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Creep and creep fracture of 2.25Cr-1.6W steels (Grade 23) 
 
M.T. Whittaker and B. Wilshire 
Materials Research Centre, School of Engineering, Swansea University, Swansea. SA2 8PP, UK. 
 
Abstract  
 
The creep and creep rupture properties of Grade 23 (2.25Cr-1.6W) steels have been analysed for 
material produced in pipe (P23) and tube (T23) forms. The similarities and differences in the 
behaviour patterns observed for the pipe and tube products are then discussed in terms of the 
dislocation processes governing creep strain accumulation and the various damage phenomena 
causing the onset of tertiary creep and eventual fracture. Finally, the stresses causing failure of these 
materials in 100,000h at different temperatures are estimated to provide design data for 
construction of future power plant. 
 
Keywords: creep; fracture; bainitic steels 
 
1. Introduction  

 
For power and petrochemical plant, large-scale components are usually designed on the basis that 
creep fracture should not occur under the operating conditions imposed during planned lives of 
250,000h.  In general, when selecting alloy steels for these applications, decisions are based on the 
‘allowable creep strengths’, normally calculated from the tensile stresses causing failure in 100,000h 
at the relevant service temperatures [1].  However, creep life measurements for structural steels 
show considerable batch-to-batch scatter so, in Europe, tests up to 30,000h have often been 
completed for five melts of each steel grade [2].  Yet, even when using these extensive results, the 
100,000h strength estimates depend on the methods adopted to make the calculations [3,4], 
despite the international activities devoted to the assessment of different data analysis procedures 
[5].  Moreover, for a series of 9-12% chromium steels developed for ultra super-critical power plant 
(i.e. Grades 91, 92 and 122), the allowable strengths have been reduced progressively as the test 
durations have increased well beyond 30,000h towards 100,000h and more [3,4]. 
 
In contrast to the problems encountered using traditional parametric, numerical and computational 
procedures for extrapolation of short-term creep life properties [5], a new methodology appears to 
allow accurate prediction of 100,000h strengths by considering results with maximum lives up to 

only about 5000h [6-9].  This new approach, based on normalising the applied stress () through the 

0.2% proof stress (PS) and/or the ultimate tensile stress (TS) at the creep temperatures for each 
batch of material investigated, has proved successful for a series of ferritic [9], bainitic [8] and 
martensitic steels [7].  In addition, confidence in this method is improved by interpretation of the 
property sets in terms of the processes governing creep and creep fracture [6].  Hence, in the 
present study, this new methodology is adopted for bainitic Grade 23 steels (2.25%Cr-1.6W). Grade 
23 steels exhibit creep strengths above those for the bainitic 2.25Cr-1Mo steels (Grade 22) widely 
used for conventional power plant operating up to 840K, but less than the values for the martensitic 
9-12% Cr ranges (Grades 91, 92 and 122) developed for plant service above 875K. Thus, Gr 23 was 
introduced to reduce the costs of traditional power plant, but the allowable creep strengths remain 
uncertain [10]. For this reason, the present analysis was conducted using the impressive creep data 
sheets [10,11] produced at 773 to 923K in air by the National Institute for Materials Science (NIMS), 
Japan, for both pipe (P23) and tube materials (T23). The substantial differences in the behaviour 
patterns observed for the pipe and tube products are then discussed in relation to the 
microstructural changes which occur during creep exposure. 
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2. Creep of bainitic 2.25Cr-1.6W pipe steel (P23) 

 

For over half a century, the dependencies of the minimum creep rate (  m ) and the creep fracture 

life (tf) on stress () and temperature (T) have been described using power law equations of the form 
 

M/tf =  m exp( / )n

CA Q RT        (1) 

 

where R = 8.314Jmol-1K-1. From the log  m /log  plots for P23, the stress exponent (n) decreases 
from around 13 at high stresses at 773K to almost 6 under low stresses at 923K, with the activation 
energy for creep (Qc) ranging from about 300 to 535kJmol-1 (Fig 1).  Similar trends were observed for 

the log tf/log  relationships (Fig. 2). Clearly, the unknown variations in n and Qc make it impossible 
to estimate long-term properties by extrapolation of this short term data. 
 

To consider the effects of normalising the applied stress, use was made of the NIMS PS and TS 

values [11].  For P23 steel at 773 to 923K, TS decreased from 407 to 247 MPa, whereas PS declined 

from 341 to 217 MPa.  While TS is the highest stress which can be applied at the creep temperature, 

with tf0 as /TS1, it should be noted that all tests were completed at stresses below PS. 

 

Using these results, the power law plots in Figs 1 and 2 were rationalised by normalising  through 

TS so Eq. (1) can be rewritten as 
 

M/tf =  m =  * */ exp( / )
n

TS CA Q RT         (2) 

 
where A*≠A.  Adopting Eq. (2), the data sets at different temperatures are superimposed onto a 

single curve through an activation energy ( ) of 230kJmol-1 (Figs 3 and 4), where  is determined 

from the temperature dependencies of  m  and tf at constant (/TS), rather than at constant  as in 
the determination of Qc with Eq. (1).  However this procedure does not eliminate the decrease from 

n13 to n6, so the unknown curvatures of the log  m /log (/TS) and log tf/log (/TS) plots in Figs 
3 and 4 still does not allow prediction of long-term properties by extrapolation of short-term results 
for P23 steel. 
 
In contrast, extended extrapolation to provide 100,000h data from tests lasting up to 5000h does 
appear to be possible using the Wilshire equations [6-9] as 
 

   *

1/ exp exp( / )
u

TS f Ck t Q RT            (3) 

and    *

2/ exp exp( / )
v

TS m Ck Q RT            (4) 

 

where the coefficients, k1 and k2 as well as u and v, are easily determined from plots of ln[  m .exp 

( /RT)] and ln[tf exp (- /RT)] against ln [-ln (/TS)].  These plots, shown as Figs. 5 and 6, indicate 

that changes in slope occur with P23 as the applied stress falls below 0.85PS, particularly at 773K. 
This coincides with a change from k1 = 31 and u = 0.20 at high stresses to k1 = 9.5 and u = 0.15 at low 
stresses with Eq. (3), as determined from the results of tests with tf < 5000h. Similarly, a fall from k2 = 
15 and v = -0.20 at high stresses to k2 = 6.1 and v = -0.15 at low stresses occurs with Eq. (4). Inserting 
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these values into Eqs. (3) and (4) then produces the reasonable descriptions of the property sets in 

Figs. 1 and 2. In this way, the actual creep lives are longer and the creep rates are slower when  

<0.85PS than would be expected by linear extrapolation of the results when  >0.85PS. 
 
3.  Creep of bainitic 2-25Cr – 1.6W tube steel (T23) 
 
The T23 material displayed mechanical properties, as well as creep and creep fracture behaviour, 
significantly different to the P23 product, even though their compositions, processing and thermal 
histories were comparable [11].  Specifically, the pipe samples had a hardness of HV182 compared 
with HV207 for the tube, consistent with the T23 having a finer austenitic grain size number.  Even 

so, adopting Eq. (1), the log  m /log  and log tf/log  plots for T23 (Figs 7 and 8), appeared similar 

to those for P23 (Figs. 1 and 2). Thus, a decrease from n14 to n6 was accompanied by a 

substantial increase from Qc 300 to Qc500kJmol-1 with decreasing stress and increasing 
temperature for the T23 steel. 
 
As with the P23 samples, the plots in Figs 7 and 8 could be rationalised through Eq. (2), with 

230kJmol-1, but the unknown reduction in n value with increasing test duration and 

temperature again makes extended extrapolation unreliable. However, utilizing a fall in TS from 
455MPa to 280MPa on increasing the test temperature from 773 to 923K, a difference in behaviour 
pattern was noted between the results for P23 (Figs 3 and 4) and for T23 (Figs. 9 and 10). Essentially, 
with P23, the creep life decreased gradually with increasing time and temperature, whereas a 
sharper fall in life occurs as the test duration increases at 873K and above with the T23 material. 
 
Even greater differences between the data sets for P23 and T23 were evident using Eqs. (3) and (4), 

with the ln[  m .exp ( /RT)] and ln[tf exp(- /RT)] against ln [-ln (/TS)] relationships presented 
for T23 in Figs 11 and 12. Essentially, the results for T23 are best described by three intersecting 
straight lines, with the k1, k2, u and v values for each section derived from data with tf<5000h 
included in Table I. Incorporating the results in Table I into Eqs. (3) and (4) accurately describes the 
long-term data (Figs. 7 and 8), but it then becomes necessary to explain the behavioural differences 
recorded for P23 and T23. 
 
As with P23, on decreasing the applied stress and increasing the creep temperature, a change in k1 

and u in Eq. (3), as well as in k2 and v with Eq. (4), at  < 0.85PS with T23 signifies that the creep 
lives are longer and the creep rates are slower at lower stress than would be predicted by linear 

extrapolation of results when  > 0.85PS. In contrast, with T23, further changes in the values of 
these coefficients means that, in long-term tests at 873K and above, the creep lives are much 
shorter and the creep rates substantially faster than would be expected on extrapolation of the 
intermediate stress/temperature data. 
 
 

4. Interrelation of creep and creep fracture 

 

The parameter M(=  m.tf) in Eqs. (1) and (2) is not a constant, but varies with stress and temperature 

(Fig. 13). For P23,  m.tf increases from around 0.02 to a maximum of 0.06 as the stress is decreased 

towards 150MPa, then falls to about 0.03 after long test times at 873K and above. A similar trend 

occurs with T23, although the  m.tf values are significantly smaller over the entire range of test 

conditions studied (Fig.13). 
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Interestingly, the data trends for  m.tf in Fig.13 are mirrored reasonably by the stress and 

temperature dependencies of the total strains to failure or creep ductility (f) in Fig.14. For P23, f 

again increases from around 0.2 to a maximum of 0.45 as the stress falls to just below 150MPa, with 

a reduction to f   0.3 to 0.4 in lower stress tests at the higher temperatures (Fig.14). Yet, with T23, 

while the f  values were again lower than those for P23 at all stress/temperature combinations, 

markedly different behaviour patterns were found under low stresses at higher temperatures. Thus, 

at 773 and 823K with T23, f again increased slightly from around 0.20 to 0.30 as the stress was 

reduced to 150MPa, but with a serious fall to f < 0.1 as the stress was decreased towards 100MPa at 

873K and above. Moreover, it seems that f then increases towards 0.2 as the stress is further 

reduced at 923K. 

 

The creep ductility/stress relationships in Fig.14 are reinforced by the measurements recorded for 

the reduction in area at fracture (RoA) in Fig.15. Thus, with P23, RoA  0.80 at all stress/ 

temperature conditions. However, with T23, while RoA  0.80 at stresses down to around 150MPa, 

the reduction in area falls to near zero in the long-term tests at 873K, but is followed by a further 

rise towards RoA   0.6 in long duration tests at 898K and 923K (Fig.15). Clearly then, the failure 

modes differ for P23 and T23 under different stress/temperature conditions. 

 

Although the product,  m.tf, varies with stress and temperature (Fig.13), the approximately inverse 

dependence of tf on  m  means that the creep life is determined by the overall creep rate, i.e. 

fracture is strain controlled. For this reason, the processes determining the differences in the creep 

behaviour of P23 and T23 are discussed, (e.g. Figs. 5, 6, 11 and 12), before considering the influences 

of variations in fracture mode. 

 

5. Creep Deformation Processes 

 

With both P23 and T23, changes in the coefficients in Eqs. (3) and (4) occur when  < 0.85PS, such 

that the creep lives are longer and the creep rates are slower at lower stresses. As previously found 

for 1Cr-0.5Mo ferritic steels [9]., this takes place when  < Y, where Y is the yield stress 

determined in high-strain-rate (10-3s-1) tensile tests carried out at the creep temperatures for each 

batch of material investigated. For P23 and T23, it seems reasonable that Y  0.85PS. Thus, when  

> Y, dislocations multiply rapidly during the initial strain on loading at the creep temperature, giving 

high creep rates and shorter creep lives. In contrast, when  < Y, creep must occur not by the 

generation of new dislocations but by the movement of the dislocations pre-existing in the as-

received bainitic microstructure, giving slower creep rates and correspondingly longer creep lives. 

 

At stresses below 0.85PS, k1 and u, as well as k2 and v, are constant for P23 at all other 

stress/temperature combinations. However, with T23, further changes in these parameters are 

found as the test durations increase at 873K and above. With both products, the creep process 

degrades the initial bainitic microstructures, such that the original lath-like structure entirely 

disappears in long-term tests at the higher creep temperatures with T23. These changes are 

replicated by hardness measurements [10] on samples crept for different times at different 

temperatures (Fig. 16). Specifically, the gradual fall in hardness with P23 contrasts with a much 
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slower hardness reduction with T23, until a sharp fall in hardness occurs with T23 in long-term tests 

at 898 and 923K. 

 

The hardness of the P23 (HV 182) is lower than that of T23 (HV 207) in the as-received state, 

indicating that P23 is more heavily tempered. As a result, further tempering during creep of the P23 

is slow. In contrast, with the T23, the slow initial fall in hardness suggests only a gradual degradation 

of the initial bainitic microstructure, until a sudden hardness fall is caused as the lath-like structure 

disappears after long creep times at 873K and above. Thus, the creep rate increases sharply, leading 

to a corresponding fall in creep life, as the bainitic microstructure of the T23 degrades rapidly with 

increasing test duration and temperature. 

 

6. Tertiary creep and Fracture Processes 

 

Under high temperature creep conditions, most materials display normal creep curves, i.e. after the 

initial strain on loading, the creep strain (increases with time (t) at a creep rate (  /d dt ) 
which decays during the primary stage, reaching a secondary or minimum rate before increasing 

during the tertiary stage which leads to fracture. Even so, plotting   against t demonstrates that 

instead of a secondary or steady state stage, only a minimum rate (  m) is reached when the            
decaying primary rate is offset by the tertiary acceleration. Rather than seeking to identify ‘steady 
state’ creep mechanisms, attention should therefore be focussed on the deformation processes 
governing strain accumulation and the damage phenomena causing the tertiary acceleration and 
eventual fracture. 
 

Under all conditions studied for P23 and T23, creep occurs by the movement of dislocations, 

irrespective of whether dislocations are or are not generated during the initial specimen extension 

on loading. Hence, the fact that * 1230CQ kJmol  suggests that this value represents the activation 

energy for diffusion-controlled dislocation movement in the bainitic microstructure. Yet, while the 

dominant dislocation processes controlling creep are the same as the bainitic microstructures 

degrade, the phenomena causing the onset of tertiary creep and eventual fracture differ, depending 

on the test conditions imposed with P23 and T23. 

 

A measure of the processes occurring during the onset of the tertiary creep stage is [12,13] the 

creep damage tolerance parameter (λ) where [14] 

 

                                    / /m mf p f f ft t     
 

         (5) 

 

where εp is the primary strain, which is sufficiently low to suggest that (εf- εp) can be approximated 

by εf. In this way, when λ  1 to 2, tertiary begins as a consequence of cavitation, whereas tertiary 

starts because of either necking or microstructural instability when λ>2 [13]. 

 

With P23, RoA  0.8 (Fig.15) with RoA > εf , so that λ>2 suggests that neck formation at 723K and 

microstructural instability at 823K and above cause tertiary creep and transgranular fracture. 

However, with T23, the differences in the results recorded for the stress and temperature 
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dependencies of  m.tf, εf  and RoA (Figs 13, 14 and 15) indicate that the damage processes differ 

significantly from those for P23. 

 

As with P23, the data for T23 suggests that tertiary begins by necking at 773K and by microstructural 

instability at the higher temperatures, leading to transgranular fracture. Yet, the rapid fall in εf  and 

RoA when  <  150MPa indicates a transition in failure mode to creep cavitation with T23. Even so, 

cavity development is then limited by grain boundary migration in the degraded T23 microstructure 

at low stresses at 873K and above. This then accounts for the εf and RoA behaviour shown in Figs. 14 

and 15. However, these phenomena occur during the tertiary stage without affecting  m, so the 

stress and temperature dependencies of  m.tf in Fig. 13 for P23 and T23 are essentially similar. 

 

7. Long –Term Design Data for Grade 23 Steels 

 

Using the k1 and u values, as well as the k2 and v results (Table I), incorporation of these figures into 

Eqs. (3) and (4) give the stress/ log [  m .exp ( /RT)] and stress/log [tf exp (- /RT)] plots shown in 

Figures 17 and 18 [10,11]. Moreover, the sigmoidal shape of these curves are fully compatible with 

the idea that  m  →  ∞  and tf → 0 as /TS → 1, whereas  m  → 0 and tf → ∞ as /TS → 0.  

 

Even so, the fact that two breaks occur with T23 (Figs. 11 and 12) compared with one for P23 (Figs. 5 

and 6) causes problems. Especially when considering data from tests with tf < 5000h, there are only a 

limited number of results available for calculating the values of the coefficients in Eqs. (3) and (4) 

over certain stress ranges. Hence, the  m and tf values predicted from Eqs. (3) and (4) for T23 do not 

always match the measured data, as occurs with the   m values at 773K (Fig. 7). 

 

Despite this problem, using Eqs. (3) and (4), the stresses causing failure of P23 and T23 in 100,000h 

at each creep temperature are listed in Table II. Clearly, at temperatures of 873K and above, the 

100,000h strength estimates are very much lower for the tube than for the pipe material. 

Additionally, even the figures for the pipe material in Table II are significantly below earlier estimates 

[15], namely, 114MPa at 848K, 90.2MPa at 873K and 66MPa at 898K. Obviously, the estimates in 

Table II were made using data from small diameter specimens so, compared with large thickness 

pipe and tube in service, oxidation can markedly reduce the ‘apparent’ strengths at high 

temperatures [15]. However, the present analyses were made using results with creep lives less than 

5000h, when oxidation should be limited. Moreover, the oxidation rates would appear to be similar 

for the pipe and tube products, which have comparable compositions [10,11]. On this basis, it 

appears that the very low 100,000h strengths predicted in Table II for T23 are attributable to 

degradation of the bainitic microstructure with increasing creep exposure at 850K and above. In 

turn, these low values suggest that Grade 23 steels, particularly the tube products, cannot be used 

for construction of power plant operating at temperatures approaching 850K. 

 

8. Conclusions  

 

The creep and creep fracture behaviour of Grade 23 steels, normally characterized by power law 

descriptions of the minimum creep rates and rupture lives, are rationalized by normalizing the 

applied stress through the proof stress (PS) and/or the ultimate tensile stress (TS) determined from 
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high-strain-rate tensile tests carried out at the creep temperatures. Using new relationships, termed 

the Wilshire equations, these rationalization procedures allow the data sets for Gr 23 steels in pipe 

(P23) and tube (T23) forms to be discussed in terms of the dislocation processes controlling creep 

strain accumulation and the different damage phenomena causing tertiary creep and eventual 

failure as the as-received bainitic microstructures degrade with increasing test duration and 

temperature. Moreover, these new relationships also enable long-term data to be predicted by 

extrapolation of short-term results, suggesting that Gr 23 steels should not be used at temperatures 

approaching or exceeding 850K for future power plant construction. 
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