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Abstract

It is widely acclaimed that the Markowitz mean-variance portfolio selection is a very important investment strategy. One approach
to solving the static mean-variance portfolio selection (MVPS) problem is based on the usage of quadratic programming (QP)
methods. In this article, we define and study the time-varying mean-variance portfolio selection (TV-MVPS) problem both in
the cases of a fixed target portfolio’s expected return and for all possible portfolio’s expected returns as a time-varying quadratic
programming (TVQP) problem. The TV-MVPS also comprises the properties of a moving average. These properties make the
TV-MVPS an even greater analysis tool suitable to evaluate investments and identify trading opportunities across a continuous-time
period. Using an originally developed linear-variational-inequality primal-dual neural network (LVI-PDNN), we also provide an
online solution to the static QP problem. To the best of our knowledge, this is an innovative approach that incorporates robust
neural network techniques to provide an online, thus more realistic, solution to the TV-MVPS problem. In this way, we present
an online solution to a time-varying financial problem while eliminating static method limitations. It has been shown that when
applied simultaneously to TVQP problems subject to equality, inequality and boundary constraints, the LVI-PDNN approaches the
theoretical solution. Our approach is also verified by numerical experiments and computer simulations as an excellent alternative

to conventional MATLAB methods.

Keywords: Portfolio selection; time-varying systems; quadratic programming; continuous neural networks.

1. Introduction 21
22

Portfolio optimization plays a significant role in financial de- 23
cisions. Popular fields include insurance costs, risk manage- 24
ment, option replication, transaction costs etc. and can be ap- 2
proached efficiently using conventional methods of optimiza- 2
tion. For example, in [1], by explicitly integrating a wide range 2
of risk-return portfolio models with return forecasting, trans- 2
action costs, and short-sales the authors conclude that the fore- 20
casting mechanism more likely yields outperformance when the 30
market is relatively stable. In [2, 3], an optimization problem s
is defined for minimizing the cost of insurance in portfolios s
in C[a,b] which constructs the portfolio that replicates the tar- s3
geted payoff in a subset of states, if the asset span is a lattice- s
subspace and approached with Riesz spaces theory. In [4], s
they rebalancing portfolios with transactions costs by extend- ss
ing the standard optimal portfolio theory to an arbitrary number a7
of equally treated assets, a concave utility function, and more ss
broadly stochastic processes. In robotic applications the linear- s
variational-inequality primal-dual neural network (LVI-PDNN) 4
has been extensively used, see for example [5, 6, 7]. Although 4
42

43
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several authors have studied various approaches to static portfo-
lio selection problems in conjunction with neural network sys-
tems, see for example [8, 9], to the best of our knowledge, this
work presents for the first time the time-varying version of the
static mean-variance portfolio selection problem (MVPS) that
allows the application of the LVI-PDNN to the finance field.
This study demonstrates that problems with financial optimiza-
tion can have an online solution [10, 11], which makes it more
realistic. Note that, those problems must be time-varying or
converted into a time-varying form first.

The standard approach to solving the static mean-variance
portfolio selection (MVPS) problem is based on the usage of
quadratic programming (QP) methods. But, we ask the an-
swer to the challenging question: what happens if the MVPS
inputs change over time? Because of that, we define and study
the time-varying mean-variance portfolio selection (TV-MVPS)
problem. The TV-MVPS comprises the properties of a mov-
ing average. These properties make the TV-MVPS into an ef-
ficient analysis tool suitable to evaluate investments and iden-
tify trading opportunities across a continuous-time period. It is
known that Zhang neural network (ZNN) can be considered as
a predictive dynamics. In [12], the authors claimed that ”Static-
time and time-varying problems sometimes behave differently.
Therefore time-invariant and time-varying problems may re-
quire different approaches.” In order to achieve the possibility
to trace the behavior of the MVPS during the time and introduce
a kind of a prediction, we investigate the TV-MVPS problem as
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a time-varying quadratic programming (TVQP) problem. Also,10s
the ZNN approach is applied as a recognized tool for solving
time-varying problems which show better properties compared'*
to a sequence of static problems. 105
The highlights of this work can be summed up as bellow: 1%
(1) a continuous time-varying quadratic programming (TVQP)'
financial problem, called TV-MVPS, is introduced and investi-'%
gated; 109
(2) a specific LVI-PDNN’s structure for approaching the TV-'
MVPS problem is presented; 1
(3) the LVI-PDNN’s performance on several custom and con-''2
ventional MATLAB functions for interpolation is investigated; '*®
(4) LVI-PDNN’s applications on real-world financial time-11

series is presented; 115
(5) a performance comparison between the LVI-PDNN and thets
quadprog MATLAB function is presented. 17

It is worth noting that the LVI-PDNN’s inputs are usuallyts
smooth time-varying functions and it has never been used ont'
such noisy data such as financial time-series data. 120
The paper is organized as follows. Section 2 describes thet?!
mean-variance portfolio selection problem and converts ther2
static problem into a time-varying optimization problem. In'z
section 3, the TV-MVPS problem is approached by a linear-12
variational-inequality based primal-dual neural network (LVI-12s
PDNN). Section 4 contains the proposed algorithmic proce-izs
dures for data preparation and section 5 contains the numericaliz7
examples. The numerical examples use real-world data and ex-1zs
amine the efficiency between the LVI-PDNN and the quadprogies
MATLAB function and the efficiency between the proposed al-10
gorithmic procedures in different portfolios setup. Finally, thess:
concluding remarks are presented in section 6. 132
133
2. Mean-Variance Portfolio Selection Problem 1o
135
In finance terms, a collection of all stocks or assets held by aiss
public or private institute is known as a portfolio. The portfolios?
selection problem refers to the optimal distribution of budget oniss
the available stocks such that the expected mean-return is max-13s
imized (profit), and the risk is minimized. The factor to mea-14
sure risk is the variance of the portfolio return, smaller the vari-14
ance lower will be the risk. This approach was introduced few14+
decades ago by Markowitz’s modern portfolio theory [13]. Thes
modern portfolio theory also assumes a perfect market withoutis
taxes or transaction costs where short sales are disallowed, butss
securities are infinitely divisible and can therefore be traded ini
any (non-negative) fraction. 147
Over the last decades the Markowitz’s modern portfolio the-14
ory is studied extensively such asin [14, 15, 16, 17, 18]. For ex-14
ample, the authors in [16] investigate a problem of continuous-1so
time mean-variance portfolio selection with stochastic param-1st
eters under a no-bankruptcy limit. In [18], the problem of dy-1s2
namic portfolio selection is conceived as a Markowitz problemiss
of optimizing mean-variance. They conclude that the single-1s
period Markowitz quadratic programming algorithm can be
used with appropriate modifications in the covariance and linear
constraint matrices to solve the problem of multi-period asset
allocation.

2.1. Definition of the TV-MVPS Financial Problem

Our approach to the mean-variance portfolio selection
(MVPS) problem is a time-varying analog of the correspond-
ing static problem defined and studied in a number of papers,
such as [13, 14, 15, 16, 17, 18, 19]. The MVPS is a financial
optimization problem for assembling a portfolio of assets such
that its risk is minimized under a target expected return. As
far as we are aware of, our time-varying version of the mean-
variance portfolio selection (TV-MVPS) problem is a novel ap-
proach that comprises robust techniques from neural networks
to provide online, thus more realistic, solution.

The space of marketed securities is X = [x1,X2,...,X,] €
R™" where x; € R™ is the security i, i = 1,2,...,n, and com-
prises from the last m observations of its price. In the static
MVPS problem the expected return of the marketed space is
r = [r,r2,...,r,] € R" where r; = Z'J’.’:l xi(j)/m € R is the
expected return of the security i, i = 1,2,...,n. The expected
return of the portfolio is r, € [min(r), max(r)] € R and the
variance of the marketed space is 0 = Dy Xy xixjo; Where
oij = pijoio; is the variance and p;; is the correlation of i
and j securities and o7 is the variance of i security. That is,
02 = XTCX where C € R™" is the covariance matrix of the
marketed space X.

In the TV-MVPS we define the number r < m -1, 7 € N,
where 7 is a constant number and it denotes the ‘number of
time periods’. The 7 is used for the calculation of the sim-
ple moving average. A moving average (MA) is a calculation
for analyzing data points by creating a series of averages of
the complete data set of different subsets. In technical analy-
sis of financial data such as stock prices, returns or volumes of
trading the moving average is used as a technical indicator that
combines price points of an instrument over a specified time
frame divided by the number of data points 7 in order to give a
single trend line. Hence, a moving average is primarily a lag-
ging indicator and, for that reason, it is one of the most popular
tools for technical analysis. The unweighted mean of the pre-
vious 7 data is called simple moving average (SMA). For the
observation prices x;(t + 1), x;(t + 2),...,x;(t + 1 + 7) of the
security i, i = 1,2,...,n, the formula of the simple moving
average is SMA;;| = Z?;LT x;(j)/T. In the case where evalu-
ating consecutive values and a new value, x;(¢), comes into the
calculation, the oldest value, x;(t + 1 + 7), drops out. That is,
SMA, = SMA4+1 + (x;(t) — x;(t + 1 + 7))/7. The chosen period
depends on the type of interest movement, for example short,
moderate, or long-term. Short-term averages respond quickly
to changes in the price of the underlying, while long-term av-
erages are slow to react. Moving average levels can be viewed
in financial terms as support in a falling market or resistance in
a rising market. In general, there exist several types of mov-
ing averages (see [20]). In this paper, we use only one type,
the simple moving average (SMA). All the rest types of moving
averages can be applied to TV-MVPS similarly to SMA.

The TV-MVPS comprises from m — 7 in number consecutive
values of an MA with 7 in number observations for each time
period. The time ¢ € [1,m — 7] denotes the new value that
it comes into the calculation of the MA. Hence, the expected
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return of the marketed space is r(¢) = [ri(?), r2(),...,r,(?)] €
R" where

+7
()= x(j)/reR min,, PPN GO0 (1
J=t i
subject to Z ni(1) - ri(t) = rp(t) 2)
is the expected return of the security i, i = 1,2,...,n. Obvi- ;
ously, the 7;(¢) is an SMA and the TV-MVPS problem is built-up

on the r(¢) for every t. So, the expected return of the portfolio is Z ni() =1 3)
rp(t) € [min(r(7)), max(r(¢))] € R, the variance of the marketed i
space is ni(t) € Ry, Vi, )

n n
o)=Y 3wt 1+ Dx;( 1+ Do),
i=1 i=1 s where (1) is the variance o (¢) of the portfolio ().
. . . 186 This problem can also be written in the time-varying
where o._if(t) = pij()oi(t)o () is the variance and p;;(7) 1S the . quadratic programming (TVQP) problem form, by following
correlation of x;(t : ¢+ 7) and x;(t : ¢ + 7) and 0(?) is the188 [21], as follows:

variance of x;(¢ : t + 7). That is,

M) =X(t: t+1,) " COX(1: t+71,2), min,y n'(0)- C() - n(t) (5)

bject t 1 Toney =11 T
where C(¢) = cov(X(t : t +7,:)) € R™" is the covariance matrix subjectto (L r@]"-n(®) = 1,0 ©)

of the marketed space X(¢ : ¢+, :) at time ¢. The optimal mean-

variance portfolio is n(¢) = [171(¢), 72(2), . . ., 1,(t)] where 7;(¢) is 0<n®<1, 7
the solution of subsection’s 2.1.1 or 2.1.2 optimization problem

for the security i,i =1,2,...,n.

The purpose of the number 7 is to keep steady the number of
observations in the TV-MVPS for each 7 in X(z : ¢ + 7,:) while |
t is moving across the interval [1,m — 7]. Hence, the outcome, |
of the TV-MVPS for each ¢ can be comparable with all the rest
outcomes of every other ¢ € [1, m — 7] under the same number
of observations. Note that, the expected return of the marketed
space r;(t) is a MA and it also has the properties of a MA. That
is, the bigger the 7 of the TV-MVPS is the smoother the ri(t)«.  2.1.2. TV-MVPS with all possible expected returns
will be when ¢ is moving across the interval [1, m—7], because it . ) . . .
filters out the ‘noise’ from random short-term price fluctuations.' In addition, the time-varying mean-variance portfolio selec-

Moreover, it affects the optimal mean-variance portfolio 7(z) in'* tion fo'r all‘poss1'bl'e targets r, (see [22]) is the SOhm_OH_ to 'the
the same way 15 following risk minimization and expected return maximization

) ) 196 constrained problem:
We convert the discrete TV-MVPS problem to continuous-

time by interpolated the r(f) and the C(#) into continuous

functions with any method of preferences. Consequently, min,(, Z Z ni(0) - nj(t) - 7i(t) (8)
r(t), C(t) € C[0,m — 7 — 1] where the space C[0,m — 7 — 1] T

is the space of all continuous real functions on the interval
[0,m — 7 — 1]. The optimal mean-variance portfolio is n(¢) =
[71(8), 2(2), . . ., (1)] Where 1;(¢) is the online solution of sub-
section’s 2.1.1 or 2.1.2 optimization problem produced by the Z ni(®) =1 (10)
LVI-PDNN of section 3. i

where C() is the covariance matrix of X(¢), 0 = [0,0,...,0] €
o " denotes the zero vector and 1 = [1,1,...,1] € R”" denotes
1+ the unit vector.

subject to Z nit) - (1) = rp(0) )

ni(1) € Ry, Vi, (11)

2.1.1. TV-MVPS with specific expected return target

The time-varying mean-variance portfolio selection for aw; where (8) is the variance o%(¢) of the portfolio 7(z).
specific target r, is the solution to the following risk minimiza-

tion and expected return maximization constrained problem: e By following [21], this problem can also be written in the

TVQP problem form as follows:
3
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min, n' (@) - CQ@) - ) 1) *

subjectto  —r()" - () < —r,(1) 13) ¥
1" 90 =1 (14)
0<n®<1, (15) 240

241

242

where C(r) is the covariance matrix of X(¢), 0 = [0,0,...,0] €
R"™ denotes the zero vector and 1 = [1,1,...,1] € R" denotes™

the unit vector.
244

245

3. Time-Varying Mean-Variance Portfolio Selection Prob-
lem via LVI-PDNN 246

247

Regarding its fundamental role in mathematical optimiza-
tion, over the past decades, most aspects of QP have been thor-24
oughly studied. Several methods/algorithms for solving thezs
fundamental static QP problem have been proposed [23]. Such250
a QP problem has two common general type of solutions. One251
general type of solution is the numerical algorithms conductedm
on digital computers and was commonly used to solve static QP253
problems on a small scale. Nevertheless, in the case of large-
scale real-time applications, these numerical algorithms can
lead to a decline in performance due to their serial-processing
nature [24]. Commonly the less the arithmetic operations are,
the less computationally expensive the cube of the Hessian ma-
trix dimension m will be. The other general type of solution is
the application of parallel processing which has driven the al-
gorithmic development [25]. Therefore, the comprehensive and2s
thorough research of the recurrent neural network (RNN) has?ss
developed and investigated various dynamic and analog solvers.,_
The approximation by neural-dynamic is now considered one of
the strong alternatives to QP problems in real-time computing,
due to its parallel distributed nature and easiness of hardwareess
implementation [26]. 258

259

6

3.1. TV-MVPS problem with specific expected return target via
LVI-PDNN 260

To convert the TV-MVPS problem with specific expected re-
turn target into an LVI-PDNN, we need to include the equationsast
(5)-(7) to the coefficients of the LVI-PDNN from [21]. Accord-
ing to the TVQP problem of subsection 2.1.1, if we set

262

263

e G(r) = 2C(1) e B)=bn=[1 =
o x(0) = (1) « s =1]
e D) =1 r()]" « (=0 -
o dty=1[1 r,(I" « f( =1,

268

then the coefficients of the LVI-PDNN can be written as

_[¢ -p'»
H(t) - [D(t) 0 ]’

270

t
p(n) = [_ga('(i)] 271

Furthermore, the definition of the primal-dual decision vector
¥(¢) can be written as follows, along with the lower and upper
boundaries to which it is subject:

=[], s0=[9] so=[5%]
where

e the constant @ > 0 is the numerical representation and
+00 replacement, large enough for implementation pur-
poses, and the 1v vector is the correspondingly dimen-
sioned vector of ones;

o x(1) € [ (1), {7 (1)] clearly denotes the basic parameter de-
cision vector of the primal TVQP (5)-(7);

e u(1) € Ris the dual decision variable vector of the equality
constraint (6).

3.2. TV-MVPS problem with all possible expected return tar-

gets via LVI-PDNN

To convert the TV-MVPS problem with all possible expected
return targets into an LVI-PDNN, we need to include the equa-
tions (12)-(15) to the coefficients of the LVI-PDNN from [21].
According to the TVQP problem of subsection 2.1.2, if we set

e G(t)=2C() o din)=1 o g(=1]
o x(1) = (1) e B(t)=-r(t)" e (=0
o D(t)=1T o b(t) = —r,(D) o It =1

then the coefficients of the LVI-PDNN can be written as

Gt -D'( BT g
D(1) 0 o |, p(t) = |-d®)|.
-B(1) 0 0 b(1)

H(r) =

Furthermore, the definition of the primal-dual decision vector
¥(¢) can be written as follows, along with the lower and upper
boundaries to which it is subject:

x(1) (0 &
)’(t) = |un], g_(t) =|-=l > §+(t) =+l s
o(n 0 1

+wl,
where

e the constant @ > 0 is the numerical representation and
+0o replacement, large enough for implementation pur-
poses, and the 1v vector is the correspondingly dimen-
sioned vector of ones;

o x(1) € [ (1), ()] clearly denotes the basic parameter de-
cision vector of the primal TVQP (12)-(15);

e u(t) € Ris the dual decision variable vector of the equality
constraint (14).

e o(t) € RF is the dual decision variable vector of the in-
equality constraint (13).
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3.3. Generalized LVI-PDNN Solution to 3.1 and 3.2 QP prob-
lems

The following dynamical system can be used to solve this
time-varying QP problem

(1) = y(I + H' ))(Po(y(1) = (H@OY(®) + p(1)) = y(0), 16)

where Pgq(-) is the projection operator (see [21]) and y > 0 is29
known as the design parameter. Within hardware permission,
the value of y >0 should be set as the largest, or selected appro-
priately for simulation or experimental purposes.

While solving static QP problems, beginning with any y(0) €
R™"K initial state, the LVI-PDNN state vector y(f) converges
to the equilibrium point y*, wherein the first n elements are an
optimal solution to the TVQP problems (5)-(7) and (12)-(15).
Furthermore, the following inequality is true for the static QP’s**

3

LVI-PDNN solution, [27]: 2%
296

lly = Pa(y = (Hy + p)I = plly =¥l » (17)%

298

where ||-||, corresponds to the vector’s two-norm. 299

To gain a better understanding of LVI-PDNN’s real-time con-**
vergence, the residual error is defined as

301

e(t) = y(t) — Po(y(1) — (H@®)y(1) + p(1))).
302
Based on the inequality (17), the convergence of the y(f) states
vector to the optimal y*(#) mathematical solution can be reacheds,
if [le(n)ll3 — 0. %05

306

3.4. Convergence Analysis 80
308
In this subsection, we present, in a formal form, a conver-,,

gence analysis of the LVI-PDNN model, based on the concep-,,,
tual framework proposed in [27], by Zhang et al. We start with,_,
the static general problem, which handles quadratic program-,,,

ming (QP) and linear programming (LP): e
min, xT'Gx/2 + g x (18)
subject to Dx=d (19)

Bx<b (20)
<x<t 2n

The proposed primal-dual neural network from [27] could
solve online (18)-(21) based on the equivalence of QP/LP, LVI
and a system of piecewise linear equations. Then, in our case,
equations (6), (7) from [27] can be reformulated as equations
(22), (23), respectively, where:

X ' I
y=\ul|, ¢ =|-wl,|, ¢"=|+wl,]|. (22)
2] 0 +wl,

Here, @w represents a sufficiently large positive constant (or vec-
tor of suitable dimensions). The coefficients in equation (5) are
defined as [27]

G -D' BT g
H=|D 0 0, p=|-d|. (23)
-B 0 0 b

In the following, we will use the same notation as in [27].

Theorem 3.1 (LP/QP-LVI equivalence) [27], Theorem 1). It is
possible to reformulate the optimization problem (18)-(21) as:
find a vector w* € Q such that Yw € Q = {w|lg” <w < ¢*} C
RnJrl’

(w—w)T(HW + p) > 0. (24)

Theorem 3.2 (PDNN convergence) [27], Theorem 2). Start-
ing from arbitrary initial state, the state vector w(t) of the
primal-dual neural network (16) converges to the equilibrium
w*, whose first m elements define the optimal solution x* to
the QP model (18)-(21). In fact, the exponential conver-
gence can be reached if there is a constant p > 0 satisfying
lw = Pa(w = (Hw + p)I5 > plw = w*|l3.

4. Data Preparation

In financial optimization models that we are dealing with,
the data inputs are time-series. A time-series is a series of time-
indexed data points that means our data input is discrete. Since
we are trying to find the online solution to a time-varying op-
timization problem, we need to convert those data inputs from
discrete to continuous-time. We accomplish this by transform-
ing arrays and matrices of time-series to continuous-time func-
tions.

In the TV-MVPS problem, we use the expected return array
and the covariance matrix of a portfolio, which comprises of
time-series. The following Alg. 1 shows how we construct that
array r and matrix C.

Algorithm 1 Algorithm for the data preparation of the portfo-
lio’s expected return and covariance.

Input: The marketed space X = [x1, X, ..., x,] which is a ma-
trix of n time series as column vectors of m prices, the mov-
ing average’s number of time periods r <m — 1,7 € N.
1: Set [m, n] =size(X)
2: Set r =zeros(m — 7, n)
3: Set C{m —s,1} = {}
4: fori=1:m—-7do
5: Seth =max(X(i:7+i—-1,:))
6 Set C{i, 1} = 100%cov(X(@ : 7+i—1,:)./h)
7 Set r(i,:) =mean(X(i : T+ i—1,:)./h)
8: end for
Output: The C structure array comprises of the covariance
matrices for each time periods of all time-series of the nor-
malized portfolio and the matrix r comprises of the ex-
pected return for a number of time periods of each time-
series of the normalized portfolio.
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Figure 1: Data interpolation methods.

Note that we normalize the portfolio’s data for each time period
in order to have a correct covariance matrix for comparison pur-
poses. Also, without loss of generality, we multiply the covari-
ance matrix C with the number 100, which causes the variance
of the portfolio to be in %.

In this paper, three popular interpolation methods are em-
ployed that are also offered by MathWorks, and we demonstrate
how to use them with LVI-PDNN to produce faster results in
the case where input data are given in the form of time-series.
These interpolation methods are the step function, the linear
and the piecewise cubic Hermite (P.C.Hermite). A graphic il-
lustration of these methods is given in Figs. 1a, 1b and Ic, re-
spectively. Note that the data used in Fig. 1 are the daily close
prices of Tesla, Inc. (TSLA) in the year 2019.

Particularly, for the step function interpolation method, we
present the procedure where we convert the time-series arrays
and matrices into a piecewise constant function in Alg. 2. In
addition, for the linear and the P.C.Hermite interpolation meth-
ods the procedures are presented in [28]. Thus, we developed
two MATLAB functions, called sfots and sfotss, for exper-
imental purposes to precisely implement Alg. 2. Furthermore,
taken from [28], the MATLAB functions employed for linear
interpolation are the 1inots and linotss, and for P.C.Hermite,,
interpolation are the pchinots and pchinotss. Note that the,,
interpolation functions are used on C and r. 356

In addition, it is possible to split the time periods into dailyss;
weekly, monthly, quarterly, annual and their combinations insss
finance. Yet their results may not be equal in number for twosse
different time periods of the same division, which is due to thesso
fact that financial markets may be close (special days of the cal-
endar), the year may be leap, one month may have fewer days,
etc. To solve the problem of missing observations between pe-
riods of the same division, we use the parameter w for each ¢
within the LVI-PDNN, which divides the observations into the
time periods. That is, we employ f.(wf) and fe(wt) instead ofye,
f+(®) and fc (). The custom function omega, introduced in [29],5
requires as input the time period 7 and the vector noep, whichg,
contains the number of observations in each period, and outputses
the w parameter. 366

Note that most of the custom functions employed in thisss

6

Algorithm 2 Algorithm for the step function of the expected
return and the covariance.
Input: The marketed space X = [x},x2,...,X,], which is a
matrix of n time series as column vectors of m prices, and
the moving average’s number of time periods 7 < m — 1,
TeN.
Construct C and r from Alg. 1.
function g = sfots(data,t)
Set T as the floor price of ¢
return g = data(T + 1,:)
end function
Set f, = @(t)sfots(r, 1)
function h = sfotss(data,t)
Set T as the floor price of ¢
return i = data{T + 1}
end function
11: Set fc = @(#)sfotss(C, 1)
Qutput: The conversion of the covariance matrix and the ex-
pected return of n time series into time-varying step func-
tions, fc(¢) and f,(¢), respectively.

O TRER N B w2

—
4

section are taken from [28, 29] and can be downloaded from
https://github.com/SDMourtas/TV-MVPSTC-CC.  Fur-
thermore, the ode15s MATLAB solver is employed on (16) to
generate the online solution of the TV-MVPS problem. Lastly,
the LVI-PDNN’s solutions are checked, for comparison pur-
poses, against the assumed theoretical solutions produced by
the quadprog MATLAB function.

5. Numerical Examples

In this section, for investigating the performance of LVI-
PDNN, three numerical examples under several portfolio setup
are presented. The financial time-series used are taken from
https://finance.yahoo.com and the exact data used can be
downloaded from https://github.com/SDMourtas/DATA/
tree/main/TV-MVPS.
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Figure 2: The stocks that were used in each of the three numerical examples.

5.1. Numerical Example A 405

Fig. 2 includes the ticker symbols of the stocks that we use in**®
our portfolio in this example. Let X = [x;, x2, X3, X4], where X
comprises the daily close prices of the 4 Market stocks of Fig.40
2 from 27/9/2018 to 10/12/2019 into x, x2, x3 and x4, respec-
tively. For the aforementioned time series, we use the first 50"
prices of the observations to calculate the expected return ma-""*
trix X, and covariance structure X¢ of Alg. 1. Consequently, we'
set 7 = 50. The rest of our data is the period from 10/ 12/2018412
to 10/12/2019 with 253 observations. We divide the remain-,,,
ing data into ten periods of equal number of observations and,,,
we construct a ten period time-varying mean-variance portfo-,
lio selection. For the ten periods we have tspan = [0 10] and,,,,
because each time-series comprises from 253 observations, we,,,
set noep(1 : 10) = 253 as input in function omega. Thus, we,,,
get w = 25.3, constant for all the range of tspan. Also, we use,,,
linear data interpolation in order to convert X, and X¢ into the,,,
functions f,(r) and fc(¢), respectively. .

In this example, we are going to examine two selections of,,,
portfolios. In the first selection, we set r, = max(0.87 + 0.004t,,,,
mean(f,(w(?)))) and we use the LVI-PDNN setup of subsection,,,
3.1. In the second selection, we set r, >max(0.87 + 0.0041,,,,
mean(f,(w(1)))) and we use the LVI-PDNN setup of subsection,,,
3.2. We set y = lel0, fi(wt), fc(wt) and solve the y(f) (see,,
(16)) through MATLAB’s ode15s with y(0) = rand(6, 1). a8

We present the results of the first selection in Figs. 3a-3d and,,,
the results of the second in Figs. 3e-3h where:

7

7

430

431

e Figs. 3a and 3e show the outcome 7(#) of LVI-PDNN and
the outcome of quadprog for a specific target expected
return and for all expected returns above a specific target,*
respectively,

e Figs. 3b and 3f show the error ||e(t)||% between the outcome
n(¢) of LVI-PDNN and the outcome of quadprog for a
specific target expected return and for all expected returns
above a specific target, respectively.

e Figs. 3c and 3g show the variance % of the portfolio 7(?)
compared with the outcome of quadprog for a specific

target expected return and for all expected returns above a
specific target, respectively.

e Figs. 3d and 3h show the expected return of the portfo-
lio n(¢), which is 7(7) f,(wt), compared with the outcome
of quadprog, the simple moving average SMAS0 of X(7),
which is mean( f,(wt)), and the function 0.87 + 0.004¢ for a
specific target expected return and for all expected returns
above a specific target, respectively.

The results that are depicted in Figs. 3a and 3e show that the
LVI-PDNN solves the TV-MVPS problems and produces their
online solution, n(¢). The solutions of the LVI-PDNN is similar
to the solution of the MATLAB function quadprog, which is
the assumed theoretical solution, and the error ||e(t)||§ between
them are depicted in Figs. 3d and 3h, respectively. Also, the
noise in Figs. 3d and 3h is expected because we are dealing with
time-series. The variance of the portfolios 7(#) is shown in Figs.
3b and 3f and their expected return are shown in Figs. 3c and
3g, respectively. We observe that when we set a specific target
expected return the variance of the portfolio is overall greater
than if we had set as target all the expected returns above a spe-
cific target. Note that, as the value of parameter vy increases, the
performance of the LVI-PDNN model improves and approaches
the solution of quadprog even more. The time consumption of
this numerical example is presented in Tab. 1 and shows that
the LVI-PDNN method is on average almost two times faster as
compared to the quadprog function. Overall, the LVI-PDNN
worked excellently in solving the two TV-MVPS problems.

5.2. Numerical Example B

Fig. 2 includes the ticker symbols of the stocks that we
use in our portfolio. Let X = [xi, x, x3, X4, X5, X6], Where X
comprises the daily close prices of the 6 Market stocks of Fig.
2 from 19/3/2013 to 2/1/2020 into xi, x7, ..., Xe, respectively.
For the aforementioned time series, we use the first 200 prices
of the observations to calculate the expected return matrix X,
and covariance structure X¢ of Alg. 1. Consequently, we set
7 = 200. The rest of our data is the period from 2/1/2019
to 2/1/2020 with 1511 observations. In particular, the years
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Figure 3: The convergence, the recorded error, the variance % and the expected return for a portfolio consisting of 4 stocks, in numerical example A.

2014, 2015, 2016 have 252 observations each, the years 2017 455
2018 have 251 observations each and 2019, 2020 have 253.s
observation together. So, we have tspan = [0 6] and by set-

ting noep = [252,252,252,251,251,253] as input in functionss
omega, we get 458

459

252 ,1€10,3)
w=1{ (252-3+251-(t=3)/t ,te[3,5) Q
(222-3+251-2+253-(t-5)/t ,t€][5,6] 4ot

462
where the 1511 observations have been divided in terms of
the year which they belong. Also, we use P.C.Hermite data*®
interpolation in order to convert X, and X¢ into the functions**
f(®) and fc(2), respectively. e

In this example, we examine two selections of portfo-
lios. In the first selection, we set r, = max(0.83 + 0.0066¢,*"
mean(f,(w(?)))) and we use the LVI-PDNN setup of subsection*®
3.1. In the second selection, we set r, = min(f.(w(1))) and we**
use the LVI-PDNN setup of subsection 3.2. We set y = 1¢10,°
[fr(wr), fe(wt) and solve the y(¢) (see (16)) through MATLAB’s*"!
ode15s with y(0) = rand(8, 1). 472

We present the results of the first selection in Figs. 4a-4d and*”®
the results of the second in Figs. 4e-4h where: 474

466

475
e Figs. 4a and 4e show the outcome 7(7) of LVI-PDNN and.s
the outcome of quadprog for a specific target expectedars

return and for all expected returns, respectively, a78

e Figs. 4b and 4f show the error IIe(t)II% between the outcomf;479
n(t) of LVI-PDNN and the outcome of quadprog for a_
specific target expected return and for all expected returns,

respectively.
p y 482

e Figs. 4c and 4g show the variance % of the portfolio 7(?)
compared with the outcome of quadprog for a specific

target expected return and for all expected returns, respec-
tively.

e Figs. 4d and 4h show the expected return of the portfo-
lio 7(r), which is n(¢) f,(wt), compared with the outcome
of quadprog and the simple moving average SMA200 of
X(1), which is mean( f,(wt)), for a specific target expected
return and for all expected returns, respectively. Also, Fig.
4d shows the function 0.83 + 0.0066¢.

The results that are depicted in Figs. 4a and 4e show that the
LVI-PDNN solves the TV-MVPS problem and produces their
online solution, n(¢). The solutions of the LVI-PDNN is similar
to the solution of the MATLAB function quadprog, which is
the assumed theoretical solution, and the error ||e(t)||% between
them are depicted in Figs. 4d and 4h, respectively. Also, the
noise in Figs. 4d and 4h is expected because we are dealing
with time-series. The variance of the portfolios 7(z) is shown
in Figs. 4b and 4f and their expected return are shown in Figs.
4c and 4g, respectively. We observe that when we set a specific
target expected return the variance of the portfolio is overall
greater than if we had set as target all expected return. Note
that, as the value of parameter y increases, the performance of
the LVI-PDNN model improves and approaches the solution of
quadprog even more. The time consumption of this numerical
example is presented in Tab. 1 and shows that the LVI-PDNN
method is on average almost two times faster as compared to
the quadprog function. Overall, the LVI-PDNN worked excel-
lently in solving the two TV-MVPS problems.

5.3. Numerical Example C

This example covers three different portfolio configuration
cases with a larger size to prove the reliability of the LVI-PDNN
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Figure 4: The convergence, the recorded error, the variance % and the expected return for a portfolio consisting of 6 stocks, in numerical example B.

method on real-world datasets and demonstrate its efficacy inse
practical scenarios, even for large data sets. In the ith case,.s
i =1,2,3, we consider X = [x,xs,...,Xs], where X contains,g,
the daily close prices of the s stocks located in Fig. 2 from,,
2/4/2019 to 1/10/2019 into xy, x2, ..., X5, respectively. For the

aforementioned time series, we use the first 20 prices of the ob-5,
servations to calculate the expected return matrix X, and covari-,,
ance structure X¢ of Alg. 1. Consequently, we set 7 = 20. The,_
rest of our data is the period from 1/5/2019 to 1/10/2019 Withsm
107 observations. In particular, May, July, August have 22 ob-

servations each, June has 20 observations, September and 0c-™
tober have 21 observations together. So, we have tspan = [0 5]°°
and by setting noep = [22,20,22,22,21] as input in the func-**

tion omega, we get
508

22 te0,1) 509
] @2 1+20-(t- 1)/t ,te(1,2) 510
(22-1420-14+22-(t=2)/t ,te[2.4) st
(22-3+20-1+21-(z—4)/t ,t€[4,5] 512

where the 107 observations have been divided in terms of the®®

month which they belong. Also, we use the linear data interpo-"*
lation in order to convert X, and X¢ into the functions f,(f) and_
fc (), respectively. o6

For each case, we examine two selections of portfolios. In the51
first selection, we set r, = max(0.94 + 0.004¢, mean(f,(w(t))))518
and use the LVI-PDNN setup of subsection 3.1. In the sec-__
ond selection, we set r, = min(f(w(?))) and use the LVI-_
PDNN setup of subsection 3.2. We sety = le7, f.(wt), fo(wr)
and solve the y(7) (see (16)) through MATLAB’s ode15s with
y(0) = rand(s + 2, 1).

521

522
523
5.3.1. Comparative Results and Discussion 524

The results from the numerical example 5.3 can be summa-szs

rized as follows: 526

9

e Tab. 1 shows the average execution time of LVI-PDNN
and quadprog for each portfolio case in numerical exam-
ple 5.3, by using step function, linear and P.C.Hermite data
interpolation,

o for the portfolios consisting of 20 stocks (1st case), Figs.
5a-5¢ and Figs. 5d-5f show the error ||e(t)||%, between
the outcome 7(f) of LVI-PDNN and the outcome of
quadprog, the variance % and the expected return of the
portfolio n(z), for the selection of a specific target expected
return and for the selection of all expected returns TV-
MVPS, respectively,

e for the portfolios consisting of 40 stocks (2nd case),
Figs. 5g-5i and Figs. 5j-51 show the error ||e(t)||§, be-
tween the outcome 7(¢) of LVI-PDNN and the outcome
of quadprog, the variance % and the expected return of
the portfolio 7(¢), for the selection of a specific target ex-
pected return and for the selection of all expected returns
TV-MVPS, respectively,

o for the portfolios consisting of 60 stocks (3rd case),
Figs. 5m-50 and Figs. 5p-5r show the error ||e(t)||§, be-
tween the outcome 7(¢) of LVI-PDNN and the outcome
of quadprog, the variance % and the expected return of
the portfolio 7(¢), for the selection of a specific target ex-
pected return and for the selection of all expected returns
TV-MVPS, respectively.

The solution to the LVI-PDNN is similar to the solution of
the MATLAB function quadprog, which is the assumed theo-
retical solution, and the error ||e(t)||§ between them is depicted
in Figs. Sa, 5d, 5g, 5j, 5Sm and 5p. Also, the noise in these
Figs. is expected because of the time series in the input. The
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sss  return are shown in Figs. 5b, 5h

variance % of the portfolios 7n(¢) for a specific target expectedszs

and 5n and the variance % ofsso

1

the portfolios 7(f) for all expected returns are shown in Figs.
Se, 5k and 5q. The expected return of the portfolios 7(¢), which

0
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is n(?) fr(wt), compared with the outcome of quadprog and the
simple moving average SMA20 of X(¢), which is mean(f,(w?)),
for a specific target expected return are shown in Figs. 5c, 5i
and 5o and the expected return of the portfolios 7(¢) for all ex-
pected returns are shown in Figs. 5f, 51 and 5r. Also, the Figs.
5c, 51 and 50 show the function 0.94 + 0.004¢. By considering
the w parameter, which is very helpful in the case where we
want to combine different time periods with a different num-
ber of observations in each one of them, our approach is more
realistic. Another major finding is that, in all the tested cases,
the variance of the portfolios for a specific target expected re-
turn are significantly higher than the variance of the portfolios
for all expected returns. The performance of LVI-PDNN and
quadprog in numerical example 5.3 is shown in Tab. 1. Itis ob-
vious that the LVI-PDNN performance depends on the portfolio
dimension and on the interpolation method. When the portfo-
lio comprises from 20 stocks the LVI-PDNN produces faster
result than quadprog in all cases that we tried. When the port-
folio comprises from 40 stocks the LVI-PDNN produces slower
result than quadprog only in the case of P.C.Hermite interpo-
lation method. When the portfolio comprises from 60 stocks
the LVI-PDNN produces faster result than quadprog only in
the case of linear interpolation and only in the case of LVI-
PDNN setup of subsection 3.2. Consequently, we conclude that
as the dimension of portfolio rising the performance of LVI-
PDNN weakens in comparison with quadprog MATLAB func-
tion. Overall, the portfolio cases presented in numerical exam-
ple 5.3 show that the LVI-PDNN worked excellently in solving
time-varying mean-variance portfolio selection problems.

5.4. Time Comparison of LVI-PDNN and Quadprog

We record the performance of LVI-PDNN with the proposed
MATLAB functions in Alg. 2 and [28, 29] against the as-ss
sumed theoretical solutions produced by the quadprog MAT-
LAB function. The performance of LVI-PDNN is presented,
in Tab. 1. Tab. 1 shows the average execution time of nu-__
merical examples 5.1, 5.2 and 5.3 by using step functions, lin-m
ear interpolation functions and P.C.Hermite interpolation func-_
tions. We also monitor the performance of LVI-PDNN with_
the corresponding MATLAB functions of MathWorks (namely, ,
ts2func, interpl) in Tab. 1. Furthermore, the notation (*) in593
Tab. 1 denotes that the specific time corresponds to y = le8_,
instead of y = 1el0. All numerical experiments are performed,
using the MATLAB R2018b environment on an Intel® Core™
15-6600K CPU 3.50 GHz, 16 GB RAM, running on Windows59
10 64 bit Operating System. -

The general conclusion arising from Tab. 1 is that the step,
function of time series is the least efficient method and that the
linear interpolation is the most efficient. In addition, from Tab. oo
1, we conclude that the proposed MATLAB functions, which_,
manipulate matrices and structures time-series, are the best al-603
ternatives in terms of computation time responses, while they
produce the same results. In the cases of linear and P.C.Hermiteeos
interpolation, only when we apply the proposed custom MAT-e0s
LAB functions, the LVI-PDNN produce faster results than thesos
quadprog function. 607
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Table 1: Examples 5.1, 5.2 and 5.3 execution time.

Interpolation Function Example A

4 Stocks Portfolio

Setup 3.1 Setup 3.2

LVI-PDNN  Quadprog | LVI-PDNN | Quadprog
sfots & sfotss 1.6s Ss 1.6s 4.7s
ts2func 2s 5.3s 2s 4.8s
linots & linotss 1.8s 3.6s 8.5s 16s
interpl (linear) 10.5s 5.9s 465 22s
pchinots & pchinotss 2.3s 3.9s 9s 13s
interpl (P.C.Hermite) 27s

- Portfolio
Setup 3.1

Setup 3.2
LVI-PDNN  Quadprog | LVI-PDNN ‘ Quadprog
sfots & sfotss 33.6s%* 107.7s* 27.3s* 80.9s*
ts2func 55.8s* 118.4s* 41.6s* 85.1s*
linots & linotss 8.9s 17.2s 5.7s 10.6s
interpl (linear) 86.5s 33.1s 73.5s 28.8s
pchinots & pchinotss 11.7s 18.4s 9.1s 13.4s
interpl (P.C.Hermite) 398.2s 76.5s

20 Stocks Portfolio

Setup 3.2
LVI-PDNN  Quadprog | LVI-PDNN | Quadprog
sfots & sfotss 6s 15s 4.5s 11.5s
linots & linotss 4.5s 8.5s 3s 6s
pchinots & pchinotss 8.5s 10s S5s 6s
Setup 3.1 Setup 3.2
LVI-PDNN Quadprog | LVI-PDNN | Quadprog
sfots & sfotss 16s 27s 10.5s 20s
linots & linotss 34s 36s 10s 13s
pchinots & pchinotss 75s 37s 35.5s 20.5s
Setup 3.1 Setup 3.2
LVI-PDNN Quadprog | LVI-PDNN ‘ Quadprog
sfots & sfotss 1900s 1000s 1400s 820s
linots & linotss 51s 40s 37s 49s
pchinots & pchinotss 380s 248s 179s 63s

6. Conclusion

This paper introduces the TV-MVPS problem and presents
its online solution. We take the LVI-PDNN from [21] to solve
the time-varying QP financial problem in real time, subject to
equality, inequality and boundary constraints. The efficiency of
the LVI-PDNN model in such a time-varying financial QP prob-
lem has been demonstrated by a number of numerical examples.
Conforming to our numerical simulations, we deduced that with
the LVI-PDNN, our approach provides the online solution of a
time-varying version of the mean-variance portfolio selection
problem. It is also a highly competitive, or even better alterna-
tive to the quadprog MATLAB function. Nonetheless, as the
value of the y parameter increases, the performance of the LVI-
PDNN model improves, and more accurately approaches the
predicted theoretical solution. Experimental results show the
reliability of the LVI-PDNN method on the real-world datasets
in different portfolios setup, and demonstrate its usefulness for
normal size data sets in realistic scenarios.
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Definition and study of the time-varying mean-variance portfolio selection (TV-MVPS) problem.
Online solution of the TV-MVPS problem via a Linear-Variational-Inequality Primal-Dual Neural
Network (LVI-PDNN).

The time-varying mean-variance portfolio selection model eliminates the drawbacks of the static
strategy, resulting in more practical results.
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