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Abstract

Magnetic Resonance Imaging (MRI) scanners have become an essential tool in the medi-
cal industry due to their ability to produce high resolution images of the human body. To
generate an image of the body, MRI scanners combine strong static magnetic fields with
transient gradient magnetic fields. The interaction of these magnetic fields with the con-
ducting components present in superconducting MRI scanners gives rise to an important
problem in the design of new MRI scanners. The transient magnetic fields give rise to
the appearance of eddy currents in conducting components. These eddy currents, in turn,
result in electromagnetic stresses, which cause the conducting components to deform and
vibrate. The vibrations are undesirable as they lead to a deterioration in image quality
(with image artefacts) and to the generation of noise, which can cause patient discomfort.
The eddy currents, in addition, lead to heat being dissipated and deposited into the cryo-
stat, which is filled with helium in order to maintain the coils in a superconducting state.
This deposition of heat can cause helium boil off and potentially result in a costly magnet
quench. Understanding the mechanisms involved in the generation of these vibrations and
the heat being deposited into the cryostat are, therefore, key for a successful MRI scanner
design. This involves the solution of a coupled magneto-mechanical problem, which is
the focus of this work.
In this thesis, a new computational methodology for the solution of three-dimensional
(3D) magneto-mechanical coupled problems with application to MRI scanner design is
presented. To achieve this, first an accurate mathematical description of the magneto-
mechanical coupling is presented, which is based on a Lagrangian formulation and the
assumption of small displacements. Then, the problem is linearised using an AC-DC
splitting of the fields, and a variational formulation for the solution of the linearised prob-
lem in a time-harmonic setting is presented. The problem is then discretised using high
order finite elements, where a combination of hierarchical H1 and H(curl) basis func-
tions is used. An efficient staggered algorithm for the solution of the coupled system is
proposed, which combines the DC and AC stages and makes use of preconditioned iter-
ative solvers when appropriate. This finite element methodology is then applied to a set
of challenging academic and industrially relevant problems in order to demonstrate its
accuracy and efficiency.
This finite element methodology results in the accurate and efficient solution of the
magneto-mechanical problem of interest. However, in the design stage of a new MRI
scanner, this coupled problem must be solved repeatedly for varying model parameters
such as frequency or material properties. Thus, even if an efficient finite element solver is
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available for the solution of the coupled problem, the need for these repeated simulations
result in a bottleneck in terms of computational cost, which leads to an increase in design
time and its associated financial implications. Therefore, in order to optimise this process,
the application of Reduced Order Modelling (ROM) techniques is considered. A ROM
based on the Proper Orthogonal Decomposition (POD) method is presented and applied
to a series of challenging MRI configurations. The accuracy and efficiency of this ROM
is demonstrated by performing comparisons against the full order or high fidelity finite
element software, showing great performance in terms of computational speed-up, which
has major benefits in the optimisation of the design process of new MRI scanners.
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Gustarı́ame agradecer a todos os meus compañeiros en Siemens Healthineers polas moitas
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tamén a todos os compañeiros de AdMoRe por facer as conferencias e meetings moito
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Chapter 1

Introduction

1.1 MRI Scanners

Magnetic Resonance Imaging (MRI) scanners are an essential tool in the medical indus-
try. The high resolution images of the human body that they are able to produce have led
to great advances in the diagnosis of many diseases, such as heart and vascular problems
[65], tumours [102] or internal bleeding among others, as well as in the area of neuroimag-
ing [25]. As opposed to other medical imaging techniques, such as computed tomography
(CT) or X-ray, MRI do not use harmful radiation, which makes it the preferred imaging
technique when working with children or patients requiring repeated scans. Furthermore,
MRI usually outperforms CT in terms of image quality and, thus, is the preferred method-
ology when dealing with serious diseases such as cancer [122, 24] or cardiac problems
[46], as well as in neuroimaging [100].
The most common type used for diagnostic imaging are superconducting magnets, as
they allow for high field strength, typically 1.5 ´ 3 T, leading to high resolution images.
A superconducting MRI scanner, see Figure 1.1, essentially consists of three main com-
ponents: the cryostat, main coils and gradient coils. The cryostat is formed by several
radiation shields and keeps the liquid helium surrounding the superconducting main coils
at a temperature of around 4 K. These main coils generate a strong static magnetic field,
which aligns the protons of the hydrogen atoms in the patient’s body parallel or anti-
parallel to the field. The (resistive) gradient coils generate time varying pulsed magnetic
fields. Three sets of gradient coils are used to generate gradients of the magnetic field
in the x, y and z directions, and, by activating combinations of these, a gradient in any
desired direction can be obtained. These gradients will disturb the protons bringing them
out of alignment by moving them to a higher energy state. As soon as the gradient field
is switched off the protons start to return to the lower energy state, in a process called
relaxation, and this produces a signal that is then used to reconstruct an image of the body
[55].
The interaction between the resulting magnetic fields and the conducting radiation shields
gives rise to an important problem in MRI scanner design. The transient magnetic field
generated by the gradient coils induces eddy currents in conducting components. These
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(a) Magnetom Lumina

Main coils

Gradient Coils

Radiation Shields

4K
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Active Shielding

(b) MRI main components

Figure 1.1: MRI scanner. (a) New model Magnetom Lumina 3T. Image Courtesy of
Siemens Healthineers. (b) Illustration of the main components: main coils, gradient coils
and radiation shields (4K, 77K and Outer Vacuum Chamber (OVC)).

eddy currents, in turn, produce electromagnetic stresses, causing the radiation shields to
deform and vibrate [110, 19, 18]. The vibrations are undesirable as they lead to a deterio-
ration in image quality, with image artefacts, as well as associated noise, which can cause
patient discomfort. The eddy currents, on the other hand, lead to heat being dissipated and
deposited in the cryostat, which can cause helium boil off and potentially result in a costly
magnet quench. A quench refers to the sudden loss of superconductivity in the main coils
when its temperature is raised. In the superconducting state, the resistance in the main
coils is zero and, thus, the current flows freely through the coils. However, when the
temperature raises, the resistance in the coils becomes finite, which causes the loss of the
strong static magnetic field. Furthermore, when the superconducting state is lost, the cur-
rent flowing through the coils results in the generation of more heat due to Joule’s effect,
which can cause an explosive helium boil-off [181]. Thus, understanding the mechanisms
involved in the generation of these vibrations and the heat being deposited in the cryo-
stat are key for a successful MRI scanner design. This requires the solution of a coupled
physics magneto-mechanical problem, which will be addressed in this thesis.
The latest developments in MRI design have resulted in this problem attracting even more
interest. Recently, the Magnetom Terra [162] manufactured by Siemens Healthineers, has
become the first 7 T MRI cleared for clinical use [69]. This improvement in field strength
has led to a higher image resolution making easier the diagnosis of subtle pathologies
which were until then difficult to identify, but it has also brought the problem of larger
eddy currents and stronger vibrations. Low helium magnets have also come into produc-
tion in the last years. Typical MRI scanners require thousands of litres of helium in order
to maintain the superconducting coils at a temperature of 4 K. At the time of writing, the
availability of helium has become challenging, leading to rising prices and a big impact
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in the production cost of MRI scanners. On the other hand, magnets using low helium
technology use only around 1 ´ 20 litres to operate [132, 140]. For such designs, the
minimisation of the heat deposited into the cryostat becomes even more important, as a
small amount of helium boil-off could potentially result in a magnet quench.

1.2 Computational Methods

Given the issues described in Section 1.1, and considering the high cost of experiments, as
well as the large number of iterations in the design process required to develop a new MRI
scanner, manufacturers are interested in the development of accurate numerical simula-
tion tools that are able to predict the complex coupling between the electromagnetic and
mechanical fields. The development of such tools is challenging due to the complexity
involved in accurately describing the interaction between the electromagnetic and me-
chanical fields, as well as in developing a computational method that is able to accurately
resolve the coupling effects in an industrially relevant time.
Different computational methods can be considered for the numerical simulation of
physics and engineering problems described by partial differential equations (PDEs).
Some of the most popular methods used for the discretisation of PDEs are the finite dif-
ference, finite volume and finite element methods, which are all volume based methods,
as well as the boundary element method, which is a surface based method.
The boundary element method [12, 184] is a surface based method, and as such it only
requires the discretisation of the boundary. This method is good for dealing with scat-
tering or wave propagation problems set in unbounded domains, but not for dealing with
problems with multiple materials. For this reason, when dealing with unbounded do-
mains involving multiple materials, the boundary element method is often coupled with a
domain based approach [23, 120].
The finite difference method [44] is the simplest of the domain based methods discussed
above and, as such, has been widely used in the numerical simulation of physical and
engineering problems, such as electromagnetics [125, 123], solid mechanics [15, 64] or
fluid dynamics [142, 63]. The method is very simple to implement and can lead to very
efficient schemes, but it presents problems when dealing with complex geometries [44]
and is, in general, limited to regular grids.
The finite volume method [176] is based on the computation of fluxes across cells and,
therefore, becomes very computationally efficient for electromagnetic [81, 82, 128] and
fluid flow applications [176, 93, 57, 7]. However, one of the drawbacks of the finite vol-
ume method is the non-locality required for high order discretisations [44, 115], leading,
therefore, to fine discretisations for practical problems requiring very high accuracy.
The finite element method [187, 89, 171], on the other hand, can be applied to problems
with complex geometries and it easily allows high order discretisations to be used. Due to
this, the finite element method is widely used for the simulation of physics and engineer-
ing problems in many areas, such as solid mechanics [186, 39, 146, 91], fluid dynamics
[66, 83] and electromagnetism [177, 113, 185, 129]. The classical finite element version
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is usually referred to as the h-version of the finite element method and, in this version, the
accuracy of the solution is improved by refining the mesh (h-refinement). On the other
hand, the p-version of the finite element method is based on the use of high order elements
and, in this version, the accuracy of the solution is improved by increasing the polyno-
mial order of the basis functions (p-refinement). It is well known that, for problems with
smooth solutions in a domain formed by linear geometry, p-refinement offers an increased
rate of convergence of the solution compared to h-refinement [172, 171]. In particular, for
this type of problems, h-refinement results in an algebraic rate of convergence of the er-
ror in the energy norm, while p-refinement leads to exponential convergence [172, 171].
A combination of both versions results in the hp-version of the finite element method,
where the accuracy of the solution is improved by refining the mesh and increasing the
polynomial order of the basis functions. The use of hp-finite elements leads to exponen-
tial convergence even for problems with a solution that is not smooth, provided that the
correct combination of h-refinement and p-refinement is chosen [171, 172].

1.2.1 Finite Elements for Electromagnetic Problems

Electromagnetic problems are described by Maxwell’s equations. However, there exist
a broad range of applications within the field of electromagnetics and, for each of them,
different simplifications can be applied to the system of Maxwell equations. Transient
applications can be classified into two main groups: low frequency and high frequency.
One of the main applications in high frequency electromagnetics is the study of electro-
magnetic scattering, which has application in areas such as the detection of hidden targets
or radar technology [108]. For the simulation of such problems, the finite element method
has been widely applied [60, 112, 111, 108]. One of the main challenges in these simula-
tions is overcoming problems with dispersion error in wave propagation and the p-version
of the finite element method is well suited to this.
On the other hand, low frequency electromagnetics has many industrial applications such
as the design of electric motors, power generators, transformers or medical imaging de-
vices such as MRI scanners and, thus, this is the relevant simplification of Maxwell’s
equations for this thesis. In these applications, the eddy current approximation to the
Maxwell’s equations can be applied [88, 30, 13, 41], where the displacement currents are
neglected. The finite element method has also been widely applied for the simulation of
eddy current problems [31, 30, 113, 105]. In these simulations, one of the main challenges
is the accurate resolution of potentially small skin depths [113] in conducting bodies. In
practice, this requires localised h-refinement of the conducting bodies combined with p-
refinement for capturing accurate fields.
Furthermore, it is important to note that the electromagnetic field requires only tangen-
tial continuity across element interfaces and, therefore, its discretisation using standard
H1-conforming finite elements is not appropriate, and it has been observed to lead to
wrong solutions in the presence of re-entrant corners and edges [53] or to spurious solu-
tions in the case of eigenvalue problems [34, 36]. To overcome this issue, an alternative
set of H(curl)-conforming basis functions must be used. A set of low order H(curl)-
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conforming basis functions was first introduced by Nédélec [131], and these are typically
referred to as Nédélec or edge elements, as the degrees of freedom are in this case associ-
ated with the edges of the elements. High orderH(curl)-conforming basis functions were
later proposed [10, 156, 185, 58, 175], allowing the use of p- or hp-finite elements for the
discretisation of the electromagnetic field.

There is also a variety of formulations that can be used for the description of eddy cur-
rent problems, in terms of different vector and scalar potentials [31, 30]. In [113], the
performance of theH-based andA-based formulations for the solution of problems with
multiply connected domains was studied, and it was shown that, for the case of a con-
ductor with a handle, the H-based formulation required the insertion of cuts in order to
correct the fields, while theA-based formulation did not. Therefore, in [113], anA-based
formulation was used, and an hp-finite element discretisation was considered, which was
shown to accurately resolve the skin depth effects. The sets of basis functions proposed
by Schöberl and Zaglmayr [156] were used for the discretisation and it was shown that
with a particular regularisation strategy and the use of a block Jacobi preconditioner this
discretisation becomes very efficient.

1.2.2 Finite Elements for Elasticity Problems

When considering the deformation of an elastic body different reference systems can be
used to describe this deformation. These can be classified in two groups, Lagrangian or
material descriptions and Eulerian or spatial descriptions. In a Lagrangian description
the focus is on the behaviour of a material particle, which will occupy different spatial
positions at different times, while in a spatial description the focus is on a fixed spatial
position, that might be occupied by different particles at different times [35]. Lagrangian
formulations are very popular in solid mechanics applications, while Eulerian formula-
tions are generally more suitable in fluid dynamics and electromagnetic applications. For
small displacements, the updated Lagrangian approach is usually followed and the defor-
mation gradient assumed to be the identity tensor.

Furthermore, several formulations can be considered in order to solve the elasticity equa-
tion: displacement-based [52, 32], stress-based [163] and mixed [51, 151] formulations.
The advantages of the displacement based formulation include a reduced number of un-
knowns and an easier treatment of the boundary conditions and external forces. However,
when considering the solution to the elasticity equation using a displacement-based for-
mulation and low order finite elements, the problem of volumetric locking arises. This
phenomenon appears when dealing with nearly incompressible materials and for static
problems it has been shown to result in spurious or inaccurate solutions [48, 169]. One
option to overcome this issue would be the use of mixed formulations, but this results in a
significant increase of the number of degrees of freedom as well as in the requirement to
satisfy the non-trivial Ladyzhenskaya-Babuška-Brezzi (LBB) condition. Another option
to overcome this issue is the use of high order elements [169, 182, 48, 75].
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1.2.3 Finite Elements for Coupled Problems

Many industrial applications require the solution of coupled multi-physics problems
such as fluid-structure interaction [85, 134], thermo-mechanical processes [45], electro-
mechanical [75, 74], electro-thermo-mechanical [138, 137] and magneto-mechanical
[110, 19] problems. Most coupled problems in these areas are usually dynamic and non-
linear, and require both spatial and temporal integration. To resolve non-linear systems,
Newton-Raphson approaches based on a consistent linearisation are often performed,
which results in the need to solve monolithic systems, but lead to quadratic convergence
of the residual. However, in 3D, computational challenges of inverting the system mean
that fixed point solvers are used in which only a single physics need to be solved at a
time, but lead to only linear convergence of the residual. In these coupled problems, the
resulting linear system of equations can exhibit either a one-way or a two-way coupling.
In the first case, one of the physical fields depends on the other fields, but the opposite
is not true, while in the second case, both fields depend on the other. For systems with
one-way coupling, the system is usually solved in a staggered manner, where the solution
for one of the fields is computed first and used then to compute the solution for the second
field. On the other hand, if the system exhibits a two-way coupling, the system can be
solved either using a monolithic solver, where the whole system of equations is solved at
once or a partitioned solver, where the solution to each field is computed independently
and the different fields are coupled via source terms that depend on the other fields. The
solution is then iterated until convergence is reached. Both, partitioned [97, 71, 154] and
monolithic [75, 19, 95] solvers have been extensively applied for the solution of coupled
problems. Another aspect that must be carefully considered is the choice of a consistent
frame of reference, e.g. typically in electromagnetic applications the system of Maxwell
equations is expressed in an Eulerian setting and in solid mechanics applications the mo-
mentum balance equation is usually expressed in a Lagrangian setting, however, when
considering coupled magneto-mechanical problems, the complete set of equations must
be expressed in the same frame (Eulerian or Lagrangian).
Furthermore, when dealing with coupled problems, different finite elements might be
required to discretise the different physical fields. Several sets of compatible L2, H1,
H(div) and H(curl)-conforming high order finite elements have been proposed [58, 59,
10, 156, 185], that can be used for such discretisations.

1.2.4 Applications to MRI Scanners

In the context of MRI scanners, the application of finite difference time domain methods
for the prediction of induced eddy currents, but neglecting mechanical effects, was studied
in [76, 173, 121]. Methods for the rapid design of MRI coils based on three dimensional
electromagnetic simulations have also been considered [101]. Attempts at modelling the
magneto-mechanical effects with commercial software, focusing on the structural design
of superconducting coils for high field MRI scanners, have also been made, e.g. [117,
56]. However, the currently available commercial software tools capable of solving the
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coupled physics problem of interest, such as Ansys [1], NACS (Numerical Analysis of
Coupled Systems) [4] or Opera FEA (Finite Element Analysis) [5], are not specifically
designed for MRI scanners and do not offer tailored solution methodologies. In general,
even with fine discretisations, they are unable to correctly predict the coupled physics in
an MRI scanner with sufficient accuracy and, therefore, manufacturers are interested in
specialist solutions.
In the work of Raush et al. [147] a low order temporal finite element scheme for the
solution of three-dimensional (3D) magneto-mechanical problems was presented, which
was implemented in the finite element/boundary element program CAPA [106]. This was
extended in [148] to consider acoustic effects. To describe the coupling, they follow the
approach of Kaltenbacher [97], which uses a layer of elements adjacent to the conduc-
tor in order to compute the induced electromagnetic force. In [110, 19], the solution in
an axisymmetric configuration, using a hp-finite element software, a stress tensor for-
mulation and a novel linearised approach using an AC-DC (Alternating Current-Direct
Current) splitting was considered, which allows for its time harmonic solution in the fre-
quency domain. This work was based in an Eulerian setting, where the assumption of
small displacements and velocities was made. The work was then extended to consider
the fully non linear problem in the time domain in [18, 17]. The use of hp-finite ele-
ments [58, 59], as opposed to low-order finite element discretisations, was considered
as it is known to enhance the resolution of fine scale features such as small skin depths
at high frequencies [114], allow volumetric locking phenomena in nearly incompressible
materials to be overcome [170, 48, 182, 86] and improve the resolution of acoustic wave
propagation [126]. The drawbacks of this axisymmetric approach include that it only al-
lows the rotationally symmetric z gradient coils to be considered and that it assumes small
velocities and accelerations. These drawbacks will be addressed in this thesis.

1.2.5 Reduced Order Modelling

In the design stage of a new MRI scanner, the same magneto-mechanical problem must be
solved repeatedly for varying model parameters, such as frequency or conductivity of the
radiation shields. Even if an efficient finite element solver is available for the solution of
the coupled problem, the high computational cost required by these multiple simulations
results in an increase of the total time required to obtain a new MRI design, which has
financial implications.
In order to optimise this process, Reduced Order Models (ROMs) can be considered.
ROMs allow to describe a family of solutions (usually arising from parametric partial
differential equations) in terms of a reduced basis. The term “reduced” is used here to
denote a basis whose size is much smaller than a standard finite element basis. The latter
is denoted in this context as “full order” or “high fidelity” model [49, 14, 87, 43]. The
reduction of the size of the basis in which the solution is sought has an immediate impact
in the size of the matrix to be inverted and, therefore, in the computational cost of the
method.
Several numerical techniques can be classified as ROMs. Some examples are Proper
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Generalised Decomposition (PGD) [49, 127, 50] and Proper Orthogonal Decomposition
(POD) [43, 119, 180, 47]. One key difference between PGD and POD is the complexity
of their implementation and the extent to which an existing finite element solver must be
modified to implement the corresponding ROM. This is usually called the intrusiveness of
the technique; a non-intrusive technique can be used “on top” of an existing finite element
solver without any modification. PGD is typically much more intrusive than POD. The
intrusiveness, despite being independent of the numerical effectiveness of the technique,
is sometimes crucial in the context of industrial applications, when some software might
already have been certified for a particular application.
In the context of numerical simulations in engineering, POD has successfully been applied
to different areas including mechanics [133, 143], thermal problems [180, 29], fluid flow
[124, 139] as well as electromagnetic problems with application to integrated circuits
[99].
The application of PGD to coupled magneto-mechanical problems with application to
MRI scanners but restricted to axisymmetric configurations was also recently considered
in [21, 22]. Furthermore, the application of POD and PGD for the solution of this problem
was compared in [22].

1.3 Aim and Objectives

The aim of this thesis is the development of a new accurate and efficient methodology
for the solution of 3D magneto-mechanical problems with application to MRI scanners.
With this in mind, the development of a high fidelity finite element software that allows the
computation of accurate solutions is first addressed. Then, in order to optimize the design
process of a new MRI scanner, the application of ROM methodologies is considered,
which allow fast computations for varying model parameters.
To achieve this aim, the next specific objectives are considered:

1. To accurately describe the complex physics associated with vibrations induced by
electromagnetic fields in MRI applications.

2. To develop a rigorous and efficient variational formulation for the complete coupled
magneto-mechanical problem in three dimensions.

3. To develop an accurate and efficient high fidelity computational methodology for
the solution of the magneto-mechanical problem of interest in three dimensions.

4. To demonstrate the accuracy and efficiency of the high fidelity computational
methodology by applying it to challenging academic and industrially relevant prob-
lems.

5. To build a new ROM that allows the fast computation of solutions for varying model
parameters in order to optimize the design process of new MRI configurations.



1.4. OUTLINE OF THE THESIS 11

6. To demonstrate the accuracy and efficiency of the ROM by applying it to challeng-
ing MRI configurations and performing comparisons against the high fidelity tool.

The research carried out in order to achieve this objectives is split in several stages, which
are described in the outline of the thesis. This research was done as part of the AdMoRe
project, in collaboration with Swansea University, Universitat Politecnica de Catalunya
and the industrial partner Siemens Healthineers and under the supervision of Dr. Paul D.
Ledger and Prof. Antonio J. Gil from Swansea University, Prof. Sergio Zlotnik from Uni-
versitat Politecnica de Catalunya and Dr. Mike Mallett from Siemens Healthineers. The
AdMoRe project was funded by a Marie Sklodowska-Curie Innovative Training Network
with grant number 675919.

1.4 Outline of the Thesis

This Thesis is formed by 8 chapters and is complemented by 5 appendices, which are
organized in 5 parts. The organization of these is as follows:

—PART I—
Preliminaries

• Chapter 1 presents a brief introduction to the physics of MRI scanners and the
issues to be addressed in this thesis. Then, a survey of different computational
methodologies that can be applied for the numerical simulation of partial differen-
tial equation systems is presented, with a special focus on the numerical simulation
of electromagnetic and elasticity problems. A review on different methodologies
that can be applied for the solution of coupled problems is then presented, fol-
lowed by a survey of the research that has been presented up to date in the area of
magneto-mechanical simulation applied to MRI scanners. A brief introduction to
ROM methodologies is also provided, including a brief review of the research in
this field. The aim and objectives of this thesis are then stated.

—PART II—
Full Order Model

• Chapter 2 presents the governing equations for the coupled magneto-mechanical
problem of interest. For this, the classical system of Maxwell’s equations is first
presented and, then, the case of problems considering moving or deformable bod-
ies is discussed. For such cases special attention must be paid to obtain a consistent
description of the electromagnetic and mechanical fields. For this, an introduction
to the motion of a deformable body is provided and the different configurations
that can be used to describe this motion, namely Lagrangian or material and Eu-
lerian or spatial configurations, are described. The coupled magneto-mechanical
system is then stated in the total Lagrangian, updated Lagrangian and Eulerian con-
figurations, and the transformations between the different configurations are stated.
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Finally, a series of simplifying assumptions are introduced, which together with
the introduction of a vector potential formulation and appropriate gauge, transmis-
sion and boundary conditions result in the proposed Lagrangian formulation for the
description of the magneto-mechanical problem of interest. This constitutes the
starting point for the development of the computational methodology presented in
this thesis.

• Chapter 3 focuses on the development of a novel variational formulation of the re-
sulting governing equations that lends itself to an efficient computational methodol-
ogy. This is based on an AC-DC splitting that was first introduced in [19], resulting
in a DC problem and an AC problem that can be linearised about the static so-
lution and translated to the frequency domain. The linearisation of the coupled
problem as well as a rigorous derivation of its variational form are described. Fur-
thermore, the problem is translated to the frequency domain, where regularisation
is applied, which results in the regularised variational formulation of the DC and
AC problems. The main novelties of this chapter are the derivation of a linearised
magneto-mechanical problem in a Lagrangian frame and its variational formulation,
the translation of the linearised problem to the frequency domain, and the introduc-
tion of the regularised DC and AC problems in order to circumvent the Coulomb
gauge condition.

• Chapter 4 describes the computational treatment of the linearised and regularised
problem presented in Chapter 3. A high order finite element discretisation of the
linearised and regularised problem is derived, which combines high order H1 and
H(curl) basis functions for the discretisation of the mechanical and electromagnetic
fields, respectively. The definition of the reference element, a description of the ba-
sis functions in the reference element, the approximation of curved boundaries and
the mapping from reference to physical domain are first presented, followed by the
rigorous derivation of the discrete system of equations. Next, an efficient solver
strategy is discussed, which involves the solution to the coupled problem in a stag-
gered manner and the use of preconditioned iterative solvers when appropriate. The
chapter presents also the symmetry conditions that can be exploited to reduce the
cost of the simulations, as well as a methodology to ensure that the current source
is solenoidal at a discrete level, avoiding issues with the compatibility of the equa-
tions. The addition of mechanical damping to the system is also discussed. The
main novelties of this chapter are the development of a high order finite element dis-
cretisation for the linearised and regularised magneto-mechanical problem, which
combines H1 and H(curl)-conforming finite elements and the development of an
efficient staggered algorithm for the solution of the coupled problem, which uses
preconditioned iterative solvers when appropriate.

• Chapter 5 focuses on the application of the high fidelity computational methodol-
ogy to a series of academic and industrially relevant problems. First, the method-
ology is applied to a series of single physics or decoupled problems with a known
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analytical solution, and the error in the numerical solution is studied in order to
verify that the appropriate rates of convergence are obtained. The methodology is
then applied to challenging MRI configurations including longitudinal as well as
transversal gradient coils. Comparisons against the axisymmetric tool developed
in [110, 19, 18, 17], commercial software and experimental data are presented to
prove the accuracy and efficiency of the method. The main novelty of this chapter is
the application of the developed finite element methodology to the numerical sim-
ulation of a series of academic and industrially relevant problems, including MRI
configurations with longitudinal and transversal gradient coils.

—PART III—
Reduced Order Modelling

• Chapter 6 focuses on the development of a ROM that can be used in order to opti-
mize the workflow of the MRI design process. The chapter provides a description
of the POD methodology, including the off-line and on-line stages. Two options,
namely interpolation based and projection based POD, are considered for the on-
line stage. The application of this methodology to the complete coupled problem
is first discussed, followed by the application to electromagnetics and mechanics
separately and the description of a new reduced order-full order methodology that
exploits the staggered nature of the problem. Furthermore, an affine decomposition
of the problem in terms of frequency and conductivity is provided, which is key
for the efficiency of projection based POD. The main novelty of this chapter is the
development of a POD based reduced order-full order methodology for the solution
of the 3D magneto-mechanical problem of interest, which exploits the staggered
nature of the linearised Lagrangian formulation.

• Chapter 7 presents the application of the ROM techniques described in Chapter 6
to several challenging MRI configurations. First, only the frequency is considered
as a model parameter and both interpolation and projection based POD are applied
to the complete solution, which shows that a large number of snapshots is required
in order to obtain accurate solutions and, thus, no computational gaining can be
obtained. Next, POD is applied to the electromagnetic and mechanical solutions
separately, showing that it is the mechanical problem that requires a large number of
snapshots in order to accurately resolve the solution. Then, the combined reduced
order-full order approach is considered and it is shown that it results in accurate
results already for a small number of snapshots and, therefore, a big computational
speed-up can be achieved. Furthermore a comparison between the interpolation
and projection approaches was performed, which showed that the latter results in
more accurate results for no significant increase in computational cost. Finally, the
most successful approach (projection based reduced order-full order) was applied
to different MRI configurations considering as parameters the frequency and the
conductivity of the radiation shields. The accuracy and efficiency of the method was
assessed by comparing with the full order solver, which showed that very accurate
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results can be obtained as well as an impressive computational speed-up. The main
novelty of the chapter is the application of the different POD-based methodologies
proposed in Chapter 6 to several challenging MRI configurations, in order to assess
their accuracy and efficiency.

—PART IV—
Conclusions and Future Work

• Chapter 8 presents an overview of the work and the achievements of this thesis.
The conclusions extracted from each chapter are stated. Furthermore, a list of rec-
ommendations for future research, that could further enhance the capabilities of the
current methodology and facilitate its adoption as an industry standard, is provided.

—PART V—
Appendices

• Appendix A presents the derivation of the proof that SpADC ,AAAACq “ 0 in
Ωc
CzpsupppJJJACq Y supppJDCqq, which is used in Chapter 3 in order to replace the

surface integrals by volume integrals.

• Appendix B provides a brief description of issues encountered when generating
the CAD geometry using NetGen, AutoCad or AutoCad mechanical and the mesh
using NetGen, and how to address them.

• Appendix C presents a description of the process to compute the required integrals
using Gaussian quadrature.

• Appendix D provides a brief description of the parallel implementation used to
speed-up the computation of the solution for varying frequencies.

• Appendix E presents a user guide to the software package developed as part of the
work carried on during this thesis. This user guide is added in order to facilitate the
usage of the software by the industrial partner and future students/researchers that
might continue the research developed in this project.

1.5 Research Outcomes

This section presents a list of the research outcomes from the work performed as part of
this thesis.

1.5.1 Published and Submitted Journal Publications

• M. Seoane, P.D. Ledger, A.J. Gil and M. Mallett. An accurate and efficient three
dimensional high order finite element methodology for the simulation of magneto-
mechanical coupling in MRI scanners. International Journal for Numerical Meth-
ods in Engineering, 119(12):1185-1215, 2019.



1.5. RESEARCH OUTCOMES 15

• M. Seoane, P.D. Ledger, A.J. Gil, S. Zlotnik and M. Mallett. A combined reduced
order-full order methodology for the solution of 3D magneto-mechanical problems
with application to MRI scanners. International Journal for Numerical Methods in
Engineering, 121(16):3529-3559, 2020.

• G. Barroso, M. Seoane, A.J. Gil, P.D. Ledger, M. Mallett and A. Huerta. A stag-
gered high-dimensional Proper Generalised Decomposition for coupled magneto-
mechanical problems with application to MRI scanners. Computer Methods in Ap-
plied Mechanics and Engineering, 370:113271, 2020.

1.5.2 Conference Presentations

• M. Seoane, P.D. Ledger, A.J. Gil, M. Mallett. Towards an hp-finite element ap-
proach for the numerical simulation of 3D eddy current problems of relevance to
MRI scanners. VIII International Conference on Adaptive Modelling and Simula-
tion, ECCOMAS Thematic Conference, Verbania, Italy, June 2017.

• M. Seoane, P.D. Ledger, A.J. Gil, M. Mallett. Towards an hp-finite element ap-
proach for the numerical simulation of 3D magneto-mechanical problems of rele-
vance to MRI scanners. VI European Conference on Computational Mechanics-VII
European Conference on Computational Fluid Dynamics, ECCM-ECFD, Glasgow,
United Kingdom, June 2018.

• G. Barroso, L. Borchini, R. Ibáñez, R. Mena, G. Quaranta, M. Seoane, V. Tsiolakis,
S. Vermiglio and M. Giacomini. Empowered decision-making in simulation-based
engineering: Advanced Model Reduction for real-time, inverse and optimisation
in industrial problems. VI European Conference on Computational Mechanics-VII
European Conference on Computational Fluid Dynamics, ECCM-ECFD, Glasgow,
United Kingdom, June 2018.

• M. Seoane, P.D. Ledger, A.J. Gil, S. Zlotnik and M. Mallett. A combined reduced
order-full order technique for the solution of 3D magneto-mechanical problems
with application to MRI scanners. IX International Conference on Adaptive Mod-
elling and Simulation, ECCOMAS Thematic Conference, El Campello (Alicante),
Spain, May 2019.

• M. Seoane, P.D. Ledger, A.J. Gil, S. Zlotnik and M. Mallett. A high order finite
element formulation for the simulation of 3D magneto-mechanical problems with
application to MRI scanners. XXII International Conference on the Computation of
Electromagnetic Fields (COMPUMAG), Paris, France, July 2019.

1.5.3 Research Posters

• M. Seoane, P.D. Ledger, A.J. Gil, M. Mallett. Towards an hp-finite element ap-
proach for the numerical simulation of 3D eddy current problems of relevance to
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MRI scanners. VIII International Conference on Adaptive Modelling and Simula-
tion, ECCOMAS Thematic Conference, Verbania, Italy, June 2017.

• S. Bagwell, P.D. Ledger A.J. Gil, G. Barroso, M. Seoane, M. Kruip and M. Mallett.
Acousto-magneto-mechanical simulation using hp-finite elements for MRI scanner
design. SIAM/UKIE Annual Conference, Glasgow, United Kingdom, January 2017.

• M. Seoane, P.D. Ledger, A.J. Gil and M. Mallett. Towards a 3D magneto-
mechanical software using hp-finite elements for MRI scanner design. ZCCE Post-
graduate Student Workshop, Swansea, United Kingdom, January 2018. Awarded
prize for second best poster.

• M. Seoane, P.D. Ledger, A.J. Gil and M. Mallett. Towards a 3D magneto-
mechanical software using hp-finite elements for MRI scanner design. Workshop
on Numerical Methods in Applied Sciences and Engineering, Castelldefels, Spain,
January 2018.

• M. Seoane, P.D. Ledger, A.J. Gil, M. Mallett and S. Zlotnik. A hp-finite element
software for the numerical simulation of 3D coupled magneto-mechanical prob-
lems with application to MRI scanners. ZCCE Postgraduate Student Workshop,
Swansea, United Kingdom, January 2019. Awarded prize for third best poster.

1.5.4 Software Packages

The methodology described in this thesis has resulted in a new software tool for the sim-
ulation of magneto-mechanical coupling in MRI scanners. The proprietary rights of this
software belong to the industrial and academic partners of the AdMoRe project and, there-
fore, open access is not available. However, the methodology in which the software is
based is described throughout the thesis, and a simple user guide is provided in Appendix
E, which includes a description of the capabilities of the software and a set of instructions
on how to use the software. This user guide is added in order to facilitate the usage of the
software by the industrial partner and future students/researchers that might continue the
research developed in this project.
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Chapter 2

Governing Physical Laws

2.1 Introductory Remarks

The purpose of this chapter is to present a consistent system of governing equations for
the description of the magneto-mechanical problem of interest. Although the Maxwell
equations and the elasticity equations are well known for static problems, challenges arise
when dealing with coupled problems involving moving bodies. The chapter will draw to-
gether the results from key texts in the field [174, 166, 73, 35, 104] and introduce a series
of approximations and simplifications that are appropriate for the problems of interest in
this thesis. For this, the general system of Maxwell’s equations is first introduced, noting
that the definition of certain terms becomes challenging for the case of moving bodies.
Then, a brief introduction to the theory of deformable bodies is presented, focusing on
the different configurations that can be used to describe the motion of the body, namely
the material or Lagrangian configuration and the spatial or Eulerian configuration. The
sets of equations describing the magneto-mechanical problem of interest in Lagrangian
and Eulerian configurations are then presented, and the transformations between both
configurations are also stated. A series of assumptions that can be applied to our partic-
ular problem are then discussed, which lead to the novel Lagrangian formulation of the
magneto-mechanical problem of interest that will be used in this thesis for the develop-
ment of new computational methodologies.
The structure of the Chapter is as follows. First, in Section 2.2 the system of Maxwell
equations is stated in a general format. Then, in Section 2.3 an introduction to the theory
of deformable bodies is provided, focusing on the concepts of material and spatial con-
figuration. Then, in Section 2.4, the equations describing the coupled system in a total
Lagrangian configuration are presented. Similarly, the equations describing the coupled
system in an updated Lagrangian formulation are stated in Section 2.5, together with the
transformations of the different fields from the current to the reference frame. The system
of equations describing the coupled problem in an Eulerian setting is presented in Sec-
tion 2.6. The interface conditions describing the behaviour of the fields at the interface
between different domains are presented in Section 2.7. Section 2.8 presents a series of
simplifications that can be applied to our particular problem that, together with the intro-
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duction of a vector potential and appropriate gauge conditions, results in the final system
of equations for the coupled magneto-mechanical problem of interest in a Lagrangian
frame. The Chapter finishes with concluding remarks in Section 2.9.

2.2 Maxwell’s Equations

MRI scanners use static as well as transient magnetic fields in order to generate an image
of the patient. This electromagnetic field is physically described by Maxwell’s equations.
Defining E, H , D and B as the electric field intensity, magnetic field intensity, electric
flux density and magnetic flux density, respectively, Maxwell’s equations can be stated in
differential form as

curlE “ ´
BB

Bt

curlH “
BD

Bt
` J

divD “ ρV

divB “ 0

,

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

-

in Ωx ˆ r0, T s (2.1)

where the differential operators act with respect to a fixed frame of reference Ωx (which
we will see later corresponds to the Eulerian case), T is the final time of interest, ρV is
the volume charge density and J the electric current density, which, in the case of bodies
at rest is composed of an Ohmic current Jo “ γE, being γ the electric conductivity, and
a source term J s. Furthermore, for a wide class of materials, it is generally accepted that
the next constitutive equations hold

D “ ε0E ` P “ εE “ ε0εrE, B “ µ0H `M “ µH “ µ0µrH , (2.2)

where ε is the permittivity, P is the polarisation, µ is the permeability,M is the magneti-
sation and the subscripts 0 and r denote the free space and relative values, respectively.
Note that P and M depend linearly on E and H , respectively, for a linear material and
non-linearly on the fields for non-linear materials (e.g. ferroelectric and ferromagnetic
materials). In addition, for homogeneous isotropic materials ε and µ simplify to being
constant scalars, while in more general inhomogeneous non-linear anisotropic materials
they are rank 2 tensors whose coefficients depend on the position and the fields. In this
thesis, restriction will be made to linear homogeneous isotropic materials, which is a rea-
sonable assumption for the components of an MRI scanner.
In the case of moving or deformable bodies, additional terms might arise in the system as
a consequence of the movement, and attention must be paid to the reference system used
to describe the governing equations. This is discussed in the following sections.

2.3 Moving Bodies: Material and Spatial Descriptions

In the study of problems with deformable or moving bodies a proper description of motion
is fundamental. Consider the general motion of a deformable body illustrated in Figure
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Figure 2.1: General motion of a deformable body.

2.1, where we have a body that is moving inside a region excited by a given current source
J s that generates an electromagnetic field. The body can be described as a composition of
material particles with coordinatesX at the initial or reference configuration, correspond-
ing to time t “ 0. After a certain time t, and following a deformation, these particles will
have in general different coordinates, denoted as x. This motion can be described mathe-
matically by means of a mapping between the initial and current configurations as [35]

x :“ φφφpX, tq, (2.3)

whereφφφ is the mapping function. The deformation (displacement) can then be defined as

u :“ x´X. (2.4)

Different coordinate systems can be used for the description of the motion. These can
be classified in two groups, Lagrangian or material descriptions and Eulerian or spatial
descriptions. In a Lagrangian description, the focus is on the behaviour of a material
particle, which will occupy different spatial positions at different times, while, in a spatial
description, the focus is on a fixed spatial position that might be occupied by different
particles at different times [35]. Furthermore, Lagrangian formulations can be divided
in two types; the total Lagrangian and updated Lagrangian formulations. Thus, three
different formulations can be used to describe the governing equations: total Lagrangian,
updated Lagrangian and Eulerian. Considering again the situation illustrated in Figure
2.1, in a total Lagrangian formulation, the system is described from the point of view of
an observer that is placed at a particle P in the reference configuration, while in an updated
Lagrangian formulation, the system is described from the point of view of an observer that
is mounted in a particle p in the current configuration and, in an Eulerian formulation, the
system is described from the point of view of an observer that is placed at a fixed spatial
position O. Eulerian formulations are typically used in fluid flow applications as well as
in electromagnetic applications, while Lagrangian formulations are usually more suitable
in the context of solid mechanics [35].
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To transform quantities from one to another configuration the deformation gradient F “
Bφφφ
BX

as well as the jacobian J “ detF and the cofactor H “ JF´T [35] are used.
For our coupled magneto-mechanical problem of interest, it is not clear, a priori, which
approach will be more suitable. In the following sections we state the resulting systems
of equations in total Lagrangian, updated Lagrangian and Eulerian formulations.

2.4 Total Lagrangian Formulation

In a total Lagrangian form, the governing equations are expressed in terms of the reference
configuration X . In this configuration, the physical variables are given a subscript 0

and, hence, E0, H0, D0 and B0 are used to denote the electric field intensity, magnetic
field intensity, electric flux density and magnetic flux density, respectively, in this frame.
Importantly, J s has to be defined in the reference configuration as does the Ohmic current
γE0 [73]. On the other hand, the constitutive laws (2.2) must be transformed from the
Eulerian form to the reference frame for the total Lagrangian form. The set of Maxwell
equations in a total Lagrangian frame can be written as

CURLE0 “ ´
dB0

dt

CURLH0 “
dD0

dt
` γE0 ` J

s

DIVD0 “ ρV0

DIVB0 “ 0

,

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

-

in Ω0 ˆ r0, T s, (2.5)

where Ω0 denotes the reference or material Lagrangian configuration and d
dt

denotes the
total (material) time derivative [35]. Note that the system has a similar form to (2.1) but
now expressed in terms of fields with respect to the reference configuration. Furthermore,
the differential operators act now with respect to X (emphasised by the capitol differ-
ential operators) and the partial time derivatives B

Bt
become, in this frame, material time

derivatives
d

dt
. The transformations of the electromagnetic fields from the reference to

the current configuration are given by [174, 166, 73]

D0 “HTD, (2.6a)

B0 “HTB, (2.6b)

E0 “ FT
pE ´B ˆ vq , (2.6c)

H0 “ FT
pH `D ˆ vq . (2.6d)

where v “
du

dt
is the velocity.

For the case of moving bodies, the Maxwell system (2.5) can no longer be solved in
isolation and must be solved in combination with the momentum balance equation, which
in the total Lagrangian form is

dp0

dt
´DIVP “ f 0 in Ω0 ˆ r0, T s, (2.7)
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where P is the first Piola-Kirchhoff tensor, f 0 the body force and p0 the linear momentum
per unit undeformed volume.
Note that the form of P depends on the constitutive model, it is certainly a function
of the deformation and it can be a function of D0 and B0 as well as other fields in
general [74, 136, 135].

2.5 Updated Lagrangian Formulation

In the updated Lagrangian form, the Maxwell and linear momentum equations are ex-
pressed in terms of the current coordinates x “ φpX, tq. In this configuration, the par-
ticles X acquire the temporary coordinate labels x “ φpX, tq at time t. The Maxwell
system in the updated Lagrangian frame can be written as [73, 174]

curlpE ´B ˆ vq “ ´H´T dHTB

dt

curlpH `D ˆ vq “H´T dHTD

dt
`H´T

`

γFT
pE ´B ˆ vq ` J s

˘

divD “ ρV

divB “ 0

,

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

-

in Ωptq (2.8)

where Ωptq denotes the updated Lagrangian configuration. System (2.8) is obtained from
(2.5) transforming the fields according to (2.6) and taking into account the relation ρV “
1
J
ρV0 as well as the transformations of the differential operators

CURL
`

FTb
˘

“HT curl b, (2.9a)
1

J
DIV

`

HTb
˘

“ div b, (2.9b)

where b denotes a general vector field.
Similarly, the elasticity equation can be written in the updated Lagrangian frame as [35,
73]

ρa´ divσ “ f in Ωptq (2.10)

where a “
d2u

dt2
is the acceleration and σ “ σmpuq ` σepB0,H0,D0,E0q is the total

stress tensor, with σmpuq the Cauchy stress tensor and σepB0,H0,D0,E0q the Maxwell
stress tensor. System (2.10) can be obtained from (2.7) using the transformations between
fields

1

J

dp0

dt
“ ρa, (2.11a)

P “ σH, (2.11b)
1

J
f 0 “ f , (2.11c)

and the transformation for the divergence of a tensor field

1

J
DIV pσHq “ divpσq. (2.12)
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2.6 Eulerian Formulation

In the Eulerian formulation, quantities are expressed in terms of the spatial coordinates
x. This frame is the usual one used for Maxwell’s equations [166, 174]. In this frame the
Maxwell system can be written as

curlE “ ´
BB

Bt

curlH “
BD

Bt
`H´T

`

γFT
pE ´B ˆ vq ` J s

˘

divD “ ρV

divB “ 0

,

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

-

in Ωx ˆ r0, T s, (2.13)

where Ωx denotes the Eulerian configuration. System (2.13) can be obtained from (2.5) or
(2.8) using the transformations (2.6) and (2.9) as well as the transformation of the material
derivative for equations involving the curl of a vector field [73, 174]

Bb

Bt
“H´T dHTb

dt
´ curl pbˆ vq , (2.14)

where b denotes a general vector field.
Note that system (2.13) reduces to (2.1) for the case of a body at rest. The term γB ˆ v

which appears in system (2.13) for moving bodies is usually referred to as Lorentz current
[80, 166]. Furthermore, note that for moving bodies (2.13) is often presented for the case
of H « F « I, but this is not true in general [174, 166].
Similarly, the momentum balance equation, describing the mechanical deformations can
be written in Eulerian form as

Bp

Bt
` div ppb v ´ σq “ f in Ωx ˆ r0, T s, (2.15)

where p “ ρv is the linear momentum per unit deformed volume , σ “ σe ` σm is the
total stress tensor, with σe “ σepB,H ,D,E,Fq and σm “ σmpFq the Maxwell and
Cauchy stress tensors, and f is a body force. System (2.15) can be obtained from (2.7)
or (2.10) using the transformations (2.11) and (2.12) as well as the transformation of the
material derivative for equations involving the divergence of a tensor [73, 174]

db

dt
“
Bb

Bt
` pgrad bqv, (2.16)

where b denotes a general vector field.
Note that, without considering any extra simplifications, each formulation has advantages
and disadvantages. If a total or updated Lagrangian formulation is chosen, the elasticity
equation is simple, but the system of Maxwell equations becomes complicated. On the
other hand, if an Eulerian formulation is instead chosen, the system of Maxwell’s equa-
tions becomes simpler, but the elasticity equation becomes much more difficult to solve.
In the following sections the interface conditions as well as a series of simplifying as-
sumptions for the case of MRI applications that result in an accurate and efficient set of
governing equations in a Lagrangian formulation will be presented.
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Figure 2.2: Magneto-mechanical coupled problem. General representation of the problem
illustrating the different components involved.

2.7 Interface Conditions

Consider the case of a magneto-mechanical problem set on an unbounded domain R3 “

ΩC Y Ωc
C where ΩC “

ŤN
n“1 ΩC,n denotes the union of N disjoint elastic conducting

bodies each with γ ‰ 0 and µ possibly different from µ0 and Ωc
C :“ R3zΩC denotes the

non-conducting region (Figure 2.2). At the interface between different bodies the electro-
magnetic and mechanical fields must satisfy some interface or transmission conditions,
which can be deduced from the integral form of the governing equations [80, 17, 73]

2.7.1 Total Lagrangian Formulation

In the total Lagrangian formulation, the transmission conditions at the interface between
different domains are [73]

N ˆ rE0sBΩC
“ 0, (2.17a)

N ˆ rH0sBΩC
“ js0 , (2.17b)

N ¨ rD0sBΩC
“ ρs0 , (2.17c)

N ¨ rB0sBΩC
“ 0, (2.17d)

pPm
`Pe

q|
´

BΩC
N “ Pe

|
`

BΩC
N , (2.17e)

where r¨s
BΩC

:“ p¨q|
`

BΩC
´ p¨q|

´

BΩC
denotes the jump on the interface BΩC , where p¨q|`

BΩC

and p¨q|´
BΩC

denote the non-conducting and conducting sides of the interface BΩC , respec-
tively,N is a unit outward normal vector to BΩC in the reference configuration, js0 is the
surface current density in the reference configuration and ρs0 is the surface charge density
in the reference configuration. In the absence of surface current and charge density, the
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interface conditions (2.17) reduce to

N ˆ rE0sBΩC
“ 0, (2.18a)

N ˆ rH0sBΩC
“ 0, (2.18b)

N ¨ rD0sBΩC
“ 0, (2.18c)

N ¨ rB0sBΩC
“ 0, (2.18d)

pPm
`Pe

q|
´

BΩC
N “ Pe

|
`

BΩC
N , (2.18e)

which describe the tangential continuity of the electric and magnetic fields and the normal
continuity of the electric flux density, magnetic flux density and total stress.

2.7.2 Updated Lagrangian Formulation

In the updated Lagrangian formulation, the transmission conditions at the interface be-
tween different domains are [73]

nˆ rpE ´B ˆ vqs
BΩC

“ 0, (2.19a)

nˆ rpH `D ˆ vqs
BΩC

“ js, (2.19b)

n ¨ rDs
BΩC

“ ρs, (2.19c)

n ¨ rBs
BΩC

“ 0, (2.19d)

pσm ` σeq|´
BΩC

n “ σe|`
BΩC

n, (2.19e)

where n is a unit outward normal vector in the deformed configuration, js is the surface
current density in the deformed configuration and ρs is the surface charge density in the
deformed configuration. In the absence of surface current and charge densities (2.19)
reduces to

nˆ rpE ´B ˆ vqs
BΩC

“ 0, (2.20a)

nˆ rpH `D ˆ vqs
BΩC

“ 0, (2.20b)

n ¨ rDs
BΩC

“ 0, (2.20c)

n ¨ rBs
BΩC

“ 0, (2.20d)

pσm ` σeq|´
BΩC

n “ σe|`
BΩC

n. (2.20e)

2.7.3 Eulerian Formulation

In the Eulerian formulation, the transmission conditions at the interface between different
domains are [73]

nˆ rEs
BΩC

“ 0, (2.21a)

nˆ rHs
BΩC

“ js, (2.21b)
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n ¨ rDs
BΩC

“ ρs, (2.21c)

n ¨ rBs
BΩC

“ 0, (2.21d)

pσm ` σeq|´
BΩC

n “ σe|`
BΩC

n, (2.21e)

which in the absence of surface current and charge densities reduces to

nˆ rEs
BΩC

“ 0, (2.22a)

nˆ rHs
BΩC

“ 0, (2.22b)

n ¨ rDs
BΩC

“ 0, (2.22c)

n ¨ rBs
BΩC

“ 0, (2.22d)

pσm ` σeq|´
BΩC

n “ σe|`
BΩC

n. (2.22e)

2.8 Modelling Assumptions

In the following we summarize the main assumptions that led to the Eulerian formulation
used in [110, 19, 18, 17] as well as the assumptions that lead to the new Lagrangian
formulation [73].

2.8.1 Eulerian Formulation for Small Displacements and Velocities

In [110, 19, 18, 17] the coupled magneto-mechanical problem of interest was described
using an Eulerian approach, which was based in the following assumptions:

1. The eddy current approximation is applied in the Eulerian frame. System (2.13)
becomes then

curlE “ ´
BB

Bt
, (2.23a)

curlH “H´T
`

γFT
pE ´B ˆ vq ` J s

˘

, (2.23b)

divE “ 0, (2.23c)

divB “ 0, (2.23d)

where it has also been assumed that ρV “ 0, which holds for the application of
interest in this thesis.

2. The electromagnetic constitutive laws (2.2) hold in the Eulerian frame.

3. The displacements are assumed to be small so that F « I, H « I and J « 1; the
velocities are also assumed to be small so that (2.10) and (2.15) coincide1. This

1Note that in [110, 19, 18, 17] the term p b v, which is quadratic in the velocities, was neglected, but
the Lorentz current term in (2.13) was retained.
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also means that elastic bodies have the constitutive behaviour σmpuq :“ C : εpuq,
where εpuq :“ pp∇u ` p∇uqT q{2 is the small strain tensor and C “ Cijk`ei b

ej b ek b e` is a rank 4 constitutive tensor with entries

Cijkl “ λδijδkl `G pδikδjl ` δjkδilq , (2.24)

with δij the Kronecker delta, ei the ith unit basis vector and λ and G the Lamé
parameters. Furthermore, the body force can be rigorously described in terms of
the divergence of a Maxwell stress tensor in terms ofB andH .

4. The electromagnetic fields are described in terms of a electric scalar potential and
a magnetic vector potential as

B “ curlAEul, E “ ´ gradψEul ´
BAEul

Bt
. (2.25)

5. A Biot-Savart description of the coils is adopted.

Transmission problem

Choosing appropriate gauges and adding appropriate boundary and initial conditions, the
coupled magneto-mechanical problem of interest in the Eulerian frame can then be de-
scribed by the transmission problem [19, 17]: Find pAEul,uq P pR3 ˆ R3q pr0, T s such
that

curlpµ´1 curlAEulq ` γ
BAEul

Bt
“ γ

Bu

Bt
ˆ curlAEul in ΩC , (2.26a)

curlpµ´1
0 curlAEulq “ J0 in Ωc

C , (2.26b)

divAEul “ 0 in Ωc
C , (2.26c)

AEul “ Op|x|´1
q as |x|Ñ8, (2.26d)

nˆ rAEulsBΩC
“ 0 on BΩC , (2.26e)

nˆ rµ´1 curlAEulsBΩC
“ 0 on BΩC , (2.26f)

AEulpt “ 0q “ 0 in R3, (2.26g)

divpσmpuq ` σepAEulqq “ ρ
B2u

Bt2
in ΩC , (2.26h)

pσepAEulq ` σ
m
puqq|´

BΩC
n “ pσepAEulqq|

`

BΩC
n on BΩC , (2.26i)

σepAEulq :“µ´1

ˆ

curlAEul b curlAEul´
1

2
| curlAEul|

2I

˙

in ΩC , (2.26j)

σmpuq : “ C : εpuq in ΩC , (2.26k)

u “ uD on BΩD
C , (2.26l)

upt “ 0q “
Bu

Bt
pt “ 0q “ 0 in ΩC , (2.26m)

where T is the final time of interest, I is the rank 2 identity tensor and the initial conditions
to the fields have been chosen to be zero, corresponding to a system at rest at t “ 0. The
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electric and magnetic fields can then be computed onceAEul is known as

E “ ´
BAEul

Bt
, (2.27a)

H “ µ´1B “ µ´1 curlAEul. (2.27b)

For further details about the Eulerian formulation for small displacements and velocities
the reader is referred to [110, 19, 18, 17].
Although displacements are generally small in MRI scanners, the same is not necessarily
true of velocities (especially in the case of stronger coupling). Thus, in this work, an alter-
native formulation based in a Lagrangian formulation and assuming small displacements
but not necessarily small velocities is followed [73].

2.8.2 Lagrangian Formulation for Small Displacements

For small deformations, but not necessarily small velocities and accelerations, the total
Lagrangian and updated Lagrangian descriptions coincide [73] and, henceforth, this will
be simply called the Lagrangian approach in this thesis. This approach will be pursued in
this thesis and is based on the following key assumptions and steps.

1. The eddy current approximation cannot be applied in the Lagrangian frame and
instead must be applied in the Eulerian frame. Thus system (2.13) becomes

curlE “ ´
BB

Bt
, (2.28a)

curlH “H´T
pJ s ` γFT

pE ´B ˆ vqq, (2.28b)

divE “ 0, (2.28c)

divB “ 0, (2.28d)

where we have also assumed that ρV “ 0, which holds for the application of interest
in this thesis.

After applying the eddy current approximation to (2.13), the simplified Maxwell
equations (2.28) are then transformed to the Lagrangian frame, but without assum-
ing small displacements2

curlpE ´B ˆ vq “ ´H´T dH´TB

dt
, (2.29a)

curlH “H´T
pγpFT

pE ´B ˆ vqq ` J sq, (2.29b)

divE “ 0, (2.29c)

divB “ 0. (2.29d)

2Note that under the assumptions of the eddy current approximationH0 “ FT pH`Dˆvq « FTH .
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2. The electromagnetic constitutive laws (2.2) hold in a Eulerian frame and are trans-
formed to the Lagrangian frame.

3. In the Lagrangian frame, the displacements are assumed to be small in which case
H « F « I and J « 1 and, thus,

B0 « B, E0 « E ´B ˆ v, H0 «H , X « x, (2.30)

and, therefore, the constitutive relation B0 “ µH0 holds in the Lagrangian frame
under the assumption of small displacements. This also means that elastic bodies
have the constitutive behaviour σmpuq :“ C : εpuq and that the body force can be
rigorously described in terms of the divergence of a Maxwell stress tensor in terms
ofH0 defined as

σepH0q :“ µ

ˆ

H0 bH0 ´
1

2
|H0|

2I

˙

. (2.31)

Under this assumption, system (2.29) reduces to

curlpE ´B ˆ vq “ ´
dB

dt
, (2.32a)

curlH “ pγpE ´B ˆ vq ` J sq, (2.32b)

divE “ 0, (2.32c)

divB “ 0. (2.32d)

4. The magnetic flux density is written in terms of a magnetic vector potentialA such
that

B « B0 “ curlA, (2.33)

which ensures that (2.32d) is automatically satisfied. Furthermore, inserting (2.33)
in (2.32a), we can write

E ´B ˆ v “ ´ gradψ ´
dA

dt
, (2.34)

where the electric scalar potential ψ arises from the freedom in the choice of A.
That is, A could be replaced by A ` gradϕ and equation (2.33) would remain
unchanged. The system of Maxwell’s equations can then be written in terms of ψ
andA as

curl
`

µ´1 curlA
˘

` γ

ˆ

gradψ `
dA

dt

˙

“ J s in R3, (2.35a)

div

ˆ

´ gradψ ´
dA

dt
` pcurlAq ˆ v

˙

“ 0 in R3. (2.35b)
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5. The Lagrangian system (2.35) is ungauged and, therefore, certain gauge conditions
must be imposed in the conducting and non-conducting regions in order to uniquely
define the solution of (2.35).

Gauging in the Conducting Region

In the conducting region, system (2.35) reduces to

curl
`

µ´1 curlA
˘

` γ

ˆ

gradψ `
dA

dt

˙

“ 0 in ΩC , (2.36a)

div

ˆ

p´ gradψ ´
dA

dt
` pcurlAq ˆ v

˙

“ 0 in ΩC . (2.36b)

In order to uniquely defineA in this region, the temporal (Weyl) gauge on the scalar
potential

ψ “ 0, (2.37)

is considered, which, when applied to system (2.36), results in

curl
`

µ´1 curlA
˘

` γ
dA

dt
“ 0 in ΩC , (2.38a)

divp´
dA

dt
` pcurlAq ˆ vq “ 0 in ΩC , (2.38b)

whereA is uniquely defined by (2.38a) and, thus, (2.38b) is not required.

Gauging in the Non-Conducting Region

In the non-conducting region, system (2.35) reduces to

curl
`

µ´1 curlA
˘

“ J s in Ωc
C , (2.39a)

div

ˆ

´ gradψ ´
dA

dt

˙

“ 0 in Ωc
C . (2.39b)

In order to ensure the uniqueness ofA in this region, the application of the Coulomb
gauge

divA “ 0, (2.40)

is in this case considered.

IfA is divergence free, then gradψ must also be divergence free in order for (2.39b)
to hold. Hence, (2.39b) can be replaced by the Coulomb gauge and so system (2.39)
becomes

curl
`

µ´1 curlA
˘

“ J s in Ωc
C , (2.41a)

divA “ 0 in Ωc
C . (2.41b)

6. For simplicity, a Biot-Savart description of the coils is assumed, where the current
sources are not treated as conductors. However, in general, this choice is not a
limitation of the approach presented in this thesis.
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Transmission Problem

Introducing the elasticity equation in the updated Lagrangian formulation (2.10), rewrit-
ing the transmission conditions (2.20) in terms of A, and adding appropriate boundary
and initial conditions, the magneto-mechanical problem of interest can be described by
the transmission problem: Find pA,uqptq P pR3 ˆ R3qp0, T s such that

curlpµ´1 curlAq ` γ
dA

dt
“ 0 in ΩC , (2.42a)

curlpµ´1
0 curlAq “ J0 in Ωc

C , (2.42b)

divA “ 0 in Ωc
C , (2.42c)

A “ Op|x|´1
q as |x|Ñ8, (2.42d)

nˆ rAsBΩC
“ 0 on BΩC , (2.42e)

nˆ rµ´1 curlAsBΩC
“ 0 on BΩC , (2.42f)

Apt “ 0q “ 0 in R3, (2.42g)

divpσmpuq ` σepAqq “ ρ
d2u

dt2
in ΩC , (2.42h)

pσepAq ` σmpuqq|´
BΩC

n “ pσepAqq|`
BΩC

n on BΩC , (2.42i)

σepAq : “µ´1

ˆ

curlAb curlA´
1

2
| curlA|2I

˙

in ΩC , (2.42j)

σmpuq : “ C : εpuq in ΩC , (2.42k)

u “ uD on BΩD
C , (2.42l)

upt “ 0q “
du

dt
pt “ 0q “ 0 in ΩC , (2.42m)

where the initial conditions for the fields have been chosen to be zero, corresponding to a
system at rest at t “ 0. The Eulerian electric and magnetic fields are coupled to A and v
through

E “ ´
dA

dt
`B0 ˆ v “ ´

dA

dt
` pcurlAq ˆ v in ΩC , (2.43a)

H “ µ´1B0 “ µ´1 curlA in R3, (2.43b)

which can be applied once (2.42) is solved.

2.9 Concluding Remarks

This Chapter has presented a Lagrangian formulation for the description of the magneto-
mechanical problem of interest under the assumption of small displacements. The Chapter
started with the definition of the system of Maxwell equations in a general format. Then,
an introduction to the motion of moving or deformable bodies was provided, focusing on
the different coordinate systems that can be used to describe this motion namely, material
or Lagrangian descriptions and spatial or Eulerian descriptions. The system of equations
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describing the coupled problem in total Lagrangian, updated Lagrangian and Eulerian
formulations was then presented, as well as the transformations between them. Finally,
a series of simplifying assumptions were discussed that, together with the introduction
of a magnetic vector potential and the application of appropriate gauges, boundary and
transmission conditions, results in the final transmission problem for the description of
the magneto-mechanical problem of interest. Notably, this system lends itself to the ap-
plication of a staggered scheme, as opposed to the approach followed in [110, 19, 18, 17],
where a monolithic scheme was required. On top of that, the new approach assumes only
small displacements but not necessarily small velocities, as opposed to the approach in
[110, 19, 18, 17], where both displacements and velocities were assumed to be small.
As will be shown in later chapters, the assumption of small velocities is not necessarily
true for MRI applications, especially in the case of strong coupling and, therefore, the
Lagrangian approach described in this chapter results in more accurate results compared
to the approach in [110, 19, 18, 17].



Chapter 3

Linearised Problem: Lagrangian
Framework

3.1 Introductory Remarks

This chapter focuses on the development of a novel variational formulation of the trans-
mission problem (2.42) that lends itself to an efficient computational methodology. For
this purpose, an AC-DC splitting of the fields will be introduced, and then the variational
formulations of the DC and AC problems will be rigorously derived. Furthermore, con-
sidering the basic physics of an MRI scanner, the AC problem will be linearised and
translated to a time-harmonic setting. The chapter is based on an extended version of the
work presented by the author in [158].
The main novelties of the chapter are the derivation of a linearised magneto-mechanical
problem in a Lagrangian frame and its variational formulation, the translation of the lin-
earised problem to the frequency domain, and the introduction of the regularised DC and
AC problems in order to circumvent the Coulomb gauge condition.
The structure of the chapter is as follows: First, in Section 3.2, the AC-DC splitting of
the fields is introduced and the DC (static) transmission problem is stated. Then, in Sec-
tion 3.3, the weak formulation for both the static and transient problems will be derived.
Section 3.4 focuses on the linearisation of the transient problem and its formulation in
a time-harmonic setting. The treatment of surface integrals is discussed in Section 3.5.
Finally, the regularised DC and AC problems are presented in Section 3.6. The Chapter
finishes with concluding remarks in Section 3.7.

3.2 AC-DC Splitting

An MRI scanner consists basically of two types of coils: the superconducting main coils
that generate a strong static magnetic field and the resistive gradient coils that generate low
strength transient magnetic fields. Since these coils have different supports, the current
source J s can be decomposed into DC and AC contributions, J sptq “ JDC

` JAC
ptq,

associated with the main and gradient coils, Figure 3.1, respectively [19].

35
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A(t) = A
DC +A

AC(t)

u(t) = uDC + uAC(t)

J
DC

J
AC(t)

Main Coils

Gradient Coils

Figure 3.1: Current source decomposition, where J sptq “ JDC ` JACptq.

Based on this decomposition, considering the situation where only the current source
J “ JDC is excited and neglecting the time dependent terms, the transient transmission
problem (2.42) reduces to the following DC (static) problem: Find pADC ,uDCq P R3ˆR3

such that

curlpµ´1 curlADC
q “ JDC in R3, (3.1a)

divADC
“ 0 in R3, (3.1b)

ADC
“ Op|x|´1

q as |x| Ñ 8, (3.1c)

nˆ rADC
sBΩC

“ 0 on BΩC , (3.1d)

nˆ rµ´1 curlADC
sBΩC

“ 0 on BΩC , (3.1e)

divpσmpuDCq ` σepADC
qq “ 0 in ΩC , (3.1f)

uDC “ uDCD on BΩD
C , (3.1g)

pσepADC
q ` σmpuDCqq

ˇ

ˇ

´

BΩC
n “ pσepADC

qq
ˇ

ˇ

`

BΩC
n on BΩC , (3.1h)

which would give the response A “ ADC ,u “ uDC in the absence of any time varying
fields.
This splitting was first introduced in [19], where the solution to a related magneto-
mechanical problem in an axisymmetric setting using an Eulerian formulation was con-
sidered. Here, the splitting is applied to the novel transmission problem (2.42) in the
Lagrangian formulation and the DC problem in this case is given by (3.1).

3.3 Weak Formulation

The development of a finite element software requires the problem to be stated in its
variational (weak) formulation. Hence, in this section, the variational formulation of both
the static (3.1) and dynamic (2.42) transmission problems will be derived.

3.3.1 Static (DC) Problem

The weak formulation of problem (3.1) is derived here. In a departure from the approach
in [17], where the static problem was linearised and then solved using an iterative Newton-
Raphson method, it is noted here that the static problem exhibits only a non-linearity in
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σepADC
q in equations (3.1f) and (3.1h). Therefore, linearisation is not required for the

solution of this problem and, instead, it has been chosen to retain the non-linearity in
σepADC

q and solve the problem in a staggered manner, that is, solve first (3.1a)-(3.1e)
followed by (3.1f)-(3.1h). This approach was first presented by the author in [158] and
is extended here by presenting the complete derivation of the final formulation, including
the technical details.
Considering the development of the variational formulation, the following definitions
must be stated

XR3 :“
 

A PHpcurl,R3
q : divA “ 0 in R3, A “ Op|x|´1

q as |x| Ñ 8
(

, (3.2a)

Y pgq :“
 

u P H1
pΩCq

3 : u “ g on BΩD
C

(

, (3.2b)

where the spaces Hpcurl,R3q and H1pΩCq are defined, in terms of a general domain Ω

as [129]

Hpcurl,Ωq :“
!

a P
`

L2
pΩq

˘3
: curla P

`

L2
pΩq

˘3
)

, (3.3a)

H1
pΩq :“

!

a P L2
pΩq : ∇a P

`

L2
pΩq

˘3
)

, (3.3b)

where L2pΩq :“
 

a :
ş

Ω
|a|2dΩ ă 8

(

.
The weak form of the electromagnetic static equation (3.1a) can now be obtained by
multiplying the equation by a weighting (test) function and integrating over the domain

ż

R3

curl
`

µ´1 curlADC
˘

¨ δADCdΩ “

ż

supp
´

JDC
¯

JDC ¨ δADCdΩ, (3.4)

where δADC
P XR3 is the weighting function and the current JDC is only non-zero in

the corresponding coils, supp
`

JDC
˘

. Note that the Coulomb gauge constraint (3.1b) has
been embedded in the definition of XR3 .
Applying integration by parts1 to the left hand side of equation (3.4)

ż

R3

µ´1 curlADC
¨ curl δADCdΩ`

ż

R3

div
`

µ´1 curlADC
ˆ δADC

˘

dΩ “
ż

supp
´

JDC
¯

JDC ¨ δADCdΩ. (3.5)

Splitting the second term into integrals expressed over subdomains ΩC and R3zΩC

ż

R3

µ´1 curlADC
¨ curl δADCdΩ`

ż

ΩC

div
`

µ´1 curlADC
ˆ δADC

˘

dΩ`

ż

R3zΩC

div
`

µ´1 curlADC
ˆ δADC

˘

dΩ “

ż

supp
´

JDC
¯

JDC ¨ δADCdΩ. (3.6)

1Recall the vector calculus identity div paˆ bq “ b ¨ curla´ a ¨ curl b
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Applying now the divergence theorem2

ż

R3

µ´1 curlADC
¨ curl δADCdΩ`

ż

BR3

`

nˆ µ´1 curlADC
˘

¨ δADCds`
ż

BΩC

`

nˆ µ´1 curlADC
˘
ˇ

ˇ

`
¨ δADCds`

ż

BΩC

`

nˆ µ´1 curlADC
˘
ˇ

ˇ

´
¨ δADCds “

ż

supp
´

JDC
¯

JDC ¨ δADCdΩ, (3.7)

where two surface integrals in the conductor-free space interface BΩC have appeared,
due to the contributions form the conductor side (superscript -) and the free space side
(superscript +). In addition, the normal vectors satisfy ´n` “ n´ “ n and noting that
the boundary BR3 lies at 8 and that since ADC

“ Op|x|´1q then curlADC
“ Op|x|´1q,

which implies that the far field integral vanishes and (3.7) reduces to
ż

R3

µ´1 curlADC
¨ curl δADCdΩ´

ż

BΩC

nˆ
“

µ´1 curlADC
‰

BΩC
¨ δADCds “

ż

supp
´

JDC
¯

JDC ¨ δADCdΩ. (3.8)

Finally, recalling the interface condition (3.1e) and multiplying by µ0 in order to improve
the scaling of the equations, the final expression can be written as: FindADC

P XR3 such
that

ż

R3

µ´1
r curlADC

¨ curl δADCdΩ “ µ0

ż

supp
´

JDC
¯

JDC ¨ δADCdΩ, (3.9)

for all δADC
P XR3 .

The same procedure can be applied to the elasticity equation (3.1f). Consider a test
(weighting) function δuDC P Y p0q. Multiplying equation (3.1f) by this test function
and integrating over the mechanical (conducting) domain ΩC yields

ż

ΩC

div
`

σmpuDCq ` σepADC
q
˘

¨ δuDCdΩ “ 0. (3.10)

Applying integration by parts 3

ż

ΩC

div
´

`

σmpuDCq ` σepADC
q
˘T
δuDC

¯

dΩ´

ż

ΩC

`

σmpuDCq ` σepADC
q
˘

: grad δuDCdΩ “ 0, (3.11)

where p¨qT denotes the transpose.

2Recall the vector identity paˆ bq ¨ c “ pcˆ aq ¨ b
3Note the vector calculus identity for the product of a tensor σ and a vector a: divpσTaq “ σ :

grada` a ¨ divσ.
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By application of the divergence theorem, noting that σe and σm are symmetric (due to
conservation of angular momentum) 4 5 and considering the condition δuDC “ 0 on BΩD

C

ż

ΩC

`

σmpuDCq ` σepADC
q
˘

: grad δuDCdΩ

´

ż

BΩN
C

δuDC ¨
`

σmpuDCq ` σepADC
q
˘
ˇ

ˇ

´
n ds “ 0. (3.12)

Applying the interface condition (3.1h)

ż

ΩC

`

σmpuDCq ` σepADC
q
˘

: grad δuDCdΩ

´

ż

BΩN
C

δuDC ¨
´

σepADC
q
ˇ

ˇ

`
n
¯

ds “ 0. (3.13)

Finally, splitting the first integral, moving the terms involving σepADC
q to the right hand

side and multiplying by µ0 in order to improve the scaling of the equations

µ0

ż

ΩC

σmpuDCq : grad δuDCdΩ “ µ0

ż

BΩN
C

δuDC ¨
´

σepADC
q
ˇ

ˇ

`
n
¯

ds

´ µ0

ż

ΩC

σepADC
q : grad δuDCdΩ (3.14)

The weak formulation of the DC problem (3.1) can then be stated as: Find
`

ADC ,uDC
˘

P

XR3 ˆ Y puDCD q such that

ż

R3

µ´1
r curlADC

¨ curl δADCdΩ “ µ0

ż

R3

JDC ¨ δADCdΩ, (3.15a)

µ0

ż

Ωc

σmpuDCq : grad δuDCdΩ “ µ0

ż

BΩN
C

σe|`n ¨ δuDCds

´ µ0

ż

ΩC

σepADC
q : grad δuDCdΩ, (3.15b)

for all real valued pδADC , δuDCq P XR3 ˆ Y p0q.

3.3.2 Dynamic Problem

Multiplying equations (2.42a) and (2.42b) by a test function δA P XR3 and equation
(2.42h) by a test function δu P Y p0q, respectively, and following similar steps to those
in Section 3.3.1, the weak formulation of the dynamic problem can be stated as: Find

4Note the identity σT “ σ for symmetric tensors.
5Note the identity pσaq ¨ b “ pσbq ¨ a for symmetric tensors.
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pA,uq ptq P XR3 ˆ Y puDq p0, T s such that

RApδA;Aq :“

ż

R3

µ´1
r curlA ¨ curl δA dΩ` µ0

ż

ΩC

γ
dA

dt
¨ δA dΩ

´ µ0

ż

R3

J0 ¨ δA dΩ “ 0, (3.16a)

Rupδu;A,uq :“ µ0

ż

ΩC

pσmpuq ` σepAqq : grad δu dΩ` µ0

ż

ΩC

ρ
d2u

dt2
¨ δu dΩ

´ µ0

ż

BΩN
C

σepAq|`n ¨ δu ds “ 0, (3.16b)

for all pδA, δuq P pXR3ˆY p0qq, where the residuals RApδA;Aq and Rupδu;A,uq have
been defined, which must vanish whenA and u are the true weak solutions to the system
of equations. These residuals are defined with the purpose of constructing a linearised
AC problem in mind. Note that the strong form of this AC problem is not stated, but
an AC weak form will be obtained by linearising the dynamic problem about the DC
solution. The DC problem could also be formulated in terms of residuals, but this would
not present any benefit, as the DC problem will be solved in a staggered manner, without
linearisation.

3.4 Linearisation

In a departure from the Eulerian approach described in Chapter 2, where the Lorentz cur-
rent term γBˆv leads to a two way coupling and a non linear system of equations [19, 17]
making necessary the use of iterative methods (such as fixed point or Newton-Raphson)
for its approximate solution, system (3.16) could be solved integrating the equations in
time and solving at each time step (3.16a) followed by (3.16b). However, the excitation
driving the current in the gradient coils can be decomposed into different frequency modes
using a fast Fourier transform (FFT) and, thus, the aim here is to solve the problem in a
time harmonic regime in order to analyse the behaviour of the system for the complete
range of constituent frequencies. For this purpose, the system must still be linearised due
to the non-linearity of σepAq in (3.16b). We focus on a linearisation that exploits the
particular properties of J in a MRI context.

Remark 3.1 The directional derivative of a weighted residual Ra in the direction of an
increment in the solution ∆a is defined as [35]:

DRapaq r∆as “
d

dζ

ˇ

ˇ

ˇ

ˇ

ζ“0

Rpa` ζ∆aq,

where a is the solution and ζ is a parameter used to scale the increment ∆a.

Thus, the directional derivatives of the residuals (3.16) in the direction of the incremental
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variables ∆A and ∆u must be computed

DRApδA;Aqr∆As “

ż

R3

ˆ

µ´1
r curl ∆A ¨ curl δA` µ0γ

d∆A

dt
¨ δA

˙

dΩ, (3.17a)

DRApδA;Aqr∆us “ 0, (3.17b)

DRupδu;A,uqr∆As “

ż

ΩC

µ´1
r SpA,∆Aq : ∇δu dΩ (3.17c)

´

ż

BΩN
C

SpA,∆Aq|`n ¨ δu ds, (3.17d)

DRupδu;A,uqr∆us “ µ0

ż

ΩC

ˆ

σmp∆uq : ∇δu` ρd2∆u

dt2
¨ δu

˙

dΩ, (3.17e)

where

µ´1SpA,∆Aq :“ µ´1
´

curlAb curl ∆A` curl ∆Ab curlA

´ pcurlA ¨ curl ∆AqI
¯

, (3.18)

is the linearised Maxwell stress tensor.
System (3.16) can now be rewritten as: Find p∆A,∆uq ptq P XR3 ˆ Y puDq p0, T s such
that

DRApδA;Aqr∆As “ ´RApδA;Aq, (3.19a)

DRupδu;A,uqr∆As `DRupδu;A,uqr∆us “ ´Rupδu;A,uq, (3.19b)

for all real valued pδA, δuq P XR3 ˆ Y p0q. This system is still non-linear in time and,
therefore, cannot be solved in the frequency domain. However, as described in [19, 17],
this system can be linearised about the static solution due to the fact that in MRI applica-
tions the static DC current source JDC is much bigger than the time varying AC source
JAC , leading to a DC magnetic field much stronger than the AC magnetic field. Thus,
splitting the source into its DC and AC components and evaluating the residuals (3.16) at
the static solution

R̃ApδAq :“ RApδA;ADC
q “

ż

R3

µ´1
r curlADC

¨ curl δA dΩ

´ µ0

ż

R3

`

JDC ` JAC
˘

¨ δA dΩ, (3.20a)

R̃upδuq :“ Rupδu;ADC ,uDCq “ µ0

ż

ΩC

`

σmpuDCq ` σepADC
q
˘

: grad δu dΩ

´ µ0

ż

BΩN
C

σepADC
q
ˇ

ˇ

`
n ¨ δu ds (3.20b)

where the time derivatives have vanished because the DC fields are independent of time.
Furthermore, considering the weak form of the static problem (3.4), the residuals (3.20)
can be further reduced to

R̃ApδAq “ ´µ0

ż

R3

JAC ¨ δA dΩ, (3.21a)

R̃upδuq “ 0. (3.21b)
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Continuing with the linearisation about the static solution, the directional derivatives must
also be evaluated on the DC fields leading to

DR̃ApδAqr∆As :“ DRApδA;ADC
qr∆As

“

ż

R3

ˆ

µ´1
r curl ∆A ¨ curl δA` µ0γ

d∆A

dt
¨ δA

˙

dΩ, (3.22a)

DR̃ApδAqr∆us :“ DRApδA;ADC
qr∆us “ 0, (3.22b)

DR̃upδu;ADC
qr∆As :“ DRupδu;ADC ,uDCqr∆As

“

ż

ΩC

µ´1
r SpA

DC ,∆Aq : ∇δu dΩ

´

ż

BΩN
C

SpADC ,∆Aq
ˇ

ˇ

`
n ¨ δu ds, (3.22c)

DR̃upδuqr∆us :“ DRupδu;ADC ,uDCqr∆us

“ µ0

ż

ΩC

ˆ

σmp∆uq : ∇δu` ρd2∆u

dt2
¨ δu

˙

dΩ. (3.22d)

The transient system can then be formulated, after linearisation about the DC solution, as:
Find p∆A,∆uq ptq P XR3 ˆ Y puDq p0, T s such that

DR̃ApδAqr∆As “ ´R̃ApδAq, (3.23a)

DR̃upδu;ADC
qr∆As `DR̃upδuqr∆us “ ´R̃upδuq “ 0, (3.23b)

for all real valued pδA, δuq P XR3ˆY p0q, which is linear in the time-dependent variables.
Hence, the system can be now expressed in the frequency domain by assuming a time
harmonic variation of the fields6

∆AÑ ∆AAAeiωt, (3.24a)

∆uÑ ∆UUUeiωt, (3.24b)

JAC Ñ JJJACeiωt, (3.24c)

where i :“
?
´1 and ω “ 2πf represents the angular frequency of the driving current

in the gradient coils in the case of a harmonic excitation. In addition, AAAAC :“ ∆AAA ,
UUUAC :“ ∆UUU and JJJAC represent the complex amplitudes of the corresponding time vary-
ing (update) fields ∆A, ∆u and JAC , respectively.
Introducing this time harmonic representation in the residuals (3.21) and directional
derivatives (3.22), the system can be formulated in the frequency domain as: Find the
complex solutions pAAAAC ,UUUACq P XR3 ˆ Y pUUUAC

D q such that

DR̃ApδAAAAC
qrAAAAC

s “ ´R̃ApδAAAAC
q “ µ0

ż

supppJJJACq

JJJAC ¨ δAAAAC dΩ, (3.25a)

DR̃UpδUUUAC ;ADC
ε qrAAAAC

s `DR̃UpδUUUAC
qrUUUAC

s “ ´R̃UpδUUUAC
q “ 0, (3.25b)

6Note that dp¨q
dt “ Bp¨q

Bt
ˇ

ˇ

ˇ

X
‰ Bp¨q

Bt
ˇ

ˇ

ˇ

x
.
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for all pδAAAAC , δUUUACq P XR3 ˆ Y p0q, where p¨q represents the complex conjugate of a
given variable7 and we have chosen to rename the weights using the same calligraphic
font as for the time harmonic trial functions. In the above, in order to allow for possible
complex weights, it has been chosen to revisit (3.16) and include a complex conjugate on
the weights δA and δu. When this is done and working through the previous steps this
leads to the form (3.25) and the directional derivatives of the time harmonic formulation
defined as 8

DR̃AεpδAAA
AC
qrAAAAC

s :“

ż

R3

´

µ´1
r curlAAAAC

¨ curl δAAAAC ` iµ0ωγAAAAC
¨ δAAAAC

¯

dΩ,

(3.26a)

DR̃UpδUUUAC ;ADC
qrAAAAC

s :“

ż

ΩC

µ´1
r SpA

DC ,AAAAC
q : grad δUUUAC dΩ

´

ż

BΩN
C

SpADC ,AAAAC
q
ˇ

ˇ

`
n ¨ δUUUAC ds, (3.26b)

DR̃UpδUUUAC
qrUUUAC

s :“ µ0

ż

ΩC

´

σmpUUUAC
q : grad δUUUAC ´ ρω2UUUAC

¨ δUUUAC
¯

dΩ,

(3.26c)

where for real weights the conjugate could of course be omitted.
The linear system (3.25) exhibits only a one-way coupling and, therefore, can be solved
in a staggered manner by solving first (3.25a) followed by (3.25b). Once the solutions to
the DC (3.4) and the AC (3.25) systems are computed, the total time dependent fields can
be recovered as

Aptq “ ADC
` Re

`

AAAACeiωt
˘

, (3.27a)

uptq “ uDC ` Re
`

UUUACeiωt
˘

, (3.27b)

J sptq “ JDC ` Re
`

JJJACeiωt
˘

. (3.27c)

The time harmonic physical (Eulerian) electric and magnetic fields for the AC stage are
defined by the linearised version of equation (2.43)

EEEAC
“ ´iωAAAAC

` iωBDC
0 ˆUUUAC in ΩC , (3.28a)

HHH AC
“ µ´1BBBAC

0 in R3, (3.28b)

where BBBAC
0 “ curlAAAAC andBDC

0 “ curlADC and the physical Eulerian fields are

E “ RepEEEACeiωt
q “ Repp´iωAAAAC

` iωBDC
0 ˆUUUAC

qeiωt
q in ΩC , (3.29a)

H “ µ´1B0 “ µ´1
pBDC

0 ` RepeiωtBBBAC
0 qq

“ µ´1
pcurlADC

` Repeiωt curlAAAAC
qq in R3. (3.29b)

7Note that the overbar will be used in this thesis to denote both the complex conjugate and the closure
of a domain. However, it will always be clear which definition applies and no confusion should arise

8Note the definitions of the first and second derivatives of a time harmonic field: d
dt

`

vvveiωt
˘ “ iωvvveiωt

and d2

dt2

`

vvveiωt
˘ “ ´ω2vvveiωt
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3.5 Surface Integral Treatment

In both the DC and AC stages, surface integrals are present which involve σe and S,
respectively. In the case of the former, integration by parts yields

ż

BΩN
C

σe|`n´ ¨ δuDC ds “ ´

ż

Ωc
C

σepADC
q : grad δuDC dΩ, (3.30)

for all real valued δuDC P Z since divσepADC
q “ 0 in Ωc

C where

Z “
!

u P
`

H1
`

R3
˘˘3

: upxq “ 0 for x P
`

R3
zΩC

˘

Y BΩD
C

)

. (3.31)

Note that ΩC is used here to denote the closure of ΩC . In the case of the AC stage, it can
be shown that divpSpADC ,AAAACqq “ 0 in Ωc

CzpsupppJACq Y supppJDCqq (Appendix A)
and, thus, it also holds that

ż

BΩN
C

SpADC ,AAAAC
q
ˇ

ˇ

`
n ¨ δUUUAC ds “´

ż

Ωc
C

SpADC ,AAAAC
q : grad δUUUAC dΩ, (3.32)

for all δu P Z, since the current sources are away from the interface. Similar techniques
have already been applied in other areas, such as electromagnetic scattering, and this
was proven to give an improved convergence of the solution [108, 130]. Furthermore,
rewriting the surface integrals in this form enhances an easier and more efficient numerical
implementation, as will be discussed in Chapter 4.

3.6 Regularisation

In the development of the weak formulation of the DC (3.4) and AC (3.25) problems, the
Coulomb gauge constraint was embedded in the definition of the weighted space XR3 .
However, the methodology to ensure that this condition is actually satisfied was not dis-
cussed and is now considered.
One approach to enforce the Coulomb gauge would be to reformulate the problem in
terms of a mixed variational formulation through the introduction of a Lagrange multiplier
[114, 185, 175]. This approach, however, presents some drawbacks from a computational
perspective that will be presented in greater detail in Chapter 4. First, it leads to an
increase in the number of degrees of freedom and, second, the resulting saddle point
problem is usually more difficult to solve. Furthermore, one has to ensure that not only
the correct discrete spaces are chosen, but also that the order of the elements is chosen
with care so as to ensure that the LBB condition [16, 40] is satisfied. Therefore, with the
aim of building an efficient finite element software, we consider instead the regularised
version [114, 185] of both the DC and AC problems. Note, however, that the application
of regularisation brings the problem of having to solve an ill-conditioned system, but this
will be mitigated by the application of specialist preconditioned iterative methodologies
that will be presented in Chapter 4.
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3.6.1 DC Regularised Problem

Let ε ą 0 be a small regularisation (perturbation) parameter. The regularised DC problem
can then be stated as: Find

`

ADC
ε ,uDC

˘

P X̃R3 ˆ Y puDCD q such that

ż

R3

`

µ´1
r curlADC

ε ¨ curl δADC
` εADC

ε ¨ δADC
˘

dΩ “ µ0

ż

R3

JDC ¨ δADCdΩ,

(3.33a)

µ0

ż

Ωc

σmpuDCq : grad δuDCdΩ “ ´µ0

ż

R3

σepADC
ε q : grad δuDC dΩ,

(3.33b)

for all real valued pδADC , δuDCq P X̃R3 ˆ Z, where the subscript ε is used to denote a
regularised quantity, the surface integral has been replaced by a volume integral following
the approach described in Section 3.5, and the weighted variational space

X̃R3 :“
 

A PHpcurl,R3
q : A “ Op|x|´1

q as |x| Ñ 8
(

, (3.34)

has been defined.
This approach is discussed in detail in [114] and in [185] it is shown that }ADC

ε ´

ADC
}X̃ ď cµ0ε}J

DC
}X̃˚ where ˚ denotes the dual space and the constant c is indepen-

dent of ε, which implies that the error introduced by the regularisation can be controlled
by choosing a sufficiently small ε [156, 185].

3.6.2 AC Regularised Problem

Following the same methodology as in Section 3.6.1, the AC regularised problem can be
derived to be: Find pAAAAC

ε ,UUUACq P X̃R3 ˆ Y pUUUAC
D q such that

DR̃AεpδAAA
AC
qrAAAAC

ε s “ ´R̃ApδAAAAC
q “ µ0

ż

supppJJJACq

JJJAC ¨ δAAAAC dΩ, (3.35a)

DR̃UpδUUUAC ;ADC
ε qrAAAAC

ε s `DR̃UpδUUUAC
qrUUUAC

s “ ´R̃UpδUUUAC
q “ 0, (3.35b)

for all pδAAAAC , δUUUACq P X̃R3 ˆ Z, where the directional derivatives are defined as

DR̃AεpδAAA
AC
qrAAAAC

ε s :“

ż

R3

´

µ´1
r curlAAAAC

ε ¨ curl δAAAAC ` κAAAAC
ε ¨ δAAAAC

¯

dΩ,

(3.36a)

DR̃UpδUUUAC ;ADC
ε qrAAAAC

ε s :“

ż

R3

µ´1
r SpA

DC
ε ,AAAAC

ε q : grad δUUUAC dΩ (3.36b)

DR̃UpδUUUAC
qrUUUAC

s :“ µ0

ż

ΩC

´

σmpUUUAC
q : grad δUUUAC ´ ρω2UUUAC

¨ δUUUAC
¯

dΩ,

(3.36c)
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and κ “
"

iµ0ωγ in ΩC

ωε in Ωc
C

9. From the definition of κ, the regularisation parameter ε can

be interpreted as a very small conductivity that is given to the free space region Ωc
C .

The regularised systems (3.33) and (3.35) constitute the equations that will be simulated
numerically using the finite element software developed in this work and form the starting
point of the discretisation process that will be presented in Chapter 4. Once these systems
are solved, the time harmonic physical electric and magnetic fields for the AC stage are
defined by the regularised version of (3.28)

EEEAC
“ ´iωAAAAC

ε ` iωBDC
0 ˆUUUAC in ΩC , (3.37a)

HHH AC
“ µ´1BBBAC

0 in R3, (3.37b)

where BBBAC
0 “ curlAAAAC

ε andBDC
0 “ curlADC

ε and the physical Eulerian fields are

E “ RepEEEACeiωt
q “ Repp´iωAAAAC

ε ` iωBDC
0 ˆUUUAC

qeiωt
q in ΩC , (3.38a)

H “ µ´1B0 “ µ´1
pBDC

0 ` RepeiωtBBBAC
0 qq

“ µ´1
pcurlADC

ε ` Repeiωt curlAAAAC
ε qq in R3. (3.38b)

The procedure to compute the solution can then be summarised in the following steps

1. Solve (3.33) forADC ,uDC .

2. Solve (3.35) for AAAAC
ε ,UUUAC .

3. Compute E andH using (3.38).

3.7 Chapter Summary

This chapter has presented a novel coupling methodology for the solution of coupled
magneto-mechanical problems in MRI scanners. The transmission problem (2.42), which
is based in a Lagrangian frame was split into its DC and AC contributions. The vari-
ational formulation for both the static and transient problems was derived and the AC
problem was obtained by linearising the transient problem about the static solution. A
time harmonic variation of the fields was then assumed in order to formulate the problem
in the frequency domain. This led to a staggered linear system in the frequency domain,
which offers great computational advantages compared to the Eulerian formulation used
in [19, 17]. Furthermore, following a rigorous derivation, the surface integrals were re-
placed by volume integrals for the purpose of a more efficient computational implemen-
tation that will follow in Chapter 4. Finally, the Coulomb gauge was discussed and the

9Note that from a dimensional analysis, it could be argued that ε has in this case units of conductivity
times permeability, as opposed to the DC problem where from a dimensional analysis it results that ε is
adimensional. However, ε is not a physical parameter and, as such, it is usually written without units
[113, 185].
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regularised problem was presented in order to avoid the saddle point problem that would
arise when imposing the Coulomb gauge constraint using a Lagrange multiplier. An error
bound for the solution of the regularised problem in terms of the regularisation parameter
was provided and, as will be seen in subsequent chapters, this approach offers significant
computational advantages.



Chapter 4

Computational Implementation

4.1 Introductory Remarks

This chapter describes the computational treatment of the linearised and regularised prob-
lem presented in Chapter 3. With the objective of developing an accurate and efficient
methodology, a hp-finite element discretisation is considered and a rigorous derivation of
the discrete system is provided. Furthermore, the efficient solution of the resulting lin-
ear system of equations using preconditioned iterative solvers is discussed. The chapter
builds on the work first presented in [158] by the author through an extended discussion
of the technical details.
The main novelties of the chapter are as follows: First, a high order finite element dis-
cretisation for the solution of the novel linearised magneto-mechanical problem presented
in Chapter 3 for three-dimensional configurations is derived, which combines high order
H1 and H(curl) basis functions for the discretisation of the mechanical displacements
and magnetic vector potential, respectively. Second, an efficient solver strategy is dis-
cussed, which involves the solution to the coupled problem in a staggered manner and
the use of preconditioned iterative solvers when appropriate. Third, a discussion of the
geometrical and physical symmetries that can be exploited to reduce the computational
cost of the simulations when considering longitudinal as well as transversal gradient coils
is presented and the appropriate symmetry conditions to be imposed at each boundary for
the AC and DC fields are stated. Fourth, a methodology to ensure that the current source
is solenoidal at a discrete level is also discussed.
The structure of this Chapter is as follows: In Section 4.2 a finite computational domain
is introduced by truncating the otherwise unbounded domain. Section 4.3 describes the
finite element discretisation, including a description of the reference element, the basis
functions used to discretise the electromagnetic and mechanical fields, the mapping be-
tween physical and reference element, and a rigorous derivation of the discrete system.
The staggered algorithm used for the solution of the coupled problem is presented in
Section 4.4 and the new solver strategy is compared with the Eulerian approach used in
[19, 18, 17] in order to show the computational advantages of the novel Lagrangian ap-
proach. Section 4.5 presents an efficient preconditioning strategy for the solution of the

49
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@Ωc

J 0

Ωc

R
3 n Ωc

@Ω

x

ΩNC

@R3 ! 1

Figure 4.1: Computational domain Ω “ ΩC Y ΩNC created by truncating the unbounded
free space region Ωc

C at a finite distance away from ΩC , resulting in the bounded non-
conducting region ΩNC .

discrete system using iterative solvers. The introduction of mechanical damping to the
system is discussed in Section 4.6. A discussion regarding the properties of the current
sources is provided in Section 4.7 and the mapping of the current source to the space
of solenoidal functions is described in Section 4.8. The symmetry conditions resulting
from the geometrical and physical symmetries are discussed in Section 4.9. Section 4.10
presents a schematic representation of the finite element software, outlining the main
stages of the simulation process. The Chapter finishes with concluding remarks in Sec-
tion 4.11.

4.2 Computational Domain

To allow the introduction of a finite element discretisation, the unbounded free space re-
gion Ωc

C must be truncated in order to create a bounded computational domain. Thus, the
unbounded free space region Ωc

C is truncated at a finite distance away from the conducting
region ΩC resulting in a truncated non-conducting domain ΩNC , as illustrated in Figure
4.1. The complete bounded domain is then defined as Ω :“ ΩC Y ΩNC .
Once the domain is truncated, an appropriate boundary condition must be applied at BΩ.
Ideally, one would like to know the analytical solution Aexact at the boundary and then
apply n ˆ A “ n ˆ Aexact at BΩ. However, analytical solutions are only available for
single physics problems consisting of simple geometries. For the coupled problem of
interest, where analytical solutions are not available, the decay condition (2.42d) can be
approximated by the boundary condition

nˆA “ 0 on BΩ, (4.1)

where the boundary BΩ is assumed to be sufficiently far away from ΩC . Similarly, in the
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DC problem, the decay condition is approximated by

nˆADC
“ 0 on BΩ. (4.2)

Other approaches, such as the use of infinite elements [27, 28] or boundary integral meth-
ods [141, 20], could also be considered, which would allow to truncate the domain at a
smaller distance to the conducting bodies. However, these would result in a yet more
complex computational implementation and, in this work, it was chosen to approximate
the decay condition as described above.
In order to take into account (4.1) and (4.2), the variational space X̃R3 , defined in (3.34),
must be replaced by

X̃Ωpgq “ tA PHpcurl,Ωq : nˆA “ nˆ g on BΩu , (4.3)

where g “ Aexact in the case of a known analytical solution and g “ 0 in the general
case where the decay condition is approximated as described above.
In the case whereAexact is not known, the accuracy of the approximation improves as the
size of ΩNC increases, but this results also in an increase in computational cost. Thus, the
size of ΩNC must be chosen based on a balance between the accuracy of the approxima-
tion and the computational cost.

4.3 Finite Element Discretisation

The finite element method [187, 186, 89, 171] is used to discretise the coupled magneto-
mechanical problem of interest. For this, a non-overlapping unstructured tetrahedral par-
tition of the domain Ω “

ŤNe

e“1 Ωpeq is introduced, where Ωpeq is the region corresponding
to tetrahedral element peq. Note that unstructured tetrahedral partitions will be considered
in this thesis due to the availability of automatic unstructured meshing algorithms for
generating meshes around complex configurations and the NetGen mesh generator [155]
is used here for this purpose. For a description of the process to create such partitions
with NetGen, including the CAD and mesh generation see Appendix B where the issues
encountered in this meshing process are summarised. Note that the use of hexahedral el-
ements with high aspect ratio for the discretisation of the thin radiation shields could lead
to further computational efficiencies, but this would require the definition of a set of H1

andH(curl)-conforming basis functions for hexahedrons and pyramids as well as the use
of more sophisticated meshing packages that allow the generation of meshes including
tetrahedral, hexahedral and pyramidal high order elements.
Then, a hp-finite element framework [94, 58, 75, 98] is considered, which is a combina-
tion of the h- and p-finite element versions, where the accuracy of the solution is improved
by refining the mesh (reducing the size of the elements) and increasing the polynomial or-
der of the basis functions, respectively. This choice of finite element discretisation has
been chosen due to its ability to offer exponential convergence of the solution, provided
that the correct combination of h-refinement and p-refinement is chosen. In particular, it
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is well known that, for problems with smooth solution in a domain formed by linear ge-
ometry, h-refinement results in an algebraic rate of convergence of the error in the energy
norm, while p-refinement leads to exponential convergence. The a priori estimate for the
rate of convergence under h-refinement can be defined as [171, 172, 11]

||e||EpΩq ď
k

NDOF β
, (4.4)

where e denotes the difference between the computational and exact solutions, NDOF
denotes the number of degrees of freedom, k is a positive constant and β “ p{3 for three
dimensional problems, with p the polynomial order of the approximation and ||e||EpΩq
denotes either the H1pΩq orHpcurl,Ωq norm of e, defined as

}e}H1pΩq :“

ˆ
ż

Ω

|e|2 ` | grad e|2dΩ

˙1{2

, (4.5)

}e}HpcurlqpΩq
:“

ˆ
ż

Ω

|e|2 ` | curl e|2dΩ

˙1{2

. (4.6)

Similarly, the a priori estimate for the rate of convergence under p-refinement can be
defined as [171, 172, 11]

||e||EpΩq ď
k

exppαNDOF θq
, (4.7)

where α is a positive constant and for three dimensional problems θ ě 1{3.
The use of hp-finite elements leads to exponential convergence even for problems with
a solution that is not smooth, provided that the correct combination of h-refinement and
p-refinement is chosen [171, 172]. Further advantages of the hp-FEM approach have been
previously discussed in [94, 58, 75, 98] and, therefore, are not repeated here.
It is important to note that the electromagnetic and mechanical fields have different con-
tinuity requirements; more specifically, the mechanical displacements u must be both
normal and tangentially continuous across element interfaces, while the magnetic vec-
tor potential requires only tangential continuity across element interface. To satisfy this
requirements, the mechanical displacements uDC ,UUUAC must be discretised using a set
of H1 conforming basis functions, while the magnetic vector potential ADC

ε ,AAAAC
ε must

be discretised using H(curl) conforming basis functions. Note that the discretisation
of three dimensional electromagnetic problems with H1 conforming basis functions has
been shown to fail [185], leading to wrong solutions in the presence of re-entrant corners
and edges [53] or to spurious solutions in the case of eigenvalue problems [34, 36]. Hav-
ing this in mind, there is a wide variety of H1 and H(curl) conforming basis functions
that could be considered [58, 59, 10, 156, 185]. However, when considering a hp-FEM
implementation, it is preferred to allow for easy polynomial refinement, and, therefore, a
hierarchic set of basis functions is advantageous for an efficient implementation and also
because they lead to better conditioned matrices [98, 171, 10]. Thus, the sets of hierar-
chical H1 andH(curl) conforming basis functions introduced by Schöberl and Zaglmayr
[156] are used in this thesis for the discretisation of the coupled problem, which have the
advantage of satisfying the complete sequence property

H1
pΩq

∇
ÝÑHpcurl,Ωq curl

ÝÝÑHpdiv,Ωq div
ÝÝÑ L2

pΩq, (4.8)
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V1

V2

V3

V4

Figure 4.2: Reference tetrahedral element Ω̂.

both globally and locally (each edge, face and element block), which results in the possi-
bility to choose different polynomial degrees for each edge, face and cell. Furthermore,
the high order basis functions contain functions that are gradients of the lower order basis,
which results in the possibility to neglect these gradients for magnetostatic problems and
for non-conducting regions in eddy current problems, reducing the size of the problem
and improving the conditioning of the system. With this choice of basis, simple block-
Jacobi preconditioning becomes efficient [156, 185, 114]. The reference element and the
chosen basis functions are described in the following subsections.

4.3.1 Reference Element

In the case of tetrahedral elements with flat faces, and a lowest order discretisation, it
is possible to explicitly state the basis functions on the physical element. However, for
the purpose of specifying the basis functions associated with higher order elements and,
in order to deal with meshes with tetrahedral faces that are curved, it is necessary to
introduce a reference element on which the H1 and H(curl)-conforming basis functions
will be defined.
The reference element Ω̂ used in this thesis is the tetrahedron with vertices V1 “

p´1, 0, 0q, V2 “ p1, 0, 0q, V3 “ p0,
?

3, 0q and V4 “ p0, 1{
?

3, 2
?

2{
?

3q in the refer-
ence coordinate system (ξ, η, ζ) 1, as illustrated in Figure 4.2.

4.3.2 Hierarchical H1 Conforming Basis Functions

For the discretisation of uDC and UUUAC the hierachical H1 conforming basis functions
proposed by Schöberl and Zaglmayr [156, 185] are used. Their construction is based in a
low-order vertex, high-order edge-face-cell splitting as follows

Whp :“ Wh,1 ‘
ÿ

edgesEPEh

WE
p ‘

ÿ

facesFPFh

W F
p ‘

ÿ

cellsIPIh

W I
p Ă H1

pΩq (4.9)

1Note that ξ will be used later to denote the damping ratio, where no confusion should arise.
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4 Low order vertex 6pp´ 1q edge 2ppp´ 1q2 ´ pp´ 1qq
face

pp´ 3qpp´ 2qpp´ 1q{6
interior

Figure 4.3: High order H1-conforming basis functions. Illustration of the distribution of
elemental DOF into low order vertex and high order edge, face and interior.

(a) p “ 1 vertex function (b) p “ 2 edge function (c) p “ 3 face function

Figure 4.4: Sample H1-conforming basis functions plotted over a face of the reference
tetrahedron.

where Eh,Fh, Ih denote the sets of edges, faces and cells (or interiors) in our discretisa-
tion, respectively,Wh,1 is the standard vertex (V) based finite element space of continuous
piecewise linear hat functions and WE

p ,W
F
p ,W

I
p denote its hierarchic edge (E), face (F)

and cell (I) enrichment, respectively.

The total number of degrees of freedom (DOF) in the reference element can be split,
for a given polynomial order p, into 4 low order vertex (V), 6pp ´ 1q high order edge
(E), 2ppp ´ 1q2 ´ pp ´ 1qq high order face (F) and pp ´ 3qpp ´ 2qpp ´ 1q{6 high order
cell (I) (or interior) DOF, as illustrated in Figure 4.3. Note that the lowest order case
corresponds to p “ 1, in which case there are 4 DOF associated to the vertices of the
reference tetrahedron, resulting in a linear approximation.

An illustration of this basis functions over a face of the reference tetrahedron is provided
in Figure 4.4. These scalar basis functions are such that the vertex functions associated
with vertex v vanish on all other vertices, the edge functions associated with edge e vanish
an all other edges and the face functions associated with face f vanish an all other faces
and on all the edges of face f . Restricted to a given edge, the edge function of order p
is an integrated Legendre polynomial of order p. The same holds for face and interior
functions restricted to a given face or cell, respectively [156, 185]. For further details
about these shape functions we refer to [156, 185].
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6 Low order edge
(q “ 0)

6q High order edge 4pq2 ´ 1q face pq´ 2qpq´ 1qp2` pq´
3q{2q interior

Figure 4.5: High order H(curl)-conforming basis functions. Illustration of the distribu-
tion of elemental DOF into low and high order edge, face and interior.

4.3.3 HierarchicalH(curl)-Conforming Basis Functions

As previously discussed, ADC
ε and AAAAC

ε must be discretised using a set of H(curl) con-
forming basis functions in order to ensure tangential continuity across element interfaces.
Hence, the hierarchical set of H(curl)-conforming basis functions proposed by Schöberl
and Zaglmayr [156, 185] are considered. Denoting with q the polynomial order of the
H(curl) basis functions, a low-order edge, high-order edge-face-cell based splitting of
theH(curl) conforming finite element space can be defined as

Xhq :“ Xh,0 ‘
ÿ

edgesEPEh

XE
q ‘

ÿ

facesFPFh

XF
q ‘

ÿ

cellsIPIh

XI
q ĂHpcurl,Ωq, (4.10)

where Xh,0 denotes the space of lowest order (q “ 0) edge (E) or Nédélec elements
[131] and XE

q , X
F
q , X

I
q denote its high order edge (E), face (F) and cell (I) enrichment,

respectively.
The DOF can be split in this case into 6 low order edge (E), 6q high order edge (E),
4pq2 ´ 1q high order face (F) and pq ´ 2qpq ´ 1qp2 ` pq ´ 3q{2q high order interior (I)
DOF as illustrated in Figure 4.5. The H(curl) basis are vectorial functions, as opposed
to the scalar H1 basis. The lowest order q “ 0 edge basis associated with edge e has a
constant tangential component on edge e and zero tangential component on other edges.
Similarly, the q “ 1 edge basis associated to edge e has a tangential component that
varies linearly on edge e and vanishes on all other edges. The same principle holds for
face basis functions, where the face basis of order q “ 2 associated with face f varies
quadratically on that face and vanishes on all other faces. Restricted to a given edge,
face or cell, the edge, face and interior functions can be expressed in terms of products of
scaled integrated Legendre polynomials and their gradients [156]. Furthermore, note that
the cell functions vanish on all edges and faces, and, therefore, are independent between
elements. An illustration of these basis in a face of the reference tetrahedron is provided
in Figure 4.6.
Furthermore, splitting the high order terms in (4.10) into gradients and non-gradients of
the H1 subspaces, (4.10) can also be rewritten as

Xhq “ Xh,0‘
ÿ

edgesEPEh

∇WE
q`1‘

ÿ

facesFPFh

∇W F
q`1‘ X̃

F
q ‘

ÿ

cellsIPIh

∇W I
q`1‘ X̃

I
q , (4.11)
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(a) q “ 0 edge function (b) q “ 1 edge function (c) q “ 2 face function

Figure 4.6: Sample H(curl)-conforming basis functions plotted over a face of the refer-
ence tetrahedron.

where the high order H(curl) edge basis of order q are gradients of the high order H1

edge basis functions of order q ` 1 and the high order face and interior basis functions of
order q are split into gradients of the H1 basis of order q ` 1 and non gradient face and
interior functions, that are added to complete the high order space. The subspaces of non-
gradient face and interior functions are denoted as X̃F

q and X̃I
q , respectively. This splitting

of the basis functions into gradients and non-gradients is important for the regularisation
strategy adopted in this work and for the construction of an efficient preconditioner, as
will be discussed later. For further details about the construction of the H(curl) basis the
reader is referred to [156, 185].

Reduced basis gauging

The splitting of Xhq offered by (4.11) leads to further efficiencies when combined with
the regularisation strategy that was presented in Section 3.6. In particular, those basis
functions which are gradients can be skipped in the non-conducting regions (as their curl
vanishes) and this leads to a dramatic reduction in the number of unknowns. This reduced
basis gauging approach was applied to magnetostatic problems in [156] and to eddy cur-
rent problems in [114] and its application to both cases is discussed in detail in [185].
Exploiting the splitting (4.11) of the H(curl) space into high order gradient and non-
gradient functions the main idea of the reduced basis gauging can be summarised as fol-
lows:

• For the DC (magnetostatic) problem, the high order gradient subspaces are gauged
by skipping the corresponding high order edge, face and cell gradient functions.

• For the AC (eddy current) problem, the high order gradient subspaces are gauged
by skipping the corresponding high order edge, face and cell gradient functions in
the non-conducting region ΩNC .

• For the lowest order subspace, Xh,0, the strategy described in Section 3.6 of adding
a small regularisation parameter ε in order to gauge the system is considered.

This approach results in a big reduction in the size of the discrete system of equations and
in a significant improvement of the condition number [185].
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Figure 4.7: Mapping between the reference Ω̂ and physical Ωpeq elements.

The reduced FE space for the DC problem can then be defined as

XDC
reg “ Xh,0 ‘ X̃

F
q ‘ X̃

I
q , (4.12)

where the high order gradient functions have been removed. Similarly, the reduced FE
space for the AC problem can be defined as

XAC
reg “ Xh,0 ‘

ÿ

edgesEPEC
h

∇WE
q`1 ‘

ÿ

facesFPFC
h

∇W F
q`1 ‘

ÿ

facesFPFh

X̃F
q

‘
ÿ

cellsIPIC
h

∇W I
q`1 ‘

ÿ

cellsIPIh

X̃I
q , (4.13)

where ECh ,FCh and ICh denote the sets of edges, faces and cells in the conducting region.

4.3.4 Elemental Mapping

The basis functions have been defined in the reference element. However, the basis func-
tions must also be mapped to the physical domain, where the problem is defined. For
this, a mapping function describing the transformation from the reference to the physical
domain is required, as illustrated in Figure 4.7.
The mapping can be expressed in the general form

¨

˝

x

y

z

˛

‚“ ϕϕϕpξ, η, ζq, (4.14)

whereϕϕϕ is the mapping function. Different choices for the mapping function are possible,
which are related to the degree of approximation of the geometry.

Linear Mapping

A linear mapping is typically used in standard finite element solvers, where low order
elements are used. The linear mapping can be defined in terms of the barycentric coordi-
nates, which coincide with the lowest orderH1 basis functions described in Section 4.3.2.
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Denoting these shape functions as Li, the linear mapping can be defined as
¨

˝

x

y

z

˛

‚“

4
ÿ

i“1

Lpeq,ipξ, η, ζq

¨

˝

xi
yi
zi

˛

‚, (4.15)

where Lpeq,i, i “ 1, . . . , 4 denote the local evaluation of the 4 lowest order H1 basis
functions and xi, yi, zi denote the nodal coordinates of the physical element.

Quadratic Mapping

Curved elements are used typically when considering a geometry with a curved boundary
and performing p- or hp-refinement, in order to produce a better approximation of the
geometry for coarse meshes. One possibility to use such curved elements is the use of
Lagrange families of elements [187], where additional nodal points are introduced on the
edges and faces of the element. In particular, NetGen allows the generation of quadratic fi-
nite elements, where 6 extra nodes are added in the edges of the tetrahedrons. A quadratic
approximation of the geometry can then be constructed as

¨

˝

x

y

z

˛

‚“

10
ÿ

i“1

LLi pξ, η, ζq

¨

˝

xi
yi
zi

˛

‚, (4.16)

where LLi , i “ 1, . . . , 10 denote the set of Lagrange basis functions of order two [89].
Furthermore, (xi, yi, zi), i “ 1, . . . , 4 are the coordinates of the vertices of the physical
element and (xi, yi, zi), i “ 5, . . . , 10 those of the 6 extra nodes added along the edges of
the physical element.

The Blending Function Method

An alternative approach to approximate curved boundaries is the blending function
method [171, 98, 77]. The approach described in [77, 54] is considered here, where the
mapping is defined as the sum of a linear mapping plus a high order polynomial correction
over the faces and edges on the boundary as

¨

˝

x

y

z

˛

‚“

4
ÿ

i“1

Lipξ, η, ζq

¨

˝

xi
yi
zi

˛

‚`
ÿ

edgesEPΩpeq

¨

˝

cEx
cEy
cEz

˛

‚`
ÿ

faces FPΩpeq

¨

˝

cFx
cFy
cFz

˛

‚, (4.17)

where pcEx , c
E
y , c

E
z q and pcFx , c

F
y , c

F
z q denote the high order edge and face corrections, which

are functions of ξ, η, ζ . The polynomial order of the corrections, g, is chosen depending
on the curvature of the boundary and the coarseness of the mesh.
Other approaches, such as the NURBS-enhanced finite element method (NEFEM)
[160, 161] or isogeometric analysis [90] have also been applied in order to obtain ac-
curate geometry representations for problems where the accuracy of the solution is highly
dependent on the geometry approximation.



4.3. FINITE ELEMENT DISCRETISATION 59

H1 andH(curl)-conforming element transformations

Once the mapping has been defined, the H1 and H(curl) basis functions can be trans-
formed from the reference to the physical element. For this purpose, several transforma-
tions must be defined. First, the Jacobian matrix must be defined as

J “

»

—

–

Bx
Bξ

By
Bξ

Bz
Bξ

Bx
Bη

By
Bη

Bz
Bη

Bx
Bζ

By
Bζ

Bz
Bζ

fi

ffi

fl

. (4.18)

Considering a scalar function L̂ P H1pΩ̂q defined in the reference element, the next H1-
conforming transformations can be defined [185]

Lpx, y, zq “ L̂pξ, η, ζq, (4.19)

gradLpx, y, zq “ J´T ˆgrad L̂pξ, η, ζq, (4.20)

with L P H1pΩpeqq being the corresponding H1-conforming function on the physical
element. The hat on grad indicates differentiation with respect to ξ, η, ζ .

The transformation of vectorial H(curl)-conforming functions from the reference to the
physical element is more complex compared to the case of scalar H1-conforming func-
tions, as it must be guaranteed that the degrees of freedom are preserved by the transfor-
mation and that gradient fields are mapped onto gradient fields. With these idea in mind,
and considering a H(curl)-conforming function N̂ P Hpcurl, Ω̂q the next transforma-
tions can be defined [185]

N px, y, zq “ J´TN̂ pξ, η, ζq, (4.21)

curlN px, y, zq “ |J|´1J ˆcurl N̂ pξ, η, ζq, (4.22)

with N P Hpcurl,Ωpeqq being the corresponding H(curl)-conforming function on the
physical element. The hat on curl indicates differentiation with respect to ξ, η, ζ . In the
above |J| denotes the determinant of J.

4.3.5 Discretisation of the Coupled System

This section focuses on the rigorous derivation of the discrete DC and AC linearised and
regularised systems that were stated in Sections 3.6.1 and 3.6.2, respectively. The H1-
conforming basis functions described in Section 4.3.2 are used for the discretisation of
uDC and UUUAC , while the H(curl) conforming basis functions described in Section 4.3.3
are used, in conjunction with the reduced basis strategy, for the discretisation ofADC

ε and
AAAAC
ε .
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DC System

Consider the non-overlapping unstructured tetrahedral partition Ω “
ŤNe

e“1 Ωpeq. The left
hand side of equation (3.33a) can then be rewritten as

ż

Ω

`

µ´1
r curlADC

ε ¨ curl δADC
` εADC

ε ¨ δADC
˘

dΩ “

Ne
ÿ

e“1

ż

Ωpeq

`

µ´1
r curlADC

ε ¨ curl δADC
` εADC

ε ¨ δADC
˘

dΩ (4.23)

Now let us introduce a discrete Galerkin approximation to the solution ADC
ε,hq P X

DC
reg X

X̃Ωp0q and the test function δADC
hq P X

DC
reg X X̃Ωp0q as

ADC
ε,hq “

PDC
global
ÿ

g“1

N gADC,g
ε ,

δADC
hq “

PDC
global
ÿ

f“1

N fδADC,f ,

where N f ,N g denote the hierarchical H(curl) conforming basis functions described in
Section 4.3.3, PDC

global is the total number of electromagnetic DOF in the DC problem and
ADC,g
ε , δADC,f are the basis functions coefficients, which are constant scalars. Thus, con-

sidering a single element peq with PDC
local degrees of freedom and replacing the continuous

variables with their discrete approximation
ż

Ωpeq

`

µ´1
r curlADC

ε ¨ curl δADC
` εADC

ε ¨ δADC
˘

dΩ

“

PDC
local
ÿ

a“1

PDC
local
ÿ

b“1

δADC,a

ˆ
ż

Ωpeq

´

µ´1
r curlN peq,a

¨ curlN peq,b
` εN peq,a

¨N peq,b
¯

dΩ

˙

ADC,b
ε

“

PDC
local
ÿ

a“1

PDC
local
ÿ

b“1

δADC,a

ˆ

”

K
DC,peq
AA

ıab

`

”

C
DC,peq
AA

ıab
˙

ADC,b
ε , (4.25)

whereN peq,a,N peq,b denote the local evaluation of theH(curl) basis functions at element
peq and the elemental stiffness and damping matrices have been defined, with components

”

K
DC,peq
AA

ıab

“

ż

Ωpeq
µ´1
r curlN peq,a

¨ curlN peq,b dΩ, (4.26a)
”

C
DC,peq
AA

ıab

“ ε

ż

Ωpeq
N peq,a

¨N peq,b dΩ. (4.26b)

Note that here and in the following Roman fonts are used for matrices.

Remark 4.1 Note that, as in any typical FE software, the basis functions are defined locally
at the reference element, where the numerical integration is performed, after transforming
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Figure 4.8: Orientation of the edges for (a) Type I and (b) Type II reference tetrahedra
[10].

the integral from Ωpeq to Ω̂, in order to obtain the corresponding elemental contribution.
This is repeated for each element in the partition and the elemental contributions are then
assembled to form the global system [171, 89]. The discussion on how the integrals are
computed numerically in the reference element is presented in Appendix C.

When assembling elemental contributions from Hpcurlq conforming discretisations it is
important to address the sign conflict problem that arises when imposing tangential con-
tinuity between elements due to assigned orientations associated with edges and faces.
The approach described in [10], which, through the definition of two reference tetrahedra
(Type I and Type II), circumvents this issue, is considered here. This reference elements
have the same nodal coordinates as the reference element defined in 4.3.1, and differ only
in the orientation of one of the edges, as illustrated in Figure 4.8. The global matrices can
then be constructed as

KDC
AA “

Ne

A
e“1

K
DC,peq
AA , CDC

AA “

Ne

A
e“1

C
DC,peq
AA ,

where A is an assembly operator and the global matrices are of size PDC
global ˆ P

DC
global.

Following the same process, the right hand side of equation (3.33a) can be written as

µ0

ż

Ω

JDC ¨ δADCdΩ “
Ne
ÿ

e“1

µ0

ż

Ωpeq
JDC ¨ δADCdΩ. (4.27)

Focusing on a single element and introducing the discrete approximation to the test func-
tion

µ0

ż

Ωpeq
JDC ¨δADCdΩ “

PDC
local
ÿ

a“1

δADC,aµ0

ż

Ωpeq
JDC ¨N peq,adΩ “

PDC
local
ÿ

a“1

δADC,a
”

F
DC,peq
A

ıa

,

(4.28)
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where the elemental right hand side vector has been defined, with components
”

F
DC,peq
A

ıa

:“ µ0

ż

Ωpeq
JDC ¨N peq,adΩ. (4.29)

The global right hand side vector FDC
A is then obtained by assembling the elemental con-

tributions using the assembly operator. Once assembled, the Galerkin equation for the
electromagnetic DC problem reads

PDC
global
ÿ

f“1

PDC
global
ÿ

g“1

δADC,f
´

“

KDC
AA

‰fg
`
“

CDC
AA

‰fg
¯

ADC,g
ε “

PDC
global
ÿ

f“1

δADC,f
“

FDC
A

‰f
, (4.30)

which must hold for every δADC
hq P XDC

reg X X̃Ωp0q and, hence, for all δADC,f , f “
1, 2, . . . , PDC

global. Since the δADC,f are arbitrary, it necessary follows that

PDC
global
ÿ

g“1

´

“

KDC
AA

‰fg
`
“

CDC
AA

‰fg
¯

ADC,g
ε “

“

FDC
A

‰f
f “ 1, 2, . . . , PDC

global. (4.31)

Thus, the discrete system for the electromagnetic DC problem can be written as
“

KDC
AA `CDC

AA

‰ `

ADC
ε

˘

“
`

FDC
A

˘

, (4.32)

where ADC
ε “

ˆ

ADC,1
ε ,ADC,2

ε , . . . ,A
DC,PDC

global
ε

˙T

P RPglobal is the discrete vector of coef-

ficients, which is the solution to the discrete linear system.
Now, the discretisation of equation (3.33b) is considered, in order to compute uDC .
Following the same process as for the discretisation of the electromagnetic problem, the
left hand side of equation (3.33b) is rewritten as

µ0

ż

ΩC

σmpuDCq : grad δuDCdΩ “

NC
e

ÿ

e“1

µ0

ż

Ωpeq
σmpuDCq : grad δuDCdΩ, (4.33)

where NC
e denotes the number of elements in the conducting region ΩC .

Recalling the definition of the strain tensor εpuq :“
´

pgraduq ` pgraduqT
¯

{2, noting

that σmpuDCq is symmetric2 and focusing on a single element

apequ pu
DC , δuDCq :“ µ0

ż

Ωpeq
σmpuDCq : grad δuDCdΩ

“ µ0

ż

Ωpeq
σmpuDCq : εpδuDCqdΩ,

(4.34)

where the elemental bilinear form a
peq
u puDC , δuDCq has been defined for the purpose of

an easier presentation. Recalling the definition of the Cauchy stress tensor, σmpuq :“ C :

εpuq and considering the commutative rule for the contraction of second order tensors3

apequ pu
DC , δuDCq “ µ0

ż

Ωpeq
εpδuDCq :

`

C : εpuDCq
˘

dΩ. (4.35)

2Note that given a symmetric tensor A and an arbitrary tensor B the next relation holds: A : B “ A :

BT “ A : 1
2

´

B `BT
¯

.
3Note the commutative rule for the contraction of two second order tensorsA : B “ B : A.
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Now, let us define Yhp “
 

uhp : uhp P pWhpq
3
(

and introduce a Galerkin approximation
to the solution uDChp P Yhp X Y pu

DC
D q and the test function δuDChp P Yhp X Y p0q as

uDChp “

Qglobal
ÿ

d“1

LduDC,d, (4.36a)

δuDChp “

Qglobal
ÿ

c“1

LcδuDC,c, (4.36b)

where Ld, Lc denote typical hierarchicalH1 basis functions described in Section 4.3.2 and
uDC,d, δuDC,c are constant coefficients. Note that the basis functions are in this case scalar
functions depending on position, while uDC,d :“

´

uDC,d
1 , uDC,d

2 , uDC,d
3

¯

and δuDC,c :“
´

δuDC,c
1 , δuDC,c

2 , δuDC,c
3

¯

are vectors containing the constant coefficients that multiply the
basis functions for each of the three components of the displacement. Thus, the total
number of mechanical DOF is 3Qglobal.
Replacing the continuous trial and test functions uDC , δuDC in (4.35) with their discrete
approximations uDChp , δu

DC
hp

apequ pu
DC
hp , δu

DC
hp q “

Qlocal
ÿ

c“1

Qlocal
ÿ

d“1

ż

Ωpeq

1

2

ˆ

pδuDC,c
qi
BLpeq,c

Bxj
` pδuDC,c

qj
BLpeq,c

Bxi

˙

Cijkl
1

2

ˆ

puDC,d
qk
BLpeq,d

Bxl
` puDC,d

ql
BLpeq,d

Bxk

˙

dΩ,

(4.37)
where 3Qlocal is the number of mechanical DOF in an element, Lpeq,c denotes the local
evaluation of the c’th H1 basis function at element peq and Einstein’s summation conven-
tion is used to sum over the indices i, j, k, l. After suitable index transformations, (4.37)
can be rewritten as

apequ pu
DC
hp , δu

DC
hp q “

Qlocal
ÿ

c“1

Qlocal
ÿ

d“1

`

δuDC,c
˘

i

ˆ
ż

Ωpeq

BLpeq,c

Bxj

1

4
pCijkl `Cijlk `Cjikl `Cjilkq

BLpeq,d

Bxl
dΩ

˙

`

uDC,d
˘

k

“

Qlocal
ÿ

c“1

Qlocal
ÿ

d“1

`

δuDC,c
˘

i

„
ż

Ωpeq

BLpeq,c

Bxj
Csym
ijkl

BLpeq,d

Bxl
dΩ



`

uDC,d
˘

k
, (4.38)

where

Csym
ijkl “

1

4
pCijkl `Cijlk `Cjikl `Cjilkq

“ λδijδkl `
G

2
pδikδjl ` δkjδil ` δilδjk ` δjkδilq, (4.39)

and swapping indices j and k

apequ pu
DC
hp , δu

DC
hp q “

Qlocal
ÿ

c“1

Qlocal
ÿ

d“1

pδuDC,c
qi

„
ż

Ωpeq

BLpeq,c

Bxk
Csym
ikjl

BLpeq,d

Bxl
dΩ



puDC,d
qj

“

Qlocal
ÿ

c“1

Qlocal
ÿ

d“1

pδuDC,c
qi
“

KDC,peq
uu

‰cd

ij
puDC,d

qj, (4.40)
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where the elemental stiffness matrix has been defined, with components

“

KDC,peq
uu

‰cd

ij
“

ż

Ωpeq

BLpeq,c

Bxk
Csym
ikjl

BLpeq,d

Bxl
dΩ, (4.41)

and the global stiffness matrix KDC
uu can be constructed as previously using the assembly

operator, so that

KDC
uu “

NC
e

A
e“1

KDC,peq
uu , (4.42)

where NC
e denotes the number of elements in the conducting region.

Consider now the discretisation of the right hand side of equation (3.33b). Following the
same process, this can be expressed as

´ µ0

ż

Ω

σepADC
q : grad δuDC dΩ “ ´

Ne
ÿ

e“1

µ0

ż

Ωpeq
σepADC

ε q : grad δuDC dΩ. (4.43)

Furthermore, since δuDC P Z is such that δuDCpxq “ 0 for x P ΩzΩC , instead of inte-
grating on the whole non-conducting region, it is chosen here to restrict the integration to
a layer of elements Ω1

NC adjacent to ΩC , i.e., only those elements that have at least one
entity (vertex, edge or face) on BΩC . These elements are identified at a pre-processing
stage with a negligible cost, making the subsequent assembly of (4.43) much more effi-
cient. The layer of elements is illustrated in Figure 4.9 for the case of a conducting sphere
of radius 1 cm and a non-conducting sphere of radius 2 cm. Thus, (4.43) can then be
expressed as

´µ0

ż

Ω

σepADC
q : grad δuDC dΩ “ ´µ0

ż

ΩCYΩ1
NC

σepADC
q : grad δuDC dΩ “

´

N1
e

ÿ

e“1

µ0

ż

Ωpeq
σepADC

ε q : grad δuDC dΩ, (4.44)

where N1
e is the number of elements in ΩC Y Ω1

NC .
Focusing on a single element, and introducing the discrete approximation to δuDC

´µ0

ż

Ωpeq
σepADC

ε q : grad δuDC dΩ “ ´
Qlocal
ÿ

c“1

µ0δu
DC,c

ż

Ωpeq
σepADC

ε qij
BLpeq,c

Bxj
dΩ

“ ´

Qlocal
ÿ

c“1

µ0δu
DC,c

“

FDC,peq
u

‰c

i
, (4.45)

where the elemental right hand side vector has been defined, with components

“

FDC,peq
u

‰c

i
“ µ0

ż

Ωpeq
σepADC

ε qij
BLpeq,c

Bxj
dΩ (4.46)

and the global right hand side vector is constructed as

FDC
u “

N1
e

A
e“1

FDC,peq
u . (4.47)
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Figure 4.9: Schematic representation of the layer of elements Ω1
NC adjacent to ΩC that is

defined in order to improve the efficiency of the assembly process. ΩC Y Ω1
NC coloured

in red and ΩNCzΩ
1
NC in blue.

The discrete system for the mechanical DC problem can then be stated as
“

KDC
uu

‰ `

uDC
˘

“
`

FDC
u

˘

, (4.48)

where

uDC
“

¨

˚

˚

˚

˝

uDC,1

uDC,2

...
uDC,Qglobal

˛

‹

‹

‹

‚

P R3Qglobal , (4.49)

is the discrete vector of coefficients.
Thus, the complete discrete system for the DC stage can be stated as: Find ADC

ε such that
“

KDC
AA `CDC

AA

‰ `

ADC
ε

˘

“
`

FDC
A

˘

, (4.50)

and then uDC such that
“

KDC
uu

‰ `

uDC
˘

“
`

FDC
u

˘

, (4.51)

where the global matrices defined above as the assembly of elemental contributions can
also be written, for a clearer presentation as:

“

KDC
AA

‰ab
“

ż

Ω

µ´1
r pcurlN a

qipcurlN b
qi dΩ, (4.52a)

“

CDC
AA

‰ab
“ ε

ż

Ω

N a
iN

b
i dΩ, (4.52b)

“

KDC
uu

‰cd

ij
“ µ0

ż

ΩC

BLc

Bxk
Csym
ikjl

BLd

Bxl
dΩ, (4.52c)

“

FDC
A

‰a
“ µ0

ż

Ω

JDCi N a
i dΩ, (4.52d)

“

FDC
u

‰c

i
“ ´µ0

ż

ΩCYΩ1
NC

σepADC
ε qij

BLc

Bxj
dΩ, (4.52e)

which are expressed in a global setting and using index notation for all terms.
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AC System

Let us introduce the discrete Galerkin approximations AAAAC
ε,hq P X

AC
reg X X̃Ωp0q to AAAAC and

UUUAC
hp P Yhp X Y pUUU

AC
D q to UUUAC such that

AAAAC
ε,hq “

PAC
global
ÿ

b“1

N bAAC,b
ε , (4.53a)

δAAAAC
ε,hq “

PAC
global
ÿ

a“1

N aδAAC,a
ε , (4.53b)

UUUAC
hp “

Qglobal
ÿ

d“1

LdUAC,d, (4.53c)

δUUUAC
hp “

Qglobal
ÿ

c“1

LcδUAC,c. (4.53d)

Following similar steps as for the derivation of the DC system, the discrete system of
equations for the AC problem can then be stated as: Find AAC

ε and UAC such that

„

KAC
AA `CAC

AA 0

KAC
UA KAC

UU ´ ω
2MAC

UU

ˆ

AAC
ε

UAC

˙

“

ˆ

RAC
A
0

˙

, (4.54)

Electromagnetics

MechanicsMagneto-mechanics

One-way coupling

where the purely electromagnetic blocks have been highlighted in red, the purely mechan-
ical blocks in blue and the coupling block in magenta. The different blocks of the system
are defined as

“

KAC
AA

‰ab
“

ż

Ω

µ´1
r pcurlN a

qipcurlN b
qi dΩ, (4.55a)

“

CAC
AA

‰ab
“ iωµ0

ż

ΩC

γN a
iN

b
idΩ` ωε

ż

ΩNC

N a
iN

b
i dΩ, (4.55b)

“

KAC
UU

‰cd

ij
“ µ0

ż

ΩC

BLc

Bxk
Csym
ikjl

BLd

Bxl
dΩ, (4.55c)

“

MAC
UU

‰cd

ij
“ µ0

ż

ΩC

ρLcLdδij dΩ, (4.55d)

“

KAC
UA

‰cb

i
“

ż

ΩCYΩ1
NC

µ´1
r S

b
ij

BLc

Bxj
dΩ, (4.55e)

“

RAC
A

‰a
“ µ0

ż

Ω

JJJACi N a
i dΩ. (4.55f)
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Mixed approaches arise in the discretisations of linear elasticity problems to avoid me-
chanical locking [169, 48], Navier-Stokes equations for describing the pressure and ve-
locity fields [157] and in the discretisation of the Maxwell system if a Lagrange multiplier
is used to enforce the divergence constraint [175]. In each case, they lead to systems that
combine elements of different types and different orders. In the latter two cases, a saddle
point problem results and, in such cases, it is not only important that the correct discrete
spaces are chosen, but also that the order of the elements be chosen with care so as to
ensure that the (discrete) LBB condition is satisfied. The system (4.54) combines two
element types, but in common with mixed approaches to elasticity with ν ‰ 1{2, it does
not represent a saddle point problem and, therefore, one can be flexible with the degree
approximation p for UUUAC

hp and q for AAAAC
ε,hq.

Furthermore, since the system (4.54) exhibits only a one way coupling, it can be expressed
in a form suitable for a staggered scheme as: Find AAC

ε such that

“

KAC
AA `CAC

AA
‰ `

AAC
ε

˘

“
`

RAC
A

˘

, (4.56)

and then UAC such that

“

KAC
UU ´ ω

2MAC
UU

‰ `

UAC
˘

“
`

RAC
U

˘

, (4.57)

where

RAC
U “ ´KAC

UAAAC
ε . (4.58)

4.4 Staggered Algorithm

Unlike the Eulerian approach used in [19, 18], the solution vector AAC
ε can be computed

independently of UAC in the AC stage and, therefore, the simple staggered solver de-
scribed in algorithmic format in Algorithm 1 is proposed, which combines the DC stage
(4.24), (4.51) and the AC stage (4.56), (4.57) as well as the physical field representations
(3.37). Notice that steps 1, 2, 4 and 5 are simple linear algebra steps and the steps 3 and 6
follow from using the discrete representation of the fields using the coefficients computed
from the solution of the linear systems. This is further emphasised by the different choice
of fonts in steps 3 and 6 compared to the others.
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Algorithm 1 Staggered solver for the Lagrangian approach
Ensure: DC Stage

1: Solve
“

KDC
AA `CDC

AA

‰ `

ADC
ε

˘

“
`

FDC
A

˘

for ADC
ε with a preconditioned CG iterative

solver.
2: Solve

“

KDC
uu

‰ `

uDC
˘

“
`

FDC
u

˘

for uDC with a preconditioned CG iterative solver.
3: ComputeBDC

0,hq “ curlADC
ε,hq and uDChp at all points in Ω.

Ensure: AC Stage
4: Solve

“

KAC
AA `CAC

AA
‰

pAAC
ε q “ pR

AC
A q for AAC

ε with a preconditioned GMRES iter-
ative solver.

5: Solve
“

pKAC
UU ´ ω

2MAC
UU

‰

pUAC
q “ ´rKAC

UAs pAAC
ε q for UAC with a direct solver.

6: Compute UUUAC
hp , EEEAC

hpq “ ´iωAAAAC
ε,hq ` iωBDC

0,hq ˆUUUAC
hp at all points in ΩC .

Compared to the Eulerian approach, Algorithm 1 offers considerable advantages when
applied to large three-dimensional problems since, in the AC stage, rather than the solu-
tion of a single complex indefinite system, the problem has been reduced to the solution
of two smaller systems, the larger of which can be solved by preconditioned iterative ap-
proach. Specifically, the matrix KAC

AA `CAC
AA is complex symmetric and is positive semi

definite. It is of the same form as obtained in the discretisation of eddy current problems
by hp-finite elements [114]. Therefore, the same preconditioned GMRES technique as
described in this work is applied for computing AAC

ε . The matrix KAC
UU ´ ω2MAC

UU is real
and indefinite and it is of the form obtained in the discretisation of elastic wave propaga-
tion by hp-finite elements. For a sufficiently fine grid, an iterative approach to its solution
could be applied, but, given its relatively small dimension compared to KAC

AA ` CAC
AA, a

direct solver is instead employed for the computation of UAC, which is less restrictive.
The AC-stage of the Eulerian approach, which was solved monolithically in [19, 18],
can be solved instead using a fixed point strategy. A flow chart comparing the solver
structure for the Lagrangian and Eulerian formulations is provided in Figure 4.10, where
the advantages of the Lagrangian formulation can be clearly identified.

4.5 Preconditioned Iterative Solvers

Due to the large systems of equations that must be solved, iterative solvers must be con-
sidered, especially in the case of the elecromagnetic DC and AC systems. However, the
number of iterations required by these solvers to converge might become very large, espe-
cially in the case of ill-conditioned systems. Thus, in order to accelerate the convergence,
these iterative methods must be used in conjunction with an efficient preconditioner.
Consider the solution to the system of equations Kq “ b. The main idea is to accelerate
the speed of convergence of the iterative solver without substantially increasing the cost
of each iteration [153]. An efficient preconditioner is one such that P´1 is a good approx-
imation to K´1 but at the same time the application of P´1 to an arbitrary vector is cheap
to compute [153]. Note that the last requirement is due to the fact that most iterative
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Figure 4.10: Flow chart illustrating the different steps involved in the solver stage for the
Lagrangian and Eulerian formulations.
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solvers require only the application of the matrix by vector product Kc and the appli-
cation of P´1d for vectors c and d provided during the iterative process. Furthermore,
although the preconditioning technique can be loosely thought of applying an iterative
solver to the preconditioned system P´1Kq “ P´1b this is not how it is applied in prac-
tice, since even if K and P´1 are symmetric and positive definite, P´1K might not be
symmetric and positive definite, which means that certain iterative solvers could no longer
be applied. To overcome this issue, the preconditioning matrix is often chosen to be sym-
metric positive definite, such that the Cholesky decomposition P “ ETE holds and the
equivalent system

`

E´TKE´1
˘

pEqq “ E´Tb is then solved, where
`

E´TKE´1
˘

has
the same properties (i.e. positive definiteness) as K [116]. Note, however, that in practice
the algorithm for the iterative solver can be written in a way such that it only requires the
solution to systems involving P´1, without ever computing E [116].
The range of preconditioners that can be applied goes from the simplest case of diag-
onal preconditioning, in which P “ diagpKq, to more complex preconditioners such
as incomplete LU factorization (ILU), incomplete Cholesky factorization, block Jacobi,
successive over-relaxation (SOR) or algebraic multigrid preconditioners [153, 26]. Sim-
ilarly, multiple choices are available for the iterative solver, including conjugate gradient
(CG), Gauss-Seidel, biconjugate gradient (BiCG), minimal residual (MINRES) or gener-
alized minimal residual methods (GMRES), among others. In this work, we will focus on
the preconditioned conjugate gradient method (PCG) and the preconditioned generalized
minimal residual method (PGMRES), where the preconditioner will be a block Jacobi pre-
conditioner that exploits the explicit construction of our H1 and H(curl) finite element
spaces [113]. The application of PCG with a block Jacobi preconditioner to magnetostatic
problems was considered in [156]. The same preconditioner was applied, in combination
with other iterative solvers, to the solution of eddy current problems in [185]. Later, an
improved preconditioner which exploits the explicit construction of the basis functions
used in this work was developed by Ledger and Zaglmayr, and applied to eddy current
problems using a preconditioned GMRES solver in [113]. Thus, in this work, the precon-
ditioner proposed by Ledger and Zaglmayr for the solution of the magnetostatic (4.50) and
eddy current (4.56) problems is considered, and the same idea is then followed to build
an efficient preconditioner for the solution of the mechanical DC problem. A summary of
the solution strategy for the different discrete systems is as follows:

• The matrix KDC
AA`CDC

AA is real and positive semi-definite and is of the form obtained
in magnetostatic problems discretised by the set of hierarchical basis functions pre-
sented in Section 4.3.3. For the solution of this system, a preconditioned conju-
gate gradient method (PCG) in combination with a block Jacobi preconditioner that
exploits the low-order-edge, high-order-edge-face-interior splitting of the H(curl)
basis functions becomes effective [158, 113, 185].

• The matrix KDC
uu is real and positive definite and is of the form obtained in elasticity

problems discretised by the H1 basis functions presented in Section 4.3.2. For
the solution of this system, a preconditioned conjugate gradient method (PCG) in
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combination with a block Jacobi preconditioner that exploits the low-order-vertex
high-order-edge-face-interior splitting of the basis functions becomes effective.

• The matrix KAC
AA ` CAC

AA is complex and positive semi-definite and is of the form
obtained in eddy current problems discretised by the H(curl) basis functions de-
scribed in Section 4.3.3. Thus, for the solution of this system the preconditioned
GMRES technique proposed by Ledger and Zaglmayr [113] is applied, where the
preconditioner exploits the low-order-edge high-order-edge-face-interior splitting
of the basis functions.

• The matrix KAC
UU ´ ω2MAC

UU is real and indefinite and is of the form obtained in the
discretisation of elastic wave propagation by hp-finite elements. For a sufficiently
fine grid, an iterative solver could be applied for its solution, but, given its relatively
small dimension compared to KAC

AA `CAC
AA, a direct solver is instead employed for

the solution of this system.4

In order to illustrate the construction of the block Jacobi preconditioner let us focus on the
eddy current problem (for the magnetostatic problem the preconditioner has a similar but
simpler structure). The block Jacobi preconditioning matrix takes in this case the form

PAA “

»

–

KAC,N0N0

AA `CAC,N0N0

AA 0 0

0 D̃gg
AA 0

0 0 D̃nn
AA

fi

fl , (4.59)

where N0 denotes the lowest order Nédélec space and the tilde in D̃gg
AA, D̃

nn
AA is used to

denote that the blocks are block-diagonal. The gg and nn superscripts refer to the gra-
dient and non-gradient basis functions, respectively. Furthermore, the blocks D̃gg

AA, D̃
nn
AA

are further split into edge, face and interior contributions. Thus, the preconditioning ma-
trix has the general form illustrated in Figure 4.11. Note that for the lowest order space
the whole block is retained, while the high order space is split into gradients and non-
gradients and into edge, face and interior functions and only the block-diagonal contri-
butions are retained. The lowest order block is solved directly in order to ensure that the
preconditioner is robust with respect to ε. Furthremore, note that since the precondition-
ing matrix is block diagonal, its inverse is also computed block-diagonally. See [113] for
further details.
The preconditioner used for the static elasticity problem has a similar, but simpler struc-
ture, given that the basis functions are not split into gradients and non-gradients in this
case. Thus, the block Jacobi preconditioning matrix for the static elasticity problem takes
the form

4Note also that the MRI configurations considered in this work, consist of several shields which are
not connected between them. Thus, instead of solving one large mechanical system, several smaller linear
systems are instead solved, one for each of the conductors, which results in a faster solver.
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K
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nn;FF
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Figure 4.11: Block Jacobi preconditioner used for the solution of the eddy current prob-
lem. Illustration of the general structure of the preconditioning matrix, showing the ex-
plicit splitting where the whole block is retained for the lowest order space and only
block diagonal contributions are considered for the high order terms, which are split into
gradient edge, face and interior functions, D̃gg,EE

AA , D̃gg,FF
AA and D̃gg,II

AA , respectively and
non-gradient face D̃nn,FF

AA and interior D̃nn,II
AA functions.

Puu “

»

—

—

—

–

KVV
uu 0 0 0

0 K̃EE
uu 0 0

0 0 K̃FF
uu 0

0 0 0 K̃II
uu

fi

ffi

ffi

ffi

fl

, (4.60)

where the whole block is retained for the lowest order space and only block-diagonal
contributions are considered for the high order spaces, which are split into edge, face and
interior functions.

4.6 Mechanical Damping

In practical MRI scanners, the conducting components are connected together and to
other components by materials that absorb and dampen the vibrations. These effects are
not taken into account in the mathematical model described previously and, in general, the
amount of damping is difficult to quantify precisely. As a first approximation to damping
effects, the simple case of mass proportional damping is considered. In this model, a
damping block CAC

UU “ αMMAC
UU is added to KAC

UU ´ ω2MAC
UU in the system (4.57) so that

it becomes KAC
UU ` iωαMMAC

UU ´ ω2MAC
UU , where αM is the mass proportional damping

coefficient5, which can be determined from [89, 8]

αM “ 2ωξ, (4.61)

where ξ is a dimensionless factor, called the damping ratio, which is used to attenuate
the frequency ω. Note that when adding mechanical damping the system matrix becomes
complex but, since a direct solver is used for the AC elasticity stage, this does not af-
fect the solution strategy described in Section 4.4. The damping ratio describes how the

5Note that from a dimensional analysis αM can be shown to have units of rad/s. However, since αM is
not a physical parameter it is usually written without units [8, 97]
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amplitude of the oscillations in a system decay to an equilibrium position after a perturba-
tion. According to the damping ratio, a system can be undamped (ξ “ 0), underdamped
(ξ ă 1), critically damped (ξ “ 1) and overdamped (ξ ą 1). If the system is critically
damped, it will decay to equilibrium without oscillation in the fastest admissible way. In
an overdamped system, an equilibrium position will be reached without oscillation, but in
a longer time than in the case of critical damping. If the system is underdamped, it will
oscillate to reach equilibrium. The cases of an undamped and underdamped system will
be considered in this thesis. Numerical results will be shown later to illustrate the effect of
choosing different damping ratios. Note, however, that the development of accurate and
realistic damping models is still a very challenging problem, which is out of the scope of
this thesis. For a more detailed investigation on different damping models the reader is
referred to [183, 8].

4.7 Current Source Properties

A MRI scanner consists of two sets of coils; the main coils that generate the strong DC
field and the gradient coils that generate the low frequency AC field. Furthermore, the
gradient coils can be divided in longitudinal and transversal gradient coils. The main
coils and the z longitudinal gradient coils are rotationally symmetric around the z axis,
both geometrically and regarding the current direction, which has only one component in
the angular direction, this is

JDC “ JDCφ eφ, JJJAC “ JACφ eφ, (4.62)

where er, eφ, ez denote the basis vectors in cylindrical coordinates.
On the other hand, the x and y transversal gradient coils have a more complex shape,
which cannot be expressed in an axisymmetric setting. To illustrate this, the two main con-
figurations that will be considered in this thesis are illustrated in Figure 4.12. The case of
configurations considering only z longitudinal gradient coils is illustrated in 4.12a, while
the case of a configuration considering x gradient coils is illustrated in Figure 4.12b6. It
can be observed that in the first case the geometry is rotationally symmetric around the
z axis, while in the second case this is no longer true. Note that the coils shown in this
figure represent a simplification of the complex wire pattern of a real gradient coil. The
realistic wire patterns for x, y and z gradient coils are illustrated in Figure 4.13. The
terms longitudinal and transversal refer to the orientation of the magnetic field gradient
generated by these coils. In the case of the z gradient coils, a gradient in the z direction,
the same direction as that of the DC field, is generated, while the x and y gradient coils
generate a field gradient in the x or y directions, respectively, which are transversal to the
direction of the DC field.

6The case of y gradient coils can be obtained by rotating the x gradient coils 90 degrees around the z
axis. Note that y denotes tyically the vertical component, as depicted in Figure 4.13. Figure 4.12b has been
rotated so that the vertical direction corresponds to x.
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(a) MRI with longitudinal coils (b) MRI with transversal coils

Figure 4.12: Illustration of typical MRI configurations: (a) MRI configuration including
longitudinal gradient coils and (b) MRI configuration including transversal gradient coils.

(a) x gradient coil (b) y gradient coil (c) z gradient coil

Figure 4.13: Typical wire patterns of MRI transversal and longitudinal gradient coils [17].
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Furthermore, a Biot-Savart description of the coils [80] is assumed, where the coils can
be treated as non conductors, and thus supp

`

JDC
˘

and supp
`

JJJAC
˘

form part of ΩNC .
Finally, there are two important conditions that the current source must satisfy; first, the
current must be solenoidal, this is, divJDC “ 0 and div JJJAC “ 0, and second, the current
must be tangential to the coil’s surface, this is, JDC ¨ n “ 0 and JJJAC ¨ n “ 0.

4.8 Current Source Mapping

Clearly, MRI configurations including transversal gradient coils, represent a more chal-
lenging problem than configurations including only longitudinal gradient coils, as the
latter case can be simulated using the much cheaper axisymmetric formulation, while the
former require the use of a 3D formulation. Furthermore, another problem, related to the
definition of the current source, arises in the case of transversal gradient coils, which is
not present in the case of longitudinal coils. Even if a current source JJJAC is specified as
being solenoidal at a continuous level, this might not be true at a discrete level due to
the numerical discretisation, especially in the case of coils with complex shapes, such as
the transversal gradient coils showed in Figure 4.12b. If this issue is not addressed, the
incompatibility of equation (4.56) leads to the appearance of singularities in the solution
and problems with the convergence of the preconditioned GMRES solver in step 4 of
Algorithm 1.
To address this issue, the approach proposed in [149] is considered, where the current
source is expressed as the curl of a potential T , this is

JJJAC “ curlT , (4.63)

and the next problem must then be solved to find the potential T

curl pcurlT q “ curl JJJAC in Ω, (4.64a)

divT “ 0 in Ω, (4.64b)

nˆ T “ 0 on BΩ. (4.64c)

Note that this is equivalent to solving a magnetostatic type problem, except the solution
T could possibly be complex valued due to the current source. If the problem was set
on an unbounded domain, a decay condition for T of the kind T “ Op 1

|x|q as x Ñ 8

would hold. However, on a finite computational domain, this condition is approximated
by applying the boundary conditionnˆT “ 0 on BΩ in a similar manner to that described
in Section 4.2. Note that the condition n ˆ curlT “ 0 on BΩ could be equally applied,
provided that the domain Ω is chosen to be sufficiently large.
To approximate this problem with the developed finite element software, its
weak form must first be derived. For the derivation of the variational
form, equation (4.64a) is multiplied by a test function δT P XΩ :“

tT PHpcurl,R3q : divT “ 0 in Ω,nˆ T “ 0 on BΩu and, integrating over the domain,
ż

Ω

curl pcurlT q ¨ δTdΩ “

ż

Ω

curl JJJAC ¨ δTdΩ, (4.65)
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which can be rewritten as 7

ż

Ω

div
`

curlT ˆ δT
˘

dΩ`

ż

Ω

curlT ¨ curl δTdΩ “

ż

Ω

div
`

JJJAC ˆ δT
˘

dΩ

`

ż

Ω

JJJAC ¨ curl δTdΩ, (4.66)

and applying the divergence theorem 8

ż

Ω

curlT ¨ curl δTdΩ “

ż

BΩ

`

nˆ JJJAC
˘

¨ δTds

´

ż

BΩ

curlT ¨
`

nˆ δT
˘

ds`

ż

Ω

JJJAC ¨ curl δTdΩ. (4.67)

Noting that the domain has been chosen such that BΩ is away from the support of JJJAC

and so JJJAC “ 0 on BΩ and recalling that nˆ δT “ 0 on BΩ we arrive at
ż

Ω

curlT ¨ curl δTdΩ “

ż

Ω

JJJAC ¨ curl δTdΩ. (4.68)

Finally, in order to circumvent the Coulomb gauge condition (4.64b), the same approach
as for the magnetostatic problem (3.33) is followed and a small regularisation term is
added so that the weak form can be stated as: Find T P X̃Ωp0q such that

ż

Ω

curlT ¨ curl δTdΩ` ε

ż

Ω

T ¨ δTdΩ “

ż

Ω

JJJAC ¨ curl δTdΩ (4.69)

for all δT P X̃Ωp0q, where the complex conjugate can be omitted if the weights are chosen
to be real.
The variational form (4.69) is then discretised using theH(curl) basis functions described
in Section 4.3.3 leading to a linear system of equations which is solved using a precondi-
tioned conjugate gradient method. The discretisation process and the preconditioner are
analogous to the case of the magnetostatic problem, and therefore are not repeated here.
Once the potential T is known, the right hand side of equation (3.35a) can be rewritten as

µ0

ż

supppJJJACq
JJJAC ¨ δAdΩ “ µ0

ż

Ω

curlT ¨ δAdΩ, (4.70)

which, after applying integration by parts, can be rewritten as 9

µ0

ż

supppJJJACq
JJJAC ¨ δAdΩ “ µ0

ż

Ω

div
`

T ˆ δA
˘

dΩ` µ0

ż

Ω

T ¨ curl δAdΩ, (4.71)

and applying the divergence theorem 10

µ0

ż

supppJJJACq
JJJAC ¨ δAdΩ “ µ0

ż

BΩ

pnˆ T q ¨ δAds` µ0

ż

Ω

T ¨ curl δAdΩ. (4.72)

7Recall the vector relation divpaˆ bq “ b ¨ curla´ a ¨ curl b.
8Recall the vector relation a ¨ pbˆ cq “ b ¨ pcˆ aq and the relation aˆ b “ ´bˆ a.
9Recall the vector relation divpaˆ bq “ b ¨ curla´ a ¨ curl b.

10Recall the vector relation paˆ bq ¨ c “ pcˆ aq ¨ b.
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y

xx

Figure 4.14: Illustration of a geometrically symmetric domain. The geometry is symmet-
ric with respect to the dashed line (x axis).

Finally, considering the boundary condition nˆ T “ 0 on BΩ it follows that

µ0

ż

supppJJJACq
JJJAC ¨ δAdΩ “ µ0

ż

Ω

T ¨ curl δAdΩ, (4.73)

which is substituted into equation (3.35a) in the case of problems including transversal
gradient coils. The discretisation of this problem follows similar lines as those described
in Section 4.3 and, therefore, it is not repeated here.
Note that the mapping of JJJAC to the space of solenoidal functions ensures that equation
(3.35a) is compatible and avoids issues with the convergence of the preconditioned itera-
tive solver or the appearance of singularities in the solution. Furthermore, it is important
to remark that if one only rewrites (3.35a) as stated in equation (4.70), this does not over-
come the issue, and it must be instead written as stated in (4.73). The difference between
(4.70) and (4.73) is that in (4.70) the source JJJAC is projected on the spaceXAC

reg ofH(curl)
basis, while in (4.73) JJJAC is projected on the curl of XAC

reg , ensuring that div JJJAC “ 0 ac-
cording to the de Rham sequence [113, 37]. The same principle holds for the computation
of T itself.

4.9 Symmetry Conditions

In the context of numerical simulations in engineering, the use of symmetries is typically
exploited in order to reduce the computational cost of the simulations. First, a distinction
should be made between geometrical and physical symmetries. In order to understand
this concept, let us consider the simple domain illustrated in Figure 4.14. The domain is
geometrically symmetric with respect to the x axis (y “ 0), as the half domain with y ą 0

can be obtained as a reflection of the half domain with y ă 0 and viceversa. Other type
of geometrical symmetry is the rotational symmetry, where the domain can be obtained
by rotating a certain plane around a certain axis. This type of symmetry is illustrated in
Figure 4.15, where the 3D geometry can be obtained by rotating the highlighted plane
φ degrees around the z axis. This is the case of the MRI configuration shown in Figure
4.12a. On the other hand, the physical symmetries are related to a given physical mag-
nitude. For example, consider the deformation of a long filament, as illustrated in Figure
4.16. The deformation showed in Figure 4.16a is said to be symmetric with respect to the
point C, while the deformation showed in Figure 4.16b is said to be antisymmetric.
The existence of geometrical and physical symmetries can be exploited to reduce the
cost of the simulations by cutting the domain at the symmetry planes and adding certain
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z

y

x

φ

Figure 4.15: Illustration of a rotationally symmetric (axisymmetric) domain. The geome-
try is symmetric with respect to the z axis.

C

(a) Symmetric

C

(b) Antisymmetric

Figure 4.16: Illustration of physical symmetries; (a) Symmetric distortion and (b) Anti-
symmetric distortion.

boundary conditions on the normal or tangential components of the unknown physical
fields. The MRI configurations that will be considered in this work can be divided in
two types: configurations considering longitudinal coils (Figure 4.12a) and configura-
tions considering transversal coils (Figure 4.12b). In the first case, only the longitudinal
z gradient coils are considered and all the non-rotationally symmetric components are
neglected, rendering an axisymmetric configuration which will be used to validate the
new 3D hp-FEM software by performing comparisons against the previously validated
axisymmetric software developed in [19, 17]. In the second case, the longitudinal coils
are replaced by transversal x or y gradient coils, thus the rotational symmetry is lost, and
a 3D computation is required. However, even in the case of considering transversal coils,
certain symmetries are still present that can be used to reduce the computational cost of
the simulations. More specifically, such configurations can be reduced to 1{8 of the orig-
inal size by exploiting the symmetries or anti-symmetries with respect to the Cartesian
x “ 0, y “ 0 and z “ 0 planes. The boundary conditions that must be imposed on the
solution fields at each symmetry plane for the DC problem as well as for the AC problem
and the different gradient coils are stated in Table 4.1, which have been derived based on
the symmetry conditions presented in [92, 186]. For a review on the application of sym-
metry conditions in electromagnetics see [92]. Similarly, for a review on the application
of symmetry conditions in mechanics see [186].
Similarly, the boundary conditions that must be imposed on the potential T when mapping
the current source to the space of solenoidal functions are stated in Table 4.2 for each of
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x gradient coil y gradient coil z gradient coil DC field
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Table 4.1: Symmetry conditions forADC
ε,hq,u

DC
hp ,AAA

AC
ε,hq and UUUAC

hp at the planes x “ 0, y “ 0

and z “ 0.

the coil configurations. Note that this mapping was observed to be needed only for the x
and y gradient coils. However, for completeness, the symmetry conditions are stated for
all the coil configurations.

x gradient coil y gradient coil z gradient coil Main coils
x “ 0 T ˆ n “ 0 pcurlT q ˆ n “ 0 pcurlT q ˆ n “ 0 pcurlT q ˆ n “ 0

y “ 0 pcurlT q ˆ n “ 0 T ˆ n “ 0 pcurlT q ˆ n “ 0 pcurlT q ˆ n “ 0

z “ 0 T ˆ n “ 0 T ˆ n “ 0 pcurlT q ˆ n “ 0 T ˆ n “ 0

Table 4.2: Symmetry conditions for T at the planes x “ 0, y “ 0 and z “ 0.

Note that in the case of configurations considering only z gradient coils, the 3D computa-
tional domain could be reduced as much as desired, up to the limit of the 2D axisymmetric
plane. For this, the domain can be cut at any two planes with a constant φ (being r, φ, z
the cylindrical coordinates) and in these planes the same symmetry conditions as in the
planes x “ 0 and y “ 0 should be applied. However, for the purpose of an easier im-
plementation and since axisymmetric configurations will only be used in this thesis for
the purpose of validation, only symmetries with respect to the Cartesian planes will be
considered.

4.10 Global Software Structure

To conclude the description of the hp-FEM software, a global overview of the software
structure is provided and the different steps that must be performed in order to arrive at the
desired outputs of interest are summarised. For this purpose, a schematic representation
of the software structure is provided in Figure 4.17.
The software can be divided into three main stages: pre-processing, solver and post-
processing. The main steps performed at each of these stages are briefly outlined in the
following.

4.10.1 Pre-processing Stage

The main steps to be performed at the pre-processing stage are:
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Geometry
CSG, IGES or STEP

Mesh
NetGen

Problem Data
material, boundary, source

Reference element
quadrature, shape functions

Unknown numbering
static, dynamic

Static Solver

Assembly
K,C,M,R

Staggered Solver
Lagrangian approach

Solution

Physical fields
EEEAC

hpq “ ´iωAAAAC
ε,hq ` iωBDC

0,hq ˆ UUUAC
hp

Solution Accuracy
Error norm

Plots
Paraview, integrated fields, line

Pre-Process

hp-FEM Solver

Post-Process

frequency loop

Figure 4.17: Schematic representation of the software structure, including the preprocess-
ing, solver and post-processing stages.
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• Geometry (CAD generation): First a CAD model of the problem geometry must
be generated. For very simple geometries, the native NetGen [155] CAD format,
named CSG (Constructive Solid Geometry) can be used. This allows the genera-
tion of simple geometries by performing basic boolean operations. However, when
the complexity of the geometry increases, more sophisticated CAD formats such
as IGES (Initial Graphics Exchange Specification) or STEP (Standard for the Ex-
change of Product Model Data) must be considered. Many commercial and open-
source packages are available for the generation of such CAD formats, and in this
work AutoCAD [2] and AutoCAD Mechanical [3] have been used.

• Mesh: Once the CAD geometry is available, a mesh must be generated. For this
purpose, the open source software NetGen [155] is considered, which allows the
generation of complex unstructured tetrahedral meshes. NetGen has the capability
of generating linear as well as quadratic elements and allows the local refinement
of the mesh. For further details about the geometry and mesh generation the reader
is referred to [155] and to Appendix B.

• Problem data definition: Once the mesh is created, it is read into the finite element
software and the problem is defined by assigning the material properties, source
terms and boundary conditions to each sub-domain or boundary surface.

• Reference element and unknown numbering: The final steps of the pre-
processing stage consist in defining the Gauss points (see Appendix C) and the
shape functions at the reference element and creating the numbering of degrees of
freedom for the DC and AC problems described in Sections 4.3.5 and 4.3.5, respec-
tively.

4.10.2 Solver Stage

The main steps to be performed at the solver stage are:

• DC Assembly: The system matrices for the DC problem must first be built by
assembling elemental contributions, as described in Section 4.3.5.

• Static solver: The DC problem must then be solved. This step includes the solution
of the magnetostatic (4.50) and static elasticity (4.51) problems, which correspond
to steps 1 and 2 of Algorithm 1.

• Assembly: In this step, the matrices of the AC system are assembled from elemental
contributions as described in Section 4.3.5. Note that the assembled matrices are
such that they do not depend on the frequency, and the global system matrices
are then computed, for each frequency, by multiplying the assembled matrices by
frequency dependent parameters and adding them together. This leads to a much
faster computation of the solution for multiple frequencies, as it is not necessary to
assemble the system each time the frequency is modified.
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• Staggered solver: The last step of the solver stage is to compute the solution of
the AC electromagnetic (4.56) and mechanical (4.57) systems for all the required
frequencies. For this, steps 4 and 5 of Algorithm 1 are applied repeatedly for each
frequency.

4.10.3 Post-processing Stage

The main steps to be performed at the post-processing stage can be divided in two groups:

• Error measure: If the problem under consideration has a known analytical solu-
tion, the accuracy of the finite element solution will be benchmarked by computing
the appropriate error norms.

• Plots: Finally, the main goal is to produce plots of the outputs of interest that help us
understand the solution to the coupled problem. These include the evolution of inte-
grated quantities such as dissipated power or kinetic energy (defined in next chapter,
see equation (5.6)) with the frequency, the eddy current, magnetic field or displace-
ment patterns in the radiation shields for selected frequencies or the variation of
these magnitudes along a certain line. For the generation of high quality contour
plots when computing the solution in coarse meshes using high order elements, the
reference element is uniformly subdivided into smaller elements and these are then
mapped to the physical domain. The solution in the finer mesh is then exported
to Paraview to plot. On the other hand, if the interest lies in the computation of
integrated quantities such as dissipated power or kinetic energy, an integral over the
domain must be performed and, for this, the developed finite element methodology
is used and the integrals are computed using Gauss quadrature as explained in Ap-
pendix C, where the solution coefficients AAC

ε ,UAC and the basis functionsN a, Lb

are used to compute the solution at each Gauss point.

4.11 Chapter Summary

This chapter has described the hp-FEM methodology used to discretise the coupled
magneto-mechanical problem of interest and compute a numerical approximation to its
solution.
The main novelty of the chapter is the development of a novel hp-FEM methodology
for the solution of the linearised and regularised magneto-mechanical problem in a La-
grangian frame, which uses a combination of hierarchicalH(curl) andH1 basis functions
and iterative solvers in combination with efficient preconditioners for the solution of the
resulting linear systems. Furthermore, a staggered algorithm for the solution of the prob-
lem was proposed, the complete set of symmetry conditions to be applied for the different
possible configurations was stated and the methodology proposed in [149] to map the
current source to the space of solenoidal functions was applied here in combination with
high order finite elements.
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The chapter started with the introduction of the truncated domain and the discussion of
the boundary conditions to be imposed at the truncation boundary. Then, in Section 4.3
the reference element, the sets of hierarchicalH(curl) andH1 basis functions used for the
discretisation of AAAAC

ε and UUUAC and the mapping between physical and reference elements
were presented, followed by a brief description of the reduced basis gauging strategy and
the rigorous derivation of the the different blocks of the discrete DC and AC systems.
Section 4.4 presented the algorithm that is used to obtain the final solution and outlines
the computational advantages of the Lagrangian approach over an Eulerian approach.
Then, in Section 4.5, the use of preconditioned iterative solvers was discussed and an
efficient solver was proposed for each linear system. Section 4.6 presents the approach
followed to include a first approximation to the physical damping present in real MRI
configurations. The properties of the current sources were discussed in Section 4.7. Next,
in Section 4.8 a methodology to ensure that the current source JJJAC is solenoidal at a
discrete level was proposed, avoiding issues with the convergence of the iterative solver
and the appearance of singularities in the solution. Then, in Section 4.9, the different
symmetries that can be exploited to reduce the computational cost of the simulations
were discussed and the symmetry conditions to be imposed at each boundary for the
different possible configurations were stated. Finally, in Section 4.10, the global structure
of the finite element software was described and the main steps to be performed at the
pre-processing, solver and post-processing stages were outlined.



Chapter 5

Numerical Results for the Full Order
Problem

5.1 Introductory Remarks

This Chapter presents a series of academic and industrially relevant problems in order to
benchmark and illustrate the predictive capability of the proposed 3D hp-FEM methodol-
ogy. The chapter is based on an extended version of the work presented by the author in
[158].
The main novelties of this chapter are as follows. First, the developed hp-FEM method-
ology is applied to a series of decoupled or single physics problems with a known an-
alytical solution, and the error in the numerical solution is measured in order to ver-
ify that the appropriate rates of convergence given by the estimates (4.4)-(4.7) are ob-
tained. Four different decoupled problems will be considered, which correspond to the
DC electromagnetic (magnetostatic), DC elasticity, AC electromagnetic (eddy current)
and AC elasticty stages. Then, the hp-FEM methodology is applied to a series of coupled
magneto-mechanical problems in order to validate and illustrate the predictive capability
of the proposed coupling methodology. These include an academic problem consisting
in a conducting sphere excited by a uniform time harmonic magnetic field, and indus-
trially relevant MRI configurations including longitudinal as well as transversal gradient
coils. Comparisons against the previously validated axisymmetric software [19, 17], the
commercial software NACS [4] and experimental data will be provided.
The structure of the chapter is as follows; First, in Section 5.2, a series of decoupled prob-
lems corresponding to the magnetostatic (Section 5.2.1), DC elasticity (Section 5.2.2),
eddy current (Section 5.2.3) and AC elasticity (Section 5.2.4) stages are presented. The
accuracy of the solution and the efficiency of the proposed solver will be benchmarked.
Then, in Section 5.3 a series of magneto-mechanical coupled problems will be presented,
which include a conducting and elastic sphere in a uniform alternating magnetic field
(Section 5.3.1) and different MRI configurations including longitudinal and transversal
gradient coils (Sections 5.3.2, 5.3.3 and 5.3.4). The chapter finishes with concluding
remarks in Section 5.4

85
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5.2 Decoupled Physics

A series of examples are presented to illustrate the performance of the DC and AC stages
of the finite element scheme for decoupled physics problems. In order to measure the
accuracy of the solution and ensure the appropriate rates of convergence are obtained, the
H1 andH(curl) norms of the error defined in (4.6) will be used.

5.2.1 DC Stage, Magnetostatics: Permeable Sphere in a Uniform
Static Magnetic Field

In order to benchmark the magnetostatic stage, a permeable sphere excited by a uniform
static magnetic field is considered. An analytical expression for the solution of this prob-
lem is available in [164]. A permeable sphere ΩC “ tx : |x|2 ď R2u of radius R “ 1 cm
and permeability µ “ 1.5µ0 is placed in the region excited by a uniform magnetic field
HDC

0 “ µ0ez (Figure 5.1). The problem is then simulated by solving a simplified version
of (3.1a)-(3.1d) with JDC “ 0 on a truncated domain where BΩ is the surface of a sphere
of radius 2 cm. The Dirichlet boundary condition nˆADC

ε,hq “ nˆA
DC
exact, whereADC

exact

is the analytical solution for this problem, is imposed on BΩ.

Ñ

Ñ
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Ñ
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Ñ
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H
DC
0

“ µ0ez
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Ω
c
C
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O

Figure 5.1: Permeable sphere in a uniform static magnetic field: problem setup.

First, the convergence of the preconditioned conjugate gradient method, and the efficiency
of the preconditioner was studied. For this, the number of iterations required by the itera-
tive solver to converge with and without preconditioner was measured using two different
meshes of 1 083 and 6 654 elements and polynomial orders q “ 0, 1, 2, 3, 4. The regulari-
sation parameter ε and the tolerance of the iterative solver were set to 10´5, which means
that the iteration will stop when the relative residual is smaller than 10´5. The result is
shown in Figure 5.2, where each line shows the convergence behaviour of the relative
residual computed at each iteration for a discretisation using a fixed polynomial degree.
It can be observed that the use of the block Jacobi preconditioner described in Section 4.5
results in a massive reduction in iterations, and a monotonic reduction in the relative resid-
ual with an algebraic rate of convergence is obtained for the preconditioned system. The
increase in iterations for increasing polynomial order is small in the case of PCG, while
in the case of CG the number of iterations increases exponentially with the polynomial
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order. Note that in the case of CG with a mesh of 6654 elements and polynomial order
q “ 4 the solution has not converged yet after 5 ˆ 105 iterations, which is the prescribed
maximum number of iterations. On the other hand, when using PCG with the same mesh
and polynomial order, the solution converges in less than 60 iterations. Finally, to further
illustrate the efficiency of the preconditioner, in Table 5.1 the solver time for the different
meshes and polynomial orders using CG and PCG is shown. It can be observed that a
massive speed-up is obtained by applying the block Jacobi preconditioner, especially as
the size of the mesh increases. These are wall-clock times and were computed using a
desktop computer with a processor Intel Xeon CPU E5-2687W v2 at 3.4 GHz and 16
cores, and with a RAM of 128 GB. Note that these times include also the construction
of the preconditioner. Unless otherwise stated, all the time measurements shown in this
Chapter were computed using these settings.
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Figure 5.2: Permeable sphere in a uniform static magnetic field: Convergence of the CG
method for: (a) A mesh of 1 083 elements without preconditioner, (b) A mesh of 1 083
elements using preconditioner, (c) A mesh of 6 654 elements without preconditioner and
(d) A mesh of 6 654 elements using preconditioner.
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q “ 0 q “ 1 q “ 2 q “ 3 q “ 4

CG, 1 083 elements 0.04 s 0.04 s 0.39 s 19.12 s 154.43 s
PCG, 1 083 elements 0.01 s 0.01 s 0.09 s 0.53 s 1.42 s
CG, 6 654 elements 1.62 s 1.56 s 30.45 s 2 025.81 s 10 962.10 s

PCG, 6 654 elements 0.28 s 0.28 s 0.75 s 2.46 s 7.52 s

Table 5.1: Permeable sphere in a uniform static magnetic field: Solver time in seconds for
CG and PGC in two different meshes of 1 083 and 6 654 elements and polynomial orders
q “ 0, 1, 2, 3, 4. The tolerance was set to 10´5 and the maximum number of iterations to
5ˆ 105.
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Figure 5.3: Permeable sphere in a uniform static magnetic field: Convergence of PCG for
different values of ε.

Furthermore, in order to show the performance of the preconditioner for different values
of ε, the convergence of PCG for the cases ε “ 10´3, 10´4, 10´5, 10´6 and polynomial
orders q “ 3, 4 was studied. The convergence of the relative residual against the number
of iterations is shown in Figure 5.3, where the case q “ 3 is shown on the left (Figure
5.3a) and the case q “ 4 on the right (Figure 5.3b). In these plots each line corresponds
to a different value of ε and, as it can be observed, the different lines are superimposed,
which means that the convergence of PCG is robust with respect to ε.
Next, the effect of the geometry resolution is studied. For this, the curved geometry of the
sphere is approximated using the blending function method as described in Section 4.3.4,
for different polynomial orders of approximation of the geometry g. The regularisation
parameter was set again to ε “ 10´5. Figure 5.4 shows the convergence of the relative
error ||ADC

ε,hq´A
DC
exact||H(curl)pΩCq{||A

DC
exact||H(curl)pΩCq under p-refinement for geometry ap-

proximation of degrees g “ 1, 2, 3, 4, 5 and a mesh of 195 elements out of which 54 are
located in ΩC . Each line of the plot corresponds to a given order of approximation for the
geometry g, and each point of these lines represents an increasing polynomial order of
approximation q for the solution field. It can be observed that for low g the convergence
of the error under p-refinement stagnates, which shows the need for accurate geometry
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resolution when computing solutions on coarse grids.
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Figure 5.4: Permeable sphere in a uniform magnetic field: convergence of ||A ´

Aexact||H(curl)pΩCq{||Aexact||H(curl)pΩCq for different polynomial orders of approximation
of the geometry under p-refinement.

Having this in mind, a geometry approximation of order g “ 5 is chosen and p- and h-
refinement analysis for the convergence of ||ADC

ε,hq´A
DC
exact||H(curl)pΩCq{||A

DC
exact||H(curl)pΩCq

in the permeable domain ΩC are performed. Figure 5.5 shows the convergence of the rela-
tive error for a set of meshes of 195, 313, 509, 1 083, 6 654, 9 957 and 19 791 elements and
polynomial orders q “ 0, 1, 2, 3, 4 under p-refinement. These meshes were obtained by
setting successively smaller values for the maximum mesh size in NetGen. The predicted
exponential rate of convergence can be observed in Figure 5.5a, where the error is plotted
against the number of degrees of freedom in a logarithmic scale. Each line corresponds
to a different mesh and each point represents a successively higher polynomial order q
for the p-refinement analysis. This trend is confirmed in Figure 5.5b, where the error is
plotted against the number of degrees of freedom to the power of 1/3 and an algebraic rate
of convergence is obtained, which agrees with the predicted asymptotic rate given in the
estimate (4.7).

Next, a h-refinement analysis, using the same set of meshes and polynomial orders, as
well as the same order of approximation for the geometry, was performed. The result
of this convergence analysis is shown in Figure 5.6, where after a pre-asymptotic region,
an algebraic rate of convergence is observed, which agrees with the predicted asymptotic
rate given in the estimate (4.4). The numerical value for the slopes of this curves, ob-
tained with a regression analysis and neglecting the first three points of each curve that
correspond to the pre-asymptotic region, is shown in Table 5.2. Excellent agreement with
the theoretical rates of convergence is obtained.
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Figure 5.5: Permeable sphere in a uniform magnetic field: Convergence of ||ADC
ε,hq ´

ADC
exact||H(curl)pΩCq{||A

DC
exact||H(curl)pΩCq under p-refinement.
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Figure 5.6: Permeable sphere in a uniform magnetic field: Convergence of ||ADC
ε,hq ´

ADC
exact||H(curl)pΩCq{||A

DC
exact||H(curl)pΩCq under h-refinement.

Order Computed rate Expected rate

0 -0.35 -0.33
1 -0.37 -0.33
2 -0.58 -0.67
3 -0.91 -1
4 -1.28 -1.33

Table 5.2: Permeable sphere in a uniform magnetic field: rates of convergence for the
relative error ||ADC

ε,hq ´A
DC
exact||H(curl)pΩCq{||A

DC
exact||H(curl)pΩCq under h-refinement
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5.2.2 DC stage, Elasticity: Hollow Cylinder Subject to Pressure Field

In order to benchmark the DC elasticity stage, a problem consisting of a hollow cylinder
ΩC :“ tpr, φ, zq : a ď r ď b, 0 ď φ ă 2π,´L{2 ď z ď L{2u subject to internal
and external pressure is considered. A cross section of the scheme of the problem is
presented in Figure 5.7. This problem has an analytical solution in terms of uexact, which
can be found in [38]. The particular case with internal radius a “ 1 m, external radius

pa

pb
ν; E

Figure 5.7: Hollow cylinder subject to pressure field: illustration of a cross section of the
cylinder and the applied pressure field.

b “ 2 m, length L “ 5 m, Young Modulus E “ 2.1 ˆ 1011 Pa and Poisson’s ratio
ν “ 0.33 is considered here. The internal and external pressure are set to pa “ 104 Pa and
pb “ 107 Pa, respectively.
This problem is simulated by solving a simplified version of (3.1f)-(3.1h), using appro-
priate boundary conditions

σmpuDChp qn “ σ
m
puexactqn on BΩN

C ,

uDChp “ uexact on BΩD
C . (5.1)

Figure 5.8 shows where the boundary conditions are applied and one of the meshes used
for the computations.
First, the convergence of the conjugate gradient method and the efficiency of the pre-
conditioner is studied. For this, in Figure 5.9 the number of iterations required by CG
and PCG to converge to a tolerance of 10´7 are plotted for two different meshes of 1 366
and 3 144 elements and polynomial orders p “ 1, 2, 3, 4, 5. Furthermore, in Table 5.3 a
comparison of solver time between CG and PCG is shown, where the efficiency of the
preconditioner is clearly observed. Note that the time for PCG includes the construction
of the preconditioner.
Next, a sequence of unstructured tetrahedral meshes with 1 366, 3 144, 7 953, 29 637
and 53 230 elements (obtained by setting successively smaller values for the maximum
mesh size in NetGen) is considered and discretisations with uniform element orders
p “ 1, 2, 3, 4, 5 are applied, in turn. Quadratic representation of the geometry is used
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Figure 5.8: Hollow cylinder subject to pressure field: illustration of the chosen boundary
conditions and one of the meshes (7 953 elements) used in the computations. BΩN

C in
green and BΩD

C in red.

p “ 1 p “ 2 p “ 3 p “ 4 p “ 5

CG, 1 366 elements 0.1 s 0.1 s 0.2 s 4.2 s 42.7 s
PCG, 1 366 elements 0.1 s 0.1 s 0.4 s 1.0 s 4.8 s
CG, 3 144 elements 0.1 s 0.1 s 2.1 s 42 s 390.2 s

PCG, 3 144 elements 0.1 s 0.2 s 1.4 s 6.8 s 26.1 s

Table 5.3: Hollow cylinder subject to pressure field: Solver time in seconds for CG and
PGC in two different meshes of 1 366 and 3 144 elements and polynomial orders p “
1, 2, 3, 4, 5. The tolerance was set to 10´7.

throughout. In each case, the relative error }uDChp ´ uexact}H1pΩCq{}uexact}H1pΩCq is mea-
sured. Figure 5.10 shows this relative error against the number of degrees of freedom for
p-refinement, where each line represents a single mesh and the points increasing polyno-
mial degree, and Figure 5.11 those for h-refinement, where each curve is for a fixed order
and the points represent mesh refinement.
In Figure 5.10, the exponential rate of convergence of the relative error with the number of
degrees of freedom under a p-refinement analysis is observed. This trend is confirmed by
the algebraic rate of convergence of the error, which is obtained when the error is plotted
against the number of degrees of freedom to the power of 1{3, and agrees with the pre-
dicted asymptotic rate stated in equation (4.7). In these plots, each line corresponds to a
different mesh, and the points correspond to an increasing polynomial order. After an ini-
tial pre-asymptotic region, Figure 5.11 shows the algebraic rate of convergence predicted
in (4.4) for the h-refinement, where each line corresponds to a different polynomial order
p and the points represent successively finer meshes. The obtained rates of convergence
for h-refinement are in good agreement with the predicted rates, as it can be observed in
Table 5.4.
Despite the coarse nature of some of the grids employed, accurate representation of the
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Figure 5.9: Hollow cylinder subject to pressure field: Convergence of the conjugate gradi-
ent method for: (a) A mesh of 1 366 elements without preconditioner, (b) A mesh of 1 366
elements using preconditioner, (c) A mesh of 3 144 elements without preconditioner and
(d) A mesh of 3 144 elements using preconditioner.

Order Computed rate Expected rate

1 -0.28 -0.33
2 -0.66 -0.67
3 -1.03 -1
4 -1.37 -1.33
5 -1.58 -1.67

Table 5.4: Hollow cylinder subject to pressure field: rates of convergence for the relative
error ||uDChp ´ uexact||H1pΩq{||uexact||H1pΩq under h-refinement.

solutions can still be achieved with high order elements. For the purpose of plotting,
coarse meshes are subdivided and solutions evaluated on the split mesh and then passed
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Figure 5.10: Hollow cylinder subject to pressure field: convergence of ||uDChp ´

uexact||H1pΩCq{||uexact||H1pΩCq under p-refinement.
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Figure 5.11: Hollow cylinder subject to pressure field: convergence of ||uDChp ´

uexact||H1pΩCq{||uexact||H1pΩCq under h-refinement.

to Paraview [9] for plotting, as described in Section 4.10.3. Figure 5.12 shows contour
plots of the displacements in the cylinder obtained by a mesh of 7 953 tetrahedra of order
p “ 4.

5.2.3 AC stage, Eddy Current: Conducting Sphere in a Uniform Al-
ternating Magnetic Field

In order to benchmark the AC eddy current stage, the case of a conducting sphere ΩC :“

tx : |x| ď Ru placed in an unbounded region of free space Ωc
C , where HHH AC

0 tends to a time
harmonic uniform field far from the object, is considered. An illustration of the problem is
presented in Figure 5.13. This problem has an analytical solution [164] in terms of AAAexact.
The case of the sphere withR “ 1 cm, µ “ 1.5µ0, µ0 “ 4πˆ10´7 H/m, σ “ 6ˆ106 S/m
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(a) |uDC
hp | (b) uDC

z,hp (c) uDC
x,hp

Figure 5.12: Hollow cylinder subject to pressure field: (a) |uDChp |, (b)|uDCz,hp| (c) |uDCx,hp| on
the plane z “ 0.

set in a background field with lim|x|Ñ8HHH AC
0 “ µ0ez A/m and a frequency f “ 50 Hz is

considered, unless otherwise stated.
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Figure 5.13: Conducting sphere in a uniform alternating magnetic field: problem setup.

This problem is simulated by solving a simplified version of (2.42a)-(2.42g) with JJJAC “ 0

on a truncated domain where BΩ is the surface of the sphere of radius 2 cm. On the bound-
ary BΩ, the conditionnˆAAAAC

ε,hq “ nˆAAAexact, where AAAexact is the analytical solution for this
problem proposed by Smythe [164], is imposed. The regularisation parameter ε “ 10´5

is applied in all cases. Figure 5.14, shows the convergence of the GMRES and PGMRES
solvers for two different frequencies, f “ 50 Hz and f “ 1000 Hz, when a p-refinement
analysis is performed using a mesh of 1 083 tetrahedral elements. The tolerance of the it-
erative solver was set to 10´5. Similarly to the results showed in Section 5.2.1 for the DC
problem, it can be observed that the application of the block Jacobi preconditioner leads
to a massive reduction in the number of iterations. The solver time with and without pre-
conditioner was also measured and the result is shown in Table 5.5, which demonstrates
once again the efficiency of the preconditioner. Note also, that according to Figure 5.14
and Table 5.5, the number of iterations and solver time of PGMRES exhibits only a very
moderate increase with the frequency.
To investigate the accuracy of the approximation, a sequence of unstructured tetrahedral
meshes with 195, 313, 509, 1 083, 6 654, 9 957 and 19 791 elements is considered and
discretisations with uniform element orders q “ 0, 1, 2, 3, 4 are applied, in turn. Initially,
the geometry is approximated using the blending function method with polynomials of
degree g “ 5, as described in Section 4.3.4. In each case, the relative error ||AAAAC

ε,hq ´
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(a) GMRES, f “ 50 Hz
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Figure 5.14: Conducting sphere in a uniform alternating magnetic field: Convergence of
the iterative solver (GMRES and PGMRES) for: (a) f “ 50 Hz without preconditioner,
(b) f “ 50 Hz using preconditioner, (c) f “ 1000 Hz without preconditioner and (d)
f “ 1000 Hz using preconditioner.

q “ 0 q “ 1 q “ 2 q “ 3 q “ 4

GMRES, f “ 50 Hz 1.1 s 2.7 s 13.2 s 82.6 s 793.1 s
PGMRES, f “ 50 Hz 0.07 s 0.08 s 0.41 s 1.3 s 4.3 s
GMRES, f “ 1000 Hz 1.51 s 1.58 s 9.53 s 129.6 s 1 400 s

PGMRES, f “ 1000 Hz 0.07 s 0.07 s 0.21 s 1.1 s 4.7 s

Table 5.5: Conducting sphere in a uniform alternating magnetic field: Solver time in
seconds for GMRES and PGMRES for a mesh 1083 elements, polynomial orders q “
0, 1, 2, 3, 4 and two different frequencies f “ 50 Hz and f “ 1000 Hz. The tolerance was
set to 10´5.
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AAAexact||H (curl)pΩCq
{||AAAexact||H (curl)pΩCq

is measured. Figure 5.15 shows this relative error
against the number of degrees of freedom for p-refinement and Figure 5.16 those for h-
refinement.
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Figure 5.15: Conducting sphere in a uniform alternating magnetic field: convergence of
||AAAAC

ε,hq ´AAAexact||H (curl)pΩCq
{||AAAexact||H (curl)pΩCq

under p-refinement.
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Figure 5.16: Conducting sphere in a uniform alternating magnetic field: convergence of
||AAAAC

ε,hq ´AAAexact||H (curl)pΩCq
{||AAAexact||H (curl)pΩCq

under h-refinement.

In a similar manner to the DC stage examples, the expected exponential rate of conver-
gence predicted in the estimate (4.7) for the relative error with the number of degrees of
freedom under a p-refinement analysis can be observed in Figure 5.15, where each line
corresponds to a different mesh and the points on each line correspond to an increasing
polynomial order q. Also, after an initial pre-asymptotic region, Figure 5.16 shows the
algebraic rate of convergence predicted in the estimate (4.4) for h-refinement. In this plot,
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Order Computed rate Expected rate

0 -0.38 -0.33
1 -0.41 -0.33
2 -0.68 -0.67
3 -0.96 -1
4 -1.27 -1.33

Table 5.6: Conducting sphere in a uniform alternating magnetic field magnetic field: rates
of convergence for the relative error ||AAAAC

ε,hq ´ AAAexact||H(curl)pΩCq{||AAAexact||H(curl)pΩCq under
h-refinement.

each line corresponds to a different polynomial order q and the points in each line cor-
respond to successively finer meshes. Furthermore, in Table 5.6 it can be observed that
the obtained rates of convergence are in good agreement with the theoretical prediction
in (4.4). Note that, as in the magnetostatic case, the rates of convergence were obtained
by performing a linear regression neglecting the first three points corresponding to the
pre-asymptotic region.

Skin Effect

The skin depth is a measure of the penetration of the fields into the conducting object, and
is defined as the distance at which the fields decay to 1{e of its value in the conductor’s
surface [164]. Therefore, for higher frequencies (and hence smaller skin depths), larger
gradients in the fields will appear close to the conductor’s surface, which makes the ac-
curate numerical simulation of the problem more challenging. This effect is illustrated
in Figure 5.17, where a contour plot of the magnitude of the computed eddy currents
JJJ ohq “ ´iωγAAAAC

ε,hq in the sphere, in particular in the planes z “ 0 and x “ 0, is shown. To
obtain these results, sufficiently fine discretisations have bee employed in order to capture
the solutions accurately.

5.2.4 AC stage, Elasticity: Hollow Cylinder Subject to Body Force

A last single physics problem is now considered in order to study the convergence of the
AC elasticity stage. For this, the same cylinder described in Section 5.2.2 is considered
and an analytical solution

UUUAC
exact “

¨

˝

x sin y sin z

z sin y cosx

y sinx cos z

˛

‚, (5.2)

is defined.
Then, the body force b is computed such that the equation

divσmpUUUAC
exactq ´ ρω

2UUUAC
exact “ b, (5.3)
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(a) x “ 0, f “ 50 Hz (b) x “ 0, f “ 500 Hz (c) x “ 0, f “ 5000 Hz

(d) z “ 0, f “ 50 Hz (e) z “ 0, f “ 500 Hz (f) z “ 0, f “ 5000 Hz

Figure 5.17: Conducting sphere in a uniform alternating magnetic field: Magnitude of the
eddy current, |JJJ ohq| in the planes x “ 0 and z “ 0 for different frequencies.

is satisfied, which results in a body force b “ pbx, by, bzq
T with components

bx “ λp´z cos y sinx´ y cosx sin zq

´Gp2 sin y sin z ` z cos y sinx` y cosx sin zq ´ ρω2
px sin y sin zq, (5.4a)

by “ λpcos y sin z ´ z sin y cosx´ sinx sin zq

`Gpcos y sin z ´ 3z sin y cosx´ sinx sin zq ´ ρω2
pz sin y cosxq, (5.4b)

bz “ λpsin y cos z ` cos y cosx´ y sinx cos zq

`Gpsin y cos z ´ 3y sinx cos z ` cos y cosxq ´ ρω2
py sinx cos zq. (5.4c)

Then, a suitably simplified version of (2.42h)-(2.42m) is solved, where the electromag-
netic induced force is replaced by the body force b and Neumann and Dirichlet boundary
conditions are applied as described in Section 5.2.2.
To study the accuracy of the approximation, a sequence of unstructured tetrahedral meshes
with 1 366, 3 144, 7 953, 29 637 and 53 230 elements is considered and discretisations with
uniform element orders p “ 1, 2, 3, 4 are applied, in turn. Quadratic representation of the
geometry, as described in Section 4.3.4 is used throughout. In each case, the relative error
||UUUAC

hp ´UUUAC
exact||H1pΩCq{||UUU

AC
exact||H1pΩCq is measured, and the results for p-refinement and

h-refinement are shown in Figures 5.18 and 5.19, respetively. Figure 5.18 shows, once
again, the expected exponential rate of convergence predicted by the estimate (4.7) for
p-refinement, where each line corresponds to a different mesh and each point corresponds
to an increasing polynomial order p. Similarly, in Figure 5.19, the expected algebraic
rate of convergence predicted by the estimate (4.4) for h-refinement can be observed.
Furthermore, the obtained rates of convergence for h-refinement are compared with the
theoretical rates of convergence predicted by (4.4) in Table 5.7. Analogously as for the
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DC problem studied in Section 5.2.2, the computed rates of convergence are in good
agreement with the theoretical prediction.
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Figure 5.18: AC elasticity stage, hollow cylinder subject to body force: convergence of
||UUUAC

hp ´UUUAC
exact||H1pΩCq{||UUU

AC
exact||H1pΩCq under p-refinement.
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Figure 5.19: AC elasticity stage, hollow cylinder subject to body force: convergence of
||UUUAC

hp ´UUUAC
exact||H1pΩCq{||UUU

AC
exact||H1pΩCq under h-refinement.

5.3 Coupled Physics

A series of more challenging coupled examples are now presented to illustrate the perfor-
mance of the staggered Lagrangian approach advocated in Algorithm 1 compared to the
Eulerian approach and validate the proposed 3D hp-FEM methodology.
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Order Computed rate Expected rate

1 -0.31 -0.33
2 -0.74 -0.67
3 -1.25 -1
4 -1.4 -1.33

Table 5.7: AC elasticity stage, hollow cylinder subject to body force: rates of convergence
for the relative error ||uDChp ´ uexact||H1pΩq{||uexact||H1pΩq under h-refinement.

5.3.1 Conducting and Elastic Sphere in a Uniform Alternating Mag-
netic Field

The case of a conducting elastic sphere ΩC :“ tx : |x| ď Ru, placed in an unbounded
region of free space Ωc

C , where HHH AC
0 tends to a time harmonic uniform field far from the

object, is now considered. Unlike the previous examples this does not have an analytical
solution. The sphere has a radius R “ 1 cm and material properties µ “ µ0, γ “ 6 ˆ

107 S/m, ρ “ 7800 kg/m3, E “ 108 Pa and ν “ 0.3.

ΩC

ΩN

R = 1 cm

R0 = 2 cm

y = 0 plane

Figure 5.20: Conducting and elastic sphere in a uniform alternating magnetic field: illus-
tration of the hemisphere used for the computations.

For computational purposes, the domain was truncated at a finite distance from the con-
ducting sphere. In particular, the truncation was chosen to be at a radius of R0 “ 2 cm
from the centre of the sphere. The geometry was further simplified by exploiting the sym-
metry of the problem about ez, which reduces Ω to a hemisphere with outer radiusR0. An
illustration of the reduced domain is provided in Figure 5.20. On the truncation boundary,
the approximate condition n ˆ AAAAC

ε,hq “ n ˆ AAAexact, where AAAexact is the analytical solu-
tion for the corresponding non-elastic sphere proposed by Smythe [164], as also used in
Section 5.2.3, is imposed. On the symmetry boundaries, the conditions

pσmpUUUAC
hp qnq ˆ n “ 0, (5.5a)

UUUAC
hp ¨ n “ 0, (5.5b)

AAAAC
ε,hq ˆ n “ 0, (5.5c)
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are imposed, which follow from the symmetric nature of the problem (see Section 4.9).
The regularisation parameter was chosen to be ε “ 10´6.
As discussed in Section 4.3.5, different combinations for the element orders p and q can
be chosen, provided that the discretisation for each field is sufficient to resolve accu-
rately both the electromagnetic and mechanical fields. To illustrate this, a frequency
f “ 50 Hz is considered, and the aforementioned sphere is discretised by a mesh of
2 319 tetrahedral elements. The converged results for the order combinations p “ q,
p “ q ´ 1 and p “ q ` 1 are then studied (Note that the lowest order combinations,
i.e. p “ q “ 1, p “ 1, q “ 2 and p “ 1, q “ 0, were considered as the starting poly-
nomial orders and then both p and q were increased uniformly until convergence was
reached). In particular, Figure 5.21 shows a plot of |RepBAC

0,z,hqq| and |RepUUUAC
hp q| along the

line t´0.01 ă x ă 0.01, y “ ´0.001, z “ 0u for the converged solution using the three
different combinations resulting in identical results on this scale.
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Figure 5.21: Conducting and elastic sphere in a uniform alternating magnetic field: com-
parison of the solution for different p, q combinations.

For the aforementioned conducting sphere, Algorithm 1 is applied over a sweep of fre-
quencies from f “ 1 Hz to f “ 4 500 Hz. For this sweep, and in anticipation of outputs
of interest for MRI configurations, the output (dissipated) power P 0

Ωpω,AAA
AC
ε,hq,B

DC
0,hq,UUU

AC
hp q

and the kinetic energyEk
Ωpω,UUU

AC
hp q, which are defined in a form suitable for measurement

as

P 0
Ω “

1

2

ż

Ω

γ
ˇ

ˇEEEAC
hpq

ˇ

ˇ

2
dΩ “

1

2

ż

Ω

γ
ˇ

ˇ´iωAAAAC
ε,hq ` iωBDC

0,hq ˆUUUAC
hp

ˇ

ˇ

2
dΩ, (5.6a)

Ek
Ω “

1

2

ż

Ω

ρω2
ˇ

ˇUUUAC
hp

ˇ

ˇ

2
dΩ, (5.6b)

were computed, and the results are shown in Figure 5.22 for the aforementioned mesh and
elements of order p “ 4 and q “ 5, for all frequencies in the sweep. This combination
of p, q is based on the observation that higher order was needed in order to accurately
resolve the eddy currents compared to the displacements at high frequencies. At lower
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frequencies it represents an overkill solution. The order of approximation for the ge-
ometry was set to g “ 2. The result obtained with the Eulerian formulation proposed
in [19, 17] (see Section 2.6) is also included to compare both formulations. Note that,
for the Eulerian approach, a small mechanical damping has been applied to the system
to remove numerical artefacts leading to non physical peaks. To apply the damping, a
frequency f “ ω{2π “ 2960 Hz was selected, corresponding to the resonant peak, and
(4.61) was applied with ξ “ 5.3 ˆ 10´3 to obtain αM “ 200, which is then used for all
frequencies in the sweep. The axisymmetric software [18, 19], using a monolithic instead
of a fixed point solver for the Eulerian formulation, is also shown as a further means of
comparison. This software being applicable, in this case, due to the symmetry of the
problem. Furthermore, the previous Eulerian axisymmetric solver [19, 18, 17] has also
been adapted to perform the Lagrangian approach, described by Algorithm 1, and these
results are included in the figure. For both the Eulerian and Lagrangian approaches, the
axisymmetric software is in good agreement with the results of the new 3D solver. In this
problem, and for the considered frequency range, no significant differences between both
approaches are observed.
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Figure 5.22: Conducting and elastic sphere in a uniform alternating magnetic field: dissi-
pated power and kinetic energy in the conducting sphere.

In order to better illustrate the physical behaviour of the problem, a contour plot of
|RepJJJ ohpqq| in the conducting sphere and |RepBBBAC

0,hqq| in the surrounding air is presented
in Figure 5.23. Here, as in (5.6a), JJJ o “ γEEEAC is approximated as JJJ ohpq “ γp´iωAAAAC

ε,hq `

iωBDC
0,hqˆUUUAC

hp q, corresponding to Ohmic type currents in an Eulerian frame. Streamlines
of the magnetic flux density in the air are also included.

Finally, as a further illustration of the coupled physical behaviour, the deformed sphere
for a set of different frequencies f “ t2000, 2500, 3500, 4000u Hz is shown in Figure
5.24.
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Figure 5.23: Conducting and elastic sphere in a uniform alternating magnetic field:
|RepJJJ ohpqq| contours in the conducting sphere and |RepBBBAC

0,hqq| contours and RepBBBAC
0,hqq

streamlines in the air.

(a) f “ 2000 Hz (b) f “ 2500 Hz (c) f “ 3500 Hz (d) f “ 4000 Hz

Figure 5.24: Conducting and elastic sphere in a uniform alternating magnetic field: con-
tours of |RepUUUAC

hp q| on the deformed sphere for different frequencies. Deformation mag-
nitude magnified by a factor of 30.

5.3.2 Test Magnet Problem with z (Longitudinal) Gradient Coil

The second coupled benchmark problem considered consists of an MRI configuration,
where the geometry has been simplified so that it is rotationally symmetric. In addition,
the non–rotationally symmetric x and y gradient coils have been removed leaving only the
z gradient coil. The configuration of the problem is shown in Figure 5.25, where the main
coils are shown in red, the gradient coils in blue, and the different radiation shields (4K,
77K and OVC) in different green tones. Note that the 3D geometry (Figure 5.25b), can
be obtained by rotating the r ´ z plane (Figure 5.25a), through 0 ď φ ă 2π rad about the
z axis (where pr, φ, zq are cylindrical coordinates). For confidentiality reasons the exact



5.3. COUPLED PHYSICS 105

dimensions and material properties cannot be stated. However, the order of magnitude
can be given as an indication; the thickness of the radiation shields is of the order of a few
millimetres and their length is of the order of a metre. The conductivity of the shields is
of order 106 ´ 107 S/m, the Young modulus of order 1010 ´ 1011 Pa, the Poisson ratio is
ν « 0.3, |JDC | is of order 108 A and |JJJAC | of order 106 A.
This problem was previously simulated in [19, 17] using an axisymmetric software and
the Eulerian approach. In this section, the focus is the 3D simulation of this problem using
the Lagrangian approach. The same boundary conditions as in [19, 17] are considered,
and UUUAC

hp “ 0 is imposed in a small segment of the conductor’s surface as illustrated in
Figure 5.25a.

ΩNC

Main coils

Gradient coils

z

r

OVC Shield

77K Shield

4K Shield

@ΩD
C

(a) 2D cross-section (b) 3D view

Figure 5.25: Test magnet problem with z (longitudinal) gradient coil: illustration of the
components of the problem in the axisymmetric meridian plane (left) and 3D view (right).

The domain Ω is formed by truncation of Ωc
C by a cylinder of radius R0 “ 0.9 m and

length L0 “ 2.4 m centred about the magnet. This problem is axisymmetric, but in order
to illustrate the performance of the 3D solver, an arbitrary choice such that Ω is reduced to
one quarter of the original geometry is made, as shown in Figure 5.26, and the symmetry
boundary conditions (5.5) are applied on the symmetry boundaries. Algorithm 1 is then
applied to obtain the computational Lagrangian solution.
A frequency sweep from 1 to 5000 Hz is performed in order to observe the variation
of the output power P 0

Ωpω,AAA
AC
ε,hq,B

DC
0,hq,UUU

AC
hp q and the kinetic energy Ek

Ωpω,UUU
AC
hp q. For

this, a mesh of 33 805 tetrahedral elements (with 9 974 elements in ΩC) is generated and
different polynomial orders q and p “ q ` 1 applied. This mesh was generated by locally
refining the elements in the conducting shields in order to accurately resolve the fields in
this region and paying attention to avoid issues with the generation of highly stretched
tetrahedrons. A quadratic geometry approximation was used throughout. The case of a
system without damping is analysed first, followed by a damped system according to the
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yz

x

y = 0 plane
x = 0 plane

Figure 5.26: Test magnet problem with z (longitudinal) gradient coil: quarter of the ge-
ometry used for the simulations exploiting the symmetry of the problem.

approach in Section 4.6. In the latter, ξ “ 4.5 ˆ 10´4 corresponds to the first resonant
frequency f “ 3515 Hz of the system. In a similar way to Section 5.3.1, by applying
(4.61) with ξ “ 4.5 ˆ 10´4 at this resonant peak, an αM “ 20 is obtained, which is then
applied for all frequencies in the sweep. The regularisation parameter was chosen to be
ε “ 10´4 and the tolerance of the PGMRES solver was set to 10´5.
Figure 5.27 shows the convergence of the dissipated power and kinetic energy under p-
refinement for the undamped system. For this, the lowest possible combination, q “ 0 and
p “ 1, was considered as the starting point and the polynomial orders q and p were then
uniformly increased until convergence was reached. It can be observed that the solution is
effectively converged using q “ 3 elements, but there are still some differences between
the results with q “ 3 and q “ 4 in the 4K shield. Nevertheless, as it will be shown
later, the result achieved with q “ 4 is in perfect agreement with the converged result
in the case of a system with damping and that of the axisymmetric software using the
Lagrangian approach.
The simulations were then repeated for a system with damping leading to Figure 5.28
for the p-refinement analysis. Notice how the addition of a small amount of damping
leads to a faster convergence of the frequency sweeps under p-refinement compared to
the undamped case.
Next, in Figure 5.29, the converged 3D results are compared with those obtained with the
axisymmetric code [19, 17] employing both the Eulerian and the Lagrangian approaches
as well as with the commercial software NACS [4] (only for the dissipated power), which
uses low order elements. An excellent agreement between the 3D and axisymmetric re-
sults for the Lagrangian approach is observed. The axisymmetric results using the Eule-
rian approach are in good agreement with the Lagrangian approach for the OVC shield
and for the 77K shield in the case of small frequencies. But, significant differences be-
tween the two approaches are observed in the 77K shield for high frequencies and in the
4K shield for almost all frequencies. The reason for these differences can be attributed
to the stronger coupling and larger velocities and accelerations present in the shields at
these frequencies, which mean that the approximations in the Eulerian approach used in
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Figure 5.27: Test magnet problem with z (longitudinal) gradient coil: convergence of
the dissipated power and kinetic energy in the radiation shields under p-refinement. Un-
damped system (αM “ 0).
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Figure 5.28: Test magnet problem with z (longitudinal) gradient coil: convergence of the
dissipated power and kinetic energy in the radiation shields under p-refinement. Damped
system (αM “ 20).
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[19, 17, 18] break down. The results obtained with NACS software are in good agreement
with the Lagrangian approach in the case of the OVC shield, but differ significantly in the
77K and 4K shields. It can be conjectured that this is due to the inability of low order el-
ements to accurately resolve the complex coupling mechanisms involved in the problem.
Note that the 77K and 4K shields have a bigger conductivity and, therefore, smaller skin
depths compared to the OVC shield.
In terms of computational cost, the Lagrangian approach offers considerable advantages
over the Eulerian approach since it requires the solution of two small systems as op-
posed to one larger monolithic system (e.g. for q “ 4, p “ 5 Pglobal “ 1, 277, 370 and
Qglobal “ 751, 245 compared to an Eulerian which would involve a Pglobal `Qglobal sized
system for each frequency). Furthermore, as described in Section 4.3.5, the matrices in the
Lagrangian approach have nicer properties compared to the indefinite system that would
need to be solved for the Eulerian approach, which allow preconditioned iterative solvers
to be applied.
In order to illustrate the physical behaviour of the problem, the eddy currents in the de-
formed 77K shield are shown in Figure 5.30 together with the streamlines of RepBBBAC

0,hqq

and contours of its magnitude in the air. These results are shown for two different fre-
quencies, f “ 10 and f “ 1000 Hz, to show how the magnitude of the eddy currents
increases and the skin depth effect becomes visible for the higher frequency. It can also
be observed that the deformation increases with the eddy currents.
Finally, in Figure 5.31, a contour plot of |RepUUUAC

hp q| in the deformed 4K shield is shown,
together with the magnetic flux density streamlines in the surrounding air. The result is
shown for a frequency f “ 1000 Hz and the different snapshots correspond to different
times. Note that for a given frequency, the temporal solution can be recovered from (3.38).

Effect of Damping and Boundary Conditions

In order to illustrate the effect that the damping and boundary conditions have in the solu-
tion, the dissipated power and kinetic energy in the radiation shields are shown in Figure
5.32 for αM “ 20, 100, 200, 400 when the boundary condition UUUAC

hp “ 0 is imposed at
the ends of the shields, as illustrated in Figure 5.33. Note how the position and even the
number of peaks have changed from the previous choice of boundary conditions (Figure
5.29) to the current choice. However, the choice of αM does not change the position of
the peaks and it only modifies their amplitude.
Note that so far we have only considered a damping model where we use a fixed αM for
all the frequencies. A different option would consist in choosing a constant damping ratio
ξ and computing the appropriate αM for each frequency according to equation (4.61).
The former is a bit more closer to reality, as typically in real systems the damping ratio
changes with frequency. However, it may result in some of the peaks (especially at lower
frequencies) being overdamped, whilst in the latter, provided that we choose ξ ă 1, all
the peaks will be underdamped and, thus, all of them will be visible in the solution. Since
in this thesis damping is only considered in order to avoid the solution becoming singular
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Figure 5.29: Test magnet problem with z (longitudinal) gradient coil: Dissipated power
and kinetic energy in the radiation shields. Comparison between different approaches.

at the resonant frequencies (and to enhance a faster convergence), and building a realistic
damping model is out of the scope of this work, both options will be considered. To
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(a) f “ 10 Hz (b) f “ 1000 Hz

Figure 5.30: Test magnet problem with z (longitudinal) gradient coil: |RepJJJ ohpqq| in the de-
formed 77K shield and |RepBBBAC

0,hqq| contours and RepBBBAC
0,hqq streamlines in the background

air for two different frequencies.

illustrate the second option, the plots shown in Figure 5.32 for different constant αM are
repeated in Figure 5.34 for different constant damping ratios ξ “ 10´4, 10´3, 10´2. It
can be observed that in this case there is no significant difference between both damping
models.

Choice of p, q combination

For the p-refinement analysis shown in Figures 5.27 and 5.28, the starting point was the
lowest possible order for p and q, which corresponds to q “ 0, p “ 1, and both p and q
were then uniformly increased until convergence was reached. However, as discussed in
Section 4.3.5, there is freedom in the choice of p and q, and the combination p “ q ` 1

is not necessarily the optimum choice. To illustrate this, the dissipated power and kinetic
energy in the radiation shields are shown in Figure 5.35 for the cases q “ p “ 3 and
q “ 3, p “ 4. The shields were fixed in the ends and a constant αM “ 400 was applied
for all frequencies in the sweep. It can be observed that the solution is identical for
both cases, which means that for this problem p “ q is actually a better choice than
p “ q`1 as with the former a converged solution is achieved using less degrees of freedom
than with the latter. The optimum choice is problem dependant and it is, in general,
difficult to determine a priori. One option to find the best choice is to compute the solution
for a reduced number of frequencies (especially for higher frequencies) using different
p, q combinations and look at some plots of the solution (eddy currents, displacements
or magnetic fields among others) to identify which combination results in a converged
solution for the fewest degrees of freedom at the selected frequencies. By doing this, the
optimum choice for this problem was found to be p “ q.
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(a) t “ 0 ms (b) t “ 0.1 ms

(c) t “ 0.2 ms (d) t “ 0.3 ms

(e) t “ 0.4 ms (f) t “ 0.5 ms

Figure 5.31: Test magnet problem with z (longitudinal) gradient coil: snapshots of
|RepUUUAC

hp e
iωtq| in the deformed 4K shield and RepBBBAC

0,hqe
iωtq streamlines in the surrounding

air for f “ 1000 Hz and different times. Deformation magnitude magnified by a factor of
104 in plot, but not in contours.
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Figure 5.32: Test magnet problem with z (longitudinal) gradient coils: Dissipated power
and kinetic energy in the radiation shields for different αM “ 20, 100, 200, 400.
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Figure 5.33: Test magnet problem with z (longitudinal) gradient coils: Illustration of the
choice of boundary conditions. Shields fixed at the ends.

5.3.3 Test Magnet Problem with x (Transversal) Gradient Coil

A new challenging problem, consisting of the configuration described in Section 5.3.2
with the z gradient coils being replaced by a set of x gradient coils, is now considered.
Note that the case of only y gradient coils can be obtained by rotating the current situation
through 90˝1. This new set of coils produces a magnetic field gradient in the x direction
and, therefore, the problem is no longer rotationally symmetric and cannot be simulated
using the axisymmetric tool developed in [19, 18, 17]. Figure 5.36 shows the geometry
of the problem, including the new set of gradient coils. These coils represent an approx-
imation to the complex fingerprint shape used in real MRI scanners shown previously in
Figure 4.13. The boundary condition UUUAC

hp “ 0 was imposed at the ends of the shields and
mechanical damping with αM “ 200 was added to the system. For computational pur-
poses, the domain was truncated by a cylinder of radius R0 “ 0.9 m and length L0 “ 2.4

m. The material properties are the same as those in Section 5.3.2.
In the case of transversal gradient coils, the description of the current source JJJAC becomes
more challenging due to increasing complexity in the geometry. This can lead to issues
with producing a description of JJJAC that is both tangential to the coil geometry and that
satisfies div JJJAC “ 0. Thus, in order to ensure that the current source is divergence free,
a mapping of the current source to the space of divergence free functions is performed as
described in Section 4.8.
In the new configuration, the rotational symmetry is lost. However, as discussed in Section
4.9, the problem still exhibits symmetries or anti-symmetries with respect to the Carte-
sian planes x “ 0, y “ 0 and z “ 0. Thus, the computational domain is reduced to 1/8
of its original size by exploiting these symmetries and applying the appropriate boundary
conditions described in Table 4.1. For the discretisation, a mesh of 27 168 tetrahedral
elements, with significant refinement in the area of the conducting shields (10 290 ele-

1Note again that the view in Figure 5.36 has been rotated so that the vertical direction corresponds to x
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Figure 5.34: Test magnet problem with z (longitudinal) gradient coils: Dissipated power
and kinetic energy in the radiation shields for different ξ “ 10´4, 10´2, 10´3.
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Figure 5.35: Test magnet problem with z (longitudinal) gradient coils: Dissipated power
and kinetic energy in the radiation shields for q “ p “ 3 and q “ 3, p “ 4.
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Figure 5.36: Test magnet problem with x (transversal) gradient coil: illustration of the
geometry including main coils (red), gradient coils (blue) and radiation shields (green).

ments in the conducting region) was used, and the polynomial order was increased until
convergence was reached, which was found to when q “ 4 and p “ 4. The regularisation
parameter was set to ε “ 10´4 and the tolerance of the iterative solver to 10´5.
In order to illustrate how the solution changes when considering transversal instead of
longitudinal coils, a contour plot of |RepJJJ ohpqq| in the OVC shield for a frequency f “ 500

Hz is presented in Figure 5.37 comparing both cases. As expected, it can be observed
that the solution in the case of x gradient coil is no longer axisymmetric. The same is
repeated for the mechanical field in Figure 5.38, where a contour plot of |RepUUUAC

hp q| on
the deformed 77K shield is shown.
Next, in Figure 5.39, the streamlines of RepBBBAC

0,hqq around the radiation shields are shown,
together with contours of |RepJJJ ohpqq| in the shields. The main coils and gradient coils are
also included and it can be observed that, in the case of z gradient coils, all the streamlines
lie in a plane, whilst in the case of x gradient coils, they follow a more complex helical
pattern.
Furthermore, the dissipated power and kinetic energy in the radiation shields were also
computed and, in Figure 5.40, the convergence of the solution for increasing polynomial
order is shown. In this case the optimum choice for the polynomial orders was found to
be q “ p and the solution converged for q “ p “ 4 (effectively for q “ p “ 3).
Finally, the dissipated power and kinetic energy obtained with the z and x gradient coils
are compared in Figure 5.41. Note how the different gradient coils excite different reso-
nant modes of the system. Furthermore, in this problem more modes are excited with the
x gradient coil than with the z gradient coil.

5.3.4 Modified Magnet Problem

The last problem considered in this chapter consists in a simplified MRI configuration for
which experimental data is available. The geometry of the problem is shown in Figure
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(a) z gradient (b) x gradient

Figure 5.37: Test magnet problem with x (transversal) gradient coil: |RepJJJ ohpqq| in the
OVC shield for f “ 500 Hz compared with the case of z (longitudinal) gradient coil.

(a) z gradient (b) x gradient

Figure 5.38: Test magnet problem with x (transversal) gradient coil: |RepUUUAC
hp q| in the

77K shield for f “ 500 Hz compared with the case of z (longitudinal) gradient coil.
Deformation magnitude magnified by a factor of 104 in plot, but not in contours.
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(a) z gradient (b) x gradient

Figure 5.39: Test magnet problem with x (transversal) gradient coil: Streamlines of
RepBBBAC

0,hqq and contours of |RepJJJ ohpqq| in the radiation shields for f “ 500 Hz compared
with the case of z (longitudinal) gradient coil.

5.42 for the cases of z as well as x gradient coils. Again, the exact geometry and material
properties are confidential and, thus, are not stated here. The order of magnitude of these
properties is the same as stated in Section 5.3.2.

For this problem, experimental results are available for the dissipated power in the 4K
shield when considering only z gradient coils. Thus, in Figure 5.43, the experimental
results are compared with the results obtained using the axisymmetric software [19, 17]
for the Eulerian and Lagrangian approaches and the results using the 3D software and
the Lagrangian approach. For computational purposes, the domain was truncated by a
cylinder of radius R0 “ 0.9 m and length L0 “ 2.4 m. Mechanical damping with a
constant αM “ 400 was applied and the Dirichlet boundary condition UUUAC

hp “ 0 was
imposed at the ends of the shields. As for the previous problems, a p-refinement analysis
using a mesh of 41 440 elements (with 14 192 elements in the conducting region) was
performed and the converged solution, corresponding to q “ p “ 4 (effectively converged
for q “ p “ 3), is shown. The regularisation term was chosen to be ε “ 10´4 and the
tolerance of the iterative solver was set to 10´5.

Note that the model has been simplified and many components present in the real con-
figuration have been neglected, thus it is not expected to obtain an excellent agreement.
However, it can be observed that the Lagrangian approach leads to an excellent agree-
ment with the experimental data in the non resonant region, corresponding to frequencies
f ă 3500 Hz, which is not true in the case of the Eulerian approach, where good agree-
ment is obtained only for frequencies f ă 1000 Hz. The result in the resonant region is
more sensitive to the choice of boundary conditions, mechanical damping or the model
simplifications. Thus, in order to obtain good agreement in this region, the model would
have to be improved by including all the components present in the real configuration,
and choosing a more sophisticated damping model. However, this is out of the scope
of this thesis, and given the simplifications considered in our model we can conclude that
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Figure 5.40: Test magnet problem with x (transversal) gradient coil: convergence of the
dissipated power and kinetic energy in the radiation shields under p-refinement. Damped
system (αM “ 200).
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Figure 5.41: Test magnet problem: comparison of the dissipated power and kinetic energy
in the radiation shields for z gradient coils and x gradient coils. Damped system (αM “

200).



122 CHAPTER 5. NUMERICAL RESULTS FOR THE FULL ORDER PROBLEM

(a) z coils (b) x coils

Figure 5.42: Modified magnet problem: Illustration of the geometry for (a) z gradient coil
and (b) x gradient coil.
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Figure 5.43: Modified magnet problem with z (longitudinal) gradient coil: comparison
of P 0

Ω4K
for axisymmetric Eulerian and Lagrangian approaches, 3D Lagrangian approach

and experimental data.

good agreement is obtained and, importantly, the Lagrangian approach offers a substantial
improvement over the previous [19, 17] Eulerian approach.
Finally, even though experimental data is not available for the case of x-gradient coil,
the dissipated power obtained in the 4K shield was also computed for this case and the
result is shown in Figure 5.44, where it can be observed that more resonant modes are
excited by the x gradient coils compared to the z gradient coils. Again, a p-refinement
analysis, using a mesh of 54796 elements, was performed, and the converged solution,
which corresponds to q “ 5, p “ 4 (effectively converged for q “ 4, p “ 3), is shown.
Note that in this case the optimum combination of p, q was found to be q “ p ` 1 as
it was observed that higher order was needed to resolve the eddy currents compared to
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Figure 5.44: Modified magnet problem with x (transversal) gradient coil: Dissipated
power in the 4K shield.

the displacements, especially at high frequencies. For low frequencies this represents an
overkill solution. Note again how the different choice of gradient coils leads to different
resonant modes being excited.

5.4 Chapter Summary

In this Chapter, the proposed 3D Lagrangian hp-FEM methodology has been applied to
several academic and industrially relevant problems.
The main novelties of the Chapter are as follows; first, the proposed 3D hp-FEM method-
ology was applied to several single physics problems and it was shown that the expected
rates of convergence are obtained for the electromagnetic and mechanical DC and AC
stages. Second, the efficiency of the proposed preconditioned iterative solver for each
of these stages was assessed. Third, it was shown that there is freedom in the choice
of the combination q, p and that different combinations lead to the same converged solu-
tion. Fourth, the coupled Lagrangian hp-FEM methodology was validated by consider-
ing a simplified magnet geometry and performing comparisons against the axisymmetric
software [19, 17] and the commercial software NACS [4]. Fifth, the methodology was
applied to MRI configurations considering transversal gradient coils and the solution was
compared with the case of longitudinal gradient coils. Sixth, comparisons against ex-
perimental data were provided for a different simplified MRI configuration. Seventh, the
Eulerian and Lagrangian approaches were compared and it was shown that the Lagrangian
approach leads to more accurate results. Furthermore, several plots of physically relevant
magnitudes were provided for each of the problems considered in order to illustrate the
physical behaviour.
These novelties were illustrated as follows. First, in Section 5.2, the methodology was
applied to four different single physics or decoupled problems in order to validate the
electromagnetic and mechanical DC and AC stages. For each of these problems a conver-
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gence analysis was performed, and the result was compared with the theoretical predic-
tion [171, 172] for the rates of convergence under p and h-refinement. Furthermore, the
efficiency of the preconditioned iterative solver was assessed in each case and different
magnitudes of interest were plotted in order to illustrate the physical behaviour. Then,
in Section 5.3, the methodology was applied to a series of coupled magneto-mechanical
problems. The first coupled problem considered was an academic benchmark problem
consisting in a conducting and elastic sphere excited by a time-harmonic magnetic field,
and it was shown that different combinations of q and p lead to the same solution. Further-
more, the dissipated power and kinetic energy were computed for a sweep of frequencies
from f “ 1 to f “ 4500 Hz and it was shown that for this problem the same solution is
obtained with the 3D and axisymmetric softwares and with the Eulerian and Lagrangian
approaches. Then, a simplified magnet geometry, considering only z (longitudinal) coils
was considered and the dissipated power and kinetic energy in the different radiation
shields were computed. Comparisons with the axisymmetric software were again per-
formed in order to validate the 3D software. In this case, significant differences were
observed between the Lagrangian and Eulerian approaches. Comparisons against com-
mercial software were also provided. Furthermore, the effect of the choice of damping
and boundary conditions in the final solution was also illustrated. Next, the same prob-
lem but replacing the z gradient coils by a set of x gradient coils was considered and
it was shown that different resonant modes are excited by different gradient coils. Fi-
nally, another problem consisting in a simplified MRI configuration was considered and
comparisons against experimental data were provided.
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Chapter 6

POD Based Reduced Order Modelling

6.1 Introductory Remarks

In the design stage of a new MRI scanner, the magneto-mechanical problem (2.42) must
be solved multiple times in order to investigate how the solution depends on parameters
of interest such as the excitation frequency of the current source or the conductivity of
the radiation shields among others. For this, system (4.54) has to be solved repeatedly for
each parameter combination, which leads to a bottleneck in terms of computational time.
Thus, the main objective of this chapter is the development of a reduced order model
(ROM) that can help optimise the workflow of the MRI design process. A ROM can
be understood as a method that allows to approximate the solution to a high dimensional
parametric problem (the full order problem) by means of a problem of reduced dimensions
that captures the dominant components (or modes) of the full order problem [49, 14, 87,
43] and whose solution is computationally much cheaper than the solution to the full order
model. To this end, the Proper Orthogonal Decomposition (POD) [43, 119, 180, 47] is
considered and, in particular, the focus is on its discrete version, which is also referred to
as Principal Component Analysis (PCA) in the literature [43, 133].
The main novelty of this chapter is the development of a POD based reduced order-full
order methodology for the solution of the 3D magneto-mechanical problem of interest.
This methodology exploits the staggered nature of the linearised Lagrangian approach
described in Chapter 3 by building a ROM to approximate the electromagnetic solution
and using this to feed the mechanical full order solver. First the methodology to apply
POD to the complete problem is described, followed by the application to both problems
separately and the description of the reduced order-full order methodology. Furthermore,
an affine decomposition of the problem, in terms of frequency and conductivity, is devel-
oped, which is key for the efficiency of the projection based POD. The Chapter builds on
the work first presented by the author in [159].
The structure of the Chapter is as follows: First, in Sections 6.2 and 6.3, the variational
formulation and discrete system of the linearised and regularised problem are rewritten in
a form more suitable for the development of a ROM, where the parametric dependency is
highlighted. Then, in Section 6.4, the Singular Value Decomposition (SVD), which is a
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key mathematical tool in the application of POD, is introduced. The POD is described in
Section 6.5, where the off-line stage is first discussed (Section 6.5.1) followed by the in-
terpolation and projection based on-line stage (Sections 6.5.2 and 6.5.3). The application
of POD to electromagnetics and mechanics separately is discussed in Section 6.6 and the
combined POD-Full methodology is presented in Section 6.7. The chapter finishes with
concluding remarks in Section 6.9.

6.2 Variational Formulation

In order to derive a ROM for the magneto-mechanical problem of interest, the variational
formulation (3.35) is rewritten here in an alternative format where the dependency on the
model parameters is explicitly written. Let w “

`

w1, w2, . . . , wNp

˘

denote a general set
of model parameters (frequency or conductivity of each shield among others). Note that in
this thesis only parameters on which the solution of the DC problem does not depend upon
are considered and, thus, the focus is on the AC problem1. The variational formulation of
the AC problem (3.35) can then be stated in the alternative form: Find complex solutions
`

AAAAC
ε ,UUUAC

˘

P X̃Ωp0q ˆ Y p0q such that

aAε

`

AAAAC
ε px,wq, δApx,wq

˘

“ rAε pδApx,wqq , (6.1a)

aU
`

UUUAC
px,wq, δupx,wq;ADC

ε pxq, AAAAC
ε px,wq

˘

“ 0, (6.1b)

for all pδA, δuq P X̃Ωp0q ˆ Y p0q, where

aAε

`

AAAAC
ε px,wq, δApx,wq

˘

:“

ż

Ω

`

µ´1
r curlAAAAC

ε px,wq
˘

¨

´

curl δApx,wq
¯

dΩ

` iωµ0

ż

ΩC

γAAAAC
ε px,wq ¨ δApx,wq dΩ

` ωε

ż

ΩNC

AAAAC
ε px,wq ¨ δApx,wq dΩ (6.2a)

aU
`

UUUAC
px,wq, δupx,wq;ADC

ε pxq, AAAAC
ε px,wq

˘

:“

µ0

ż

ΩC

σmpUUUAC
px,wqq :

´

grad δupx,wq
¯

dΩ

´ µ0ω
2

ż

ΩC

ρUUUAC
px,wq ¨ δupx,wq dΩ

`

ż

Ω

µ´1
r SpADC

ε pxq,AAAAC
ε px,wqq :

´

grad δupx,wq
¯

dΩ (6.2b)

rAε pδApx,wqq :“ µ0

ż

supppJJJACq

JJJACpxq ¨ δApx,wq dΩ. (6.2c)

1Note that the formulation is easily extensible to the case where the solution of the DC problem also de-
pends on the parameters of interest (e.g. permeability). However, typically in MRI applications the biggest
interest lies in parameters that affect only the AC problem (frequency, conductivity or shield thickness
among others).
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Note that aAε

`

AAAAC
ε px,wq, δApx,wq

˘

is a sesquilinear form, rAε pδApx,wqq is an anti-
linear form and aU

`

UUUACpx,wq, δupx,wq;ADC
ε pxq,AAAAC

ε px,wq
˘

can be rewritten as

aU
`

UUUAC
px,wq, δupx,wq;ADC

ε pxq,AAAAC
ε px,wq

˘

“ ãU
`

UUUAC
px,wq, δupx,wq

˘

´ r̃U
`

δupx,wq;ADC
ε pxq,AAAAC

ε px,wq
˘

, (6.3)

where the sesquilinear ãU
`

UUUACpx,wq, δupx,wq
˘

and antilinear
r̃U

`

δupx,wq;ADC
ε pxq,AAAAC

ε px,wq
˘

forms are defined as

ãU
`

UUUAC
px,wq, δupx,wq

˘

:“ µ0

ż

ΩC

σmpUUUAC
px,wqq :

´

grad δupx,wq
¯

dΩ

´ µ0ω
2

ż

ΩC

ρUUUAC
px,wq ¨ δupx,wq dΩ, (6.4a)

r̃U
`

δupx,wq;ADC
ε pxq,AAAAC

ε px,wq
˘

:“

´

ż

Ω

µ´1
r SpADC

ε pxq,AAAAC
ε px,wqq :

´

grad δupx,wq
¯

dΩ. (6.4b)

Furthermore, the abstract weak form (6.1) can be rewritten in a compact form for the

solution vector qpx,wq :“

ˆ

AAAAC
ε px,wq

UUUACpx,wq

˙

as: Find complex solutions q P X̃Ωp0qˆY p0q

such that:
apqpx,wq, δqpx,wqq “ rpδqpx,wqq, (6.5)

for all δq P X̃Ωp0q ˆ Y p0q.

6.3 Discrete System

For parameters of interest w, let us define the Galerkin approximation to the AC fields at
position x as

qhpqpx,wq :“

ˆ

AAAAC
ε,hqpx,wq

UUUAC
hp px,wq

˙

“

˜

řPglobal

i“1 N i
pxqAAC,i

ε pwq
řQglobal

i“1 Lipxq UAC,i
pwq

¸

P S (6.6)

where S :“ pX̃Ωp0q X XAC
reg q ˆ pY p0q X Yhpq. Furthermore, Nd “ Pglobal ` 3Qglobal is

the total number of DOF, which are split into Pglobal electromagnetic DOF and 3Qglobal

mechanical DOF and

Npxq :“
“

N 1,N 2, . . . ,NPglobal
‰

(6.7a)

Lpxq :“
“

l1, l2, . . . , l3Qglobal

‰

“

»

–

L1 0 0 . . . LQglobal 0 0

0 L1 0 . . . 0 LQglobal 0

0 0 L1 . . . 0 0 LQglobal

fi

fl ,

(6.7b)

are the matrices of H(curl) and H1 basis functions, where l1pxq, l2pxq, . . . , l3Qglobal
pxq

are the columns of Lpxq, so that

qhpqpx,wq “

ˆ

NpxqAAC
ε pwq

LpxqUAC
pwq

˙

“

„

Npxq 0

0 Lpxq

ˆ

AAC
ε pwq

UAC
pwq

˙

“ Opxqqpwq, (6.8)
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where o1pxq, . . . ,oNd
pxq are the columns of Opxq and qpwq :“

ˆ

AAC
ε pwq

UAC
pwq

˙

are the

solution coefficients. Inserting the discrete approximation to the solution field in the vari-
ational form (6.5) results in

Nd
ÿ

i“1

Nd
ÿ

j“1

δqipwqa pojpxq,oipxqq qjpwq “
Nd
ÿ

i“1

δqipwqr poipxqq , (6.9)

and, choosing δqipwq appropriately, this leads to the linear system

Apwqqpwq “ Rpwq. (6.10)

This is of size Nd and the system matrix and right hand side vector are defined as

Apwq :“

„

AAApwq 0

AUApwq AUUpwq



“

„

KAC
AApwq `CAC

AApwq 0

KAC
UApwq KAC

UUpwq ` iωCAC
UUpwq ´ ω

2MAC
UUpwq



, (6.11a)

Rpwq :“

ˆ

RApwq

0

˙

“

ˆ

RAC
A pwq

0

˙

. (6.11b)

6.4 The Singular Value Decomposition (SVD)

Before proceeding to explain how a ROM for the coupled problem of interest will be
constructed, an essential mathematical tool for this construction must be introduced, the
so-called SVD.
The SVD [33, 84] states that, given a complex matrix D P Cmˆn, there exist unitary
matrices H P Cmˆm and G P Cnˆn such that:

D “ HΣG˚
“

minpm,nq
ÿ

k“1

hkσk pgkq
˚ (6.12)

where H “ rh1, . . . ,hms P Cmˆm and G “ rg1, . . . ,gns P Cnˆn are unitary ma-
trices containing the left and right singular vectors of D, respectively, G˚ denotes the

complex conjugate transpose of G, Σ P Rmˆn is the matrix Σ “

„

Σr 0

0 0



with

Σr “ diagpσ1, ..., σrq, r being the rank of D and σ1 ě σ2 ě ¨ ¨ ¨ ě σr ą 0 are the
singular values of D. Note that although the matrix Σ can be expressed in terms of Σr

for all cases as written above, distinction should be made between the cases m ą n and
m ă n. In the case m ą n, Σ can be written as:
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„

Σr 0

0 0



“

»

—

—

—

—

—

—

—

—

—

—

–

σ1 0 . . . 0

0 σ2 . . . 0
...

... . . . ...
0 0 . . . σn
0 0 . . . 0
... . . . . . . ...
0 . . . . . . 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (6.13)

with r ď n, and for the case m ă n:

„

Σr 0

0 0



“

»

—

—

—

—

–

σ1 0 . . . 0 0 . . . 0

0 σ2 . . . 0 0
. . . ...

...
... . . . ...

... . . . ...
0 0 . . . σm 0 . . . 0

fi

ffi

ffi

ffi

ffi

fl

, (6.14)

where r ď m.
Among many other applications, the SVD has successfully been applied to least square
problems, such as the minimal least squares solution to rank deficient or ill-conditioned
linear systems of equations [33, 84, 109], that arise often in inverse problems such as
finding hidden targets and medical imaging, or low rank matrix approximation [33]. This
feature of the SVD will constitute the main tool for the construction of the reduced order
model presented in this thesis, as will be shown later. Note that some of the singular
values can be very small and, thus, the part of the SVD expansion associated with these
singular values can in practice be neglected. This is what is called Truncated Singular
Value Decomposition (TSVD), that is described in the following.

6.4.1 Truncated Singular Value Decomposition

The TSVD [33, 84, 109] can be applied to obtain low rank matrix approximations. Given
a matrix D its TSVD rank M (with M ă r) approximation is given by:

DM
“

M
ÿ

k“1

hkσk pgkq
˚
“ HMΣM

`

GM
˘˚

(6.15)

where the contributions made by the smallest singular values σk,M ă k ď r have been
filtered and only the largest M ă r singular values are retained. The left singular vectors
can then be arranged in a matrix HM P CmˆM , the right singular vectors in a matrix
GM P CnˆM and the singular values are the diagonal values in the matrix ΣM P RMˆM .
This approximation is optimal in a least squares sense [43, 62], this is:

DM
“ arg min

WPCmˆn of rank M

||D´W||F (6.16)

where the Frobenius matrix norm is defined as ||D||2F “ D : D.
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6.5 The Proper Orthogonal Decomposition

As discussed in Chapter 1, several numerical techniques can be classified as ROMs. Some
examples are PGD [49, 127, 50] and POD [43, 119, 180, 47], whose variants include POD
with interpolation (PODI) [145, 144, 42] and projection based POD (in the following
PODP), also known as POD based Reduced Basis (RB) or POD-Galerkin [165, 72, 61].
In this thesis the application of POD is considered, due to its relatively low intrusiveness
compared to other techniques such as PGD.
In the context of numerical simulations in engineering, POD involves two stages in the
solution of the parametric problem. During the first stage, the basis to represent the solu-
tion is chosen. To build this basis, many FE solutions need to be obtained and, therefore,
this stage is computationally expensive, although this can be mitigated as it is trivially
parallelisable and needs only to be done once. From the computed solutions, in this work
it is chosen to obtain the basis via a SVD [33, 84]. The second stage, performed once the
basis has been chosen, involves finding the solution for a given set of parameters. In the
case of PODI, this second phase consists simply in interpolating the parametric modes
(right singular vectors), while in the case of PODP, it involves the solution of a reduced
linear system of equations with the same size as the chosen basis. Given that this size is
reduced, this second stage is significantly cheaper than the first stage to the extent that the
solution can be obtained in real time2. This two stage scheme becomes efficient when the
second stage is applied many times (multiple queries) or when the second stage has to be
solved very fast (fast queries).

6.5.1 Off-line Stage: Construction of the Basis via SVD

The solution coefficients qpwq in (6.10) are approximated as

qpwq «
N
ÿ

k“1

akpwqφφφk, (6.17)

for some basis vectorsφφφk and parameter dependent amplitudes akpwq, with a small num-
ber of terms N ăă Nd. The first goal is to find a suitable set of φφφk that spans the
variation of q withw. To achieve this, a set of snapshots is computed, aiming at sampling
the family of solutions q when w changes [43, 47]. The computation of each snapshot
involves the computation of one full order problem. A matrix of snapshots D P CNdˆNs

is built in the form 3

D “
“

qpw1q, qpw2q, . . . , qpwNsq
‰

, (6.18)

where qpwjq is a single snapshot obtained as the solution to (6.10) for a given set of
parameters wj

4 and Ns is the number of computed snapshots.
2Provided most of the assembly of this reduced system can be done off-line as will be the case in the

application of interest in this thesis.
3Note that for our application Nd ą Ns and thus, for the sake of simplicity, we will restrict our consid-

eration to this case.
4Note that the roman font in w is used to denote a discrete set of sampled parameters.
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In order to obtain the optimal basis φφφk to represent this data, a SVD [33, 84] can be
applied, leading to the representation of the snapshot matrix

D “ HΣG˚
“

Ns
ÿ

k“1

hkσk pgkq
˚ . (6.19)

The solution for any sampled parameters wj can then be recovered, if desired, using

qpwjq “

Ns
ÿ

k“1

hkσkgjk “ HΣ pG˚
qj , (6.20)

where gjk is the entry of G on the j-th row and k-th column, the optimal set of basis φφφk

have been found to be hk and the amplitudes akpwjq have been found to be σkgjk. Note
that the notation pG˚qj is used to denote the j-th column of G˚ and the dependency on
wj is emphasized trough the sub-index j.
Furthermore, by applying a TSVD , a low rank approximation of D can be obtained

D « DM :“
M
ÿ

k“1

hkσk pgkq
˚
“

M
ÿ

k“1

HMΣM
`

GM
˘˚
, (6.21)

where the left singular vectors are contained in the matrix HM P CNdˆM , the right singu-
lar vectors in the matrix GM P CNsˆM and the singular values are the diagonal entries in
the matrix ΣM P RMˆM . The rank M of the approximated matrix is also referred to as
the number of modes.
The solution, for a sampled parameter set, can then be approximated using

qpwjq « qPOD
pwjq :“

M
ÿ

k“1

hkσkgjk “ HMΣM
´

`

GM
˘˚
¯

j
, (6.22)

where, comparing with (6.17), akpwjq “ σkgjk, φφφk “ hk and N “M .
The process of computing the snapshots and applying the TSVD is usually referred to as
the off-line stage, as this can be computed and stored at an initial stage independently of
sweeps of the parameters of interest w. This off-line stage is summarised in Algorithm
2 where Ws :“ pw1,w2, . . . ,wNsq denotes the chosen samples. Note that the input
arguments Apwq,Rpwq in the algorithm indicate that a method to compute A and R for
all w is given to the algorithm.
The aim is to construct an approximated solution qPODpwq for anyw, not just for the sam-
pled values. This is done in the so-called on-line stage, where two different approaches,
namely PODI and PODP, can be used to obtain qPODpwq for any value ofw [180]. PODI
[145, 144, 42] is less intrusive than PODP [165, 72, 61] since it does not require any
information from the finite element solver, as opposed to PODP, which requires the FE
system matrices to be accessible. On the other hand, PODI requires the solution to have
a smooth variation with the parameters in order to provide accurate results, while PODP
offers an increased accuracy and robustness, especially as the smoothness of the solution
decreases [180, 152]. These approaches are described in the next two subsections.



134 CHAPTER 6. POD BASED REDUCED ORDER MODELLING

Algorithm 2 Off-line Stage
1: function OFFLINE(Apwq,Rpwq,Ws,M )
2: for ws P Ws do
3: Find qpwsq such that

Apwsqqpwsq “ Rpwsq
4: end for
5: Build snapshot matrix D “ rqpw1q,qpw2q, . . . ,qpwNsqs
6: Apply TSVD to get D « DM “ HMΣM

`

GM
˘˚

7: return HM ,ΣM ,GM

8: end function

6.5.2 On-line Interpolation Based POD (PODI)

Expression (6.22) describes how the POD solution qpwjq can be recovered from a TSVD
when w “ wj is a set of parameters that has been sampled. In PODI, the coefficients
gjk are interpolated in order to obtain the solution at others parameters of interest. This
solution takes the form

qPODI
pwq :“

M
ÿ

k“1

hkσk

M
ÿ

j“1

Ijpwqgjk, (6.23)

where Ijpwq denote a certain set of interpolation functions, whose definitions can change
depending onw. The simple case of Lagrange linear and cubic interpolation will be con-
sidered and compared later in this thesis, although (6.23) also holds for arbitrary high
order Lagrange interpolation. Such approximations are not considered here as it is well
known that this can lead to additional oscillations in the interpolated solution e.g. [168].
Furthermore, when considering arbitrary high dimensional spaces, this interpolation be-
comes challenging due to the necessity to use dense meshes and ensure a properly posed
set of nodes is chosen [118] in order to interpolate the solution vectors. Due to this, it is
difficult, in general, to find an interpolation scheme that is both accurate and efficient for
the case of an arbitrary high dimensional space [107]. Hence, the application of PODI is,
in general, better suited when the number of parameters of interest is small, and becomes
more challenging when Np is large.
The on-line PODI stage is summarised in algorithmic format in Algorithm 3, which results
in the output qPODIpx,wq P S.

Algorithm 3 On-Line PODI Stage
1: function ONLINEPODI(HM ,ΣM ,GM ,O,M,x,w)
2: qPODIpwq “ řM

k“1 hkσk
řM
j“1 Ijpwqgjk

3: qPODIpx,wq “ OpxqqPODIpwq
4: return qPODIpx,wq
5: end function
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6.5.3 On-line Projection Based POD (PODP)

In PODP, the singular values and right singular vectors obtained from the TSVD are
neglected, and the solution is approximated as a linear combination of the left singular
vectors or POD basis vectors in the form

qPODP
pwq :“

M
ÿ

k“1

hkpkpwq “ HMppwq, (6.24)

where the parametric mode vector ppwq is unknown. Inserting this approximation into
expression (6.8), the solution qhpqpx,wq can be approximated using

qhpqpx,wq « q
PODP

px,wq :“ OpxqqPODP
pwq “ Opxq

M
ÿ

k“1

hkpkpwq P S. (6.25)

Then, substituting (6.25) into the weak form (6.5) and choosing to approximate the test
functions δq in the same manner, the next expression is obtained

M
ÿ

i“1

M
ÿ

j“1

δpipwqa pOpxqhj,Opxqhiq pjpwq “
M
ÿ

i“1

δpipwqr pOpxqhiq , (6.26)

and, choosing δpipwq appropriately, this leads to the reduced linear system
”

`

HM
˘˚

ApwqHM
ı

ppwq “
`

HM
˘˚

Rq, (6.27)

that is of sizeM . Once system (6.27) is solved, the solution qPODP px,wq can be obtained
from expression (6.25).
Defining the reduced matrix of the system, obtained by projection onto the reduced di-
mension space, as AMpwq :“

`

HM
˘˚

ApwqHM and the reduced right hand side vector
as RMpwq :“

`

HM
˘˚

Rpwq, equation (6.27) becomes

AM
pwqppwq “ RM

pwq. (6.28)

Note that the coefficients in the solution vector ppwq define the ROM approximation
and are obtained by solving a system of size M , which is computationally much cheaper
than the full order problem when M ăă Nd. The on-line PODP stage is summarised in
algorithmic format in Algorithm 4, which has as output qPODP px,wq P S.
PODP has the advantage that the POD solution is still forced to obey the equation of
the problem in its reduced form (6.27) for all w, while in PODI a simple interpolation
of parameter dependent amplitudes is considered. This usually leads to a higher accu-
racy and robustness [180] of PODP compared to PODI, but it also has the increased cost
of having to build and solve the small system (6.27). Note that computing the products
`

HM
˘˚

ApwqHM and
`

HM
˘˚

Rpwq is expensive and, thus, it is desired to avoid com-
puting it for each new value of w. For this purpose, an affine decomposition in terms of
the parameters of interest is usually developed [87], where the system matrix is expressed
in terms of some modified matrices that are independent of w and parameter dependent
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Algorithm 4 On-Line PODP Stage
1: function ONLINEPODP(HM ,AM pwq,RM pwq,O,x,w)
2: Find ppwq such that

AM pwqppwq “ RM pwq
3: qPODPpwq “ HMppwq
4: qPODP px,wq “ OpxqqPODPpwq
5: return qPODP px,wq
6: end function

scalar coefficients that multiply these matrices. In particular, the problem of interest in
this thesis admits an exact affine decomposition in terms of frequency and conductivity,
which leads to a much faster on-line PODP stage. This decomposition is described in the
following.

Affine Decomposition in Terms of Frequency and Conductivity

The only matrix block of A in (6.11) that depends on frequency and conductivity is CAC
AA.5

Consider the general case of a problem with NC disjoint conducting subdomains, ΩC,n,
n “ 1, 2, . . . , NC with conductivities γ “ γn in ΩC,n. An exact affine decomposition in
terms of frequency and conductivity can then be achieved by rewriting CAC

AA as

CAC
AA “ iωµ0

NC
ÿ

n“1

γnC
AC,ΩC,n

AA ` ωεC
AC,Ωc

C
AA ,

where the matrices C
AC,ΩC,n

AA and C
AC,Ωc

C
AA have been defined. Then, the matrix products

K̃AC
AA :“

`

HM
˘˚

KAC
AAHM , (6.29a)

C̃
AC,Ωl

C
AA :“

`

HM
˘˚

C
AC,Ωl

C
AA HM , (6.29b)

C̃
AC,Ωc

C
AA :“

`

HM
˘˚

C
AC,Ωc

C
AA HM , (6.29c)

K̃AC
UA :“

`

HM
˘˚

KAC
UAHM , (6.29d)

K̃AC
UU :“

`

HM
˘˚

KAC
UUHM , (6.29e)

C̃AC
UU :“

`

HM
˘˚

CAC
UUHM , (6.29f)

M̃AC
UU :“

`

HM
˘˚

MAC
UUHM , (6.29g)

can be precomputed at the off-line stage and the reduced matrix is built in the general case
as

AM
“

»

—

–

K̃AC
AA ` εωC̃

AC,Ωc
C

AA ` iωµ0

NC
ÿ

n“1

γnC̃
AC,ΩC,n

AA 0

K̃AC
UA K̃AC

UU ` iωC̃AC
UU ´ ω

2M̃AC
UU

fi

ffi

fl

(6.30)
5Note that the dependency of the mechanical damping and mass blocks on ω has already been written

in an affine format.
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where all the costly matrix products have been precomputed and the only operations to be
performed at the on-line stage are scalar times matrix products and sum of matrices, where
the matrices are of size M . Furthermore, the affine decomposition can be used to speed-
up the off-line stage, or the full order solution for varying parameters, as the parameter
independent blocks are assembled only once and the system matrix is then constructed as

A “

»

—

–

KAC
AA ` εωC

AC,Ωc
C

AA ` iω
NC
ÿ

n“1

γnC
AC,ΩC,n

AA 0

KAC
UA KAC

UU ` iωCAC
UU ´ ω

2MAC
UU

fi

ffi

fl

. (6.31)

Note that for application to the separated physics, as described in Section 6.6, the method-
ology can be applied analogously by considering only the relevant blocks of the global
matrix.

6.6 Application to Separated Physics

POD can also be applied to the electromagnetic or mechanical problems separately. In this
section, the steps needed at the off-line and on-line stages when considering application
to the separated physics are summarized.

6.6.1 Off-line

In the off-line stage, Algorithm 2 is applied to both physics separately. For this,
qpx,wq “ AAAAC

ε px,wq is first considered and then OFFLINEpAAApwq,RApwq,Ws,Mq

is called to obtain the low rank approximation DM
A “ HM

A ΣM
A
`

GM
A
˘˚ to the snap-

shot matrix DA. Secondly, qpx,wq “ UUUACpx,wq is considered and then OF-
FLINEpAUUpwq,´AUApwqAAC

ε pwq,Ws,Mq is called to obtain the low rank approxi-
mation DM

U “ HM
U ΣM

U
`

GM
U
˘˚ to the snapshot matrix DU . Note that the application to

separated physics offers extra flexibility, as different Ns and M can be considered for
each physics, if desired.

6.6.2 On-line

In the on-line stage, either PODI or PODP can be considered. If it
is chosen to apply PODI, the on-line stage for electromagnetics then con-
sists in calling ONLINEPODIpHM

A ,Σ
M
A ,G

M
A ,N,M,x,wq (Algorithm 3) to get

the approximation AAAPODIpx,wq to AAAAC
ε,hqpx,wq. For mechanics, the on-line

stage consists in calling ONLINEPODIpHM
U ,Σ

M
U ,G

M
U ,L,M,x,wq to get the ap-

proximation UUUPODIpx,wq to UUUAC
hp px,wq. If it is chosen instead to ap-

ply PODP, the on-line stage for electromagnetics then consists in calling ON-
LINEPODPpHM

A ,
`

HM
A
˘˚

AAApwqH
M
A ,

`

HM
A
˘˚

RApwq,N,x,wq (Algorithm 4) to ob-
tain the approximation AAAPODP px,wq to AAAAC

ε,hqpx,wq, and subsequently, for mechan-
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ics ONLINEPODPpHM
U ,

`

HM
U
˘˚

AUUpwqH
M
U ,

`

HM
U
˘˚ `

´AUApwqAAC
ε pwq

˘

,L,x,wq

is called to obtain the approximation UUUPODP px,wq to UUUAC
hp px,wq.

6

6.7 Combined Reduced Order-Full Order Approach

Figures (6.1a) and (6.1b) show the evolution with frequency of ||AAAAC
ε,hq||L2pΩC,nq and

||UUUAC
hp ||L2pΩC,nq, where ΩC,n refers to either Ω4K , Ω77K or ΩOV C , for the test magnet prob-

lem with z (longitudinal) gradient coil obtained by performing a full order simulation (see
Section 5.3.2 were this problem was simulated using the full order solver). The critical
observation is that peaks appear only in ||UUUAC

hp ||L2pΩC,nq, and not in ||AAAAC
ε,hq||L2pΩC,nq, the

latter exhibiting a smooth monotonically decay and therefore, being well suited to a POD
approximation. Moreover, this typical behaviour will always be the case for the applica-
tion of interest in this thesis, where the peaks are associated with the resonance modes of
the mechanical system, which will be activated depending on the induced electromagnetic
stress σepAq. This suggests that the application of a novel combined reduced order-full
order methodology in which POD is applied to the electromagnetic problem only and the
mechanical problem is solved using the full order solver could be beneficial, as the elec-
tromagnetic solution should be easier to approximate with fewer snapshots and modes.
Furthermore, 3Qglobal ! Pglobal, which means that the cost of the full order mechanical
solver is much cheaper than that of the full order electromagnetic solver.
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Figure 6.1: Evolution of (a) ||AAAAC
ε,hq||L2pΩC,nq and (b) ||UUUAC

hp ||L2pΩC,nq with the frequency for
the test magnet problem with z (longitudinal) gradient coil.

6Note that PODI can be applied independently to both physics, however in the case of PODP the appli-
cation to mechanics requires, in practice, the method to be first applied to electromagnetics given that l̃U
depends on AAAAC

ε px,wq.
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6.7.1 Off-line

In the off-line stage, Algorithm 2 is applied to the electromagnetic problem only, i.e.
qpx,wq “ AAAAC

ε px,wq is considered and then OFFLINEpAAApwq,RApwq,Ws,Mq is
called to obtain the low rank approximation DM

A “ HM
A ΣM

A
`

GM
A
˘˚ to the snapshot ma-

trix DA.

6.7.2 On-line

In the on-line stage, the solution AAAAC
ε,hq for the parameters of interest can be approximated

through PODI or PODP, and this is then used to feed the mechanical full order solver. For
clarity, the abbreviations PODI-Full and PODP-Full are used to denote the on-line stage
using PODI and PODP, respectively. For PODI-Full, Algorithm 5 is applied to obtain
an approximation qPODI´FULLpx,wq to qhpqpx,wq, and, for PODP-Full, Algorithm 6 is
applied to obtain an approximation qPODP´FULLpx,wq to qhpqpx,wq.

Algorithm 5 Combined PODI-Full
1: function ONLINEPODI-FULL(HM

A ,Σ
M
A ,G

M
A ,AUU pwq,AUApwq,N,L,M,x,w)

2: AAAPODIpx,wq “ ONLINEPODIpHM
A ,Σ

M
A ,G

M
A ,N,M,x,wq

3: Find UACpwq such that
AUU pwqUACpwq “ ´AUApwqAPODIpwq

4: UUUAC
hp px,wq “ LpxqUACpwq

5: return qPODI´FULLpx,wq “
˜

AAAPODIpx,wq
UUUAC
hp px,wq

¸

6: end function

Algorithm 6 Combined PODP-Full
1: function ONLINEPODP-FULL(HM

A ,Apwq,Rpwq,N,L,x,w)
2: AAAPODP px,wq “ ONLINEPODPpHM

A ,
`

HM
A

˘˚
AAApwqHM

A ,
`

HM
A

˘˚
RApwq,N,x,wq

3: Find UACpwq such that
AUU pwqUACpwq “ ´AUApwqAPODPpwq

4: UUUAC
hp px,wq “ LpxqUACpwq

5: return qPODP´FULLpx,wq “
˜

AAAPODP px,wq
UUUAC
hp px,wq

¸

6: end function

6.8 Dissipated Power and Kinetic Energy: POD Approx-
imation

For the purpose of an easier presentation, the dissipated power and kinetic energy defined
in (5.6) can be rewritten as

P 0
Ωpw,AAA

AC
ε,hqpx,wq,B

DC
0,hqpxq,UUU

AC
hp px,wqq :“

1

2

ż

Ω

γ
ˇ

ˇEEEAC
hpq

ˇ

ˇ

2
dΩ
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“
1

2

ż

Ω

γ
ˇ

ˇ´iωAAAAC
ε,hq ` iωBDC

0,hq ˆUUUAC
hp

ˇ

ˇ

2
dΩ, (6.32a)

Ek
Ωpw,UUU

AC
hp px,wqq :“

1

2

ż

Ω

ρω2
ˇ

ˇUUUAC
hp

ˇ

ˇ

2
dΩ, (6.32b)

where the parametric dependency has been explicitly written. The correspond-
ing POD approximations are P 0

Ωpw,AAA
PODpx,wq,BDC

0,hqpxq,UUU
PODpx,wqq and

Ek
Ωpw,B

DC
0,hq,UUU

PODpx,wqq, which reduce to P 0
Ωpw,AAA

POD,BDC
0,hq,UUU

PODq and
Ek

Ωpw,B
DC
0,hq,UUU

PODq, respectively, where the px,wq dependency on the POD so-
lutions has been dropped for simplicity of notation.

6.9 Chapter Summary

In this chapter the application of POD to the coupled 3D magneto-mechanical problem of
interest was discussed.
The main novelty of the chapter is the development of a new reduced order-full order
methodology for the solution of the 3D magneto-mechanical problem of interest in a La-
grangian frame. This exploits the staggered nature of the problem by applying POD to
obtain a ROM approximation to the electromagnetic solution and using this to feed the
mechanical full order solver. This ROM is of paramount importance for the industry,
given the necessity to run many parameter sweeps in a cost effective manner. The effi-
ciency of the ROM in such scenario will be proven in the next chapter. Furthermore, the
application of POD to the complete problem and to both physics separately was discussed,
and an affine decomposition of the problem in terms of frequency and conductivity was
derived.
The application of the POD to the complete problem was considered followed by the
application to electromagnetics and mechanics separately. Then, a new combined reduced
order-full order methodology was proposed, where, exploiting the staggered nature of the
Lagrangian formulation, POD is applied to the electromagnetic problem and this is then
used to feed the mechanical full order solver. Both the off-line and on-line stages were
described. The computational advantages of this approach over applying POD to the
complete problem will be presented in the next chapter.
First, in Sections 6.2 and 6.3, the variational formulation and discrete system derived in
Chapters 3 and 4, respectively, were rewritten in a form more suitable for the description
of the ROM, were the parametric dependency was explicitly written. Then, in Section
6.4, the SVD and TSVD were introduced. Section 6.5 focuses on the description of POD,
including the off-line and on-line stages. In the on-line stage, both PODI and PODP were
considered. The application of POD to the electromagnetic and mechanical problems
separately is discussed in Section 6.6. Finally, in Section 6.7, a new reduced order-full
order methodology is proposed.



Chapter 7

Reduced Order Model Numerical
Results

7.1 Introductory Remarks

This chapter focuses on the application of the ROM techniques described in Chapter 6 to
several challenging MRI configurations, that have also been solved using the full order
model in Chapter 5. First, only one parameter will be considered and the PODI and PODP
methodologies will be applied to the complete solution. Then, the application of these
methodologies to electromagnetics and mechanics separately will be considered, in order
to study the performance of PODI and PODP for each physics. Next, the application of the
PODI-Full and PODP-Full methodologies is considered. The most successful approach
(PODP-Full) will then be applied to problems considering multiple parameters of interest.
Numerous comparisons against the full order solution and different measures of the error
will be provided in order to assess the accuracy and efficiency of the methods.
The main novelties of this chapter are as follows; First, PODI and PODP are applied to
the magneto-mechanical problem of interest and it is shown that the application of these
methodologies to the mechanical problem requires the computation of a large number
of snapshots and, thus, no computational gaining with respect to the full order solution
can be obtained with this methods. Second, the PODI-Full and PODP-Full methodologies
were applied to the problem of interest and their accuracy and efficiency were assessed by
performing comparisons against the full order solution and using different error measures.
Third, a comparison between PODI-Full and PODP-Full was performed, which showed
that PODP-Full results in more accurate approximations for no significant increase in
computational cost.
Note that all the time measurements that will be shown in this chapter correspond to
wall-clock time and all the computations were made in a cluster node using a machine
Bull Sequana X440-E5 2 x Octa-Core (3.2 GHz) Xeon Gold v5 6134 and using a parallel
pool of 8 workers to solve the frequency sweeps in parallel. For details about the im-
plementation using parallel computing see Appendix D. Unless otherwise stated all the
computational time measurements in this chapter are based on these settings.

141
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The structure of the chapter is as follows; First, in Section 7.2, several error measures are
defined, which will be used to assess the accuracy of the ROM solution. Then, in Section
7.3, the application of the different ROM methodologies to the test magnet problem with
z gradient coils considering only the frequency as a parameter of interest is studied. The
PODI and PODP methodologies are studied first, followed by the PODI-Full and PODP-
Full methodologies. Section 7.4 focuses on the application of PODP-Full to the same
problem but considering one extra parameter. The application of PODP-Full to the modi-
fied magnet problem with x gradient coils is studied in Section 7.5. The chapter finishes
with concluding remarks in Section 7.6.

7.2 Error Measure

When considering the solution to the problem of interest using a ROM, an approximation
error is introduced. To quantify this error, several measures will be considered. First, the
relative truncation error introduced by truncating the SVD afterM terms can be quantified
using [33]

||D´DM ||F

||D||F
:“

b

řr
i“M`1 σ

2
i

a

řr
i“1 σ

2
i

, (7.1)

where r is the rank of D. However, this requires the complete SVD, which is generally not
available and instead only a rank M approximation to D is available for computational
efficiency. Thus, an upper bound e1 is used [96]

||D´DM ||F

||D||F
“

b

řr
i“M`1 σ

2
i

a

řr
i“1 σ

2
i

ď e1 :“

a

pr ´Mqσ2
M

b

řM
i“1 σ

2
i

, (7.2)

where the singular values are sorted in decreasing order and, therefore, σM ě σi for
M ` 1 ď i ď r.
The second error measure represents the error of the reduced order solution with respect
to the full order solution. To construct this measure, the solution to the problem for
parameter values that have not been sampled is computed using both the full order and
the ROM and the error is then defined for each parameter set w as

e2pqpwq,q
POD

pwqq :“
||qpwq ´ qPODpwq||Nd

||qpwq||Nd

, (7.3)

where || ¨ ||Nd
is the Nd-dimensional Euclidean norm.

Furthermore, the relative error in the dissipated power and kinetic energy can be defined
as

ePOD
P 0

Ω
pwq :“

|P 0
Ωpw,AAA

AC
ε,hq,B

DC
0,hq,UUU

AC
hp q ´ P

0
Ωpw,AAA

POD,BDC
0,hq,UUU

PODq|

|P 0
Ωpw,AAA

AC
ε,hq,B

DC
0,hq,UUU

AC
hp q|

, (7.4a)

ePODEk
Ω
pwq :“

|Ek
Ωpw,UUU

AC
hp q ´ E

k
Ωpw,UUU

PODq|

|Ek
Ωpw,UUU

AC
hp q|

, (7.4b)

and will also be used to assess the accuracy of the approximation.



7.3. TEST MAGNET PROBLEM WITH 1 PARAMETER 143
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Figure 7.1: Test magnet problem with z (longitudinal) gradient coil: illustration of the
components of the problem. (a) Axisymmetric meridian plane and (b) 3D view.

7.3 Test Magnet Problem with 1 Parameter

The application of POD to the test magnet problem with z (longitudinal) gradient coils,
first presented in Section 5.3.2, is considered here. For the convenience of the reader,
the problem geometry is illustrated again in Figure 7.1 as well as the chosen BΩD

C , where
the condition UUUAC

hp “ 0 was imposed. Mechanical damping was applied as described
in Section 4.6 with a constant damping ratio ξ “ 2 ˆ 10´3. The same mesh of 33 805

tetrahedral elements as used for the full order simulations presented in Section 5.3.2 and
polynomial orders q “ 3 and p “ 3 were considered.

As a first study, ω “ 2πf is considered as the only parameter. Thus, Np “ 1 and
w reduces to ω. Following the methodology described in Section 6.5.1, Algorithm 2
is applied by calling OFFLINE (Apwq,Rpwq,Ws,M ) for the sets of samples Ws “

p2πf1, 2πf2, . . . , 2πfNsqwithNs “ 500, 250, 125, 63, corresponding to fi “ 10`pi´1q∆f
Hz, with i “ 1, . . . , Ns and ∆f “ 10, 20, 40, 80 Hz. The TSVD was truncated with
M “ 50 (leading to a maximum upper bound for the truncation error e1 “ 8.3 ˆ 10´4

for the case Ns “ 500). This offline data is used in the following subsections. It should
be remarked that, in this thesis, the snapshots will be chosen either uniformly or based in
previous knowledge on the solution. Other approaches such as a greedy basis generation
of the basis [87] could be considered. This iterative method starts with the computation
of a single snapshot, and at each iteration a new snapshot is added. An error estimator is
required, which is evaluated at each iteration in a parametric mesh, and the next snapshot
is chosen to correspond to the parameters that maximize this error. For further details
about the method the reader is referred to [87].
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7.3.1 PODI

In this section, Algorithm 3 is applied by calling ON-
LINEPODI(HM ,ΣM ,GM ,O,M,x, 2πfi) to compute qPODIpx, 2πfiq at the frequencies
fi “ 15 ` pi ´ 1q∆f Hz with i “ 1, . . . , No, No “ 499 and ∆f “ 10 Hz. As a means of
comparison, the full order solver is then used to compute qhpqpx, 2πfiq with fi as before.
The resulting dissipated power and kinetic energy (6.32) for both qPODIpx, 2πfiq and
qhpqpx, 2πfiq are then compared.

A comparison of P 0
ΩC,n

p2πfi,AAAAC
ε,hq,B

DC
0,hq,UUU

AC
hp q with P 0

ΩC,n
p2πfi,AAAPODI ,BDC

0,hq,UUU
PODIq

and Ek
ΩC,n

p2πfi,UUUAC
hp q with Ek

Ω77K
p2πfi,UUUPODIq, i “ 1, . . . , No, where ΩC,n refers to

either the 4K, 77K or OVC shields, is provided in Figure 7.2. It can be observed how
the resolution of the resonant peaks decreases with Ns, which leads, in the worst case,
to the appearance of non-existent peaks or missing existent peaks. Note that these re-
sults correspond to the case where Ijpωq is chosen to give a linear interpolation and no
significant difference is observed in the case of Lagrange cubic interpolation. In order
to examine the loss in resolution more clearly, Figure 7.3 shows a comparison between
Ek

Ω77K
p2πfi,UUUPODIq, 3400 ď fi ď 5000 Hz, for different Ns, and Ek

Ω77K
p2πfi,UUUAC

hp q for
different No (with fi appropriately redefined). These results show that the Ns that PODI
requires in order to accurately reproduce the dissipated power and kinetic energy in the
radiation shields must be as large as the No required by the full order solver. Therefore,
PODI does not offer advantages over a full order solution.

7.3.2 PODP

The investigation described in Section 7.3.1 is now repeated using PODP by apply-
ing Algorithm 4 and calling ONLINEPODP(HM ,AMp2πfiq,RMp2πfiq,O,x, 2πfi). A
comparison of P 0

ΩC,n
p2πfi,AAAPODP ,BDC

0,hq,UUU
PODP q and Ek

ΩC,n
p2πfi,UUUPODP q, for Ns “

500, 250, 125, 63, with P 0
ΩC,n

p2πfi,AAAAC
ε,hq,B

DC
0,hq,UUU

AC
hp q and Ek

ΩC,n
p2πfi,UUUAC

hp q is shown in
Figure 7.4. First, it can be observed that an increased accuracy compared to PODI is
obtained, as the PODP solution shows an excellent agreement with the full order solution
in ΩOV C and Ω77K . However, significant differences are still observed in Ω4K , where the
accuracy of the approximation decreases with Ns and, similarly to PODI, the Ns required
by PODP in order to accurately capture the dissipated power and kinetic energy is as large
as theNo required by the full order solver, which means that no computational gaining can
be obtained by applying PODP. To better illustrate this, consideration is restricted to fre-
quencies 3200 ď fi ď 5000 Hz and, in Figure 7.5, a comparison of Ek

Ω4K
p2πfi,UUUPODP q

for Ns “ 500, 250, 125, 63 with Ek
Ω4K
p2πfi,UUUAC

hp q for No “ 500, 250, 125, 63 is shown,
in order to show the resonant region of the worst performing shield, where the greatest
differences are observed.
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Figure 7.2: PODI applied to test magnet problem with 1 parameter: Dissipated power
and kinetic energy in the radiation shields for different Ns. Comparison with full order
solution.
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Figure 7.3: Test magnet problem with 1 parameter: (a)Ek
Ω77K

p2πfi,UUUPODIq for different
Ns and (b) Ek

Ω77K
p2πfi,UUUAC

hp q for different No.

7.3.3 Application to Separated Physics Solutions

Since ||AAAAC
ε,hq||L2pΩC,nq has a smoother variation with frequency than ||UUUAC

hp ||L2pΩC,nq,
as shown in Figure 6.1, the application of PODI to the electromagnetic, qpx, ωq “
AAAAC
ε px, ωq, and mechanical, qpx, ωq “ UUUACpx, ωq, solutions separately is now consid-

ered, as explained in Section 6.6.

Off-line

At the off-line stage, OFFLINEpAAApwq,RApwq,Ws,Mq is first called followed by OF-
FLINEpAUUpwq,´AUApwqAAC

ε pwq,Ws,Mq for Ws “ p2πf1, 2πf2, . . . , 2πfNsq with
fi “ 10 ` pi ´ 1q∆f, i “ 1, . . . , Ns, Ns “ 500, 63 and ∆f “ 10, 80 Hz. The TSVD
was truncated after M “ 50 in both cases, which leads to a maximum upper bound for
the truncation error e1 “ 2.3ˆ10´6 for the case qpx, ωq “ AAAAC

ε px, ωq and e1 “ 3.3ˆ10´4

for the case qpx, ωq “ UUUACpx, ωq, corresponding to Ns “ 500. Note that e1 is smaller
in the case qpx, ωq “ AAAAC

ε px, ωq than in the case qpx, ωq “ UUUACpx, ωq, which means
that given a certain tolerance for e1, fewer modes are needed to approximate AAAAC

ε,hqpx, ωq

compared to UUUAC
hp px, ωq. To illustrate this, the decay of the singular values for the cases

qpx, ωq “ AAAAC
ε px, ωq, qpx, ωq “ UUUACpx, ωq and qpx, ωq “

ˆ

AAAAC
ε px, ωq

UUUACpx, ωq

˙

is shown in

Figure 7.6 for the case Ns “ 500, where it can be observed that the decay of the singular
values is much faster for qpx, ωq “ AAAAC

ε px, ωq. Note that M “ 50 was chosen so that e1

is sufficiently small for both physics.

On-line PODI

In the on-line PODI stage, ONLINEPODIpHM
A ,Σ

M
A ,G

M
A ,N,M,x, 2πfiq is first called

followed by ONLINEPODIpHM
U ,Σ

M
U ,G

M
U ,L,M,x, 2πfiq, with fi defined as in Section
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Figure 7.4: PODP applied to test magnet problem with 1 parameter. Dissipated power and
kinetic energy in the radiation shields for different Ns. Comparison with the full order
solution.
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Figure 7.6: POD applied to separated physics solutions: Decay of the singular values of
D,DA and DU .
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Figure 7.7: PODI applied to test magnet problem with 1 parameter: relative error,
e2pqp2πfiq,qPODIp2πfiqq for (a) qp2πfiq “ AAC

ε p2πfiq and (b) qp2πfiq “ UAC
p2πfiq.

7.3.1. The cases of Ijp2πfiq corresponding to linear and cubic Lagrange interpolation
were considered. The error e2pqp2πfiq,qPODIp2πfiqq defined in (7.3) is shown in Figure
7.7, where it can be observed that e2pqp2πfiq,qPODIp2πfiqq is several orders of magnitude
smaller in the case qp2πfiq “ AAC

ε p2πfiq compared to the case qp2πfiq “ UAC
p2πfiq,

especially for fi ą 3000 Hz. The large e2pqp2πfiq,qPODIp2πfiqq obtained for the case
qp2πfiq “ AAC

ε p2πfiq at frequencies fi ă 1000 Hz is due to its sharp variation in that
region, and this can be predicted and taken into account when defining the sampling fre-
quencies. However, the large e2pqp2πfiq,qPODIp2πfiqq obtained for qp2πfiq “ UAC

p2πfiq
in the resonant region is due to the singularities (peaks) obtained when the electromag-
netic field excites some of the resonant modes of the mechanical system, and cannot be
predicted. Thus, in a similar manner to Section 7.3.1, the Ns required by PODI in order
to accurately capture qpx, ωq “ UUUACpx, ωq is as large as the No required by the full order
solver, which means that no computational gaining can be obtained applying PODI to
the mechanical problem. Furthermore, it can be observed that the error decreases as Ns

increases and also that cubic interpolation offers a slightly improved accuracy compared
to linear interpolation. Note that the results for the dissipated power and kinetic energy
are identical to those in Figure 7.2 and thus are not repeated here.

On-line PODP

In the on-line PODP stage, ONLINEPODPpHM
A ,

`

HM
A

˘˚
AAAp2πfiqHM

A ,
`

HM
A

˘˚
RAp2πfiq,N,x, 2πfiq is first called, followed by ON-

LINEPODPpHM
U ,

`

HM
U
˘˚

AUUp2πfiqHM
U ,

`

HM
U
˘˚ `

´AUAp2πfiqAAC
ε pwq

˘

,L,x, 2πfiq,
with fi defined as in Section 7.3.1. Again, the results for dissipated power and kinetic
energy are practically identical as those in Figure 7.4, and thus are not repeated here.
Similarly as for PODI, Figure 7.8 shows the error e2pqp2πfiq,qPODIp2πfiqq for the cases
Ns “ 63, 500, where again, as for the case of PODI, it can be observed that the error in
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Figure 7.8: PODP applied to test magnet problem with 1 parameter: relative error,
e2pqp2πfiq,qPODIp2πfiqq for (a) qp2πfiq “ AAC

ε p2πfiq and (b) qp2πfiq “ UAC
p2πfiq.
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Figure 7.9: PODP applied to test magnet problem with 1 parameter: Relative error in the
kinetic energy ePODP

Ek
ΩC,n

for each of the radiation shields.

the resonant region, fi ą 3000 Hz, is several orders of magnitude smaller for the case
qp2πfiq “ AAC

ε p2πfiq compared to the case qp2πfiq “ UAC
p2πfiq.

Note, however, that the error for qp2πfiq “ UAC
p2πfiq is in this case smaller compared

to PODI. This is due to the fact that PODP results in an excellent approximation in ΩOV C

and Ω77K , as shown in Figure 7.4. To further illustrate this, the relative error in the kinetic
energy in each of the radiation shields, ePODP

Ek
ΩC,n

p2πfiq, is shown in Figure 7.9, where it can

be observed that the maximum error in the OVC and 77K shields is of order 10´2, while
in the case of the 4K the maximum error goes up to almost 102.
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7.3.4 Combined Reduced Order–Full Order Approach

Motivated by the results in Section 7.3.3, where it was shown for separated physics so-
lutions, that the relative error e2pqpωq,q

PODpωqq is several orders of magnitude smaller
for the case qpωq “ AAC

ε pωq than for the case qpωq “ UAC
pωq, the efficiency of the

combined reduced order-full order approach described in Section 6.7 is now studied. As
it was observed that, in the case qpωq “ AAC

ε pωq, the error is higher for f ă 1000 Hz, a
non uniform ∆f will be used. In particular, the sampling frequencies are defined as

fi “

$

&

%

10 Hz if i “ 1

10` pi´ 1q∆f1 Hz if fi´1 ă 1000 Hz and i ą 1

10` pi´ 1q∆f2 Hz if fi´1 ě 1000 Hz and i ą 1

, (7.5)

with i “ 1, . . . , Ns. The frequency steps p∆f1,∆f2q “

tp10, 50q, p20, 100q, p40, 200q, p80, 400qu Hz were considered, which results in a set
of samples Ws “ t2πf1, 2πf2, . . . , 2πfNsu with Ns “ 180, 90, 45 and 23, respectively.
Algorithm 2 is applied by calling OFFLINEpAAApwq,RApwq,Ws,Mq with M “ 20

(leading to a maximum upper bound for the truncation error e1 “ 8.9ˆ 10´6 for the case
Ns “ 180).

PODI-Full

The PODI-Full approach is studied first. For this, Algorithm 5 is applied by call-
ing ONLINEPODI-FULL(HM

A ,Σ
M
A ,G

M
A ,AUUp2πfiq,AUAp2πfiq,N,L,M,x, 2πfi) with

fi “ 15 ` pi ´ 1q∆f, i “ 1, . . . , No, No “ 499 and ∆f “ 10 Hz. A comparison of
P 0

ΩC,n
p2πfi,AAAPODI´FULL,BDC

0,hq,UUU
PODI´FULLq with P 0

ΩC,n
p2πfi,AAAAC

ε,hq,B
DC
0,hq,UUU

AC
hp q and

Ek
ΩC,n

p2πfi,UUUPODI´FULLq with Ek
ΩC,n

p2πfi,UUUAC
hp q , where ΩC,n refers to either Ω4K ,

Ω77K or ΩOV C , is shown in Figure 7.10, with i “ 1, . . . , No in all cases. It can be observed
that the results show an excellent agreement with the full order solution and differences
are only observed at f ă 200 Hz for P 0

Ω4K
and P 0

Ω77K
in the case Ns “ 23.

To further study the accuracy of the method, the relative error
e2pAAC

ε p2πfiq,APODI-FULL
p2πfiqq and e2pUAC

p2πfiq,UPODI-FULL
p2πfiqq are shown

in Figures 7.11a and 7.11b, respectively.
These results show that AAAPODI´FULL produced by Algorithm 5 is able to accurately re-
produce AAAAC

ε,hq already by using a small Ns. The method is much more robust than the
application of PODI to the whole problem, as the peaks are very accurately resolved even
for only Ns “ 23 and the error e2pUAC

p2πfiq,UPODI-FULL
p2πfiqq in the resonant region

(fi ą 3000 Hz) is around three orders of magnitude smaller than when applying PODI
to the complete problem. Furthermore, the method offers a great advantage in terms of
computational speed. To illustrate this, a comparison of solver time between PODI-Full
and the full order solver is provided in Figure 7.12a, where different Ns “ 180, 90, 45, 23

and No “ 125, 250, 500, 1000 have been considered. The time of both the off-line (Al-
gorithm 2) and on-line (Algorithm 5) stages is included in the ROM solver time. Figure
7.12b shows the speed-up with respect to the full order solver. Note for example the case
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Figure 7.10: PODI-Full applied to test magnet problem with 1 parameter: (a) P 0
Ω4K

, (b)
Ek

Ω4K
, (c) P 0

Ω77K
, (d) Ek

Ω77K
, (e) P 0

ΩOV C
and (f) Ek

ΩOV C
. Comparison with full order solu-

tion.
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Figure 7.11: PODI-Full applied to test magnet problem with 1 parameter: (a)
e2pAAC

ε p2πfiq,APODI-FULL
p2πfiqq and (b) e2pUAC

p2πfiq,UPODI-FULL
p2πfiqq.
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Figure 7.12: PODI-Full applied to test magnet problem with 1 parameter: (a) Solver time
and (b) speed-up for different values of Ns and No.

Ns “ 45 (where there is no appreciable difference in the solution), where the speed up is
57 % for No “ 125 and grows to 86 % for No “ 1000.

PODP-Full

The same study is now repeated for the PODP-Full approach, by applying Algo-
rithm 6 and calling ONLINEPODP-FULL(HM

A ,Ap2πfiq,Rp2πfiq,N,L,x, 2πfi), with
fi “ 15 ` pi ´ 1q∆f, i “ 1, . . . , No, No “ 499 and ∆f “ 10 Hz. A comparison
of P 0

ΩC,n
p2πfi,AAAPODP´FULL,BDC

0,hq,UUU
PODP´FULLq with P 0

ΩC,n
p2πfi,AAAAC

ε,hq,B
DC
0,hq,UUU

AC
hp q

and Ek
ΩC,n

p2πfi,UUUPODP´FULLq with Ek
ΩC,n

p2πfi,UUUAC
hp q, where ΩC,n refers to either Ω4K ,

Ω77K or ΩOV C , is shown in Figure 7.13, with i “ 1, . . . , No in all cases. It can be ob-
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served that the results obtained by applying Algorithm 6 are in excellent agreement with
the full order results. With this approach there is no visible difference with the full order
results even for Ns “ 23.
To further assess the accuracy of the PODP-Full approximation, the relative error
e2pAAC

ε p2πfiq,APODP-FULL
p2πfiqq and e2pUAC

p2πfiq,UPODP-FULL
p2πfiqq for the cases

Ns “ 23, 80 are shown in Figures 7.14a and 7.14b, respectively. Note how the er-
ror e2pUAC

p2πfiq,UPODP-FULL
p2πfiqq in the resonance region is several orders of mag-

nitude smaller than when applying PODP to the complete problem. Furthermore, the
relative error in the kinetic energy for each of the radiation shields, ePODP

Ek
ΩC,n

p2πfiq , is

shown in Figure 7.15, where again it can be observed that the error is in this case much
smaller than when applying PODP to the complete problem, and even in the 4K shield
ePODP
Ek

Ω4K

p2πfiq ă 4ˆ 10´3 for all the frequencies in the sweep.

Furthermore, in Figure 7.16, a comparison of solver time between PODP-Full and the
full order solver is shown. Similarly to the results for PODI-Full (Figure 7.12), it can
be observed that a speed-up higher than 85 % can be obtained. Similarly as before, the
time of both the off-line (Algorithm 2) and on-line (Algorithm 6) stages is included in the
ROM time. Note also that the speed-up obtained with Algorithm 5 and Algorithm 6 is
almost identical, while a higher accuracy is obtained with Algorithm 6.

7.4 Test Magnet Problem with Multiple Parameters

The problem described in Section 7.3 is now reconsidered, with both the frequency and
the conductivity of the OVC, γOV C , considered as parameters, this is, w “

`

ω, γOV C
˘

.
The same discretisation as in Section 7.3 is used. The conductivity γOV C is assumed to
vary in the range 0.1γOV Cref ď γOV C ď 10γOV Cref , being γOV Cref the reference value used for
the test magnet problem. The number of sampled conductivities was set to Nγs “ 3 and,
for each of this conductivities, the number of sampled frequencies is set to Nωs “ 45,
which results in a total number of samples Ns “ 135. This means that Ws has the
elements wk “ p2πfi,γOV Cj q, k “ i` pj ´ 1qNωs , i “ 1, . . . , Nωs , j “ 1, . . . , Nγs where
fi is defined by (7.5) with p∆f1,∆f2q “ p40, 200q Hz and γOV Cj “ 0.1p10j´1qγOV Cref .
Algorithm 2 is then applied by calling OFFLINEpAAApwq,RApwq,Ws,Mq where the
TSVD was truncated with M “ 20 (leading to an upper bound for the truncation error
e1 “ 1.6ˆ 10´3).
Since in Section 7.3.4 it was observed that PODP-Full offers an increased accuracy com-
pared with PODI-Full for almost no increase in computational cost, only PODP-Full will
be considered in this multi-parameter case.

7.4.1 PODP-Full

Algorithm 6 is applied by calling ONLINEPODP-
FULL(HM

A ,Apwkq,Rpwkq,N,L,x,wk) where wk “ p2πfi,γOV Cj q, k “ i`pj´ 1qNωo ,
i “ 1, . . . , Nωo , j “ 1, . . . , Nγo , fi “ 10 ` ∆fpi ´ 1q Hz, Nωo “ 500,
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Figure 7.13: PODP-Full applied to test magnet problem with 1 parameter: (a) P 0
Ω4K

,
(b) Ek

Ω4K
, (c) P 0

Ω77K
, (d) Ek

Ω77K
, (e) P 0

ΩOV C
and (f) Ek

ΩOV C
. Comparison with full order

solution.
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Figure 7.14: PODI-Full applied to test magnet problem with 1 parameter: (a)
e2pAAC

ε p2πfiq,APODP-FULL
p2πfiqq and (b) e2pUAC

p2πfiq,UPODP-FULL
p2πfiqq.
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Figure 7.15: PODP-Full applied to test magnet problem with 1 parameter. Relative error
in the kinetic energy ePODP
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for each of the radiation shields.
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Figure 7.16: PODP-Full applied to test magnet problem with 1 parameter: (a) Solver time
and (b) speed-up for different values of Ns and No.

γOV Cj P p0.35, 0.75, 3.5, 7.5qγOV Cref , Nγo “ 4 and ∆f “ 10 Hz. A comparison of
P 0

ΩC,n
pwk,AAAPODP´FULL,BDC

0,hq,UUU
PODP´FULLq with P 0

ΩC,n
pwk,AAAAC

ε,hq,B
DC
0,hq,UUU

AC
hp q and

Ek
ΩC,n

pwk,UUUPODP´FULLq with Ek
ΩC,n

pwk,UUUAC
hp q is shown in Figure 7.17. It can be

observed that the PODP-Full result is in perfect agreement with the full order solution.

Next, in order to better benchmark the accuracy of the method,
e2pAAC

ε pwkq,APODP-FULL
pwkqq and e2pUAC

pwkq,UPODP-FULL
pwkqq are computed, and

the result is shown in Figure 7.18. The maximum e2pAAC
ε pwkq,APODP-FULL

pwkqq

is 13 % for f ă 50 Hz and is below 8 % for f ą 50 Hz. Note that
e2pUAC

pwkq,UPODP-FULL
pwkqq is smaller than e2pAAC

ε pwkq,APODP-FULL
pwkqq, and

that even though e2pAAC
ε pwkq,APODP-FULL

pwkqq is smaller at f ą 1000 Hz, this is not
true for the case e2pUAC

pwkq,UPODP-FULL
pwkqq due to the effect of the peaks in the

resonant region. Furthermore, the accuracy can be improved if desired by increasing Ns.
To show this, consideration is restricted to the case γOV C “ 0.35γOV Cref and, in Figure
7.19 e2pAAC

ε pwkq,APODP-FULL
pwkqq and e2pUAC

pwkq,UPODP-FULL
pwkqq are shown for

different numbers of sampled conductivities, Nγs “ 3, 5, 7, where it can be observed
that as expected the error decreases as Nγs increases. Note that the error could also be
reduced by increasing Nωs . Recall however, that even for the case Nγs “ 3 and Nωs “ 45

an excellent agreement with the full order solution is obtained.

As a further assessment of the accuracy, ePODP´FULL
P 0

ΩC,n

pwiq and ePODP´FULL
Ek

ΩC,n

pwiq were

computed, and the result is shown in Figure 7.20, where it can be observed that the maxi-
mum error for both the dissipated power and kinetic energy is of order 10´2.

The computational speed-up obtained with this method is also assessed comparing the
time taken by the full order solver for different No “ NγoNωo with the time taken by
PODP-Full for different No and Ns “ NγsNωs , with Ws and wk, k “ 1, . . . No, appropri-
ately redefined. Note that both the off-line (Algorithm 2) and on-line (Algorithm 6) stages
are taken into account to compute the total ROM time. The result is shown in Figure
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Figure 7.17: PODP-Full applied to test magnet problem with multiple parameters: Dis-
sipated power and kinetic energy in the radiation shields for different values of γOV C .
Comparison with full order solution.
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Figure 7.18: PODP-Full applied to test magnet problem with multiple parameters: (a)
e2pAAC

ε pwkq,APODP-FULL
pwkqq and (b) e2pUAC

pwkq,UPODP-FULL
pwkqq.
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Figure 7.19: PODP-Full applied to test magnet problem with multiple parameters:
(a) e2pAAC

ε pwkq,APODP-FULL
pwkqq and (b) e2pUAC

pwkq,UPODP-FULL
pwkqq for γOV C “

0.35γOV Cref and different Nγs “ 3, 5, 7.
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Figure 7.20: PODP-Full applied to test magnet problem with multiple parameters:
ePODP´FULL
P 0

ΩC,n

and ePODP´FULL
Ek
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different values of γOV C . Comparison with full order

solution.
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Figure 7.21: PODP-Full applied to test magnet problem with multiple parameters: (a)
Solver time and (b) speed-up for different values of Ns and No.

7.21, where it can be observed that a massive speed-up of up to 89 % can be obtained1.
As an example, consider the case Nγs “ 3, Nωs “ 45, Nωo “ 500 and Nγo “ 10, this
is, it is desired to compute a frequency sweep using a step ∆f “ 10 Hz for 10 different
conductivities. The time required by the full order solver would be 31.8 h, while using
the ROM, this reduces to only 3.8 h and of course the time saving increases as either Nγo

or Nωo increase.
Furthermore, in order to further assess the accuracy of the ROM, Figure 7.22 shows
contours of the eddy currents JJJ ohpqpx,wq “ γEEEAC

hpqpx,wq “ γp´iωAAAAC
ε,hqpx,wq `

iωBDC
0,hq ˆUUUAC

hp px,wqq and its approximation JJJ PODP´FULLpx,wq in the deformed 77K
shield for the case where w “ p2000π, 0.35γOV Cref q. It can be observed that an ex-
cellent agreement is obtained. Furthermore, a contour plot of |RepUUUAC

hp px,wqq| and
|RepUUUPODP´FULLpx,wqq| in the 4K shield for the same parameters is shown in Figure
7.23, where again an excellent agreement is observed.

7.5 Modified Magnet Problem with Multiple Parameters

The application of the PODP-Full methodology to the modified magnet problem with
x (transversal) gradient coils presented in Section 5.3.4 is now considered. The problem
geometry is illustrated again in Figure 7.24 as well as the boundary conditions used in this
case. On the Dirichlet part of the boundary, BΩD

C the condition UUUAC
hp “ 0 was imposed. A

mesh of 54 796 elements (the same as in Section 5.3.4) and polynomial orders p “ 3 and
q “ 4 were considered for the finite element discretisation.
In this case, the frequency and the conductivity of the 77K shield, γ77K , are considered
as parameters, this is, w “

`

ω, γ77K
˘

. The conductivity γ77K is assumed to vary in

1Note that in the case of computational time for the full order solver only the first 4 points were mea-
sured, and the last two were extrapolated.
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(a) |RepJJJ o
hpqpx,wqq| (b) |RepJJJPODP´FULLpx,wqq|

Figure 7.22: PODP-Full applied to test magnet problem with multiple parameters: Con-
tours of (a) |RepJJJ ohpqpx,wqq| and (b) |RepJJJ PODP´FULLpx,wqq| in the 77K shield for
w “ p2000π, 0.35γOV Cref q compared with the full order solution. Deformation exagger-
ated by a factor of 104.

(a) |RepUUUAC
hp px,wqq| (b) |RepUUUPODP´FULLpx,wqq|

Figure 7.23: PODP-Full applied to test magnet problem with multiple parameters: Con-
tours of (a) |RepUUUAC

hp px,wqq| and (b) |RepUUUPODP´FULLpx,wqq| in the 4K shield for
w “ p2000π, 0.35γOV Cref q.
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Figure 7.24: Modified magnet problem with x (transversal) gradient coil: (a) Illustration
of the chosen BΩD

C , highlighted in red and (b) illustration of the 3D geometry.

the range 0.4γ77K
ref ď γ77K ď 2.5γ77K

ref , being γ77K
ref the reference value used for the test

magnet problem. The number of sampled conductivities was set to Nγs “ 3 and, for
each conductivity, the number of sampled frequencies is set to Nωs “ 45, which results
in a total number of samples Ns “ 135. This means that Ws has the elements wk “

p2πfi,γ77K
j q, k “ i ` pj ´ 1qNωs , i “ 1, . . . , Nωs , j “ 1, . . . , Nγs where fi is defined by

(7.5) with p∆f1,∆f2q “ p40, 200q Hz and γ77K
j P p0.4, 1, 2.5qγ77K

ref . Algorithm 2 is then
applied by clling OFFLINEpAAApwq,RApwq,Ws,Mq where the TSVD was truncated
with M “ 20 (leading to an upper bound for the truncation error e1 “ 6.8ˆ 10´3).

7.5.1 PODP-Full

Algorithm 6 is now applied by calling ONLINEPODP-
FULL(HM

A ,Apwkq,Rpwkq,N,L,x,wk) where wk “ p2πfi,γ77K
j q, k “ i` pj ´ 1qNωo ,

i “ 1, . . . , Nωo , j “ 1, . . . , Nγo , fi “ 10 ` ∆fpi ´ 1q, ∆f “ 10 Hz, Nωo “ 500,
γ77K
j P p0.5, 0.75, 1.5, 2q γ77K

ref and Nγo “ 4.
A comparison of P 0

ΩC,n
pwk,AAAPODP´FULL,BDC

0,hq,UUU
PODP´FULLq with

P 0
ΩC,n

pwk,AAAAC
ε,hq,B

DC
0,hq,UUU

AC
hp q and Ek

ΩC,n
pwk,UUUPODP´FULLq with Ek

ΩC,n
pwk,UUUAC

hp q

is shown in Figure 7.25. It can be observed that an excellent agreement with the full
order solution is obtained. Note that the biggest variations in the dissipated power and
kinetic energy for varying γ77K are observed in the 4K shield. This is due to the variation
in shielding effect of the 77K shield with a changing conductivity. Or in other words,
when the conductivity of the 77K shield increases its skin depth reduces, thus the AC
magnetic field at the 4K shield decreases.
The solver time was again measured and compared with the full order solver in order to
study the efficiency of the method. The result is shown in Figure 7.26. It can be observed
that the speed-up is in this case even higher than for the test magnet problem with z
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Figure 7.25: PODP-Full applied to modified magnet problem with multiple parameters:
Dissipated power and kinetic energy in the radiation shields for different values of γ77K .
Comparison with full order solution.
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Figure 7.26: PODP-Full applied to modified magnet problem with multiple parameters:
(a) Solver time and (b) speed-up for different values of Ns and No.

gradient coil and it grows to values above 95 % 2. This is due to the increased complexity
of the electromagnetic problem which results in the need to increase the polynomial order
of the H(curl) basis functions to q “ 4 in order to reach a converged solution. On the
other hand, the order of the H1 basis functions can be kept as p “ 3 which is the same
used for the test magnet problem.
Finally, in order to further assess the accuracy of the method, a contour plot of
|RepJJJ ohpqpx,wqq| and |RepJJJ PODP´FULLpx,wqq| in the deformed 4K shield for w “

p8000π, 0.5γ77K
ref q is presented in Figure 7.27. It can be observed that an excellent agree-

ment is obtained.

7.6 Chapter Summary

In these Chapter, the application of POD to different challenging MRI configurations has
been considered.
The main novelties of this Chapter are as follows; first, it was shown that the application of
POD to the mechanical problem requires the computation of a large number of snapshots
in order to give accurate approximations and, thus, no computational speed-up with re-
spect to the full order solver can be obtained with this method. Second, it was shown that
both PODI-Full and PODP-Full lead to accurate approximations, but PODP-Full offers an
increased accuracy compared to PODI-Full for no significant increase in computational
cost. Third, the accuracy and efficiency of the PODP-Full approach was demonstrated
by applying it to different MRI configurations and considering different parameters of
interest.
To illustrate these novelties, POD was first applied to the test magnet problem with z

2Note again that for the time of the full order solver only the first 4 points of the curve were measured
and the last two were extrapolated.
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(a) |RepJJJ o
hpqpx,wqq| (b) |RepJJJPODP´FULLpx,wqq|

Figure 7.27: PODP-Full applied to modified magnet problem with multiple parameters:
Contours of (a) |RepJJJ ohpqpx,wqq| and (b) |RepJJJ PODP´FULLpx,wqq| in the deformed 4K
shield for w “ p8000π, 0.5γ77K

ref q. Deformation exaggerated by a factor of 104.

gradient coils considering only the frequency as a parameter. For this problem it was
shown that both PODI and PODP require a large number of snapshots in order to accu-
rately approximate the mechanical solution and therefore no computational gaining with
respect to the full order solver can be obtained by applying these methods to the mechan-
ical problem. Thus, the application of the PODI-Full and PODP-Full methodologies was
considered, and it was shown that in this case accurate results are obtained even with a
very small number of snapshots. Furthermore, the speed-up obtained by PODI-Full and
PODP-Full was measured, and found to be almost identical for both approaches, while a
higher accuracy was obtained through PODP. Then, the PODP-Full approach was applied
to the same problem but considering both ω and γOV C as parameters, and it was shown
that accurate results were also obtained in this case. Furthermore, the speed-up was also
measured, resulting in time savings of up to 90 %. Finally, the PODP-Full approach was
applied to the modified magnet problem with x gradient coils, and the accuracy and ef-
ficiency of the method were again assessed, resulting in this case in time savings higher
than 95 %.
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Chapter 8

Conclusions and Future Work

8.1 Concluding Remarks

This thesis has presented a new accurate and efficient methodology for the numerical sim-
ulation of magneto-mechanical coupling in MRI scanners. First, a high fidelity software
for the simulation of the coupled problem was presented, which is based in the accurate
description of the problem using a Lagrangian formulation and its discretisation using
high order finite elements. The accuracy and efficiency of the high fidelity software was
assessed by applying it to challenging academic and industrially relevant problems. Then,
a POD based ROM was developed with the objective of making the design process of new
MRI configurations more efficient by allowing the rapid solution of the coupled problem
for varying model parameters, such as frequency and conductivity. The accuracy and ef-
ficiency of the ROM was assessed by applying it to challenging MRI configurations and
comparing with the high fidelity software, which showed that the ROM results in accu-
rate solutions and in a speed-up higher than 95 % with respect to the full order solver.
Therefore, it can be concluded that the aim and objectives stated in Chapter 1 have been
achieved. In the following a more detailed description of the conclusions that can be
extracted from each of the chapters of the thesis is provided.

8.1.1 Conclusions

The complex physics associated with vibrations induced by electromagnetic fields in MRI
applications have been accurately described. The complete 3D configuration was consid-
ered and a rigorous formulation for the coupled magneto-mechanical problem of interest
was presented.

• In Chapter 2 a new formulation for the coupled magneto mechanical problem of
interest was presented. This is based in a Lagrangian formulation and the assump-
tion of small displacements. As opposed to the Eulerian formulation adopted in
[110, 19, 18, 17], the new Lagrangian formulation does not assume small veloci-
ties and, therefore, it results in a more accurate description of the coupled problem.
Furthermore, the Lagrangian formulation results in a transmission problem that can

169
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be solved in a staggered manner, as opposed to the Eulerian approach where the
system had to be solved monolithically and, therefore, the Lagrangian approach is
computationally much more efficient, especially for large three dimensional prob-
lems. This chapter addresses the objective “To accurately describe the complex
physics governing the physical issues to be addressed in this work for MRI appli-
cations”.

An accurate and efficient variational formulation for the 3D coupled magneto-mechanical
problem in a Lagrangian frame was rigorously derived.

• In Chapter 3 the variational formulation of the problem was developed. For this,
the problem was first linearised using the AC-DC splitting first presented in [19].
Then, the weak formulation of the DC and AC problem was rigorously derived,
and regularisation was applied to the system in order to avoid having to explicitly
impose the Coulomb gauge. This chapter addresses the objective “To develop a
rigorous and efficient variational formulation for the complete coupled magneto-
mechanical problem in three dimensions”.

An accurate and efficient high fidelity computational methodology for the solution of the
3D magneto-mechanical problem was developed, which is based in the application of
high order H1 andH(curl)-conforming finite elements.

• Chapter 4 presented the discretisation of the linearised and regularised DC and AC
problems using high order finite elements. The sets of hierarchicalH1 andH(curl)-
conforming basis functions used for the discretisation of the mechanical and elec-
tromagnetic fields, respectively, were presented. The rigorous discretisation of the
DC and AC systems was then developed and the mapping between reference and
physical elements was briefly described. The discrete DC and AC systems were
stated and an efficient algorithm for the solution of the full coupled problem was
proposed, which includes the use of preconditioned iterative solvers when appro-
priate. A discussion on the use of preconditioned iterative solvers was presented,
and the block Jacobi preconditioner used in this work was described. Then, the in-
troduction of mechanical damping was discussed, followed by a discussion on the
properties of the current source and the methodology to ensure that the current is
solenoidal at a discrete level. The symmetry conditions used to reduce the cost of
the 3D simulations were also presented. This chapter addresses the objective “To
develop an accurate and efficient high fidelity computational methodology for the
solution of the magneto-mechanical problem of interest in three dimensions”.

The accuracy and efficiency of the proposed finite element methodology were demon-
strated by applying it to challenging academic and industrially relevant problems, includ-
ing different MRI configurations.

• In Chapter 5 a series of academic and industrially relevant problems were consid-
ered in order to assess the accuracy and efficiency of the proposed high order finite
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element methodology. First, a series of single physics or decoupled problems were
considered in order to verify that the predicted rates of convergence of the solution
under h- and p-refinement are obtained. Then, a series of academic and industrially
relevant problems were considered in order to demonstrate the accuracy and effi-
ciency of the methodology, which were proven by performing comparisons against
commercial software, the axisymmetric software developed in [110, 19, 18, 17] and
experimental results. This chapter addresses the objective “To prove the accuracy
and efficiency of the high fidelity computational methodology by applying it to
challenging academic and industrially relevant problems”.

A ROM which allows the rapid solution of the coupled magneto-mechanical problem for
varying model parameters was presented. The ROM is based in POD and is of paramount
importance for the optimisation of new MRI configurations.

• In Chapter 6 a new ROM for the fast solution of coupled magneto-mechanical prob-
lems in MRI scanners was presented, which is based in the POD. First, an intro-
duction to POD was presented including a description of the off-line and on-line
stages. In the latter, two options, namely PODI and PODP were considered. The
methodology to apply PODI and PODP to the complete solutions as well as to each
physics separately was then presented, followed by a novel reduced order-full or-
der methodology that exploits the staggered nature of the system by applying POD
to approximate the electromagnetic solution and using this approximation to feed
the mechanical full order solver and compute the mechanical solution. An affine
decomposition of the system in terms of frequency and conductivity of each shield
was then presented, which is key for the efficiency of PODP. This chapter addresses
the objective “To build a new ROM that allows the fast computation of solutions
for varying model parameters in order to optimize the design process of new MRI
configurations”.

The accuracy and efficiency of the ROM were demonstrated by applying it to challenging
MRI configurations and comparing against the high fidelity methodology.

• In Chapter 7 a series of industrially relevant MRI configurations were considered in
order to assess the accuracy and efficiency of the proposed ROM. First, the appli-
cation of PODI and PODP to the complete solution was considered which showed
that the number of snapshots required to obtain accurate solutions is very large and,
thus, no computational gaining could be obtained with this method. Next, PODI
and PODP were applied to the electromagnetic and mechanical solutions separately,
which showed that a large number of snapshots is required in order to accurately
approximate the mechanical solution while the electromagnetic solution can be ap-
proximated with a reduced number of snapshots. The application of the PODI-Full
and PODP-Full methodologies was then considered, which showed that they lead
to accurate approximations of the solution for varying frequencies and conductiv-
ities. Furthermore, it was shown that PODP-Full results in an increased accuracy
compared to PODI-Full for no significant increase in computational cost, and that
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a speed-up higher than 95 % with respect to the full order solver can be obtained
with the combined reduced order-full order approach. This result is of paramount
importance for the industry as it enables the possibility of studying the performance
of MRI configurations with different model parameters almost in real time during
the design process. This chapter addresses the objective “To demonstrate the accu-
racy and efficiency of the ROM by applying it to challenging MRI configurations
and performing comparisons against the high fidelity tool”.

In summary, a consistent formulation for the description of 3D coupled magneto-
mechanical problems in MRI applications was presented, which is based in a Lagrangian
frame and the assumption of small displacements. This formulation presents several ad-
vantages compared to the Eulerian formulation proposed in [19, 18, 17] as it does not as-
sume small velocities and accelerations and results in a efficient staggered scheme, which
has very positive computational implications, critical for 3D simulations. Furthermore,
the extension to the case of 3D problems allows the non-rotationally symmetric x and y
gradient coils to be considered and, therefore, enable the numerical simulation of gen-
eral 3D designs. A rigorous variational formulation for the coupled magneto-mechanical
problem in a time-harmonic setting was then developed, which involved the linearisation
of the coupled problem by means of an AC-DC splitting of the fields and the application
of regularisation in order to circumvent the Coulomb gauge. Then, the problem was dis-
cretised using high order hierarchical H1 and H(curl)-conforming finite elements. For
the solution of the resulting system of equations an efficient algorithm was proposed,
which involves the application of preconditioned iterative solvers when appropriate. The
accuracy and efficiency of the finite element methodology was demonstrated by applying
it to challenging academic and industrially relevant 3D problems. A series of decoupled
problems with a known analytical solution were used in order to verify that the computed
convergence rates under h- and p-refinement agreed with the a priori estimates (4.4),
(4.7). Several challenging MRI configurations were also considered and comparisons
against commercial software, the axisymmetric software developed in [19, 17] and exper-
imental data were presented. Finally, a POD based ROM was presented, which combines
the application of POD to the electromagnetic problem with the solution to the mechan-
ical problem using the full order solver. The accuracy and efficiency of the ROM was
demonstrated by applying it to challenging MRI configurations and performing compar-
isons against the full order solver, which showed that accurate results can be obtained
with a computational speed-up higher than 95 %, which is of paramount importance in
order to optimize the design of new MRI configurations.

8.2 Recommendations for Future Work

The achievements accomplished in this thesis open several research lines that can be con-
sidered in order to enhance the capabilities of the current methodology. A list of these is
as follows:
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• Mesher: In this thesis, the open source software NetGen [155] was used to gener-
ate a mesh of the problems of interest. However, from an industrial point of view
it could be beneficial to consider the use of commercial tools used by the manu-
facturer in order to embed the developed software into the current design process.
Several tools, such as Ansys, Opera FEA or Siemens NX could be considered for
this purpose.

• Geometry approximation: Another area of improvement is in the approximation
of curved geometries. Currently, the software is able to produce linear and quadratic
approximations for any arbitrary shape, and higher order approximations via the
blending function method for problems where an analytical expression for the rep-
resentation of the curved boundary is available. Other approaches, such as the use
of NURBS [161, 160] or isogeometric analysis [90] could be considered in order to
produce a more accurate approximation of the boundary with a smaller number of
elements.

• H(div) basis functions: A further enhancement to the current methodology would
be the inclusion of H(div)-conforming basis functions. Using these basis to dis-
cretise the current source would ensure that this is tangential to the surface of the
coil1. Furthermore, these basis could be used in order to assess to which degree the
Coulomb gauge is approximated using regularisation.

• Hybrid meshes: A further improvement to the current methodology would be to
allow the use of hybrid meshes formed by tetrahedrons, hexahedrons and pyra-
mids. The use of hexahedral elements would be advantageous in order to allow
the use of elements with high aspect-ratio in the discretisation of the thin radia-
tion shields. This could result in a significant decrease in the number of elements
required to reach a certain accuracy and, therefore, in a significant increase in com-
putational efficiency. However, this would require the definition of high order H1

and H(curl)-conforming basis functions for hexahedrons and pyramids to be im-
plemented in the software, which might require a significant effort.

• Solver efficiency: Although the developed software is able to solve challenging
MRI configurations in an accurate and efficient manner, there is still room to further
optimize the software. For this, a possibility would be to translate key parts of the
software, such as the assembly routine, from Matlab to a more efficient language
especially in terms of memory usage and speed, such as C++. Furthermore, the
use of alternative direct solvers, such as PARDISO [6], could be considered which
might lead to faster simulations, especially for problems involving the solution of a
large mechanical system. Furthermore, a greater use of parallel computations could
be considered in order to further optimise the software. In the current implemen-
tation the parallel computation of solutions for different parameters (frequency and

1Note, however, that this would not be enough to ensure that the current is solenoidal at a discrete level
and, thus, the mapping of the current source to the space of solenoidal functions would still be required.
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conductivity) is considered but, to further optimize the computations, the assembly
of the system matrices could also be parallelised.

• Acoustic and thermal effects: The methodology developed in this thesis could be
further enhanced by considering acoustic and thermal effects. Due to the vibrations
induced in the radiation shields, sound waves are generated, which can potentially
result in high levels of noise during an MRI scanner examination and, therefore,
in the patient experiencing discomfort. These acoustic effects were studied in [19,
18, 17] for the case of axisymmetric problems. The methodology could also be
enhanced by considering thermal effects in order to determine the thermal energy
being deposited into the helium vessel, which is directly related with the dissipated
power and has a direct impact in helium boil off effects and, thus, in a potential
magnet quench.

• POD snapshot selection: The developed ROM could potentially be improved by
considering a more sophisticated selection of the snapshots. At the moment these
are chosen based on previous knowledge about the solution. However, other tech-
niques such as a greedy basis generation [87] could be considered, which might
reduced the number of snapshots needed to reach a certain accuracy, and could
even result in the mechanical solution being approximated with a reduced number
of snapshots. As briefly described in Chapter 7, this iterative method starts with
the computation of a single snapshot, and at each iteration a new snapshot is added.
An error estimator is required, which is evaluated at each iteration in a parametric
mesh, and the next snapshot is chosen to correspond to the parameters that maxi-
mize this error. The development of reliable a posteriori error estimators could also
be considered in order to provide a certified error control, ensuring the reliability
and efficiency of the ROM approximation [87].

• Alternative ROM techniques: A further area of research would consist in studying
the application of different ROM methodologies. First, the application of PGD
could be considered, as this has already been applied to the magneto-mechanical
problem of interest in axisymmetric configurations [21, 22]. However, based on the
comparison between POD and PGD performed in [21] for axisymmetric problems
and having into account that preconditioned iterative solvers are required to solve
the 3D electromagnetic problem, a new ROM where POD is applied to approximate
the electromagnetic solution and PGD is applied to approximate the mechanical
solution is suggested.
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Appendix A

Proof that divSpADC,AAAACq “ 0 in
ΩcCzpsupppJJJACq Y supppJDCqq

First, SpADC ,AAAACq (defined in (3.18)) is rewritten in the form

S “ BDC
0 bBBBAC

0 `BBBAC
0 bBDC

0 ´ pBBBAC
0 ¨BDC

0 qI,

where BBBAC
0 :“ curlAAAAC . For simplicity, the subscript 0 is dropped in the following. Then,

using index notation, this can be written as

Sij “ B
DC
i BBBAC

j `BBBAC
i BDC

j ´ pBBBAC
k BDC

k qδij.

Thus

pdivSqi “ Sij,j “ B
DC
i,j BBBAC

j `BDC
i BBBAC

j,j `BBBAC
i,j B

DC
j `BBBAC

i BDC
j,j ´BBBAC

k,i B
DC
k ´BBBAC

k BDC
k,i ,

and by renaming the index k as j

Sij,j “pB
DC
i,j ´B

DC
j,i qBBB

AC
j ` pBBBAC

i,j ´BBBAC
j,i qB

DC
j `BDC

i BBBAC
j,j `BBBAC

i BDC
j,j

“pBDC
i,j ´B

DC
j,i qBBB

AC
j ` pBBBAC

i,j ´BBBAC
j,i qB

DC
j ,

where, in the final step, the last two terms vanish due to divBDC
0 “ 0 and div BBBAC

0 “

0 in R3. Next, using the property that pp∇u ´ p∇uqT qvqi “ pui,p ´ up,iqvp “

εi`ppε`jkuk,jqvp “ ppcurluq ˆ vqi then

divS “pcurlBDC
0 q ˆBBBAC

0 ` pcurlBBBAC
0 q ˆBDC

0 ,

so that divS “ JDC ˆBBBAC
0 ` JJJAC ˆBDC

0 in supppJJJACq Y supppJDCq and

divS “ 0,

in Ωc
CzpsupppJJJACq Y supppJDCqq.
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Appendix B

CAD and Mesh Generation

B.1 Introduction

In this thesis, NetGen [155] has been used to generate unstructured tetrahedral meshes
of complex domains. For the generation of the CAD geometry, the CSG (NetGen native
format), IGES and STEP formats have been considered. This appendix presents a simple
user guide summarizing the issues encountered when trying to generate these CAD ge-
ometries and mesh them using NetGen. The aim of the appendix is to help future users of
the software in generating different meshes using NetGen.

B.2 CAD Generation

For the generation simple CAD geometries, the NetGen native format CSG can be con-
sidered, which is based in the combination of simple primitive objects using boolean op-
erators. During the work carried out in this thesis, it was observed that this format could
be used to generate simple geometries such as those corresponding to the conducting
sphere in a uniform magnetic field (Section 5.2.3), the hollow cylinder subject to pressure
field (Section 5.2.2) or even the test magnet problem with z gradient coils (Section 5.3.2).
However, issues were encountered when trying to generate a CSG file for the geometry
corresponding to the test magnet problem with x gradient coils (Section 5.3.3) due to a
higher complexity in the shape of the coils. These issues involved the appearance of non-
conforming meshes as well as the NetGen software not being able to read the geometry
file.
To overcome these issues, the use of alternative CAD format, such as IGES and STEP,
was considered. For this, the AutoCad and AutoCad Mechanical packages were used, the
latter allowing the generation of IGES and STEP formats as opposed to the former which
does not allow the generation of STEP files. With both of these formats the CAD geom-
etry corresponding to the test magnet problem with x gradient coils could be generated
without issues. However, some issues were encountered in the meshing process when
considering the IGES format, as will be discussed in the next section.
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B.3 Mesh Generation

As previously discussed, the NetGen software was used in this thesis to generate complex
unstructured tetrahedral meshes around complex geometries. The software allows the
generation of linear as well as quadratic tetrahedral elements, and offers control over
the mesh size through a series of parameters such as the mesh granularity (ranging from
very coarse to very fine), the maximum and minimum mesh size or a mesh-size grading.
Furthermore, it allows the use of mesh size files, where different mesh sizes can be applied
to elements around specified points and lines. For a more complete description on the
NetGen capabilities the user is referred to [155].
In spite of these advantages, some issues were also encountered when trying to generate
meshes of complex geometries as that corresponding to the test magnet problem with x
gradient coils. It was observed that when trying to generate meshes using a IGES geom-
etry format, the software was not robust and could result in the appearance of undesired
non-conforming meshes. To overcome this, the use of STEP geometry files was consid-
ered, which allowed this issue to be overcome. This required, however, one additional and
non-trivial step in order to ensure that a conforming tetrahedral mesh is obtained, which
consists in ”healing” the geometry so that NetGen can mesh it appropriately. NetGen
offers an option called ”IGES/STEP Topology Explorer/Doctor” which allows to analyse
the geometry and fix small defects so that NetGen can handle the geometry appropriately.
Several options can be selected, which include: ”Fix small edges”, ”Fix spot/strip edges”,
”Sew faces”, ”Make solids” and ”split partitions”. Selecting the options shown in Figure
B.1 in order to fix small defects in the edges and faces and clearly identify the interfaces
between subdomains, and pressing the heal option, the geometry could then be meshed
without issues, resulting in a conforming tetrahedral mesh.
This appendix aimed only at highlighting issues encountered in the CAD and mesh gen-
eration for the problems considered in this thesis and how to fix them. The appendix does
not constitute a complete guide on how to use NetGen, and for this the reader is referred
to [155].
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Figure B.1: ”Healing” the geometry in NetGen [155].



Appendix C

Numerical Integration

As explained in Section 4.3, the DC and AC system matrices are computed by assembling
elemental contributions, which are defined as the integral over a given element of the
different terms in the system; see for instance (4.26) where the elemental stiffness and
damping matrices for the DC electromagnetic problem are defined. These integrals are
computed numerically by performing Gauss quadrature [89] on the reference element.
For this, the integrals on the physical element must first be transformed to the reference
element. In order to do so, let us define the transformation for the differential of volume
from the physical to the reference domain, which can be written as

dΩ “ |J|dΩ̂, (C.1)

where dΩ “ dx dy dz is the differential of volume in the physical element and dΩ̂ “

dξ dη dζ the differential of volume in the reference element. Considering this transfor-
mation and the H1 and H(curl)-conforming transformations defined in Section 4.3.4 all
the integrals can be transformed to the reference element, where Gauss quadrature is to
be performed. In order to illustrate this process, let us consider the elemental stiffness
matrix K

DC,peq
AA , defined in (4.26) as

”

K
DC,peq
AA

ıab

“

ż

Ωpeq
µ´1
r curlN peq,a

¨ curlN peq,b dΩ. (C.2)

Using the previous transformations, the integral can be written in the reference element
as

ż

Ωpeq
µ´1
r curlN peq,a

¨ curlN peq,b dΩ

«

ż

Ω̂

µ´1
r

´

|J|´1J curl N̂
peq,a

¯

¨

´

|J|´1J curl N̂
peq,b

¯

|J|dΩ̂, (C.3)

where the approximation becomes exact when the true geometry is represented exactly.
The integral in the reference domain is then computed numerically using Gauss quadra-
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ture as
ż

Ω̂

µ´1
r

´

|J|´1J curl N̂
peq,a

¯

¨

´

|J|´1J curl N̂
peq,b

¯

|J|dΩ̂

«

nip
ÿ

i“1

µ´1
r

´

|J|´1J curl N̂
peq,a

¯

¨

´

|J|´1J curl N̂
peq,b

¯

|J|αipξ, η, ζq, (C.4)

where nip is the number of integration (Gauss) points and αipξ, η, ζq the corresponding
integration weights. Many Gauss quadrature formulas can be considered and, in this
thesis, the canonical product formula proposed by Stroud and Secrest [167] has been
used.
Note that if a linear mapping is considered, the Jacobian matrix of the transformation
is constant and, thus, the integrands are polynomials and the integrals can be computed
exactly, provided that a sufficient number of integration points is chosen. However, when
considering higher order geometry approximations this is no longer true, since the inverse
of the Jacobian will be a rational function. The number of integration points is chosen, in
practice, depending on the polynomial order of the H1 and H(curl) basis functions used
to approximate the mechanical and electromagnetic fields.
In a similar manner, other volume integrals, and surface integrals such as those in (4.52),
(4.55), can be approximated using an analogous process and the transformations stated in
Section 4.3.4.
In general, the application of Gauss quadrature and geometry approximation for I “
”

K
DC,peq
AA

ıab

in (C.2) leads to

I “
nip
ÿ

i“1

µ´1
r

´

|J|´1J curl N̂
peq,a

¯

¨

´

|J|´1J curl N̂
peq,b

¯

|J|αipξ, η, ζq ` eint ` egeom,

(C.5)
where eint is the approximation error associated with the numerical integration and egeom
that associated with the geometry.
The error egeom can be reduced by refining the mesh or increasing the order of approxi-
mation of the geometry, g. The error eint can be decreased by increasing the number of
integration points. These errors will depend, in practice, on the curvature of the boundary
and the coarseness of the mesh. The rates of convergence of these errors are problem de-
pendent, and, thus, it is not possible to quantify them for a general problem. In idealised
cases, bounds on these errors can be found [39]. However, in practice, provided that egeom
and eint are smaller than the error associated with the finite element approximation, the a
priori rates of convergence stated in (4.4)-(4.7) still hold for h- and p-refinement.



Appendix D

Parallel Implementation

D.1 Introduction

Parallel computing [79, 103] has been widely used in the area of numerical simulations
in engineering and physics problems due to its great cost benefit. Many applications
have benefit from the use of parallel computing, including aerodynamic shape optimiza-
tion [150], the simulation of thermo-mechanical processes [179] and electro-mechanical
coupled problems [70] among others.
Some tasks are easily parallelisable, meaning that little manipulation is needed to sepa-
rate a big problem into a number of smaller parallel tasks. This is usually the case when
these tasks are mostly independent between them and, therefore, there is no need for com-
munication between them. In other cases, the parallelization becomes more challenging
due to the need to interchange information between tasks, but many advances have been
made in the past years in order to facilitate this communication, such as the development
of the Message Passing Interface (MPI) protocol [79], which facilitates the exchange of
information between different processors or nodes.
The application considered in this thesis offers some easily parallelisable tasks such as
the solution to the coupled system for varying model parameters and, therefore, the par-
allelisation of this tasks has been implemented in order to reduce the computational cost.
In the following, a brief summary of this parallel implementation in Matlab is provided.
Note that a rigorous analysis of parallel performance is outside the scope of this thesis.
However, the MATLAB parallel computing toolbox has been used to accelerate aspects
of the computation and this appendix relates to observations and implementation details
of this.

D.2 Matlab Implementation for Varying Model Parame-
ters

As seen in Chapter 6, the solution to the coupled magneto-mechanical problem of interest
for varying model parameters is of paramount importance in order to optimize the design
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of new MRI scanners. In order to optimize this repeated simulations, ROM have been
considered, but the cost can be further reduced by computing the solution for different
parameters in parallel. These can be applied to the numerical simulation using the full
order solver but also to further decrease the cost of the ROM, especially in the off-line
stage summarised in Algorithm 2 in Chapter 6, where the computation of the snapshots
can be done in parallel.
The Matlab parallel computing toolbox offers several functionalities that enable the par-
allelization of this tasks in an easy manner. First, the parpool command, allows the gen-
eration of a pool of cores or workers that will be used for the computation. The number of
cores to be used can be passed as an argument. Once a pool of workers is available, the so-
lution to the linear system of equations for varying model parameters can be computed in
parallel using the parfor Matlab command, which can be seen as a parallel for loop. The
parfor loop, however, presents some restrictions compared to the for loop and, therefore,
a for loop cannot, in general, be converted into a parfor loop without any modifications.
These restrictions include that the body of the parfor loop must be independent, that is,
one iteration cannot depend on previous iterations and also that two parfor loops cannot
be nested.
For the application of interest in this thesis, the for loop iterating over the different model
parameters for which the system must be solved can be converted into a parfor loop
with a limited number of minor modifications. It was observed, however, that if only
the strictly necessary modifications for the parfor loop to run were applied, the parallel
implementation was not efficient. For instance, considering a parallel pool formed by
8 cores only a speed-up of around 2 was obtained 1. This is due to the data transfer
overhead, which refers to the cost of sending the necessary data to each core in order to
perform the computations. Sometimes the cost of data transfer can even exceed the cost
of the computations. Thus, in order to optimize the parallel implementation, the necessary
data (or at least the larger pieces of data) must be copied to each worker before starting the
parallel loop. For this Matlab offers the command parallel.pool.Constant which allows
to create a copy of a given object into each worker. Note of course that this object cannot
change during the execution of the parallel loop.
In this particular application, several parameter independent matrices must be stored to
then construct the global system matrix for each parameter combination, as described in
the affine decomposition presented in Chapter 6. For fine discretisations, these matrices
contain a large amount of data and, therefore they must be copied to each worker in order
to optimize the parallel implementation. The speed-up obtained when these matrices
were copied into the workers grows to 6 for a parallel pool of 8 workers, which is a
great result having in mind that not all the data has been copied as some data changes
between iterations and that there exist other overhead costs, such as the cost of starting
and terminating tasks or the reduction of implicit multi-threading in algebraic operations
[103].

1Note that a detailed analysis of the performance of the parallel implementation is out of the scope of
this appendix and only some rough figures are discussed in order to illustrate the main bottlenecks in this
implementation.
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Figure D.1: Parallel solution of the system for varying frequencies: code screen shot.

In order to illustrate this parallel implementation, a screen shot of the software corre-
sponding to a script used to solve the system for different frequencies in parallel is pro-
vided in Figure D.1. As it can be observed, first a parallel pool consisting of 12 workers
is created. Then, the system matrices are copied to the workers before starting the parallel
loop to iterate over frequencies and solve the linear system. Once the iteration finishes,
the matrices copied to the workers are removed in order to free memory and the parallel
pool is closed.
Note also that parallel computing could be used to further optimize the computations.
For instance, the assembly process, which in the current implementation is done in serial
could potentially be parallelized, although this would not be as simple given that a given
entry of the global matrix might be formed by contributions from several elemental ma-
trices and, therefore, the different workers need to communicate between them. However,
such implementation is certainly possible and would lead to an increased efficiency of
the software. To parallelise the assembly process many authors have considered the use
of domain decomposition methods [68, 78, 67], while others have proposed alternative
methods where the assembly is done degree of freedom by degree of freedom rather than
element by element [178].
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User Guide

E.1 Introduction

This appendix presents an user guide for the coupled magneto-mechanical solver devel-
oped during this thesis, which is based on the high order version of the finite element
method and a POD based ROM. The solution to the full order model using high order
FEM was first presented in [158] and the model order reduction via POD was presented
in [159].
The aim of the appendix is to provide a simple guide on how to use the software. For a
discussion on the methodologies and the technical details the reader is referred to [158,
159] and to the main body of this thesis.
The structure of the document is as follows. First, in Section E.2, the capabilities of
the software are stated. Second, in Section E.3, the general structure of the software is
described and then, in Section E.4, the scripts with which the user must interact to run a
given problem are described. The document finishes with concluding remarks in Section
E.5.

E.2 Software Capabilities

The developed software has the following capabilities:

1. Full Order Solution: The software can be used to obtain the solution to single
physics or coupled magneto-mechanical problems.

(a) Decoupled problems: The software can be used to solve different decoupled
or single physics problems [158], which include:

• Magnetostatics

• Static elasticity

• Eddy current

• Transient (time-harmonic) elasticity
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(b) Coupled problems. The software can also be used to solve coupled-magneto
mechanical problems, which include:

• Static magneto-mechanical problems

• Transient (time-harmonic) magneto-mechanical problems in frequency
domain.

2. POD: The software can also be used to find the solution to a high dimensional
parametric problem via POD, as described in [159] and in the main body of this
thesis. In particular, the combined reduced order-full order methodology is used.
The following options can be considered:

(a) PODI: POD with interpolation (PODI) has been implemented for the case of
a single parameter of interest.

(b) PODP: Projection based POD (PODP) can be used to obtain a ROM for an ar-
bitrary number of parameters. An affine decomposition has been implemented
for frequency and electric conductivity.

Note that in the case of MRI applications, the transient magneto-mechanical problem of
interest [158], is solved by using an AC-DC splitting and solving first a DC problem
followed by a linearised AC problem [158].
Finally, it should also be noted that results for different examples, ranging from academic
single physics problems to industrially relevant MRI configurations have been presented
in [158, 159] and in Chapters 5 and 7 of this thesis.

E.3 Software Structure

In this section we provide a global overview of the software structure and summarise the
different steps that must be performed in order to arrive at the desired outputs of interest.
For this purpose, a schematic representation of the software structure is provided in Figure
E.1.
The software can be divided into three main stages: pre-processing, solver and post-
processing. The main steps performed at each of these stages are briefly outlined in the
following.

E.3.1 Pre-processing Stage

The main steps to be performed at the pre-processing stage are:

• Geometry (CAD) and Mesh generation: This step is performed at an initial stage
using available open source packages. First a CAD model of the problem geome-
try must be generated. For very simple geometries, the native NetGen [155] CAD
format, named CSG (Constructive Solid Geometry) can be used. This allows us to
create simple geometries by performing basic boolean operations. However, when
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Geometry
CSG, IGES or STEP

Mesh
NetGen

Problem Data
material, boundary, source

Reference element
quadrature, shape functions

Unknown numbering
static, dynamic

Static Solver

Assembly
K,C,M,R

Solver
Full or POD-Full solver

Solution

Physical fields
EEEAC

hpq “ ´iωAAAAC
ε,hq ` iωBDC

0,hq ˆ UUUAC
hp

Solution Accuracy
Error norm

Plots
Paraview, integrated fields, line

Pre-Process

hp-FEM Solver

Post-Process

Figure E.1: Schematic representation of the software structure, including the preprocess-
ing, solver and post-processing stages.
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the complexity of the geometry increases, more sophisticated CAD formats such
as IGES (Initial Graphics Exchange Specification) or STEP (Standard for the Ex-
change of Product Model Data) must be considered. Many commercial and open-
source packages are available for the generation of such CAD formats, and in this
work AutoCAD [2] and AutoCAD Mechanical [3] have been used. Once the CAD
geometry is available, a mesh must be generated. For this purpose we conisder
the open source software NetGen [155], which allows the generation of complex
unstructured tetrahedral meshes. NetGen has the capability of generating linear as
well as quadratic elements and allows the local refinement of the mesh.

• Problem data definition: Once the mesh is created, it is read into our software
and the problem is defined by assigning the material properties, source terms and
boundary conditions to each sub-domain or boundary surface.

• Reference element and unknown numbering: The final steps of the pre-
processing stage consist in defining the Gauss points and the shape functions at
the reference element and creating the numbering of degrees of freedom for the DC
and AC problems.

E.3.2 Solver Stage

The main steps to be performed at the solver stage are:

• Static solver: First, the DC problem must be solved. This step includes the as-
sembly of the DC system and the solution of the magnetostatic and static elasticity
problems.

• Assembly: In this step, the matrices of the AC system are assembled from elemen-
tal contributions. Note that the assembled matrices are such that they do not depend
on the frequency, and the global system matrices are then computed, for each fre-
quency, by multiplying the assembled matrices by frequency dependent parameters
and adding them together. This leads to a much faster computation of the solution
for multiple frequencies, as it is not necessary to assemble the system each time the
frequency is modified.

• Staggered solver: The last step of the solver stage is to compute the so.lution of
the AC electromagnetic and mechanical systems for all the required parameters.
For this purpose, either the full order [158] or the reduced order-full order solver
[159] can be used.

E.3.3 Post-processing Stage

The main steps to be performed at the post-processing stage can be divided in two groups:
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• Error measure: If the problem under consideration has a known analytical solu-
tion, the accuracy of the finite element solution can be benchmarked by computing
the appropriate error norms.

• Plots: Finally, the main goal is to produce plots of the outputs of interest that help
us understand the solution to the coupled problem. These include the evolution of
integrated quantities such as dissipated power or kinetic energy with the frequency,
the eddy current, magnetic field or displacement patterns in the radiation shields
for selected frequencies or the variation of these magnitudes along a certain line.
For the generation of high quality contour plots when computing the solution in
coarse meshes using high order elements, the reference element is split into smaller
elements and these are then mapped to the physical domain. The solution in the finer
mesh is then exported to Paraview to plot. On the other hand, if we are interested in
the computation of integrated quantities such as dissipated power or kinetic energy,
an integral over the domain must be performed and for this we use the developed
finite element methodology and compute the integrals using Gauss quadrature.

E.4 User Interaction

This section describes the steps where user interaction is required. This basically con-
sist in four steps: Mesh generation, problem file definition, main function and post-
processing.

E.4.1 Mesh Generation

As previously described, the mesh is generated beforehand using the open source software
NetGen. For instructions on how to use this software, the reader is referred to [155]
and Appendix B of this thesis. However, it is important to note here that the different
boundaries of the domain must be labelled appropriately in NetGen, before reading the
mesh into the magneto-mechanical software. This boundary conditions are then assigned
to the corresponding entities (vertices, edges, faces) of the mesh.
The numbering of the boundaries for the different scenarios is as follows:

• Decoupled electromagnetics: The far field boundary BΩ must be labelled as 1 or
9. If labelled as 1, the boundary will be defined as Dirichlet or Neumann in the
problem file. If numbered as 9, the boundary will be defined as Neumann. The last
option is useful if the user wishes to split BΩ into BΩD and BΩN . The first option is
useful if all the boundary is considered as either Dirichlet or Neumann, as the type
can be changed in the problem file, without reading the mesh again. The interfaces
conductor-air or coil-air must be labelled as 2.

• Decoupled mechanics: To apply a Dirichlet condition the boundary must be la-
belled as 4. To apply a Neumann condition the boundary must be labelled as 9.
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• Coupled problems: The far field boundary BΩ must be numbered identically as
for decoupled electromagnetic problems. The part of the conductor’s surface where
a Dirichlet boundary condition will be applied (BΩD

C ) must be labelled as 4. The
Neumann part must be labelled as 3 (zero Neumann BC type). Alternatively the
Neumann part could be numbered as 9 if a non-zero Neumann condition was re-
quired, but this was not necessary for any of the problems considered in this thesis.

• Symmetry boundaries: Different symmetry boundaries have been considered in
[158, 159, ?] in order to reduce the cost of the computations. In particular, three
different situations must be distinguished:

– Problems with rotational symmetry around z axis: The x “ 0 plane must be
labelled as 7 and the y “ 0 plane as 8.

– MRI configurations considering longitudinal z gradient coils: The x “ 0 plane
must be labelled as 7, the y “ 0 plane as 8 and the z “ 0 plane as 12.

– MRI configurations considering transversal x gradient coils: The x “ 0 plane
must be labelled as 10, the y “ 0 plane must be labelled as 8 and the z “ 0

plane must be labelled as 13.

Note that the symmetry conditions for the case of y gradient coils have not been im-
plemented in the software. However, this implementation could be done very easily by
following the symmetry conditions presented in Chapter 4.

E.4.2 Problem File Definition

For the problems presented in [158, 159] and in this thesis, the problem files are already
available and thus no action from the user is required in order to solve these problems.
However, if the user wants to solve a different problem, a new problem file must be
defined. Thus, in this Section, a discussion of the variables that need to be defined in the
problem file is presented.
The most relevant variables to be defined in the problem file are:

• job: String defining the name of the mesh to be loaded.

• regopt: Variable defining the solver option; (1) for iterative solver with action of
preconditioner on gradient blocks computed iteratively. (2) for iterative solver with
action of preconditioner on gradient blocks computed directly (3) Direct solver. The
default option is (2).

• TOL GMRES: Tolerance of the iterative solver.

• JDC and JAC: Current density of the main and gradient coils, respectively.

• regterm: Value assigned to the regularisation parameter ε.
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Figure E.2: Problem file definition: illustration of the definition of the material properties.

• sigma, rho, E, nu and mu: vectors containing the values of conductivity, material
density, Young’s modulus, Poisson’s ratio and magnetic permeability, respectively,
for each subdomain in the mesh.

• D: Cell array containing the elasticity matrix for each subdomain.

• matcond: vector containing the subdomain numbers where the high orderH(curl)
basis functions should be included. This means conducting components and gradi-
ent coils.

• matmech: vector containing the subdomain numbers of the conducting components
that conform ΩC .

• mat4K, mat77K and matOVC: vectors containing the subdomain numbers for
the 4K, 77K and OVC shields in the case of MRI configurations. Note that this is
only used to customize the output for the case of MRI configurations, obtaining the
dissipated power and kinetic energy in each shield instead of for each subdomain.

• NmechBodies: Number of conducting subdomains.

• gorder: Order of approximation for the geometry. (0) linear, (1) quadratic or (ą 1)
for the case of higher order approximations using blending functions.

As an illustration, a screen shot of the definition of the material properties for a typical
MRI configuration is shown in Figure E.2. Note that the material properties used for the
MRI configurations in [158, 159] and in this thesis are confidential and, therefore, the
values that we show here are random.
Furthermore, the functions used to define the Dirichlet and Neumann boundary condi-
tions, the source terms as well as the analytical solution (if available), are defined in the
problem file. A screen shot of the definition of these functions is shown in Figure E.3.
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Figure E.3: Problem file definition: illustration of the definition of the functions used to
impose the source terms and analytical solution.

Finally, it should be remarked that several problem files are already defined and available
to use, which correspond to the problems presented in [158, 159] and in Chapters 5 and 7
of this thesis. The list of the problem files available is in the problemFiles folder is:

• problem1: Conducting and elastic sphere in a uniform alternating magnetic field.

• problemCylinder: Hollow cylinder subject to pressure field.

• problemToy: Test magnet problem with z gradient coils.

• problemToyGrad Symmetry: Test magnet problem with x gradient coils.

• problemMHI: Modified magnet problem with z gradient coils. Shields constrained
at the ends.

• problemMHIGradZSplit: Modified magnet problem with z gradient coils.
Shields constrained at the ends and at extra inner bands.

• problemMHIGradXNewCoilOnlyEnds: Modified magnet problem with x gradi-
ent coil. Shields constrained at the ends.

• problemMHIGradXSplitNewCoil: Modified magnet problem with x gradient
coils. Shields constrained at the ends and at extra inner bands.

Furthermore, it should be noted that the mesh files for all these problems are also already
available in the folder meshes.
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Figure E.4: mainParallel function: illustration of the user-defined input parameters.

E.4.3 Main Functions

Once the mesh and the problem file are available, the software can be run from one of
the two main functions, namely mainSerial and mainParallel. Both scripts are almost
identical, with the difference that mainParallel has one extra parameter named Ncores,
that will be used in the solver stage to solve the frequency sweeps in parallel. Note that
to run mainParallel the Matlab Parallel Computing Toolbox must be installed. In the
following the different parameters that the user must define in order to run the software
are discussed.

User-Defined Input Parameters

The mainSerial and mainParallel functions have several input parameters that the user
must define when calling these functions from the command line. A screenshot of the
first lines of the mainParallel function, where these parameters are defined is shown in
Figure E.4. Note that mainSerial has the same input parameters excluding Ncores.
The complete list of input parameters is:

• orderEM: Polynomial order of theH(curl) basis functions.

• orderMech: Polynimial order of the H1 basis functions.

• CondFactorSample: Matrix containing the list of multiplying factors defining the
conductivities to sample for POD. These factors multiply the reference value for the
conductivity γref and each row of the matrix corresponds to a different choice, while
each column corresponds to a different conducting subdomain. This parameter is
only used when running the ROM.

• CondFactorOut: Matrix containing the list of multiplying factors defining the con-
ductivities for which the solution must be computed. These factors multiply the
reference value for the conductivity γref and each row of the matrix corresponds to
a different choice, while each column corresponds to a different conducting subdo-
main.

• CondFactorChoice: User specified label for the chosen output conductivities, used
only to define the names of the output data files.
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Figure E.5: mainParallel function: illustration of the user-defined switches that control
the different pre-processing, solver and post-processing options.

• freqSample: Vector containing the frequencies f in Hz that must be sampled for
each conductivity, when running POD. This parameter is only used when running
the ROM.

• freqOut: Vector containing the frequencies f in Hz for which the solution must be
computed.

• dampRatio: Damping ration ξ used to define the mechanical damping.

• dampChoice: Label for the choice of damping, used only to define the names of
the output data files.

• nModes: Number of modes M at which the TSVD is truncated.

• Ncores: Number of workers used for parallel computation.

Problem Switches

In the main functions, different problem switches are defined in order to choose between
different pre-processing, solver and post-processing options. A screenshot of the defini-
tion of these switches shown in Figure E.5.
The complete list of switches and is:

• Pre-processing switches

– ReadMesh: Read mesh from external file (1) or load existing mesh data in
.mat format (0).

• Solver switches

– POD: Use POD-Full ROM (1) or full order (0).
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– PODP: Use PODP (1) or PODI (0). Note that PODI has only been imple-
mented for the case of considering frequency as the only parameter. This
switch is only used if the POD switch is set to 1.

– Offline: Compute off-line POD stage (1) or load existing data from saved file
(0).

– SourceMapping: Map current source to solenoidal space (1) or not (0). This
option is required when considering transversal gradient coils.

– Assemble: Assemble system matrices (1) or load assembled matrices from
data file (0).

– couple: Activate (1) or deactivate (0) coupling blocks.

– SplitMech: Split the mechanical problem in several smaller problems for each
conducting subdomain (1) or solve as one single problem (0).

– StaticMechanics: Solve (1) or not (0) the static mechanical problem. Note
that for the MRI applications considered in this work the static displacement
is zero and thus we do not want to solve the mechanical problem in such cases.

– Non0Dir: Consider non-zero Dirichlet values (1) or not (0). This switch will
be used to determine how the assembly is done.

– freqSweep: Assemble Dirichlet contributions using frequency sweep method.
This option allows to run frequency sweeps assembling the matrices only once
even if we solve for multiple frequencies. Requires a large amount of memory
for big problems. It is only needed if there are non-zero Dirichlet boundary
conditions.

• Post-processing switches

– fieldCalc: Calculate integrated field quantities (dissipated power, kinetic en-
ergy) (1) or not (0).

– CustomMRIPost: Return dissipated power and kinetic energy directly for
4K, 77K and OVC (1) or for each conducting subdomain (0). Only activated
when considering MRI configurations in order to obtain a customised output.

– LinePlotOn: Compute line plots of the fields (1) or not (0). The lines where
the plot is required must be defined in the problem file.

– paraview: Write .vtu files in order to produce 3D plots in Paraview (1) or not
(0).

– errorsOn: Compute error with respect to analytical solution if available (1)
or not (0).

– ErrorPOD: Compute error e2 of POD with respect to full order (1) or not (0).

Finally, the last parameter that the user must define in the main function is problem,
which defines the name of the problem file to be used. For example, problem=’Toy’ to
use the problem file problemToy (see Figure E.6).
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Figure E.6: mainParallel function: illustration of the definition of the parameter problem
defining the problem file to be used.

Figure E.7: Screenshot of the main function showing the function to compute the inte-
grated field quantities and the definition of the name for the .mat data file.

E.4.4 Post-processing

Depending on the post-processing switches that were activated, the software will return
different outputs that can be used for post-processing purpose. These outputs can be
summarised as follows:

• If the switch linePlotOn was activated, a figure (or figures) showing the desired
plots at the specified line will be generated.

• If the witch errorsOn was activated, the H(curl) and H1 norm of the error with
respect to the exact solution will be printed on the screen.

• If the switch paraview was activated, the software will generate the .vtu files that
can then be read into paraview for post-processing. The files will be named using
the name of the mesh.

• If the switch fieldCalc was activated, a .mat file containing, for each pa-
rameter set, the dissipated power and the displacement norm ||UUUAC

hp ||L2pΩq “
´

ş

Ω

ˇ

ˇUUUAC
hp

ˇ

ˇ

2
dΩ

¯1{2

, from which the kinetic energy can be trivially computed (see
[158, ?]). The name of the .mat file is defined in the main script (see Figure E.7).

• If the switch ErrorPOD was activated, the error e2 of the POD-Full with respect to
the full order solution for each parameter set will be computed and saved to a .mat
file. The name of the .mat file is defined in the main script (see Figure E.8).

E.5 Appendix Summary

This appendix provides a simple user guide on how to use the coupled magneto-
mechanical software developed in during this thesis. The steps that are needed to run
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Figure E.8: Screenshot of the main function showing the function to compute the error
with respect to the full order solution e2 and the definition of the name for the .mat data
file.

the code were described, including the definition of a mesh with appropriate boundary
condition labels, the definition of the problem file and the input parameters and switches
that must be defined in the main functions. The output of the code, depending on the
activated switches was also described. The appendix constitutes a simple user guide, and
it is recommended to use it in conjunction with the work presented in [158, 159] and in
the main body of this thesis to have a better understanding of the problems under consid-
eration and the different methods used for their solution.
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