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Abstract7

Crack branching has important theoretical and practical significance in many natural phenomena and practical engineering prob-
lems. At present, the field of crack branching is still at an exploration stage, lacking a unified explanation of the underlying
mechanisms and an effective method to predict crack branching in practical materials. This paper provides a state-of-the-art re-
view of crack branching, including experimental observations, physics, fracture models and associated numerical methods. The
experimental observations are first summarized, followed by the physics of crack branching. Then, the crack models including
discrete crack models and smeared crack models are discussed, highlighting their key features, advantages and limitations. Next, a
number of numerical methods that have been used to simulate crack branching are reviewed in detail, including the finite element
method (FEM), extended finite element method (XFEM), boundary element method (BEM), meshfree methods (MMs), peridy-
namics (PD) and discrete element method (DEM). Finally, based on the information reviewed above, the future research directions
of crack branching modelling are discussed.
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1. Introduction9

Crack branching is encountered in many practical engineering problems, and is particularly common in brittle10

materials and metal alloys with stress corrosion cracking [1, 2]. As shown in Fig. 1, crack branching can occur sym-11

metrically or asymmetrically. The study of crack branching phenomena, including branching mechanisms, branching12

criteria, experimental measurement and numerical simulation, is of great significance for robust and reliable predic-13

tion of crack propagation. A good understanding of the initiation and propagation of cracks inside structural materials14

is important for preventing catastrophic failure of engineering components and for developing new materials.15

The theory of straight line crack expansion is basically mature, with the help of three main types of investigation16

techniques, namely experimental, analytical and numerical techniques. The mechanism for crack propagation is17

examined using the simple energy balance theory: the crack occurs when the energy available for crack growth18

is sufficient to overcome the resistance of the material [5]. In linear elastic fracture mechanics, the propagation19

criteria of a single steady crack are mainly based on the concept of stress intensity factor or energy release rate.20

While in nonlinear fracture mechanics, the J-integral is often applied, which can be viewed as a nonlinear stress21

intensity parameter or energy release rate. However, the mechanism for crack branching is more complex and still22

in exploration. The propagation velocity was thought to be a determining factor in crack branching: when the crack23
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(a) Symmetrical crack branching [3]. (b) Asymmetrical crack branching [4].

Figure 1: Crack branching photographs from experimental results.

velocity exceeds the critical value, the stress field in front of the crack tip changes and branching occurs. However, it24

was later found that experimentally observed crack velocities at crack branches were much smaller than the theoretical25

ones [3]. Therefore, other mechanisms were considered, including the existence of microcracks, tilting and twisting26

of the stress vector at the crack front and dynamic instabilities. If near-tip instabilities are suppressed, then supersonic27

cracks are also possible [6]. While many studies on the crack branching phenomenon have been performed both28

experimentally and theoretically, a uniform theory that accounts for dynamic crack propagation instability and crack29

branching remains an open question.30

In addition to the experimental and analytical techniques, numerical simulations are also employed to study crack31

branching. Various crack models and numerical methods have been proposed to simulate crack initiation and prop-32

agation including crack branching and intersection with reasonable computational cost, and both crack propagation33

velocity and branching angles have been correctly predicted. With the development of numerical techniques, the34

modelling of complex crack propagation processes has become more accurate and robust, while the mechanism of35

crack branching has been further understood. Crack models essentially divide into two categories: discrete crack36

models and smeared crack models. Popular discrete crack models usually represent the fracture topology explicitly,37

which include remeshing, element deletion, enrichment, cracking particles, and cohesive zone models. Smeared crack38

models average the crack over a certain width without explicit tracking of fracture surfaces, and they include nonlocal39

models, gradient models, viscous models and phase field models. Based on whether spatial derivatives are employed40

in the controlling equation, the main numerical methods for crack branching can also be summarized in two cate-41

gories: continuum methods and discontinuum methods. The continuum methods model the domain as a continuous42

body and use partial differential equations with spatial derivatives to describe the underlying physics. They include43

the finite element method (FEM), the extended finite element method (XFEM), the boundary element method (BEM),44

and the meshfree methods (MMs). Spatial derivatives are avoided in the discontinuum methods. The peridynamic45

method (PD) and the discrete element method (DEM) are two commonly used discontinuum methods. Each numeri-46

cal method has its advantages and disadvantages, and no consensus has been reached on a standard general numerical47

simulator for crack branching.48

While dynamic crack propagation has been investigated in the literature [7, 8], there has been little effort to49

systematically examine crack branching. Therefore, the aim of this work is to summarize the research on crack50

branching and lead to an improved understanding of branching mechanisms and the study direction in the future. The51

structure of the paper is arranged as follows. The experimental results on crack branching are summarized in § 2.52

Based on the experimental results as well as the theoretical derivations, the physics of crack branching is provided in53

§ 3, which includes § 3.1 describing the causes of crack branching and § 3.2 describing commonly used branching54

criteria. § 4 summarises and compares different crack models and numerical methods for crack branching. Finally,55

§ 5 summarises the existing findings related to crack branching, highlights some of the most demanding outstanding56

questions, and indicates potential directions for future research.57
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Nomenclature

a0 - a7 parameters in the Newmark method

A area

b prescribed body-force density field

c peridynamic material parameter

cd cohesion

cR Rayleigh wave speed

cS shear wave speed

E(u,Γ) energy functional

Eε(u,Γ) regularized energy functional

f (φ) energetic degradation function in phase field models

f pairwise force in peridynamics

Fn, Fs normal force and shear force

Flm dimensionless function of the branching angle coeffi-
cient when branching velocity tends to zero

{F} global vector of nodal load

g1(v) decreasing function of the crack velocity

G,G′ energy release rate before and after branching

Gdyn dynamic energy release rate

Gc fracture toughness

H horizon in peridynamics

Hlm dimensionless function of the branching angle coeffi-
cient and crack velocity before and after branching

H(x) Heaviside function

J(x) junction function

k(v), kl(v′) function of crack velocity and branching veloc-
ity

kn, ks normal stiffness and shear stiffness

Kc initial stiffness in the intrinisic cohesive zone model

KI ,KI
dyn stress intensity factor and dynamic stress inten-
sity factor

KI
0 instantaneous stress intensity factor

KIb critical branching stress intensity factor

KID dynamic crack growth toughness

K′l dynamic stress intensity factor after branching

K0m rest stress intensity factor before branching

K stiffness matrix

l crack length

l0 length scale

M mass matrix

N,Nc set of all nodes and cracked nodes

N̂i,Ni continuous shape function and discontinuous shape
function

NH ,NT ,N J set of nodes to enrich for the crack, the crack
tip and the junction

qi additional degrees of freedom in cracking particles
methods

rc, r0 characteristic distance and instantaneous characteris-
tic distance

s stretch of the bond

S sign function defined as 1 and −1 on two sides of the
crack

t time

t traction

Tc cohesive traction

Ti j fundamental solutions for traction

Tmax cohesive strength of the material

un normal displacement

u, u̇, ü displacement vector, velocity vector, and accelera-
tion vector

{u}, {u̇}, {ü} global vectors of nodal displacement, nodal
velocity and nodal acceleration

JuK displacement jump

uh displacement approximation

Ui j fundamental solutions for displacement

v, v′ crack velocity and branching velocity

vc critical crack velocity
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Nomenclature

V volume of a material point

w crack opening

wmax maximum crack opening

x, x′ position vectors of point x and x′ in initial con-
figuration

X interior point in the boundary element method

y, y′ position vectors of point x and x′ in deformed
configuration

α j,α
α
k ,αm nodal enriched degrees of freedom

β joint friction angle

γ, γ′ fracture energy before and after branching

Γ crack set, or sharp crack surface

Γ+
n ,Γ

−
n upper and lower crack surfaces

ΓS the outer boundary

ε(u) the strain field

λ branching angle coefficient

ρ mass density

φ damage-like crack phase-field parameter

Φα near tip asymptotic field function

Ψ elastic energy density

Ω a domain describing a cracked solid

2. Experimental Observations of Crack Branching58

A number of experimental studies on dynamic crack propagation have been carried out to provide qualitative59

observations and quantitative data for the explanation of crack branching phenomena. In this section, the important60

experimental results are reviewed in chronological order and wherever applicable these experiments are summarized:61

(1) from the observation and measurement techniques, for example, the high speed photography and electronic timer;62

(2) from the experimental material, which includes inorganic glass, Plexiglas, Holmalite-100; (3) with respect to63

loading conditions such as dynamic loading and quasi-static loading; (4) from the research objectives, including the64

conditions under which crack branching occurs (crack tip speed, stress intensity factor and its rate) and how crack65

propagation proceeds after branching (e.g. the branching angle).66

Schardin [9] performed pioneering work on observing crack branching in inorganic glasses with a multiple spark67

camera technique and noted that the crack speed remains at a constant value when crack bifurcation occurs. A68

significant decrease of crack speed only occurs when hackle marks appear as a result of surface energy increase. The69

number of crack branches greatly increases when increasing loading stress. Kerkhof [10] produced predictable crack70

surface undulation by imposing stress waves with ultrasonic transducers to measure the crack speed and proposed that71

the limiting velocity is highly related to the composition of inorganic glass. Kobayashi and Mall [11] and Dally [12]72

determined the dynamic fracture toughness of Homalite-100 and crack propagation velocity variation with dynamic73

photoelasticity. Dally [12] further modified the equation describing the relationship between the number of branches,74

the arrest toughness and branching toughness based on the experiment data. The number of branches is in proportion to75

the ratio of branching toughness to arrest toughness. Ravi-Chandar and Knauss [13, 14, 4, 15] examined the dynamic76

crack propagation and branching problem in Homalite-100 comprehensively using high speed photomicrography with77

the load triggered by an electrical pulse. A series of important conclusions were obtained: (1) the stress intensity factor78

increases while crack velocity remains constant, and there exists a quantitative correlation between the stress intensity79

factor and the fracture surface roughness (mirror, mist and hackle); (2) from macroscopic examination of the fracture80

surface, it is found that a crack dissipates excess energy supplied to the crack tip by creating a rough surface rather81

than by changing the velocity of crack propagation; (3) from microscopic observations of fracture surface roughness,82

it is found that crack branching is a natural evolution from a “cloud” of microcracks that accompany and lead the main83

crack; (4) The terminal velocity in Homalite-100 was found to be 0.45cR, about half of the Rayleigh wave speed cR.84

Following the work by Ravi-Chandar and Knauss [13, 14, 4, 15], Fineberg et al. [16, 17], Sharon et al. [18], Sharon85

and Fineberg [19], Sharon et al. [20] investigated the micro-branch instabilities with a series of experiments performed86

on thin sheets of Plexiglas (PMMA). Fineberg et al. [16] designed an experimental system where the resistance87

voltage increases as a crack progresses across a sample and cuts the conductive layer, the crack velocity is measured88
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by detecting the voltage. By plotting the evolution of crack velocity during crack growth, the existence of dynamic89

instabilities in a brittle fracture is detected. Fineberg et al. [17] found that once the crack velocity is greater than a90

critical value, dynamic instabilities occur and the amplitude of the oscillations depends linearly on the mean velocity91

of the crack. To explain the origin of instability, Sharon et al. [18] investigated the presence of microscopic local crack92

branching as a possible source for instability in dynamic fractures occurring in thin sheets of brittle PMMA. The crack93

micro-branches are observed and measured optically and a connection between microscopic and macroscopic crack94

branching is established. Later, with the same experiment system, Sharon et al. [20] measured both the energy flux95

into the tip of a moving crack and the total surface area created via the microbranching instability. It is found that96

a crack does not need to dissipate increasing amounts of energy by accelerating because it has another option of97

dissipating energy by creating an increased fracture surface, which provides an explanation for why the theoretical98

limiting velocity of a crack is never realized. Readers are referred to [21] for a comprehensive review of the early99

work on the micro-branching instability. In recent years, under the help of brittle poly-acrylamide gel (an aqueous100

elastomer), which enables probing the fracture process in unprecedented detail by high-speed cameras, a number101

of important experiments have been carried out to study the dynamic fracture process [22, 23, 24, 25]. Fineberg102

and Bouchbinder [26] reviewed these experimental developments. It has been shown that (1) an intrinsic length103

scale, which is associated with nonlinear elastic deformation near the crack tip, plays an important role in dynamic104

instabilities; (2) dynamic instabilities include micro-branching instabilities and oscillatory instabilities. The micro-105

branching instability may be closely related to the oscillatory instability and it appears to be an intrinsically 3D106

instability instead of a 2D instability. Further discussions about the physics of crack branching can be found in § 3.1.107

A necessary and sufficient condition for crack branching was proposed by Ramulu and Kobayashi [3] (see further108

discussions in § 3.2). Hawong et al. [27] verified the criteria by using the 16-spark-gap camera to record the dynamic109

photoelastic patterns of curving and branching cracks in Homalite-100 specimens under biaxial loading conditions.110

Increasing the biaxial stress ratio of horizontal loading to vertical loading and the stress level increases both the111

curvature and the number of branching cracks. Hauch and Marder [28] investigated the modes of energy dissipation112

in dynamic crack propagation and branching process in Homalite-100 by using a potential drop technique and made113

qualitative comparisons with PMMA. Suzuki et al. [29] investigated fast-growing cracks before and after bifurcation114

by using high-speed holographic microscopy and obtained the crack branching velocity, branching angles, and energy115

release rate in Homalite 100 and Araldite B. In Homalite 100 the crack branching velocity is 0.48CR with an average116

branching angle of 17 ± 6◦, and in Araldite B the crack branching velocity is 0.46CR with an average branching117

angle of 16 ± 4◦. The energy release rate increases gradually and continuously across the bifurcation point both in118

Homalite 100 and in Araldite B and PMMA. Murphy et al. [30] observed the branching patterns of PMMA single edge119

notched tensile specimens with scanning electron and optical microscopes and measured the crack propagation speed120

by electrical resistance methods. Each macroscopic branch is accompanied by many small cracks along its length with121

most crack branches being straight. The experimental results indicate that crack branching is a natural outcome of122

the growth and coalescence with microcracks. Both subsurface damage and the frequency of crack speed oscillations123

increase during the branching process. Fayyad and Lees [31] gave an example of using digital image correlation124

(DIC) to investigate the cracking process and branching mechanisms in lightly reinforced concrete beams. The DIC125

can visualise surface displacement by tracking the deformation of a random speckle pattern applied to the surface126

through digital images acquired at different instances of deformation [32]. Crack branching angles and propagation127

path are found to be related to the beam height and ductility. Another technique, called digital gradient sensing128

(DGS), employs 2D DIC with an elasto-optic effect to directly quantify both crack-tip fields and crack speeds. Using129

this technique, Sundaram and Tippur [33] investigated the branching phenomenon in soda-lime glass and proposed130

that the critical material length scale can be a criterion for crack branching. This study overcomes measurement131

challenges such as low fracture toughness and high crack propagation speed. Compared with normal observation and132

measurement techniques, the DIC and DGS have advantages of lower cost and simpler operation.133

The advantages and disadvantages of different observation and measurement techniques are summarised in Ta-134

ble. 1. In order to better explore the mechanism of crack propagation and branching, current research on experimental135

methods is focused on both the improvement of experimental technologies to overcome existing shortcomings and136

the development of new experimental technologies. With respect to testing materials, most experiments have adopted137

inorganic glass, Plexiglas, and Holmalite-100. The limiting velocity is studied in different materials and it is found138

that the limiting velocity is 0.5 ∼ 0.65cR for glass, 0.6 ∼ 0.7cR for PMMA and 0.35 ∼ 0.45cR for Homalite-100 [34].139

The branching angles are also investigated although they are easily influenced by the loading conditions, geometry140
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and material properties. From a macroscopic viewpoint, the angle subtended by the new branch (immediately after141

branching) and the original crack plane typically lies between 10◦ and 45◦ [35]. For different materials, detailed ex-142

perimental results on branching angles can be found in [21, 35, 36]. The branch shape and branch number are also143

influenced by the loading conditions, geometry and material properties. The increasing of loading stress may lead to144

the increasing of branch number of the cracks while the loading conditions, geometry and material properties may145

have an impact on the branching angle as well as the branch curvature, thus, the branching shape.146

Table 1: Experimental techniques for crack branching.

Techniques Advantages Disadvantages

High Speed
Photography

(photoelasticity [11, 12], caustics [37],
holographic microscopy [29, 38])

high temporal and spatial
resolution high cost

(DIC [32], DGS [33])
high resolution, low cost,
simple experimental setup

low measurement accuracy
in stress concentrations (DIC)

Wallner Lines
(stress wave fractography [39])

accurate measurement for
crack speed low spatial resolution

Electrical Resistance Methods [30, 40] high spatial resolution
sensitive to the variation of
film thickness

3. Physics of Crack Branching147

3.1. Causes of Crack Branching148

Many attempts have been made to explain the crack branching phenomenon. One of the classical theories is149

from Yoffe [41]. On the assumption that the crack propagates along the direction normal to the maximum stress,150

when the velocity is lower than the critical velocity 0.6cS , where cS is the shear wave speed, the crack propagation151

process remains at a steady state. When the crack velocity exceeds this critical value, the propagation process becomes152

unstable. The stress state at the crack tip will change, and the hoop stress in the vicinity of the crack tip will have a153

maximum angle of about 60◦ from the propagation direction, which may lead to crack branching, as shown in Fig. 2.154

By considering a crack growing from zero initial length at a uniform velocity rather than staying constant length,155

Broberg [42] further improved Yofee’s analytical model and reaffirmed that crack branching occurs if the velocity156

exceeds 0.6cS . The aforementioned studies suggest that the crack propagation become unstable and cracks are more157

likely to start branching when the velocity exceeds a critical value. This mechanism is corresponding to the “velocity158

criterion”, see details in § 3.2.1. Though this mechanism is not sufficient to explain the branching phenomenon, the159

velocity criterion resulted from it is often employed in numerical simulation due to its simplicity.160

Figure 2: Yoffe’s crack branching model [41].

An alternate attempt to explain crack branching is via the viewpoint of energy. By assuming the energy inputting161

into the crack and the energy required to create new branch surfaces is balanced, Eshelby [43] argued that the crack tip162

velocity should at least be 0.5cR to allow the energy at the crack tip to be sufficient enough to create new surfaces for163

crack branches, where cR is the Rayleigh wave speed. However, according to the experimental observations, the crack164

velocity does not change significantly before and after crack branching [4]. Gao [44] explained that by proposing a165

more definitive analytic model called the wavy-crack model, where two velocities are defined: the macroscopic crack166
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velocity va and the microscopic local velocity vc. If the crack speed is above 0.5cR, the crack propagates along a wavy167

path and the energy absorbed into the crack is used to increase vc while va remains constant. This explains why the168

crack speed does not decrease much after branching.169

Another possible explanation is given by Ravi-Chandar and Knauss [4], who suggested that there exist many170

microcracks in front of the main crack as shown in Fig. 3, and branching is a natural outcome of the growth and coa-171

lescence of the microcracks. In Homalite-100, a varying fracture surface roughness during branching, ‘mirror’, ‘mist’,172

and ‘hackle’, can be observed [14], see Fig. 4. The fracture processes that occur over a spatial domain comparable to173

the surface roughness dominate the dynamics of crack growth. Initially, a crack propagates with a mirror-like fracture174

surface. Then, because of the coalescence of microvoids or preexisting defects ahead of the crack, the crack surface175

may become rough and subsequently microcracks form. The microcracks within the fracture process zone interact176

with each other and form micro-branches, which results in the final crack branching.177

Figure 3: Ravi-Chandar’s micro crack model [4].

Figure 4: Typical ‘mirror’, ‘mist’ and ‘hackle’ regions are identified in Homalite-100 [14].

Following the work of [13, 14, 4, 15], micro-branches and their instability have been studied in great detail178

recently by Fineberg et al. [17], Sharon et al. [18], Sharon and Fineberg [19], Sharon et al. [20], Fineberg and Marder179

[21], Bouchbinder et al. [22, 23, 24], Livne et al. [25], Fineberg and Bouchbinder [26], Livne et al. [45]. Using180

dynamic instabilities, these studies explain a number of long-standing problems in the dynamic fracture of amorphous181

including (1) velocity oscillations and limiting velocity, (2) fracture roughness, (3) the origin of the large increase in182

the energy dissipation of a crack with its velocity and (4) transition to crack branching. A detailed discussion about183

velocity oscillations and limiting is given in § 3.2.1. When the crack velocity exceeds the critical value (limiting184

velocity), the velocity begins to oscillate rapidly [17]. A good correlation is demonstrated between the measured185

crack velocity and appearance of fracture roughness on the fracture surface [19], see Fig. 5. The initial crack with186

a velocity lower than the critical crack velocity vc corresponds to a mirror-like fracture surface. After achieving the187

critical crack velocity vc, the velocity begins to oscillate. As the velocity increases, rib-like patterns observed on the188

fracture surface become more apparent. Microscopic branches have also been observed when the velocity exceeds the189

critical value. These characteristic features are independent of the brittle material due to the fact that in two extremely190

different classes of material (poly-acrylamide gel and soda-lime glass), identical characteristic behaviour is observed191

[45]. The origin of the large increase in the energy dissipation of a crack with its velocity can also be explained by the192

micro-branching instability [20]. When micro-branching instabilities occur, the energy dissipation of a crack increases193
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because more surfaces are formed by the micro-branches. As the velocity of the crack increases, transition to crack194

branching occurs with the branches becoming longer and more numerous. Micro-branches can smoothly transform195

to macro-branches with similar characteristic features of crack branching exhibited between the micro-branches and196

macro-branches [18]. The onset of the micro-branching instability therefore provides a well-defined criterion for the197

process that eventually culminates in macroscopic crack branching. As the crack velocity increases larger than the198

critical velocity, the branch width increases and the surface roughness diverges. This transition may be a sufficient199

condition for macroscopic crack branching to occur [19]. The dynamic instabilities have been further studied with a200

series of theoretical work [22, 23, 24] and with experiments in brittle gels [25]. A weakly nonlinear theory of dynamic201

fracture has been introduced, which implies that the understanding of crack instabilities requires the introduction of202

new physical ingredients, e.g. length scales [24]. Intrinsic nonlinear scales in the near-tip region play a decisive role in203

dynamic crack instabilities. Fineberg and Bouchbinder [26] gave a comprehensive review of important experimental204

and theoretical work in dynamic crack instabilities, which states that the micro-branching instability is an intrinsically205

3D instability and to understand the dynamic instabilities, the framework of fracture mechanics should be extended to206

include 3D crack propagation.207

Figure 5: Three aspects of the evolution of the branching instability as the crack propagates from left to right [19]. (a) The velocity of the crack
is a smooth function of time when v < vc, the crack velocity starts to oscillate when v ∼ vc, the oscillation amplitudes increase when v > vc. (b)
The fracture surface is smooth when v < vc, small regions of different texture are distributed along the surface when v ∼ vc, these regions coalesce,
forming a periodic pattern with wavelength on the order of 1 mm when v > vc. (c) A single crack is observed when v < vc, micro-branches appear
when v ∼ vc, , and increase in length when v > vc.

Through theoretical analyses, Adda-Bedia and Arias [46], Adda-Bedia [47, 48], Katzav et al. [49], Adda-Bedia208

et al. [50] systematically studied the crack branching mechanisms including dynamic crack instability and 3D micro-209

branching instability. Based on the theory of linear elastic fracture mechanics and Eshelby [43]’s energy approach210

which states that the energy input into a crack and the energy required to create new branch surfaces must be bal-211

anced, the theoretical model for branching instabilities was established [46]. Dynamic crack branching instability212

under general antiplane loading [47] and under general loading [48] are studied and the path and geometry of the213

branched crack are predicted. It is shown that after branching the in-plane elastic fields immediately exhibit self-214

similar properties, and the jump in the energy release rate is maximized. Under this assumption, the crack branching215

phenomenon, which is found to be energetically possible, may be seen as a dynamic instability in which a self-similar216
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single crack propagation would lose its stability at some point dependent on crack velocity [49]. Later, Adda-Bedia217

et al. [50] investigated the 3D out-of-plane nature of crack front waves (generated by both the interaction of a crack218

with a localized material inhomogeneity and the intrinsic formation of micro-branches [51]) and the microbranching219

instability with the Willis-Movchan 3D linear perturbation formalism. It is demonstrated that within a minimal linear220

elastic fracture mechanics scenario, the existence of an out-of-plane crack front instability is dependent on critical221

velocity, which may trigger a 3D microbranching instability and its fractographic implications.222

For materials like inorganic glasses, where microcracks cannot be found in front of the main crack, different223

mechanisms have been proposed. Hull [39] suggested micro-scale variations lead to twisting and tilting of the stress224

vector near the crack tip, cause local instability to the dynamic properties of cracks, and are responsible for the increase225

of crack surface roughness and crack branching. Sharon et al. [51], Bonamy and Ravi-Chandar [52] tried to explain226

the surface roughening from the interaction of the shear wave with the tip of the growing crack. The shear wave227

proves the existence of front waves in dynamic fractures. The front waves feature an out-of-plane component, which228

leaves marks on the fracture surfaces and causes surface roughness and crack shape perturbations [26].229

Though crack branching in dynamic fractures has long been observed and investigated in various literatures, up230

to now, there has not been a universally agreed-on explanation for crack branching mechanisms. Based on the above231

work, the mechanisms of branching can be summarized as: (1) the increase of the velocity may cause unstable crack232

propagation, which causes crack branching; (2) the microvoids and microcracks may increase surface roughness and233

the growth and coalescence of microcracks which form micro-branches resulting in macro-branches with the energy234

absorbed in the crack relating to the limiting velocity; (3) the dynamic instability plays an important role. Cracks235

undergo an oscillatory instability controlled by small-scale, near crack-tip, elastic nonlinearity, and this oscillatory236

instability may trigger microbranching instability, which provides a well-defined criterion for the process that even-237

tually culminates in macroscopic crack branching; (4) the crack front waves and the tilting and twisting of the stress238

vector at the crack front may cause local dynamic instability, increasing of crack surface roughness leading to crack239

branching.240

3.2. Branching Criteria241

Crack branching criteria tend to be artificially formulated based on physical mechanisms to improve crack branch-242

ing simulation. We divide the criteria into two types: external criteria and internal criteria. Here, “external” means243

that in the numerical simulation additional criteria are needed to determine how the crack branching occurs. The244

criteria required in a whole process for branching simulation include criteria for crack initiation, criteria for crack245

propagation, criteria for crack branching time and criteria for branching angles. A series of studies on criteria for246

dynamic crack initiation and crack propagation are summarized in dynamic fracture mechanics [7, 8]. The following247

discussion will focus on criteria for branching time and branching angles, instead of being exhaustive. In contrast to248

the “external”, “internal” means that no additional criteria are required, and any occurrence of branching is a natural249

outcome of the simulation.250

3.2.1. External criteria251

To determine the branching time, three commonly used criteria are introduced, namely the velocity criterion, the252

stress intensity factor criterion, and the energy criterion.253

Velocity criterion. The velocity criterion suggests that once the crack velocity exceeds a critical value, branching254

occurs. Note that there exists two branch types, namely micro-branches and macro-branches, which are discussed255

separately here. Both theoretical and experimental approaches have been used to investigate the critical velocity of a256

fast moving crack.257

An energy balance equation was given by Freund [7], which considers a crack growing with a nonuniform speed258

under time-independent/dependent loading:259

Gdyn ≈ (1 −
v
cR

)KI
0(t, l(t), 0) = γ (1)

where Gdyn is the dynamic energy release rate, v the crack velocity, KI
0(t, l(t), 0) the instantaneous stress intensity260

factor at time t for a stationary crack of length l(t) and γ the fracture energy. Based on Eq. (1), the fracture energy for261
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a moving crack will vanish when the crack velocity v increases to the Rayleigh wave speed cR. Therefore, from the262

elastodynamic fracture mechanics theory, the limiting velocity for crack propagation is no larger than the Rayleigh263

wave speed. However, from an experimental view, it is found that only cracks on the cleavage planes in crystalline264

materials grow at a rate close to Rayleigh wave velocity. For cracks in noncrystalline materials, the limiting velocity265

of the crack is significantly smaller than the theoretically predicted limiting crack velocity [8]. The reason behind this266

phenomenon can be explained by dynamic instabilities [17]. Indirect evidence to support this is that when the dynamic267

instability is suppressed, the crack may propagate at a supersonic speed [6]. Mechanisms behind the supersonic crack268

propagation problems are explored by Buehler et al. [53], Abraham and Gao [54].269

The critical velocity for micro-branches states that once the velocity exceeds the critical velocity vc, crack prop-270

agation becomes unstable with the occurrence of velocity oscillations, and the increase of surface roughening and271

microbranching [21]. The critical velocity for instability and micro-branches has been investigated with experimental272

approaches. Fineberg et al. [16, 17] made detailed measurements indicating that the critical velocity for crack propa-273

gation in PMMA is 0.36cR. Hauch and Marder [28] and Ravi-Chandar and Knauss [14] observed the critical velocity274

for crack propagation in Homalite is 0.37cR. Gross et al. [55] showed the critical velocity for crack propagation is275

0.42cR in soda-lime glass. Based on the experimental observations above, the existence of a critical velocity for the276

instability of brittle fracture may be a universal aspect [17]. Though the micro-branches instability is seen as one of277

the reasons for crack branching, the transition from critical velocity criterion for micro-branches to critical velocity278

criterion for macro-branches is still unknown [21]. The critical velocity for macro-branches is used to determine when279

macro-branches develop. Theoretically, as discussed in § 3.1, various authors established models to analyse the criti-280

cal velocity. The critical velocity is assumed to be 0.6cS in Yoffe [41]’s model, 0.5cR in Eshelby [43] and Gao [44]’s281

model, 0.52cR in Adda-Bedia [48]’s model. Experimentally, as discussed in § 2, the limiting velocity is 0.5 ∼ 0.65cR282

for glass, 0.6 ∼ 0.7cR for PMMA and 0.35 ∼ 0.45cR for Homalite-100.283

In addition, many experimental results show that the crack velocity does not change significantly after branching284

[4]. These limitations have challenged or weakened the velocity criterion for crack branching. However, due to its285

simplicity, the velocity criterion is widely used in numerical simulation for crack branching. For example, Linder and286

Armero [56] proposed a branching model using FEM, where branched elements are added to represent discontinuities287

if the crack velocity exceeds a given threshold. The influence of different critical velocities on branching was inves-288

tigated with the FEM-based model. Using a similar model, Armero and Linder [57] successfully captured the crack289

propagation path and branching characteristics. Xu et al. [58] set up the additional enrichment in XFEM to describe290

crack branching and adopted the branching time criterion from Yoffe [41], where the crack branching occurs when291

the maximum normalized circumferential stress occurs in two symmetrical directions. The critical velocity during292

simulation is found to be over 0.74cR. By comparing the numerical result 0.74cR with the experimental result 0.4cR,293

they concluded that the crack velocity error was due to the velocity criterion adopted.294

Stress intensity factor (SIF). In elastodynamic fracture mechanics, the theoretical framework is fairly well established295

through a series of studies of a dynamically propagating crack in an infinite body by Freund [59, 60, 61, 7]. Taking296

mode I crack as an example, the dynamic crack growth criterion is given as:297

KI
dyn(t, v) = KID (2)

where KI
dyn is the dynamic SIF, t the time, and KID the dynamic crack growth toughness. For the left-hand side of the298

Eq. (2), theoretically, the dynamic SIF is related to both the crack velocity and the instantaneous SIF of a stationary299

crack, which can be expressed as:300

Kdyn
I (t, v) = k(v)KI

0(t, l) (3)

where k(v) is a function of crack velocity and KI
0 is the instantaneous SIF of a stationary crack with length l at time301

t. Numerically, the dynamic SIF can be calculated through J-integral or interaction integral. Unlike the calculation in302

quasi-static conditions, the numerical calculation of J-integral or interaction integral is no longer path independent in303

dynamics. The reader is referred to the book by Anderson [5] for more details. For the right-hand side of Eq. (2), the304

crack growth toughness KID can be determined experimentally, and the K–v relationship is often employed. Experi-305

mentally, the dynamic SIF is related to crack velocity, however, the relationship is not unique, but an average can be306

obtained [12, 8], see Fig. 6.307
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Figure 6: Relationship between crack velocity and stress intensity factor in (brittle) Homalite 100 (solid curve). The “horizontal” lines represent
measurements of the tip motion of cracks in large plates as they grow with no or minimal influence of stress waves reflected from the plate
boundaries, adopted from [12].

By experimental investigations, Kobayashi and Mall [11] and Dally [12] indicated that branching occurs when308

the SIF reaches a critical value that is between two and three times the quasi-static fracture toughness of the material.309

Clark and Irwin [62] suggested that the dynamic SIF should reach a critical value for branching to occur at terminal310

velocity. Based on previous theoretical and experimental studies on crack curving and crack branching, Ramulu and311

Kobayashi [3] proposed the following necessary and sufficient conditions for crack branching:312

KI ≥ KIb → necessary condition
r0 ≤ rc → sufficient condition

(4)

where KIb is the critical branching SIF, and rc is the characteristic distance from the crack tip. With experimental313

observations, Ravi-Chandar [8] concluded that a crack will split into two or more branches if it reaches the critical314

stage identified by its SIF, and each branch will propagate with the same speed as the parent crack. The SIF criterion is315

applied to decide crack branching time when modelling crack propagation [63, 64]. Kishen and Singh [63] simulated316

crack development (crack kinking and branching) on the rock-concrete interface of a gravity dam using the SIF-based317

fracture criterion. Using a time-domain BEM approach, Rafiee et al. [64] examined dynamic crack propagation, where318

a critical mode I SIF was used for the branching event and the maximum circumferential stress criterion was employed319

for determining the branching angle and each branch’s growth rate.320

Energy criterion. The energy criterion is applicable to both linear and nonlinear fracture mechanics, e.g. the energy321

release rate G and the J-integral. The crack extension occurs when the energy available for crack growth is sufficient322

to overcome the resistance of the material [65].323

Eshelby [43] proposed the branching criterion theory based on the balance between the energy inputting into the324

crack and the energy required to create new branch surfaces. Based on this study, with the help of the Griffith’s energy325

criterion and the principle of local symmetry, Adda-Bedia [47, 48] presented a series of analytical solutions for crack326

branching problems. The energy criterion was assumed to be a necessary condition for a branching configuration, and327

the stress field in front of the crack tip, the branched shape and the dynamic branching instability were predicted and328

analysed. Tchouikov et al. [66] calculated the energy flux per unit time into the crack tip with a dynamic J-integral.329

Once a given critical energy release rate is surpassed, the branch occurs and an implicit prediction for branching path330

is adopted. Xie et al. [67] derived an energy-based fracture mode for the mode-I crack branching, where branching331
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toughness was proposed, the branching critical energy release rate was derived and the branching angle was predicted.332

The criterion shows good agreement with the experimental observations reported in the literature.333

Criteria for branching angles. After the branching time is determined, the next step is to determine how the crack334

propagates with branching. The branching angle has been studied both experimentally and theoretically. Experimen-335

tally, as discussed in § 2, the angle subtended by the new branch (immediately after branching) and the original crack336

plane typically lies between 10◦ and 45◦. Theoretically, the crack propagation direction can be predicted by the max-337

imum circumferential stress theory, the minimum strain energy density factor theory, the principle of local symmetry338

and the maximum strain energy release rate theory [3]. A comprehensive review of earlier analytical research work339

on elastostatic and elastodynamic self-similar crack branching problems in homogeneous, isotropic and elastic brittle340

solids was given by Dempsey [35]. The number of elastodynamic solutions is quite limited compared with the number341

of elastostatic solutions. For planar elastodynamic crack propagation, Yoffe [41] attempted to explain the branching342

of cracks by analysing a problem in which a crack of constant length moving along a straight line with a uniform343

speed in an infinite two-dimensional medium. It is found that the maximum stress moves out of the plane of crack344

propagation and acts at an angle of 60◦ to the main crack propagation direction when the velocity is lower than the345

critical velocity 0.6cS . For elastodynamic crack propagation under antiplane loading, Dempsey et al. [68], Burgers346

[69, 70] derived analytical solutions for a semi-infinite crack that starts to propagate from rest by kinking or branching347

under the action of a stress pulse loading.348

To obtain a more general solution for the dynamical crack kinking or branching problem, a series of studies were349

conducted by Adda-Bedia and Arias [46], Adda-Bedia [47, 48]. To predict the crack path, the determination of the350

elastodynamic fields associated with kinked or branched cracks is required. Adda-Bedia and Arias [46] presented a351

new method to determine the elastodynamic stress field/the dynamic SIF associated with the propagation of anti-plane352

kinked or branched cracks. The theory was applied to the case of dynamic crack branching under general antiplane353

loading [47] and later the general antiplane loading condition was extended to arbitrary loading condition [48]. The354

SIF just after branching was given as a function of the SIF just before branching, the branching angle and the branching355

velocity [48]:356

K′l =
∑

m

kl(v′)Hlm(λ, v, v′)K0m (5)

where K′l and K0m are the dynamic SIF just after branching and the rest SIF just before branching, respectively, l and m357

=1,2,3, kl(v′) is a universal function of the branching velocity v′, and Hlm is a dimensionless function of the branching358

angle coefficient λ, and of the crack velocity before and after branching. When v′ → 0, it can be expressed as:359

Hlm(λ, v, v′ → 0) = Flm(λ) (6)

Taking Mode I crack as an example, to get the branching angle, the Griffith energy criterion and the principle360

of local symmetry are employed. The Griffith energy criterion states that the energy release rate G during crack361

propagation is equal to the dynamic fracture energy γ of the material [71]. For crack branching, the relationship362

between the energy release rate G, fracture energy γ before branching and the energy release rate G′, fracture energy363

Γ′ after branching can be obtained:364

G′ = G
γ(v′)
γ(v)

(7)

According to the principle of local symmetry, which states that the crack always propagates in a direction that365

the local stress field at the crack tip is of mode I type [72], the following conditions are satisfied immediately after366

branching:367

g1(v) = F2
11(λ) (8)

368

F21(λ) = 0 (9)

where g1(v) is a decreasing function of the crack velocity v with g1(0) = 1 and g1(cR) = 0. By solving the equations369

above, a critical velocity for branching and a branching angle can be obtained. When the velocity exceeds a critical370

value of 0.52cR, a crack starts to branch at a branching angle λπ = 27◦ corresponding to λ = 0.15. The predicted371

result agrees well with the available experimental results [17, 21]. Detailed analytical solutions for other loading372

modes were given by Adda-Bedia [48]. Based on the above work, Katzav et al. [49] further summarized the theory373
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of dynamic crack branching in brittle materials. With the theory, a systematic analysis of the branching problem is374

made, and the critical velocity, the branching angle, the branching velocity, and the subsequent branch path described375

by a curvature parameter are successfully predicted.376

3.2.2. Internal criteria377

Internal criteria are combined with numerical methods and embedded in the specific crack models, which leads to378

crack branching as a natural outcome of the simulation. A simple way to judge whether a model or a method contains379

internal criteria is to check whether branching angle criteria are required during simulation. If not, cracks are allowed380

to form freely in the simulation. Models and methods containing internal branching criteria include, but are not limited381

to, the cracking particles method, the peridynamics, the phase field model, the element deletion model, the cohesive382

zone model, the enrichment models and nonlocal models/gradient models/viscous models. Among them, the cohesive383

zone model, the cracking particles method, the phase field model, and the peridynamics, which are representative, are384

briefly introduced in this section, while more detailed information about all these models and methods can be found385

in § 4.386

In the cohesive zone model, the traction-separation law defines the relationship between the crack width (distance387

between the crack surfaces) and the cohesive traction in the process zone. The crack surfaces begin to separate when388

the cohesive strength is reached, and when the separation reaches a critical value, the traction decreases to zero and389

failure occurs. Crack branching naturally forms in the solution of the initial-boundary value problem without any390

branching criteria [73, 74]. In the cracking particles method, the crack is described by the set of cracked particles391

[75, 76, 77]. A cracking criterion is employed to crack the particle and create a discrete crack. The crack is modelled392

by a set of discrete cracks. During simulation, no external criteria are required to determine the branching time and393

branching angles, and the crack develops by breaking particles in a sequence. In the peridynamics, the material can394

be considered as a collection of points [78]. If as a result of various forces, two points of the material are separated by395

a distance beyond a critical value, the interaction (bond) between the two points will vanish (break). Only one critical396

value for a bond break is needed. Once the stretch exceeds the critical value, failure starts to occur and under certain397

boundary conditions, crack branching is observed without additional criteria for branching [78]. The phase field model398

is developed in the form of a variational theory of fractures based on the principle of minimum total potential energy.399

Through defining the total potential energy of a material body with cracks, it turns the crack propagation problem400

into an energy minimization problem. By giving boundary conditions, the unknown displacements and the crack path401

can be solved via global minimization. Thus, in theory, there is no need of external branching criteria, and the only402

rule required for crack initiation or propagation is that: compared to the previous configuration, the new configuration403

leads to the lower total energy. Similarly, crack branching is allowed if lower potential energy can be obtained than a404

simple extension.405

4. Crack models and numerical methods406

Crack models are used to describe how to represent the fracture, including the geometry and the stress concen-407

tration. Numerical methods are employed to solve equations, describe the bulk material behaviour, and capture the408

fracture propagation process. Different models can be combined with each other and they can be integrated with409

multiple numerical methods. Likewise, different numerical methods can be combined to form hybrid methods, and410

they can also work with different fracture models, see Fig. 7. Smear crack models can account for the crack tip nonlin-411

earity. While discrete fracture models integrated with notable methods such as finite element method, extended finite412

element method, boundary element method often do not account for crack tip nonlinearity unless the cohesive zone413

model is employed.414

4.1. Crack models415

Crack models are used to describe how to represent the crack, and they can be roughly divided into two categories:416

discrete crack models and smeared crack models. Based on how the crack is represented, the “discrete” means the417

crack topology is explicitly represented while the “smeared” means the crack is smeared over a certain width without418

explicit tracking of crack surfaces. Popular discrete crack models include remeshing, element deletion, cracking419

particles, and enrichment models. Popular smeared crack models include phase field, nonlocal, gradient and viscous420
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Figure 7: Crack models and numerical methods.

models. Note that different from the models mentioned above which describe how to represent cracks, the cohesive421

zone model describes the nonlinear behaviour in the process zone ahead of the crack tip with a traction-separation422

law and it is essentially a discrete concept. Therefore, we describe the cohesive zone model as part of the discrete423

crack models. However, it can also be implemented in smeared context by distributing the work of separation or424

fracture energy over the width of an element [79]. See [80] for various smeared representations of cohesive-zone type425

behaviour. As a summary, Table. 2 lists the advantages and limitations of different crack models, and their details are426

separately discussed in the following subsections.427

Table 2: Advantages and limitations of different crack models for crack branching.

Crack Models Advantages Limitations

Remeshing models [2, 66] flexible in dealing with complex
geometries and boundary conditions

awkward in dealing with complex
three-dimensional geometries

Element deletion models [81, 82, 83] easy implementation
special treatment is required to solve
the mesh dependency

Enrichment models [84, 85, 86] solve parts of difficulties associated
with the mesh

rely on different types of enrichment
adopted, see more detail in § 4.2

Cracking particles methods [75, 76, 77] suitable for complex crack patterns,
straightforward implementation in 3D

special treatment is required to solve
the “spurious cracking” problems and
reduce the computational cost

Cohesive zone models [73, 74] suitable for complex crack patterns,
removes singularity in the crack tip

special treatment is required to solve
the mesh dependency and bias

Phase field models [87, 88] suitable for complex crack patterns,
straightforward implementation in 3D

fine mesh is required to obtain more
accurate results

Nonlocal models/gradient
models/viscous models [89, 90]

solve the ill-posed boundary value
problem, suitable for modelling failure
caused by progressive damage

physical inconsistencies may appear,
fine mesh is required to obtain more
accurate results

4.1.1. Discrete crack models428

Remeshing models. As the crack propagates and branches, new discontinuities form across the crack, therefore, crack429

surfaces need to be redefined as boundaries and the mesh needs to be updated. Remeshing models update the crack430

surface with remeshing techniques, where an explicit representation of crack surfaces and a crack tracking algorithm431

are usually required. During the simulation process, external criteria including the crack initiation, propagation,432

branching time and angle criterion are employed, which increases the difficulty of computational simulation. The433

reasons are manifold: (1) until now, there is no universally agreed explanation for branching time and branching434
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angles; (2) the formula to calculate the associated parameters under dynamic situation remains a challenge; (3) a435

remeshing rule including the selection of element type, mesh generation method, data transfer during remeshing is436

required for which computation efficiency needs to be considered.437

The remeshing models can be combined with such numerical methods as FEM and BEM to simulate crack branch-438

ing. A schematic illustration of crack branching with remeshing models based on FEM is shown in Fig. 8. Compared439

with remeshing models based on FEM, remeshing models based on BEM is much simpler due to the reduced dimen-440

sional features of BEM. Details will be explained in § 4.2. Both methods assume that the crack surface is generally441

determined by the separation between elements, which makes it difficult to capture crack surface roughness relating442

to dynamic brittle fracture. Note that another commonly used application of the remeshing models is its combination443

with cohesive zone models by actively inserting cohesive interface elements into the finite element mesh, which will444

be discussed separately later.445

Figure 8: A schematic illustration of crack branching with remeshing models based on FEM.

Element deletion models. Element deletion models are often integrated with FEM, where the crack is represented by446

a set of deleted/deactivated elements, as shown in Fig. 9. There is no need for explicit representation of the crack’s447

topology by remeshing. The deactivation of elements can be achieved through two approaches: (1) complete element448

deletion technique, in which deleted elements are replaced by rigid masses and (2) setting the stress of the deactivated449

elements to zero [81, 91]. The elements, which are deactivated or deleted, have no material resistance or stress for the450

rest of the simulation process [92].451

However, unless the constitutive equation is properly scaled or adjusted, the released energy due to deleting an452

element will depend on the element size, which can cause spurious mesh dependency and lead to high computational453

cost in dynamic crack simulations [93]. To reduce the spurious mesh dependency, the softening curve slope should be454

scaled so that fracture energy is independent of the element size [81]. The mesh dependency problem is also handled455

with variational formulations [82]. Schmidt et al. [94] proposed a promising approximation scheme named “eigen-456

fracture”, in which the deformation is seen as an eigen-deformation in the eroded element and a nonlocal regularized457

fracture energy is introduced to eliminate the mesh dependence. Derived from the eigenfracture, Pandolfi and Ortiz458

[82] developed a method called “eigenerosion”, which is characterized by the restriction of element erosion in a binary459

sense: it can be equal to 0 if the element is eroded or 1 in case of fully elastic behaviour. The fracture propagation460

is then treated as failing elements when the elastic energy release is higher than the corresponding dissipated frac-461

ture energy. Compared with the original element deletion model, the eigenerosion, as an extension version, is more462

suitable for crack branching problems for its accuracy and convergence in complex crack simulations [81, 82, 83, 94].463

Song et al. [81] checked the performance of the element deletion model for dynamic crack propagation in brittle464

materials and found that the element deletion model gives a very irregular crack velocity and performs poorly for the465

accurate prediction of crack branching. Based on the eigenerosion, Stochino et al. [83] introduced a modified formu-466

lation of eigenfracture, where the compression and tension loaded state is distinguished. The efficacy of the approach467

is proved by a dynamic crack branching example. It is found that the crack branching time depends on the frac-468

ture resistance of the structure related to the critical energy release rate and numerical parameter settings. To reduce469

the high computational cost caused by a relatively fine mesh during modelling, Fan et al. [95] presented a dynamic470

adaptive eigenfracture scheme by combining the eigenfracture scheme and the adaptive mesh refinement algorithm,471
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which reduces the element size locally while improving the Griffith fracture convergence property. The ability of the472

dynamic adaptive eigenfracture scheme in predicting crack propagation was proved by numerical examples of crack473

branching, see Fig. 10. It is found that the crack pattern, the crack branching velocity and crack instabilities in the474

simulation are in good agreement with the experimental observations.475

Figure 9: A schematic illustration of crack branching with element
deletion models.

Figure 10: A numerical example of crack branching with element dele-
tion models [95].

The element deletion model deletes elements that satisfy a certain criterion explicitly and no additional criteria are476

required to determine the branching time and branching angles. However, special treatment is required to solve the477

mesh dependency problem [93]. The mesh needs to be fine enough to obtain accurate crack path prediction in dynamic478

crack simulations, which may in turn cause high computational cost. To the best of the author’s knowledge, till now,479

the number of studies on the performance of the element deletion model in dynamic crack branching simulation is480

limited [81, 83, 95], and no 3D examples are provided. Though its ability in modelling the crack pattern and the crack481

branching velocity has been proved in 2D [95], more investigations such as multiple crack branches, crack branching482

in 3D are yet to be demonstrated.483

Enrichment models. The enrichment models use the so-called “enrichment approaches” to account for the discon-484

tinuous displacement fields in the crack. The enrichment approach is to enrich a polynomial approximation space so485

that the crack can be modelled independently of the mesh. There are commonly two types of enrichment, namely,486

the intrinsic enrichment and the extrinsic enrichment. The intrinsic enrichment is to replace (at least some of) the487

shape functions in the polynomial approximation space with special shape functions. The number of shape functions488

and unknowns is unchanged during simulation. While the extrinsic enrichment can be achieved by adding special489

shape functions to the polynomial approximation space, where more shape functions and unknowns result in the490

approximation [96].491

The enrichment model can be combined with XFEM or MMs. Fries and Belytschko [96] summarized important492

features about enrichment in XFEM: (1) the enrichment is extrinsic and realized by the partition of unity (PU) concept;493

(2) the enrichment is local because only a subset of the nodes is enriched; (3) the enrichment is mesh-based, i.e. the494

PU is constructed using standard FE shape functions; (4) enrichments for arbitrary discontinuities in the function495

and their gradients are available. A schematic illustration of crack branching with enrichment models combined with496

XFEM is shown in Fig. 11. Compared with the enrichment in XFEM, the enrichment in MMs can be both intrinsic and497

extrinsic. The extrinsic enrichment can be further classified into an extrinsic moving least-square (MLS) enrichment498

and an extrinsic PU enrichment. The ability of the model in capturing crack branching differs with the methods it499

combines, detailed explanations will be given in § 4.2.500

Cracking particles methods. In the cracking particles method (CPM), the crack is modelled by a set of discrete cracks.501

As shown in Fig. 12, the discrete crack is restricted to lie on the particles. Since the crack is described by the set of502

cracked particles, no representation of the crack’s topology is needed [75, 76, 77]. The method was first developed503

by Rabczuk and Belytschko [75]. In the model implemented with the cracking particles method, the displacement504

approximation is given by:505

uh(x) =
∑
i∈N

N̂i(x)ui +
∑
i∈Nc

Ni(x)S ( fi(x))qi (10)
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Figure 11: A schematic illustration of crack branching with enrichment models combined with XFEM.

where ui is the displacement vector, N and Nc are the total set of nodes in the model and the set of cracked nodes506

respectively; N̂i and Ni are the continuous and discontinuous shape functions, respectively; S ( fi(x)) is the sign function507

defined as 1 and −1 on two sides of the crack parametrized by qi. Therefore, the displacement jump across the crack508

can be obtained from Eq. (10):509

[[u]] = 2
∑
i∈Nc

Ni(x)S ( fi(x))qi (11)

A discrete crack is introduced whenever a cracking criterion is met at a particle [75]. The cracking criteria510

differ with different material properties, e.g. loss of hyperbolicity is used for a rate independent material while loss511

of material stability is used for a rate dependent material [97]. The reader is referred to [86] for a more detailed512

description of commonly used cracking criteria.513

Figure 12: A schematic illustration of crack branching with CPMs. Figure 13: A 3D example of crack branching with CPMs [76].

Based on the original model, Rabczuk and Belytschko [76] extended its application to three dimensional problems,514

where a continuous crack is represented by a contiguous set of cracked particles. The sphere particles are separated515

by a crack plane that passes through the centre of the particle. The method proves its capability in large deformations516

and arbitrary nonlinear and rate-dependent materials with different examples. A crack branching example in 3D with517

CPM is given, see Fig. 13. The crack front line is almost linear without capturing the fracture tunnelling feature. The518

reason may be the use of brittle materials while fracture tunnelling is often observed in ductile materials. Since the519

crack pattern along the out-of-plane direction is uniform, this example can be considered as a “2.5D” example. To520

further prove the ability of the method to simulate a real 3D problem, a non-planar crack growth example is given521

in [76], which is not shown here since this non-planar crack growth example does not include the crack branching522

phenomenon. Later, Rabczuk et al. [77] further developed the model avoiding the requirement of the enrichment.523

By splitting particles where the cracking criteria are met into two particles on opposite sides of the associated crack524

segments, the crack is modelled with no additional degrees of freedom being added in the formulation. By various525

benchmark examples, the model proves its capability in modelling complex crack patterns in statics and dynamics.526

Using the CPM, Rabczuk et al. [98] studied the instability in dynamic fracture and reproduced the experimentally527
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observed results, including the limiting velocity, microcrack branching and increase of energy dissipation. It is found528

that the existence of voids in the model has little effect on the occurrence of microcrack branching. To solve the529

spurious cracking problems which appear in the original CPM [75], Ai and Augarde [99] improved the crack path530

curvature modelling through bilinear segments with consideration of cracking angle changes at particles, which allows531

crack kinks inside a particle. The model was further improved by the so-called “multi-cracked particle method” [100],532

which can deal with branched cracks (tree-shaped cracks) by splitting a cracking particle multiply. However, all the533

numerical examples in Ai and Augarde [100]’s work are limited in linear elastic fracture mechanics problems and534

no dynamic crack branching example is provided. Though solving the spurious cracking problem, the methodology535

only proves its ability in modelling branched crack (tree-shaped cracks), not the dynamic crack branching process.536

This is due to the cracking rule it adopted prevents crack branching. The spurious cracking problem was also solved537

by Xu [101], where a stable CPM based on nodal integration and updated Lagrangian kernels are proposed and a set538

of simple cracking rules are suggested. Crack branching examples are studied and the existence of limiting velocity539

observed in dynamic crack branching experiments is proved with the simulation results.540

In summary, the CPM is quite suitable for problems with complex crack patterns, especially crack branching.541

The CPM has the following advantages: (1) no representation of the crack’s topology and no crack path continuity542

are needed; (2) crack branching can happen automatically, no additional branching criteria are needed, and dynamic543

instabilities related to micro-branches can be captured; (3) it is easily implementable in 3D; (4) no mesh orientation544

problem. On the limitation side, it is noted that: (1) due to the “discontinuous” representation of the crack surface,545

special techniques are required to solve the “spurious cracking” problems; (2) since the crack path is approximated546

via a collection of cracking particles, a finer node distribution is required to increase the accuracy of the model, which547

may increase the computational cost.548

Cohesive zone models. The cohesive zone model (CZM) is developed to describe the nonlinear behaviour during549

material failure. It assumes a process zone ahead of the real fracture [102, 103], where a traction-separation law550

controls the variation of cohesive traction with the separation (width) of the crack. When the maximum principal551

stress reaches the cohesive strength of the material Tmax, the crack initiates. With the crack opening, the cohesive552

traction will decrease and once it has decreased to zero, the maximum crack opening wmax is obtained and complete553

separation is reached. There are many types of traction-separation laws, such as the exponential form [103], the554

polynomial form [104], the bi-linear form [105] and the linear form [106]. Park and Paulino [107] gave a critical555

review on these laws and theirs physical and numerical properties. Depending on the characteristics of the traction-556

separation law, the CZMs can be divided into two groups: the intrinsic and extrinsic CZMs. As shown in Fig. 14.557

In the intrinsic CZM, the cohesive traction first increases with the crack opening at an initial stiffness Kc, while the558

extrinsic CZM does not have the initial stiffness.559

Since the CZM is generally a concept to describe the nonlinear behaviour in the process zone, it can be incorpo-560

rated with different numerical methods and crack models [79]. For example, it can be employed in XFEM and phase561

field model by introducing a length scale. For discrete cracks in a finite element context, cohesive interface elements562

(elements equipped with a traction-separation law) have been employed extensively. The simulation process of crack563

branching modelling with CZMs using cohesive interface elements is further discussed in the following paragraphs.564

To model crack branching with the intrinsic CZM, the deformation equation first needs to be given and the domain565

needs to be divided into elements. Then, cohesive interface elements need to be assigned on all finite element surfaces566

before simulation. Finally, the displacement field is solved with the traction-separation law. During this process,567

remeshing is not required and the crack is allowed to propagate along element boundaries. No external criterion is568

needed for crack branching since the branching phenomenon emerges as a natural outcome of the initial-boundary569

value problem solution [73]. However, because the finite initial slope of the traction-separation law modifies the570

stiffness of the structure and alters the wave propagation, the intrinsic CZM has issues such as the artificial softening571

effect, loss of consistency, spuriously high crack velocity (the lift-off issue) (see [108] for a complete discussion about572

these issues). A remedy to reduce the effect of artificial compliance is to increase, if possible, the initial elastic slope573

of the traction-separation law, which results in severe stable time step restrictions and may even render the intrinsic574

approach unsuitable for explicit dynamic calculations, or in ill-conditioning of the tangent stiffness matrices in static575

or implicit dynamics analyses.576

The process for modelling crack branching with the extrinsic CZM is similar to the intrinsic CZM. The difference577

lies in the cohesive interface elements, which is illustrated in Fig. 15. Instead of inserting all cohesive interface ele-578
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(a) Traction-separation laws for intrinsic CZMs. (b) Traction-separation laws for extrinsic CZMs.

Figure 14: Traction-separation laws for CZMs.

(a) Crack branching with intrinsic CZMs. (b) Crack branching with extrinsic CZMs.

Figure 15: Crack branching with CZMs.

ments first, cohesive interface elements will be assigned adaptively when the criterion (the cohesive traction reaches579

the cohesive strength Tmax) is satisfied [74]. By doing so, it avoids the artificial softening effects, however, additional580

issues of the efficient parallelization of extrinsic cohesive interface elements with the change in mesh topology need581

to be addressed. In addition, the extrinsic CZM has the time discontinuity issue (the traction before and after inser-582

tion/activation of an interface element may not be continuous). This is because before cracking, the cohesive traction583

depends on the stress field within the neighbouring continuum elements while in the subsequent time step following584

cohesive element insertion, the cohesive traction relies on the cohesive law [108]. The time discontinuity leads to585

oscillatory behaviour, non-convergence in time and dependence on nonphysical regularization parameters [109]. To586

solve this, different approaches have been proposed to make sure the time continuity condition (the continuity of587

traction before and after insertion/activation of an interface element) is satisfied [109, 110, 111].588

Both intrinsic CZMs and extrinsic CZMs have the problem of mesh dependency and bias since the cracks are589

only allowed to propagate along element facets. Arias et al. [112] modelled the macroscopic crack branching with590

the extrinsic approach and concluded that the occurrence of branching may be very sensitive to the mesh parameters.591

Due to the dependence on mesh, the crack paths predicted tend to be somewhat inaccurate. The problem can be592

remedied by finer mesh or special mesh operations. Agwai et al. [113] found that finer and unstructured mesh performs593

better than coarser and structured mesh in predicting the branching pattern observed experimentally by investigating594

the different levels of mesh refinement for both structured and non-structured meshes. Special operations, such as595

nodal perturbation and edge-swap topological operation [114], splitting of polygonal finite elements [115, 116], stress596

recovery and domain integral [117] are also proposed to reduce and remove mesh bias and dependency in CZMs, by597

which physical phenomena associated with dynamic crack branching are successfully captured.598
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Many successful applications can be found in modelling crack branching using CZMs. With the intrinsic CZM,599

Xu and Needleman [73] successfully modelled the crack branching phenomenon. The results show that the branch-600

ing phenomenon has a close relationship with the applied loading and the dynamic crack velocity computed by the601

intrinsic CZM is in good agreement with experimental observations. By using an advanced topological data structure602

representation, Zhang et al. [118] presented the extrinsic cohesive modelling of dynamic fracture and emphasised the603

importance of adopting the extrinsic CZM for the simulation of multiple micro-branches where the results yield im-604

proved agreement with experimental results compared to Miller et al. [119], which employs a potential-based intrinsic605

CZM for the same problem. As shown in Fig, 16, complex crack branching patterns including both multiple branches606

and micro-branches are predicted. After investigating the micro-branching process, the numerical results reveal that607

the increased energy input leads to increased crack surface roughness, longer micro-branches and higher crack speed.608

Paulino et al. [114] proposed an extrinsic cohesive zone model using nodal perturbation and edge-swap operators and609

proved the capability of the model in providing consistent results between experiments and computational simulation610

in terms of microbranching patterns and crack velocity. Park et al. [120] proposed adaptive mesh refinement and611

coarsening schemes for efficient computational simulation of dynamic cohesive fracture, which successfully captures612

small branches observed experimentally before the crack branching. It is shown that the formation of micro-branches613

leads to a lower main crack velocity, which is closer to experimental observations. Though this work uses an advanced614

topology-based data structure to store the FE discretization and realize parallelization, examples in three dimensions615

are not given due to the complexity of the implementation of the extrinsic approach. For more complex problems616

like dynamic fracture propagation in three dimensions, the hybrid discontinuous Galerkin cohesive element method617

has been adopted [121]. The cohesive interface elements are assigned first on all element surfaces before simulation618

and are not allowed to open by a discontinuous Galerkin formulation. The model is then switched to the extrinsic619

cohesive crack model when a failure criterion is met. The method is capable of modelling large-scale dynamic crack620

propagation in three dimensions with powerful computers since it saves from the trouble of extensive updating of621

mesh information and avoids issues that intrinsic cohesive interface elements bring. Radovitzky et al. [110] presented622

a scalable 3D fracture and fragmentation algorithm based on the hybrid discontinuous Galerkin and cohesive ele-623

ment method and demonstrated its ability in capturing intricate patterns of cracks including branching. Becker and624

Noels [122] presented a full-Discontinuous Galerkin formulation of nonlinear Kirchhoff–Love shells and combined it625

with CZMs to perform thin body fracture simulations. Three-dimensional simulations including crack branching are626

given, see Fig. 17. Baek et al. [123] proposed a computational framework for multiscale dynamic fracture analysis,627

where micro-scales and macro-scales are integrated by introducing an adaptive microstructure representation. A Park-628

Paulino-Roesler (PPR) potential-based CZM was presented in [124, 125], which yields a consistent traction-separation629

relationship for an arbitrary separation path [126]. The self-interpenetration during dynamic fracture simulation was630

avoided by employing a simple penalty method [127] and the nonlinear dynamic fracture behaviour associated with631

spontaneous multiple microcrack initiation and branching in conjunction with the microstructure was investigated.632

The results show that the microstructure should be carefully considered for dynamic cohesive fracture investigations.633

Figure 16: A 2D example of crack branching with CZMs [118]. Figure 17: A 3D example of crack branching with CZMs [122].

In summary, the CZM is a good choice for the study of dynamic crack branching and can be combined with634

different models and methods to describe the nonlinear behaviour of the crack. With cohesive interface elements, it635
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is easily incorporated into a finite element framework and has the ability of detecting crack initiation and capturing636

multiple branches and micro-branches. The mesh dependency problem it suffers can be solved by refining meshes or637

other special mesh operations, which in turn, may increase the computational cost and complexity of implementation638

procedure, especially in 3D. A promising approach to avoid these problems is the combination of the cohesive law639

and the discontinuous Galerkin formulation. Explanations about the approach and its application in dynamic fractures640

including branching can be found in [108, 110, 121, 123, 128, 122].641

4.1.2. Smeared crack models642

Phase field models. As a recently emerged model, the phase field model (PFM) smears the crack over a certain643

domain without tracking the crack surfaces. Based on the principle of minimum total potential energy, the PFM644

solves a fracture problem as an energy minimization problem. The energy functional for simulating crack propagation645

is first given by Francfort and Marigo [129]:646

E(u,Γ) =

∫
Ω

Ψ(ε(u))dΩ + Gc

∫
Γ

dΓ (12)

where Ω is a domain describing a cracked solid, Ψ denotes the elastic energy density, ε(u) is the strain field, and Gc is647

the fracture toughness, which yields an admissible crack set Γ ⊂ Ω. u is the displacement field and is discontinuous648

across Γ. Bourdin et al. [87] devised its regularized formulation:649

Eε(u, φ) =

∫
Ω

f (φ)Ψ(ε(u))dΩ + Gc

∫
Ω

(
1

4l0
(1 − φ)2 + l0|∇φ|2)dΩ (13)

where φ is damage-like crack phase-field parameter with 1 representing the unbroken part and 0 the totally broken650

part. f (φ) is the energetic degradation function to help prevent numerical difficulties where the material is broken (e.g.651

φ = 0). The width of transition zone is controlled by the length scale l0. When l0 is very small, the diffusive crack652

presented by the phase field would approximate a sharp crack solved in discrete crack approaches. With the help of653

Eq. (13), the scalar field (the phase field) turns the intact material into a broken material smoothly instead of treating654

cracks as strong discontinuities. This enables PFM to overcome difficulties in modelling complex crack problems in655

three dimensions with traditional numerical methods. Because the propagation of the crack is obtained through the656

solution of the differential equation, the PFM also avoids the need of additional criteria for crack propagation and657

additional work to track the fracture surface algorithmically [88, 130].658

The ability of PFM to simulate crack propagation and branching in two and three dimensions has been demon-659

strated [88, 131, 132, 133, 134, 135]. Borden et al. [88] extended the quasi-static phase-field crack model to a dynamic660

model and used both 2D and 3D crack branching examples to show that the combination of the phase-field model and661

local refinement strategy is an effective method for simulating complex crack problems. Hofacker and Miehe [131]662

established a phase field model based on variational principle and demonstrated its performance by means of rep-663

resentative 2D and 3D quasi-static and dynamic model problems including branching. Bleyer and Molinari [132]664

investigated the microbranching instability occurring in dynamic crack propagation with a 3D variational phase-field665

model and showed that the microbranching process is a three-dimensional instability and the branching patterns are666

strongly influenced by phase-field internal length scale. To overcome the limitations of the strong dependence of crack667

branching patterns on internal length scale, a regularized phase field based cohesive model was introduced by Wu and668

Nguyen [133], Wu [134], Nguyen and Wu [135], which is insensitive to the length scale and capable of capturing669

multiple crack branching.670

Compared with remeshing models which need the separation between the elements to describe the crack surface,671

PFMs are capable of modelling multiple branches, widening of damage zone (fracture roughness) and micro-branches.672

Regarding multiple branches, Zhou et al. [136] Zhou et al. [137] and Ren et al. [138] presented PFMs for simulating673

complex crack patterns. Multiple crack branches phenomenon is observed, which demonstrates the advantages of674

PFM in modelling complex crack propagation in rocks. Regarding micro-branches, it refers to the branch of which675

length is in order of length-scale of simulation [34]. Fig. 19 shows a 3D crack branching example with micro-676

branches based on PFM. From the figure, a slightly curved crack front (the crack tunnelling feature) and slightly677

rough crack surfaces can be observed. Regarding the widening of the damage zone before branching, it can be seen as678
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an increase in fracture surface roughness prior to branching, which has been observed in experiments [3]. According679

to the branching mechanism proposed by Ravi-Chandar and Knauss [13, 14, 4], a widening damage process-zone680

appears before crack branching due to the increasing fracture roughness (mirror-mist-hackles transition). Then, after681

branching, as the crack branches go on propagating, the damage zone become “thinner”, indicating that the crack682

surfaces turn smooth again. If the energy provided is sufficiently high, the “widening-thinner process” is repeated,683

and secondary branches can be observed. Fig. 18 shows a 2D crack branching example, where the widening of the684

damage zone before branching and multiple branches can be observed.685

Given its strong ability in modelling crack branching without remeshing and external criteria, more authors choose686

to apply PFM for the study of the dynamic crack branching aiming at providing new analyses of the mechanisms687

behind this phenomenon. The crack velocity, the crack branching angle, the crack branching criterion, as well as the688

sensitivity of numerical simulation parameters to crack branching are studied.689

In terms of the crack velocity, since the crack tip is not uniquely defined in PFM [131], a number of approaches690

are proposed to measure the crack tip position. Borden et al. [88] proposed to calculate the propagation velocity691

explicitly by finding the crack tip with a certain defined phase-field value. Wu et al. [139] computed the crack speed692

from using the slope of the line that best fits the three points, in a least square sense. Hofacker and Miehe [140]693

tried to obtain the velocity implicitly by using the crack surface velocity to represent the crack speed. All of the694

approaches are reasonable due to the definition of the crack tip position being physically implicit in PFM. Regarding695

the branching angle, similar conclusions are made by Wu et al. [139], Hofacker and Miehe [140] that with increasing696

loading amplitude or velocity, the crack branches earlier and the branching angle gets smaller. Various branching697

criteria have been examined. Henry [141] studied crack propagation in two dimensions using the PFM and believed698

that the branching instability starts with a critical speed of 0.48cS , where cS is the shear wave speed. Wu et al. [139]699

denied the validity of the velocity branching criterion by proving that crack speed at the moment of branching is very700

sensitive to the width of the sample with a 2D PFM model. Instead of crack velocity, Hofacker and Miehe [140]701

preferred the phase field velocity and the crack surface velocity as local and global indicators for branching. Through702

studying the limiting velocity, crack branching and velocity-toughening mechanisms with the PFM, Bleyer et al. [34]703

proposed that the branching occurs when the local energy release rate exceeds twice the critical energy release rate. By704

quantifying the energy flux into the crack tip and fracture energy, Tian et al. [142] confirmed that the crack bifurcation705

obeys an energy criterion as it is observed that the crack bifurcation of PMMA always occurs with the energy flux706

into the crack tip exceeding a critical value. Mandal et al. [143] systematically analysed mesh convergence and length707

scale sensitivity in dynamic crack simulation with PFMs. Quantitative evaluation of branching angles and crack tip708

velocity and comparison between PFM simulation results and experimental results are provided.709

Figure 18: A 2D example of crack branching with PFMs [144]. Figure 19: A 3D example of crack branching with PFMs, showing
isosurfaces of phase field at φ = 0.3 [145].

The crack branching phenomenon is very sensitive to numerical simulation parameters. For example, the solution710

scheme is influential, e.g. the monolithic scheme and the staggered scheme may lead to different crack patterns [146]711

and different branching moment [147]. The mesh size is also a significant factor, e.g. multiple crack branches can712

only be captured by sufficiently refined meshes while a different mesh size may result in different branching time713
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[131, 140, 139, 148, 147].714

The sensitivity of the branching phenomenon to the mesh size leads to limitations of PFM. The computational715

cost will increase since the mesh needs to be fine enough for the phase field to represent the accurate position of716

the crack. However, PFM is a very promising model for crack branching studies with the following advantages:717

(1) no need for initial crack length settings and no external criteria for branching since the crack patterns can be718

automatically captured by solving the equation based on energy minimisation; (2) straightforward implementation719

in three dimensions; (3) capable of modelling multiple branches, widening of damage zone (fracture roughness) and720

micro-branches.721

Nonlocal models/ gradient models/ viscous models. When modelling failure caused by progressive distributed dam-722

age, the material exhibits strain-softening and the governing differential equations may lose ellipticity, which renders723

the boundary value problem ill-posed and causes physically meaningless, mesh-dependent finite element results [149].724

To solve these problems, non-local models, gradient models and viscous models are commonly employed. By intro-725

ducing a characteristic length into the discretization, these models “smear” the crack over a certain domain involving726

several elements and avoid representing the crack topology and crack tracking algorithms [91].727

An integral-type nonlocal model is defined as a model in which the constitutive law at a point of a continuum728

involves weighted averages of a state variable over a certain neighborhood of that point [89]. The integral formu-729

lation in the model allows the introduction of a characteristic length that qualifies the neighborhood over which the730

parameters/calculated numbers get “smeared” over. The gradient models can be constructed by including higher-order731

gradients directly in the damage loading function [150]. The higher-order gradients can be employed to smooth the732

non-uniformity or singularities in the strain field when regularisation of singularities or discontinuities is required.733

The viscosity models can be regarded as introducing higher-order time derivatives and a length scale associated with734

the viscosity is employed, which also restore the well-posedness of the BVP or initial BVP [91]. Detailed explana-735

tions of these models are given in literature [89, 90, 91], here we mainly focus on the performance of these models in736

modelling and investigating dynamic crack branching.737

Examples for the application of nonlocal models and gradient models to dynamic crack branching problems can738

be found in [151, 152]. With an integral-type nonlocal continuum damage model, Wolff et al. [151] conducted sim-739

ulations of dynamic crack branching in PMMA and studied the dynamic crack branching instabilities. It is found740

that the selection of the rate-dependence damage law and the critical strain for damage initiation are necessary to741

predict crack patterns, crack tip velocities and dissipated energies accurately. A figure of crack branching with the742

integral-type nonlocal continuum damage model is shown in Fig. 20. It can be observed that just like PFM, the743

nonlocal models are also capable of capturing the multiple branches, widening of damage zone (fracture roughness)744

and micro-branches. Wang et al. [152] proposed a localizing gradient damage model with micro inertia effect for745

modelling dynamic fracture propagation in quasi-brittle materials, which resolves the mesh sensitivity issue and spu-746

rious damage growth appeared in conventional gradient damage models and shows good performance in reproducing747

crack patterns (from a straight crack to sub-branching, and finally to macro branching), crack velocities, and fracture748

energies observed in the experiments.749

The advantages of the nonlocal models, gradient models and viscous models are manifold: (1) representation of750

the crack topology and crack tracking algorithms are avoided; (2) the issue of mesh dependency and additional criteria751

to control crack branching are avoided; (3) they are capable of modelling crack surface roughness and micro-branches.752

Their limitations lie in that (1) physical inconsistencies may appear in the characterization of crack kinematics due to753

the wrong selection of related parameters, e.g. parameters for rate-dependence damage law; (2) computational cost754

may significantly increase due to the increase of mesh density to get a more accurate prediction of the crack.755

4.2. Numerical methods756

Numerical methods are employed to solve the equations of the bulk material. According to whether spatial deriva-757

tives are employed or not, the numerical methods can be further classified into continuum methods and discontinuum758

methods. The simulation of crack branching is a highly challenging problem due to its complexity. Difficulties if759

classified according to the simulation process are divided into three aspects: pre-branching, during branching and post760

branching. In pre-branching moving singularities at the tips of cracks should be treated accurately and a branching761

criterion should be detected to decide the branching time for a crack [153]. During branching a criterion or a mecha-762

nism is required to predict the crack path, including the branching patterns and branching angles. In post-branching,763
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Figure 20: A numerical example of crack branching with nonlocal models [151].

the redistribution of energy and the influence of different branches need consideration. Until now, numerous methods764

have been applied to the modelling of crack branching with varying success. A superior method should have the765

following characteristics to better capture the phenomenon of crack branching:766

• The ability of capturing different crack branching patterns, including macro crack bifurcation, micro-branches,767

a single crack with multiple branches and multiple cracks with branches.768

• Good agreement with the experimental results and theoretical prediction in branching features, such as branch-769

ing angles and the crack velocity.770

• Relatively easy and robust implementation process with affordable computational cost.771

Specifically from the view of crack branching, this section summarises and compares different numerical meth-772

ods. For each method, the physical and mathematical principles are first introduced, followed by the explanation of773

crack branching simulation, after which historical and state-of-the-art applications in crack branching simulation are774

summarized with discussions of both advantages and limitations, see Table. 3. The emphasis differs in applications775

of different methods, for example, focusing more on verification (using various branching examples to prove the su-776

periority of the models built by the improved numerical methods) or focusing more on the analysis (analysing the777

mechanism behind the crack branching phenomenon with these models).778

Table 3: Numerical methods for crack branching simulation.

Numerical
Methods Advantages Limitations

FEM flexible and robust remeshing is required if the adaptive FEM-
based model is used, which is difficult in 3D

XFEM independent of mesh needs special enrichment for junctions and
branches

BEM reduces dimensions not well-suited for nonlinear problems

MMs
eliminate difficulties mesh-
based methods brings

have boundary implementation, instability,
numerical integration of the weak form, high
computational cost issue

PD avoids remeshing has relatively high computational cost and
difficulties in dealing with boundary conditions

DEM
well-suited when considering
heterogeneity

limited in granular materials, awkward in
predicting macroscopic properties and has
relatively high computational cost
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4.2.1. The continuum methods779

The finite element method. The idea behind the finite element method (FEM) is to break the continuum into a number780

of simple geometric elements and estimate the characteristics of the continuous domain by assembling the similar781

properties of discretised elements per node [154]. The method is suitable for modelling bulk materials. It has been782

applied to a wide range of crack problems [155] and can be combined with nearly any crack model due to its flexibility783

and robustness, see Fig. 7.784

In this section, depending on how the branching is simulated, a commonly used adaptive FEM-based model (FEM785

combined with remeshing models) is discussed. Note that the term “adaptive FEM-based model” in this section does786

not include the models based on both finite element method and cohesive elements, which are discussed in § 4.1.787

The simulation process of crack branching using the adaptive FEM-based model mainly includes the establishment788

and solution of the deformation equation, the selection of the propagation criterion, and the meshing strategy. By789

establishing and solving the deformation equation, the crack footprint can be obtained. Since the crack branching790

process is dynamic, the inertial force and the acceleration terms need to be considered. Here the Newmark method791

[156] is used to solve the governing equations and the resulting system is given below:792

(a0M + K){u}n+1 = {F}n+1 + M(a0{u}n + a2{u̇}n + a3{ü}n) (14)
793

{ü}n+1 = a0({u}n+1 − {u}n) − a2{u̇}n − a3{ü}n (15)
794

{u̇}n+1 = {u̇}n + a6{ü}n + a7{ü}n+1 (16)

where {ü}, {u̇}, {u}, {F} are the global vectors of nodal acceleration, nodal velocity, nodal displacement and nodal load,795

respectively; the superscript n represents time step, M and K are the mass matrix and the stiffness matrix, respectively.796

The coefficients a0 - a7 are the parameters in the Newmark method [2].797

The next step is to determine whether the crack will branch or not. The branching criterion for the adaptive798

FEM-based model can only be an external criterion (see § 3.2.1), which increases the difficulty of the simulation.799

The branching time, the branching angle and the branching velocity need to be determined. Due to the singularity of800

the crack tip, determination of appropriate physical mechanisms and formula to calculate the associated parameters801

remains a challenge.802

After obtaining the crack footprint, the mesh needs to be updated. It is possible to model one or two branches, but803

as more branches develop, remeshing becomes very complex. Both the singularity at the crack tip and the small angle804

between crack branches require a heavily refined mesh and may result in a large increase in computational cost.805

To the best of the authors’ knowledge, there do not appear to be many examples using the adaptive FEM-based806

model to simulate crack branching due to its implementation complexity. Nishioka et al. [2] modelled the dynamic807

crack branching phenomenon with a moving FEM (adaptive meshes) based on Delaunay triangulation and a switch-808

ing method using the dynamic J-integral. The moving FEM has the advantage of exactly satisfying the boundary809

conditions in front of and behind the propagating crack tip dynamically. The switching method using the dynamic810

J-integral provides an accurate way of evaluating the dynamic J-integral regardless of crack path, which is especially811

applicable when the crack tips are very close to each other after branching. The generation of dynamic crack branch-812

ing phenomenon in Homalite-911 is successfully modelled and the numerical results agree well with experiments813

[2]. However, only examples for a crack with two branches are presented and for more complicated crack branching814

patterns are not discussed. Using a further developed remeshing strategy, Tchouikov et al. [66] investigated more815

complicated crack branching problems including multiple crack bifurcation. A comparison between numerical and816

experimental results was provided but the calculation efficiency was not mentioned. We conclude that the adaptive817

FEM-based model still faces challenges when dealing with crack branching as discussed above, especially in three818

dimensions.819

The extended finite element method. In order to solve mesh dependency problems, the extended finite element method820

(XFEM) was developed [84, 85]. Similar to FEM, it is suitable for modelling bulk materials. To simulate crack prop-821

agation, XFEM uses the enriched shape function with discontinuous features to represent the discontinuity [157]. By822

doing so, the displacement discontinuity can be captured and the crack can propagate on any surface within one ele-823

ment instead of along element boundaries. Thus, remeshing and mesh dependency issues appearing in discontinuous824

problems with FEM can be overcome. However, the use of enrichment functions also brings the issue of incompat-825

ibility between accuracy of the solution and conditioning of the system matrix, especially when solving large 3-D826
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problems. The condition numbers of the stiffness matrix can be worse if one utilizes enrichment functions, and thus it827

can affect the accuracy of the solution. Several studies have attempted addressing this issue [158, 159, 160].828

Generally, there are two ways to enrich an approximation: intrinsic enrichment (enriching the basis vector) and829

extrinsic enrichment (enriching the approximation) [161]. The idea for intrinsic enrichment is to enhance the approx-830

imation space by building new basis functions which are derived from a specific problem into the standard approxi-831

mation space. For instance, the asymptotic near tip displacement field can be built into the basis functions so that the832

singularities at the crack tip can be represented. For extrinsic enrichment, the enrichment functions are added to the833

standard approximation in specific zones, and as a result, the computational cost is reduced.834

Though the characteristic of XFEM facilitates its application in modelling internal or external boundaries such835

as holes, inclusions, or cracks, the simulation process of crack branching with XFEM is not an easy task. First,836

appropriate enrichment schemes need to be considered for the element with the crack branch junctions and crack837

branches. Secondly, though the computational cost is less expensive without remeshing, the simulation process still838

requires external branching criteria, bringing issues such as the decision of reliable criteria and the calculation of839

related crack parameters. Thirdly, XFEM typically uses the level set method to track fractures, but as fracture branches840

increase the associated operation becomes increasingly complicated, especially in 3D cases. In the context of the crack841

branching problem, the displacement approximation uh with the partition of unity is expressed as [162]:842

uh(x) =
∑
i∈N

uiNi +
∑
j∈NH

α jN jH(x) +
∑
k∈NC

Nk

 4∑
α=1

ααk Φα

 +
∑

m∈N J

αmNmJ(x) (17)

where ui is the vector, Ni, N j, Nk and Nm are the standard finite element shape functions associated with node i, j,843

k and m respectively; α j, ααk and αm represent the nodal enriched degrees of freedom associated with the Heaviside844

function H(x), near tip asymptotic field function Φα and junction function J(x), respectively; NH , NC and N J are the845

set of nodes to enrich for the crack, crack tip and junction.846

Progress has been made on modelling the crack branching with XFEM. Daux et al. [162] developed a method-847

ology to construct the enriched approximation based on the interaction of the discontinuous geometric features and848

calculated the SIF of static cracks with multiple branches. This can be used for static cracks, but the propagation of849

the dynamic crack branching process is not taken into consideration. To improve the modelling of dynamic crack850

propagation by XFEM, Belytschko et al. [163] developed a new methodology for treating elements that contain crack851

tips, which allows the velocity field of the element containing the crack tip can change smoothly from a partially cut852

element to a fully cut element. The crack path and velocity can be determined directly by the loss of hyperbolicity853

criterion, which facilitates the modelling of dynamic crack growth problems, including crack branching. However,854

only a relatively simple bifurcation phenomenon is captured, while fracture roughness and micro-branches can not be855

captured, see Fig. 21. To seize the discontinuity around the junction of a branched crack, Xu et al. [58] introduced the856

enrich scheme of the element crossed by two separated cracks, the element embedded by a junction, and the way of857

constructing the diagonal mass matrix for the branched element, with which the initial branching process of a moving858

crack (the main crack develops two branches) is successfully simulated. However, this method requires an increase859

in additional degrees of freedom. For more complex branching problems with increasing degrees of freedom in one860

element, Chen and Zhou [164] proposed an enhanced XFEM coupling the phantom node method [165] and proved861

its robustness and accuracy in handling the complex branched crack problems. To capture complicated discontinuity862

patterns, Song and Belytschko [166] introduced a hybrid discontinuity tracking-fitting method that fits cracks with863

discrete discontinuities at nodes based on the XFEM. This method is quite similar to the cracking particles method,864

which is capable of modelling complicated fracture patterns since it needs no explicit representation of the crack’s865

topology.866

In summary, the XFEM possesses the following advantages: (1) lower computational cost without the need of867

remeshing; (2) suitable for cracks with complex geometry or problems with geometric nonlinearities because of868

mesh independence. These advantages make the XFEM become a powerful and promising tool in the simulation of869

complex crack problems. However, the XFEM has imitations when dealing with multiple interacting and branched870

cracks and micro-branches, since the computational cost increases as the number of cracks grows and its formulation871

becomes increasingly complex. For branches or junctions, special discontinuous displacement enrichment needs to872

be developed and external criteria for the injection of the enrichment are needed. Additionally, because of the lack of873

a reliable crack branching criterion, prediction of crack propagation and branching remains a challenge [91].874
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Figure 21: A numerical example of damage for crack branching with XFEM [163].

The boundary element method. The boundary element method (BEM) is also widely used in crack simulations due875

to its ability to automatically follow the propagation of the crack with limited remeshing and its inherent accuracy876

[167]. The BEM is designed for solving boundary value or initial value problems and formulated in terms of boundary877

integral equations [168]. Similar to the FEM, the BEM is suitable for modelling bulk materials. Instead of discretising878

the whole domain into volume elements, the BEM only discretises the domain boundary for interpolation approxima-879

tion. The basic process of modelling crack propagation with BEM is slightly different from FEM. The mathematical880

model needs to be established first, then the boundary integral equations can be obtained by taking boundary values881

in the representation formula. After generating the system of discrete equations by collocation, Galerkin’s method or882

the least squares method, the displacement field can be solved. During this process, crack parameters related to the883

external propagation criteria, such as stress intensity factor and energy release rate, need to be calculated to determine884

crack development. The calculation of these parameters is much simpler than FEM due to the reduced dimensional885

features of BEM. Once the crack develops, remeshing is needed by adding the elements at the end of the crack tip886

without changing the remaining mesh.887

The displacement integral equation at an interior point X in the absence of a body force for linear elastic crack888

problems is given by [167]:889

ui(X) =

∫
ΓS +Γ+

n +Γ−n

Ui j(X, x) · t j(x)dΓ −

∫
ΓS +Γ+

n +Γ−n

Ti j(X, x) · u j(x)dΓ (18)

where Γ+
n and Γ−n represent the upper and lower crack surfaces, respectively, and ΓS represents the outer boundary, u j890

and t j denote the boundary displacement and the traction, respectively; Ui j and Ti j are the fundamental solutions for891

displacement and traction, respectively. Fig. 22 shows a schematic illustration of crack branching simulated by BEM.892

Figure 22: A schematic illustration of crack branching with BEM.

The difficulties of BEM for fracture problems reside in the coincidence of crack nodes, giving rise to a singu-893

lar system of algebraic equations. Different techniques such as the sub-region boundary element method (SBEM),894

displacement discontinuity methods (DDM), dual-boundary element method (DBEM) and dual-reciprocity boundary895

element method have been developed to solve this problem [92]. Seelig and Gross [169] presented a pioneering work896
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of modelling dynamic crack branching with BEM, where crack growth and branching criteria were combined and897

a time-domain boundary integral equation system was established. The crack propagation speed and the SIF were898

calculated, showing good agreement with the experimental observations. Since then, examples for BEM simulation899

of crack branching have been presented in the literature [64, 170, 171, 172, 173, 174, 175].900

Branching examples are used to verify the improvement and accuracy of the proposed schemes. For example,901

Rajapakse and Xu [170] presented a complete set of piezoelectric Green’s functions in closed form and developed902

a solution scheme based on the boundary integral equation method to analyse plane cracks in piezoelectric solid.903

A double-branched crack model is used to verify this scheme. Yan [171] tried to place the crack-tip displacement904

discontinuity elements at the corresponding crack tip on top of the constant displacement discontinuity elements that905

cover the entire crack surface. By using such elements and the SIF as a propagation criterion with a known branching906

angle, complex crack problems including a branched crack example are employed to demonstrate the efficiency and907

accuracy of the proposed method. Santana and Portela [173] applied the dual boundary element method (DBEM) to908

the analysis of mixed-mode multiple-crack growth including branching cracks, where the SIF was evaluated via the J-909

integral and the incremental analysis was used to define the direction and the extension of multiple interacting cracks.910

Other approaches focus on the study of the physical mechanisms behind the branching phenomenon. Rafiee et al.911

[64] investigated fast running cracks branching under different bi-axial loading conditions. It is found that branching912

depends on the opening mode SIF, the crack velocity, and the orientation on the maximum circumferential stress in913

the vicinity of the crack tip. Marji [172] modelled the crack branching process by using an indirect BEM specially914

developed to treat the kink points of propagating cracks in brittle solids and studied the mechanism of secondary crack915

initiation and propagation. The results show that the formation of the wing crack and the secondary crack caused by916

the crack tip and the crack kink point may lead to a quasi-static crack bifurcation process. Fedelinski [174] applied the917

BEM to the analysis of the branched and intersecting cracks in statically and dynamically loaded plates. The influences918

of angles between branches of the crack and dimensions of the plate for the star-shaped crack on a dynamic SIF919

were analysed. Shrivastava et al. [175] presented a hydraulic fracture model with a three-dimensional displacement920

discontinuity method and investigated the interaction between multiple cracks and branches. The heterogeneity of921

solid rocks is one reason for crack branches, which further results in a complex fracture network.922

The BEM offers clear advantages. The stress field in the vicinity of the crack tip can be accurately calculated923

and the computational efficiency can be greatly increased due to the reduction of the dimension. Nevertheless, it924

still suffers from the inability to model crack propagation and branching autonomously as it needs external criteria.925

Besides, the application of BEM in nonlinear problems is limited, as it still requires that the fundamental solution is926

expressed in terms of Green’s functions [91].927

The meshfree methods. When dealing with crack branching problems, the traditional FEM has the limitation of928

remeshing, which is time-consuming especially in 3D. The XFEM avoids the need of remeshing, however, it is929

awkward when dealing with multiple interacting and branched cracks, since the computational cost increases as930

the number of cracks grows and its formulation becomes increasingly complex. Meshfree methods (MMs) were931

devised with the objective of eliminating part of the difficulties associated with reliance on a mesh to construct the932

approximation [176], providing an advantage in dealing with crack growth problems.933

In general, MMs refer to numerical techniques that do not require any predefined mesh information for domain934

discretization, and they use a set of points scattered within the problem domain as well as on the boundaries of the935

domain to represent the problem domain and its boundaries [177]. MMs model the bulk material as continuum.936

Approaches of modelling discontinuities in MMs can be classified into two types generally: methods based on the937

intrinsic and extrinsic enrichment and modification of the weight function [176]. The second type can be further938

classified into the visibility method, the diffraction method, the transparency method, and the “see through” and939

“continuous line” method [86]. Pioneered by Gingold and Monaghan [178], the smoothed particle hydrodynamics940

method (SPH) was developed on a strong form, while other methods were developed later based on a weak form,941

among which the element-free Galerkin method (EFGM), reproducing kernel particle method (RKPM), material point942

method (MPM) are popular approaches [177]. Compared with MMs based on strong forms, the MMs based on943

weak forms are more robust and steady. Detailed descriptions of these MMs and their classifications, advantages,944

limitations, and computer implementation aspects can be found in studies by [86, 91, 176, 179, 180, 181]. Here, we945

only give a brief introduction of these MMs and focus more on their ability of capturing crack branching.946

SPH is a pure Lagrangian, meshfree method, which was first developed to model hydrodynamic flows and then947
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extended to solid mechanics [182, 183]. In SPH, the domain is discretised into particles and each particle interacts948

with its neighbour particles within its influence domain through a kernel function. Early works on studying crack949

with SPH can be found in [184, 185, 186, 187]. In most of these work, the SPH is based on Eulerian kernels (kernel950

functions which are expressed in terms of spatial coordinates) and the crack can occur naturally due to separating951

particles. Compared with the traditional mesh-based methods, it avoids the mesh dependence problem when dealing952

with cracks. However, it suffers from problems such as spurious instabilities, expensive computational cost and953

inaccurate crack path prediction [188, 176]. To solve these problems, Lagrangian kernels (kernel functions in terms954

of material coordinates) instead of Eulerian kernel functions are employed [189, 190]. However, Lagrangian kernels955

require specific strategies to deal with fractures since neighbour particles do not change during a simulation. A956

commonly used strategy is the visibility method, in which the displacement discontinuity is modelled by excluding957

the particles on the opposite side of the crack in the approximation of the displacement field under the assumption of958

opaque crack boundary [86]. Recently, a strategy called “pseudo-spring” was developed by Chakraborty and Shaw959

[191] to facilitate SPH to model crack propagation without any numerical artefact. The crack path can be tracked960

automatically by the broken pseudo-springs. Using the Pseudo-Spring smoothed particle hydrodynamics method961

(Pseudo-Spring SPH), Islam and Shaw [192] simulated 2D and 3D crack propagation and branching and studied962

effects of tensile loading amplitude on crack branching.963

The element free Galerkin methods (EFG), first developed by [193], is a method based on moving least-square964

(MLS) interpolants. The EFG requires only nodal data without the requirement of element connectivity. Compared965

with SPH, the EFG avoids the calculation of nodal volumes and obtains the gradient fields directly by taking the966

derivatives of the interpolants with respect to spatial variables, which increases the accuracy and stability [193]. This967

feature makes it quite suitable for static and dynamic crack problems. Rabczuk and Areias [194], Rabczuk and Zi968

[97] proposed the extended element free Galerkin (XEFG) method for cohesive crack initiation, propagation and969

branching in two and three-dimensional statics and dynamics. However, the closure of the crack along the front970

is ensured through near-tip enrichment, which leads to the difficult selection of near-tip enrichment fields in large971

strain or non-linear materials. To simulate crack propagation in non-linear solids including large deformations, Zi972

et al. [195] proposed an XEFG method which closes the crack tip without near-tip enrichment. The entire crack973

is enriched by the sign function. The domain-decrease method is used to remove the branch enrichment from the974

discontinuous displacement field. The method is successfully applied to crack branching problems in 2D and the975

results agree well with the experiment results, see Fig. 23. Later, the method was extended to 3D by employing an976

extrinsic discontinuous enrichment and adding a Lagrange multiplier field along the crack front to close the crack977

by Bordas et al. [196]. In this way, the computational cost was further decreased. The method proved to be capable978

of modelling initiation, branching, growth and coalescence of an arbitrary number of cracks in non-linear solids by979

different benchmark examples. Fig. 24 shows the branching example provided in [196], which is a “2.5D” example980

rather than a real 3D example. The ability of the method for simulation of real 3D crack growth is demonstrated981

by another example of a circular-cylindrical chalk bar under torsion, which is not shown here since this example982

does not include the crack branching phenomenon. Rabczuk et al. [197] reviewed different crack tracking techniques983

in three-dimensions applicable in the context of partition of unity methods, especially meshfree methods. A crack984

tracking procedure is proposed and implemented in the context of XEFG and two possibilities for crack closure are985

presented: crack closure by crack front enrichments and crack closure without crack front enrichment by use of986

Lagrange multipliers. Three-dimensional crack branching examples were given and showed good agreement with the987

results from the literature [75].988

To develop more accurate and efficient mesh-free interpolation functions, the reproducing kernel particle method989

(RKPM) was introduced as an improvement of the continuous SPH approximation by Liu et al. [198]. It maintains990

the advantages of SPH, however, because of the addition of a correction function, it gives much more accurate results.991

Guan et al. [199] studied the dynamic failure and fragmentation with a semi-Lagrangian RKPM, which successfully992

alleviated mesh distortion difficulties associated with the Lagrangian FEM. Klein et al. [200] used the virtual internal993

bond model with RKPM to model the propagation of cohesive cracks. The model demonstrates its capabilities of994

predicting the onset of crack path instabilities. With the model, simulations of crack tip instabilities and branching are995

conducted and theoretical analysis of branching is given.996

The material point method (MPM) is a quasi-particle method introduced by Sulsky et al. [201]. In the MPM, a997

continuum body is described into a number of material points, which carry all the information of material properties.998

The material points are surrounded by a background mesh, which is used only to solve the governing equations.999
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In each time step, the parameters and variables are transferred back and forth between material points and grids1000

[202]. The MPM successfully eliminates the disadvantages of numerical difficulties associated with mesh distortion1001

in Lagrangian and with the advected quantities in Eulerian description [203]. Some examples of the accurate and1002

effective simulation of fracture propagation with MPM can be found in [204, 205, 206, 207, 208]. However, only one1003

of them simulates and studies the crack branching phenomenon [208], where a phase field MPM is introduced for1004

robust simulation of dynamic fracture in elastic media considering the anisotropic surface energy. With the model,1005

the influence of surface energy anisotropy and loading conditions on crack patterns including crack branching are1006

evaluated.1007

The MMs eliminate difficulties of mesh-based methods, such as mesh generation problems for complex 3D mod-1008

els, accuracy problems due to distorted or low quality meshes, adaptive remeshing resulting from dynamic problems.1009

However, they still suffer from implementation of boundary conditions, high computational cost, instability and in-1010

consistency problems. In addition, when modelling crack branching, crack surfaces representation and crack tracking1011

algorithms are usually required, which introduces additional challenges associated with the numerical integration of1012

the weak form through tracking complex crack geometry, especially for tracking complex 3D crack geometry.1013

Figure 23: A 2D example of crack branching with MMs [195]. Figure 24: A 3D example of crack branching with MMs [196].

4.2.2. The discontinuum methods1014

The peridynamics. Peridynamics (PD) is a new continuum mechanics formulation originally developed by Silling1015

[209] in 2000. By replacing the partial differential equation with the integral equation, PD avoids the singularity and1016

combines continuous and discontinuous descriptions together, which makes it a promising tool for the study of crack1017

problems. There are two types of theoretical models for PD: the bond-based PD and the state-based PD. The bond-1018

based PD assumes that any pair of particles interact only through a central potential that is totally independent of all1019

other local conditions [78]. This assumption results in that for an isotropic, linear, microelastic material, the Poisson’s1020

ratio is limited to 1/4 (plain strain) or 1/3 (plane stress), which makes the bond-based PD not well suited to model1021

complex material behaviour reliable. To remove the restrictions for Poisson’s ratio, Silling et al. [210] proposed the1022

state-based PD. In the state-based PD, the interaction between two material points depends both on the bond between1023

the two points and the deformation of all the other bonds in the horizon. The state-based PD can be further divided1024

into the ordinary state-based PD and non-ordinary state-based PD. Here, the bond-based PD is given as an example1025

for simplicity to further explain the crack simulation process.1026

In PD, a material medium is treated as a composition of individual material points [209]. Each material point x is1027

assumed to interact with the other material points x′ around it within a local regionH , which is referred as “horizon”.1028

With a volume of V and mass density ρ, the material point is identified by its coordinates x in the initial configuration.1029

The bond-based PD equation of motion at a reference position x and time t is given as [209]:1030

ρ(x)ü(x, t) =

∫
H

f(x′ − x,u′ − u)dV + b(x, t) (19)

where x and x′ represent the position vectors of the material point in initial configuration, ü is the acceleration vector1031

of material point x at time t, u and u′ are the displacement of material points x and x′, respectively, b is a prescribed1032

body-force density field, f is the pairwise force defined as the force per unit volume squared between two material1033
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points x and x′:1034

f = cs
y′ − y
|y′ − y|

(20)

in which y and y′ represent the position vectors of the material point x and x′ in the deformed configuration, respec-1035

tively. c is the PD material parameter and is referred to as the bond-constant and the stretch s between the material1036

points is defined as1037

s =
|y′ − y| − |x′ − x|
|x′ − x|

(21)

No complex criteria are needed during the simulation process for crack initiation and propagation as the crack1038

growth can occur spontaneously with only one bond-break (interactions) criterion. A simple criterion for a bond-1039

break is that if the elongation of a bond is greater than a given threshold, the bond breaks and cannot be recovered.1040

The time taken by the bond-break is completely determined by the material geometry and loading conditions. When1041

a series of bonds break, the discontinuous space formed by these broken bonds becomes a macroscopic crack. A1042

variable (value between 0-1, 1 represents total failure while 0 represents no failure) is often employed to define the1043

local damage at each point, thus, the crack path can be indicated by plotting the local damage.1044

Due to its intrinsic features, the PD also has the advantages of avoiding complex fracture criteria and remeshing.1045

Applications of PD for crack branching are discussed from three perspectives in the following paragraphs.1046

First, by employing or improving the PD, demonstration of capturing complex crack patterns with crack branching1047

and multiple crack branches examples is given. Ren et al. [211] proposed the dual-horizon peridynamic formulation,1048

which naturally includes varying horizon sizes and completely solves the “ghost force” issue [212, 213]. Zhou et al.1049

[214] proposed the extended non-ordinary state-based PD, where the stress-based failure criteria are implemented.1050

The breakage of bonds is determined by the mean stresses between the interacting material points rather than the1051

stretch of bonds. Dipasquale et al. [215] proposed adaptive refinement algorithms for 2D peridynamic grids and as a1052

consequence, computational resources are efficiently employed. All of the PD methods above select crack branching1053

examples to prove their capability.1054

Secondly, after demonstrating the ability of capturing complex crack patterns, the PD is applied to capture var-1055

ious branching phenomena, including crack surface roughening, successive branching, micro-branches and multiple1056

branches. Then numerical results from PD are compared with numerical results from other methods or results from1057

experiments and theories. Ha and Bobaru [216] found that before branching the damage zone becomes thicker through1058

PD simulation, which is similar to the roughening before branching observed in the experiments. Later, Ha and Bo-1059

baru [217] found that the PD model captures experimentally observed successive branching events and secondary1060

cracking. It is found by Agwai et al. [113] that the PD simulation can capture small branches in the glass plate before1061

the crack splits into two main branches. The micro-branches are in good agreement with experimental results. Bobaru1062

and Zhang [218] observed that as loading increases, multiple branches are observed in soda-lime glass under stress1063

on boundaries, see Fig. 25. From the figure, multiple branches and the widening of damage zone before branching1064

can be observed. With a 3D PD model, Butt and Meschke [219] simulated a local crack front bifurcation grow into1065

a micro-branch, which arrests soon or grows into a macro-branch. Distinct features on the crack surface due to the1066

localized bifurcations and micro-branches are also captured with the model, known as “mirror”, “mist” and “hackle”1067

fracture surfaces in experimental observations [14], see Fig. 26.1068

Thirdly, through the observation of various phenomena, influencing factors and the mechanisms of crack branching1069

are discussed and analysed. Ha and Bobaru [216] summarized that reflecting stress waves from the boundaries have1070

a strong influence on the shape and structure of the crack paths in dynamic fractures. Later, Bobaru and Hu [220]1071

explained why in the simulation of [216] the propagation velocity of a dynamic crack is influenced by the horizon1072

size. This is because the crack propagation velocity, crack branching angles and branching time are independent1073

of the horizon size only in the condition that the fracture process does not interact with the stress waves. Chen1074

et al. [221] assumed that the branching moment and velocity are very sensitive to the micro-modulus function as the1075

branching velocity after the first branching moment can slightly increase or decrease or stay constant under various1076

micro-modulus functions. Through PD simulations under various conditions, Bobaru and Zhang [218] proposed that1077

stress waves pile up around the crack tip and lead to “migration” of damage sufficiently large, thus the material in1078

front of the original crack tip becomes relaxed and the crack branching ensues. Butt and Meschke [219] explained the1079
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Figure 25: A 2D example of crack branching with PD [218]. Figure 26: A 3D example of crack branching with PD [219].

influence of PD horizon, dimensionality and specimen size on dynamic fracture propagation with PD analysis. All of1080

them have an influence on the crack branching patterns.1081

Generally speaking, the PD has been observed to perform well in modelling branching problems by circumventing1082

difficulties in remeshing and the requirement of an external branching criterion. In addition, it has the ability of1083

modelling multiple branches, widening of damage zone (fracture roughness) and micro-branches. However, more1084

research is required to improve existing PD methods for better computational efficiency compared with traditional1085

methods such as FEM. Though the remeshing process in FEM is eliminated, they introduce additional challenge1086

associated with the numerical integration through tracking complex 3D crack geometry/surfaces. In addition, as a1087

nonlocal method, the implementation of boundary conditions needs to be considered.1088

The discrete element method. Originally developed by Cundall and Strack [222], the discrete element method (DEM)1089

has been used in the modelling of jointed structures and granular materials. It models the bulk material as discontin-1090

uum and can also be applied in modelling of fracturing and fragmentation, where the discontinuities are the natural1091

outcome of the deformation process [223]. As a discontinuum method, the DEM treats a material medium as an1092

assembly of distinct particles, the motion of particles is governed by Newton’s laws, and forces between particles are1093

calculated according to the small overlap between them. In DEM crack simulation, when the maximum stress exceeds1094

the tensile or shear strength, cracks initiate and propagate [92]:1095

Fn = knun

∆Fs = ks∆us

|Fs|

A
≤ cd +

Fn tan β
A

(22)

where Fn is the normal force, A is the area, kn is the normal stiffness, un is the normal displacement, ∆Fs is the change1096

in shear force, ks is the shear stiffness, ∆us is the incremental shear displacement and cd and β are the cohesion and1097

joint friction angle, respectively. An example of fracture simulation using the DEM is given in Fig. 27.1098

DEMs can be classified with various criteria, e.g. the type of contact between bodies, the representation of1099

deformability of solid bodies, the methodology for detection and revision of contacts, and the solution procedure for1100

the equations of motion [225]. Though solution procedure for modelling crack propagation with DEM is different1101

with different deformability of solid bodies (the explicit and implicit one), some steps are indispensable [223]: (1)1102

identification of the unit (rock blocks, material particles, mechanical parts or fracture systems) system topology; (2)1103

formulation and solution of equations of motion of the individual units; (3) the detection and updating of varying1104

contacts (or connectivity) between the units as the consequences of their motions and deformations. The DEM differs1105

from other methods based on continuum mechanics e.g. FEM in that the contacts between units are varying with1106

time and deformation while remaining fixed in other methods. The DEM is most successful in modelling granular1107

materials. Its applications in modelling continuum materials are being explored, but have various limitations.1108

Due to the unique nature of DEM, it can model crack branching with taking into account heterogeneities [226].1109

Some examples of using DEM to study the crack branching in heterogeneous materials are listed below. Taking into1110
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Figure 27: A schematic illustration of crack branching with DEM. Figure 28: A numerical example of crack branching with DEM [224].

account the effect of local heterogeneity around the crack tip, Hedjazi et al. [224] modelled crack branching in a1111

vitreous biopolymer material based on DEM, see Fig. 28. A hole is set in the material to investigate the influence1112

of the position of the hole on crack branching patterns. The results showed that DEM is more sensitive to stress1113

heterogeneities and has better agreement with experimental results than FEM. Hofmann et al. [227] studied fracture1114

branching with a grain-based modelling approach and found that complex fracture patterns are governed by material1115

heterogeneity and model discretization. Chung et al. [228] used DEM to model microcracks initiation and propagation1116

in different crystal structures, and found that the crack branching pattern varies with different notch inclination angles:1117

the larger the notch inclination angle is, the more branching occurs.1118

Though DEM can be applied in the crack branching simulation in heterogeneous materials, its limitations are very1119

obvious : (1) it is not well suited to model complex material behaviour reliably and its application is mostly limited to1120

granular materials; (2) it is awkward in predicting a variety of macroscopic properties (e.g. elastic stiffness, strength,1121

critical energy release rate for uni-, bi- and tri-axial loading, etc.); (3) it usually has high computational cost, which is1122

easily influenced by many factors, such as particle numbers, particle shapes and contact force models [223].1123

5. Summary and Prospective Work1124

This paper presents an overview of crack branching, including experimental observations, physics of crack branch-1125

ing, and crack models and numerical methods for simulation of crack branching problems. In terms of experimental1126

observations, high speed photography is the most commonly used technique to be combined with photoelasticity,1127

caustics, digital image correlation, digital gradient sensing to study the crack branching. The current focus is on (1)1128

how to combine and improve upon existing shortcomings with the combination of technology development; (2) how1129

to simplify the operations and reduce operating costs while ensuring high temporal and spatial resolution. Supported1130

by experimental research, physics of branching including the causes of crack branching and branching criteria have1131

been investigated and summarized. One explanation suggests the branching occurs once the crack velocity exceeds a1132

critical value (related to the wave speed). Another explanation assumes branching is a natural outcome of the growth1133

of microcracks near the crack tip and energy absorbed into the crack is related to the limiting velocity. Dynamic in-1134

stabilities, which are related to critical velocity, fracture roughness and micro-branches, are also shown to be a strong1135

mechanism for crack branching and are investigated. In addition, the crack front waves and the tilting and twisting of1136

the stress vector at the crack front are responsible for the crack branching. Corresponding to these potential causes to1137

crack branching, different branching criteria have been proposed, including external and internal criteria. The crack1138

models and numerical methods for crack branching have been developed and continuously improved according to1139

various crack branching criteria, which are further applied to simulate crack branching, to shed light on the mech-1140

anisms behind branching. These models and methods are reviewed in this paper with respect to their strengths and1141

limitations.1142

Several outstanding issues and challenges are identified and need to be resolved for reliable crack branching1143

prediction, these include the limitation of experimental techniques for the observation and measurements of physical1144

parameters in front of the crack tip; current analytical techniques and existing branching criteria are not sufficient to1145

define the mechanisms driving crack branching and associated dynamic instabilities; the limitations of various crack1146

33
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models and numerical methods proposed for simulating complex fracture propagation processes. Moreover, the study1147

of the branching problem is further complicated by considerations such as heterogeneity of the material, softening1148

behaviour and large fracture networks in which multiple length scale cracks develop.1149

Acknowledgements1150

The authors would like to thank the supports from China Scholarship Council (CSC No.: 201709370055), Swansea1151

University (Zienkiewicz Scholarship), and the Royal Society (Ref.: IEC\NSFC\191628).1152

References1153

[1] Kalthoff, J.. On the propagation direction of bifurcated cracks. In: Proceedings of an international conference on Dynamic Crack Propaga-1154

tion. Springer; 1973, p. 449–458.1155

[2] Nishioka, T., Furutuka, J., Tchouikov, S., Fujimoto, T.. Generation-phase simulation of dynamic crack bifurcation phenomenon using1156

moving finite element method based on delaunay automatic triangulation. Computer modelling in Engineering and Sciences 2002;3(1):129–1157

145.1158

[3] Ramulu, M., Kobayashi, A.. Mechanics of crack curving and branching—a dynamic fracture analysis. Dynamic fracture 1985;:61–75.1159

[4] Ravi-Chandar, K., Knauss, W.. An experimental investigation into dynamic fracture: Iii. on steady-state crack propagation and crack1160

branching. International Journal of Fracture 1984;26(2):141–154.1161

[5] Anderson, T.L.. Fracture mechanics: fundamentals and applications. CRC press; 2017.1162

[6] Guozden, T.M., Jagla, E.A., Marder, M.. Supersonic cracks in lattice models. International journal of fracture 2010;162(1-2):107–125.1163

[7] Freund, L.. Dynamic Fracture Mechanics. Cambridge Monographs on Mechanics; Cambridge University Press; 1998.1164

[8] Ravi-Chandar, K.. Dynamic Fracture. Elsevier Science; 2004. ISBN 9780080472553.1165

[9] Schardin, H.. Velocity effects in fracture. In: ICF0, Swampscott-MA (USA) 1959. 1959, p. 297–330.1166

[10] Kerkhof, F.. General lecture wave fractographic investigations of brittle fracture dynamics. In: Proceedings of an international conference1167

on Dynamic Crack Propagation. Springer; 1973, p. 3–35.1168

[11] Kobayashi, A., Mall, S.. Dynamic fracture toughness of homalite-100. Experimental Mechanics 1978;18(1):11–18.1169

[12] Dally, J.W.. Dynamic photoelastic studies of fracture. Experimental Mechanics 1979;19(10):349–361.1170

[13] Ravi-Chandar, K., Knauss, W.. An experimental investigation into dynamic fracture: I. crack initiation and arrest. International Journal of1171

Fracture 1984;25(4):247–262.1172

[14] Ravi-Chandar, K., Knauss, W.. An experimental investigation into dynamic fracture: Ii. microstructural aspects. International Journal of1173

Fracture 1984;26(1):65–80.1174

[15] Ravi-Chandar, K., Knauss, W.. An experimental investigation into dynamic fracture: Iv. on the interaction of stress waves with propagating1175

cracks. International Journal of Fracture 1984;26(3):189–200.1176

[16] Fineberg, J., Gross, S.P., Marder, M., Swinney, H.L.. Instability in dynamic fracture. Physical Review Letters 1991;67(4):457.1177

[17] Fineberg, J., Gross, S.P., Marder, M., Swinney, H.L.. Instability in the propagation of fast cracks. Physical Review B 1992;45(10):5146.1178

[18] Sharon, E., Gross, S.P., Fineberg, J.. Local crack branching as a mechanism for instability in dynamic fracture. Physical Review Letters1179

1995;74(25):5096.1180

[19] Sharon, E., Fineberg, J.. Microbranching instability and the dynamic fracture of brittle materials. Physical Review B 1996;54(10):7128.1181

[20] Sharon, E., Gross, S.P., Fineberg, J.. Energy dissipation in dynamic fracture. Physical review letters 1996;76(12):2117.1182

[21] Fineberg, J., Marder, M.. Instability in dynamic fracture. Physics Reports 1999;313(1-2):1–108.1183

[22] Bouchbinder, E., Livne, A., Fineberg, J.. Weakly nonlinear theory of dynamic fracture. Physical Review Letters 2008;101(26):264302.1184

[23] Bouchbinder, E., Livne, A., Fineberg, J.. Weakly nonlinear fracture mechanics: experiments and theory. International journal of fracture1185

2010;162(1-2):3–20.1186

[24] Bouchbinder, E., Goldman, T., Fineberg, J.. The dynamics of rapid fracture: instabilities, nonlinearities and length scales. Reports on1187

Progress in Physics 2014;77(4):046501.1188

[25] Livne, A., Ben-David, O., Fineberg, J.. Oscillations in rapid fracture. Physical review letters 2007;98(12):124301.1189

[26] Fineberg, J., Bouchbinder, E.. Recent developments in dynamic fracture: some perspectives. International Journal of Fracture 2015;196(1-1190

2):33–57.1191

[27] Hawong, J., Kobayashi, A., Dadkhah, M., Kang, B.J., Ramulu, M.. Dynamic crack curving and branching under biaxial loading.1192

Experimental Mechanics 1987;27(2):146–153.1193

[28] Hauch, J., Marder, M.. Energy balance in dynamic fracture, investigated by a potential drop technique. International Journal of Fracture1194

1998;90(1-2):133–151.1195

[29] Suzuki, S., Sakaue, K., Iwanaga, K.. Measurement of energy release rate and energy flux of rapidly bifurcating crack in homalite 100 and1196

araldite b by high-speed holographic microscopy. Journal of the Mechanics and Physics of Solids 2007;55(7):1487–1512.1197

[30] Murphy, N., Ali, M., Ivankovic, A.. Dynamic crack bifurcation in pmma. Engineering Fracture Mechanics 2006;73(16):2569–2587.1198

[31] Fayyad, T.M., Lees, J.M.. Experimental investigation of crack propagation and crack branching in lightly reinforced concrete beams using1199

digital image correlation. Engineering Fracture Mechanics 2017;182:487–505.1200
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