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mean-variance portfolio selection problem solving via LVI-PDNN. Computers and Operations
Research (2021), doi: https://doi.org/10.1016/j.cor.2021.105582.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2021 Published by Elsevier Ltd.

https://doi.org/10.1016/j.cor.2021.105582
https://doi.org/10.1016/j.cor.2021.105582


Time-Varying Mean-Variance Portfolio Selection Problem Solving via LVI-PDNN

aDepartment of E ns, Greece

Abstract

It is widely ac approach
to solving the ing (QP)
methods. In t both in
the cases of a quadratic
programming make the
TV-MVPS an ous-time
period. Using rovide an
online solutio es robust
neural networ e present
an online solu hat when
applied simult aches the
theoretical sol lternative
to conventiona

Keywords: Po

1. Introducti1

Portfolio op2

cisions. Popu3

ment, option r4

proached effic5

tion. For exam6

of risk-return7

action costs, a8

casting mecha9

market is rela10

is defined for11

in C[a,b] whic12

geted payoff i13

subspace and14

they rebalanci15

ing the standar16

of equally trea17

broadly stocha18

variational-ine19

has been exten20

∗Correspondin
Email addres

spirosmourtas

pecko@pmf.ni.

(Shuai Li), xinwe

ic portfo-
ork sys-
dge, this
on of the
PS) that

nce field.
optimiza-
s it more
arying or

-variance
usage of

k the an-
e MVPS
nd study
-MVPS)
f a mov-
to an ef-

and iden-
riod. It is
idered as
t ”Static-

ifferently.
may re-

ossibility
introduce
oblem as

Preprint submitte er 22, 2021

Journal Pre-proof
Vasilios N. Katsikisa,∗, Spyridon D. Mourtasa, Predrag S. Stanimirovićb, Shuai Lic, Xinwei Caod
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claimed that the Markowitz mean-variance portfolio selection is a very important investment strategy. One
static mean-variance portfolio selection (MVPS) problem is based on the usage of quadratic programm
his article, we define and study the time-varying mean-variance portfolio selection (TV-MVPS) problem
fixed target portfolio’s expected return and for all possible portfolio’s expected returns as a time-varying
(TVQP) problem. The TV-MVPS also comprises the properties of a moving average. These properties
even greater analysis tool suitable to evaluate investments and identify trading opportunities across a continu
an originally developed linear-variational-inequality primal-dual neural network (LVI-PDNN), we also p

n to the static QP problem. To the best of our knowledge, this is an innovative approach that incorporat
k techniques to provide an online, thus more realistic, solution to the TV-MVPS problem. In this way, w
tion to a time-varying financial problem while eliminating static method limitations. It has been shown t
aneously to TVQP problems subject to equality, inequality and boundary constraints, the LVI-PDNN appro
ution. Our approach is also verified by numerical experiments and computer simulations as an excellent a
l MATLAB methods.

rtfolio selection; time-varying systems; quadratic programming; continuous neural networks.

on

timization plays a significant role in financial de-
lar fields include insurance costs, risk manage-
eplication, transaction costs etc. and can be ap-
iently using conventional methods of optimiza-
ple, in [1], by explicitly integrating a wide range
portfolio models with return forecasting, trans-
nd short-sales the authors conclude that the fore-
nism more likely yields outperformance when the
tively stable. In [2, 3], an optimization problem
minimizing the cost of insurance in portfolios
h constructs the portfolio that replicates the tar-

n a subset of states, if the asset span is a lattice-
approached with Riesz spaces theory. In [4],
ng portfolios with transactions costs by extend-
d optimal portfolio theory to an arbitrary number
ted assets, a concave utility function, and more
stic processes. In robotic applications the linear-
quality primal-dual neural network (LVI-PDNN)
sively used, see for example [5, 6, 7]. Although
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several authors have studied various approaches to stat21

lio selection problems in conjunction with neural netw22

tems, see for example [8, 9], to the best of our knowle23

work presents for the first time the time-varying versi24

static mean-variance portfolio selection problem (MV25

allows the application of the LVI-PDNN to the fina26

This study demonstrates that problems with financial27

tion can have an online solution [10, 11], which make28

realistic. Note that, those problems must be time-v29

converted into a time-varying form first.30

The standard approach to solving the static mean31

portfolio selection (MVPS) problem is based on the32

quadratic programming (QP) methods. But, we as33

swer to the challenging question: what happens if th34

inputs change over time? Because of that, we define a35

the time-varying mean-variance portfolio selection (TV36

problem. The TV-MVPS comprises the properties o37

ing average. These properties make the TV-MVPS in38

ficient analysis tool suitable to evaluate investments39

tify trading opportunities across a continuous-time pe40

known that Zhang neural network (ZNN) can be cons41

a predictive dynamics. In [12], the authors claimed tha42

time and time-varying problems sometimes behave d43

Therefore time-invariant and time-varying problems44

quire different approaches.” In order to achieve the p45

to trace the behavior of the MVPS during the time and46

a kind of a prediction, we investigate the TV-MVPS pr47
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a time-varying quadratic programming (TVQP) problem. Also,48

the ZNN approach is applied as a recognized tool for solving49

time-varying p50

to a sequence51

The highlig52

(1) a continuo53

financial prob54

gated;55

(2) a specific56

MVPS proble57

(3) the LVI-PD58

ventional MAT59

(4) LVI-PDN60

series is prese61
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roblems which show better properties compared
of static problems.
hts of this work can be summed up as bellow:
us time-varying quadratic programming (TVQP)
lem, called TV-MVPS, is introduced and investi-

LVI-PDNN’s structure for approaching the TV-
m is presented;

NN’s performance on several custom and con-
LAB functions for interpolation is investigated;

N’s applications on real-world financial time-
nted;
nce comparison between the LVI-PDNN and the
TLAB function is presented.

oting that the LVI-PDNN’s inputs are usually
arying functions and it has never been used on
a such as financial time-series data.
s organized as follows. Section 2 describes the

portfolio selection problem and converts the
into a time-varying optimization problem. In

TV-MVPS problem is approached by a linear-
quality based primal-dual neural network (LVI-
on 4 contains the proposed algorithmic proce-
preparation and section 5 contains the numerical
numerical examples use real-world data and ex-

iency between the LVI-PDNN and the quadprog
ction and the efficiency between the proposed al-
cedures in different portfolios setup. Finally, the

arks are presented in section 6.

iance Portfolio Selection Problem

rms, a collection of all stocks or assets held by a
te institute is known as a portfolio. The portfolio
lem refers to the optimal distribution of budget on
tocks such that the expected mean-return is max-
), and the risk is minimized. The factor to mea-
variance of the portfolio return, smaller the vari-

ll be the risk. This approach was introduced few
y Markowitz’s modern portfolio theory [13]. The
lio theory also assumes a perfect market without
ction costs where short sales are disallowed, but

infinitely divisible and can therefore be traded in
tive) fraction.
t decades the Markowitz’s modern portfolio the-
xtensively such as in [14, 15, 16, 17, 18]. For ex-

hors in [16] investigate a problem of continuous-
iance portfolio selection with stochastic param-
o-bankruptcy limit. In [18], the problem of dy-

o selection is conceived as a Markowitz problem
mean-variance. They conclude that the single-
witz quadratic programming algorithm can be
opriate modifications in the covariance and linear
rices to solve the problem of multi-period asset

Our approach to the mean-variance portfolio104

(MVPS) problem is a time-varying analog of the co105

ing static problem defined and studied in a number o106

such as [13, 14, 15, 16, 17, 18, 19]. The MVPS is a107

optimization problem for assembling a portfolio of as108

that its risk is minimized under a target expected re109

far as we are aware of, our time-varying version of t110

variance portfolio selection (TV-MVPS) problem is a111

proach that comprises robust techniques from neural112

to provide online, thus more realistic, solution.113

The space of marketed securities is X = [x1, x2, .114

Rm×n where xi ∈ Rm is the security i, i = 1, 2, . . . , n,115

prises from the last m observations of its price. In116

MVPS problem the expected return of the marketed117

r = [r1, r2, . . . , rn] ∈ Rn where ri =
∑m

j=1 xi( j)/m ∈118

expected return of the security i, i = 1, 2, . . . , n. The119

return of the portfolio is rp ∈ [min(r),max(r)] ⊆ R120

variance of the marketed space is σ2 =
∑n

i=1
∑n

i=1 xix jσ121

σi j = ρi jσiσ j is the variance and ρi j is the correla122

and j securities and σi is the variance of i security.123

σ2 = XTCX where C ∈ Rn×n is the covariance matr124

marketed space X.125

In the TV-MVPS we define the number τ ≤ m − 1126

where τ is a constant number and it denotes the ‘n127

time periods’. The τ is used for the calculation of128

ple moving average. A moving average (MA) is a ca129

for analyzing data points by creating a series of av130

the complete data set of different subsets. In technic131

sis of financial data such as stock prices, returns or vo132

trading the moving average is used as a technical indi133

combines price points of an instrument over a speci134

frame divided by the number of data points τ in order135

single trend line. Hence, a moving average is primar136

ging indicator and, for that reason, it is one of the mos137

tools for technical analysis. The unweighted mean o138

vious τ data is called simple moving average (SMA)139

observation prices xi(t + 1), xi(t + 2), . . . , xi(t + 1 +140

security i, i = 1, 2, . . . , n, the formula of the simple141

average is SMAt+1 =
∑t+1+τ

j=t+1 xi( j)/τ. In the case whe142

ating consecutive values and a new value, xi(t), come143

calculation, the oldest value, xi(t + 1 + τ), drops out144

SMAt = SMAt+1 + (xi(t) − xi(t + 1 + τ))/τ. The chos145

depends on the type of interest movement, for exam146

moderate, or long-term. Short-term averages respon147

to changes in the price of the underlying, while long148

erages are slow to react. Moving average levels can b149

in financial terms as support in a falling market or res150

a rising market. In general, there exist several types151

ing averages (see [20]). In this paper, we use only152

the simple moving average (SMA). All the rest types o153

averages can be applied to TV-MVPS similarly to SM154

The TV-MVPS comprises from m− τ in number co
values of an MA with τ in number observations for e
period. The time t ∈ [1,m − τ] denotes the new v
it comes into the calculation of the MA. Hence, the
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return of the marketed space is r(t) = [r1(t), r2(t), . . . , rn(t)] ∈
Rn where

is the expecte
ously, the ri(t)
on the r(t) for
rp(t) ∈ [min(r
space is

σ2(t

where σi j(t) =
correlation of
variance of xi(

σ2

where C(t) =155

of the markete156

variance portf157

the solution of158

for the securit159

The purpose160

observations i161

t is moving ac162

of the TV-MV163

outcomes of e164

of observation165

space ri(t) is a166

is, the bigger167

will be when t168

filters out the ‘169

Moreover, it a170

the same way.171

We convert172

time by inter173

functions wit174

r(t), C(t) ∈ C175

is the space o176

[0,m − τ − 1]177

[η1(t), η2(t), . .178

section’s 2.1.1179

LVI-PDNN of180

2.1.1. TV-MV181

The time-v182

specific target183

tion and expec184

(1)

(2)

(3)

(4)

e-varying
ollowing

(5)

(6)

(7)

, . . . , 0] ∈
n denotes

lio selec-
on to the
imization

(8)

(9)

(10)

(11)

en in the

Journal Pre-proof
ri(t) =
t+τ∑

j=t

xi( j)/τ ∈ R

d return of the security i, i = 1, 2, . . . , n. Obvi-
is an SMA and the TV-MVPS problem is built-up
every t. So, the expected return of the portfolio is
(t)),max(r(t))] ⊆ R, the variance of the marketed

) =
n∑

i=1

n∑

i=1

xi(t : t + τ)x j(t : t + τ)σi j(t),

ρi j(t)σi(t)σ j(t) is the variance and ρi j(t) is the
xi(t : t + τ) and x j(t : t + τ) and σi(t) is the
t : t + τ). That is,

(t) = X(t : t + τ, :)TC(t)X(t : t + τ, :),

cov(X(t : t + τ, :)) ∈ Rn×n is the covariance matrix
d space X(t : t+τ, :) at time t. The optimal mean-
olio is η(t) = [η1(t), η2(t), . . . , ηn(t)] where ηi(t) is
subsection’s 2.1.1 or 2.1.2 optimization problem

y i, i = 1, 2, . . . , n.

of the number τ is to keep steady the number of
n the TV-MVPS for each t in X(t : t + τ, :) while
ross the interval [1,m − τ]. Hence, the outcome
PS for each t can be comparable with all the rest
very other t ∈ [1,m − τ] under the same number
s. Note that, the expected return of the marketed
MA and it also has the properties of a MA. That

the τ of the TV-MVPS is the smoother the ri(t)
is moving across the interval [1,m−τ], because it
noise’ from random short-term price fluctuations.
ffects the optimal mean-variance portfolio η(t) in

the discrete TV-MVPS problem to continuous-
polated the r(t) and the C(t) into continuous
h any method of preferences. Consequently,
[0,m − τ − 1] where the space C[0,m − τ − 1]
f all continuous real functions on the interval

. The optimal mean-variance portfolio is η(t) =

. , ηn(t)] where ηi(t) is the online solution of sub-
or 2.1.2 optimization problem produced by the
section 3.

PS with specific expected return target

arying mean-variance portfolio selection for a
rp is the solution to the following risk minimiza-
ted return maximization constrained problem:

minη(t)
∑

i

∑

j

ηi(t) · η j(t) · σi j(t)

subject to
∑

i

ηi(t) · ri(t) = rp(t)

∑

i

ηi(t) = 1

ηi(t) ∈ R+0 , ∀i,

where (1) is the variance σ2(t) of the portfolio η(t).185

This problem can also be written in the tim186

quadratic programming (TVQP) problem form, by f187

[21], as follows:188

minη(t) ηT(t) ·C(t) · η(t)

subject to [1 r(t)]T · η(t) = [1 rp(t)]T

0 ≤ η(t) ≤ 1,

where C(t) is the covariance matrix of X(t), 0 = [0, 0189

Rn denotes the zero vector and 1 = [1, 1, . . . , 1] ∈ R190

the unit vector.191

2.1.2. TV-MVPS with all possible expected returns192

In addition, the time-varying mean-variance portfo193

tion for all possible targets rp (see [22]) is the soluti194

following risk minimization and expected return max195

constrained problem:196

minη(t)
∑

i

∑

j

ηi(t) · η j(t) · σi j(t)

subject to
∑

i

ηi(t) · ri(t) ≥ rp(t)

∑

i

ηi(t) = 1

ηi(t) ∈ R+0 , ∀i,

where (8) is the variance σ2(t) of the portfolio η(t).197

By following [21], this problem can also be writt198

TVQP problem form as follows:199
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minη(t) ηT(t) ·C(t) · η(t) (12)

subject to

where C(t) is200

Rn denotes th201

the unit vector202

3. Time-Vary203

lem via LV204

Regarding205

tion, over the206

oughly studie207

fundamental s208

a QP problem209

general type o210

on digital com211

problems on a212

scale real-tim213

lead to a decli214

nature [24]. C215

the less compu216

trix dimension217

the application218

gorithmic deve219

thorough rese220

developed and221

The approxim222

the strong alte223

due to its para224

implementatio225

3.1. TV-MVPS226

LVI-PDN227

To convert t228

turn target into229

(5)-(7) to the c230

ing to the TVQ231

• G(t) = 2C

• x(t) = η(t)

• D(t) = [1

• d(t) = [1

then the coeffi232

233

H(t) =
[

G
D(t)234

Furthermore, the definition of the primal-dual decision vector235

y(t) can be written as follows, along with the lower and upper236

ation and
tion pur-
y dimen-

meter de-

equality

turn tar-

expected
the equa-
rom [21].
if we set

(t) = [ ]
−(t) = 0
+(t) = 1

as

on vector
nd upper

ation and
tion pur-
y dimen-

meter de-

equality

f the in-
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−r(t)T · η(t) ≤ −rp(t) (13)

1T · η(t) = 1 (14)

0 ≤ η(t) ≤ 1, (15)

the covariance matrix of X(t), 0 = [0, 0, . . . , 0] ∈
e zero vector and 1 = [1, 1, . . . , 1] ∈ Rn denotes
.

ing Mean-Variance Portfolio Selection Prob-
I-PDNN

its fundamental role in mathematical optimiza-
past decades, most aspects of QP have been thor-
d. Several methods/algorithms for solving the
tatic QP problem have been proposed [23]. Such
has two common general type of solutions. One
f solution is the numerical algorithms conducted
puters and was commonly used to solve static QP
small scale. Nevertheless, in the case of large-

e applications, these numerical algorithms can
ne in performance due to their serial-processing
ommonly the less the arithmetic operations are,
tationally expensive the cube of the Hessian ma-
m will be. The other general type of solution is
of parallel processing which has driven the al-

lopment [25]. Therefore, the comprehensive and
arch of the recurrent neural network (RNN) has
investigated various dynamic and analog solvers.

ation by neural-dynamic is now considered one of
rnatives to QP problems in real-time computing,
llel distributed nature and easiness of hardware
n [26].

problem with specific expected return target via
N

he TV-MVPS problem with specific expected re-
an LVI-PDNN, we need to include the equations

oefficients of the LVI-PDNN from [21]. Accord-
P problem of subsection 2.1.1, if we set

(t) • B(t) = b(t) = [ ]

• g(t) = [ ]

r(t)]T • ζ−(t) = 0

rp(t)]T • ζ+(t) = 1,

cients of the LVI-PDNN can be written as

−DT(t)
0

]
, p(t) =

[
g(t)
−d(t)

]
.

boundaries to which it is subject:237

y(t) =
[

x(t)
µ(t)

]
, ς−(t) =

[
ζ−(t)
−ϖ 1ν

]
, ς+(t) =

[
ζ+(t)
+ϖ 1ν

]
,238

where239

• the constant ϖ ≫ 0 is the numerical represent240

+∞ replacement, large enough for implementa241

poses, and the 1ν vector is the correspondingl242

sioned vector of ones;243

• x(t) ∈ [ζ−(t), ζ+(t)] clearly denotes the basic para244

cision vector of the primal TVQP (5)-(7);245

• µ(t) ∈ Rl is the dual decision variable vector of the246

constraint (6).247

3.2. TV-MVPS problem with all possible expected re248

gets via LVI-PDNN249

To convert the TV-MVPS problem with all possible250

return targets into an LVI-PDNN, we need to include251

tions (12)-(15) to the coefficients of the LVI-PDNN f252

According to the TVQP problem of subsection 2.1.2,253

• G(t) = 2C(t) • d(t) = 1 • g

• x(t) = η(t) • B(t) = −r(t)T • ζ
• D(t) = 1T • b(t) = −rp(t) • ζ

then the coefficients of the LVI-PDNN can be written254

255

H(t) =


G(t) −DT(t) BT(t)
D(t) 0 0
−B(t) 0 0

 , p(t) =


g(t)
−d(t)
b(t)

 .256

Furthermore, the definition of the primal-dual decisi257

y(t) can be written as follows, along with the lower a258

boundaries to which it is subject:259

y(t) =
[

x(t)
µ(t)
ϱ(t)

]
, ς−(t) =

[
ζ−(t)
−ϖ 1ν

0

]
, ς+(t) =

[
ζ+(t)
+ϖ 1ν
+ϖ 1ν

]
,260

where261

• the constant ϖ ≫ 0 is the numerical represent262

+∞ replacement, large enough for implementa263

poses, and the 1ν vector is the correspondingl264

sioned vector of ones;265

• x(t) ∈ [ζ−(t), ζ+(t)] clearly denotes the basic para266

cision vector of the primal TVQP (12)-(15);267

• µ(t) ∈ Rl is the dual decision variable vector of the268

constraint (14).269

• ϱ(t) ∈ Rk is the dual decision variable vector o270

equality constraint (13).271
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3.3. Generalized LVI-PDNN Solution to 3.1 and 3.2 QP prob-272

lems273

The followi
time-varying Q

ẏ(t) = γ(I

where PΩ(·) is274

known as the275

the value of γ276

priately for sim277

While solvi
Rn+l+k initial
to the equilibr
optimal soluti
Furthermore, t
LVI-PDNN so

∥y

where ∥·∥2 cor278

To gain a be
vergence, the

e(t

Based on the279

vector to the o280

if ∥e(t)∥22 → 0.281

3.4. Converge282

In this subs283

gence analysis284

tual framewor285

the static gene286

ming (QP) and287

minx

subject to

The propos288

solve online (1289

and a system290

equations (6),291

(22), (23), resp292

y =

Here,ϖ represents a sufficiently large positive constant (or vec-
tor of suitable dimensions). The coefficients in equation (5) are

(23)

n [27].

1). It is
-(21) as:
≤ ς+} ⊂

(24)

). Start-
t) of the
uilibrium
ion x∗ to
l conver-
satisfying

ing with,
s of time-
te. Since
rying op-
uts from
ansform-
me func-

urn array
prises of
truct that

e portfo-

is a ma-
the mov-
∈ N.

variance
f the nor-
f the ex-
ch time-

Journal Pre-proof
ng dynamical system can be used to solve this
P problem

+ HT(t))(PΩ(y(t) − (H(t)y(t) + p(t))) − y(t)), (16)

the projection operator (see [21]) and γ > 0 is
design parameter. Within hardware permission,
>0 should be set as the largest, or selected appro-
ulation or experimental purposes.

ng static QP problems, beginning with any y(0) ∈
state, the LVI-PDNN state vector y(t) converges
ium point y∗, wherein the first n elements are an
on to the TVQP problems (5)-(7) and (12)-(15).
he following inequality is true for the static QP’s
lution, [27]:

− PΩ(y − (Hy + p))∥22 ≥ ρ ∥y − y∗∥22 , (17)

responds to the vector’s two-norm.
tter understanding of LVI-PDNN’s real-time con-
residual error is defined as

) = y(t) − PΩ(y(t) − (H(t)y(t) + p(t))).

inequality (17), the convergence of the y(t) state
ptimal y∗(t) mathematical solution can be reached

nce Analysis

ection, we present, in a formal form, a conver-
of the LVI-PDNN model, based on the concep-

k proposed in [27], by Zhang et al. We start with
ral problem, which handles quadratic program-
linear programming (LP):

xTGx/2 + gTx (18)

Dx = d (19)

Bx ≤ b (20)

ζ− ≤ x ≤ ζ+. (21)

ed primal-dual neural network from [27] could
8)-(21) based on the equivalence of QP/LP, LVI

of piecewise linear equations. Then, in our case,
(7) from [27] can be reformulated as equations
ectively, where:


x
µ
ϱ

 , ς
− =


ζ−

−ϖ1ν
0

 , ς
+ =


ζ+

+ϖ1ν
+ϖ1ν

 . (22)

defined as [27]

H =


G −DT BT

D 0 0
−B 0 0

 , p =


g
−d
b

 .

In the following, we will use the same notation as i293

Theorem 3.1 ((LP/QP-LVI equivalence) [27], Theorem
possible to reformulate the optimization problem (18)
find a vector w∗ ∈ Ω such that ∀w ∈ Ω := {w|ς− ≤ w
Rn+l,

(w − w∗)T (Hw∗ + p) ≥ 0.

Theorem 3.2 ((PDNN convergence) [27], Theorem 2294

ing from arbitrary initial state, the state vector w(295

primal-dual neural network (16) converges to the eq296

w∗, whose first m elements define the optimal solut297

the QP model (18)-(21). In fact, the exponentia298

gence can be reached if there is a constant ρ > 0299

∥w − PΩ(w − (Hw + p))∥22 ≥ ρ ∥w − w∗∥22 .300

4. Data Preparation301

In financial optimization models that we are deal302

the data inputs are time-series. A time-series is a serie303

indexed data points that means our data input is discre304

we are trying to find the online solution to a time-va305

timization problem, we need to convert those data inp306

discrete to continuous-time. We accomplish this by tr307

ing arrays and matrices of time-series to continuous-ti308

tions.309

In the TV-MVPS problem, we use the expected ret310

and the covariance matrix of a portfolio, which com311

time-series. The following Alg. 1 shows how we cons312

array r and matrix C.313

Algorithm 1 Algorithm for the data preparation of th
lio’s expected return and covariance.

Input: The marketed space X = [x1, x2, . . . , xn] which
trix of n time series as column vectors of m prices,
ing average’s number of time periods τ ≤ m − 1, τ

1: Set [m, n] =size(X)
2: Set r =zeros(m − τ, n)
3: Set C{m − s, 1} = {}
4: for i = 1 : m − τ do
5: Set h =max(X(i : τ + i − 1, :))
6: Set C{i, 1} = 100∗cov(X(i : τ + i − 1, :)./h)
7: Set r(i, :) =mean(X(i : τ + i − 1, :)./h)
8: end for

Output: The C structure array comprises of the co
matrices for each time periods of all time-series o
malized portfolio and the matrix r comprises o
pected return for a number of time periods of ea
series of the normalized portfolio.
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Figure 1: Data interpolation methods.

ormalize the portfolio’s data for each time period
e a correct covariance matrix for comparison pur-
ithout loss of generality, we multiply the covari-
with the number 100, which causes the variance

o to be in %.
r, three popular interpolation methods are em-
also offered by MathWorks, and we demonstrate

em with LVI-PDNN to produce faster results in
e input data are given in the form of time-series.
lation methods are the step function, the linear
ise cubic Hermite (P.C.Hermite). A graphic il-
ese methods is given in Figs. 1a, 1b and 1c, re-
te that the data used in Fig. 1 are the daily close
, Inc. (TSLA) in the year 2019.
, for the step function interpolation method, we
ocedure where we convert the time-series arrays
nto a piecewise constant function in Alg. 2. In
e linear and the P.C.Hermite interpolation meth-
ures are presented in [28]. Thus, we developed
functions, called sfots and sfotss, for exper-

ses to precisely implement Alg. 2. Furthermore,
8], the MATLAB functions employed for linear
re the linots and linotss, and for P.C.Hermite
re the pchinots and pchinotss. Note that the
unctions are used on C and r.
it is possible to split the time periods into daily

hly, quarterly, annual and their combinations in
heir results may not be equal in number for two
periods of the same division, which is due to the
ial markets may be close (special days of the cal-
r may be leap, one month may have fewer days,
he problem of missing observations between pe-
me division, we use the parameter ω for each t

I-PDNN, which divides the observations into the
That is, we employ fr(ωt) and fC(ωt) instead of
. The custom function omega, introduced in [29],
ut the time period t and the vector noep, which
mber of observations in each period, and outputs

er.
ost of the custom functions employed in this

Algorithm 2 Algorithm for the step function of the
return and the covariance.
Input: The marketed space X = [x1, x2, . . . , xn], w

matrix of n time series as column vectors of m pr
the moving average’s number of time periods τ
τ ∈ N.

1: Construct C and r from Alg. 1.
2: function g = sfots(data,t)
3: Set T as the floor price of t
4: return g = data(T + 1, :)
5: end function
6: Set fr = @(t)sfots(r, t)
7: function h = sfotss(data,t)
8: Set T as the floor price of t
9: return h = data{T + 1}

10: end function
11: Set fC = @(t)sfotss(C, t)
Output: The conversion of the covariance matrix an

pected return of n time series into time-varying s
tions, fC(t) and fr(t), respectively.

section are taken from [28, 29] and can be downloa354

https://github.com/SDMourtas/TV-MVPSTC-CC355

thermore, the ode15s MATLAB solver is employed o356

generate the online solution of the TV-MVPS problem357

the LVI-PDNN’s solutions are checked, for compar358

poses, against the assumed theoretical solutions pro359

the quadprog MATLAB function.360

5. Numerical Examples361

In this section, for investigating the performance362

PDNN, three numerical examples under several portfo363

are presented. The financial time-series used are ta364

https://finance.yahoo.com and the exact data us365

downloaded from https://github.com/SDMourta366

tree/main/TV-MVPS.367
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faster as
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that we
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s of Fig.

pectively.
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the years
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Figure 2: The stocks that were used in each of the three numerical examples.

l Example A

des the ticker symbols of the stocks that we use in
n this example. Let X = [x1, x2, x3, x4], where X
daily close prices of the 4 Market stocks of Fig.

018 to 10/12/2019 into x1, x2, x3 and x4, respec-
aforementioned time series, we use the first 50

bservations to calculate the expected return ma-
ariance structure XC of Alg. 1. Consequently, we
e rest of our data is the period from 10/12/2018
with 253 observations. We divide the remain-

en periods of equal number of observations and
ten period time-varying mean-variance portfo-

For the ten periods we have tspan = [0 10] and,
time-series comprises from 253 observations, we
0) = 253 as input in function omega. Thus, we
constant for all the range of tspan. Also, we use
erpolation in order to convert Xr and XC into the
and fC(t), respectively.
ple, we are going to examine two selections of

he first selection, we set rp = max(0.87+ 0.004t,
)) and we use the LVI-PDNN setup of subsection
cond selection, we set rp ≥max(0.87 + 0.004t,
)) and we use the LVI-PDNN setup of subsection
= 1e10, fr(ωt), fC(ωt) and solve the ẏ(t) (see

MATLAB’s ode15s with y(0) = rand(6, 1).
the results of the first selection in Figs. 3a-3d and
he second in Figs. 3e-3h where:

and 3e show the outcome η(t) of LVI-PDNN and
me of quadprog for a specific target expected
d for all expected returns above a specific target,
ely,

nd 3f show the error ∥e(t)∥22 between the outcome
VI-PDNN and the outcome of quadprog for a
arget expected return and for all expected returns
pecific target, respectively.

and 3g show the variance % of the portfolio η(t)
with the outcome of quadprog for a specific

target expected return and for all expected return405

specific target, respectively.406

• Figs. 3d and 3h show the expected return of th407

lio η(t), which is η(t) fr(ωt), compared with the408

of quadprog, the simple moving average SMA5409

which is mean( fr(ωt)), and the function 0.87+0.0410

specific target expected return and for all expecte411

above a specific target, respectively.412

The results that are depicted in Figs. 3a and 3e show413

LVI-PDNN solves the TV-MVPS problems and produ414

online solution, η(t). The solutions of the LVI-PDNN415

to the solution of the MATLAB function quadprog,416

the assumed theoretical solution, and the error ∥e(t)∥22417

them are depicted in Figs. 3d and 3h, respectively.418

noise in Figs. 3d and 3h is expected because we are dea419

time-series. The variance of the portfolios η(t) is show420

3b and 3f and their expected return are shown in Fig421

3g, respectively. We observe that when we set a spec422

expected return the variance of the portfolio is overa423

than if we had set as target all the expected returns abo424

cific target. Note that, as the value of parameter γ incr425

performance of the LVI-PDNN model improves and ap426

the solution of quadprog even more. The time consum427

this numerical example is presented in Tab. 1 and sh428

the LVI-PDNN method is on average almost two times429

compared to the quadprog function. Overall, the LV430

worked excellently in solving the two TV-MVPS prob431

5.2. Numerical Example B432

Fig. 2 includes the ticker symbols of the stocks
use in our portfolio. Let X = [x1, x2, x3, x4, x5, x6],
comprises the daily close prices of the 6 Market stock
2 from 19/3/2013 to 2/1/2020 into x1, x2, . . . , x6, res
For the aforementioned time series, we use the first 2
of the observations to calculate the expected return m
and covariance structure XC of Alg. 1. Consequentl
τ = 200. The rest of our data is the period from
to 2/1/2020 with 1511 observations. In particular,
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he convergence, the recorded error, the variance % and the expected return for a portfolio consisting of 4 stocks, in numerical exampl

016 have 252 observations each, the years 2017,
1 observations each and 2019, 2020 have 253
gether. So, we have tspan = [0 6] and by set-
252, 252, 252, 251, 251, 253] as input in function

52 , t ∈ [0, 3)
252 · 3 + 251 · (t − 3))/t , t ∈ [3, 5)
222 · 3 + 251 · 2 + 253 · (t − 5))/t , t ∈ [5, 6]

11 observations have been divided in terms of
h they belong. Also, we use P.C.Hermite data
n order to convert Xr and XC into the functions
, respectively.
mple, we examine two selections of portfo-
rst selection, we set rp = max(0.83 + 0.0066t,
)) and we use the LVI-PDNN setup of subsection
ond selection, we set rp = min( fr(ω(t))) and we
DNN setup of subsection 3.2. We set γ = 1e10,
and solve the ẏ(t) (see (16)) through MATLAB’s
(0) = rand(8, 1).
the results of the first selection in Figs. 4a-4d and
he second in Figs. 4e-4h where:

and 4e show the outcome η(t) of LVI-PDNN and
me of quadprog for a specific target expected
d for all expected returns, respectively,

nd 4f show the error ∥e(t)∥22 between the outcome
VI-PDNN and the outcome of quadprog for a
arget expected return and for all expected returns,
ely.

and 4g show the variance % of the portfolio η(t)
with the outcome of quadprog for a specific

target expected return and for all expected return455

tively.456

• Figs. 4d and 4h show the expected return of th457

lio η(t), which is η(t) fr(ωt), compared with the458

of quadprog and the simple moving average SM459

X(t), which is mean( fr(ωt)), for a specific target460

return and for all expected returns, respectively. A461

4d shows the function 0.83 + 0.0066t.462

The results that are depicted in Figs. 4a and 4e show463

LVI-PDNN solves the TV-MVPS problem and produ464

online solution, η(t). The solutions of the LVI-PDNN465

to the solution of the MATLAB function quadprog,466

the assumed theoretical solution, and the error ∥e(t)∥22467

them are depicted in Figs. 4d and 4h, respectively.468

noise in Figs. 4d and 4h is expected because we ar469

with time-series. The variance of the portfolios η(t)470

in Figs. 4b and 4f and their expected return are show471

4c and 4g, respectively. We observe that when we set472

target expected return the variance of the portfolio473

greater than if we had set as target all expected retu474

that, as the value of parameter γ increases, the perfor475

the LVI-PDNN model improves and approaches the so476

quadprog even more. The time consumption of this n477

example is presented in Tab. 1 and shows that the LV478

method is on average almost two times faster as com479

the quadprog function. Overall, the LVI-PDNN work480

lently in solving the two TV-MVPS problems.481

5.3. Numerical Example C482

This example covers three different portfolio confi
cases with a larger size to prove the reliability of the LV
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he convergence, the recorded error, the variance % and the expected return for a portfolio consisting of 6 stocks, in numerical examp

l-world datasets and demonstrate its efficacy in
arios, even for large data sets. In the ith case,
consider X = [x1, x2, . . . , xs], where X contains

e prices of the s stocks located in Fig. 2 from
10/2019 into x1, x2, . . . , xs, respectively. For the
d time series, we use the first 20 prices of the ob-
alculate the expected return matrix Xr and covari-
XC of Alg. 1. Consequently, we set τ = 20. The
a is the period from 1/5/2019 to 1/10/2019 with
ns. In particular, May, July, August have 22 ob-

h, June has 20 observations, September and Oc-
observations together. So, we have tspan = [0 5]
noep = [22, 20, 22, 22, 21] as input in the func-

e get

22 , t ∈ [0, 1)
(22 · 1 + 20 · (t − 1))/t , t ∈ [1, 2)
(22 · 1 + 20 · 1 + 22 · (t − 2))/t , t ∈ [2, 4)
(22 · 3 + 20 · 1 + 21 · (t − 4))/t , t ∈ [4, 5]

7 observations have been divided in terms of the
hey belong. Also, we use the linear data interpo-
to convert Xr and XC into the functions fr(t) and
ely.
e, we examine two selections of portfolios. In the
we set rp = max(0.94 + 0.004t, mean( fr(ω(t))))

VI-PDNN setup of subsection 3.1. In the sec-
we set rp = min( fr(ω(t))) and use the LVI-

f subsection 3.2. We set γ = 1e7, fr(ωt), fC(ωt)
ẏ(t) (see (16)) through MATLAB’s ode15s with
+ 2, 1).

rative Results and Discussion
from the numerical example 5.3 can be summa-
s:

• Tab. 1 shows the average execution time of LV497

and quadprog for each portfolio case in numeric498

ple 5.3, by using step function, linear and P.C.Her499

interpolation,500

• for the portfolios consisting of 20 stocks (1st ca501

5a-5c and Figs. 5d-5f show the error ∥e(t)∥22,502

the outcome η(t) of LVI-PDNN and the out503

quadprog, the variance % and the expected retu504

portfolio η(t), for the selection of a specific target505

return and for the selection of all expected ret506

MVPS, respectively,507

• for the portfolios consisting of 40 stocks (2n508

Figs. 5g-5i and Figs. 5j-5l show the error ∥e509

tween the outcome η(t) of LVI-PDNN and the510

of quadprog, the variance % and the expected511

the portfolio η(t), for the selection of a specific512

pected return and for the selection of all expecte513

TV-MVPS, respectively,514

• for the portfolios consisting of 60 stocks (3515

Figs. 5m-5o and Figs. 5p-5r show the error ∥e516

tween the outcome η(t) of LVI-PDNN and the517

of quadprog, the variance % and the expected518

the portfolio η(t), for the selection of a specific519

pected return and for the selection of all expecte520

TV-MVPS, respectively.521

The solution to the LVI-PDNN is similar to the so522

the MATLAB function quadprog, which is the assum523

retical solution, and the error ∥e(t)∥22 between them is524

in Figs. 5a, 5d, 5g, 5j, 5m and 5p. Also, the noise525

Figs. is expected because of the time series in the in526

9

Jo
ur

na
l P

re
-p

ro
of



0 1
10

-8

10
-6

10
-4

10
-2

10
0

||
e
(t

)|
|2 2

(a) 1st case, erro
and Quadprog wi

0.05

LVI-PDNN

1

4 5

10
0

VI-PDNN
ubsec. 3.2.

May Jun
0

0.01

0.02

0.03

0.04

0.05

V
a
ri
a
n
c
e
 %

(e) 1st case, var
with setup

Sep Oct

LVI-PDNN

Quadprog

Portfolios
3.1.

May Jun
0.9

0.92

0.94

0.96

0.98

1

E
x
p
e
c
te

d
 r

e
tu

rn

(i) 2nd case,
Portfolios with

Sep Oct

SMA20

LVI-PDNN

Quadprog

turn of
sec. 3.2.

0 1
10

-8

10
-6

10
-4

10
-2

10
0

||
e
(t

)|
|2 2

(m) 3rd case, erro
and Quadprog wi

4 5

VI-PDNN
ubsec. 3.2.

Figure 5: The r ample C.

variance % of527

return are sho528

in Figs.
t), which

Journal Pre-proof
2 3 4 5
Time

r between LVI-PDNN
th setup of subsec. 3.1.

May Jun Jul Aug Sep Oct

Time

0

0.01

0.02

0.03

0.04

V
a
ri
a
n
c
e
 %

Quadprog

(b) 1st case, variance % of Portfolios
with setup of subsec. 3.1.

May Jun Jul Aug Sep Oct

Time

0.9

0.92

0.94

0.96

0.98

E
x
p
e
c
te

d
 r

e
tu

rn

SMA20

0.94+0.004t

LVI-PDNN

Quadprog

(c) 1st case, expected Return of
Portfolios with setup of subsec. 3.1.

0 1 2 3
Time

10
-8

10
-6

10
-4

10
-2

||
e
(t

)|
|2 2

(d) 1st case, error between L
and Quadprog with setup of s

Jul Aug Sep Oct

Time

LVI-PDNN

Quadprog

iance % of Portfolios
of subsec. 3.2.

May Jun Jul Aug Sep Oct

Time

0.9

0.92

0.94

0.96

0.98

1

E
x
p
e
c
te

d
 r

e
tu

rn

SMA20

LVI-PDNN

Quadprog

(f) 1st case, expected Return of
Portfolios with setup of subsec. 3.2.

0 1 2 3 4 5
Time

10
-8

10
-6

10
-4

10
-2

10
0

||
e
(t

)|
|2 2

(g) 2nd case, error between LVI-PDNN
and Quadprog with setup of subsec. 3.1.

May Jun Jul Aug

Time

0

0.005

0.01

0.015

0.02

V
a
ri
a
n
c
e
 %

(h) 2nd case, variance % of
with setup of subsec.

Jul Aug Sep Oct

Time

SMA20

0.94+0.004t

LVI-PDNN

Quadprog

expected Return of
setup of subsec. 3.1.

0 1 2 3 4 5
Time

10
-8

10
-6

10
-4

10
-2

10
0

||
e
(t

)|
|2 2

(j) 2nd case, error between LVI-PDNN
and Quadprog with setup of subsec. 3.2.

May Jun Jul Aug Sep Oct

Time

0

0.005

0.01

0.015

0.02

V
a
ri
a
n
c
e
 %

LVI-PDNN

Quadprog

(k) 2nd case, variance % of Portfolios
with setup of subsec. 3.2.

May Jun Jul Aug

Time

0.9

0.92

0.94

0.96

0.98

1

E
x
p
e
c
te

d
 r

e
tu

rn

(l) 2nd case, expected Re
Portfolios with setup of sub

2 3 4 5
Time

r between LVI-PDNN
th setup of subsec. 3.1.

May Jun Jul Aug Sep Oct

Time

0

1

2

3

4

5

6

V
a
ri
a
n
c
e
 %

10
-3

LVI-PDNN

Quadprog

(n) 3rd case, variance % of Portfolios
with setup of subsec. 3.1.

May Jun Jul Aug Sep Oct

Time

0.9

0.92

0.94

0.96

0.98

1

E
x
p
e
c
te

d
 r

e
tu

rn

SMA20

0.94+0.004t

LVI-PDNN

Quadprog

(o) 3rd case, expected Return of
Portfolios with setup of subsec. 3.1.

0 1 2 3
Time

10
-8

10
-6

10
-4

10
-2

10
0

||
e
(t

)|
|2 2

(p) 3rd case, error between L
and Quadprog with setup of s

May Jun Jul Aug Sep Oct

Time

0

1

2

3

4

5

6

V
a
ri
a
n
c
e
 %

10
-3

LVI-PDNN

Quadprog

(q) 3rd case, variance % of Portfolios
with setup of subsec. 3.2.

May Jun Jul Aug Sep Oct

Time

0.9

0.92

0.94

0.96

0.98

1

E
x
p
e
c
te

d
 r

e
tu

rn

SMA20

LVI-PDNN

Quadprog

(r) 3rd case, expected Return of
Portfolios with setup of subsec. 3.2.

ecorded error, the variance % and the expected return for a portfolio consisting of 20, 40 and 60 stocks, in numerical ex

the portfolios η(t) for a specific target expected
wn in Figs. 5b, 5h and 5n and the variance % of

the portfolios η(t) for all expected returns are shown529

5e, 5k and 5q. The expected return of the portfolios η(530
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is η(t) fr(ωt), compared with the outcome of quadprog and the531

simple moving average SMA20 of X(t), which is mean( fr(ωt)),532

for a specific533

and 5o and the534

pected returns535

5c, 5i and 5o536

the ω parame537

want to comb538

ber of observa539

realistic. Ano540

the variance o541

turn are signifi542

for all expecte543

quadprog in n544

vious that the L545

dimension and546

lio comprises547

result than qua548

folio comprise549

result than qu550

lation method551

the LVI-PDNN552

the case of lin553

PDNN setup o554

as the dimens555

PDNN weaken556

tion. Overall,557

ple 5.3 show t558

time-varying m559

5.4. Time Com560

We record t561

MATLAB fun562

sumed theoret563

LAB function564

in Tab. 1. T565

merical examp566

ear interpolati567

tions. We als568

the correspond569

ts2func, int570

Tab. 1 denote571

instead of γ =572

using the MAT573

i5-6600K CPU574

10 64 bit Oper575

The genera576

function of tim577

linear interpol578

1, we conclud579

manipulate ma580

ternatives in t581

produce the sa582

interpolation,583

LAB function584

quadprog fun585

Table 1: Examples 5.1, 5.2 and 5.3 execution time.

3.2
Quadprog

4.7s
4.8s
16s
22s
13s

39.5s

3.2
Quadprog

80.9s*
85.1s*
10.6s
28.8s
13.4s
76.5s

3.2
Quadprog

11.5s
6s
6s

3.2
Quadprog

20s
13s

20.5s

3.2
Quadprog

820s
49s
63s

presents
] to solve
ubject to
ciency of
QP prob-
xamples.
that with
tion of a
selection
r alterna-
ss, as the
the LVI-

aches the
show the

datasets
lness for

fully ac-
, Science

rant No.

Journal Pre-proof
target expected return are shown in Figs. 5c, 5i
expected return of the portfolios η(t) for all ex-

are shown in Figs. 5f, 5l and 5r. Also, the Figs.
show the function 0.94 + 0.004t. By considering
ter, which is very helpful in the case where we
ine different time periods with a different num-
tions in each one of them, our approach is more
ther major finding is that, in all the tested cases,
f the portfolios for a specific target expected re-
cantly higher than the variance of the portfolios
d returns. The performance of LVI-PDNN and
umerical example 5.3 is shown in Tab. 1. It is ob-
VI-PDNN performance depends on the portfolio
on the interpolation method. When the portfo-

from 20 stocks the LVI-PDNN produces faster
dprog in all cases that we tried. When the port-

s from 40 stocks the LVI-PDNN produces slower
adprog only in the case of P.C.Hermite interpo-
. When the portfolio comprises from 60 stocks

produces faster result than quadprog only in
ear interpolation and only in the case of LVI-
f subsection 3.2. Consequently, we conclude that
ion of portfolio rising the performance of LVI-
s in comparison with quadprog MATLAB func-

the portfolio cases presented in numerical exam-
hat the LVI-PDNN worked excellently in solving

ean-variance portfolio selection problems.

parison of LVI-PDNN and Quadprog

he performance of LVI-PDNN with the proposed
ctions in Alg. 2 and [28, 29] against the as-
ical solutions produced by the quadprog MAT-
. The performance of LVI-PDNN is presented
ab. 1 shows the average execution time of nu-
les 5.1, 5.2 and 5.3 by using step functions, lin-

on functions and P.C.Hermite interpolation func-
o monitor the performance of LVI-PDNN with
ing MATLAB functions of MathWorks (namely
erp1) in Tab. 1. Furthermore, the notation (∗) in
s that the specific time corresponds to γ = 1e8
1e10. All numerical experiments are performed
LAB R2018b environment on an Intel® CoreTM

3.50 GHz, 16 GB RAM, running on Windows
ating System.

l conclusion arising from Tab. 1 is that the step
e series is the least efficient method and that the

ation is the most efficient. In addition, from Tab.
e that the proposed MATLAB functions, which
trices and structures time-series, are the best al-

erms of computation time responses, while they
me results. In the cases of linear and P.C.Hermite
only when we apply the proposed custom MAT-
s, the LVI-PDNN produce faster results than the
ction.

Interpolation Function Example A
4 Stocks Portfolio

Setup 3.1 Setup
LVI-PDNN Quadprog LVI-PDNN

sfots & sfotss 1.6s 5s 1.6s
ts2func 2s 5.3s 2s
linots & linotss 1.8s 3.6s 8.5s
interp1 (linear) 10.5s 5.9s 46s
pchinots & pchinotss 2.3s 3.9s 9s
interp1 (P.C.Hermite) 27s 9.8s 128s

Example B
6 Stocks Portfolio

Setup 3.1 Setup
LVI-PDNN Quadprog LVI-PDNN

sfots & sfotss 33.6s* 107.7s* 27.3s*
ts2func 55.8s* 118.4s* 41.6s*
linots & linotss 8.9s 17.2s 5.7s
interp1 (linear) 86.5s 33.1s 73.5s
pchinots & pchinotss 11.7s 18.4s 9.1s
interp1 (P.C.Hermite) 398.2s 99s 342.8s

Example C
20 Stocks Portfolio

Setup 3.1 Setup
LVI-PDNN Quadprog LVI-PDNN

sfots & sfotss 6s 15s 4.5s
linots & linotss 4.5s 8.5s 3s
pchinots & pchinotss 8.5s 10s 5s

40 Stocks Portfolio
Setup 3.1 Setup

LVI-PDNN Quadprog LVI-PDNN
sfots & sfotss 16s 27s 10.5s
linots & linotss 34s 36s 10s
pchinots & pchinotss 75s 37s 35.5s

60 Stocks Portfolio
Setup 3.1 Setup

LVI-PDNN Quadprog LVI-PDNN
sfots & sfotss 1900s 1000s 1400s
linots & linotss 51s 40s 37s
pchinots & pchinotss 380s 248s 179s

6. Conclusion586

This paper introduces the TV-MVPS problem and587

its online solution. We take the LVI-PDNN from [21588

the time-varying QP financial problem in real time, s589

equality, inequality and boundary constraints. The effi590

the LVI-PDNN model in such a time-varying financial591

lem has been demonstrated by a number of numerical e592

Conforming to our numerical simulations, we deduced593

the LVI-PDNN, our approach provides the online solu594

time-varying version of the mean-variance portfolio595

problem. It is also a highly competitive, or even bette596

tive to the quadprog MATLAB function. Nonethele597

value of the γ parameter increases, the performance of598

PDNN model improves, and more accurately appro599

predicted theoretical solution. Experimental results600

reliability of the LVI-PDNN method on the real-world601

in different portfolios setup, and demonstrate its usefu602

normal size data sets in realistic scenarios.603
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knowledges support from the Ministry of Education605

and Technological Development, Republic of Serbia, G606

174013.607

11

Jo
ur

na
l P

re
-p

ro
of



References608

[1] J.-R. Yu, W.609

forecasting610

Finance 66611

[2] V. N. Katsi612

positive bas613

C[a, b], Ap614

doi:10.10615

[3] V. N. Katsi616

Replication617

tional Econo618

URL http:619

[4] H. Holden,620

costs, Stoch621

tic Processe622

651219.623

[5] Y. Zhang, J624

lution of kin625

joint velocit626

658–667. d627

[6] Yunong Zha628

dant manipu629

Transaction630

doi:10.11631

[7] L. Jin, Y.632

quadratic pr633

cation to ki634

Transaction635

10.1109/T636

[8] L. Yu, S.637

skewness m638

search 35 (1639

[9] A. Fernánde640

puters & Op641

[10] M. A. Medv642

ized time-va643

algorithm:644

Appl Sci (20645

[11] V. N. Katsik646

ear transacti647

117–124.648

[12] F. Uhlig, Y.649

networks an650

its Applicat651

[13] H. Markow652

77–91.653

[14] I. Kulali, P654

Mean-Varia655

8 (7) (2016)656

[15] Z. Dai, A C657

Model, Mat658

[16] T. R. Bielec659

variance po660

Finance 15661

00218.x.662

[17] G. Cornue663

Cambridge:664

CBO978051665

[18] T. Draviam,666

ciples for m667

A. 458 (200668

[19] H. M. Mark669

lem, Philos670

(1994) 543–671

[20] V. Zakamul672

Performanc673

[21] Y. Zhang, F674

based PDNN675

gramming,676

IJCNN 201677

3160. doi:678

[22] H. M. Markowitz, Portfolio Selection: Efficient Diversification of Invest-679

ments, Cowles Foundation Monograph: No. 16, Yale University Press,680

ms, Cam-
:10.1017/

ic method,

neration of
art B (Cy-
etics 42 (4)

s for Opti-
ontrol 2006
09/ICNSC.

solving on-
005, Amer-
1109/ACC.

Cao, Time-
n Costs and

Algorithm
:https://

Cao, Time-
costs prob-
athematics

Journal Pre-proof
-J. P. Chiou, W.-Y. Lee, S.-J. Lin, Portfolio models with return
and transaction costs, International Review of Economics &
(2020) 118–130. doi:10.1016/j.iref.2019.11.002.
kis, S. D. Mourtas, A heuristic process on the existence of
es with applications to minimum-cost portfolio insurance in
plied Mathematics and Computation 349 (2019) 221–244.
16/j.amc.2018.12.044.
kis, S. D. Mourtas, ORPIT: A Matlab Toolbox for Option
and Portfolio Insurance in Incomplete Markets, Computa-
mics (2019) 1doi:10.1007/s10614-019-09936-5.
//dx.doi.org/10.1007/s10614-019-09936-5

L. Holden, Optimal rebalancing of portfolios with transaction
astics An International Journal of Probability and Stochas-
s 85 (3) (2012) 371–394. doi:10.1080/17442508.2011.

. Wang, Y. Xia, A dual neural network for redundancy reso-
ematically redundant manipulators subject to joint limits and
y limits, IEEE Transactions on Neural Networks 14 (3) (2003)
oi:10.1109/TNN.2003.810607.
ng, Jun Wang, Obstacle avoidance for kinematically redun-
lators using a dual neural network, Part B (Cybernetics) IEEE
s on Systems, Man, and Cybernetics 34 (1) (2004) 752–759.
09/TSMCB.2003.811519.
Zhang, S. Li, Y. Zhang, Modified ZNN for time-varying
ogramming with inherent tolerance to noises and its appli-
nematic redundancy resolution of robot manipulators, IEEE
s on Industrial Electronics 63 (11) (2016) 6978–6988. doi:

IE.2016.2590379.
Wang, K. K. Lai, Neural network-based mean–variance–
odel for portfolio selection, Computers & Operations Re-
) (2008) 34–46.
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