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Abstract 
 

The dynamics of elastic cantilevered smart pipes conveying fluid with non-uniform flow velocity 
profiles is presented for optimal power generation. The Navier-Stokes equations are used to model the 
incompressible flow in the circular smart pipe, and flow profile modification factors are formulated 
based on the Reynolds number and Darcy friction factor. The coupled constitutive dynamic equations, 
including the electrical circuit, are formulated for laminar and turbulent flows. Due to viscosity in a real 
fluid, non-uniform flow profiles induce dynamic stability and instability phenomena that affect the 
generated power. The system consists of an elastic pipe with segmented smart material located on the 
circumference and longitudinal regions, the circuit, and the electromechanical components. The 
modified coupled constitutive equations are solved using the weak form extended Ritz method. For 
faster convergence, this model is reduced from the exact solution of the pipe structure with proof mass 
offset. Initial validation with a uniform flow profile from previous work is conducted. With increasing 
flow velocity, the optimal power output and their frequency shifts are investigated both with and without 
the flow profile modification factors, to identify the level of instability. Further parametric studies with 
and without flow pulsation and base excitation are given. 
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1 Introduction 

 

In this section, we provide two different types of literature review. This includes a review of the 
literature for the pipe conveying fluid and for the smart structure. In the vast majority of previously 
published works the different methods and applications have been investigated separately. In this 
particular context, as presented here, hybrid model interaction using these coupled systems will be the 
main aspect of discussion by elaborating the physical phenomena in relation to a potential application 
for electric power generation. The physical elements of the fluid and pipe interaction have shown 
interesting dynamic phenomena due to the mechanical energy transfer between these two elements. The 
simplest physical system has been used to understand the mathematical and experimental studies. More 
complicated modelling of the fluid flow in the pipe, and the ability of the flow profile to induce 
vibration, relies on these models, particularly for an elastic pipe which has most potential for real-life 
engineering applications. Examples can be found in ocean mining [1-3], oil drill-strings [4], mass-flow 
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meters [5], water-hose [6], nano- and micro-fluidic devices [7], wave propagation due to valve closure 
[8], and elastic wave in submersed pipe [9].  

 
The earliest studies of the dynamic stability and instability for pipes conveying fluid using theoretical 

and experimental models date back over sixty years. Starting with the work of Feodos'ev [10], the 
equation of motion for the flow in a pipe having both ends supported was developed. For a similar case, 
Housner [11] derived a different approach and proved the buckling/divergence phenomenon of pipes 
due to sufficiently high flow velocities. Niordson [12] derived a different theoretical model, which led 
to similar equations of motion and results to those obtained in [10,11]. Long [13] and Handelman [14] 
investigated pipes containing fluid under various conditions of end constraints to determine the effect 
of flow on the natural frequencies of the system. Heinrich [15] derived the dynamic equation of an 
infinite pipe conveying fluid under the effects of wave propagation and pressurisation. Moreover, the 
general equation of motion of articulated pipe systems conveying fluid using Hamilton’s principle has 
been developed by Benjamin [16]. The experimental study with the result of the unstable oscillation or 
flutter of the cantilevered pipe system was also given by Benjamin [17]. Gregory and Païdoussis [18] 
investigated the oscillatory instabilities due to increasing flow velocity of cantilevered pipe conveying 
fluid using three theoretical models consisting of quasi-analytical, numerical solutions, and partial 
differential equations with the Galerkin method. In [16,18], the paradox of a plain cantilever pipe 
conveying fluid has been examined using the dynamic system to show how the mechanical energy 
transfer can occur between the fluid and the pipe. This indicates that the Coriolis and centrifugal forces 
may either stabilise or destabilise the pipe, depending on the physical phenomenon. For example, the 
Coriolis force has a lower effect on the first mode of the dynamic response, but has a negative damping 
effect to amplify the second mode of the dynamic response of the pipe. The centrifugal force using 
higher flow velocity causes a divergence instability (static buckling or negative stiffness instability) at 
the first mode. But, for the second mode, the Coriolis force using higher flow velocity overtakes the 
dynamic response to create a flutter instability (oscillations without bound). Thompson [19] lucidly 
discussed the paradox of the cantilever pipe conveying fluid using the static non-conservative system. 
Initially, it was called a mysterious black box. Inside the box was a hanging pipe that was a kind of 
inverted rigid pendulum, connected to a weight loading scale via a cable sling outside the box. If more 
weight was added, the scale reading increased.  

 
Later on, pipes conveying fluid with different boundary conditions under the effects of tension, fluid 

pressurisation and gravitation using Newtonian mechanics were developed by Païdoussis and Issid [20]. 
This also includes a study of the effects of flow pulsation and parametric resonances. Laithier and 
Païdoussis [21] further modelled pipes conveying fluid subjected to tension and fluid gravitation and 
coupled the equations with Timoshenko beam theory developed using Hamiltonian mechanics. Then, 
the critical values for the Hopf bifurcation and the onset of chaos for a long pipe with end mass were 
further investigated by Modarres-Sadeghi and Païdoussis [22]. Hatfield et al. [23] developed separate 
analyses of the pipeline and fluid components using coupled continuity and force constraints. The effect 
on the velocity-dependent forces (dissipative and Coriolis forces) for the cantilevered pipe conveying 
fluid was further discussed by Nemat-Nasser et al. [24] where the effect of such forces may induce 
instability of the system. Ruta and Elishakoff [25] developed an analytical method of the shear-



3 
 

deformable pipe conveying fluid with a partial elastic foundation. They showed the effect of increasing 
critical velocity due to the increasing foundation span for the pipe using higher values of the fluid-to-
pipe mass per unit length ratio. A slightly different model using a long pipe conveying fluid with elastic 
foundation [26] was developed to predict the criterion for the global instability of variable pipe length 
where it was related to the properties of the waves and boundary conditions of the pipe. The instability 
of long flexible pipes in water-hose applications was developed by Xie et al. [6] where they showed 
that the new vorticity due to the pipe wall acceleration was continuously developed and the shedding 
of vorticity subsequently occurs. Also, the effect of elastic wave and structural–acoustic coupling in 
submersed pipes was further investigated by Kalkowski et al. [9].  

 
 In addition to analytical approaches, various solution techniques have been utilized to model the 

fluid-pipe interaction. The spectral element method was used by Lee at al. [27] to develop the dynamic 
equations by considering the axial, radial, and transverse vibrations, and the equations of fluid 
momentum and continuity. Gorman et al. [28] developed similar system equations using the finite 
difference method.  

 
Other published research works that give formulations for pipe conveying fluid using combinations 

of continuum mechanics and variational principles have been developed. Irchick and Holl [29] 
formulated Lagrange’s equations using the non-material volume with fictitious particles transported 
into the density of momentum and kinetic energy at the control surface. An extended work with the 
nonlinear equations for a cantilevered pipe conveying fluid was given by Stangl et al. [30]. A slightly 
different technique with the non-material volume using Hamilton’s principle was developed by Casetta 
and Pesce [31]. Upon simplification of the two methods, the reduced equation appears to be a similar 
form with the results comparable to those given in [16,18] and the extensive theoretical forms were  
further given by Païdoussis [32]. Subsequent work by De Bellis et al. [33] presented an overhanging 
pipe with fluid flow using compatibility, balance and deformation theory in order to formulate the 
equations of motion, which can be used with Euler-Bernoulli and Bresse–Timoshenko beam models. 
Galerkin’s method with Duncan’s polynomials was used to show the divergent and flutter instability of 
the system. Unlike the aforementioned methods, Lumentut and Friswell [34] developed the constitutive 
coupled equations of motion for the cantilevered smart pipe with proof mass (also called the tip or end 
mass in the literature) offset conveying fluid in an energy harvesting application using extended 
Hamiltonian mechanics with flow-charge coupling. The approach integrates the simple kinematic 
equation with deformation theory, linear piezoelectric beam constitutive equation-based Helmholtz free 
energy and circuit systems. Parametric studies were provided to analyse the effect of flutter instability 
with increasing flow velocity to the coupled system to generate the power output across the frequency 
and time domains. By reducing the equations to the mechanical system of pipe and fluid, a similar form 
to that of previous works in [16,18] was also obtained.  

 
Since the coupled dynamic equations of fluid-conveying structural pipes, with embedded smart 

material, are proposed in this paper, it is also important to review the literature related to smart structure 
systems. The intrinsic properties of smart materials, such as piezoelectricity, are their capability to react 
to changes in the physical system such as electric, mechanical, and thermal interactions. With the 
attachment of smart material onto a structure, the system becomes a so-called smart structure. Smart 
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beam and plate structures have been developed using theoretical and experimental studies for 
applications in structural control-based sensing and actuation systems [35,36], shape control-based 
sensing and actuation [37,38], feedback gain control-based sensor and actuator systems [39], and shunt 
control-based circuit systems [40].  

 
Energy harvesting systems with frequency tuning have also been developed recently using various 

methods. In mechanical and electrical tuning systems, smart structures with the attachment of a proof 
mass and/or in combination with a shunt circuit, have been used to shift frequencies from high to low 
values in order to adapt to the vibration environment and give higher power output. These strategies 
have been explored using wide-ranging theoretical methods, such as circuit technique combinations 
[41], Rayleigh–Ritz methods [42], modal analysis methods [43], the weak-form technique [44], random 
vibration analysis [45,46], closed-form boundary value methods [47,48], analytical voltage- and charge-
type Hamiltonian formulations [49], and electromechanical finite element analyses [50-54]. With an 
alternative strategy using the combination of electrical and mechanical tuning systems, others 
developed multiple piezoelectric bimorph beams connected electrically [55-57] and single piezoelectric 
beams with shunt control [44,58] in order to widen the multi-frequency band. More recently, the 
increasing demand to capture electrical energy using flow-induced vibrations of coupled piezoelectric 
or electromagnetic systems and structures [59] has yielded robust techniques. An aerodynamic system 
to capture electrical energy was investigated using the vortex-induced vibration of a tree-inspired 
system [60], transverse galloping analytical studies [61] and experimental works [62], and flapping 
piezoelectric flags with axial flow [63,64]. 

 
In the aforementioned works, the two independent research directions for the pipe conveying fluid 

and the smart structure with the mechanical and electrical tuning systems, and the fluid flow around or 
within the system have been presented. In this paper, we consider the non-uniform flow profile in a 
smart pipe with a proof mass offset, connected to a harvesting circuit interface. Some new and quite 
unexpected results are presented related to the physical interactions of the whole system. This paper 
formulates and identifies the effects of non-ideal flow within the system to induce the various possible 
hydro-electro-elastic stability and instability cases so as to generate the optimal power output. Initially 
the key formulations of each physical model are presented, but the connectivity between each is 
maintained. First, with the real fluid flows, the simplified Navier-Stokes equations are formulated to 
give the laminar and turbulent flow profiles. Second, the coupled dynamic equations of the smart pipe 
representing the ideal fluid, solid, circuit, and electromechanical systems are formulated using extended 
Hamiltonian mechanics with flow-voltage coupling. Upon establishing the flow profiles, the modified 
version of the coupled dynamic equations is obtained to explicitly reflect the modified formulations 
which depend on flow-profile modification factors. These factors have a direct relationship with 
Reynolds number and the Darcy friction factor. This is obviously different to the previous works in [65] 
who used the relationship of the multi-plug flow and CFD software (STAR-CCM) and [66] who used 
the relationship of the Reynolds number and the ratio of mean flow velocity and shear flow velocity. 
Third, a theoretical approach based on the Ritz method weak form with a four-term approximation is 
developed to solve the non-ideal formulations leading to the simplification of the system model with 
the normalised dynamic equations. Since our previous work [34] for a uniform flow velocity in smart 
pipe was developed using extended Hamiltonian mechanics with flow-charge coupling, we also provide 
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the initial validation using the current method. At this stage, as shown in this paper, there are no other 
publications addressing the new development of the proposed studies. Finally, parametric studies 
focusing on the effect of the non-ideal fluid flow in the smart pipe, and to maximise the power output, 
are extensively discussed. These show the stability/instability analysis, the 3-D frequency response 
analysis, and the spatial and temporal dynamic evolutions based on varying the Reynolds number, 
Darcy friction factor, and flow profile modification factor. In particular, the findings also show 
distinctive results when using the two different smart materials for the pipe structures. In real 
applications, the main structure naturally excites a motion due to a surrounding vibration source. As a 
result, the pipe structure, mounted on it, triggers the base excitation. Also, the effect of the non-uniform 
flow in pipe, either with or without the existence of the flow pulsation and base excitation, is further 
examined. 

 

2 Constitutive non-ideal flow-solid-circuit-electromechanical equations of smart pipe  
 

     The smart pipe system conveying fluid is shown in Fig.1a, and consists of the substructure and smart 
material layers. The proof mass is attached to the end of the pipe system at an offset from its centroid. 
The segmented system uses smart material components located at the circumference and longitudinal 
regions. Note that the smart material segment refers to the segments of both the piezoelectric and the 
thin conducting electrode components. The partial smart material segment with series electrical 
connection is connected with the AC-DC harvesting circuit as shown in Fig. 1b. Each time the smart 
pipe with fluid flow undergoes transverse vibration, the lower and upper smart material segments at the 
circumference region can respectively deform with tensile and compressive strains and vice versa. As 
a result, those segments can generate the AC electric signal. To convert to a DC electric signal, a full-
bridge rectifier with the smoothing RC circuit is deployed.  

We first briefly discuss the laminar and turbulent velocity profiles for incompressible flow in a 
circular pipe using the simplified Navier-Stokes equations. This leads to the identification of the flow 
profile modification factor whose value depends on the Reynolds number and the Darcy friction factor.  
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Fig. 1. Schematic of the physical system: (a) flow-conveyed smart pipe structure with proof mass offset and 
input base excitation connected to the circuit interface and (b) cross-section of the smart pipe with arbitrary 
smart material and electrode segments arranged in series connection (example). 
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The constitutive coupled equations of motion, with the normalised dynamic equations, are then briefly 
formulated to show the connections to the flow profile modification factor. 

 

2.1. Preliminary flow profile concepts in a smart pipe 

The physical coupling between the Navier-Stokes equations for laminar and turbulent flows and the 
constitutive smart pipe equations for the harvesting circuit enables hybrid model interaction. Thus the 
flow profiles affect the process of capturing the electrical energy from the mechanical motion of the 
smart pipe. We also notice here that the flow profile modification factor depends on both the Reynolds 
number and the Darcy friction factor. Without ignoring the technical connection, here the simplified 
exact solution of the laminar flow-based Hagen-Poiseuille equation with  is given, using the 

Navier-Stokes equations for incompressible flow in a circular pipe with variable dimensions . 

After considering certain process conditions, the velocity profile  along the pipe is a function 

of radial coordinate r only because we assume there is no-slip on the wall. The other two velocities, 
, are defined due to the no-swirl condition. This indicates that the flow within the pipe is 

purely axial. Further detail of the equations can be seen in [67,68]. The remaining equations for the 
components  can be reduced, respectively, to  

,    ,    .                               (1) 

The first two equations show that the pressure p does not vary with respect to the components .  

is dynamic viscosity. The simplified solution is .  is the inner pipe 

radius. The average flow velocity gives, 

,                           (2) 

where the maximum velocity at the centre of the pipe is .  The Hagen-

Poiseuille flow profile is then given by .  The friction factor of the pipe  

can be obtained using the relations (Darcy–Weisbach equation) between the pipe head loss, obtained 
from the energy balance equation  and the average flow velocity .  

The following parameters are now defined here because the interaction of the laminar flow profile 
and the smart structural pipe system provide modification factors if the mean/average flow velocity is 
used for the flow system in a smart pipe. Therefore, these parameters are used in the forthcoming section 
and become essential parts of the constitutive coupled equations. The flow modification factors for the 
four parameters can be formulated using the laminar flow velocity profile as, 

,                     (3.1) 

,                             (3.2) 
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,                                 (3.3) 

.                             (3.4) 

 and  are the mass of fluid per unit length and the mass moment of inertia of fluid, respectively. 

The two flow profile modification factors  and  are similar to the results given in 

[66]. The other two factors and  are new, and are significant if the fluid rotary 

inertia is taken into account. Eq. (3.1) has a direct relevance to the momentum correction factor 

developed by Streeter [69]. It is noted that the fluid moment inertia  implied by Eq. (3.2) is based on 

the kinetic energy of the fluid element inside the pipe. This occurs due to the rotation of the element of 
pipe itself, caused by transverse bending vibration as a result of fluid flow. The calculation of fluid 
rotary inertia is nothing to do with the swirl flow itself. But, it may be that if the swirl flow is considered 
in the flexible pipe, the physical and mathematical insights for fluid rotary inertia can be better 
understood for the pipe conveying fluid. 

 For turbulent flow in a pipe with , the components of velocity, shear stress, pressure and 

other variables occur as random fluctuations in time and space. For example, the flow velocity 
components  in a pipe correspond to the x, r, and θ directions. Initially, the time-average 

turbulent and fluctuating velocities along the pipe can be defined as  where the related time 

average of velocity is  and the average of fluctuating velocity is defined as 

. However, the mean square of the fluctuating velocity is given as 

. Similarly, the remaining velocities  can also be defined using time 

average procedures. After substituting all time-average quantities into the Navier-Stokes equations for 
incompressible flow in the circular pipe equations, the result can be further simplified to give the 
modified Navier-Stokes equation in the x direction along the pipe in terms of time-average velocities 
[67,68]. Without showing the details of the derivation here, the modified equation will include the 

additional parameters ,  and  (turbulent stresses or Reynolds stresses). In White [67] 

and Durst [68], however, the parameter  along with the boundary layer flow at the radial 

coordinate r to the wall is dominant where it is relevant to the flow within the pipe in x direction. As a 
result, the von Karman-Prandtl equation can be determined to give the universal logarithmic law of the 
velocity close to the wall. Similar to the laminar equation, the turbulent flow equation based on the 
time-average equation can be reduced to, 

      ,                                                          (4) 

where the total fluid shear stress is . The turbulent shear stress can 
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bundles of fluid particles over certain a mixing length . This mixing length defines the distance 
of a particle travelling with another at a different velocity in the turbulent flow profile. k is a von Karman 
constant and independent variable  is measured from the wall as opposed to radial coordinate r, which 
is measured from the pipe centerline. If the second term of the turbulent shear stress is zero, the equation 
will be similar to laminar flow. Further modification of Eq. (4) gives . 

 is the wall shear stress for fluid flow. For turbulent flow . Therefore, 

we obtain . After simplification, the von Karman-Prandtl equation for the 

turbulent region at the overlap layer velocity can be reduced to give . At 

the edge of the buffer layer of the turbulent flow, the velocity can be defined as . This clearly 

implies a logarithmic velocity distribution [67] that can be expressed as, 

         .                                                        (5) 

Parameters k and B are universal constants for turbulent flow and  is fluid kinematic viscosity.  For a 
smooth-walled pipe, Coles and Hirst [70] suggested the values of  and  For a rough-

walled pipe, Eq. (5) can be further reduced using  resulting in a down shift of 

the logarithmic overlap velocity profile.  is the parameter of sand-grain roughness.  is the 
roughness height that depends on the particular material and the condition of the pipe. The modified 

logarithmic equation for a rough-walled pipe is then . Further detail can be 

seen in [67]. In this case, the average flow velocity for a rough-walled pipe can be formulated to give, 

                                     .           (6) 

The related expressions below can be determined as,  
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intuitively combining the Prandtl, von Karman, and Colebrook–White formulas. Note that we do not 
focus here on the details of finding the explicit correlation because one of the main aspects of this paper 
is to investigate the connectivity between the flow profile parameters and the pipe parametric equations 
that potentially affect the electromechanical system of the energy harvester. As an example, the 
following equations related to the mean/average flow velocity and flow modification factors for a 
smooth-wall turbulent pipe flow are given as, 

                                     

                   ,   (10.1)    

    

,                 (10.2)    

                         ,           (10.3)    

                                      

                                       .                           (10.4)    

The turbulent flow profile modification factors  from Eqs. (10a)-(10d) rely on the 

parameters of the Darcy friction factor and Reynolds number. These factors can be calculated by 
combining with Eq. (9). 

 
2.2. Hamiltonian mechanics with flow-voltage coupling 

 

 The uniform flow profile in cantilevered smart pipe is developed using extended Hamiltonian 
mechanics with flow-voltage coupling. It presents the functional forms of the coupled system of the 
fluid, solid, circuit, and electromechanical components. The system here can be categorised as a smart 
pipe conveying fluid with a segmented piezoelectric element and a harvesting circuit interface. Note 
that the following equations are different to those given in [34] as they emphasised a uniform flow 
profile for the smart pipe with the segmented electrodes using extended Hamiltonian mechanics with 
flow-charge coupling.  
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     As shown in Fig 2, the smart pipe appears to undergo dynamic motion due to the fluid flowing with 
a steady flow velocity U relative to the pipe itself. Since the fluid continuously flows through the smart 
pipe, its motion can be traced analytically using the kinematic equations based on the position vector 
forms from the fixed reference frame of oXZ to the initial reference frame of XZ. Since the fluid 
element in the smart pipe has a reference configuration at control volume and surface, the system around 
the pipe region obviously undergoes the rate of change of physical property. This is related to the 
material derivative from the continuum body and Reynolds transport theorem. The pipe here is not a 
rigid structure. Therefore, its motions at any instant of time undergoes a bending deformation. On the 
other hand, the proof mass is a rigid structure, but its motions obviously depend on the dynamics of the 
tip. It is important to note here that details of the kinematic equations of the elemental fluid and pipe 
structure were given by Lumentut and Friswell [34] and can be essentially used here to develop the 
following equations. 

 The simplified equation of motion using the Hamiltonian method with flow-voltage coupling can be 
stated as, 

             
,                                           (11) 

or         .                                          (12) 

 The functional energy form given in Eq. (12) represents the parameters for kinetic energy , 
electrical enthalpy of piezoelectricity , substructure strain energy , non-conservative work 
due to base excitation and electrical output, and the energy gained due to fluid flow . Here, the 

kinetic energy consisting of the solid system (the smart pipe and proof mass offset) and fluid flow along 
the two segments of the system can be formulated after simplification as,    
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                   .                                          (13) 

Parameters ,  and  represent the mass densities of the substructure, the piezoelectric, the 

proof mass offset, and the fluid components, respectively. The fluid element flowing within the pipe 
can be formulated using Reynolds transport theorem and the material derivative as,  

               ,                                                  (14)
 

where  is the material derivative of the fluid element. The position vector , as shown in 

Fig. 2, can be specified as the moving structure and fluid elements from initial to final positions as, 

  .                           (15) 

The velocity of the elemental proof mass offset can also be formulated as,  

            

            .      (16) 

Note that detailed derivations and explanations of the elemental fluid and structure in the vector forms 
can be found in [34]. Eq. (13) can be reformulated after manipulation and simplification as, 

                       

             

    

        

           

   .                           (17) 

Note that the physical geometry in Fig. 1 has different mode shapes along the x-axis due to having the 
two segments. Hence, the Heaviside functions of the pipe, H1(x)=H(x)−H(x−L1) and 
H2(x)=H(x)−H(x−L2), on the axial region are introduced. The Heaviside functions for the two 
segmented smart material components G1(γ)=H(γ−α1)−H(γ−β1) and G2(γ)=H(γ−α2)−H(γ−β2) on the 
layer of the circumference region at the polar coordinate system are also introduced. Therefore, Eq. (17) 
is slightly different to the given formulas in [34] in which two segmented electrodes were used. 
However, changing this formulation into that for the segmented electrodes is not difficult by dropping 
Gh(γ) from Eq. (17). Note that since the electrode is very thin (in nano scale) compared with the 
piezoelectric component, its stiffness and mass moments of inertia can be ignored. Parameters  and 

 represent the zeroth and second mass moments of inertia of the segmented structures whereas 

( ) ( ) ( ) ( ) xAttρxAttρ ff
L

f

A

fff
L

f

A

f

ff

dd
2
1dd

2
1 21

00

vvvv ×+×+ ò òò ò
( ) ( )21 ,rr tipρ fr

( ) ÷
÷
ø

ö
ç
ç
è

æ

¶
¶

+
¶

¶
=º

x
U

t
t

t

pp''pp''
f RRvR

D
D

D DtR 'pp'R

( ) ( ) ( ) ( )( ) 31sin,, eeR x,twtwx,tθztzx base
pp'' ++-=

( ) gmdgodg"m"''g"dod''mm" L,z,t RRRRRRR !!!!!!! ---++=

( ) ( )( ) ( ) ( ) ( ) ( )1321323 eeeeeee mmccbase xzL,tθxzL,tθL,twtw +´-+´-+= !!!!

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) xx,twδx,twIxHIxHγGx,tθx,tθIxHIxHγGKE
t

t

L

h
h

h
h

t

t

d
2

1

2

1 0
022

2

1
011

2

1
222211ò ò ååò

ïî

ï
í
ì

÷
÷

ø

ö

ç
ç

è

æ

÷
÷
ø

ö
ç
ç
è

æ
++÷

÷
ø

ö
ç
ç
è

æ
+=

==

!!!! dd

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )( ),tLθ,tLwδ,tLθδ,tLwxI,tLθδ,tLθI,tLwδ,tLwIxH c
tiptiptip

222202222202
!!!!!!!! ++++

( ) ( ) ( ) ( ) ( ) ( ) ( )( )(ò ò å +++
=

L

base
f

n
n

f

txwtwtxtxtxwtxwρxH
0 A

2
2

1

,,,z,, !!!!!! dqdqd

( ) ( ) ( ) ( )÷÷
ø

ö
çç
è

æ

¶
¶

+
¶

¶
- txw

x
txwtx

x
txzUρ f ,,2,,2 2 ddqq !!

( ) ( ) ( ) ( ) xA
x
tx

x
txz

x
txw

x
txwUρ ff dd,,,, 22

÷÷
ø

ö
÷
ø
ö

ç
è
æ

¶
¶

¶
¶

+
¶

¶
¶

¶
+

qdqd

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) tAtLwtwtLwtLwtLtLzxUHρ f
base

f

f

dd,,,,,
A

2222
2

2
ïþ

ï
ý
ü

+++ ò dddqq !!!

nI0

nI2



12 
 

parameters  and  represent the zeroth and second mass moments of the proof mass. Also note 

that details of the mathematical expressions for the proof mass offset as shown in the fifth-eighth terms 
of Eq. (17) can be found in [51]. They were reduced since the relative displacement w(x,t) is defined as 
the difference between the absolute displacement wabs(x,t) and the base excitation wbase(t). 
 

The electrical enthalpy of the piezoelectric material in tensor notation is formulated according to 
continuum thermodynamics. For simplification, it can be condensed using Voigt’s notation and then 
further reduced using Einstein’s summation convention [72,73] as, 

.                                (18.1) 

where        , , ,                (18.2) 

            if  .            (18.3)     

The general parameters , , , , , and  represent the piezoelectric elastic stiffness at 

constant electric field, piezoelectric coefficient, permittivity under constant strain, electric field, stress, 
and strain, respectively. Note that Eqs. (18.1)-(18.3) are clearly different to the equations given in [34]. 

The general strain field  can be used for each layer and the substructure stress 

can be stated as . The variational form of the electrical enthalpy in Eq. (18.1) can be 

formulated as, 

     .                                     (19.1) 

where      ,  .           (19.2) 

Eq. (19.1) can be further extended in terms of the functional form between two specified times as, 

                    

       .           (20) 

Parameter  represents the stiffness coefficient of the first segment for the smart material layer. Note 

that the Heaviside functions Gh(γ) for the two segmented smart material components were used for 
different stiffnesses and electrical outputs located at the upper and lower regions of circumference for 
the smart pipe. If the system with two segmented electrodes was chosen, only Gh(γ) located in the first 
part of Eq. (20) for the stiffness parameter can be neglected. The variational form of potential energy 
or strain energy of the two segmented substructure can be formulated as, 

   .                                       (21) 

or reformulated to give, 
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.                                (22) 

Parameters  and  represent the stiffness coefficients of the first and second segments for the 

substructures layer and they depend on the geometry of the pipe itself without the smart material 
properties. In essence, Eq. (20) implies the inclusion of the strain energy of the smart material as it is 
one of the parts of the continuum thermodynamics. Therefore, it was excluded in Eq. (22). The 
Heaviside functions H1(x) and H2(x) are introduced to the first and second segments of the pipe on the 
x-axis region. Note that Eq. (22) is different to the formula given in [34]. 
 

The non-conservative work on the system related to the input base excitation and electrical outputs 
can be stated as, 

 

.                                                                               (23) 

It is noted here that Eq. (23) is again different to the formula given in [34].  
The variational form of energy gained due to fluid flow at the free end of the pipe can be formulated as, 

     
 .                                 (24)  

The unit vector tangent to a fluid element in the pipe and the position vector  as shown in Fig. 2 is 
given by, 

,   .     (25)
                    

 

Since Eq. (25) with  is a non-conservative system due to the discharged fluid, it implies two 

conditions of the system. If U is positive and sufficiently small,  may occur when the first term 

of the multiplication inside the curly brackets is more dominant than the second part due to the Coriolis 
force. Thus, the free motion of the pipe is damped. If U is positive and sufficiently large,  may 

occur when the second term has the opposite sign during a cycle of oscillation. As a result, free motion 
of the cantilevered pipe is amplified since the fluid feeds energy into the pipe. In such a situation, 
dynamic instability of the pipe occurs performing a dragging and lagging motion that has been 
demonstrated in experimental and theoretical studies [16,18] After manipulation and simplification, Eq. 
(24) can be reformulated using Eq. (25), giving,       

       

  
 

 .                    (26) 
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 The variational operations can be used in the functional energy forms in Eq. (12) associated with 
Eqs. (17), (20), (22), (23) and (26) representing the continuous differentiable functions of virtual 
displacements, electric field and voltages for the whole system. These can be stated as, 

,                             (27.1) 

   .              (27.2) 

Equations (27.1) and (27.2) can be further formulated using total differential equations as,    

     

          

  ,                                           (28.1)      

  

.   (28.2)  

 Using the variational operations, the weak form-based Ritz method [74,75] can be further developed 
to formulate the solution requiring a test function which is a piecewise continuous function over the 
entire domain of the coupled system. The function must meet continuity requirements and the boundary 
conditions of the system. After manipulation and simplification, the reduced Eq. (12) can be formulated 
using Eqs. (17), (20), (22), (23) and (26) in terms of Eqs. (28.1)-(28.2) to give,     
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.         (29) 

Note that since the pipe structure conveying fluid has the two segmented smart material components on 
the layer of the circumference region at the polar coordinate system, some coefficients can be seen in 

Appendix A, B and C where the coefficients of proof mass offset  and  are similar to those 

given by Lumentut and Friswell [34]. The voltage equation including its derivative, can be formulated 
using KVL for the internal piezoelectric connection in Fig. 1, giving, 

                                               ,  ,                                                     (30.1) 

      ,   .                                                      (30.2) 

The harvesting circuit in Fig. 1 can also be formulated using KCL as, 
                                       .                                                                      (31) 

For the harvesting circuit using (31), the parallel RdCd circuit can be solved to give,  

  .                                                                (32) 

The solution in the normalised eigenfunction series form can be formulated as,  

     . 
        

                                           (33) 

As shown in Eqs. (30.1) and (33), compact system equations reduced from Eq. (29) by including the 
mechanical damping coefficients were obtained after simplification, 

,    (34.1) 

     ,    .                                  (34.2) 

Corresponding to Eqs. (30.2) and (32), Eq. (34.2) becomes, 

            .           (34.3) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )x,tδwtwMIx,twMI
x
x,tδw

x
x,twIIxH

t

t

L

n
base

f
n

f
n

f
nnò òåê

ê
ë

é

î
í
ì ++++

¶
¶

¶
¶

+
=

2

1 0

2

1
0022 !!!!

!!

( ) ( ) ( ) ( ) ( ) ( )
x
x,tδw

x
x,twUIx,tδw

x
x,twUM

x
x,tδw

x
x,twUI fff

¶
¶

¶
¶

+
¶

¶
+

¶
¶

¶
¶

+ 3

3
2

22

2

2 22
!!

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )
ò ¶

¶
+-

ïþ

ï
ý
ü

¶
¶

¶
¶

+
¶

¶
+

L

tn
f x

x
x,tδwxHtvσtvσx

x
x,tδw

x
x,twCx,tδw

x
x,twUM

0
2

2

11221112

2

2

2

2

2
2 dd

( ) ( ) ( ) ( ) ( ),tLδwtwI,tLwI
x
,tLwIxxH base

tiptiptip
c 2020

2
02

þ
ý
ü

î
í
ì ++

¶
¶

+ !!!!
!!

( ) ( ) ( ) ( ) ( ) ( )
x
,tLwδtwIx,tLwIx

x
,tLwIxH base

tip
c

tip
c

tip

¶
¶

þ
ý
ü

î
í
ì ++

¶
¶

+ 2
020

2
22 !!!!
!!

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0dδδdd 1212111112
0

1222

2

1211
0

1112

2

11 =
ú
ú

û

ù
--

ïþ

ï
ý
ü

ïî

ï
í
ì

+
¶

¶
-

ïþ

ï
ý
ü

ïî

ï
í
ì

+
¶

¶
- òò ttvtqtvtqtδvtvCx

x
x,twxHσtδvtvCx

x
x,twxHσ

L

v

L

v

tipI0
tipI2

12111 vvv += 12111 qqq ==

12111 vvv !!! += 12111 iii ==

321 iii +=

( ) ( )
d

d R
tvtvCi += !1

( ) ( ) ( )å
=

=
n

r
rr twxWx,tw

1

ˆ

( ) ( ) ( )
!!! "!!! #$

%%

!!!! "!!!! #$

%%%

!! "!! #$!!!! "!!!! #$

%%%

StructureandFluid
todueExcitationBase

System
micElastodynaHydro

2&1sSystemhanicalcElectrome

122111

SystemMechanical

twQQwKwCwMvvwKwCwM base
m
q

f
qr

f
qrr

f
qrr

f
qrqqr

m
qrr

m
qrr

m
qr +-++-=G+G+++

-

( ) ( )
!!!! "!!!! #$

%%

1SystemhanicalElectromec

111111 titvCw vrr =-G ( ) ( )
!!!! "!!!! #$

%%

2SystemhanicalElectromec

121222 titvCw vrr =-G

( ) ( ) ( ) 011

212

2

1

1 =-÷÷
ø

ö
çç
è

æ
+÷÷

ø

ö
çç
è

æ
+-÷

÷
ø

ö
ç
ç
è

æ G
+

G
tv

CCR
tvtvCw

CC vvd
dr

v

r

v

r !!!



16 
 

where, 

    ,         (34.4) 

,          (34.5) 

 ,                            (34.6) 

      

,                                                        (34.7) 

           

,                    (34.8)

 

     ,                       (34.9) 

            ,                  (34.10) 

          ,      ,                   (34.11) 

                       ,       ,                   (34.12) 

,         (34.13) 

, .          (34.14) 

It is clearly seen that Eqs. (34.1) and (34.3) are different to those given in [34] and these be compared 
in the next section.  

 
2.3. Modified equations of motion and frequency response equations 
 
In relation to the flow profile modification factors for the laminar flow and turbulent flow implied 

in Eqs. (3.1)-(3.4) and (10.1)-(10.4), the flow profile is non-uniform and the fluid parameters from Eqs. 
(34.8) and (34.10) can be updated conveniently where they become  and 

. The first and second parts of Eq. (34.8) can be reformulated to 

give  and , respectively.  Similarly, 

the first and second parts of Eq. (34.10) can also be reformulated to give

 and , respectively.  
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By considering the smart pipe conveying fluid under the Euler-Bernoulli beam assumptions, the second 

mass moment of inertias of the pipe structure and the fluid ( and ) can be ignored. But, all mass 

moment of inertias of the proof mass offset should be included. Also, the fluid gravity effects and 
pressurisation were neglected at the beginning of the derivations for simplicity due to the relative meso-
scale pipe system. With existence of non-uniform flow profile, Eqs. (34.1) and (34.3) must be modified 
by applying normalisation with the index notation as, 

,     (35) 

Eq. (35) reflects the modified formulation due to the existence of flow-profile modification factors, and 
these factors have a direct relationship with the Reynolds number and Darcy friction factor. The updated 
fluid parameters from Eq. (35) can be reduced to give, 

 ,    ,  (36.1) 

   

      .                          (36.2) 

By applying Laplace transformations to Eqs. (34.3) and (35), the transfer functions of the multi-
mode electromechanical coupled equations of motion are,  

                

                    ,                            (37.1) 

                      .                               (37.2) 

After simplification, the electric voltage frequency response functions (FRFs) related to the non-
uniform flow and the mechanical and electromechanical systems can be formulated in terms of the 
index notation as, 

          ,             (38.1) 

where 

           , , , ,            (38.2) 

.             (38.3) 
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The parameter n represents the number of normalised modes or degrees of freedom. The multi-mode 
electric current FRFs across the load resistance can be formulated as,  

.                                                (39) 

The power FRFs across the resistor and capacitor can be formulated, respectively, as, 

          

,    .         (40) 

The optimal load resistance can be further formulated using the second part of Eq. (40) as, 

  .                                            (41) 

Eq. (41) can be substituted into second part of Eq. (40) to give the optimal power output. The 
characteristic flow-induced electromechanical dynamic equation with n degrees-of-freedom in terms of 
the index notation can be formulated as,  

 .                                 (42) 

In Eq. (42), the complex polynomial roots of driving frequency ω based on the increasing flow velocity 
Ū can be determined using the Routh-Hurwitz stability criterion.   
 
     2.4 Electric output time history from AC-DC interface circuit  

The segment of smart material layer from elastic pipe that generates the AC electric signal can be 
converted into a DC signal and further smoothed using a full-bridge rectifier and RC circuit. Fig. 3 
shows the characteristic time history of the AC and DC voltages and currents during the process of pipe 
oscillation to convert the mechanical energy into an electrical signal. Therefore, the electrical signal 
output occurs when the excitation from the fluid flow is applied to the smart pipe. This implies that the 
reduced equations are still affected by the coupled system of the fluid, solid, circuit, and 
electromechanical components.  Here, the following two electric cycle processes with the associated 
equations will be further solved using numerical methods. 
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a. Electric current in the interval ti < t < tf indicating the charging time period for every half-cycle 
of the frequency. 
 
The state space representation of the multi-mode response system can be formulated in terms of Eqs. 
(32), (34.3) and (35) to give,     

        ,                                      (43.1) 

where:    , , ,                      (43.2) 

,   , , (43.3)  

,   ,   .                  (43.4)  

 
b. Electric current with interval t f < t < ti + T/2 indicating the discharging time period for every 

half-cycle of the frequency. 
 
The equation for the discharging period and its solution can be formulated, respectively as,  

     ,      .                                      (44) 

To plot the current and voltage time history signal during the charging and discharging periods, Eqs. 
(43.1) and (44) can be combined in the computational process. Note that the displacement and velocity 
time histories based on the flow velocity excitation can be computationally obtained using Eq. (43.1). 
As previously shown, the non-uniform flow velocity in steady conditions was formulated. However, 
pulsating flow in the pipe often occurs when the flow entering the inlet of the pipe is perturbed by a 
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pump or valve or flow regulator. Here, the pulsating flow velocity with harmonic perturbations 
[27,28,32] can be assumed as, 

.                               (45) 

where  is the flow pulsating frequency,  is the constant mean flow velocity, and  is a small 

excitation parameter. Eq. (45) can simply be substituted into Eq. (43.1) in terms of Eqs. (36.1)-(36.2).   
 
3 Results and discussion 

 

This section provides two parametric studies. The first part discusses the phenomena of smart pipe 
dynamics due to the effects of the flow profile and base excitation. It elaborates detailed cases of hydro-
electro-elastic stability and instability for generating the optimal power output. The second part 
discusses various comparisons of the physical parameters using the fluid flow effects either with or 
without the existence of base excitation to the smart pipes.  

 
3.1. Interactions between flow dynamics and base excitation  
 

This section focuses on discussions of the dynamic stability and instability of the smart pipe with an 
offset proof mass due to fluid flow. All of the data analyses use the weak form-based Ritz method 
analytical approach based on the four-term approximation. This analytical approximation was obtained 
from the exact solution of the cantilevered smart pipe and the equations are given by Lumentut and 
Friswell [34]. Initially, the current method in comparison with the Hamiltonian method with flow-
charge coupling is discussed in terms of the root locus of the Argand diagram and the 3-D frequency 
response system based on the variable flow velocity. It is important to note here that this initial 
validation is based on the ideal flow profile in the smart pipe structure. However, further discussions 
based on the non-uniform flow profile in the smart pipe will be given, to show how the real flow system 
(the relationship between Darcy friction factor, Reynolds numbers, and flow profile modification factor) 
can directly induce the smart integrated physical system consisting of the solid (elastic piezoelectric 
pipe structure), circuit, and electromechanical components to produce the optimal electric power output. 
The flow system phenomena in the smart pipe based on the eigenfrequency locus, frequency response, 
absolute velocity time history, and dynamic evolution of the physical structure will be elaborated. The 
alternative smart material of the pipe structure using electroactive polymer material (EAP) film will 
also be discussed to analyse the potential to generate electrical power and for the flutter control 
application. 
 

Material  properties Piezoelectric  Electroactive polymer    Silicon 
elastomer    

    Fluid 

Young’s modulus,  (GPa) 66 5 0.025  - 

Density, 
 
(kg/m3) 7800 1500 1200 1000 

Piezoelectric constant, d31 (pm/V) -190 
 
28.2 - - 

Permittivity,  (F/m) 1800  16  - - 

Permittivity of free space,  (pF/m) 8.854 8.854 - - 

Since there are two different physical properties, each smart pipe with different structural components 
consisting of the substructure and active layers can be found in Table 1. The first smart pipe was made 

( )1 coso vU U tl w= +

vw oU l

11c
ρ

T
33e oe oe

oe

Table 1. Material properties  
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of silicon elastomer and PZT PSI-5A4E, while the second smart pipe was made of silicon elastomer 
and EAP. The length (L) for both smart pipes was 150 mm. The geometry parameters for the first smart 
pipe with inner radius, substructure thickness, and PZT thickness were set to 6 mm, 1.6 mm, 0.1 mm, 
respectively. The load resistance Rd=100 kΩ and capacitance Cd = 0.1 μF were chosen for this study.  
The physical dimensions of the second smart pipe with inner radius, substructure thickness, and EAP 
thickness were set to 6 mm, 1.6 mm, 30 μm, respectively. Note that the EAP film is relatively thin and 
flexible with quite high elastic modulus. The dimensions of the proof mass offset, namely length lt, and 
inner and outer radii (rt1 and rt2), were set to 8 mm and 10 mm and 7.6 mm, respectively. The mass of 
fluid per unit length  was set to 0.11 kg/m. The input base acceleration was set to be 3 m/s2. Again, 
all parameters are defined in Fig. 1. The segmented smart pipe structure (L1 = 0.06 m and L2 = 0.09 m) 
and the circumference electrode segments for the upper and lower regions (β1 − α1 = 144◦ and β2 − α2 
= 144◦) were utilised for the analysis because the physical geometries can provide the optimal response 
[34].  

 

 
 
 

 
In Fig.4, the trends in the Argand diagram and 3-D frequency responses under variable flow velocity 
using the two different methods show good agreement. The system responses of the smart pipe as shown 

fM

Fig. 4. System responses of the PZT pipe with uniform flow profile using the flow-voltage-type Hamiltonian method 
(dot-(a) & round-(b)) and the flow-charge-type Hamiltonian method (square-(a) & line-(b)): (a) Argand diagram and 
(b) 3-D optimal power output FRFs at the first and second modes. 

 

 (a) 

 

(b) 
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here were calculated under a uniform flow profile or ideal flow. The results shown in Fig. 4 include the 
comparisons between the current method and Hamiltonian method with flow-charge coupling [34]. It 
is clearly seen that the stability at the second mode is initially gained by the smart pipe. However, the 
system becomes unstable by flutter beyond the critical flow velocity of 4.06 m/s. Note that the mode 
shown in the system response is affected by the physical interactions of the fluid, solid, circuit, and 
electromechanical systems. The first mode gains stability, although a divergent instability is also 
observed with increasing flow velocities but does not occur any longer because it returns to be stable 
with increasing further flow velocities. For the third mode, although the roots of the complex 
frequencies, corresponding with increasing flow velocities, are closer to the positive real axis, the roots 
do not coincide on that axis or approach a purely real value to show the onset of flutter. At this point, a 
stable response predominantly occurs with increasing flow velocities. The fourth mode clearly shows a 
stable response. In Fig. 4, the optimal power output FRFs under variable flow velocity is given for the 
frequency range spanning the first two modes. Again, the first mode gains stability with increasing flow 
velocity resulting in a reduction of the power amplitude with shifting resonance frequency. The second 
mode, however, shows an increase of optimal power output with increasing flow velocity until reaching 
its critical value. Then, the power output drops gradually above the critical flow velocity. Note that the 
selected data points (circle) represent the current method. Also note that the identification of the onset 
of instability as shown here provides an accurate dynamic instability response. The whole scenario of 
Fig. 4 obviously shows further proof and has similar response to that of the dynamic response from the 
Argand diagram.   
 

Further technical aspects of the dynamic stability/instability behaviour under variable flow velocity 
with the non-uniform flow profile can be seen in Fig. 5. It is important to note here that since the data 
analyses using the results shown in Fig.5a-5e are related to each other, the discussion will be combined 
at this stage. Compared to the Argand diagram in Fig. 4a, the characteristic dynamic responses for the 
first four modes in Fig. 5a shows a similar phenomenon with slightly different values. This means that 
the contribution of flow profile modification factor into the coupled dynamic equations directly affect 
the eigenfrequency locii. Note that turbulent flow obviously occurs in this scenario. The flow profile 
modification factor depends on the Reynolds number and Darcy friction factor. For example, increasing 
the flow velocities or the Reynolds numbers, as shown in Fig. 5c, may result in decreasing the Darcy 
friction factor and the flow profile modification factor. Note that the turbulent log law appears when 
the Darcy friction factor and flow profile modification factor give the exponential decay (Fig. 5c). At 
certain value of the Darcy friction factor and the flow profile modification factor, the maximum optimal 
power output occurs at the level of turbulent flow (Fig. 5d) with the minimum optimal load resistance 
(Fig. 5e). Note that each Reynolds number associated with the flow profile modification factor has their 
own optimal power output and optimal load resistances in the frequency domain. Amongst those 
collective data points, certain optimal values can also give the maximum points of optimal power output 
associated with the minimum points of optimal load resistance (Fig. 5e & 5f). Here, the range of the 
flow profile modification factor has a small gap as it falls between 1.01 and 1.025 representing the range 
of turbulent flows (Figs. 5c & 5f). But, the effect of the non-ideal flow in the smart pipe produces the 
electrical energy based on the trend of dynamic stability and instability. With that range, the comparison 
between the ideal and non-ideal flow in a smart pipe gives a relatively small difference. Intuitively, the  
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Fig. 5. System responses of the PZT pipe with the non-uniform flow profile: (a) Argand diagram, (b) 3-D optimal power output 
FRFs at the first and second modes, (c) relationship between flow profile modification factor, Reynolds number, and Darcy 
friction factor, (d) relationship between Darcy friction factor, Reynolds number, and optimal power output, (e) relationship 
between flow velocity, resonance frequency, and  optimal load resistance, (f) relationship between Darcy friction factor, flow 
profile modification factor, and optimal power output. 
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difference can be a quite pronounced if the flow profile modification factor is set to be a higher value 
reaching 4/3 (1.333) for laminar flow. This scenario shows the same conclusion given by Guo et al. 
[66]. The case of the pipe conveying laminar flow in the energy harvesting application can be a 
challenging process in terms of proper geometry and design of the system in order to achieve the 
occurrence of the onset of flutter instability and lower critical flow velocity and the calculation of the 
maximum power output. The critical flow velocity at the second mode occurs at one locus point, giving 
4.0245 m/s. Initially, a stable response is gained but does not occur any longer after reaching the first 
critical flow velocity of 4.0245 m/s. In Fig. 5b, the optimal power output FRFs with variable flow can 
give the peak or maximum point of resonance with the power output reaching 9.6 mW/(m/s2)2, 
representing the occurrence of the critical flow velocity. It is clearly seen that the frequency shift occurs 
when the flow velocity changes. In such situations, the power output at the second mode can also be 
achieved with decreasing resonance frequencies. Again, the non-uniform flow profile is still used for 
the analysis of smart pipe. In Fig. 5b, the optimal power output FRFs can be achieved at the first two 
modes. This phenomenon can obviously be proved where the Argand diagram (Fig. 5a) also shows the 
critical velocity at the second mode. Note that the next stage will discuss the effect of using the 
electroactive polymer material film for the smart pipe, which has a much lower onset of the flutter 
instability compared to the piezoelectric ceramic material. 
 

Figure 6 shows the evolution of time history responses for three flow velocities. The absolute 
velocities at the tip end of the elastic pipe with variable frequency excitation show different patterns 
using the three different flow velocities. With constant flow velocity and variable frequency excitation, 
the stable response of the absolute velocity occurs, as shown in Fig. 6a. The peak of the absolute velocity 
occurs when the frequency of excitation is equal to the resonance frequency of 25.63 Hz. If the chosen 
frequency of excitation is quite away from the resonance of the system, the absolute velocities will tend 
to form different stable responses. The trend of the time history signals also shows the mixed beating 
signal pattern across off-resonances during the formation of stable signal response. When the frequency 
excitation is far away from the resonance region, the beat period becomes smaller. This series of events 
occurs because the time history of the structural smart pipe with the variable off-resonance tends to 
overlap with the fluid system at constant flow velocity. However, the trend shows predominantly stable 
responses over the frequency domain. For the beating time history phenomena shown in Fig. 6b, the 
fluid system response can be set using the critical flow velocity so as to coincide with the resonance 
frequency of the structural smart pipe. As a result, the majority of the absolute velocity time history 
across the range of frequency of excitation show a strong beat response. Furthermore, as shown in Fig. 
6c, the flutter response of the absolute velocity time history occurs across off-resonances when the flow 
velocity is set to increase over its critical value. Although there is the mixed beating response over the 
time domain, the signal of the flutter instability provides a strong response because its natural 
phenomenon commonly gives the time history signal that grows continuously with oscillation and 
without bound. By viewing the dynamic evolution shown in Fig. 7, the physical model for the elastic 
smart pipe moves at any instant in time due to different flow velocities and increment of particular 
frequency of excitation. Note that the physical motion was taken as a snapshot of the absolute velocity 
time history over one period. The series of events of the system shows comprehensive spatial and 
temporal dynamic behaviour representing the effect of fluid flow within the integrated smart structure 
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with the electromechanical system and the harvesting circuit. The dynamic evolution of the physical 
system becomes interesting and somehow shows unexpected shapes. In general, they immediately look 
like the second mode shape with zero fluid flow. Indeed, the results shown in Fig. 7 were obviously 
taken around the second mode with different fluid flow and frequency of excitation. Hence they 
naturally show similarity with the second mode shape with zero fluid flow. The reason why the second 
mode shape was considered here is because the critical flow velocity and the onset of flutter instability 
occur. 

As shown previously with different case studies, turbulent flow can occur within the smart pipe. For 
certain turbulent flow, the peak power output at certain flow velocities across resonance frequency can 
be produced (Figs. 5d & 5f)  where  this  situation is  also used here for the dynamic evolution of  the 
physical system. The effect of the frequency of excitation with constant geometry of the pipe is not 
implicitly and directly related to the Reynolds number calculation. It means that if the frequency 
excitation of the system changes, the Reynolds number will not change. But, the Darcy friction factor 
and Reynolds numbers implicitly and directly affect to the calculation of the flow-profile modification 
factor which is the main parameter for the centrifugal fluid force. In Fig. 7 shown here, the absolute 
velocities with different flow velocities and frequency excitations were taken near to the critical flow 
velocity of the system. The onset of the flutter instability, and slightly beyond it, with the turbulent flow 
at certain frequencies seems to be noticeable (Figs. 7h & 7k). The onset of flutter instability can be an 
essential identification for dynamic instability as proposed here. The future work of a nonlinear coupled 
system of the smart pipe due to the flutter instability with a Hopf bifurcation will be considered. 
Moreover, by scrutinising each segment of the smart pipe again, the first segment (L1 = 0.06m) near the 
base support evolves different shapes while accumulating the absolute velocity values of this segment. 
The second segment (L2 = 0.09m) tends to form a similar pattern but for different levels of oscillation. 
Note that the absolute velocity at the base support (L1 = 0m) is not zero because the elastic smart pipe 
is also under base excitation due to the fluid and structure. Also note that the second segment is 
relatively more flexible than the first segment due to the stiffness parameter. But, the first segment can 
generate sufficiently high electrical power, even only giving a lower transverse absolute velocity of the 
smart pipe. This is because the cantilevered smart structural system obviously provides higher strain so 
as to induce the polarity of the piezoelectric component for generating electrical voltage. The first 
segment (L1 = 0.06m) has two layers (PZT and silicon elastomer) and second segment (L2 = 0.09m) has 
a single layer (silicon elastomer). For some cases, the first segment somehow looks like the third mode 
shape (Figs. 7h & k). At this point, when the absolute velocity at the base support at the negative points 
significantly moves to the positive points approaching the maximum level at instant times over one 
half-period, the end of the first segment response becomes negative and the second segment also 
continues to carry the negative points with large values. Conversely, another situation also occurs when 
the base support response becomes negative, the end of first segment continued with the second segment 
goes positive. However, by viewing a different trend (Figs. 7e & f), when the response of the base 
support shifts significantly positive, the end of the first segment followed by the second segment still 
goes positive. A similar trend also occurs in opposite direction. At some point for different dynamic 
evolution, when all of the moving base support (Fig. 7c & 7d) moves up at the positive axis, the end of 
the first segment, along with all of the second segment goes down and vice versa.  
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Fig. 7. Dynamic evolution of the PZT pipe with the non-uniform flow profile under variable frequency excitation: (a) Ū 
=3.75 m/s with 25.55 Hz, (b) Ū =3.75 m/s with 25.63 Hz, (c) Ū=3.75 m/s with 25.67 Hz, (d) Ū =3.75 m/s with 25.71 Hz, (e) 
Ū =4.0245 m/s with 25.28 m/s, (f) Ū =4.0245 m/s with 25.32 Hz, (g) Ū = 4.0245 m/s with 25.44 Hz, (h) Ū = 4.0245 m/s with 
25.48 Hz, (i) Ū =4.15 m/s with 25.24 Hz, (j) Ū =4.15 m/s with 25.32 Hz, (k) Ū =4.15 m/s with 25.36 Hz, (l) Ū =4.15 m/s 
with 25.40 Hz. 
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Fig. 6. Evolution of the absolute velocity-time waveform of the PZT pipe with the non-uniform flow 
profile under variable frequency excitation: (a) Ū =3.75 m/s, (b) Ū = 4.0245 m/s, and (c) Ū =4.15 m/s. 
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Discussion on the dynamic system responses using the electroactive polymer material (EAP) film 
embedded on the structural pipe under non-uniform flow profile are now presented to analyse the  
stability/instability behaviour, power output FRFs, and physical dynamic evolution. As shown in Fig. 
8a, the prediction of the system dynamics for the smart pipe conveying fluid can be seen in the Argand 
diagram showing different characteristic responses as given in Fig. 5a. The second and third modes 
have two occurrences of onset of flutter instabilities with three different critical flow velocities 
corresponding with variable eigenfrequencies, whereas Fig. 5a only gave a single onset of flutter 
instability at the second mode. With the critical flow velocity of 2.568 m/s for the second mode, the 
onset of flutter instability appears earlier compared with the result shown in Fig. 5a. The repeated 
critical flow occurrence for the second mode with different critical flow velocities can be seen in Fig. 
8a. The second mode initially gives a stable response. After reaching the first critical flow velocity of 
2.568 m/s, the flutter instability is gained but does not occur any longer after reaching the second critical  
flow  velocity of 13.0517 m/s. Beyond  the second  critical  flow  velocity, the stable  response returns 
until reaching the higher flow velocity. A similar phenomenon also occurs for the optimal power output 
FRFs in Fig. 8b with the frequency shift and variable flow. 

 

 

  
 

 

 

Fig. 8. System responses of the EAP pipe with the non-uniform flow profile: (a) Argand diagram, (b) 3-D optimal power 
output FRFs at the first and second modes, (c) relationship between Darcy friction factor, Reynolds number, and optimal 
power output at second mode. 
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As shown, the two peaks of resonance with the occurrence of the onset of flutter instability provide 
power outputs reaching 101.5 mW/(m/s2)2

 and 153.6 mW/(m/s2)2, respectively. This can also be seen in 
Fig. 8c where the two peaks of resonance of the power output can be achieved with different levels of 
Darcy friction factor and Reynolds number. This is relevant to the flutter control application for the 
smart pipe power harvester without needing higher flow velocity with stronger flutter. This can be used 
to avoid the fatigue of the structure itself over a long period of motion. Here, the smart pipe using the 
thin film material with fluid flow proves to be more effective due to lower velocities for the onset of 
the flutter instability compared to the smart pipe with the piezoelectric ceramic. This is because the 
flexibility of the thin film material, which has a relatively much lower modulus of elasticity compared 
with the piezoelectric ceramic material. The series of simulations for the physical system with flutter is 
chosen as examples here. Further proof can also be seen in Fig. 9 where the dynamic evolution of the 

Fig. 9. Dynamic evolution of the EAP pipe with the non-uniform flow profile under variable frequency excitation: 
(a) Ū =2.76 m/s with 28.27 Hz, (b) Ū =2.76 m/s with 28.39 Hz, (c) Ū=2.76 m/s with 28.43 Hz, (d) Ū =2.76 m/s 
with 28.51 Hz. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Fig.10. DC system responses of the EAP pipe with the non-uniform flow profile under frequency excitations: 
(a) voltage-time waveform across rectifier and capacitor, (b) power-time waveform across load resistance. 

 

(a) 

 

(b) 
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thin film smart pipe shows different shapes to those shown in Fig. 7. In particular, the oscillations 
gradually grow along the first segment and continue to oscillate dramatically at different levels of 
absolute velocity. It is also clearly seen that the electroactive polymer pipe structure shows the 
flexibility of the first segment motion that evolves different shapes with wider oscillations. 

For the DC time history response at different frequencies of excitation, the DC voltages across the 
full-bridge AC/DC rectifier and smoothing RdCd show different trends, as shown for example in Fig. 
10. The process of capturing the AC/DC rectifier can be seen from the conversion of the AC signal from 
the smart pipe becoming the positive ripple signal due to the diode pairs (D1and D2) and (D3 and D4) 
interchangeably turning to conduct to give the DC signal. This ripple signal reduces due to the 
smoothing capacitor resulting in charging and discharging processes for every half-cycle. But, the DC 
voltage output depends on the chosen capacitor and resistor. The predictions of the AC and DC voltages 
including the power output across the load resistance before the onset of the flutter can be seen in the 
stable responses for the chosen frequencies of excitation at the resonance region. This can be seen that 
the voltage and power outputs at the middle of frequency excitation shows the maximum level. If the 
critical flow velocity is close, then the DC signal response will tend to form a flutter response.   

 
 
 3.2 Various comparisons between the physical parameters 

 
In previous section, the dynamic phenomena of pipe structures under non-uniform flow profiles in 

a steady condition, coupled with the electromechanical system, have been examined. Here, the non-
uniform flow in pipes, either with or without the existence of pulsation and base excitation, are further 
compared and examined. It is noted that the pulsating flow as a function of time-dependent harmonics 
is further superposed on a non-uniform flow in pipes, giving a complementary scientific perspective in 
a real application. The pipe structure energy harvesting is induced by the pulsating flow perturbed by a 
miniature jet flow valve so as to control the inlet flow to the pipe structure. Here, Eq. (45) was 
implemented where the flow pulsating frequency  and small perturbation parameter  were set to 8 

Hz and 0.2, respectively. The physical dimensions and properties of silicon elastomer pipe structures 
with the embedded EAP material component and circuit parameters are set to have similar values to 
those used in the previous section. The numerical method was deployed by setting the initial static 
displacement conditions of pipe conveying fluid and fast Fourier transform (FFT) analysis was further 
used for the frequency spectrum analysis. As shown in Fig.11, the chosen flow velocities approaching 
the onset of flutter instability were taken for the dynamic analyses. Each flow velocity is used to 
examine the four different physical parameters. In a general context, the power outputs, starting with 
the highest amplitude, can be achieved from the non-uniform pulsating flow and with base excitation, 
followed by the non-uniform flow and with base excitation, the non-uniform pulsating flow and without 
base excitation, and the non-uniform flow and without base excitation. Also, the flow velocity of 2.568 
m/s corresponding with the four physical parameters gives the highest amplitude of power output, 
followed by 2.540 m/s and 2.430 m/s. As shown, the second mode shape predominantly shows the 
maximum peak of resonance due to approaching the critical flow velocity and the onset of flutter 
instability. The appearance of spiking resonances in the frequency domain also occurs when the non-
uniform pulsating flow in the pipe structure with and without base excitations are examined.  

vw l
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The evolution of time history responses for the three flow velocities shows the absolute velocities at the 
tip end of the elastic pipe. Stable responses given by a flow velocity of 2.430 m/s in Fig. 12a-d can be 
seen from the four physical parameters. However, the time history responses using the non-uniform 
flow & without base excitation and non-uniform pulsating flow & without base excitation appear to 
decay continuously. As the flow velocity is increased to 2.540 m/s, mixed time history signal behaviours 
occur using different physical parameters. Stable responses with continuous fluctuation and decay 
signals (Figs. 12e,f) can be seen in the non-uniform flow & with base excitation and non-uniform flow 
& without base excitation, respectively. For the stable responses, the pipe structure is clearly damped 
without base excitation where this is the most common phenomenon as shown in the previous literature. 
However, the inclusion of pulsating flow in the pipe even without base excitation may create an earlier 
flutter instability of the pipe structure (Fig. 12g). This is because the frequency excitation of flow 
pulsation may trigger a dynamic motion that is quite pronounced in the pipe structure. Note that the 
pipe itself has a characteristic mechanical dynamic behaviour (eigenfrequency). With the same flow 
velocity, the beating signal response occurs slightly for the non-uniform pulsating flow & with base 
excitation (Fig. 12h). Note that if the time domain is further expanded to more than 85 seconds, the 
signal will repeat its pattern to form the beating response. As compared to Fig. 12g, the inclusion of the 
base excitation may tune the dynamics of the pipe, having similar response to the fluid system. As 
shown in the previous section and discussed further here, the onset of the flutter instability occurs at a 
flow velocity of 2.568 m/s, as shown clearly in Fig. 12i. However, the signal patterns appear differently 
when considering other different physical parameters. For the non-uniform flow & without base 
excitation (Fig. 12j), stable responses with continuous fluctuation occurs. When the non-uniform 
pulsating flow & without base excitation is considered, the system becomes unstable by flutter 
(oscillation without bound). The stronger flutter response occurs when considering the non-uniform 
pulsating flow & with base excitation.  

 

      
 

  
Fig.11. Power output FFT responses of the EAP pipe using different physical parameters. 

 



31 
 

 
 
 

 
 
 
U=2.430 

m/s 
 
 

 
 
 
 
U=2.540 

m/s 
 
 

 
 
U=2.568 

m/s 

Non-uniform flow & 
with base excitation 

Non-uniform flow & 
without base excitation 

Non-uniform pulsating 
flow & without base 
excitation 

Non-uniform 
pulsating flow & with 
base excitation 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 
In engineering applications, the aim is to attach an energy harvesting device with a relatively small 

size to the main structure. For this reason, the base excitation naturally exists on the device due the 
vibration of the main structure itself where the related literature, as mentioned previously, has shown 
this essential requirement. For the smart pipe conveying fluid, a power harvesting device with a lower 
required flow velocity to reach the onset of the flutter instability can be developed, such as jet flow in 
multi-miniature elastic pipes in spacers and windsocks. 
 
4 Conclusion 
 

This paper has presented a theoretical approach for the partially smart pipe structure conveying fluid 
with non-uniform flow velocity profiles. The Navier-Stokes equations for incompressible flow for 
laminar and turbulent flow profiles were essentially formulated in order to determine the flow profile 
modification factor based on the Reynolds number and Darcy friction factor. The coupled constitutive 
dynamic equations for the smart pipe with the circuit interface were formulated using extended 
Hamiltonian mechanics. Upon considering the flow profile modification factor, the dynamic equations 
were further updated, giving the modified formulations. The weak form-based Ritz method analytical 
approach with a four-term approximation was developed to obtain the normalised dynamic equations 
to give the electromechanical multi-mode frequency. The numerical method used to solve the time 
response equations was also provided. As shown, the initial comparisons between the current method 
and another method for dynamic stability analysis and 3-D frequency response analysis of the smart 

Fig.12. Evolution of the absolute velocity-time waveform of the EAP pipe under variable flow velocity using 
different physical parameters. 
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pipe conveying ideal flow have been given, showing a good agreement. The non-ideal flow conveyed 
smart pipe structures using the piezoelectric ceramic and electroactive polymer material (EAP) film 
have been further discussed and analysed for the generation of electric power under the condition of 
dynamic stability and instability.  
 

Similarly for the pipe with the two different smart materials, when the flow velocities or Reynolds 
numbers increased, the Darcy friction factor and flow profile modification factor decreased. As a result, 
for certain values of these two factors, the maximum point of the optimal power output across frequency 
domain occurs at the level of turbulent flow representing the critical flow velocity. In such situations, 
the resonance frequency shifts with increasing flow velocity until reaching the maximum point of 
optimal power output. Then, the optimal power output drops gradually for velocities higher than the 
critical flow velocity.  

 
The pipe with the segmented piezoelectric ceramic has a single onset of flutter instability at flow 

velocity 4.0245 m/s and the peak resonance with power output 9.6 mW/(m/s2)2. The pipe with the 
segmented EAP film material has a lower critical flow velocity and can give the two peaks or maximum 
points of resonance of the optimal power output under variable flow velocity. This represents the 
occurrence of two critical flow velocities of 2.568 m/s and 13.0517 m/s. Between the two peaks, the 
flutter instability occurs. The stable response obviously occurs before reaching the first peak and after 
reaching the second peak. For the third mode, the critical flow velocity also occurs at 9.186 m/s. In this 
case, the instability obviously occurs between the destabilisation and restabilisation of the critical flow 
velocities of the second mode. This phenomenon can also be proved by the Argand diagram at the 
second and third modes. This can be used to control the dynamics of the smart pipe having higher flow 
velocity with stronger flutter. Achieving a flutter at lower flow velocity may alleviate higher responses 
due to the fluid flow within the smart pipe structure. The first and second onsets of the flutter instability 
for the second mode show optimal power outputs of 101.5 mW/(m/s2)2

 and 153.6 mW/(m/s2)2, 
respectively. The series of dynamic time evolutions of the two physical models for the EAP pipe and 
piezoelectric pipe structures with variable flow velocity shows different shapes. As shown, the EAP 
pipe structure with the two segments evolves different shapes with wider oscillations at times where the 
absolute velocity gradually grows along the first segment and continues to oscillate dramatically at 
different levels. This indicates that the EAP pipe is more flexible than the piezoelectric pipe. This 
phenomenon depends on the flow velocity and the frequency of excitation, physical geometry, and 
material properties. The non-uniform flow pulsation and base excitation gave more pronounced effects 
to induce the pipe structure to generate higher power output. For engineering applications, the fluid 
media is not restricted to water. The fluid flow in an elastic pipe with the embedded smart material may 
be utilised for a power harvesting device, such as jet flow in multiple miniature elastic pipes in spacers 
and windsocks. 

 
Appendix A. Stiffness coefficients for the smart pipe structure 
The total transverse stiffness coefficients for the two segments located at the circumference and 
longitudinal regions can be formulated as, 
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,  . (A.1) 

Appendix B. Mass moment of inertias for the smart pipe structure  
The zeroth mass moment of inertias for the two segments can be formulated as 

 ,      .    (B.1) 

Appendix C. Transverse smart material coupling coefficient and smart material internal 
capacitance 
The smart material couplings for the two segments can be formulated as, 

 ,  .           (C.1) 

Note that the negative sign in the second part of Eq. (C1) is due to the opposite polarisation direction 
between the upper and lower regions of the circumference for the smart pipe. The internal capacitances 
can be formulated, respectively as,  

        ,  .                                  (C.2) 

Also note that the internal capacitance of the smart structure (piezoelectric component) depends on the 
segmented system and material properties. With the same material and segmented location, Eq. (C.2) 
can be used for both piezoelectric and electrode segments.   
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