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ABSTRACT
To alleviate the computational burden for structural reliability analysis involving complex nu-
merical models, many adaptive algorithms based on surrogate models have been developed.
Among the various surrogate models, the support vector machine for regression (SVR) which
is derived from statistical learning theory has revealed superior performance to handle nonlin-
ear problems and avoid over fitting with excellent generalization ability. Therefore, to take the
advantages of the desirable properties of SVR, an Adaptive algorithm based on the Bayesian
SVR model (ABSVR) is proposed in this study. In ABSVR, a new learning function is devised
for effective selection of informative sample points following the idea of the penalty function
method in optimization. To avoid adding redundant samples that locate too close to the existing
ones, a distance constraint term is added to the learning function. Besides, an adaptive sampling
region scheme is employed to filter out samples with weak probability density to further enhance
the efficiency of the proposed algorithm. Moreover, a hybrid stopping criterion based on error-
based stopping criterion using the bootstrap confidence estimation is developed to terminate
the active learning process, ensuring that the learning algorithm stops at an appropriate stage.
The proposed ABSVR is easy to implement since no embedded optimization algorithm nor iso-
probabilistic transformation is required. The performance of ABSVR is tested on six numerical
examples featuring different complexity, and the results demonstrate the superior performance
of ABSVR for structural reliability analysis both in terms of accuracy and efficiency.

1. Introduction

It is well recognized that the presence of uncertainties in practical engineering problems significantly affects the
performance of structural systems, and uncertainty quantification with due consideration of these randomnesses are
indispensable to the safety assessment, optimal design and serviceability maintenance of structures [1, 2]. Hence,
structural reliability theory which gives a rational treatment and provides a quantitative evaluation of uncertainties has
gained increasing attention in recent years. Structural reliability analysis aims to determine the probability of failure of
a structural system with respect to some performance criterion in the presence of various uncertainties. Typically, the
fundamental problem of structural reliability analysis can be mathematically defined as a multi-dimensional integral:

Pf = Prob[G(x) ≤ 0] = ∫Ωf
fX(x)dx = ∫ℝn

IF (x)fX(x)dx (1)

where x = [

x1, x2, ..., xn
]T is a random vector with joint probability density function (PDF) fX(x), representing the

uncertainties arise from loading conditions, material properties, environmental factors, etc.; G(x) is the limit state
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function (LSF) defined in terms of x, i.e. G(x) ∶ � ⊆ ℝn → ℝ,x ↦ g(x); Ωf is the failure domain defined such that
Ωf = {x ∈ � ∶ G(x) ≤ 0}, with its complementary set Ωs = {x ∈ � ∶ G(x) > 0} denoting the safe domain and
Ω0 = {x ∈ � ∶ G(x) = 0} representing the limit state surface (LSS); and IF (x) is the indicator function defined as:

IF (x) = IΩf (x) =
⎧

⎪

⎨

⎪

⎩

1 x ∈ Ωf
0 x ∈ Ωs

(2)

The definition of failure probability in Eq. (1) is simple, but its calculation by direct integration is often intractable
because the dimensionality of the integral is generally high and the LSS is of complicated geometry, especially for
complex physical problems. The challenge of accurately computing this integral has led to the development of various
approximation methods, among which the Monte Carlo simulation (MCS) is one of the most commonly used methods
because it is simple to implement and insensitive to the problem’s specific nature. TheMCS approach generates sample
points using the distribution function associated with each random variable to estimate the failure probability, which
is approximated as the ratio of failure realizations to the total number of evaluations:

Pf ≈ P̂MCSf = 1
N

N
∑

i=1
IF (xi) (3)

where P̂MCSf is the failure probability estimator of MCS, and {x(i), i = 1,… , N
} is the Monte Carlo population with a

sample size ofN . This estimator is asymptotically unbiased according to the central limit theorem, and its coefficient
of variation is:

�MCS =

√

1 − Pf
NPf

(4)

Thus, to ensure a small variation of the failure probability estimation, the required number of samples can be pro-
hibitively high, i.e. the convergence rate is low (

∝ N−1∕2), especially for rare failure events. Numerous methods
have been developed to reduce the computational cost of reliability analysis, and they can be broadly classified into
five different groups, namely the approximate analytical methods [3, 4], the advanced simulation methods [5, 6], the
moment methods [7, 8], the probability density evaluation methods [9, 10] and the surrogate-based methods [11–13].
Although the advanced simulation methods, such as importance sampling [14, 15], directional simulation [16, 17],
line sampling [18], hierarchical failure clustering (HFC) [19] and subset simulation [20, 21]), can greatly enhance the
efficiency of MCS, the computational burden is still excessive for practical engineering problems. As an efficient al-
ternative to the simulation methods, the analytical methods such as first-order reliability method (FORM) [22, 23] and
second-order reliability method (SORM) [24, 25] are well-known for its simplicity and efficiency. In these methods,
the performance function is usually approximated by a low-order (linear or quadratic) Talyor series expansion at the
most probable point (MPP), where the isoprobabilistic transformation techniques are usually employed to transform
the random variables from the physical space to the standard normal space [26, 27], as illustrated in Fig. 1. Although
they can provide reasonably accurate results with remarkable efficiency for some specific problems, the iterative MPP
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Figure 1: Isoprobabilistic transformation from physical space to standard normal space (adapted from [28].)

searching process may encounter non-convergence issues and the accuracy of the generated results cannot be guaran-
teed for problems with multiple MPPs and/or with highly nonlinear LSF. In this regard, the surrogate-based methods,
which can reach a good trade-off between efficiency and accuracy, are of particular interest in this paper.

The key idea of surrogate-based methods is to construct an easy-to-evaluate mathematical model to replace the
original complex LSF, through which many more simulation runs can be readily afforded [29]. Some of the repre-
sentative surrogate modeling techniques include the response surface method (RSM) [30, 31], the polynomial chaos
expansion (PCE) [32, 33] , the Kriging method [34, 35], the radial basis function (RBF) [36, 37], the support vector
machine (SVM) (formulated in terms of classification (SVM) [38] or regression (SVR)) [39, 40], the artificial neural
networks (ANN) [41–43] and more recently, the ensemble of surrogates [44], among others. A crucial issue for the
construction of these surrogate models is the selection of an appropriate design of experiment (DoE), i.e. input-output
training pairs. In general, there are two strategies for the DoE selection, namely the one-shot sampling schemes and
the sequential sampling methods. The traditional one-shot sampling methods try to generate space-filling samples
over the entire random space with predefined sample size. In the context of structural reliability analysis, however,
only regions near the LSS are of great interest and the appropriate number of samples is hard to determine a priori as
too large or too small the sample size will both jeopardize the performance of surrogate-based methods. Therefore,
various adaptive sampling schemes capable of exploiting the information contained in the constructed surrogate model
have been developed to enrich the DoE in an iterative manner [37, 45, 46]. Reliability analysis methods empowered
with adaptive sampling schemes are known as the active learning methods, where a preliminary surrogate model is
established based on the initial DoE and then updated by sequentially enriching the DoE according to some judiciously
selected learning functions. The general procedure of surrogate-based active learning method for reliability analysis is
illustrated in Fig. 2. By doing so, the efficiency of structural reliability analysis can be significantly improved without
compromising the accuracy.

Considering the superior performance of surrogate-based active learning methods, the development of effective
learning algorithms is an active research topic in structural reliability community. Bichon et al. [47] proposed an
Efficient Global Reliability Analysis (EGRA) method, in which a learning function known as Expected Feasibility
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Figure 2: The general procedure of surrogate-based active learning method for reliability analysis.

Function (EFF) is applied to select the new samples for the enrichment of DoE. This learning function indicates how
well a point is expected to locate on the LSS, i.e. G(x) = 0. The accuracy and efficiency of this method are demon-
strated through numerical examples, yet its global approximation property may introduce redundant points with weak
probability densities. To address this issue, an active learning method known as AK-MCS that combines Kriging with
crude MCS was developed by Echard et al. [48]. In AK-MCS, a large number of Monte Carlo populations are eval-
uated on the learning function U , and the one that minimizes U is selected as the best next point to be added to the
DoE. This learning process enables the selection of samples with large probability density and assigns more weights
to the points close to the LSS. An active SVR-based method was presented in [49], where an adaptive algorithm is
proposed for selecting samples close to the LSS by rotating the experimental design according to the directions of the
gradient of the established SVR model. To effectively generate samples in the most likely failure regions, the Markov
chain simulation is employed in [50], where the SVR model is iteratively refined by adding new Markov chain sam-
ples. Thanks to these pioneering works, new adaptive algorithms are emerging to further improve the computational
accuracy and efficiency of structural reliability analysis, which can be summarized into the following aspects:

• New learning functions: More effective learning functions are developed to select sample points in the vicinity
of LSS (e.g. the learning function H based on information entropy theory [51], the learning function REIF
and FNEIF based on folded normal distribution [52, 53]), to account for dependencies between the Kriging
predictions (e.g. [54, 55]), to avoid clustering of the generated samples (e.g. [40, 56]), and to consider the joint
PDF of random variables (e.g. the least improvement function(LIF) [57], the learning function REIF2 [52] and
the active weight learning function (UAWL) [58]).

• Rare failure events: Integration methods are developed to deal with problems of small failure probability, and
they include importance sampling (AK-IS) [59–62], line sampling [63], subset simulation (e.g. AK-SS [64, 65],
2 SMART [66] and ASVR [67]), and spherical decomposition-MCS [68, 69], among others.

• Effective sampling regions: Sampling regions are better defined to enhance the computational efficiency, and
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they include the adaptive trust region method [70], the adaptive sampling region method [71, 72], and the
probability-adaptive Kriging method based on sampling in n-Ball (PAK-Bn) [73].

• New stopping criteria: New stopping criteria are developed for more accurate termination of the learning
process to avoid premature of the algorithm or unnecessary calls to the performance functions, and the include
the error-based stopping criterion (ESC) [74, 75] and its improvement based on bootstrap confidence estimation
(BCE) [76].

• Extended applications: Adaptive algorithms are extended to solve system reliability problems (e.g. EGRA
[77], AK-SYS [78], CSF-ALK [79], EEK-SYS [80], and [81]), to enhance the computational efficiency of re-
liability based design optimization (RBDO) (e.g. [82, 83]), and to efficiently deal with problems of imprecise
probability models (e.g. [84, 85]).

However, it is noted that most of the aforementioned active learning methods are developed based on the Kriging
model, where the error at unknown points can be empirically measured by the Kriging variance. Thus, the use of
these learning algorithms to other surrogate models is not directly applicable unless additional effort such as bootstrap
resampling strategy [86] or k fold cross-validation [87] is employed to get the prediction variance, which is a cumber-
some process. To address this issue, several studies have been devoted to getting the model variance in a more effective
way, among which the recently proposed Bayesian inference framework has shown promising potential [88, 89]. The
Bayesian compressed sensing (BCS) technique is incorporated with a parameterized prior for the establishment of
sparse PCE in [88], whereas Bayesian SVR models are developed based on different loss functions using Bayesian
inference theory in [89, 90]. Similar to the Kriging method, the Bayesian sparse PCE and Bayesian SVR are capable
of providing probabilistic prediction at a new point under the Gaussian process assumption. Therefore, the ideas un-
derlying Kriging-based active learning algorithms can readily be adapted to these Bayesian induced surrogate models
[91, 92].

Unlike models such as ANN and PCE which apply the principle of empirical risk minimization to mimic a true
model, the SVR (stems from SVM for regression) is developed in the field of statistical learning theory and has revealed
superior performance to handle nonlinear problems and avoid overfitting with good generalization ability. In this
regard, the adaptive algorithm based on Bayesian SVR is expected to be well-suited for structural reliability analysis.
In this paper, a novel Adaptive Bayesian SVR method (ABSVR) that combines with sampling region scheme and
hybrid stopping criterion is proposed for efficient reliability analysis with high accuracy. Following the idea of penalty
function method in optimization, a new sampling-based learning function (SLF) is devised for effective selection of
informative sample points, e.g. points close to the LSS in critical regions with significant contribution to the failure
probability. To avoid adding redundant samples clustering with the existing ones, a distance constraint term is added
to the learning function. Besides, the adaptive sampling region scheme [71] originally developed for Kriging-based
approach is adapted here to filter out sample points in regions with weak probability density, in that the samples in
these regions have a negligible effect on the failure probability evaluation. In this way, the computational efficiency
of ABSVR can be enhanced by using a set of important samples. Moreover, a hybrid stopping criterion based on
the bootstrap confidence estimation (BCE) proposed in [76] is developed to terminate the active learning process,
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ensuring that the learning algorithm stops at an appropriate stage. The proposed ABSVR is easy to implement since
no embedded optimization algorithm nor iso-probabilistic transformation is required.

The rest of this paper is organized as follows. The basic principle of Bayesian SVRmodels is introduced in § 2. The
following section recalls two advanced schemes for adaptive algorithm, namely the adaptive sampling region scheme
and the error-based stopping criterion. § 4 presents the detailed derivation of the new learning function, and the hybrid
stopping criterion is proposed in § 5. The implementation procedure of the proposed ABSVR is summarized in § 6.
The accuracy, efficiency and robustness of ABSVR are illustrated in § 7 using several numerical examples. Finally,
concluding remarks are drawn in § 8.

2. Basic theory of Bayesian support vector regression

In this section, the basic theory of Bayesian support vector regression (BSVR) [89, 90, 92] is briefly recapped,
with an emphasis on the BSVR models established with the square loss function (SLF) and the "-insensitive square
loss function (EISLF):

lSLF(�) =
1
2
�2 (5)

lEISLF(�) =
⎧

⎪

⎨

⎪

⎩

0, if |�| ≤ "
1
2 (|�| − ")

2, otherwise (6)

where " (with " > 0) is an unknown parameter to be determined. It is noted that a soft insensitive loss function (SILF)
is presented in [90] for the same purpose.

2.1. Bayesian inference framework
In regression problems, a set of paired samples, i.e. D =

{(

xi, yi
)

∣ i = 1,… , N,xi ∈ ℝn, yi ∈ ℝ
}, are used as

the training data for inferring the functional relation ℎ(x) such that:

yi = ℎ
(

xi
)

+ �i i = 1, 2,… , N (7)

where � = [

�1, �2,⋯ , �N
]T are independent identically distributed random noises with the probability distribution

P
(

�i
):

P (�) = 1
Z�

exp(−�l(�)) (8)

where Z� = ∫ exp(−�l(�))d�, � is a constant value greater than zero and l(�) is one of the loss functions defined in
Eq. (6) and Eq. (5).

In the Bayesian framework, the regression model ℎ (xi
) is assumed as a zero-mean stationary Gaussian process,

with the covariance between two outputs defined as:

Cov
[

ℎ
(

xi
)

, ℎ
(

xj
)]

= k
(

xi,xj
)

=
n
∏

k=1
exp

(

−�k
(

xki − x
k
j

)2
)

(9)
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where � = [

�1, �2,⋯ , �n
]T are the corresponding hyper-parameters. Let � denote all hyper-parameters in the re-

gression model and H =
[

ℎ
(

x1
)

, ℎ
(

x2
)

,⋯ , ℎ
(

xN
)]T . Then, given � , the prior probability of H is a multivariate

Gaussian distribution:
P (H ∣ �) = 1

ZH
exp

(

−1
2

H TR −1H
)

(10)

where R ∈ ℝN×N is the covariance matrix with the ijth element expressed as R ij = Cov
[

ℎ
(

xi
)

, ℎ
(

xj
)]

, i, j =

1, 2,… , N , andZH = (2�)N∕2|R |

1∕2. Given that the random noises � = [

�1, �2,⋯ , �N
]T are independent identically

distributed, the likelihood function of the given data set D can be evaluated as [90]:

P (D ∣ H ,�) =
N
∏

i=1
P
(

yi − ℎ
(

xi
)

∣ G, 

)

=
N
∏

i=1
P
(

�i
) (11)

where the probability distribution P
(

�i
) of �i is given in Eq. (8). Substituting Eq. (10) and Eq. (11) into the Bayes’

theorem P (H ∣ D ,�) = P (D ∣H ,�)P (H ∣�)
P (D ∣�) , the posterior probability P (H ∣ D ,�) of H can be derived as:

P (H ∣ D ,�) = 1
Z
exp

(

−�
N
∑

i=1
l
(

yi − ℎ
(

xi
))

− 1
2

H TR −1H

)

(12)

where Z = ∫ exp(−S(H ))dH with S(H ) = �
∑N
i=1 l

(

yi − ℎ
(

xi
))

+ 1
2H TR −1H . Thus, the maximum a posteriori

estimate of P (H ∣ D ,�) is equivalent to the minimizer of the following optimization problem [89, 92]:

min
H

S(H ) = �
N
∑

i=1
l
(

yi − ℎ
(

xi
))

+ 1
2

H TR −1H (13)

2.2. Bayesian support vector regression
Introducing the square loss function defined in Eq. (5) into the optimization problem described in Eq. (13), the

minimization problem is reformulated as [89]:

min
H

1
2

H TR −1H +
�
2

N
∑

i=1
�2i (14)

subject to
yi = ℎ

(

xi
)

+ �i (15)

The optimal solution of the above optimization problem is as:

Ĥ SLF = R (R + I∕�)−1Y (16)

where I ∈ ℝN×N is an identity matrix, and Y =
{

y1,⋯ , yN
}T.

Similarly, using the "-insensitive square loss function defined in Eq. (6), the optimization problem in Eq. (13)
can be formulated as a constrained convex optimization problem by introducing slack variables � = (

�1,… , �N
) and
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�∗ =
(

�∗1 ,… , �∗N
):

min
H

1
2

H TR −1H +
�
2

N
∑

i=1

(

�2i + �
∗2
i
) (17)

subject to
⎧

⎪

⎪

⎨

⎪

⎪

⎩

yi − ℎ
(

xi
)

≤ " + �i for i = 1,… , N

ℎ
(

xi
)

− yi ≤ " + �∗i for i = 1,… , N

�i, �∗i ≥ 0 for i = 1,… , N

(18)

The optimal solution of the above optimization problem (Eq. (17) and Eq. (18)) can be facilitated in the context of
Lagrange duality, which leads to the following regression function:

Ĥ EISLF = R
(

� − �∗
) (19)

where �∗ = (

�∗1 ,⋯ , �∗N
)T ,� =

(

�1,⋯ , �N
)T are the Lagrangian multipliers, and support vectors are defined as the

sample points with �i − �∗i ≠ 0.
The remaining problem is to find the optimal values for the hyper-parameters in the support vector regression

(SVR)model. In the Bayesian framework, the hyper-parameters can be obtained by solving the followingmaximization
problem:

max
�

P (D ∣ �) = ∫ P (D ∣ H ,�)P (H ∣ �)dH = Z−1
H Z−N

� ∫ exp(−S(H ))dH (20)

For the SVR model established using the SLF lSLF(�), the maximization problem in Eq. (19)) can be transformed into
the following minimization problem [89]:

min
�
− ln(P (D ∣ �)) = �

N
∑

i=1
lSLF

(

yi − ℎ̂
(

xi
)

)

+ 1
2
�TR � + 1

2
ln |I + �R | + N

2
ln(2�

�
) (21)

where � = [

�1,⋯ , �N
]T = (R +I∕�)−1Y . Similarly, for the SVR model established using the EISLF lEISLF(�), with

S(H ) approximated by a second order expansion, the maximization problem in Eq. (19)) can be reformulated as [89]:

min
�
− ln(P (D ∣ �)) = �

N
∑

i=1
lEISLF

(

yi − ℎ̂
(

xi
)

)

+ 1
2
(

� − �∗
)T R

(

� − �∗
)

+ 1
2
ln |L | +N ln(2" +

√

2�
�
) (22)

where L = I + ��R , and � is a diagonal matrix with its entry equal to 1 for support vectors and zero otherwise.

2.3. Probabilistic prediction of BSVR
Under the Gaussian process assumption, the posterior distribution of ℎ (x) is Gaussian [89, 90]:

P (ℎ(x) ∣ D ) = N
(

�̂(x), �̂2(x)
) (23)
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where �̂(x) and �̂2(x) are the mean and variance of the BSVR model, respectively. For the SLF-based BSVR model,
the �̂s(x) and �̂2s (x) can the obtained as:

�̂s(x) = k(x,X)(R + I∕�)−1Y (24)

�̂2s (x) = k(x,x) − k(x,X)(R + I∕�)−1k(X,x) (25)

where X =
{

x1,⋯ ,xN
}T, and k(x,X) = k(X,x)T = [

k
(

x1,x
)

,⋯ , k
(

xN ,x
)]T is the covariance vector between

ℎ (x) at a new point x and those in H evaluated at X, which can be calculated from Eq. (9). For the EISLF-based
BSVR model, the �̂e(x) and �̂2e (x) can the obtained as:

�̂e(x) = k(x,X)R −1Ĥ EISLF =
m
∑

j=1

(

�j − �∗j
)

k
(

x,xj
) (26)

�̂2e (x) = k(x,x) − km
(

x,Xm
) (

R m + Im∕�
)−1 km

(

Xm,x
) (27)

where Ĥ EISLF is given in Eq. (19), km
(

x,Xm
) and R m are the subsets of k(x,X) and R , repectively, with their

elements evaluated at the support vectors Xm.
The BSVR models are established following the above procedures, and more information regarding the derivation

of BSVR can be found in [89, 90, 92]. The probabilistic prediction parameters �̂(x) and �̂2(x) can now be employed to
devise active learning algorithms for efficient reliability analysis based on the BSVR model, which is the main focus
of this paper and will be explained in the following sections.

3. The advanced schemes for adaptive algorithm

The critical role of learning function in adaptive algorithms is well-recognised, while the influence of effective sam-
pling regions for the selection of sample points and the error-based stopping criteria for the termination of the learning
process did not draw too much attention until recently. Indeed, improper sampling scheme may introduce samples with
weak probability densities that make barely any contribution to the failure probability, whereas inadequate selection
of stopping criterion may lead to inaccurate estimation of the failure probability or results in high computational cost
because of unnecessary calls to the performance function. Both can adversely affect the performance of an adaptive
algorithm. To address these issues, several sampling region schemes (SRS) [71–73] and error-based stopping criteria
(ESC) [74–76] have been proposed for effective reliability analysis. In this study, the sampling region scheme pre-
sented in [71] and the ESC using bootstrap confidence estimation (BCE) [76] will be integrated into the proposed
method, namely the ABSVR.

3.1. Adaptive sampling region scheme
In the adaptive SRS, the region with the probability density larger than a threshold is progressively updated in the

learning process, rather than fixing the sampling region in a predefined domain. The region of interest in this scheme
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(a) (b)
Figure 3: Schematic illustration of the SRS with p(i)t = 0.1 and � = 0.2: (a) a 2D case; (b) a 3D case (only half of the ball
is shown). (For interpretation of the references to color in this figure, please refer to the web version of this article.)

is given as [71]:
Ω̂(i) =

{

∀x ∶ fX(x) > p
(i)
t

}

(i = 1, 2,…) (28)

where p(i)t is the threshold value of the probability density in the i-th iteration, and can be determined according to the
following equation:

P
{

fX(x) < p
(i)
t

}

= �P̂ i−1f (29)

where P
{

fX(x) < p
(i)
t

}

denotes the probability of the joint PDF of the random variables being smaller than p(i)t , P̂ i−1f

is the failure probability estimated from the established BSVR model in the (i−1)-th iteration of the learning process,
� is the coefficient used to control the size of the sampling region and can generally be selected from [0.05, 0.2].

In each iteration, the threshold value p(i)t can be obtained as the (�P̂ i−1f )-th percentile of the variable F = fX(x)

by means of MCS. Once the sampling region as expressed in Eq. (28) is defined, the candidate samples for learning is
generated in this region, thus those with small probability density will not be selected. In this way, the samples with
negligible effects on the failure probability estimation will be filtered out, which can greatly enhance the efficiency of
the learning algorithm. To facilitate a visual understanding of the idea underlying the SRS, two illustrative examples
are given Fig. 3, where p(i)t is assumed to be 0.1 and � = 0.2. It is noted that theMCS population consists of the samples
being filtered out by SRS (blue points) and the remaining ones in the inner region (cyan points). In the learning process,
only the cyan points will be used as the candidate points to select the next best sample.

3.2. Error-based stopping criterion using BCE
Besides the SRS as described in the previous section, choosing the appropriate stopping criterion can also improve

the efficiency of the adaptive algorithm. One of the most widely used stopping criteria is derived by setting a threshold
value for the learning function [47, 48, 52]. However, they are often inadequate for the learning algorithm due to
the lack of direct correspondence to the error of failure probability estimation, which is the parameter of particular
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interest. This limitation may lead to inaccurate estimation of the failure probability or results in high computational
burden because of unnecessary calls to the performance function. To effectively address this issue, an error-based
stopping criterion (ESC) expressed in terms of the upper bound of the estimation error is proposed in [74, 75]. In this
approach, the relative error "r of the predicted failure probability P̂f with respect to the reference result by MCS PMCS

f

is defined:

"r =
|

|

|

|

|

|

PMCS
f − P̂f
PMCS
f

|

|

|

|

|

|

=

|

|

|

|

|

|

|

|

Nf
NMCS

− N̂f
NMCS

Nf
NMCS

|

|

|

|

|

|

|

|

=
|

|

|

|

|

|

N̂f

Nf
− 1

|

|

|

|

|

|

(30)

where NMCS is the sample size of MCS, Nf is the number of failure samples evaluated from the true performance
function, and N̂f denotes the number of failure samples determined by the surrogate model (e.g. BSVR). In the random
space Ω, let Ωf denote the true failure region and Ωs the safe region, whereas those predicted by the surrogate are
represented as Ω̂f and Ω̂s. Then, the failure sample sizeNf in Eq. (30) can be calculated as:

Nf = N̂f + N̂sf − N̂fs (31)

where N̂sf is the number of MCS samples in Ωf while falling into Ω̂s predicted by the surrogate model, and N̂fs is
the number of MCS samples in Ωs while falling into Ω̂f in the prediction. Since the established surrogate model itself
is a Gaussian random process, thus the N̂sf and N̂fs being predicted also follow some probabilistic distribution. In
this regard, a confidence interval can be assigned to the failure sample sizeNf :

Nf ∈
[

N̂f − N̂u
fs, N̂f + N̂u

sf

]

(32)

where N̂u
fs and N̂u

sf are the upper bounds of the confidence interval of N̂fs and N̂sf . Accordingly, the maximum
relative error of the failure probability estimation can be expressed as:

�r ≤ max
⎛

⎜

⎜

⎝

|

|

|

|

|

|

N̂f

N̂f − N̂u
fs

− 1
|

|

|

|

|

|

,
|

|

|

|

|

|

N̂f

N̂f + N̂u
sf

− 1
|

|

|

|

|

|

⎞

⎟

⎟

⎠

= �̂max (33)

Assuming that the sample size in Ω̂f and Ω̂s are sufficiently large, N̂u
fs and N̂u

sf are respectively determined as the
upper confidence interval of a Poisson distribution and a normal distribution in [74, 75]. However, this assumption
may not be valid since the number of uncertain points decreases with the convergence of the learning process. Thus,
an improved version of ESC using the bootstrap confidence estimation (BCE) has recently been developed in [76].

In the BCE-based ESC, only the samples with large probability of wrong sign prediction are considered instead of
the whole population, in that the estimation error of failure probability is mainly contributed by these samples. Given
a certain confidence interval, the highly uncertain samples near the LSS are defined as follows [76]:

Xf = {x ∣ �̂(x) ≤ 0; �̂(x) + ��̂(x) > 0}

Xs = {x ∣ �̂(x) > 0; �̂(x) − ��̂(x) < 0}
(34)
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where Xf (with a sample size of nf ) represents the samples in Ω̂f while falling into Ω̂s with a certain confidence
interval, and Xs (with a sample size of ns) represents the samples in Ω̂s while falling into Ω̂f with a certain confidence
interval. Considering the statistical property of the prediction model, each sample in Xf and Xs has a probability of
wrong sign prediction, which is calculated as:

Pwsp
i = Φ

(

−
|

|

|

|

|

�̂(xi)
�̂(xi)

|

|

|

|

|

)

,xi ∈ Ω̂f ∪ Ω̂s (35)

where Pwsp
i is the probability of wrong sign prediction at point xi. Hence, the upper bound values N̂u

sf and N̂u
fs can be

calculated bymeans of bootstrap resamplingmethod. Specifically, nf samples are generated fromXf (correspondingly,
ns samples from Xs) with replacement, after which the Pwsp

i for each sample can be calculated before computing their
mean value P̄ . This process is repeatedM times and the values of P̄ are sorted in ascending order. Then, the confidence
intervals of N̂sf and N̂fs can be expressed as:

CIN̂sf
∈
[

nf P̄k1 , nf P̄k2
]

N̂sf
, CIN̂fs

∈
[

nsP̄k1 , nsP̄k2
]

N̂fs
(36)

where k1 and k2 are the rankings of the sorted values P̄ corresponding to a confidence level �, that is,

k1 =
[

M × �
2

]

, k2 =
[

M ×
(

1 − �
2

)]

(37)

where the repeated times is taken asM = 1000.
Therefore, with a predefined threshold �tol for the relative estimation error, the BCE-based ESC can be expressed

as follows:
�r ≤ max

⎛

⎜

⎜

⎝

|

|

|

|

|

|

N̂f

N̂f − N̂u
fs

− 1
|

|

|

|

|

|

,
|

|

|

|

|

|

N̂f

N̂f + N̂u
sf

− 1
|

|

|

|

|

|

⎞

⎟

⎟

⎠

= �̂max ≤ �tol (38)

where the upper bound values N̂u
fs and N̂u

sf can easily be retrieved from Eq. (36). It is referred to [74–76] and
references therein for more information about the ESC and BCE-based ESC, both of which are originally developed
for Kriging-based approaches. In this study, only the BCE-based ESC will be used to develop the hybrid convergence
criterion and further adapt to the proposed ABSVR.

4. The proposed new learning function

In structural reliability analysis, the evaluation of failure probability is essentially a classification problem whose
estimation error is mainly contributed by samples reside around the LSS, i.e. Ω0 = {x ∈ � ∶ G(x) = 0}, especially in
regions with high prediction variance �̂(x) and large probability density fX(x). Therefore, learning functions capable
of identifying sample points with these desire properties are of critical importance to ensure the overall accuracy of the
adaptive algorithm. In this regard, the learning process of an adaptive algorithm can be formulated as the following
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optimization problem to search for the most informative samples:

find x∗

max �̂(x)�(x)dmin(x)

s.t. |

|

�̂(x)|
|

= 0

dmin(x) > dt

(39)

where �̂ and �̂ are respectively the prediction mean and variance of the surrogate model, e.g. Eqs. (24-27) for the two
BSVR models; dmin(x) is the minimum distance of point x to those in the current DoE, and dt denotes the specified
threshold distance; �(x) represents the value of joint PDF fX(x) evaluated at x. According to the given information
on distribution function, �(x) can be calculated in different ways, that is,

�(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

fX(x) with known joint PDF
∏n

i fi(xi) with uncorrelated random variables
c
(

F1
(

x1
)

, F2
(

x2
)

,⋯ , Fn
(

xn
))

∏n
i fi(xi) with correlated random variables

(40)

where fi(x) and F1
(

x1
) are the marginal PDF and the corresponding cumulative distribution function (CDF) of xi,

with xi being the ith element of random vector x; and c(⋅) is the copula density function.
Specifically, the equality constraint |

|

�̂(x)|
|

= 0 in Eq. (39) ensures that the optimal solutions are points located
on the LSS (at least very close to), whereas the inequality constraint dmin(x) > dt is solved to select samples with
distances larger than a specified value from the existing ones in DoE. Therefore, solving the constrained optimization
problem expressed in Eq. (39) can provide informative samples for model updating. This, however, would introduce
additional optimization algorithm into the learning process and complicate the adaptive algorithm, hence making
the approach less user-friendly. To bypass this limitation, a sampling-based learning function capable of selecting
informative samples from the candidate sampling pool is proposed in this section. Following the idea of the penalty
function method, the proposed learning function utilizes a simple yet effective way to guide the search toward critical
points near the LSS with large probability density. Besides, a distance constraint term is introduced into the learning
function to control the density of samples, thus avoids the clustering of samples in DoE. Moreover, the inclusion of
prediction variance in the learning function enables the efficient exploration of the regions with large uncertainty. The
formulation of the proposed learning function is elucidated in the following subsections.

4.1. Identification of samples near the LSS in critical regions
In order to select new sample point xnew on the LSS, a simple yet effective way is to transform the equality

constraint |
|

�̂(x)|
|

= 0 into an approximate unconstrained optimization problem by introducing a penalty term to the
function. One possible formulation is given as follows:

xnew = argmin
x∈SC

{

1 + #

(

|

|

�̂(x)|
|

1 + median
(

|

|

�̂(x)|
|

)

)�}

(41)
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where SC is the candidate sampling pool generated by SRS; # is a sufficiently large value that enables the penalty
effect to work, which is taken as # = 1012 in this study; � denotes a positive scale factor ( � ≥ 1) to amplify the
difference among the predicted values; the median (|

|

�̂(x)|
|

) returns the median value of the absolute predictions at
SC , which is introduced to reduce the magnitude effect to improve the flexibility of the algorithm. In this formula, the
objective function tends to the minimum when |

|

�̂(x)|
|

= 0, i.e. for points located on the LSS, while becoming larger
for points deviate further from the LSS. Therefore, the points in the vicinity of LSS can effectively be identified from
the candidate samples SC .

To enable the selection of sample points in the critical regions, i.e. regions with relatively large prediction un-
certainty and probability density, the objective function in Eq. (41) is reformulated by adding the effects of BSVR
prediction variance �̂2(x) and joint PDF fX(x) into the formulation, that is,

xnew = argmin
x∈SC

⎧

⎪

⎨

⎪

⎩

1 + 1012
(

|�̂(x)|
1+median(|�̂(x)|)

)�

(

1 + �̂(x)
�max

)

⋅
(

1 + �(x)
�max

)

⎫

⎪

⎬

⎪

⎭

(42)

where �max = max(�̂(x)) is the maximum value of the standard deviation of BSVR model evaluated at SC ; �(x) is
given in Eq. (40), and �max = max(�(x)). Learning through this function enables the identification of new sample
points close to the LSS with large probability density and prediction variance, which is expected to greatly enhance
the performance of BSVR-based reliability analysis.

4.2. A distance-based constraint
The learning process is highly likely to introduce points located too close to the existing ones in DoE when the

learning function is formulated to focus only on points near the LSS in critical regions. These points contain little
extra information for the refinement of the surrogate model, but can dramatically increase the computational burden.
To address this issue, the distance constraint in Eq. (39) is further integrated into the learning function developed in
the previous subsection, i.e. Eq. (42), to avoid the clustering of sample points in DoE.

The Euclidean distance is employed here to measure the distance between two points. Given a point xiC in the
candidate set SC (with a sample size ofNC ) and a point xjD in the DoE SD (with a sample size ofND), the minimum
distance of each sample point in SC to those in SD is calculated as:

dmin(xiC ) = min

{
√

(

xiC − x
j
D

)T (
xiC − x

j
D

)

}

, i = 1, 2,⋯ , NC ; j = 1, 2,⋯ , ND (43)

with dmin =
{

dmin(x1C ), dmin(x
2
C ),… , dmin(x

NC
C )

}

denoting the vector of the minimum distances.
It is important to define a reasonable value for the threshold distance dt, in that dt serves as an indicator of how

close the new sample point is allowed to those in DoE. In the present study, the maximum of the minimum distance
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between sample points in the current DoE is applied to define the threshold distance dt, which is given as:

dt = !max
{

min
(
√

(

xi − xj
)T (xi − xj

)

)}

, i = 1, 2,… , ND; j = 1, 2,… , i − 1, i + 1,… , ND (44)

where ! is a scale factor generally takes the value in the range of [0.1, 0.5].
With the threshold distance dt and minimum distances dmin defined, the original distance constraint in Eq. (39) is

recasted in the following form to facilitate the sample-based learning process:

argmax
x∈SC

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 + dmin(xiC )

1 + exp

(

−�

((

dmin(xiC )−dt
)

dt

))

⎫

⎪

⎪

⎬

⎪

⎪

⎭

, i = 1, 2,⋯ , NC (45)

where � is a positive integer that determines the penalty degree when the distance constraint is violated, and is taken as
� = 30 in this paper. Specifically, this formula favors the points with large distance to those in DoE (i.e. dmin(xiC ) > dt),
while penalizes those being close to the existing ones (i.e. dmin(xiC ) < dt). By doing so, the density of samples in DoE
can effectively be controlled and accordingly, the clustering of samples is avoided.

4.3. The new learning function
Integrating the distance-based constraint in Eq. (45) into the learning function as expressed in Eq. (42), a new

Sampling-based Learning Function (SLF) capable of identifying informative points that disperse as far as possible
from the existing ones can be devised as:

SLF ∶ xnew = argmin
x∈SC

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1 + 1012
(

|�̂(x)|
1+median(|�̂(x)|)

)�

(

1 + �̂(x)
�max

)

⋅
(

1 + �(x)
�max

)

⋅

⎛

⎜

⎜

⎜

⎝

1+dmin(xiC )

1+exp

(

−30

( (

dmin(x
i
C )−dt

)

dt

))

⎞

⎟

⎟

⎟

⎠

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

(46)

Unlike the well-known learning function U which cannot be used for points located exactly on the LSS, i.e. |
|

�̂(x)|
|

= 0,
the proposed learning function SLF still works for this particular case. To further improve the convergence speed of the
learning process, the Sobol sequences are generated as the candidate samples SC given its uniformity and space-filling
property. It is noted that other low-discrepancy sequences can also be used for the same purpose.

5. A hybrid stopping criterion

The use of BCE-based stopping criterion (BCE-based ESC) as described in § 3.2 can greatly enhance the compu-
tational efficiency with the upper bound of estimation error controlled at a specified level. However, there are cases
that the accuracy of the failure probability estimation tends to stabilize before the BCE-based ESC is satisfied, which
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implies that adding additional samples after this stage will not contribute much to the improvement of the surrogate
model, but rather increase the computational burden of the algorithm. To alleviate the potentially high computational
cost, a hybrid stopping criterion able to detect the stabilization stage of failure probability estimation during the learn-
ing process is developed in this section.

To effectively detect the stabilization stage of failure probability estimation, a feasible way is to define a criterion
utilizing the reliability indices acquired in consecutive iterations. In this study, three consecutive estimations (when
the iteration number i ≥ 5) are employed for this purpose, that is:

|

|

|

|

|

�̂i − �̂i−1
�̂i−1

|

|

|

|

|

< �tol1,
|

|

|

|

|

�̂i−1 − �̂i−2
�̂i−2

|

|

|

|

|

< �tol1 and
|

|

|

|

|

�̂i−2 − �̂i−3
�̂i−3

|

|

|

|

|

< �tol1, i ≥ 5 (47)

where �̂i, �̂i−1, �̂i−2 and �̂i−3 are the reliability indices (i.e. �̂ = −Φ−1
(

P̂f
)

, with Φ−1 (⋅) denoting the inverse of
standard normal CDF) estimated in the current, the (i − 1)th, the (i − 2)th and the (i − 3)th iterations, respectively;
and �tol1 is the convergence threshold defined in the range of [10−5, 10−3]. However, directly applying Eq. (47) as
a stopping criterion may lead to inaccurate failure probability estimation due to premature of the learning process.
Therefore, the BCE-based stopping criterion is integrated with Eq. (47) to derive a new one:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

|

|

|

|

�̂i−�̂i−1
�̂i−1

|

|

|

|

< �tol1,
|

|

|

|

�̂i−1−�̂i−2
�̂i−2

|

|

|

|

< �tol1 and |

|

|

|

�̂i−2−�̂i−3
�̂i−3

|

|

|

|

< �tol1, i ≥ 5

max

(

|

|

|

|

|

N̂f

N̂f−N̂u
fs
− 1

|

|

|

|

|

,
|

|

|

|

|

N̂f

N̂f+N̂u
sf
− 1

|

|

|

|

|

)

= �̂max ≤ �tol2
(48)

where the predefined threshold �tol2 ∈ [0.005, 0.1] can generally lead to a good trade-off between accuracy and effi-
ciency.

Similarly, an additional stabilization detection term is added to the original BCE-based ESC (i.e. Eq. (38)), that is,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

max

(

|

|

|

|

|

N̂f

N̂f−N̂u
fs
− 1

|

|

|

|

|

,
|

|

|

|

|

N̂f

N̂f+N̂u
sf
− 1

|

|

|

|

|

)

= �̂max ≤ �tol3
|

|

|

|

�̂i−�̂i−1
�̂i−1

|

|

|

|

< �tol4, i ≥ 5
(49)

where �tol3 and �tol4 are the given threshold values for the BCE-based ESC and the stabilization detection term, re-
spectively. In this criterion, the BCE-based ESC will not be activated until the stability condition is fulfilled.

It is noteworthy that although Eq. (48) is similar to Eq. (49) in the form, they are defined for different purpose.
Specifically, Eq. (48) is mainly defined to avoid unnecessary calls once the failure probability estimation is detected
to have stabilized with a certain precision, whereas Eq. (49) is defined to control the estimation error and thus ensure
the overall accuracy of the algorithm. To achieve this, the �tol1 in Eq. (48) is set to a smaller value than the �tol4 in
Eq. (49), e.g. �tol1 = 10−4 and �tol4 = 10−3; while the BCE-based ESC threshold �tol2 in Eq. (48) is set to a larger
value than its counterpart defined in Eq. (49), e.g. �tol2 = 0.1 and �tol3 = 0.01.
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Figure 4: Convergence of the failure probability using different stopping criteria.

Therefore, the proposed hybrid stopping criterion consists of two separate criteria as expressed in Eq. (48) and
Eq. (49), and the active learning process is terminated when any one of them is fulfilled. An example is shown in
Fig. 4 to illustrate the potential gain of this hybrid stopping criterion as compared with the original BCE-based ESC.
In this example, �tol1 = �tol4 = 10−3, �tol2 = 0.1 and �tol3 = 0.05 for the hybrid criterion; �tol = 0.05 for BCE-based
ESC. It is seen that the failure probability has stabilized before the BCE-based ESC is fulfilled, and the proposed
approach can detect this phenomenon and stop the algorithm with a reduced number of functional calls.

6. Implementation procedure of ABSVR

Combining the advanced schemes, the proposed learning function and the hybrid stopping criterion with the BSVR
model, two Adaptive algorithms based on the BSVR (ABSVR) are proposed in this study, namely the one based on
SLF (ABSVR1) and the one based on EISLF (ABSVR2). These two ABSVR methods start from a small initial DoE
and iteratively refine the BSVRmodel by progressively enriching the DoE according to the proposed learning function.
The learning process is repeated until the hybrid stopping criterion is met, then the failure probability can easily be
estimated from the established BSVR model. Obviously, the only difference between ABSVR1 and ABSVR2 is the
loss function used to construct the BSVR model. The flowchart of the ABSVR methods is depicted in Fig. 5 with 8
steps as summarized below:

• Step 1: Initialization of the algorithm. The parameters in ABSVR are initialized, including the sample sizeNC

in the candidate set SC , the sample size N0 in the initial DoE, the coefficient � in the sampling region scheme
(Eq. (29)) and the coefficient ! in the distance-based constraint (Eq. (44)), the positive scale factor � in the
learning function (Eq. (46)), and the convergence thresholds �toli, i = 1, 2, 3, 4 in Eq. (48) and Eq. (49).

J.S. Wang et al.: Preprint submitted to Elsevier Page 17 of 39



A novel adaptive Kriging method

Figure 5: Flowchart of the ABSVR.

• Step 2: Generation of the candidate sample set SC and initial DoE SD. To generate the Sobol sequence for
SC , the UQLab [93] is employed in this study. Samples in the initial DoE are generated using Latin hypercube
sampling (LHS) with a sample size ofN0 = 15.

• Step 3: Construction of the BSVR model. The generated DoE SD is applied to build the BSVR model, based
on which the prediction mean �ĝ(x) and variance �2ĝ (x) of the samples in SC can be evaluated from Eq. (24)
and Eq. (25) for ABSVR1, and from Eq. (26) and Eq. (27) for ABSVR2.

• Step 4: Generation of the reduced sample set SR through the sampling region scheme expressed in Eq. (29).
The failure probability is evaluated according to Eq. (3) with the true model being replaced by the BSVRmodel,
and the points in SR is obtained by filtering out the sample points with rather small probability density in SC .

• Step 5: Selection of informative samples to enrich the DoE. In each iteration, the sample point x∗ in SR that
minimize the learning function Eq. (46) is selected as the optimal one, whose model response is evaluated by

J.S. Wang et al.: Preprint submitted to Elsevier Page 18 of 39



A novel adaptive Kriging method

calling the true performance function. Therefore, each time the DoE is enriched with the new sample point
(SD = SD ∪x∗) andN0 = N0 +1. This learning process is repeated (i.e. iteration number i = i+1) from Step
3 to Step 5 until one of the conditions in the hybrid stopping criterion is fulfilled.

• Step 6: Computation of the coefficient of variation. To ensure that the sample size in SC is large enough to
provide reliable failure probability estimation P̂f , the coefficient of variation below 5% is acceptable:

Cov =

√

√

√

√

1 − P̂f
NC P̂f

< 0.05 (50)

• Step 7: Enrichment of the population in SC . If the condition in Eq. (50) is not met, SC is enriched with new
sample population SN , and the learning algorithm goes back to Step 3 and carries on until all the stopping
criteria are fulfilled; otherwise, proceed to Step 8.

• Step 8: End of ABSVR. If the stopping condition expressed in Eq. (50) is met, the whole learning algorithm is
terminated and the failure probability is evaluated on the final BSVR model.

7. Numerical examples

To illustrate the accuracy, efficiency and robustness of the proposed method, six numerical examples are tested
in this section. The first example is a highly nonlinear problem. The second example considers a series system with
three most probable points. The last four examples examine the applicability of ABSVRs to engineering structures,
including a nonlinear oscillator, a roof truss, a suspension bridge and a cantilever tube. To show the robustness of the
ABSVR, all results are obtained by averaging over 10 repeated runs of the algorithm, including the failure probability
P̂f , the reliability index �̂, the total number of functional callsNf and the relative error of failure probability �P̂f . These
results are compared with those of MCS and other existing methods whenever possible. In this paper, the relative error
of failure probability �P̂f is calculated as:

�P̂f (%) =
|

|

|

P̂f − P̂MCS
f

|

|

|

P̂MCS
f

× 100% (51)

where P̂MCS
f denotes the reference result provided byMCS, P̂f is the failure probability estimated frommethods other

than MCS, e.g. FORM, SORM and AK-MCS+U.
To make a trade-off between accuracy and efficiency of the algorithm, the application examples in this section are

based on the settings illustrated in Table 1, if not specified otherwise.
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Table 1
Parameter settings of ABSVR

Methods P̂f

Initial sample size N0 15
Coefficient � in SRS 0.1
Scale factor ! 0.3
Convergence threshold �tol1 1.0 ×10−4

Convergence threshold �tol2 1.0 ×10−1

Convergence threshold �tol3 1.2 ×10−2

Convergence threshold �tol4 1.0 ×10−3

7.1. Example 1: A highly nonlinear problem
This example considers a 2D high nonlinearity problem with a single failure region, which has been studied in

[47, 52, 76]. The performance function of this problem is formulated as:

g(x) = 1.2 − 1
20

(

x21 + 4
) (

x2 − 1
)

+ sin
(5
2
x1
)

(52)

where x1 and x2 are two independent standard normal variables.
Following the procedures as described in § 6, the failure probability can easily be calculated by ABSVR1 and

ABSVR2. However, it is noted that in the learning function Eq. (50) � is a user-defined parameter, whose effect on the
failure probability estimation should be investigated in order to determine a suitable value. In this regard, the boxplot
of failure probabilities and corresponding functional calls are depicted in Fig. 6 and Fig. 7 for both ABSVR1 and
ABSVR2, with � taking different values, i.e. � = 1, � = 2,, � = 4, � = 6 and � = 8. It is observed from Fig. 6 that
all results provided by ABSVR1 using different � are in close agreement with the MCS result (red dotted line), and
the maximum error is �P̂f = 0.7% (� = 1). The largest variation of functional calls shows up when � = 8, whereas
the highest efficiency is achieved when � = 4. Similar conclusions can be drawn for ABSVR2, as shown in Fig. 7.
Therefore, the scale factor � has certain effects on the performance of ABSVRs, while � = 4 can generally reach a
good trade-off between accuracy and efficiency. For the sake of brevity, only the results of ABSVR1 and ABSVR2
with � = 4 will be employed to show the performance of ABSVR for structural reliability analysis.

The results of these two ABSVRs are compared with those provided by MCS, FORM, SORM, AK-MCS+U∖AK-
MCS+EFF [48], REIF∖REIF2 [52] and AK-SDMCS [69], as summarized in Table 2. The reference result of this
example is obtained by means of MCS with 1 × 106 samples, i.e. P̂f = 4.71 × 10−3 with a coefficient of variation
�Pf = 1.45%, which is directly taken from [52]. It is seen from Table 2 that FORM is unable to deliver accurate
failure probability prediction for this case, in that the nonlinear failure features cannot be captured by the first-order
Talyor expansion, hence leading to an estimation error �P̂f > 100%. Although the accuracy of FORM can significantly
be improved by SORM, the relative error is still unacceptably high, i.e. 22.06%, let alone more functional calls are
required. On the contrary, all the investigated adaptive algorithms, including the Kriging-based approaches and the
proposed BSVR-based ones, are capable of providing accurate failure probability prediction with high efficiency, i.e.

J.S. Wang et al.: Preprint submitted to Elsevier Page 20 of 39



A novel adaptive Kriging method

(a) (b)
Figure 6: Boxplot of the results for ABSVR1 using different values of �: (a) The failure probability estimation; (b) The
functional calls. (For interpretation of the references to color in this figure, please refer to the web version of this article.)

(a) (b)
Figure 7: Boxplot of the results for ABSVR2 using different values of �: (a) The failure probability estimation; (b) The
functional calls. (For interpretation of the references to color in this figure, please refer to the web version of this article.)

the relative error �P̂f is less than 1% with no more than 50 functional calls. Among these adaptive algorithms, the two
proposed ABSVRs and the REIF2 exhibit better performance both in terms of accuracy and efficiency, indicating the
effectiveness of ABSVRs for a problem with high nonlinearity.

To further illustrate the superior performance of ABSVRs, the converged BSVR models and the convergence
history of failure probability corresponding to a single run of ABSVR1 and ABSVR2 are plotted in Fig. 8 and Fig. 9,
respectively. It is observed from Fig. 8a and Fig. 9a that all the newly selected sample points (blue triangles with
sequence number) are located in the vicinity of LSS and spread uniformly without clustering, resulting in an excellent
match of the established BSVRmodels with the true one in critical regions. Accordingly, fast convergence of the failure
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Table 2
Results of reliability analysis for Example 1 using different methods

Methods P̂f �̂ Nf �P̂f (%)

MCS 4.710 × 10−3 2.5964 1 × 106 –
FORM 2.563 × 10−2 1.9492 779 >100
SORM 3.671 × 10−3 2.6809 791 22.06
REIF 4.720 × 10−3 2.5957 42.3 0.23
REIF2 4.710 × 10−3 2.5964 35.6 0.03
AK-MCS+U 4.689 × 10−3 2.5980 49.4 0.45
AK-MCS+EFF 4.742 × 10−3 2.5941 49.8 0.67
AK-SDMCS 4.667 × 10−3 2.5997 41.3 0.92
ABSVR1 4.713 × 10−3 2.5966 34.3 0.06
ABSVR2 4.718 × 10−3 2.5954 35.3 0.17

Note: Here, � = 4 for both ABSVR1 and ABSVR2; the results of REIF and REIF2
are directly taken from [52]; the results of FORM and SORM are calculated by means
of UQLab [94].

(a) (b)
Figure 8: Results from a single run of ABSVR1: (a) The converged BSVR model; (b) The convergence history of failure
probability. (For interpretation of the references to color in this figure, please refer to the web version of this article.)

probability estimation is observed after fluctuating significantly in the first 13 iterations, as shown in Fig. 8b and Fig. 9b.
These results demonstrate the effectiveness of the proposed learning function (i.e. SLF) for identifying informative
samples. Moreover, it is noteworthy that the LSS being poorly approximated at locations with low probability densities
does not necessarily result in a poor estimation of the failure probability, in that the regions with extremely weak
probability densities have little contribution to the prediction result.
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(a) (b)
Figure 9: Results from a single run of ABSVR2: (a) The converged BSVR model; (b) The convergence history of failure
probability. (For interpretation of the references to color in this figure, please refer to the web version of this article.)

7.2. Example 2: A series system with four branches
The second example is a series systemwith four branches, whose performance function is given as follows [48, 76]:

g(x) = min
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(53)

where x1 and x2 are two standard normal random variables. The failure probability of this series system are calculated
by the proposed ABSVRs with � = 4 and compared with various other methods, among which the MCS (with a
sample size of 1 × 107) reported in [76] is used as the reference result, i.e. P̂f = 2.221 × 10−3 with a coefficient
of variation smaller than �Pf = 1%. The results of AK-MCS+U and AK-MCS+EFF [48], Neural Network-based
Importance Sampling (NNIS) [95], Neural Network-based Directional Simulation (NNDS) [95], Active Deep Neural
Network method (ADNN) [46] and ESC+RLCB [76] from the corresponding references are also listed for comparison
purpose, as shown in Table 3.

One can see from Table 3 that the results calculated from traditional one-shot sampling schemes, namely the NNIS
and the NNDS exhibit large estimation errors, i.e. respectively with a relative error of 30.57% and 54.98%, even at
the expense of larger computational effort. In contrast to these non-adaptive algorithms, the estimation carried out by
adaptive algorithms can generally achieve a good trade-off between accuracy and efficiency. Specifically, the proposed
ABSVR1 and ABSVR2 provide comparable results (slightly better) on failure probability using much fewer model
evaluations as compared with AK-MCS+U and AK-MCS+EFF, and reach higher precision than ADNN with less
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Table 3
Results of reliability analysis for Example 2 using different methods

Methods P̂f �̂ Nf �P̂f (%)

MCS 2.221 × 10−3 2.845 1 × 107 –
AK-MCS+U 2.233 × 10−3 2.843 96 0.54
AK-MCS+EFF 2.232 × 10−3 2.843 101 0.50
NNIS 2.900 × 10−3 2.760 125 30.57
NNDS 1.000 × 10−3 3.050 67 54.98
ADNN 2.192 × 10−3 2.849 70 1.31
ESC+RLCB 2.265 × 10−3 2.839 43.8 1.98
ABSVR1 2.218 × 10−3 2.845 47.3 0.13
ABSVR2 2.224 × 10−3 2.844 43.9 0.13

(a) (b)
Figure 10: Results from a single run of ABSVR1: (a) The converged BSVR model; (b) The convergence history of failure
probability. (For interpretation of the references to color in this figure, please refer to the web version of this article.)

functional calls.
The converged BSVR models and the convergence history of failure probability corresponding to a single run of

ABSVR1 and ABSVR2 are depicted in Fig. 10 and Fig. 11, respectively. As can be seen from Fig. 10a and Fig. 11a that
the initial sampling points (cyan square points) in DoE are spread over the random space, whereas the newly enriched
points (blue triangles with sequence number) are uniformly distributed along the LSS in the regions of interest. This
implies that the proposed SLF is capable of guiding the search toward a converged BSVRmodel that perfectly matches
with the true one in the critical regions, leading to the fast convergence of both ABSVR1 and ABSVR2 for failure
probability estimation, as shown in Fig. 10b and Fig. 11b. Similar to Example 1, the poor fitting property of BSVR
model in regions with rather low probability density (i.e. the four corners) will not mitigate the prediction accuracy
since their contribution to failure probability is negligible.
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(a) (b)
Figure 11: Results from a single run of ABSVR2: (a) The converged BSVR model; (b) The convergence history of failure
probability. (For interpretation of the references to color in this figure, please refer to the web version of this article.)

Table 4
Statistical information of the random variables

Random variable Distribution Mean Standard deviation

m Normal 1 0.05
c1 Normal 1 0.1
c2 Normal 0.1 0.01
r Normal 0.5 0.05
F1 Normal 1 0.2
t1 Normal 1 0.2

7.3. Example 3: Dynamic response of a nonlinear oscillator
This example considers a nonlinear oscillator subjected to a rectangular load pulse, as shown in Fig 6. It is an

undamped single degree of freedom system, which has been investigated in numerous studies [37, 48, 58, 68, 73]. The
performance function of this nonlinear system is expressed as:

g
(

c1, c2, m, r, t1, F1
)

= 3r −
|

|

|

|

|

|

2F1
m!20

sin
(

!0t1
2

)|

|

|

|

|

|

(54)

where !0 =
√

(

c1 + c2
)

∕m, and the distribution parameters of these random variables are listed in Table 4.
The reference result of this example is calculated from MCS with a sample size of 1 × 107 and the corresponding

failure probability is 2.859 × 10−2. The results calculated from FORM and SORM, and those by adaptive Kriging
approaches, namely the AK-MCS∖AK-MCSi∖AK-MSS [65], and the AK-SS∖AWL-MCS [58] directly taken from
the corresponding references are also used for comparison purpose, as summarized in Table 5 along with the results
provided by the proposed ABSVRs with � = 4.
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Figure 12: Nonlinear oscillator subjected to a rectangular load pulse.

Table 5
Results of reliability analysis for Example 3 using different methods

Methods P̂f �̂ Nf �P̂f (%)

MCS 2.859 × 10−2 1.902 1 × 107 –
FORM 3.108 × 10−2 1.865 48 8.71
SORM 2.900 × 10−2 1.896 128 1.43
AK-MCS 2.852 × 10−2 1.903 530 0.24
AK-SS 2.833 × 10−2 1.906 410 0.91
AK-MCSi 2.830 × 10−2 1.906 85 1.01
AK-MSS 2.870 × 10−2 1.900 86 0.38
AWL-MCS 2.826 × 10−2 1.907 65 1.15
ABSVR1 2.855 × 10−2 1.903 46.8 0.15
ABSVR2 2.871 × 10−2 1.900 45.4 0.41

Note: The results of FORM and SORM are calculated by means of UQLab [94];
the results of AK-MCS, AK-MCSi and AK-MSS are directly taken from [65]; those
of AK-SS and AWL-MCS are taken from [58] .

One can see from Table 5 that the failure probability estimated by FORM exhibits the largest error (i.e. �P̂f =
8.71%) among the investigated methods, albeit its high efficiency for this particular case. The accuracy of FORM
can be improved by SORM, but at the expense of substantially higher computational effort than FORM, i.e. the total
number of functional callsNf increased from 48 to 128. Although AK-MCS and AK-SS both exhibit high precision,
i.e. respectively with a relative error �P̂f = 0.24% and �P̂f = 0.91%, the required number of functional calls is
prohibitively high compared with other adaptive algorithms. On the contrary, the other three adaptive Kriging-based
approaches, namely the AK-MCSi, the AK-MSS and the AWL-MCS are capable of providing a balanced performance
for this case. Remarkably, the proposed ABSVR1 and ABSVR2 show excellent performance both in terms of accuracy
and efficiency, i.e. with a relative error less than 0.5% using less than 50 functional calls, indicating the capability of
ABSVRs to reach a balanced performance for structural reliability analysis of this dynamic system. The convergence
history of failure probability by three independent runs of ABSVRs are depicted in Fig. 13, where the estimation
results are seen to have quickly converged to the reference solution for both ABSVR1 and ABSVR2 after fluctuated
significantly in the first 12 iterations.
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(a) (b)
Figure 13: The convergence history of failure probability: (a) Prediction by ABSVR1; (b) Prediction by ABSVR2. (For
interpretation of the references to color in this figure, please refer to the web version of this article.)

7.4. Example 4: A suspension bridge under vessel-bridge collision
To test the applicability of the ABSVRs in bridge engineering, a suspension bridge under vessel-bridge collision

is considered in this example, which is adapted from [96, 97]. The general view of this bridge is shown in Fig. 14,
where the span arrangement is 154m + 452m + 154m with a navigation width of 211.52m. According to the finite
element analysis conducted in [96], the failure model of the bridge south pier is induced by the violation of ultimate
lateral resistance. Thus, the performance function corresponds to this failure model can be expressed in terms of the
ultimate lateral resistance of the pier and vessel impact force as follows:

g(VT , Vmin,Ω,Θ, DW T ) = −0.19ΩΘ − 0.61Ω − 5.01Θ + 31.76 − 0.122V
√

DW T (55)

where VT and Vmin respectively denote typical impact velocity and minimum design impact velocity; Ω is the water
level; Θ represent the impact angle;DW T is the deadweight tonnage of the vessel; and V is the design impact velocity
which can be calculated as follows:

V =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

VT x0 ⩽ 52.875
xLVT−xcVmin−x0(VT−Vmin)

xL−xc
52.875 ⩽ x0 ⩽ 513

Vmin x0 > 513

(56)

where x0 is the distance from the face of pier to the centerline of channel and x0 = 173.12m is defined in this study.
The statistical information of these random variables are listed in Table 6.

The results of failure probability estimation using various methods are summarized in Table 7, where the reference
result is averaged over 10 independent runs of MCS with 1 × 106 sample points, and the results of FORM, SORM, IS,
SS and AK-MCS are calculated using UQLab [94] by default settings. One can see from Table 7 that the precision of
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Figure 14: General view of the suspension bridge (adapted from [96, 97]).

Table 6
Statistical information of the random variables

Random variable Distribution Mean Standard deviation

VT ( m∕s) Normal 3 0.6
Vmin(m∕s) Normal 1 0.2
Θ (◦) Gumbel 10 4
Ω( m) Normal 1.32 0.264
DW T ( t) Lognormal 3067 1962.88

Table 7
Results of reliability analysis for Example 4 using different methods

Methods P̂f �̂ Nf �P̂f (%)

MCS 2.192 × 10−2 2.016 1 × 106 –
FORM 2.299 × 10−2 1.996 42 4.88
SORM 2.208 × 10−2 2.013 99 0.73
IS 2.310 × 10−2 1.994 1042 5.38
SS 2.130 × 10−2 2.028 1900 2.83
AK-MCS 2.203 × 10−2 2.014 170 0.50
ABSVR1 2.174 × 10−2 2.019 36.8 0.81
ABSVR2 2.231 × 10−2 2.008 74.8 1.79

FORM is relatively low, albeit its high efficiency for this case. SORM can greatly improve the accuracy of FORM,
yet at the expense of more functional calls. Although the advanced simulation methods such as IS and SS generally
show good performance for structural reliability analysis, their accuracy and efficiency are poor for this particular
case. Among the adaptive algorithms, the AK-MCS achieves the highest precision, i.e. �P̂f = 0.5%, but requires
more computational effort than the proposed ABSVRs. On the contrary, both of the ABSVR1 and ABSVR2 can
achieve a balanced performance, with the ABSVR1 exhibits the best trade-off between accuracy and efficiency. The
convergence history of failure probability by three independent runs of ABSVRs are depicted in Fig. 15, where the
estimation result of ABSVR1 is seen to have quickly converged to the reference solution after fluctuated significantly
in the first 8 iterations. However, the convergence speed of ABSVR2 is much lower than that of ABSVR2 for this case,

J.S. Wang et al.: Preprint submitted to Elsevier Page 28 of 39



A novel adaptive Kriging method

(a) (b)
Figure 15: The convergence history of failure probability: (a) Prediction by ABSVR1; (b) Prediction by ABSVR2. (For
interpretation of the references to color in this figure, please refer to the web version of this article.)

i.e. the stabilized stage is observed after 50 iterations. Nevertheless, the ABSVR2 is still more efficient than SORM
and AK-MCS to reach comparable accuracy.

7.5. Example 5: A roof truss structure
A roof truss structure as shown in Fig. 16 is investigated in this example. The bottom chords and tension bars

of the roof truss are made of steel, while the material of the top chords and the compression bars is reel-reinforced
concrete. The structure is subjected to a uniformly distributed load q, which is transformed into the concentrated force
P = ql∕4 applied on the nodes of the truss. The performance function of this truss structure corresponding to the
vertical displacement of node C is defined as [58, 76, 98]:

g = vt −
ql2

2

(

3.81
AcEc

+ 1.13
AsEs

)

(57)

where the threshold value vt is taken as vt = 0.03m; l is the length of the truss; Ac and As are the cross-sectional
areas of the steel-reinforced concrete and the steel bars; Ec and Es are the corresponding Young’s modulus of the
steel-reinforced concrete and the steel bars. The statistical information of these random variables are listed in Table 8.

For this example, the reference result is taken from [98], where the MCS with 1 × 106 sample points is employed
to obtain the failure probability, i.e. P̂f = 2.017 × 10−3 with a coefficient of variation �Pf = 2.22%. The results
obtained from the proposed ABSVRs with � = 4 are compared with those obtained by SORM, IS, AK-MCS+U, AK-
MCS+EFF, and the failure-pursuing sampling (FPS)-based approaches (including FPS+U, FPS+EFF and FPS+RD)
[98], which are all summarized in Table 9.

As can be seen from Table 9, the accuracy of IS is poor compared with other investigated methods, even at the
expense of a larger number of functional calls. The accuracy of SORM is higher than IS with a reduced number
of functional calls, yet the overall performance of the adaptive algorithms is still better than that of SORM. Among
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Figure 16: The schematic diagram of the roof truss (after [98]).

Table 8
Statistical information of the random variables

Random variable Distribution Parameter 1 Parameter 2

q(N/m) Weibull 20000 500
l(m) Lognormal 12.5 0.125
As(m2) Lognormal 9.82 ×10−4 6 ×10−5

Ac(m2) Lognormal 0.04 0.0035
Es(Pa) Lognormal 1 ×1011 1 ×109

Ec(Pa) Lognormal 2 ×1010 1 ×109

Note: For Weibull distribution, parameters 1 and 2 are the scale
and shape parameters, respectively, while they represent the mean
and standard deviation for lognormal distribution.

the Kriging-based approaches, the performance of methods using learning function U (AK-MCS+U and FPS+U)
is slightly worse than their counterparts using other learning functions (AK-MCS+EFF, FPS+EFF and FPS+RD),
with the FPS+RD exhibits the best performance both in terms of accuracy and efficiency. Interestingly, the proposed
ABSVR1 and ABSVR2 achieves the same level of accuracy as other adaptive Kriging methods with the least number
of functional calls, indicating the improved performance of the proposed ABSVRs. The convergence history of failure
probability by three independent runs of ABSVRs are depicted in Fig. 17, where the estimation results are seen to have
quickly converged to the reference solution for both ABSVR1 and ABSVR2 after fluctuated significantly in the first
20 iterations.
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(a) (b)
Figure 17: The convergence history of failure probability: (a) Prediction by ABSVR1; (b) Prediction by ABSVR2. (For
interpretation of the references to color in this figure, please refer to the web version of this article.)

Table 9
Results of reliability analysis for Example 5 using different methods

Methods P̂f �̂ Nf �P̂f (%)

MCS 2.017 × 10−3 2.875 1 × 106 –
SORM 1.998 × 10−3 2.878 198 0.94
IS 2.081 × 10−3 2.866 1118 3.17
AK-MCS+U 2.007 × 10−3 2.877 104.1 0.50
AK-MCS+EFF 2.018 × 10−3 2.875 63.1 0.05
FPS+U 2.031 × 10−3 2.873 80.25 0.69
FPS+EFF 2.019 × 10−3 2.875 76.3 0.10
FPS+RD 2.018 × 10−3 2.875 66.1 0.05
ABSVR1 2.027 × 10−3 2.874 53.3 0.49
ABSVR2 2.022 × 10−3 2.875 58.4 0.25

Note: The results of SORM and IS are calculated by UQLab [94]; the results of
AK-MCS+U, AK-MCS+EFF and FPS-based methods are directly taken from [98].

7.6. Example 6: A cantilever tube
The last example considers a cantilever tube as shown in Fig. 18. This tube is subjected to three external forces F1,

F2, P and one torsion T , and will fail when the yield strength � is smaller than the maximum stress �max. Thus, the
performance function can be expressed as [73, 75, 99]:

g(x) = � − �max (58)

where �max is the maximum von Mises stress of the tube and is calculated as:
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Figure 18: A cantilever tube (after [73]).

Table 10
Statistical information of the random variables

Random variable Distribution Parameter 1 Parameter 2

q(N/m) Weibull 20000 500
l(m) Lognormal 12.5 0.125
As(m2) Lognormal 9.82 ×10−4 6 ×10−5

Ac(m2) Lognormal 0.04 0.0035
Es(Pa) Lognormal 1 ×1011 1 ×109

Ec(Pa) Lognormal 2 ×1010 1 ×109

Note: For Weibull distribution, parameters 1 and 2 are the scale
and shape parameters, respectively, while they represent the mean
and standard deviation for lognormal distribution.

�max =
√

�2x + 3�2zx (59)

where �x and �zx represent the normal stress and torsional stress on the top of surface of the tube at the origin, which
are respectively given as:

�x =
P + F1 sin �1 + F2 sin �2

A
+ Md
2I

(60)

�zx =
Td
2J

(61)

where A is the cross-sectional area, M denotes the bending moment and I represents the moment of inertia. These
parameters can be calculated as:

M = F1L1 cos �1 + F2L2 cos �2 (62)
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Table 11
Results of reliability analysis for Example 6 using different methods

Methods P̂f �̂ Nf �P̂f (%)

MCS∗ 6.850 × 10−3 2.465 6 × 104 –
AK-MCS+EFF 6.850 × 10−3 2.465 84 0
REAK 6.817 × 10−3 2.467 59 0.49
ISKRA 6.850 × 10−3 2.846 71 0
MCS 7.093 × 10−3 2.453 1 × 106 –
ABSVR1 7.109 × 10−3 2.452 37.7 0.22
ABSVR2 7.088 × 10−3 2.453 37.1 0.08

Note: The reference result MCS∗ in [75] is obtained by MCS with a population size
of 6 × 104, based on which the relative error of AK-MCS+EFF, REAK and ISKRA
are calculated.

A = �
4
[

d2 − (d − 2t)2
] (63)

I = �
64

[

d4 − (d − 2t)4
] (64)

J = 2I (65)

A total of 9 random variables are involved in this example and their statistical information is listed in Table 8.
The results of failure probability estimation using the proposed ABSVR1 and ABSVR2 along with other methods are
summarized in Table 11, in which the results of AK-MCS+EFF, REAK and ISKRA (and their estimation errors) are
directly taken from [75]. The reference result of this example is averaged over 10 independent runs ofMCSwith 1×106
sample points, giving the estimation of P̂f = 7.093 × 10−3 with a coefficient of variation �Pf = 1.45%. To reduce
the variation of failure probability estimation among different algorithm runs, the ABSVRs are obtained by setting the
convergence threshold �tol3 = 0.008, with other parameters remain the same as listed in Table 1.

As can be seen from Table 11 that all the results provided by these investigated methods are in good agreement
with their corresponding reference ones. It is noteworthy that due to different number of samples used in [75] and the
present study, the reference results are a bit different, i.e. the coefficient of variation �Pf for MCS∗ with 6×104 samples
is �Pf = 4.92% and the one for MCS with 1 × 106 samples is �Pf = 1.18%. Nevertheless, both the proposed ABSVRs
and the REAK show a good trade-off between accuracy and efficiency for this case, i.e. reach a relative error within
0.5% using less than 50 functional calls. The convergence history of failure probability by three independent runs
of ABSVRs are depicted in Fig. 19, where the estimation results are seen to have quickly converged to the reference
solution for both ABSVR1 and ABSVR2 after fluctuated significantly in the first 9 iterations.
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(a) (b)
Figure 19: The convergence history of failure probability: (a) Prediction by ABSVR1; (b) Prediction by ABSVR2. (For
interpretation of the references to color in this figure, please refer to the web version of this article.)

8. Conclusions

In this paper, an adaptive algorithm based on Bayesian SVR (ABSVR) is proposed for efficient reliability analysis
with high accuracy. According to the loss function employed to establish the BSVR model, two versions of ABSVR
are proposed, namely the ABSVR1 based on square loss function and the ABSVR2 based on "-insensitive square
loss function. Following the idea of the penalty function method in optimization, a new learning function known
as SLF is devised for effective selection of important sample points, e.g. points close to the LSS in critical regions
with sufficient large probability density. To avoid the clustering of new enriched samples with the existing ones,
a distance constraint term is added to the learning function to control the density of samples in DoE. Besides, the
adaptive sampling region scheme originally developed for Kriging-based approach is adapted here to further enhance
the computational efficiency by filtering out sample points with weak probability density, in that these samples have
little contribution to the failure probability evaluation. Moreover, a hybrid stopping criterion based on error-based
stopping criterion using the bootstrap confidence estimation is developed to terminate the active learning process,
ensuring that the learning algorithm stops at an appropriate stage.

To illustrate the performance of the proposed ABSVRs for structural reliability analysis, six numerical examples
including one system reliability problem and four engineering cases are investigated, the results of which are compared
with those from other state-of-the-art reliability methods. The results have shown that both the proposed ABSVR1 and
ABSVR2 are well-suited for structural reliability analysis, and capable of delivering failure probability estimation with
better performance than other investigated methods, both in terms of accuracy and efficiency. Besides, the proposed
learning function exhibit excellent performance for guiding the search toward informative samples close to the LSS
and thus, contributing to the fast convergence of the failure probability evaluated from the BSVR model.

Overall, the proposedABSVR is easy to implement since no embedded optimization algorithm nor iso-probabilistic
transformation is required, and its applicability and effectiveness for structural reliability analysis have been validated
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through numerical examples featuring different complexity. However, this work is still an early step towards applying
Bayesian SVR for reliability analysis of complex engineering structures, the integration of ABSVRwithmore advanced
simulation methods and dimension reduction techniques is worth exploring to deal with high-dimensional problems
or rare failure events.
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