,Rd denotes the d-dimensional Euclidean space and |x| stands for the Euclidean norm

of a vector x ∈ Rd. For a matrix A, we denote the Frobenius norm by ‖A‖ =
√

tr[AAT ].

In this paper, we are concerned with the following DDSDEs:

(1.1) dXε(t) = f
( t
ε
,Xε(t),L (Xε(t))

)
dt+ g

(
Xε(t),L (Xε(t))

)
dB(t), 0 < t ≤ T

Xε(0) = x0, with the sufficiently small parameter 0 < ε � 1, where B(t) is an m-

dimensional {Ft}-Browinan motion defined on (Ω,F , {Ft}t≥0,P),L (Xε(t)) stands for the

probability law or distribution of the random variable Xε(t), f : [0,∞)×Rd×P(Rd) 7→ Rd
and g : Rd × P(Rd) 7→ Rd×m are Borel measurable functions, P(Rd) denotes the space of

all probability measures on Rd equipped with the weak topology, the initial data x0 is an

F0-random variable satisfying E|x0|β <∞ for any β > 0.
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Recently, there has been an increasing interest to study existence and uniqueness results

for the solutions of DDSDEs. Wang [13] established strong well-posedness of DDSDEs

with one-sided Lipschitz continuous drift and Lipschitz-continuous dispersion coefficients.

Under integrability conditions on distribution dependent coefficients, Huang and Wang

[3] obtained the existence and uniqueness for DDSDEs with non-degenerate noise. Li et

al [7] studied existence and uniqueness of solutions to McKean-Vlasov SDEs under one-

sided local Lipschitz condition on the drift and local Lipschitz condition on the diffusion

coefficient with respect to the state variable. Mehri and Stannat [10] proposed a Lyapunov-

type approach to solve the problem of existence and uniqueness of general law-dependent

SDEs.

On the other hand, the averaging principle, initiated by Khasminskii in [6], is a very

efficient and important tool in study of SDEs for modelling problems arising in many

practical research areas. It in fact provides a powerful tool for simplifying dynamical sys-

tems, and for obtaining approximating solutions to differential equations. The averaging

principle enables one to study complex equations with related averaging equations, which

paves a convenient and easy way to study many important properties (see, e.g., [14], [1],

[8], [11], [2], [12]). Although there exist many investigations in the literature devoted to

studying stochastic averaging principle for SDEs driven by Brownian motion, fractional

Brownian motion, Lévy processes as well as more general stochastic measures inducing

semimartingales, etc., as we know, there is not any consideration of averaging principle

for DDSDEs. Moreover, due to their distribution dependent feature, they are potentially

useful and important for modelling complex systems in diverse areas of applications. Com-

paring to the classical SDEs driven by Brownian motion, fractional Brownian motion, and

Lévy processes, the DDSDEs are much more complex, therefore, a stochastic averaging

principle for such SDEs is naturally interesting and would also be very useful. This moti-

vates us to carry out the present paper, aiming to establish a stochastic averaging principle

for the DDSDEs.

The rest of the paper is organised as follows. In Section 2, we present some preliminaries

and our assumptions for this paper. In Section 3, we will prove an approximation theorem

as an averaging principle for the solutions of the considered DDSDEs.

2. Preliminaries

In this section, we briefly give preliminaries and assumptions which will be used in the

sequel. For technical reasons, we will work on the following subspace of P(Rd) for any

fixed θ ∈ [2,∞), Pθ(Rd) :=

{
µ ∈ P(Rd) : µ(| · |θ) :=

∫
Rd |x|

θµ(dx) < ∞
}
, which is a

Polish space under the Lθ-Wasserstein distance

Wθ(µ1, µ2) := inf
π∈C (µ1,µ2)

(∫
Rd×Rd

|x− y|θπ(dx, dy)

) 1
θ

, µ1, µ2 ∈ Pθ(Rd),

where C (µ1, µ2) is the set of all couplings for µ1 and µ2.

Note that for any x ∈ Rd, the Dirac measure δx belongs to Pθ(Rd) for any θ ∈ [2,∞)

and if µ1 = L (X), µ2 = L (Y ) are the corresponding distributions of random variables X

and Y respectively, then (Wθ(µ1, µ2))
θ ≤

∫
Rd×Rd |x− y|

θL ((X,Y ))(dx, dy) = E|X − Y |θ,
in which L ((X,Y )) represents the joint distribution of the random pair (X,Y ). Next, we

impose the following conditions on the coefficients of (1.1).

Assumption 2.1. (a) There exists a positive constant L1 such that |f(t, x, µ)−f(t, y, µ)| ≤
L1|x− y|, for any t ∈ [0, T ], x, y ∈ Rd and µ ∈ P2(Rd).
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(b) There exists a positive constant L2 such that ||g(x, µ) − g(y, µ)|| ≤ L2|x − y|, for

any x, y ∈ Rd and µ ∈ P2(Rd).
(c) There exists a positive constant K1 such that |f(t, x, µ) − f(t, x, ν)| ∨ ||g(x, µ) −

g(x, ν)|| ≤ K1W2(µ, ν), for any t ∈ [0, T ], x ∈ Rd and µ, ν ∈ P2(Rd).

Assumption 2.2. There exists a positive constant K2 such that for any t ∈ [0, T ], x ∈ Rd
and µ ∈ P2(Rd), |f(t, x, µ)| ∨ ||g(x, µ)|| ≤ K2(1 + |x| + W2(µ, δ0)), where δ0 denotes the

Dirac measure at 0.

Remark 2.1. One can conclude by Li et al [7] that under Assumptions 2.1–2.2, there

exists a unique solution Xε(t) ∈ L2(Ω;Rd), t ∈ [0, T ], to the equation (1.1) for any initial

value Xε(0) = x0 satisfying E|x0|β < ∞ for any β > 0. Moreover, for any p ≥ 2, the

solution fulfils

(2.1) E
[

sup
0≤t≤T

|Xε(t)|p
]
≤ Cp,ε, E|Xε(t)−Xε(s)|2 ≤ C2,ε|t− s|

for some positive constants Cp,ε and C2,ε depend on ε.

Throughout this paper, the letter C will denote a positive constant whose value may

change in different occasions. We will write the dependence of constant on parameters

explicitly if it is essential.

3. Stochastic averaging principle for DDSDEs

In this section, we aim to establish a stochastic averaging principle for the following

DDSDE (i.e. the integral formulation of Equation (1.1))

(3.1) Xε(t) = Xε(0) +

∫ t

0
f

(
s

ε
,Xε(s),L (Xε(s))

)
ds+

∫ t

0
g(Xε(s),L (Xε(s)))dB(s),

where Xε(0) = x0 ∈ Rd is a random vector and ε ∈ (0, ε0] is a positive parameter with

ε0 > 0 being fixed. According to Remark 2.1, Equation (3.1) has a unique solution

Xε(t), t ∈ [0, T ]. Our objective is to show that the solution Xε(t), t ∈ [0, T ], could be

approximated in certain sense by the solutions X̄(t), t ∈ [0, T ], of the following averaged

equation

(3.2) X̄(t) = Xε(0) +

∫ t

0
f̄(X̄(s),L (X̄(s)))ds+

∫ t

0
g(X̄(s),L (X̄(s)))dB(s),

where f̄ : Rd × P(Rd) 7→ Rd is Borel measurable function. Moreover, we assume the

following condition hold.

Assumption 3.1. (Averaging condition) There is a positive bounded function ϕ : (0,∞)→
(0,∞) with limt→∞ ϕ(t) = 0, such that for any x ∈ Rd, µ ∈ P2(Rd)

sup
t≥0

∣∣∣∣ 1

T

∫ t+T

t
[f(s, x, µ)− f̄(x, µ)]ds

∣∣∣∣2 ≤ ϕ(T )(1 + |x|2).

Remark 3.1. (i) Noting that

sup
t≥0

∣∣∣∣ 1

T

∫ t+T

t
[f(s, x, µ)− f̄(x, µ)]ds

∣∣∣∣2 ≤ sup
t≥0

1

T

∫ t+T

t
|f(s, x, µ)− f̄(x, µ)|2ds,

this shows that Assumption 3.1 is weaker than the following averaging condition

(for example, [14]) supt≥0
1
T

∫ t+T
t |f(s, x, µ)− f̄(x, µ)|2ds ≤ ϕ(T )(1 + |x|2). Hence,

we need to overcome the difficulties with the weaker condition to obtain the aver-

aging principle for the concerned DDSDEs.
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(ii) for any x, y ∈ Rd, and any T > 0, by Assumptions 2.1 and 3.1, we have

|f̄(x, µ)− f̄(y, µ)| ≤
∣∣∣∣ 1

T

∫ T

0
[f(s, x, µ)− f̄(x, µ)]ds

∣∣∣∣
+

∣∣∣∣ 1

T

∫ T

0
[f(s, y, µ)− f̄(y, µ)]ds

∣∣∣∣+

∣∣∣∣ 1

T

∫ T

0
[f(s, x, µ)− f(s, y, µ)]ds

∣∣∣∣
≤
√
ϕ(T )

(√
1 + |x|2 +

√
1 + |y|2

)
+ L1|x− y|.

(3.3)

Taking T → ∞, we have f̄ satisfies the condition (a) in Assumptions 2.1. Simi-

larly, for any x, y ∈ Rd, and any T > 0, we have

|f̄(x, µ)− f̄(x, ν)| ≤ 2
√
ϕ(T )

(√
1 + |x|2

)
+K1W2(µ, ν).(3.4)

Taking T →∞, we have f̄ satisfies the condition (c) in Assumptions 2.1.

On the other hand, by (3.3), (3.4) and

|f̄(x, µ)| ≤ |f̄(x, µ)− f̄(x, δ0)|+ |f̄(x, δ0)− f̄(0, δ0)|+ |f̄(0, δ0)|,

we have f̄ satisfies the Assumptions 2.2. Hence, there is a unique solution X̄(t) to the

averaged equation (3.2).

Now we are in the position to present our main result.

Theorem 3.1. Assume that E|Xε
0|
2 < +∞. Then, under Assumptions 2.1-2.2 and As-

sumption 3.1, the following averaging principle holds

(3.5) lim
ε→0

E
(

sup
0≤t≤T

|Xε(t)− X̄(t)|2
)

= 0.

We proceed by first proving the following proposition which is important in the proof

of Theorem 3.1.

Proposition 3.1. Suppose that Assumptions 2.1–2.2 and Assumption 3.1 hold, E|Xε
0|
2 <

+∞. Then, we have

(3.6) lim
ε→0

E
(

sup
0≤t≤T

∣∣ ∫ t

0
[f(

s

ε
,Xε(s),L (Xε(s)))− f̄(Xε(s),L (Xε(s)))]ds

∣∣2) = 0.

Proof. In order to simplify the calculation, let {t1, t2, · · ·, tN} be a partition of [0, T ], that

is, ti = i
√
ε, 0 ≤ i ≤ N − 1, 0 < T − tN−1 ≤

√
ε, tN = T. Then, it is easy to see that

T ≤ N
√
ε < T +

√
ε.

Denote Xi :=
∫ ti+1

ti
[f( sε , X

ε(s),L (Xε(s)))− f̄(Xε(s),L (Xε(s)))]ds. We have∣∣∣∣ ∫ t

0
[f(

s

ε
,Xε(s),L (Xε(s)))− f̄(Xε(s),L (Xε(s)))]ds

∣∣∣∣2(3.7)

≤ N

∣∣∣∣ ∫ t

[ t√
ε
]
√
ε
[f(

s

ε
,Xε(s),L (Xε(s)))− f̄(Xε(s),L (Xε(s)))]ds

∣∣∣∣2 +N

N−2∑
i=0

|Xi|2.

By Assumption 2.2, we have∣∣∣∣ ∫ t

[ t√
ε
]
√
ε
[f(

s

ε
,Xε(s),L (Xε(s)))− f̄(Xε(s),L (Xε(s)))]ds

∣∣∣∣2
≤ C|t− [

t√
ε
]
√
ε|2(1 + sup

0≤t≤T
|Xε(t)|2 + sup

0≤t≤T
E|Xε(t)|2)(3.8)

≤ Cε(1 + sup
0≤t≤T

|Xε(t)|2 + sup
0≤t≤T

E|Xε(t)|2),
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where we use the fact (W2(L (X(t)), δ0))
2 ≤ E|X(t)|2. By (2.1) and (3.8), we get

E
(

sup0≤t≤T

∣∣∣∣ ∫ t0 [f( sε , X
ε(s),L (Xε(s)))− f̄(Xε(s),L (Xε(s)))]ds

∣∣∣∣2)
≤ CεN +NE

∑N−2
i=0 |Xi|2 ≤ C

√
ε(T +

√
ε) +N

∑N−2
i=0 E|Xi|2.

By Assumptions 2.1 and 3.1, we have

|Xi|2 ≤ 5

∣∣∣∣ε ∫
ti+1
ε

ti
ε

[f(s,Xε(ti),L (Xε(ti)))− f̄(Xε(ti),L (Xε(ti)))]ds

∣∣∣∣2
+ 10L2

1

√
ε

∫ ti+1

ti

|Xε(s)−Xε(ti)|2ds+ 10K2
1

√
ε

∫ ti+1

ti

E|Xε(s)−Xε(ti)|2ds

≤ Cεϕ(
1√
ε
)(1 + sup

0≤t≤T
|Xε(t)|2)

+ 10L2
1

√
ε

∫ ti+1

ti

|Xε(s)−Xε(ti)|2ds+ 10K2
1

√
ε

∫ ti+1

ti

E|Xε(s)−Xε(ti)|2ds,

Hence,

N

N−2∑
i=0

E|Xi|2 ≤ CεN
N−2∑
i=0

E
[
ϕ(

1√
ε
)(1 + sup

0≤t≤T
|Xε(t)|2)

]

+ 10(L2
1 +K2

1 )
√
εN

N−2∑
i=0

∫ ti+1

ti

E|Xε(s)−Xε(ti)|2ds

≤ CεN2[ϕ(
1√
ε
) +
√
ε] ≤ C(T +

√
ε)2[ϕ(

1√
ε
) +
√
ε],

(3.9)

in the second inequality in (3.9) we have used inequality (2.1). Combining (3.9) into (3.7),

we get

E
(

sup
0≤t≤T

∣∣∣∣ ∫ t

0
[f(

s

ε
,Xε(s),L (Xε(s)))− f̄(Xε(s),L (Xε(s)))]ds

∣∣∣∣2)
≤ C
√
ε(T +

√
ε) + C(T +

√
ε)2[ϕ(

1√
ε
) +
√
ε]→ 0,

(3.10)

as ε tends to zero. This completes the proof. �

The proof of Theorem 3.1. we have

E sup
0≤t≤T

|Xε(t)− X̄(t)|2

≤ 5E sup
0≤t≤T

∣∣∣∣ ∫ t

0
[f(

s

ε
,Xε(s),L (Xε(s)))− f̄(Xε(s),L (Xε(s)))]ds

∣∣∣∣2
+ 5E sup

0≤t≤T

∣∣∣∣ ∫ t

0
[f̄(Xε(s),L (Xε(s)))− f̄(X̄(s),L (Xε(s)))]ds

∣∣∣∣2
+ 5E sup

0≤t≤T

∣∣∣∣ ∫ t

0
[f̄(X̄(s),L (Xε(s)))− f̄(X̄(s),L (X̄(s)))]ds

∣∣∣∣2
+ 5E sup

0≤t≤T

∣∣∣∣ ∫ t

0
[g(Xε(s),L (Xε(s)))− g(X̄(s),L (Xε(s)))]dB(s)

∣∣∣∣2
+ 5E sup

0≤t≤T

∣∣∣∣ ∫ t

0
[g(X̄(s),L (Xε(s)))− g(X̄(s),L (X̄(s)))]dB(s)

∣∣∣∣2.

(3.11)
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Using the Hölder inequality, the Doob martingale inequality and Assumption 2.1, for any

u ∈ [0, T ] we have

E sup
0≤t≤u

|Xε(t)− X̄(t)|2 ≤ 5E sup
0≤t≤u

∣∣∣∣ ∫ t

0
[f(

s

ε
,Xε(s),L (Xε(s)))− f̄(Xε(s),L (Xε(s)))]ds

∣∣∣∣2
+ 5(L2

1 +K2
1 )T

∫ u

0
E sup

0≤t≤s
|Xε(t)− X̄(t)|2ds+ 20(L2

2 +K2
1 )

∫ u

0
E sup

0≤t≤s
|Xε(t)− X̄(t)|2ds.

(3.12)

By the Gronwall inequality, we get

E sup
0≤t≤T

|Xε(t)− X̄(t)|2

≤ 5E
(

sup
0≤t≤T

∣∣∣∣ ∫ t

0
[f(

s

ε
,Xε(s),L (Xε(s)))− f̄(Xε(s),L (Xε(s)))]ds

∣∣∣∣2)
× e5[L2

1T+4L2
2+(4+T )K2

1 ]T .

(3.13)

The proof is then completed by our Proposition 3.1 .

Remark 3.2. By the Chebyshev-Markov inequality and Theorem 3.1, for any given num-

ber δ > 0, we have

lim
ε→0

P
(

sup
0≤t≤T

|Xε(t)− X̄(t)| > δ

)
≤ 1

δ2
lim
ε→0

E
(

sup
0≤t≤T

|Xε(t)− X̄(t)|2
)

= 0.

This implies the convergence in probability of the solutions Xε(t) to the averaged solution

X̄(t).
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