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Abstract

Let M be a d-dimensional connected compact Riemannian manifold with boundary
∂M , let V ∈ C2(M) such that µ(dx) := eV (x)dx is a probability measure, and let Xt

be the diffusion process generated by L := ∆ +∇V with τ := inf{t ≥ 0 : Xt ∈ ∂M}.
Consider the empirical measure µt := 1

t

∫ t
0 δXsds under the condition t < τ for the

diffusion process. If d ≤ 3, then for any initial distribution not fully supported on ∂M ,

c

∞
∑

m=1

2

(λm − λ0)2
≤ lim inf

t→∞
inf
T≥t

{

tE
[

W2(µt, µ0)
2
∣

∣T < τ
]

}

≤ lim sup
t→∞

sup
T≥t

{

tE
[

W2(µt, µ0)
2
∣

∣T < τ
]

}

≤
∞
∑

m=1

2

(λm − λ0)2

holds for some constant c ∈ (0, 1] with c = 1 when ∂M is convex, where µ0 := φ2
0µ

for the first Dirichet eigenfunction φ0 of L, {λm}m≥0 are the Dirichlet eigenvalues of
−L listed in the increasing order counting multiplicities, and the upper bound is finite
if and only if d ≤ 3. When d = 4, supT≥t E

[

W2(µt, µ0)
2
∣

∣T < τ
]

decays in the order

t−1 log t, while for d ≥ 5 it behaves like t
− 2

d−2 , as t → ∞.
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1 Introduction

LetM be a d-dimensional connected complete Riemannian manifold with a smooth boundary
∂M . Let V ∈ C2(M) such that µ(dx) = eV (x)dx is a probability measure on M , where dx is
the Riemannian volume measure. Let Xt be the diffusion process generated by L := ∆+∇V
with hitting time

τ := inf{t ≥ 0 : Xt ∈ ∂M}.
Denote by P the set of all probability measures on M , and let Eν be the expectation taken
for the diffusion process with initial distribution ν ∈ P. We consider the empirical measure

µt :=
1

t

∫ t

0

δXs
ds, t > 0

under the condition that t < τ . Since τ = 0 when X0 ∈ ∂M , to ensure P
ν(τ > t) > 0,

where Pν is the probability taken for the diffusion process with initial distribution ν, we only
consider

ν ∈ P0 :=
{

ν ∈ P : ν(M◦) > 0
}

, M◦ :=M \ ∂M.

Let µ0 = φ2
0µ, where φ0 is the first Dirichlet eigenfunction. We investigate the convergence

rate of Eν [W2(µt, µ0)
2|t < τ ] as t → ∞, where W2 is the L2-Wasserstein distance induced

by the Riemannian metric ρ. In general, for any p ≥ 1,

Wp(µ1, µ2) := inf
π∈C (µ1,µ2)

(
∫

M×M

ρ(x, y)pπ(dx, dy)

)
1
p

, µ1, µ2 ∈ P,

where C (µ1, µ2) is the set of all probability measures on M ×M with marginal distributions
µ1 and µ2, and ρ(x, y) is the Riemannian distance between x and y, i.e. the length of the
shortest curve on M linking x and y.

Recently, the convergence rate under W2 has been characterized in [21] for the empirical
measures of the L-diffusion processes without boundary (i.e. ∂M = ∅) or with a reflecting
boundary. Moreover, the convergence of W2(µ

ν
t , µ0) for the conditional empirical measure

µν
t := E

ν(µt|t < τ), t > 0

is investigated in [20]. Comparing with E
ν [W2(µt, µ0)

2|t < τ ], in µν
t the conditional expecta-

tion inside the Wasserstein distance. According to [20], W2(µ
ν
t , µ0)

2 behaves as t−2, whereas
the following result says that E[W2(µt, µ0)

2|t < τ ] decays at a slower rate, which coincides
with the rate of E[W2(µ̂t, µ)

2] given by [21, Theorems 1.1, 1.2], where µ̂t is the empirical
measure of the reflecting diffusion process generated by L.

Theorem 1.1. Let {λm}m≥0 be the Dirichlet eigenvalues of −L listed in the increasing order

counting multiplicities. Then for any ν ∈ P0, the following assertions hold.

(1) In general,

(1.1) lim sup
t→∞

{

t sup
T≥t

E
ν
[

W2(µt, µ0)
2
∣

∣T < τ
]

}

≤
∞
∑

m=1

2

(λm − λ0)2
,

2



and there exists a constant c > 0 such that

(1.2) lim inf
t→∞

{

t inf
T≥t

E
ν
[

W2(µt, µ0)
2
∣

∣T < τ
]

}

≥ c

∞
∑

m=1

2

(λm − λ0)2
.

If ∂M is convex, then (1.2) holds for c = 1 so that

lim
t→∞

{

tEν
[

W2(µt, µ0)
2
∣

∣T < τ
]

}

=

∞
∑

m=1

2

(λm − λ0)2
uniformly in T ≥ t.

(2) When d = 4, there exists a constant c > 0 such that

(1.3) sup
T≥t

E
ν
[

W2(µt, µ0)
2
∣

∣T < τ
]

≤ ct−1 log t, t ≥ 2.

(3) When d ≥ 5, there exist a constant c > 1 such that

c−1t−
2

d−2 ≤ E
ν
[

W1(µt, µ0)
2
∣

∣T < τ
]

≤ E
ν
[

W2(µt, µ0)
2
∣

∣T < τ
]

≤ ct−
2

d−2 , T ≥ t ≥ 2.

Let X0
t be the diffusion process generated by L0 := L+2∇ log φ0 in M

◦. It is well known
that for any initial distribution supported on M◦, the law of {X0

s : s ∈ [0, t]} is the weak
limit of the conditional distribution of {Xs : s ∈ [0, t]} given T < τ as T → ∞. Therefore,
the following is a direct consequence of Theorem 1.1.

Corollary 1.2. Let µ0
t =

1
t

∫ t

0
δX0

s
ds. Let ν ∈ P0 with ν(M◦) = 1.

(1) In general,

lim sup
t→∞

{

tEν
[

W2(µ
0
t , µ0)

2
]

}

≤
∞
∑

m=1

2

(λm − λ0)2
,

and there exists a constant c > 0 such that

lim inf
t→∞

{

t inf
T≥t

[

W2(µ
0
t , µ0)

2
]

}

≥ c
∞
∑

m=1

2

(λm − λ0)2
.

If ∂M is convex, then

lim
t→∞

{

tEν
[

W2(µt, µ0)
2
]

}

=
∞
∑

m=1

2

(λm − λ0)2
.

(2) When d = 4, there exists a constant c > 0 such that

E
ν
[

W2(µ
0
t , µ0)

2
]

≤ ct−1 log t, t ≥ 2.

(3) When d ≥ 5, there exists a constant c > 1 such that

c−1t−
2

d−2 ≤ E
ν
[

W2(µ
0
t , µ0)

2
]

≤ ct−
2

d−2 , t ≥ 2.

In the next section, we first recall some facts on the Dirichlet semigroup and the diffusion
semigroup P 0

t generated by L0 := L+2∇ logφ0, then establish the Bismut derivative formula
for P 0

t which will be used to estimate the lower bound of Eν [W2(µt, µ0)
2|t < τ). With these

preparations, we prove Propositions 3.1 and 4.1 in Sections 3 and 4 respectively, which imply
Theorem 1.1.

3



2 Some preparations

As in [21], we first recall some well known facts on the Dirichlet semigroup, see for instances
[5, 6, 12, 19]. Let {φm}m≥0 be the eigenbasis of the Dirichlet operator L in L2(µ), with
Dirichlet eigenvalues {λm}m≥0 of −L listed in the increasing order counting multiplicities.
Then λ0 > 0 and

(2.1) ‖φm‖∞ ≤ α0

√
m, α−1

0 m
2
d ≤ λm − λ0 ≤ α0m

2
d , m ≥ 1

holds for some constant α0 > 1. Let ρ∂ be the Riemannian distance function to the boundary
∂M . Then φ−1

0 ρ∂ is bounded such that

(2.2) ‖φ−1
0 ‖Lp(µ0) <∞, p ∈ [1, 3).

The Dirichlet heat kernel has the representation

(2.3) pDt (x, y) =

∞
∑

m=0

e−λmtφm(x)φm(y), t > 0, x, y ∈ M.

Let Ex denote the expectation for the L-diffusion process starting at point x. Then Dirichlet
diffusion semigroup generated by L is given by

PD
t f(x) := E

x[f(Xt)1{t<τ}] =

∫

M

pDt (x, y)f(y)µ(dy)

=
∞
∑

m=0

e−λmtµ(φmf)φm(x), t > 0, f ∈ L2(µ).
(2.4)

Consequently,

(2.5) lim
t→∞

{

eλ0tP
ν(t < τ)

}

= lim
t→∞

{

eλ0tν(PD
t 1)

}

= µ(φ0)ν(φ0), ν ∈ P0.

Moreover, there exists a constant c > 0 such that

(2.6) ‖PD
t ‖Lp(µ)→Lq(µ) := sup

µ(|f |p)≤1

‖PD
t f‖Lq(µ) ≤ ce−λ0t(1 ∧ t)−

d(q−p)
2pq , t > 0, q ≥ p ≥ 1.

On the other hand, let L0 = L+2∇ logφ0. Noting that L0f = φ−1
0 L(fφ0) + λ0f , L0 is a

self-adjoint operator in L2(µ0) and the associated semigroup P 0
t := etL0 satisfies

(2.7) P 0
t f = eλ0tφ−1

0 PD
t (fφ0), f ∈ L2(µ0), t ≥ 0.

So, {φ−1
0 φm}m≥0 is an eigenbasis of L0 in L2(µ0) with

(2.8) L0(φmφ
−1
0 ) = −(λm − λ0)φmφ

−1
0 , P 0

t (φmφ
−1
0 ) = e−(λm−λ0)tφmφ

−1
0 , m ≥ 0, t ≥ 0.

Consequently,

(2.9) P 0
t f =

∞
∑

m=0

µ0(fφmφ
−1
0 )e−(λm−λ0)tφmφ

−1
0 , f ∈ L2(µ0),
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and the heat kernel of P 0
t with respect to µ0 is given by

(2.10) p0t (x, y) =

∞
∑

m=0

(φmφ
−1
0 )(x)(φmφ

−1
0 )(y)e−(λm−λ0)t, x, y ∈M, t > 0.

By the intrinsic ultracontractivity, see for instance [13], there exists a constant α1 ≥ 1 such
that

(2.11) ‖P 0
t − µ0‖L1(µ0)→L∞(µ0) := sup

µ0(|f |)≤1

‖P 0
t f − µ0(f)‖∞ ≤ α1e

−(λ1−λ0)t

(1 ∧ t) d+2
2

, t > 0.

Combining this with the semigroup property and the contraction of P 0
t in Lp(µ) for any

p ≥ 1, we find a constant α2 ≥ 1 such that

(2.12) ‖P 0
t − µ0‖Lp(µ0) := sup

µ0(|f |p)≤1

‖P 0
t f − µ0(f)‖Lp(µ0) ≤ α2e

−(λ1−λ0)t, t ≥ 0, p ≥ 1.

By the interpolation theorem, (2.11) and (2.12) yield that for some constant α3 > 0,

(2.13) ‖P 0
t − µ0‖Lp(µ0)→Lq(µ0) ≤ α3e

−(λ1−λ0)t{1 ∧ t}−
(d+2)(q−p)

2pq , t > 0,∞ ≥ q > p ≥ 1.

By this and (2.8), there exists a constant α4 > 0 such that

(2.14) ‖φmφ
−1
0 ‖∞ ≤ α4m

d+2
2d , m ≥ 1.

In the remainder of this section, we establish the Bismut derivative formula for P 0
t , which

is not included by existing results due to the singularity of ∇ log φ0 in L0. Let X0
t be the

diffusion process generated by L0, which solves the following Itô SDE on M◦, see [8]:

(2.15) dIX0
t = ∇(V + 2 logφ0)(X

0
t )dt+

√
2UtdBt,

where Bt is the d-dimensional Brownian motion, and Ut ∈ OX0
t
(M) is the horizontal lift of

X0
t to the frame bundle O(M). Let Ric and Hess be the Ricci curvature and the Hessian

tensor on M respectively. Then the Bakry-Emery curvature of L0 is given by

RicL0 := Ric− HessV+2 log φ0 .

Let Ric#L0(Ut) ∈ R
d ⊗ R

d be defined by

〈Ric#L0(Ut)a, b〉Rd = RicL0(Uta, Utb), a, b ∈ R
d.

We consider the following ODE on R
d ⊗ R

d:

(2.16)
d

dt
Qt = −Ric#L0(Ut)Qt, Q0 = I,

where I is the identity matrix.
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Lemma 2.1. For any ε > 0, there exist constants δ1, δ2 > 0 such that

(2.17) E
x
[

eδ1
∫ t

0
{φ0(Xs)}−2ds

]

≤ δ2φ
−ε
0 (x)eδ2t, t ≥ 0, x ∈M◦.

Consequently,

(1) For any ε > 0 and p > 1, there exists a constant κ > 0 such that

|∇Ptf(x)|2 ≤ κφ0(x)
−εeκt{Pt|∇f |2p(x)}

1
p , f ∈ C1

b (M).

(2) For any ε > 0 and p ≥ 1, there exists a constant κ > 0 such that for any stopping time

τ ′,
E
x[‖Qt∧τ ′‖p] ≤ κφ0(x)

−εeκt, t ≥ 0.

Proof. Since Lφ0 = −λ0φ0, φ0 > 0 in M◦, ‖φ0‖∞ < ∞ and |∇φ0| is strictly positive in a
neighborhood of ∂M , we find a constant c1, c2 > 0 such that

L0 logφ
−1
0 = −φ−1

0 Lφ0 + φ−2
0 |∇φ0|2 − 2φ−2

0 |∇φ0|2 ≤ c1 − c2φ
−2
0 .

So, by (2.15) and Itô’s formula, we obtain

d log φ−1
0 (X0

t ) ≤ {c1 − c2φ
−2
0 (X0

t )}dt +
√
2〈∇ logφ−1

0 (X0
t ), UtdBt〉.

This implies

(2.18) E
x

∫ t

0

[φ−2
0 (X0

s )]ds ≤ ct+ c log(1 + φ−1
0 )(x), t ≥ 0

for some constant c > 0, and for any constant δ > 0,

E
x
[

eδc2
∫ t

0 φ−2
0 (X0

s )}ds
]

≤ E
x
[

eδ log φ
−1
0 (x)+δ log φ0(X0

t )+c1δt−δ
√
2
∫ t

0 〈∇ log φ0(X0
s ),UsdBs〉]

≤ ec1δtφ−δ
0 (x)‖φ0‖δ∞

(

E
x[e4δ

2
∫ t

0 |∇ log φ0|2(X0
s )ds]

)
1
2 .

Let c3 = 4‖∇φ0‖2∞, and take δ ∈ (0, c2/c3], we derive

E
x
[

eδc2
∫ t

0 φ−2
0 (X0

s )}ds
]

≤ e2c1δtφ−2δ
0 (x), δ ∈ (0, c2/c3].

This implies (2.17). Below we prove assertions (1) and (2) respectively.
Since V ∈ C2

b (M) and φ0 ∈ C2
b (M) with φ0 > 0 in M◦, there exists a constant α1 > 0

such that

(2.19) RicL0(U, U) ≥ −α1φ
−1
0 (x)|U |2, x ∈M◦, U ∈ TxM.

By (2.15), (2.19), and the formulas of Itô and Bochner, for fixed t > 0 this implies

d|∇P 0
t−sf |2(X0

s )

=
{

L0|∇P 0
t−sf |2(X0

s )− 2〈∇P 0
t−sf,∇L0P

0
t−sf〉

}

ds+
√
2〈∇|∇P 0

t−sf |2(X0
s ), UsdBs〉

6



≥ 2RicL0(∇P 0
t−sf,∇P 0

t−sf)(X
0
s )ds+

√
2〈∇|∇P 0

t−sf |2(X0
s ), UsdBs〉

≥ −2α1{φ−1
0 |∇P 0

t−sf)|2}(X0
s )ds+

√
2〈∇|∇P 0

t−sf |2(Xs), UsdBs〉ds.

Then

|∇Ptf(x)|2 = E
x|∇Ptf |2(X0

0 ) ≤ E
x
[

|∇f |2(X0
t )e

2
∫ t

0
2α1φ−1(X0

u)du
]

≤
{

E
xe

2α1p

p−1

∫ t

0 φ−1(X0
u)du

]}
p−1
p {Pt|∇f |2p(x)}

1
p .

Combining this with (2.17), we prove (1).
Next, by (2.16) and (2.19), we obtain

‖Qt∧τ ′‖ ≤ eα1

∫ t

0 φ−1(X0
s )ds, t ≥ 0.

This together with (2.17) implies (2).

Lemma 2.2. For any t > 0 and γ ∈ C1([0, t]) with γ(0) = 0 and γ(t) = 1, we have

(2.20) ∇P 0
t f(x) = E

x

[

f(X0
t )

∫ t

0

γ′(s)Q∗
sdBs

]

, x ∈M◦, f ∈ Bb(M
◦).

Consequently, for any ε > 0 and p > 1, here exists a constant c > 0 such that

(2.21) |∇P 0
t f | ≤

cφ−ε
0√

1 ∧ t
(P 0

t |f |p)
1
p , t > 0, f ∈ Bb(M

◦).

Proof. Since (2.21) follows from (2.20) with γ(s) := t−s
t

and Lemma 2.1(2), it suffices to
prove the Bismut formula (2.20). By an approximation argument, we only need to prove for
f ∈ C1

b (M). The proof is standard by Elworthy-Li’s martingale argument [7], see also [15].
By ‖∇f‖∞ <∞ and Lemma 2.1(1) for ε = 1

4
, we find a constant c1 > 0 such that

(2.22) |∇P 0
s f |(x) ≤ c1φ

−1/4
0 (x), s ∈ [0, t], x ∈M◦.

Next, since Lφ0 = −λ0φ0 implies L0φ
−1
0 = λ0φ

−1
0 , by Itô’s formula we obtain

(2.23) E
x[φ−1

0 (X0
t∧τn)] ≤ φ−1

0 (x)eλ0t, t ≥ 0, n ≥ 1,

where τn := inf{t ≥ 0 : φ0(X
0
s ) ≤ 1

n
} ↑ ∞ as n ↑ ∞ by noting that the process X0

t is
non-explosive in M◦.

Moreover, by Itô’s formula, for any a ∈ R
d, we have

d〈∇P 0
t−sf(X

0
s ), UsQsa〉 =

√
2HessPt−sf(UsdBs, UsQsa)(X

0
s ),

dPt−sf(X
0
s ) =

√
2 〈∇P 0

t−sf(X
0
s ), UsdBs〉, s ∈ [0, t].

7



Due to the integration by part formula, this and γ(0) = 0 imply

− 1√
2
E
x

[

f(X0
t∧τn)

∫ t∧τn

0

γ′(s)〈Qsa, dBs〉
]

= E

[
∫ t∧τn

0

〈∇P 0
t−sf(X

0
s ), UsQsa〉d(1− γ)(s)

]

= E
[

(1− γ)(t ∧ τn)〈∇P 0
t−t∧τnf(X

0
t∧τn), Qt∧τna〉

]

− 〈∇Ptf(x), U0a〉

− E

[
∫ t∧τn

0

(1− γ)(s)d〈∇P 0
t−sf(X

0
s ), UsQsa〉

]

= E
[

(1− γ)(t ∧ τn)〈∇P 0
t−t∧τnf(X

0
t∧τn), Qt∧τna〉

]

− 〈∇Ptf(x), U0a〉, n ≥ 1.

(2.24)

Since γ is bounded with γ(t) = 1 such that (1− γ)(t∧ τn) → 0 as n→ ∞, and (2.22), (2.23)
and Lemma 2.1(2) imply

sup
n≥1

E
x
[

〈∇P 0
t−t∧τnf(X

0
t∧τn), Qt∧τna〉2

]

≤ c1 sup
n≥1

(

E[φ−1
0 (X0

t∧τn)]
)

1
2
(

E
x‖Qt∧τn‖4

)
1
2 <∞,

by the dominated convergence theorem, we may take n→ ∞ in (2.24) to derive (2.20).

3 Upper bound estimates

In this section we prove the following result which includes upper bound estimates in Theo-
rem 1.1.

Proposition 3.1. Let ν ∈ P0.

(1) (1.1) holds.

(2) When d = 4, there exists a constant c > 0 such that (1.3) holds.

(3) When d ≥ 5, there exists a constant c > 0 such that

sup
T≥t

E
ν
[

W2(µt, µ0)
2
∣

∣T < τ
]

≤ ct−
2

d−2 , t ≥ 2.

The main tool in the study of the upper bound estimate is the following inequality due
to [1], see also [21, Lemma 2.3]: for any probability density g ∈ L2(µ0),

(3.1) W2(gµ0, µ0)
2 ≤

∫

M

|∇L0(g − 1)|2
M (g, 1)

dµ0,

where M (a, b) := a−b
log a−log b

1{a∧b>0}. To apply this inequality, as in [21], we first modify µt by

µt,r := µtP
0
r for some r > 0, where for a probability measure ν on M◦, νP 0

r is the law of the
L0-diffusion process X0

r with initial distribution ν. Obviously, by (2.10) we have

ρt,r :=
dµt,r

dµ0
=

1

t

∫ t

0

p0r(Xs, ·)ds = 1 +
∞
∑

m=1

e−(λm−λ0)rψm(t)φmφ
−1
0 ,

ψm(t) :=
1

t

∫ t

0

{φmφ
−1
0 }(Xs)ds,

(3.2)

8



which are well-defined on the event {t < τ}.

Lemma 3.2. If d ≤ 3 and ν = hµ with hφ−1
0 ∈ Lp(µ0) for some p > d+2

2
, then there exists

a constant c > 0 such that

sup
T≥t

∣

∣

∣
tEν

[

µ0(|∇L−1
0 (ρt,r − 1)|2)

∣

∣T < τ
]

− 2
∞
∑

m=1

e−2(λm−λ0)r

(λm − λ0)2

∣

∣

∣

≤ ct−1
(

r−
(d−2)+

2 + 1{d=2} log r
−1
)

, r ∈ (0, 1], t ≥ 1.

Proof. By the Markov property, (2.7) and (2.4), we have

E
x[f(Xs)1{T<τ}] = E

x
[

1{s<τ}f(Xs)E
Xs1{T−s<τ}

]

= PD
s {fPD

T−s1}(x) = e−λ0T
(

φ0P
0
s {fP 0

T−sφ
−1
0 }

)

(x), s < T.
(3.3)

By the same reason, and noting that Eν =
∫

M
E
xν(dx), we derive

E
ν [f(Xs1)f(Xs2))1{T<τ}] =

∫

M

E
x
[

1{s1<τ}f(Xs1)E
Xs1{f(Xs2−s1)1{T−s1<τ}}

]

ν(dx)

= e−λ0Tν
(

φ0P
0
s1
[fP 0

s2−s1
{fP 0

T−s2
φ−1
0 }]

)

, s1 < s2 < T.

In particular, the formula with f = 1 yields

P
ν(T < τ) = e−λ0Tν(φ0P

0
Tφ

−1
0 ).

Combining these with (3.2), (2.8), E
ν(ξ|T < τ) :=

E
ν [ξ1{T<τ}]

Pν(T<τ)
for an integrable random

variable ξ, and the symmetry of P 0
t in L2(µ0), for ν = hµ we obtain

tEν
[

µ0(|∇L−1
0 (ρt,r − 1)|2)

∣

∣T < τ
]

=

∞
∑

m=1

tEν [ψm(t)
2|T < τ ]

e2(λm−λ0)r(λm − λ0)

=
∞
∑

m=1

2
∫ t

0
ds1

∫ t

s1
E
ν
[

1{T<τ}(φmφ
−1
0 )(Xs1)(φmφ

−1
0 )(Xs2)

]

ds2

te2(λm−λ0)r(λm − λ0)ν(φ0P 0
Tφ

−1
0 )

=
∞
∑

m=1

2
∫ t

0
ds1

∫ t

s1
ν
(

φ−1
0 P 0

s1{φmφ
−1
0 P 0

s2−s1[φmφ
−1
0 P 0

T−s2
φ−1
0 ]}

)

ds2

te2(λm−λ0)r(λm − λ0)ν(φ0P 0
Tφ

−1
0 )

=

∞
∑

m=1

2
∫ t

0
ds1

∫ t

s1
µ0

(

{P 0
s1(hφ

−1
0 )}φmφ

−1
0 P 0

s2−s1[φmφ
−1
0 P 0

T−s2
φ−1
0 ]

)

ds2

te2(λm−λ0)r(λm − λ0)µ0(φ
−1
0 P 0

T (hφ
−1
0 ))

.

(3.4)

By (2.13), ‖φ−1
0 ‖L2(µ0) = 1 and ‖hφ−1

0 ‖L1(µ0) = µ(hφ0) ≤ ‖φ0‖∞ < ∞, we find a constant
c1 > 0 such that

∣

∣µ0(φ
−1
0 P 0

T (hφ
−1
0 ))− µ(φ0)ν(φ0)| ≤ ‖φ−1

0 (P 0
T − µ0)(hφ

−1
0 )‖L1(µ0)

≤ ‖P 0
T − µ0‖L1(µ0)→L2(µ0)‖hφ−1

0 ‖L1(µ0) ≤ c1e
−(λ1−λ0)T , T ≥ 1.

(3.5)
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On the other hand, write

µ0

(

{P 0
s1
(hφ−1

0 )}φmφ
−1
0 P 0

s2−s1
[φmφ

−1
0 P 0

T−s2
φ−1
0 ]

)

= ν(φ0)µ(φ0)e
−(λm−λ0)(s2−s1) + J1(s1, s2) + J2(s1, s2) + J3(s1, s2),

(3.6)

where, due to (2.8),

J1(s1, s2) := µ0

(

{P 0
s1
(hφ−1

0 )− µ(hφ0)}φmφ
−1
0 P 0

s2−s1
[φmφ

−1
0 (P 0

T−s2
φ−1
0 − µ(φ0))]

)

,

J2(s1, s2) := µ(φ0)e
−(λm−λ0)(s2−s1)µ0

(

{P 0
s1(hφ

−1
0 )− µ(hφ0)}{φmφ

−1
0 }2

)

,

J3(s1, s2) := µ(hφ0)e
−(λm−λ0)(s2−s1)µ0

(

{φmφ
−1
0 }2{P 0

T−s2
φ−1
0 ]− µ(φ0)}

)

.

By (3.4), (3.5) and (3.6), we find a constant κ > 0 such that

sup
T≥t

∣

∣

∣
tEν

[

µ0(|∇L−1
0 (ρt,r − 1)|2)

∣

∣T < τ
]

− 2
∞
∑

m=1

e−2(λm−λ0)r

(λm − λ0)2

∣

∣

∣

≤ κ

t

∞
∑

m=1

(

e−2(λm−λ0)r

(λm − λ0)2
+

e−2(λm−λ0)r

λm − λ0

∫ t

0

ds1

∫ t

s1

|J1 + J2 + J3|(s2, s2)ds2
)

, t ≥ 1.

(3.7)

Since ‖hφ−1
0 ‖Lp(µ0) < ∞, ‖φ−1

0 ‖Lθ(µ0) < ∞ for θ < 3 due to (2.2), ‖φmφ
−1
0 ‖L2(µ0) = 1, by

(2.13), for any θ ∈ (5
2
, 3), we find constants c1, c2 > 0 such that

|J1(s1, s2)| ≤ c1‖P 0
s1
− µ0‖Lp(µ0)→L∞(µ0)‖P 0

T−s2
− µ0‖Lθ(µ0)→L∞(µ0)

≤ c2e
−(λ1−λ0)(s1+T−s2)(1 ∧ s1)−

d+2
2p {1 ∧ (T − s2)}−

d+2
2θ ,

(3.8)

and

|(J2 + J3)(s1, s2)|
≤ c1e

−(λm−λ0)(s2−s1)
(

‖P 0
s1 − µ0‖p→∞ + ‖P 0

T−s2 − µ0‖Lθ(µ0)→L∞(µ0)

)

≤ c2e
−(λm−λ0)(s2−s1)

(

{1 ∧ s1}−
d+2
2p e−(λ1−λ0)s1 + {1 ∧ (T − s2)}−

d+2
2θ e−(λ1−λ0)(t−s2)

)

.

(3.9)

Since q > 5
2
and p > d+2

2
imply d+2

2q
∨ d+2

2p
< 1 for d ≤ 3, by (3.8) and (3.9), we find a constant

c > 0 such that
∫ t

0

ds1

∫ t

s1

|J1 + J2 + J3|(s1, s2)ds2 ≤
c

t
, T ≥ t ≥ 1, m ≥ 1.

Combining this with (3.7) and (2.1), we find constants c3, c4, c5, c6 > 0 such that

sup
T≥t

∣

∣

∣
tEν [

[

µ0(|∇L−1
0 (ρt,r − 1)|2)

∣

∣T < τ
]

−
∞
∑

m=0

e−(λm−λ0)r

(λm − λ0)2

∣

∣

∣

≤ c3
t

∞
∑

m=1

e−2(λm−λ0)r

λm − λ0
≤ c4

t

∫ ∞

1

s−
2
d e−c5s

2
d rds ≤ c6t

−1
(

r−
(d−2)+

2 + 1{d=2} log r
−1
)

, t ≥ 1.
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Lemma 3.3. There exists a constant c > 0 such that for any t > 0 and nonnegative random

variable ξ ∈ σ(Xs : s ≤ t),

sup
T≥t

E
ν [ξ|T < τ ] ≤ cEν [ξ|t < τ ], t ≥ 1, ν ∈ P0.

Proof. By the Markov property, (2.6) for p = q = ∞ and (2.5), we find constants c1, c2 > 0
such that

E
ν [ξ1{T<τ}] = E

ν [ξ1{t<τ}P
D
T−t1(Xt)] ≤ c1e

−λ0(T−t)
E
ν [ξ1{t<τ}],

P
ν(T < τ) ≥ c2P

ν(t < τ)e−(T−t)λ0 , T ≥ t ≥ 1.

Then

E
ν [ξ|T < τ ] =

E
ν [ξ1{T<τ}]

Pν(T < τ
≤ c1E

ν [ξ1{t<τ}]

c2Pν(t < τ)
=
c1
c2
E
ν [ξ|t < τ ].

Lemma 3.4. Let d ≤ 3 and denote ν0 =
φ0

µ(φ0)
µ. For any ε ∈ (d

4
∨ d2

2d+4
, 1) 6= ∅, there exists

a constant c > 0 such that

sup
T≥t

E
ν0
[

|ρt,r(y)− 1|2
∣

∣T < τ
]

≤ cφ−2
0 (y)t−1r−ε, t ≥ 1, r ∈ (0, 1], y ∈M◦.

Proof. By Lemma 3.3, it suffices to prove for T = t replacing T ≥ t. For fixed y ∈ M◦, let
f = p0r(·, y)− 1. We have

ρt,r(y)− 1 =
1

t

∫ t

0

f(Xs)ds.

Then

(3.10) E
ν0
[

|ρt,r(y)− 1|21{t<τ}
]

=
2

t2

∫ t

0

ds1

∫ t

s1

E
ν0
[

1{t<τ}f(Xs1)f(Xs2)
]

ds2.

By (3.3), µ0(f) = 0, and the symmetry of P 0
t in L2(µ0), we obtain

I := eλ0tE
ν0
[

1{t<τ}f(Xs1)f(Xs2)
]

= µ(φ0)
−1µ0

(

P 0
s1
{fP 0

s2−s1
(fP 0

t−s2
φ−1
0 )}

)

= µ(φ0)
−1µ0

(

fP 0
s2−s1

(fP 0
t−s2

φ−1
0 )

)

= µ(φ0)
−1µ0

(

{fP 0
t−s2

φ−1
0 }P 0

s2−s1
f
)

= µ(φ0)
−1µ0

(

{fP 0
t−s2

φ−1
0 }{P 0

s2−s1
− µ0}f

)

.

(3.11)

Taking q ∈ (5
2
, 3) so that ε1 :=

d+2
2q

< 1 for d ≤ 3 and ‖φ−1
0 ‖Lq(µ0) <∞ due to (2.2), for any

p ∈ (1, 2] we deduce from this and (2.13) that

µ(φ0)I ≤ ‖f‖Lp(µ0)‖P 0
t−s2

φ−1
0 ‖L∞(µ0)‖(P 0

s2−s1
− µ0)f‖

L
p

p−1 (µ0)

≤ ‖f‖Lp(µ0)‖P 0
t−s2

‖Lq(µ0)→L∞(µ0)‖φ−1
0 ‖Lq(µ0)‖P 0

s2−s1
− µ0‖

L2(µ0)→L
p

p−1 (µ0)
‖f‖L2(µ0)

≤ c1‖f‖Lp(µ0)‖f‖L2(µ0){1 ∧ (t− s2)}−ε1{1 ∧ (s2 − s1)}−
(d+2)(2−p)

2p e−(λ1−λ0)(s2−s1)

(3.12)
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holds for some constants c1 > 0. Since f = p0r(·, y)− 1 and inf φ−1
0 > 0, by (2.6) and (2.7),

we find constants β1, β2 > 0 such that

‖f‖Lp(µ0) ≤ 1 + ‖p0r(·, y)‖Lp(µ0) ≤ 1 + erλ0φ−1
0 (y)‖φ−1

0 pDr (·, y)‖Lp(µ0)

≤ 1 + β1φ
−1
0 (y)‖φ0‖

2−p

p
∞ ‖pDr (·, y)‖Lp(µ) ≤ β2φ

−1
0 (y)r−

d(p−1)
2p , r ∈ (0, 1], p ∈ [1, 2].

Combining this with (3.12) we find a constant c2 > 0 such that

I ≤ c2φ
−2
0 (y)r−

d(p−1)
2p

− d
4{1 ∧ (t− s2)}−ε1{1 ∧ (s2 − s1)}−

(d+2)(2−p)
2p e−(λ1−λ0)(s2−s1), p ∈ (1, 2].

Taking p > p0 := 1 ∨ 2(d+2)
d+6

such that

ε2 :=
(d+ 2)(2− p)

4p
≤ 5(2− p)

4p
< 1,

we arrive at

I ≤ c2φ
−2(y)r−

d(p−1)
2p

− d
4{1 ∧ (t− s2)}−ε1{1 ∧ (s2 − s1)}−ε2e−(λ1−λ0)(s2−s1)

for some constants ε1, ε2 ∈ (0, 1). Combining this with (3.10), we obtain

E
ν0
[

|ρt,r(y)− 1|2
∣

∣t < τ
]

≤ cφ−2
0 (y)t−1r−

d(p−1)
2p

− d
4 , t ≥ 1.

Noting that

lim
p↓p0

{d(p− 1)

2p
+
d

4

}

=
d

4
∨ d2

2d+ 4
< 1 for d ≤ 3,

for any ε ∈ (d
4
∨ d2

2d+4
, 1), there exists p > p0 such that d

4
∨ d2

2d+4
≤ ε. Therefore, the proof is

finished.

Lemma 3.5. Let d ≤ 3 and denote ψm(t) =
1
t

∫ t

0
(φmφ

−1
0 )(Xs)ds. Then there exists a constant

c > 0 such that for any p ∈ [1, 2],

sup
T≥t

E
ν0
[

|ψm(t)|2p
∣

∣t < τ
]

≤ cm
p(d+4)−d−8

2d t−p, t ≥ 1, m ≥ 1, r ∈ (0, 1).

Proof. By Lemma 3.3, it suffices to prove for T = t replacing T ≥ t. By Hölder’s inequality,
we have

E
ν0
[

|ψm(t)|2p|T < τ
]

≤
{

E
ν0
[

|ψm(t)|2|T < τ
]}2−p{

E
ν0
[

|ψm(t)|4|T < τ
]}p−1

.

Combining this with (2.5), it suffices to find a constant c > 0 such that

(3.13) E
ν0
[

|ψm(t)|21{t<τ}
]

≤ ce−λ0t

tm
2
d

, t ≥ 1, r ∈ (0, 1),

(3.14) E
ν0
[

|ψm(t)|41{t<τ}
]

≤ c
√
m e−λ0tt−2, t ≥ 1, r ∈ (0, 1).
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(a) Proof of (3.13). Let φ̂m = φmφ
−1
0 . We have

(3.15) E
ν0
[

|ψm(t)|21{t<τ}
]

=
2

t2

∫ t

0

ds1

∫ t

s1

E
ν0
[

1{t<τ}φ̂m(Xs1)φ̂m(Xs2)
]

ds2.

By (2.8), (3.3), µ0(|φ̂m|2) = 1, and the symmetry of P 0
t in L2(µ0), we find a constant c1 > 0

such that

eλ0tE
ν0
[

1{T<τ}φ̂m(Xs1)φ̂m(Xs2)
]

= ν0
(

φ0P
0
s1
{φ̂mP

0
s2−s1

(φ̂mP
0
t−s2

φ−1
0 )}

)

=
1

µ(φ0)
µ0

(

φ̂mP
0
s2−s1(φ̂mP

0
t−s2φ

−1
0 )

)

=
e−(λm−λ0)(s2−s1)

µ(φ0)
µ0

(

|φ̂m|2P 0
t−s2φ

−1
0 )

)

≤ c1e
−(λm−λ0)(s2−s1)‖Pt−s2‖Lp(µ0)→∞(µ0)‖φ−1

0 ‖Lp(µ0), p > 1.

Since d ≤ 3, we may take p ∈ (1, 3) such that ε := d+2
2q

< 1 and ‖φ−1
0 ‖Lp(µ0) < ∞ due to

(2.2), so that this and (2.13) imply

eλ0tE
ν0
[

1{t<τ}φ̂m(Xs1)φ̂m(Xs2)
]

≤ c2e
−(λm−λ0)(s2−s1){1 ∧ (t− s2)}−ε

for some constant c3 > 0. Therefore, (3.13) follows from (3.15) and (2.1).
(b) Proof of (3.14). For any s > 0 we have

s4Eν0
[

|ψm(s)|41{s<τ}
]

= 24

∫ s

0

ds2

∫ s

s1

ds2

∫ s

s2

ds3

∫ s

s3

E
ν0
[

1{s<τ}φ̂m(Xs1)φ̂m(Xs2)φ̂m(Xs3)φ̂m(Xs4)
]

ds4

= 24

∫ s

0

ds2

∫ s

s1

ds2

∫ s

s2

ds3

∫ s

s3

E
ν0
[

1{s3<τ}φ̂m(Xs1)φ̂m(Xs2)gs(s3, s4)
]

ds4,

(3.16)

where due to (3.3) and the Markov property,

gs(s3, s4) := E
ν0
[

1{s<τ}φ̂m(Xs3)φ̂m(Xs4)
∣

∣Xr : r ≤ s3
]

= φ̂m(Xs3)E
Xs3

[

1{s−s3<τ}φ̂m(Xs4−s3)
]

= e−λ0(s−s3)
{

φ̂mφ0P
0
s4−s3(φ̂mP

0
s−s4φ

−1
0 )

}

(Xs3), 0 < s3 < s4 ≤ s.

(3.17)

So, by Fubini’s theorem and Schwarz’s inequality, we obtain

I(s) := s4eλ0sE
ν0
[

|ψm(s)|41{s<τ}
]

= 12eλ0s

∫ s

0

dr1

∫ s

r1

E
ν0

[

1{r1<τ}gs(r1, r2)

∣

∣

∣

∣

∫ r1

0

φ̂m(Xr)dr

∣

∣

∣

∣

2]

dr2

≤ 12 sup
r∈[0,s]

√

I(r)

∫ s

0

dr1

∫ s

r1

{

e2λ0s−λ0r1E
ν0
[

1{r1<τ}gs(r1, r2)
2
]

}
1
2
dr2.

Consequently,

(3.18) I(t) ≤ sup
s∈[0,t]

I(s) ≤
(

12 sup
s∈[0,t]

∫ s

0

dr1

∫ s

r1

{

eλ0(2s−r1)E
ν0
[

1{r1<τ}gs(r1, r2)
2
]

}
1
2

dr2

)2

.
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On the other hand, by the definition of ν0, (3.3), (3.17) and that µ0 is P 0
t -invariant, we

obtain

E
ν0
[

1{r1<τ}|gs(r1, r2)|2
]

≤ e−2λ0(s−r1)−λ0r1

µ(φ0)
µ0

(

P 0
r1
{φ−1

0 |φ̂mφ0P
0
r2−r1

(φ̂mP
0
s−r2

φ−1
0 )|2}

)

=
e−λ0(2s−r1)

µ(φ0)
µ0

(

φ0|φ̂mP
0
r2−r1

(φ̂mP
0
s−r2

φ−1
0 )|2

)

≤ 2e−λ0(2s−r1)

µ(φ0)
µ0

(

φ0{|φ̂m(P
0
r2−r1φ̂m)µ(φ0)|2 + |φ̂mP

0
r2−r1(φ̂m[P

0
s−r2 − µ0]φ

−1
0 )|2}

)

.

(3.19)

Then, by (3.17), (2.8), (3.3), µ0(|φ̂m|2) = 1, and noting that µ0 is P 0
t -invariant, we find a

constant c1 > 0 such that

E
ν0
[

1{r1<τ}|gs(r1, r2)|2
]

≤ 2e−λ0(2s−r1)−(λm−λ0)(r2−r1)‖φm‖∞‖φ0‖∞µ0(|φ̂m||P(r2−r1)/2φ̂m|2)

+ 2
e−λ0(2s−r1)‖φm‖∞

µ(φ0)
µ0

(

|φ̂m| ·
∣

∣P 0
r2−r1

(φ̂m(P
0
s−r2

− µ0)φ
−1
0 )

∣

∣

2)

≤ c1e
−λ0(2s−r1)

{

e−(λm−λ0)(r2−r1)‖φm‖∞‖P(r2−r1)/2 − µ0‖2L2(µ0)→L4(µ0)

+ ‖φm‖∞‖P 0
r2−r1(φ̂m[P

0
s−r2 − µ0]φ

−1
0 )‖2L4(µ0)

}

.

By (2.1), (2.13), ‖φ̂m‖L2(µ0) = 1, ‖φ−1
0 ‖Lq(µ0) < ∞ and ε := d+2

8
∨ d+2

2q
< 1 for q ∈ (5

2
, 3) due

to (2.2) and d ≤ 3, we find constants c2 > 0 such that

‖φm‖∞‖P(r2−r1)/2 − µ0‖2L2(µ0)→L2(µ0)
≤ c2

√
m{1 ∧ (r2 − r2)}−

d
4 ,

and

‖φm‖∞‖P 0
r2−r1(φ̂m[P

0
s−r2 − µ0]φ

−1
0 )‖2L4(µ0)

≤ ‖φm‖∞‖P 0
r2−r1‖2L2(µ0)→L4(µ0)

‖φ̂m‖2L2(µ0)
‖(P 0

s−r2 − µ0)φ
−1
0 ‖2L∞(µ0)

≤ ‖φm‖∞‖P 0
r2−r1‖2L2(µ0)→L4(µ0)

‖P 0
s−r2 − µ0‖2Lq(µ0)→L∞(µ0)‖φ−1

0 ‖2Lq(µ0)

≤ c2
√
m e−2(λ1−λ0)(s−r2){1 ∧ (r2 − r1)}−2ε{1 ∧ (s− r2)}−2ε.

Therefore, there exist constants c3 > 0 and ε ∈ (0, 1) such that

E
ν0
[

1{r1<τ}|gs(r1, r2)|2
]

≤ c3e
−λ0(2s−r1)−(λm−λ0)(r2−r1)

√
m{1 ∧ (r2 − r2)}−

d
4

+ c3
√
m e−λ0(2s−r1)−2(λ1−λ0)(s−r2){1 ∧ (r2 − r1)}−2ε{1 ∧ (t− r2)}−2ε.

Combining this with (3.18) and the definition of I(t), we prove (3.14) for some constant
c > 0, and hence finish the proof.

Lemma 3.6. Let d ≤ 3. Then for any p ∈ (1, 3d+16
5d+8

∧ d+2
d+1

) 6= ∅, there exists a constant c > 0
such that

sup
r>0,T≥t

E
ν0
[

µ0(|∇L−1
0 (ρt,r − 1)|2p)|T < τ

]

≤ ct−p, t ≥ 1.
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Proof. By Lemma 3.3, it suffices to prove for T = t replacing T ≥ t. Let p ∈ (1, 3d+16
5d+8

∧ d+2
d+1

),
where p > 1 is equivalent to

(3.20)
p

2p− 1
< 1,

while p < 3d+16
5d+8

∧ d+2
d+1

implies

(d+ 2)(2p− 2)

4
+
d(p− 1)

2
+
(p(d+ 4) + d

4
− 2

)+

< 1,

and hence there exists ε ∈ (0, 1) such that

(3.21)
(d+ 2)(2p− 2 + ε)

4
+
d(p− 1)

2
+
(p(d+ 4) + d

4
− 2

)+

< 1.

By (2.13), (2.21), L−1
0 = −

∫∞
0
P 0
s ds, and applying Hölder’s inequality, we find a constant

c1, c2 > 0 such that

∫

M

∣

∣∇L−1
0 (ρt,r − 1)

∣

∣

2p
dµ0 ≤

∫

M

(
∫ ∞

0

∣

∣∇P 0
s (ρt,r − 1)

∣

∣ds

)2p

dµ0

≤ c1

∫

M

(
∫ ∞

0

1√
s

{

P 0
s
4

∣

∣P 0
3s
4
(ρt,r − 1)

∣

∣

p} 1
pds

)2p

φ−ε
0 dµ0

≤ c1

(
∫ ∞

0

s−
p

2p−1 e−
2pθs
2p−1ds

)
2p−1
2p

∫ ∞

0

eθsµ0

(

φ−ε
0

{

P 0
s
4
|P 0

3s
4
(ρt,r − 1)|p

}2)
ds, θ > 0.

(3.22)

Noting that p
2p−1

< 1 due to (3.20), we obtain

(3.23)

∫ ∞

0

s−
p

2p−1 e−
2pθs
2p−1d <∞, θ > 0.

Moreover, since ‖φ−ε
0 ‖L2ε−1 (µ0)

= 1, µ0(ρt,r−1) = 0, and P 0
t is contractive in Lp(µ0) for p ≥ 1,

by (2.13) and Hölder’s inequality, we find a constant c2 > 0 such that

µ0

(

φ−ε
0

{

P 0
s
4
|P 0

3s
4
(ρt,r − 1)|p

}2) ≤
∥

∥P 0
s
4
|P 0

3s
4
(ρt,r − 1)|p

∥

∥

2

L
4

2−ε (µ0)
‖φ−ε

0 ‖L2ε−1 (µ0)

≤ ‖P 0
s
4
‖2
L

4
2−ε (µ0)

∥

∥(P 0
s
2
− µ0)(P

0
s
4
ρt,r − 1)|

∥

∥

2p

L
4p
2−ε (µ0)

≤ ‖P 0
s
2
− µ0‖2p

L2(µ0)→L
4p
2−ε (µ0)

‖P 0
s
4
ρt,r − 1‖2pL2(µ0)

≤ c2(1 ∧ s)−
(d+2)(2p−2+ε)

4 e−(λ1−λ0)ps‖P 0
s
4
ρt,r − 1‖2pL2(µ0)

.

Combining this with (3.23), we find a function c : (0,∞) → (0,∞) such that

E
ν0
[

1{t<τ}µ0(|∇L−1
0 (ρt,r − 1)|2p)

]

≤ c(θ)

∫ ∞

0

eθs(1 ∧ s)− (d+2)(2p−2+ε)
4 e−(λ1−λ0)psE

ν0
[

1{t<τ}‖P 0
s
4
ρt,r − 1‖2pL2(µ0)

]

ds, θ > 0.
(3.24)
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By (2.8), (3.2) and Hölder’s inequality, we obtain

‖P 0
s
4
ρt,r − 1‖2pL2(µ0)

=
(

∞
∑

m=1

e−(λm−λ0)(2r+s/2)|ψm(t)|2
)p

≤
(

∞
∑

m=1

e−(λm−λ0)(2r+s/2)
)p−1

∞
∑

m=1

e−(λm−λ0)(2r+s/2)|ψm(t)|2p.

Noting that (2.1) implies

∞
∑

m=1

e−(λm−λ0)(2r+s/2) ≤ a1

∫ ∞

1

e−α2(r+s/2)t
2
d dt ≤ α3(1 ∧ s)−

d
2

for some constants α1, α2, α3 > 0, we derive

E
ν0
[

‖P 0
s
4
ρt,r − 1‖2pL2(µ0)

∣

∣t < τ
]

≤ c3(1 ∧ s)−
d(p−1)

2

∞
∑

m=1

e−(λm−λ0)(2r+s/2)
E
ν0
[

|ψm(t)|2p
∣

∣t < τ
]

for some constant c3 > 0. Combining this with Lemma 3.5, (2.1), we find constants
c4, c5, c6, c7 > 0 such that

E
ν0
[

‖P 0
s
4
ρt,r − 1‖2pL2(µ0)

∣

∣t < τ
]

≤ c4t
−p(1 ∧ s)− d(p−1)

2

∫ ∞

1

e−c5su
2
d u

p(d+4)−d−8
2d du

≤ c6t
−p(1 ∧ s)− d(p−1)

2 s2−
p(d+4)+d

4

∫ ∞

s

t
p(d+4)+d

4
−3e−tdt

≤ c7t
−p(1 ∧ s)− d(p−1)

2
−(p(d+4)+d

4
−2)+ log(2 + s−1),

where the term log(2 + s−1) comes when p(d+4)+d
4

− 3 = −1. This together with (3.21) and
(3.24) for θ ∈ (0, λ1 − λ0) implies the desired estimate.

Lemma 3.7. Let d ≤ 3. If rt = t−α for some α ∈ (1, 4
d
∧ 2d+4

d2
) 6= ∅, then ρt,rt,rt :=

(1− rt)ρt,rt + rt satisfies

lim
t→∞

sup
T≥t

E
ν0
[

µ0(|M (ρt,rt,rt , 1)
−1 − 1|q)

∣

∣T < τ
]

= 0, q ≥ 1.

Proof. By Lemma 3.3, it suffices to prove for T = t replacing T ≥ t. By the same reason
leading to (3.16) in [21], for any η ∈ (0, 1), y ∈M , we have

E
ν0
[

|M (ρt,rt,rt(y), 1)
−1 − 1|q

∣

∣t < τ
]

≤
∣

∣

∣

1√
1− η

− 2

2 + η

∣

∣

∣

q

+ P
ν0
(

|ρt,rt(y)− 1| > η
)

.

Combining this with Lemma 3.4 we find constants c > 0 and ε ∈ (0, α−1) such that

E
ν0
[

|M (ρt,rt,rt(y), 1)
−1 − 1|q

∣

∣t < τ
]

≤
∣

∣

∣

1√
1− η

− 2

2 + η

∣

∣

∣

q

+ cη−1φ0(y)
−2t−1+αε.

Since µ0(φ
−2
0 ) = 1, we obtain

E
ν0
[

µ0(|M (ρt,rt,rt , 1)
−1 − 1|q)

∣

∣t < τ
]

≤
∣

∣

∣

1√
1− η

− 2

2 + η

∣

∣

∣

q

+ cη−1t−1+αε, η ∈ (0, 1), t ≥ 1.

Noting that αε < 1, by letting first t→ ∞ then η → 0, we finish the proof.
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Lemma 3.8. Let µt,r,r = (1 + ρt,r,r)µ0, where ρt,r,r := (1− r)ρt,r + r, r ∈ (0, 1]. Assume that

ν = hµ with hφ−1
0 ∈ Lp(µ0) for some p > 1. Then there exists a constant c > 0 such that

sup
T≥t

E
ν
[

W2(µt,r,r, µt)
2
∣

∣T < τ
]

≤ cr, t > 0, r ∈ (0, 1].

Proof. By Lemma 3.3, it suffices to prove for T = t replacing T ≥ t. Firstly, it is easy to see
that

(3.25) W2(µt,r,r, µt,r)
2 ≤ D2‖µt,r,r − µt,r‖var = D2µ0(|ρt,r,r − ρt,r|) ≤ 2D2r, r ∈ (0, 1].

Next, by the definition of µt,r, we have

π(dx, dy) := µt(dx)P
0
r (x, dy) ∈ C (µt, µt,r),

where P 0
r (x, ·) is the distribution of X0

r starting at x. So,

(3.26) W2(µt, µt,r)
2 ≤

∫

M

E
x[ρ(x,X0

r )
2]µt(dx).

Moreover, by Itô’s formula and L0 = L+ 2∇ logφ0, we find a constant c1 > 0 such that

dρ(x,X0
r )

2 = L0ρ(x, ·)2(X0
r )dr + dMr ≤

{

c1 + c1φ
−1
0 (X0

r )
}

dr + dMr

holds for some martingale Mr. Combining this with (2.18), and noting that log(1 + φ−1
0 ) ≥

log(1 + ‖φ0‖−1
∞ ) > 0, we find a constant c2 > 0 such that

W2(µt, µt,r)
2 ≤ c1r + c1

∫

M

(

E
x

∫ r

0

φ−1
0 (X0

s )ds

)

µt(dx)

≤ c2rµt(log(1 + φ−1
0 )) =

c2r

t

∫ t

0

log{1 + φ−1
0 (Xs)}ds, r ∈ (0, 1].

Combining this with (3.25), (3.3), ‖P 0
t ‖Lp(µ0) = 1 for t ≥ 0 and p ≥ 1, and noting that

inf
t≥0

µ0(hφ
−1
0 P 0

t φ
−1
0 ) > 0,

we find constants c3, c4 > 0 such that

E
ν [W2(µt,r,r, µt)

2|t < τ ] =
E
ν [1{t<τ}W2(µt,r,r, µt)

2]

Pν(t < τ)

≤ c3r

tµ0(hφ
−1
0 P 0

t φ
−1
0 )

∫ t

0

µ0(hφ
−1
0 P 0

s log{1 + φ−1
0 })ds

≤ c3r‖hφ−1
0 ‖Lp(µ0)‖ log(1 + φ−1

0 )‖
L

p
p−1 (µ0)

≤ c4r, r ∈ (0, 1].

(3.27)

Combining this with (3.25) we finish the proof.

We are now ready to prove the main result in this section.
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Proof of Proposition 3.1(1). Since the upper bound is infinite for d ≥ 4, it suffices to consider
d ≤ 3.

(a) We first assume that ν = hµ with h ≤ Cφ0 for some constant C > 0. In this case, by
(2.5) and E

ν =
∫

M
E
xν(dx), there exists a constant c0 > 0 such that

(3.28) E
ν(·|t < τ) ≤ c0E

ν0(·|t < τ), t ≥ 1.

Let µt,rt,rt = {(1 − rt)ρt,rt + rt}µ0 with rt = t−α for some α ∈ (1, 4
d
∧ 2d+4

d2
). By Lemma 3.8

and the triangle inequality of W2, there exists a constant c1 > 0 such that for any t ≥ 1,

(3.29) E
ν
[

W2(µt, µ0)
2
∣

∣t < τ
]

≤ (1 + ε)Eν
[

W2(µt,rt,rt, µ0)
2
∣

∣t < τ
]

+ c1(1 + ε−1)t−α, ε > 0.

On the other hand, by (3.1), (3.28), Lemmas 3.2, 3.6 and 3.7, there exists p > 1 such that

lim sup
t→∞

tEν
[

W2(µt,rt,rt , µ0)
2
∣

∣t < τ
]

≤ lim sup
t→∞

tEν

[
∫

M

|∇L−1
0 (ρt,rt − 1)|2

M (ρt,rt,rt , 1)
dµ0

∣

∣

∣

∣

t < τ

]

≤ lim sup
t→∞

t
{

E
ν
[

µ0(|∇L−1
0 (ρt,rt − 1)|2)dµ0

∣

∣t < τ
]

+
(

E
ν
[

µ0(|∇L−1
0 (ρt,rt − 1)|2p)dµ0

∣

∣t < τ
])

1
p
(

E
ν
[

µ0(|M (ρt,rt,rt, 1)
−1 − 1|

p

p−1 )
∣

∣t < τ
])

p−1
p

}

= lim sup
t→∞

tEν
[

µ0(|∇L−1
0 (ρt,rt − 1)|2)dµ0

∣

∣t < τ
]

≤
∞
∑

m=1

2

(λm − λ0)2
.

Combining this with (3.29) where α > 1, we prove (1.1).
(b) In general, for any t ≥ 2 and ε ∈ (0, 1), we consider

µε
t :=

1

t− ε

∫ t

ε

δXs
ds.

Letting D be the diameter of D, we find a constant c1 > 0 such that

(3.30) W2(µ
ε
t , µt)

2 ≤ D2‖µt − µε
t‖var ≤ c1εt

−1, t ≥ 2, ε ∈ (0, 1).

On the other hand, by the Markov property we obtain

E
ν
[

1{t<τ}W2(µ
ε
t , µ0)

2
]

= E
ν
[

1{ε<τ}E
Xε(1{t−ε<τ}W2(µt−ε, µ0)

2)
]

= P
ν(ε < τ)Eνε

[

1{t−ε<τ}W2(µt−ε, µ0)
2
]

= P
νε(t− ε < τ)Pν(ε < τ)Eνε

[

W2(µt−ε, µ0)
2
∣

∣t− ε < τ
]

,

where νε = hεµ with

hε(y) :=
1

Pν(ε < τ)

∫

M

pDε (x, y)ν(dx) ≤ c(ε, ν)φ0(y)

for some constant c(ε, ν) > 0. Moreover, by (2.3), (2.5) and νε = hεµ, we have

lim
t→∞

P
νε(t− ε < τ)Pν(ε < τ)

Pν(t < τ)
= 1.

18



So, (a) implies

lim sup
t→∞

{

tEν
[

W2(µ
ε
t , µ0)

2
∣

∣t < τ
]

}

= lim sup
t→∞

P
νε(t− ε < τ)Pν(ε < τ)

Pν(t < τ)

{

tEνε
[

W2(µt−ε, µ0)
2
∣

∣t− ε < τ
]

}

≤
∞
∑

m=1

2

(λm − λ0)2
.

Combining this with (3.30), we arrive at

lim sup
t→∞

{

tEν
[

W2(µt, µ0)
2
∣

∣t < τ
]

}

≤ (1 + ε
1
2 ) lim sup

t→∞

{

tEν
[

W2(µ
ε
t , µ0)

2
∣

∣t < τ
]

}

+ c1ε(1 + ε−
1
2 )

≤ (1 + ε
1
2 )

∞
∑

m=1

2

(λm − λ0)2
+ c1ε(1 + ε−

1
2 ), ε ∈ (0, 1).

By letting ε→ 0, we derive (1.1).

Proof of Proposition 3.1(2)-(3). Let d ≥ 4. By (3.30), it suffices to prove the desired esti-
mates for µ1

t replacing µt. Therefore, we may and do assume ν = hµ with ‖hφ−1
0 ‖∞ < ∞.

Since

lim
p↓p0

{d

2
+

(d+ 2)(p− 1)

2p
− 2

}

=
2(d− 4)

3
,

by Lemma 3.2(1), for any k > 2(d−4)
3

, there exist constants c1, c2 > 0 such that

tEν
[

µ0(|∇L−1
0 (ρt,r − 1)|2

∣

∣T < τ
]

≤ c1

∞
∑

m=1

e−2(λm−λ0)r

(λm − λ0)2
+ c1t

−1r−k

≤ c2
{

1 + 1{d=4} log r
−1 + t−1r−k

}

, r ∈ (0, 1), t ≥ 1, T ≥ t.

Combining this with the following inequality due to [11, Theorem 2] for p = 2:

W2(fµ0, µ0)
2 ≤ 4µ0(|∇L−1

0 (f − 1)|2), fµ0 ∈ P0,

we obtain

tEν
[

W2(µt,r,r, µ0)
2
∣

∣T < τ
]

≤ c
{

r−
d−4
2 + 1{d=4} log r

−1 + t−1r−k
}

, T ≥ t ≥ 1, r ∈ (0, 1).

By this and Lemma 3.8, we find a decreasing function c : (2(d−4)
3

,∞) → (0,∞) such that

E
ν
[

W2(µt, µ0)
2
∣

∣T < τ
]

≤ c(k)
{

t−1r−
d−4
2 + t−11{d=4} log r

−1 + t−2r−k + r
}

,

T ≥ t ≥ 1, r ∈ (0, 1), k >
2(d− 4)

3
.

(3.31)
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(a) Let d = 4. We take r = t−1 for t > 1, such that (3.31) implies (1.3) for some constant
c > 0.

(b) When d ≥ 5. Since

lim
k↓ 2(d−4)

3

{

2− 2k

d− 2

}

=
2d+ 4

3(d− 2)
>

2

d− 2
,

there exists k > 2(d−4)
3

such that 2 − 2k
d−2

> 2
d−2

. So, we may take r = t−
2

d−2 for t > 1 such
that (3.31) implies the inequality in (3).

4 Lower bound estimate

This section devotes to the proof of the following result, which together with Proposition 3.1
implies Theorem 1.1.

Proposition 4.1. Let ν ∈ P0. There exists a constant c > 0 such that (1.2) holds, and

when ∂M is convex it holds for c = 1. Moreover, when d ≥ 5, there exists a constant c′ > 0
such that

(4.1) inf
T≥t

{

tE[W2(µt, µ0)|T < τ ]
}

≥ c′t−
2

d−2 , t ≥ 1.

To estimate the Wasserstein distance from below, we use the idea of [1] to construct a
pair of functions in Kantorovich’s dual formula, which leads to the following lemma.

Lemma 4.2. There exists a constant c > 0 such that

W2(µt,r, µ0)
2 ≥ µ0(|∇L−1

0 (ρt,r − 1)|2)− c‖ρt,r − 1‖
7
3∞(1 + ‖ρt,r − 1‖

1
3∞), t, r > 0.

Proof. Let f = L−1
0 (ρt,r − 1), and take

ϕε
θ = −ε logP 0

εθ
2

e−ε−1f , θ ∈ [0, 1], ε > 0.

We have ϕ0 = f and by [21, Lemma 2.9],

ϕε
1(y)− f(x) ≤ 1

2

{

ρ(x, y)2 + ε‖(L0f)
+‖∞ + c1ε

1
2‖∇f‖2∞

}

,

µ0(f − ϕε
1) ≤

1

2
µ0(|∇f |2) + c1ε

−1‖∇f‖4∞.

Since L0f = ρt,r − 1, this and the integration by parts formula imply

1

2
W2(µt,r, µ0)

2 + ε‖ρt,r − 1‖∞ + c1ε
1
2‖∇f‖2∞ ≥ µ0(ϕ

ε
1)− µt,r(f)

= µ0(ϕ
ε
1 − f)− µ0(fL0f) ≥

1

2
µ0(|∇L−1

0 f |2)− c1ε
−1‖∇f‖4∞, ε > 0.

(4.2)
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Next, by Lemma 2.1(1) for p = ∞ and (2.12), we find constants c2, c3, c4 > 0 such that

‖∇f‖∞ = ‖∇L−1
0 (ρt,r − 1)‖∞ ≤

∫ ∞

0

‖∇P 0
s (ρt,r − 1)‖∞ds

≤ c2

∫ ∞

0

(1 + s−
1
2 )‖P 0

s/2(ρt,r − 1)‖∞ds

≤ c3‖ρt.r − 1‖∞
∫ ∞

0

(1 + s−
1
2 )e−(λ1−λ0)s/2ds ≤ c4‖ρt.r − 1‖∞.

Combining this with (4.2) we find a constant c5 > 0 such that

W2(µt,r, µ0)
2 ≥ µ0(|∇L−1

0 f |2)− c5
{

ε‖ρt,r − 1‖∞ + ε
1
2‖ρt,r − 1‖2∞ + ε−1‖ρt,r − 1‖4∞

}

, ε > 0.

By taking ε = ‖ρt,r − 1‖
4
3∞ we finish the proof.

By Lemma 4.2, to derive a sharp lower bound of W2(µt,r, µ0)
2, we need to estimate

‖ρt,r − 1‖∞ and E
ν
[

µ0(|∇L−1
0 (ρt,r − 1)|2)

∣

∣T < τ
]

, which are included in the following three
lemmas.

Lemma 4.3. For any r > 0 and ν = hµ with ‖hφ−1
0 ‖∞ <∞, there exists a constant c(r) > 0

such that

sup
T≥t

E
ν
[

‖ρt,r − 1‖4∞
∣

∣T < τ
]

≤ c(r)t−2, t ≥ 1.

Proof. By Lemma 3.3 and (3.28), it suffices to prove for ν = ν0 and T = t replacing T ≥ t,
i.e. for a constant c(r) > 0 we have

(4.3) E
ν0
[

‖ρt,r − 1‖4∞
∣

∣t < τ
]

≤ c(r)t−2, t ≥ 1.

By (3.19), (2.8), (2.12), and ‖φ−1
0 ‖L2(µ0) = 1, we find a constant c1 > 0 such that

E
ν0 [1{r1<τ}|gs(r1, r2)|2]
≤ c1e

−λ0(2s−λ1)‖φ̂m‖4∞
{

e−(λm−λ0)(r2−r1) + e−(λ1−λ0)(s−r2)
}

, s > r2 > r1 > 0.

By (3.18) and P
ν0(t < τ) ≥ c0e

−λ0t for some constant c0 > 0 and all t ≥ 1, this implies

E
ν0 [|ψm(t)|4|t < τ ] :=

E
ν0 [|ψm(t)|41{t<τ}]

P ν0(t < τ)
≤ c2‖φ̂m‖4∞t−2, m ≥ 1, t > 1

for some constant c2 > 0. Combining with (3.2) gives

E
ν0
[

‖ρt,r − 1‖4∞
∣

∣t < τ
]

≤
( ∞
∑

m=1

e−(λm−λ0)r‖φ̂m‖
4
3∞

)3 ∞
∑

m=1

e−(λm−λ0)reλ0tE
ν0 [1{r1<τ}|ψm(t)|4]

≤
( ∞
∑

m=1

e−(λm−λ0)r‖φ̂m‖
4
3∞

)3

c2t
−2

∞
∑

m=1

e−(λm−λ0)r‖φ̂m‖4∞.

By (2.1) and (2.14), this implies (4.3) for some constant c(r) > 0.
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Lemma 4.4. Let ν = hµ with ‖hφ−1
0 ‖∞ < ∞. Then for any r > 0 there exists a constant

c(r) > 0 such that

sup
T≥t

∣

∣

∣
tEν

[

µ0(|∇L−1
0 (ρt,r − 1)|2)

∣

∣T < τ
]

− 2
∞
∑

m=1

e−2(λm−λ0)r

(λm − λ0)2

∣

∣

∣
≤ c(r)

t
, t ≥ 1.

Proof. Let {Ji : i = 1, 2, 3} be in (3.6). By (2.12), (2.14), and ‖φ̂m‖L2(µ0) = 1, we find a
constant c1 > 0 such that for any T ≥ t ≥ s2 ≥ s1 > 0,

|J1(s1, s2)| ≤ ‖hφ−1
0 ‖∞‖P 0

s1
− µ0‖L∞(µ0)‖φmφ

−1
0 |2∞‖P 0

T−s2
− µ0‖L1(µ0)‖φ−1

0 ‖L1(µ0)

≤ c1‖φmφ
−1
0 ‖2∞e−(λ1−λ0)(t+s1−s2),

|J2(s1, s2)| ≤ ‖φ0‖∞e−(λm−λ0)(s2−s1)‖hφ−1
0 ‖∞‖P 0

s1
− µ0‖L∞(µ0)

≤ c1e
−(λ1−λ0)s2 ,

|J3(s1, s2)| ≤ ‖φ0‖∞e−(λm−λ0)(s2−s1)‖φmφ
−1
0 ‖2∞‖P 0

T−s2 − µ0‖L1(µ0)‖φ−1
0 ‖L1(µ0)

≤ c1‖φmφ
−1
0 ‖2∞e−(λ1−λ0)(t−s1).

Substituting these into (3.7) and applying (2.1) and (2.14), we find a constant c(r) > 0 such
that the desired estimate holds.

Lemma 4.5. Let ν = hµ with ‖hφ−1
0 ‖∞ <∞. Then for any r > 0 and p ≥ 2, there exists a

constant c(r, p) > 0 such that

‖∇L−1
0 (ρt,r − 1)|2p‖L2p(µ0) ≤ c(r, p), t > 0.

Proof. Since ρt,r = 1
t

∫ t

0
p0r(Xs, ·)ds, we have µ0(ρt,r) = 1 and ‖ρt,r‖∞ ≤ ‖p0r‖∞ < ∞. Then

by (2.12) and ‖φ−1
0 ‖L2(µ0) = 1, we find a constant c1(r) > 0 such that

µ0

(

φ−1
0 {P 0

s
4
|P 0

3s
4
(ρt,r − 1)|p}2

)

≤ ‖φ−1
0 ‖L2(µ0)‖(P 0

3s
4
− µ0)ρt,r‖2pL4p(µ0)

≤ ‖P 0
3s
4
− µ0‖2pL4p(µ0)

‖ρt,r‖2p∞ ≤ c1(r)e
−3(λ1−λ0)s.

Combining this with (3.22) for ε = 1 and θ ∈ (0, 1
λ1−λ0

), we finish the proof.

Finally, since µt,r = µtP
0
r , to derive a lower bound of W2(µt, µ0) from that of W2(µt,r, µ0),

we present the following result.

Lemma 4.6. There exist two constants K1, K2 > 0 such that for any probability measures

µ1, µ2 on M◦,

(4.4) W2(µ1P
0
t , µ2P

0
t ) ≤ K1e

K2tW2(µ1, µ2), t ≥ 0.

When ∂M is convex, this estimate holds for K1 = 1.
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Proof. When ∂M is convex, by [20, Lemma 2.16], there exists a constant K such that

Ric− HessV+2 log φ0 ≥ −K,

so that the desired estimate holds for K1 = 1 and K2 = K, see [14].
In general, following the line of [18], we make the boundary from non-convex to convex

by using a conformal change of metric. Let N be the inward normal unit vector field of
∂M . Then the second fundamental form of ∂M is a two-tensor on the tangent space of ∂M
defined by

I(X, Y ) := −〈∇XN, Y 〉, X, Y ∈ T∂M.

Since M is compact, we find a function f ∈ C∞
b (M) such that f ≥ 1, N ‖ ∇f on ∂M , and

N log f |∂M + I(u, u) ≥ 0 holds on ∂M for any u ∈ T∂M with |u| = 1. By [18, Lemma 2.1]
or [19, Theorem 1.2.5], ∂M is convex under the metric

〈·, ·〉′ = f−2〈·, ·〉.

Let ∆′, ∇′ and Hess′ be the Laplacian, gradient and Hessian induced by the new metric
〈·, ·〉′. We have ∇′ = f 2∇ and (see (2.2) in [16])

L0 = f−2∆′ + f−2∇′{V + 2 logφ0 + (d− 2)f−1}.

Then the L0-diffusion process X0
t with X0

0 having distribution µ1 can be constructed by
solving the following Itô SDE on M◦ with metric 〈·, ·〉′ (see [2])

(4.5) dIX0
t =

{

f−2∇′(V + 2 logφ0 + (d− 2)f−1)
}

(X0
t )dt+

√
2f−1(X0

t )UtdBt,

where Bt is the d-dimensional Brownian motion, and Ut is the horizontal lift of X0
t to the

frame bundle O′(M) with respect to the metric 〈·, ·〉′.
Let Y 0

0 be a random variable independent of Bt with distribution µ2 such that

(4.6) W2(µ1, µ2)
2 = E[ρ(X0

0 , Y
0
0 )

2].

For any x, y ∈ M◦, let P ′
x,y : TxM → TyM be the parallel transform along the minimal

geodesic from x to y induced by the metric 〈·, ·〉′, which is contained in M◦ by the convexity.
Consider the coupling by parallel displacement

(4.7) dIY 0
t =

{

f−2∇′(V + 2 logφ0 + (d− 2)f−1)
}

(Y 0
t )dt+

√
2f−1(Y 0

t )P
′
X0

t ,Y
0
t
UtdBt.

As explained in [2, Section 3], we may assume that (M◦, 〈·, ·〉′) does not have cut-locus
such that P ′

x,y is a smooth map, which ensures the existence and uniqueness of Y 0
t . Since

the distributions of X0
0 and Y 0

0 are µ1, µ2 respectively, the law of (X0
t , Y

0
t ) is in the class

C (µ1P
0
t , µ2P

0
t ), so that

(4.8) W2(µ1P
0
t , µ2P

0
t )

2 ≤ E[ρ(X0
t , Y

0
t )

2], t ≥ 0.

Let ρ′(x, y) be the Riemannian distance between x and y induced by 〈·, ·〉′ := f−2〈·, ·〉. By
1 ≤ f ∈ C∞

b (M) we have

(4.9) ‖f‖−1
∞ ρ ≤ ρ′ ≤ ρ.
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Since except the term f−2∇′ logφ0, all coefficients in the SDEs are in C∞
b (M), by Itô’s

formula, there exists a constant K such that

(4.10) dρ′(X0
t , Y

0
t )

2 ≤
{

Kρ′(X0
t , Y

0
t )

2 + I
}

dt + dMt,

where Mt is a martingale and

I := 〈(f−2∇′ logφ0)(γ1), γ̇1〉′ − 〈(f−2∇′ log φ0)(γ0), γ̇0〉′.

Let γ : [0, 1] → M be the minimal geodesic from X0
t to Y 0

t induced by the metric 〈·, ·〉′,
which is contained in M◦ by the convexity, we obtain

I =

∫ 1

0

d

ds
〈(f−2∇′ log φ0)(γs), γ̇s〉′ds

=

∫ 1

0

{f−2(γs)Hess
′
φ0
(γ̇s, γ̇s) + 〈∇′f−2(γs), γ̇s〉′〈∇′φ0(γs), γ̇s〉′

φ0(γs)
− {〈∇′φ0(γs), γ̇s〉′}2

(f 2φ2
0)(γs)

}

ds

≤
∫ 1

0

{

(φ−1
0 f−2)(γs)Hess

′
φ0
(γ̇s, γ̇s) +

f 2

4

[

〈∇′f−2(γs), γ̇s〉′
]2
}

ds ≤ Cρ′(X0
t , Y

0
t )

2

for some constant C > 0, where the last step is due to 〈γ̇s, γ̇s〉′ = ρ′(X0
t , Y

0
t )

2, 1 ≤ f ∈
C∞

b (M), and that by the proof of [20, Lemma 2.1] the convexity of ∂M under 〈·, ·〉′ implies
Hess′φ0

≤ cφ0 for some constant c > 0. This and (4.10) yield

E[ρ′(X0
t , Y

0
t )

2] ≤ E[ρ′(X0
0 , Y

0
0 )

2]e(K+C)t, t ≥ 0.

Combining this with (4.6) and (4.9), we prove (4.4) for some constant K1, K2 > 0.

We are now ready to prove the main result in this section.

Proof of Proposition 4.1. (a) According to (3.30), it suffices to prove for ν = hµ with
‖hφ−1

0 ‖∞ <∞. Let r > 0 be fixed. By Lemma 4.2, we obtain

tEν
[

W2(µt,r, µ0)
2
∣

∣T < τ
]

≥ tEν
[

1{‖ρt,r−1‖∞≤ε}W2(µt,r, µ0)
2
∣

∣T < τ
]

≥ tEν
[

1{‖ρt,r−1‖∞≤ε}µ0(|∇L−1
0 (ρt,r − 1)|2)

∣

∣T < τ
]

− cε2

≥ tEν
[

µ0(|∇L−1
0 (ρt,r − 1)|2)

∣

∣T < τ
]

− cε2

− tEν
[

1{‖ρt,r−1‖∞>ε}µ0(|∇L−1
0 (ρt,r − 1)|2)

∣

∣T < τ
]

, ε > 0, T ≥ t.

(4.11)

By Lemma 4.3 and Lemma 4.5 with p = 3, we find some constants c1, c2 > 0 such that

tEν
[

1{‖ρt,r−1‖∞>ε}µ0(|∇L−1
0 (ρt,r − 1)|2)

∣

∣T < τ
]

≤ c1t
{

P
ν
(

‖ρt,r − 1‖∞ > ε
∣

∣T < τ
)}

2
3

≤ c1tε
− 8

3

{

E
ν
(

‖ρt,r − 1‖4∞
∣

∣T < τ
)}

2
3 ≤ c2ε

− 8
3 t−

1
3 , T ≥ t.

Combining this with (4.11) and Lemma 4.4, we find a constant c3 > 0 such that

tEν
[

W2(µt,r, µ0)
2
∣

∣T < τ
]

≥ tEν
[

µ0(|∇L−1
0 (ρt,r − 1)|2)

∣

∣T < τ
]

− εt
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≥ 2
∞
∑

m=1

e−2(λm−λ0)r

(λm − λ0)2
− εt − c3t

−1, T ≥ t ≥ 1,

where
εt := inf

ε>0
{cε2 + c2ε

− 8
3 t−

1
3} → 0 as t→ ∞.

Therefore,

lim inf
t→∞

inf
T≥t

{

tEν
[

W2(µt,r, µ0)
2
∣

∣T < τ
]

}

≥ 2

∞
∑

m=1

e−2(λm−λ0)r

(λm − λ0)2
, r > 0.

Combining this with Lemma 4.6, we derive

lim inf
t→∞

inf
T≥t

{

tEν
[

W2(µt, µ0)
2
∣

∣T < τ
]

}

≥ 2K−1
1 e−K1r

∞
∑

m=1

e−2(λm−λ0)r

(λm − λ0)2
, r > 0.

Letting r → 0 we prove (1.2) for c = K−1
1 . By Lemma 4.6, we may take c = 1 when ∂M is

convex.
(b) The second assertion can be proved as in [21, Subsection 4.2]. For any t ≥ 1 and

N ∈ N, let µN := 1
N

∑N
i=1 δXti

, where ti :=
(i−1)t
N

, 1 ≤ i ≤ N. [10, Proposition 4.2] (see also
[9, Corollary 12.14]) implies

(4.12) W1(µN , µ0)
2 ≥ c0N

− 2
d , N ∈ N, t ≥ 1

for some constant c0 > 0. Write

µt =
1

N

N
∑

i=1

N

t

∫ ti+1

ti

δXs
ds.

By the convexity of W2
2, which follows from the Kantorovich dual formula, we have

(4.13) W2(µN , µt)
2 ≤ 1

N

N
∑

i=1

N

t

∫ ti+1

ti

W2(δXti
, δXs

)2ds =
1

t

N
∑

i=1

∫ ti+1

ti

ρ(Xti , Xs)
2ds

On the other hand, by the Markov property,

(4.14) E
ν [ρ(Xti , Xs)

21{T<τ}] = E
ν
[

1{ti<τ}P
D
s−ti

{ρ(Xti , ·)2PD
T−s1}(Xti)

]

.

Since PD
t 1 ≤ c1e

−λ0t for some constant c1 > 0 and all t ≥ 0, (2.7) implies

PD
s−ti

{ρ(x, ·)2PD
T−s1}(x)

≤ c1e
−λ0(T−s)PD

s−ti
ρ(x, ·)2(x) ≤ c1e

−λ0(T−s)φ0(x)P
0
s−ti

{ρ(x, ·)2φ−1
0 }(x).

(4.15)

It is easy to see that
L0{ρ(x, ·)2φ−1

0 } ≤ c2φ
−2
0
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holds on M◦ for some constant c2 > 0. So, by (2.18), we find a constant c3 > 0 such that

P 0
s−ti

{ρ(x, ·)2φ−1
0 }(x) ≤ c2E

x

∫ s−ti

0

φ−2
0 (Xr)dr ≤ c3(s− ti) log(1 + φ−1

0 (x)).

Combining this with (4.14) and (4.15), and using PD
t 1 ≤ c1e

−λ0t observed above, we find a
constant c5 > 0 such that

E
ν [ρ(Xti , Xs)

21{T<τ}] ≤ c4e
−λ0Tν(log(1 + φ−1

0 ))(s− ti)

≤ c4‖hφ−1
0 ‖∞µ(φ0 log(1 + log φ−1

0 ))(s− ti)e
−λ0T ≤ c5(s− ti)e

−λ0T , s ≥ ti.

Since P
ν(T < τ) ≥ c0e

−λ0T for some constant c0 > 0 and all T ≥ 1, we find a constant c > 0
such that

E
ν [ρ(Xti , Xs)

2|T < τ ] ≤ c(s− ti), s ≥ ti.

Combining this with (4.12) and (4.13), we find a constant c6 > 0 such that

E
ν [W1(µt, µ0)

2|T < τ ] ≥ c1
2
N− 2

d − c6tN
−1, T ≥ t.

Taking N = sup{i ∈ N : i ≤ αt
d

d−2} for some α > 0, we derive

t
2

d−2 inf
T≥t

{Eν [W1(µ0, µt)
2|T < τ ]} ≥ c2

2α
2
d

− 2c′

α
, t ≥ 1.

Therefore,

t
2

d−2 inf
T≥t

E
ν [W1(µ0, µt)

2|T < τ ] ≥ sup
α>0

( c2

2α
2
d

− 2c′

α

)

> 0, t ≥ 1.
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