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ABSTRACT
A novel method for characterising and propagating system uncertainty in structures subjected to
dynamic actions is proposed, whereby modal shapes, frequencies and damping ratios constitute
the random quantities. The latter, defined in the modal subspace rather than the full geometri-
cal space, reduce the number of the random variables and the size of the dynamic problem. A
numerical procedure is presented for their identification by calibrating their probabilistic defini-
tion in line with the geometrical space. A high-order perturbation technique is proposed for the
multi-fidelity response quantification by means of an ad hoc extension of the conventional per-
turbation method. The approach involves a set of auxiliary deterministic differential equations to
be adaptively solved with the piecewise exact method, and moment-cumulant relationships are
employed to approximate high-order moments. Finally, a polynomial chaos expansion approach
is adopted to complement the second-moment analysis for spectral quantification with the modal
subspace reduction. Demonstrated on a multi-storey steel frame with semi-rigid connections and
a simply supported bridge subjected to a moving load, the proposed variants exhibit improved
performance with respect to the conventional second-order and improved perturbation, as well
as increased flexibility, enabling the analyst to decide, on-demand, the level of fidelity, balancing
accuracy and computational effort.

1. Introduction
The dynamic response of a structure subjected to earthquakes, winds and ocean waves strongly depends on the mechan-
ical properties of the load resisting systems. Uncertainties arise when modelling the geometry, material and boundary
conditions of the structure, inducing random variations in the dynamic response. Rational treatment of these uncer-
tainties cannot be rigorously addressed when following a conventional deterministic approach. Therefore, stochastic
analysismethods use knowledge of the input random variables to characterise the probabilistic structure of the response,
often through first and second-order statistics, so to mitigate the unavoidable increase in computational effort.

Relevant contributions in the technical literature involve a number of analytical methods for linear structures sub-
jected to static loads (e.g. [1–3]). For practical engineering applications, however, recourse to a finite element (FE)
model is often required. Non-probabilistic uncertainty models in the context of FE analysis include the Interval FE
method and the Fuzzy FE method that describe the uncertain parameters as interval variables and fuzzy sets, respec-
tively, and therefore do not require complete probabilistic characterisation [4]. The stochastic finite element method
(SFEM) [5, 6] is currently the most powerful probabilistic tool for the solution of static and dynamic problems in-
volving FEs with random properties. Monte Carlo simulation (MCS) [7] is the simplest and most versatile variant,
where a deterministic problem is repetitively solved and the response variability is characterised statistically. However,
as the number of degrees-of-freedom (DoFs) and random variables increases, the computational effort may become
prohibitively expensive. For this reason, alternative SFEM approaches have emerged, including the perturbation ap-
proach [8], which is based on a Taylor series expansion of the stochastic FE matrices and of the response vector,
and the spectral stochastic FE method, where the model is cast in a finite dimensional setting through the Karhunen-
Loève expansion [9], and the solution process is based on a spectral representation in terms of polynomial chaos (PC)
decomposition [10].
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Perturbation-based approaches are computationally the least expensive methods [11], and have thus gained con-
siderable interest over the years. A generalised stochastic perturbation technique has been applied for solving a linear
elastostatic problem with a single input random variable [12]. A second-order approach has been adopted in [13]
for a dynamic problem, leading to satisfactory results for small uncertainty levels of the input stochastic field. An
‘improved’ first-order perturbation approach that uses second-order information for the solution of static [14] and dy-
namic [15] problems has been found to be more accurate than the conventional second-order perturbation. Falsone
and Impollonia [16] have proposed an ad hoc expansion of the displacement response with respect to the basic random
variables for the linear static analysis of structures, capable of maintaining high level of accuracy at considerable input
uncertainty levels. The method has been generalised to the geometrically nonlinear static [17] and linear dynamic [18]
analyses. A frequency adaptive basis function approach was developed [19] for steady-state dynamic response of lin-
ear systems. A Neumann expansion based approach was proposed [20] for transient response analysis of structural
dynamic systems with parametric uncertainty. Hua et al. [21] have used an improved first-order perturbation method
for the statistical identification of FE model parameters by using measured modal parameters with randomness. More
recently, a high-oder perturbation-based stochastic isogeometric method has been proposed for quantifying geometric
uncertainty in shell structures [22]. The main drawback of the vast majority of the existing perturbative approaches
is that they are “intrusive”; in other words, they rely on the particularisation and solution of the governing differential
equations. Furthermore, they are hindered by decaying accuracy for relatively long integration times and they tend to
work well for limited cases, with loss of accuracy when the level of system uncertainty increases. Finally, their suit-
ability to accurately estimate up-to second-order statistics of the response often limits their applicability to Gaussian
fields, which is scarcely the case. In fact, the response can be strongly non-Gaussian, even for linear systems, owing
to the nonlinear relationship between the dynamic response and the underlying input random variables.

PC expansions provide a functional approximation of the underlying system response by means of a spectral repre-
sentation on a suitably constructed basis of orth-onormal polynomial functions. Noteworthy intrusive PC approaches
include Galerkin-based methods [23], such as the investigations of Jacquelin et al., who highlighted issues with the
PC for the dynamic response around resonant frequencies [24] and proposed an extended Padé approach [25]. The
authors recently extended their investigations on the time-domain analysis of damped stochastic linear multi-degree-
of-freedom (MDoF) systems [26]. By contrast, “non-intrusive” PC schemes do not require prior knowledge of the
governing differential equations. The model is treated as a black-box function and the aim is to obtain an approxi-
mation by means of a reduced set of well-chosen evaluation calls. Well-known approaches in this category include
the stochastic collocation method based on Lagrange interpolation of the model response [27], projection-based ap-
proaches where the PC coefficients are cast as a multi-dimensional integral evaluated by simulation or quadrature
procedures [28], and regression-based least-square minimisation techniques [29]. Blatman et al. [30] proposed an
adaptive sparse PC approach based on the least angle regression algorithm. Mai et al [31]. extended the approach and
proposed a stochastic time warping sparse PC for oscillatory systems. It has long been recognised that, regardless of
the method used, either intrusive or non-intrusive, PC fail to represent long-term time-dependent system responses
owing to their inherent increasing complexity [31]; furthermore, the required number of model evaluations increases
with the size of the truncated expansion, which in turn grows with the total polynomial degree retained and the number
of random variables. The overall computational burden becomes prohibitive as the number of DoFs of the spatial
discretisation increases.

In this paper, the analysis of linear MDoF dynamical systems with uncertain mechanical parameters under deter-
ministic excitation is addressed. An alternative formulation is presented, substantiated by some preliminary inves-
tigations in [32–34], where uncertainty is characterised in the reduced modal subspace, with modal shapes, modal
frequencies and modal damping ratios comprising the random quantities, thus drastically reducing the number of
uncertain parameters and the size of the dynamic problem. An identification procedure is presented for calibrating
the probabilistic definition of the proposed uncertainty model consistently with the geometrical space. Conventional
second-order and improved perturbation variants are developed in line with this model, and a novel high-order pertur-
bation approach is proposed for the multi-fidelity quantification of the evolutionary stochastic response through and
an ad hoc extension of the conventional perturbation approach. The proposed method involves a set of auxiliary deter-
ministic differential equations, to be solved with the piecewise exact method (PEM), and high-order moments arising
are approximated with lower ones through moment-cumulant relationships. Finally, a regression-based PC expansion
is employed, complementing the second-moment analysis for spectral quantification with the modal subspace reduc-
tion. The performance of the proposed variants is compared on the seismic analysis of a pulse-driven steel frame with
semi-rigid connections and a simply supported beam subjected to a moving load.
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The paper is organised as follows: Section 2 briefly reviews existing perturbative methods, as formulated in the
geometrical space. Section 3 presents the uncertainty model formulated in the reduced modal subspace, along with
the numerical procedure for the identification of the underlying model parameters. Section 4 details the second-order
and improved perturbation variants, as well as the high-order perturbation approach proposed. Section 5 addresses
the spectral quantification with PC expansions. The proposed methods are numerically assessed in Section 6, and a
summary of the results and findings is presented in Section 7.

2. Uncertainty in the geometric space
Let us consider a linear dynamical system ruled by the following set of second-order differential equations, conveniently
arranged in a matrix form:

M (���) ü(t) + C (���) u̇(t) +K (���)u(t) = f (t) ; u(0) = u0 ; u̇(0) = u̇0 , (1)

where u(t) = {

u1(t)… un(t)
}⊤ is the array collecting its n degrees of freedom (DoFs); f (t) is the vector of the applied

forces; the over-dot means time derivative, and u0 and u̇0 are the vectors of the initial displacements and velocities,
respectively. Furthermore, M, K and C are random matrices of mass, elastic stiffness and viscous damping, respec-
tively, representing the only source of uncertainty of the dynamical system and, without lack of generality, they are
expressed herein as functions of the vector ��� = {

�1, �2,… , �N
}⊤, listing N zero-mean, E [

�i
]

= 0, uncorrelated,
E
[

�ri �
s
j

]

= E
[

�ri
]

E
[

�sj
]

random variables (with i ≠ j and ∀r, s), satisfying the condition E
[

�2i
]

≪ 1, E[⋅] denoting
stochastic averaging operator. It is worth mentioning here that the use of uncorrelated random variables is not unduly
restrictive as it is always possible to express correlated random variables as functions of uncorrelated ones [35]. It is
further noted thatM, K and C are not necessarily affected by the same subsets of random variables �i.
2.1. Conventional second-order perturbation
Following the formulation in Ref. [15], the second-order perturbation approach is applied to Eq. (1), in the geometrical
space, by imposing Taylor series expansion onM, K and C:

M (���) ≅ M0 +Mi�i +Mi,j�i�j ;
K (���) ≅ K0 +Ki�i +Ki,j�i�j ;
C (���) ≅ C0 + Ci�i + Ci,j�i�j ,

(2)

where index notation is used, defined as:

g0 = g (���)
|

|

|

|���=0
;

gi =
)g (���)
)�i

|

|

|

|���=0
;

gi,j =
1
2
)2g (���)
)�i)�j

|

|

|

|���=0
,

(3)

and where summation is implied, here and henceforth, for the subscripted indices. Furthermore, M0, K0 and C0 arethe matrices of mass, stiffness and damping without fluctuations, i.e. the matrices associated with the deterministic
model of the structure.

The dimensions of the dynamic problem may be reduced by projecting the equations of motion onto a reduced
modal subspace. Accordingly, a solution to the real-valued eigenproblem:

K0ΦΦΦ0 =M0ΦΦΦ0ΩΩΩ
2
0 (4)

can be sought, where ΦΦΦ0 = [���1,… ,���m] is the (n × m) deterministic modal matrix, normalised with respect to M0,whose columns are the m modal shapes, and ΩΩΩ0 = diag{!1,… , !m} is the deterministic diagonal spectral matrix,
listing the associated modal circular frequencies.
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The following transformation is then adopted:
u(t) = ΦΦΦ0 q(t) , (5)

where q(t) is the array collecting the m modal coordinates of the structure which are retained in the analysis, and in
general m ≪ n.

Upon substitution of Eq. (5) in Eq. (1), premultiplication of the result by ΦΦΦ⊤0 , and further manipulations, one
obtains:

m (���) q̈(t) + ΞΞΞ (���) q̇(t) +ΩΩΩ2 (���)q(t) = F(t) , (6)
where the explicit dependency of the vectors q(t) = q(t, ���), q̇(t) = q̇(t, ���) and q̈(t) = q̈(t, ���) on the vector of random
variables ��� has been omitted for the sake of simplifying the notation, and where the vectors of initial conditions and
external forces are given by:

q(0) = ΦΦΦ⊤0 M0 u0 ; q̇(0) = ΦΦΦ⊤0 M0 u̇0 ; F(t) = ΦΦΦ⊤0 f (t) , (7)
the superscripted ⊤ being the transpose operator; furthermore, the matrices m, 
2 and ΞΞΞ are defined as:

m (���) = Im +mi�i +mi,j�i�j ;


2 (���) = ΩΩΩ20 +

2
i �i +


2
i,j�i�j ;

ΞΞΞ (���) = ΞΞΞ0 +ΞΞΞi�i +ΞΞΞi,j�i�j .

(8)

and play the role of the matrices of mass, stiffness and damping in the reduced modal subspace, respectively, with the
following relationships arising:

Im = ΦΦΦ⊤0M0ΦΦΦ0 ; mi = ΦΦΦ⊤0MiΦΦΦ0 ; mi,j = ΦΦΦ⊤0Mi,jΦΦΦ0 ;

ΩΩΩ20 = ΦΦΦ
⊤
0K0ΦΦΦ0 ; 
2i = ΦΦΦ

⊤
0KiΦΦΦ0 ; 
2i,j = ΦΦΦ⊤0Ki,jΦΦΦ0 ;

ΞΞΞ0 = ΦΦΦ⊤0C0ΦΦΦ0 ; ΞΞΞi = ΦΦΦ⊤0CiΦΦΦ0 ; ΞΞΞi,j = ΦΦΦ⊤0Ci,jΦΦΦ0 ,

(9)

in which Im is the identity matrix of size m. It should be noted that, while ΩΩΩ20 =
[

ΩΩΩ0
]2 is the actual second-power

matrix of the deterministic spectral matrixΩΩΩ0 (so it is positive definite), the matrices
2i and
2i,j collect the derivatives
of the squared modal frequencies !21,… , !2m with respect to the random variables �i and �j , meaning that in general

2i = 2
0
i ≠

[


i
]2, 
2i,j = 2

[


i
j +
0
i,j
]

≠
[


i,j
]2 and they are not necessarily positive definite.

Eq. (6) is cast in state-space form:
ż(t, ���) = D(���) z(t, ���) + V(���)F(t) , (10)

where z(t, ���) is the response state vector and D(���) is the dynamic matrix, given by:

z(t, ���) =
{

q(t)
q̇(t)

}

; z(0, ���) =
{

q0
q̇0

}

;

D(���) =
[

Om×m Im
−m−1(���)ΩΩΩ2(���) −m−1(���)ΞΞΞ(���)

]

;

V(���) =
[

Om×m
m−1(���)

]

,

(11)

in which the symbol Or×s defines a zero matrix with r rows and s columns.
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Series expansion of Eq. (11) gives:
z(t, ���) ≅ z0(t) + zi(t) �i + zi,j(t) �i �j ;
D(���) ≅ D0 + Di �i + Di,j �i �j ;
V(���) ≅ V0 + Vi �i + Vi,j �i �j ,

(12)

where zi(t) and zi,j(t) play the role of first-order and second-order sensitivity vectors of the state-space dynamic re-
sponse of the structure in the reduce modal space, and where the dynamic matricesD0,Di andDi,j and the load vectors
V0, Vi and Vi,j are provided in Ref. [15].

In expandingm−1 (���), partial derivatives are obtained by the use of the rule for inverse matrix differentiation [36],
as detailed in Appendix A.1.

Importantly, the quantities appearing in the series expansion of z(t, ���) can be expressed as a solution of the following
set of 1 +N +N2 deterministic equations governing the uncertainty propagation (UP):

ż0 = D0z0 + V0F(t) ; (13a)
żi = D0zi + Diz0 + ViF(t) , i = 1,… , N ; (13b)
żi,j = D0zi,j + Dizj + Di,jz0 + Vi,jF(t) , i, j = 1,… , N , (13c)

in which, to simplify the notation, the time-dependency of the (2m × 1) vectors z0 = z0(t), zi = zi(t) and zi,j = zi,j(t)has not been shown explicitely.
The time-varying second-order statistics of the response in terms of mean values and variances are finally obtained

as:
E [z(t)] = z0 + zi,j E[�i�j] = z0 + zi,i E[�2i ] ;

Var [z(t)] = E
[(

z(t)⊙ z(t)
)]

−
(

E [z(t)]⊙ E [z(t)]
)

=

=
(

zi ⊙ zj
)

E[�i�j] −
(

zi,j ⊙ zk,l
)

E[�i�j]E[�k�l]
+
{(

zi ⊙ zj,k
)

+
(

zi,j ⊙ zk
)}

E[�i�j�k] +
(

zi,j ⊙ zk,l
)

E[�i�j�k�l] .

(14)

where the notation (z⊙ z) denotes the element-wise product, also known as Hadamard multiplication (e.g. Ref. [37]).
It is emphasised here that statistical moments of the random variables �i up to the the fourth order are required to

calculate the variance of the dynamic response of the structure; if only the first two statistical moments are available
for the random variables �i, then only the first term could be retained in the first of Eqs. (12), leading to the following
simplified expression:

Var [z(t)] ≅
(

zi ⊙ zj
)

E[�i�j] =
(

zi ⊙ zi
)

E[�2i ] . (15)
2.2. Improved perturbation
As an alternative to the conventional perturbation approach, the so-called improved perturbation approach can be
adopted, as suggested for instance in Refs. [14, 15].

Stochastic averaging of Eq. (2) gives:
M̄ = M0 +Mi,i E[�2i ] ;
K̄ = K0 +Ki,i E[�2i ] ;
C̄ = C0 + Ci,i E[�2i ] ,

(16)

where the upper bar denotes mean value, which in general differs from the respective deterministic value, designated
with the subscripted zero.
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Neglecting second-order terms in Eq. (2), substitution of Eq. (16) gives:
M (���) ≅ M̄ + �M (���) ;
K (���) ≅ K̄ + �K (���) ;
C (���) ≅ C̄ + �C (���) ,

(17)

where � denotes deviation from the mean, given by:
�M (���) =Mi �i ;
�K (���) =Ki �i ;
�C (���) =Ci �i .

(18)

The following modal coordinate transformation is used (similar to Eq. (5)):
u(t) = Φ̄ΦΦq(t) , (19)

where the modal matrix Φ̄ΦΦ, normalised with respect to M̄, satisfies the real-valued eigenproblem (similar to Eq. (4)):
K̄ Φ̄ΦΦ = M̄ Φ̄ΦΦΩ̄ΩΩ2 (20)

involving the mean values of mass and stiffness matrix, and Ω̄ΩΩ is the associated spectral matrix. Importantly, in general,
E[ΦΦΦ (���)] ≠ Φ̄ΦΦ ≠ ΦΦΦ0 and E[ΩΩΩ (���)] ≠ Ω̄ΩΩ ≠ ΩΩΩ0.Upon further manipulations, the equation of motion in the reduced modal subspace retains the form of Eq. (6),
with the following vectors of initial conditions and dynamic loads (similar to Eqs. (7)):

q(0) = Φ̄ΦΦ⊤ M̄ u0 ; q̇(0) = Φ̄ΦΦ
⊤ M̄ u̇0 ; F̄(t) = Φ̄ΦΦ

⊤ f (t) . (21)
The following relationships then arise:
m (���) = Im + m̄i�i ;


2 (���) = Ω̄ΩΩ2 + 
̄2i �i ;
ΞΞΞ (���) = Ξ̄ΞΞ + Ξ̄ΞΞi�i ,

(22)

where:
Im = Φ̄ΦΦ

⊤ M̄ Φ̄ΦΦ ; m̄i = Φ̄ΦΦ
⊤Mi Φ̄ΦΦ ;

Ω̄ΩΩ2 = Φ̄ΦΦ⊤ K̄ Φ̄ΦΦ ; Ω̄ΩΩ2i = Φ̄ΦΦ
⊤Ki Φ̄ΦΦ ;

Ξ̄ΞΞ = Φ̄ΦΦ⊤ C̄ Φ̄ΦΦ ; Ξ̄ΞΞi = Φ̄ΦΦ
⊤Ci Φ̄ΦΦ .

(23)

Importantly, even if the same notation has been used for the vectors of modal coordinates q(t) andmodal excitations
F(t) in presenting the conventional and improved perturbation approaches, these quantities are in fact different as they
are associated with different pairs of eigenvectors and eigenvalues; namely, {ΦΦΦ0,ΩΩΩ0

} for the conventional perturbation
and {Φ̄ΦΦ, Ω̄ΩΩ} for the improved perturbation.

Eq. (10) still holds here, where the improved perturbation approach procedure is successively employed on the
expanded underlying quantities, giving rise to:

z(t, ���) ≅ z̄ + �z(t, ���) = z̄ + zi�i ;
D(���) ≅ D̄ + �D(���) = D̄ + Di�i ;
V(���) ≅ V̄ + �V(���) = V̄ + Vi�i ,

(24)

where the vectors z̄ = z̄(t) and zi = zi(t) are time-dependent and the expressions for D̄, Di, V̄ and Vi can be found in

Kasinos et al.: Preprint submitted to Elsevier Page 6 of 25



A reduced modal subspace approach for damped stochastic dynamic systems

Ref. [15].
Following manipulations, a system of 1 +N coupled UP equations is obtained:

̇̄z = D̄ z̄ + Di zi E[�2i ] + V̄ F(t) ;
żi = D̄ zi + Di z̄ + Vi F(t) , i = 1,… , N ,

(25)

which can be numerically solved.
The statistics of the response are finally obtained as:

E [z(t)] = z̄ ;
Var [z(t)] =

(

zi ⊙ zi
)

E[�2i ] .
(26)

Notably, when compared to the conventional approach, there is an improvement in the first term of the associated
quantities being expanded. This is due to the evaluation of the perturbation about an improved approximation of the
mean value rather than about the deterministic one [14, 15].

3. Uncertainty in the modal space
In the previous section, the conventional and improved perturbation methods have been summarised for the analysis of
linear dynamical systems. In this section, an alternative formulation is presented whereby the problem is conveniently
cast in the reduced modal subspace. The proposed model defines the underlying random variables directly in terms
of modal quantities. Accordingly, their number can be reduced quite drastically with respect to the geometrical space
( ≪ N) and the resulting computational burden is also reduced, thus forming the basis for the development of the
high-fidelity response quantification methods detailed in subsequent sections.
3.1. Randomisation scheme
Considering random fluctuations in the modal shapes, circular frequencies and viscous damping ratios, for m ≥ 2
modes, the following definition of the stochastic (m × m) matrices can be assumed:

ΦΦΦ (���) = Φ̄ΦΦ
(

Im + ���
)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

(1 + �1,1) �̄��
⊤
1 + �2,1�̄��

⊤
2 +⋯ + �m,1�̄��

⊤
m

�1,2�̄��
⊤
1 + (1 + �2,2) �̄��

⊤
2 +⋯ + �m,2�̄��

⊤
m

⋮
�1,m�̄��

⊤
1 + �2,m�̄��

⊤
2 +⋯ + (1 + �m,m)�̄��

⊤
m

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⊤

;

ΩΩΩ (���) = Ω̄ΩΩ
(

Im + 



)

= diag [!̄i
(

1 + 
i
)]

;
ΞΞΞ (���) = 2��� (���) ΩΩΩ (���) ; ��� (���) = �̄��

(

Im + ���
)

= diag [�̄i
(

1 + �i
)]

,

(27)

where ��� is in general a fully populated (m × m) random matrix, in which the generic zero-mean random variable �i,jquantifies the uncertainty in the jth mode projected onto the ith mode of the ‘mean structure’, i.e. the structure with
mean mass matrix M̄ and mean elastic stiffness K̄ (see Eq. (20)), as schematically represented in Figure 1; 


 and ���
are diagonal random matrices of size m, where the zero-mean random variables 
i and �i are associated with the ith
circular frequency and viscous damping ratio, respectively; and it is further assumed that the above random variables
are statistically uncorrelated, and that |�i,j|, |
i|, |�i|≪ 1.

According to the proposed randomisation scheme, the randomvector��� = {

�1,1, �1,2,⋯ , �m,m, 
1,⋯ , 
m, �1 ⋯ , �m
}⊤

concatenates the non-zero elements of ���, 


 and ���, giving rise to a significantly reduced set of up-to
 = m2 + 2m (28)

random variables, with  ≪ N , fully characterising the probabilistic definition of the structural system.
It is emphasised, that the random vector ��� only contains this reduced set of random variables, and it therefore

particularises the one defined in §2.

Kasinos et al.: Preprint submitted to Elsevier Page 7 of 25



A reduced modal subspace approach for damped stochastic dynamic systems

Figure 1: Uncertainty characterisation in the first mode of a simple three-storey planar frame.

3.2. Randomised mass, stiffness and damping matrices
The elements of the stochastic matrices ���, 


 , and ��� can either be quantified directly in the reduced modal space through
experimental observations i.e. operational modal analysis, for existing structures (e.g. Refs. [38–40]), or through
numerical procedures, e.g. at the design stage. In the latter case, relationships between uncertainties in the modal and
geometrical spaces need to be established.

To achieve this, the random fluctuations about the mean values of the the mass, stiffness and damping matrices in
the geometrical space can be conveniently expressed as (see Eqs. (17)):

�M (���) = M̃ (���) − M̃ ;

�K (���) = K̃ (���) − K̃ ;

�C (���) = C̃ (���) − C̃ ,

(29)

where the application of inverse orthogonality relations gives:
M̃ (���) = M̄ΦΦΦ (���)ΦΦΦ⊤ (���) M̄ ;

K̃ (���) = M̄ΦΦΦ (���)ΩΩΩ2 (���)ΦΦΦ⊤ (���) M̄ ;

C̃ (���) = M̄ΦΦΦ (���) 2��� (���)ΩΩΩ (���)ΦΦΦ⊤ (���) M̄ ,

(30)

and:
M̃ = M̄ Φ̄ΦΦΦ̄ΦΦ⊤M̄ ;

K̃ = M̄ Φ̄ΦΦΩ̄ΩΩ2Φ̄ΦΦ⊤M̄ ;

C̃ = M̄ Φ̄ΦΦ2 �̄�� Ω̄ΩΩΦ̄ΦΦ⊤M̄ ,

(31)

to in which the over tilde indicates modal approximation. Importantly, the fidelity of the model increases with the
number of modes retained in analysis; that is, for m→ n, M̃ (���)→M (���), K̃ (���)→ K (���) and C̃ (���)→ C (���).

If the modal transformation of Eq. (19) is adopted to project the equations of motion onto the reduced modal
subspace, the associated matrices of mass, stiffness and damping read:

m(���) = Φ̄ΦΦ⊤ M̄ΦΦΦ(���)ΦΦΦ⊤(���) M̄ Φ̄ΦΦ = Im + �m(���) ;

k(���) = Φ̄ΦΦ⊤M̄ΦΦΦ(���)ΩΩΩ2(���)ΦΦΦ⊤(���) M̄ Φ̄ΦΦ = Ω̄ΩΩ2 + �k(���) ;

c(���) = Φ̄ΦΦ⊤M̄ΦΦΦ(���) 2��� (���)ΩΩΩ(���)ΦΦΦ⊤(���) M̄ Φ̄ΦΦ = 2 �̄�� Ω̄ΩΩ + �c(���) .

(32)

3.3. Identification of model parameters
A simple numerical procedure is next presented for calibrating the random variables of the proposed uncertainty model,
focussing on the elements of the random matrices ��� and 


 that define the assumed random fluctuations in the real-
valued eigenvectors and eigenvalues of the structure (see Eq. (27)). The purpose for this procedure is twofold. First,
to develop a rational general methodology that allows taking into account random variables associated with physical
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characteristics of the structure in the geometrical space. Second, to rank them in terms of their relative significance,
thus enabling to retain only the dominant ones, in line with the sparsity-of-effects principle (e.g. Refs. [41, 42]).

In doing this, Eq. (27) can be rearranged, leading to the following inverse relationships, expressed in terms of the
rth realisation of a MCS:

�̂(r) = �⊤
0 M0�(r) − Im ; (33a)


̂(r) = 
−10 ΩΩΩ(r) − Im , (33b)

where K(r)ΦΦΦ(r) = M(r)ΦΦΦ(r)
[

ΩΩΩ(r)
]2, with [ΦΦΦ(r)]⊤M(r)ΦΦΦ(r) = Im, whileM0, �0 and 
0 are the deterministic matrices

appearing Eq. (4); furthermore, the over-hat signifies that, in general, E[�̂��] = �̄�� ≠ Om×m and E[
̂

] = 
̄

 ≠ Om×m.Importantly, no limiting assumptions are required in the definition of the uncertainty in the geometrical space.
Mean modal and spectral matrices can then be evaluated as:
Φ̄ΦΦ = ΦΦΦ0

[

Im + �̄��
]

; (34a)
Ω̄ΩΩ = ΩΩΩ0

[

Im + 
̄


]

, (34b)
and following relationships can be used to arrive to the sought zero mean-random variables:

�(r)i,j =
�̂(r)i,j − �̄i,j
�̄i,j + 1

≊ �̂(r)i,j − �̄i,j ; (35a)


 (r)i =

̂ (r)i − 
̄i

̄i + 1

≊ 
̂ (r)i − 
̄i . (35b)

in which �(r)i,j and 
 (r)i are the rth realisations of the elements of the random matrices ��� and 


 . These realisations can
finally be used to empirically construct the marginal CDF (cumulative distribution function), which in turn can be
interpolated with quantile functions described by piecewise splines or best-fitted with appropriate analytical models,
e.g. Gaussian, log-normal, type-C Gram-Charlier series expansion [43], etcetera. The latter can be used to evaluate
the statistics of interest, e.g. the lth statistical moment of the kth random variable �k can be evaluated as:

E
[

�lk
]

= ∫

+∞

−∞
�l dF�k(�) , (36)

where F�k(�) is the marginal CDF constructed for the generic random variable �k = �i,j , 
i or �i.

4. Perturbative methods in the modal space
4.1. Second-order perturbation
In line with the uncertainty model detailed in the previous section, a second-order perturbation approach, formulated
in the reduced modal subspace, is presented herein.

Series expansion of the stochastic modal matrices about �i = 0, i = 1,… , and retaining up-to second order
terms gives:

ΦΦΦ (���) ≅ ΦΦΦ0 +ΦΦΦi�i +ΦΦΦi,j�i�j = Φ̄ΦΦ +ΦΦΦi�i ;

ΩΩΩ (���) ≅ ΩΩΩ0 +ΩΩΩi�i +ΩΩΩi,j�i�j = Ω̄ΩΩ +ΩΩΩi�i ;

��� (���) ≅ ���0 + ��� i�i + ��� i,j�i�j = �̄�� + ��� i�i ,
(37)

whereΦΦΦ0 = ΦΦΦ (���) |���=0 = Φ̄ΦΦ,ΩΩΩ0 = ΩΩΩ (���) |���=0 = Ω̄ΩΩ and ���0 = ��� (���) |���=0 = �̄�� , 0 = O×1 being a  -dimensional
zero vector and summation is once again implied. It is noted that the terms ΦΦΦi,j , ΩΩΩi,j and ��� i,j vanish, unless second-order terms are included in Eq. (27).
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Substitution of Eq. (37) in Eq. (32) then gives:
m(���) = Im +ΦΦΦ⊤i M̄ Φ̄ΦΦ �i + Φ̄ΦΦ

⊤M̄ΦΦΦi �i + Φ̄ΦΦ
⊤M̄ΦΦΦiΦΦΦ⊤j M̄ Φ̄ΦΦ �i�j ;

k(���) =Ω̄ΩΩ2 + Ω̄ΩΩ2ΦΦΦ⊤i M̄ Φ̄ΦΦ �i + Ω̄ΩΩΩΩΩi �i +ΩΩΩiΩ̄ΩΩ �i + Φ̄ΦΦ
⊤M̄ΦΦΦiΩ̄ΩΩ

2 �i + Ω̄ΩΩΩΩΩiΦΦΦ⊤j M̄ Φ̄ΦΦ �i�j

+ΩΩΩiΩ̄ΩΩΦΦΦ⊤j M̄ Φ̄ΦΦ �i�j +ΩΩΩiΩΩΩj �i�j + Φ̄ΦΦ
⊤M̄ΦΦΦiΩ̄ΩΩ

2ΦΦΦ⊤j M̄ Φ̄ΦΦ �i�j + Φ̄ΦΦ
⊤M̄ΦΦΦiΩ̄ΩΩΩΩΩj �i�j

+ Φ̄ΦΦ⊤M̄ΦΦΦiΩΩΩjΩ̄ΩΩ �i�j ;

c(���) =Ξ̄ΞΞ + Ξ̄ΞΞΦΦΦ⊤i M̄ Φ̄ΦΦ �i + 2 �̄��ΩΩΩi �i + 2��� iΩ̄ΩΩ �i + Φ̄ΦΦ
⊤M̄ΦΦΦiΞ̄ΞΞ �i + 2 �̄��ΩΩΩiΦΦΦ⊤j M̄ Φ̄ΦΦ �i�j

+ 2��� iΩ̄ΩΩΦΦΦ⊤j M̄ Φ̄ΦΦ �i�j + 2��� iΩΩΩj �i�j + Φ̄ΦΦ
⊤M̄ΦΦΦiΞ̄ΞΞΦΦΦ⊤j M̄ Φ̄ΦΦ �i�j + Φ̄ΦΦ

⊤M̄ΦΦΦi2 �̄��ΩΩΩj �i�j

+ Φ̄ΦΦ⊤M̄ΦΦΦi2��� jΩ̄ΩΩ �i�j ;

(38)

where, in linewith the conventional perturbation approach, high-order terms arising from products have been neglected.
Eq. (6), (7) and (10) still hold here. Series expansion of the dynamic matrix, and load and response vectors in

Eq. (12), then gives:

D0 =
[Om×m Im
−Ω̄ΩΩ2 −Ξ̄ΞΞ

]

; Di =
[

Om×m Om×m
dki dci

]

; Di,j =
[

Om×m Om×m
dki,j dci,j

]

;

V0 =
[

Om×m
Im

]

; Vi =
[

Om×m
���i

]

; Vi,j =
[

Om×m
���i,j

]

.
(39)

The associated first-order terms read:
dki = − Ω̄ΩΩ2ΦΦΦ⊤i M̄ Φ̄ΦΦ − Ω̄ΩΩΩΩΩi −ΩΩΩiΩ̄ΩΩ − Φ̄ΦΦ

⊤M̄ΦΦΦiΩ̄ΩΩ
2 − ���iΩ̄ΩΩ

2 ;

dci = − Ξ̄ΞΞΦΦΦ⊤i M̄ Φ̄ΦΦ − 2 �̄��ΩΩΩi − 2��� iΩ̄ΩΩ − Φ̄ΦΦ
⊤M̄ΦΦΦiΞ̄ΞΞ − ���iΞ̄ΞΞ ;

���i = −mi ;

(40)

where mi = ΦΦΦ⊤i M̄ Φ̄ΦΦ + Φ̄ΦΦ⊤M̄ΦΦΦi represents the first-order partial derivative of the reduced mass matrix.
Second-order terms take the following form:
dki,j = − Ω̄ΩΩΩΩΩiΦΦΦ⊤j M̄ Φ̄ΦΦ −ΩΩΩiΩ̄ΩΩΦΦΦ⊤j M̄ Φ̄ΦΦ −ΩΩΩiΩΩΩj − Φ̄ΦΦ

⊤M̄ΦΦΦiΩ̄ΩΩ
2ΦΦΦ⊤j M̄ Φ̄ΦΦ − Φ̄ΦΦ⊤M̄ΦΦΦiΩ̄ΩΩΩΩΩj − Φ̄ΦΦ

⊤M̄ΦΦΦiΩΩΩjΩ̄ΩΩ

− ���iΩ̄ΩΩ
2ΦΦΦ⊤j M̄ Φ̄ΦΦ − ���iΩ̄ΩΩΩΩΩj − ���iΩΩΩjΩ̄ΩΩ − ���iΦ̄ΦΦ

⊤M̄ΦΦΦjΩ̄ΩΩ
2 − ���i,jΩ̄ΩΩ

2 ;

dci,j = − 2 �̄��ΩΩΩiΦΦΦ⊤j M̄ Φ̄ΦΦ − 2��� iΩ̄ΩΩΦΦΦ⊤j M̄ Φ̄ΦΦ − 2��� iΩΩΩj − Φ̄ΦΦ
⊤M̄ΦΦΦiΞ̄ΞΞΦΦΦ⊤j M̄ Φ̄ΦΦ − 2Φ̄ΦΦ⊤M̄ΦΦΦi�̄��ΩΩΩj − 2Φ̄ΦΦ

⊤M̄ΦΦΦi��� jΩ̄ΩΩ

− ���iΞ̄ΞΞΦΦΦ⊤j M̄ Φ̄ΦΦ − 2���i�̄��ΩΩΩj − 2���i��� jΩ̄ΩΩ − ���iΦ̄ΦΦ
⊤M̄ΦΦΦjΞ̄ΞΞ − ���i,jΞ̄ΞΞ ;

���i,j =
1
2
(

mimj +mjmi −mi,j
)

,

(41)

where mi,j = Φ̄ΦΦ
⊤M̄(ΦΦΦiΦΦΦ⊤j +ΦΦΦjΦΦΦ

⊤
i )M̄ Φ̄ΦΦ.

A reduced system of 1 + + 2 deterministic UP equations in state-space form is finally obtained, similarly to
Eq. (13), where  is used in place of N , whose numerical solution with the piecewise exact method (PEM) [15, 44]
can be calculated as:

z0(tk+1) =�(Δt) z0(tk) + �0(Δt)V0 F(tk) + �1(Δt)V0 F(tk+1) ; (42a)
zi(tk+1) =�(Δt)zi(tk) + �0(Δt)

[

Di z0(tk) + Vi F(tk)
]

+ �1(Δt)
[

Di z0(tk+1) + Vi F(tk+1)
]

; (42b)
zi,j(tk+1) =�(Δt) zi,j(tk) + �0(Δt)

[

Di zj(tk) + Di,j z0(tk) + Vi,j F(tk)
]

+ �1(Δt)
[

Di zj(tk+1) + Di,j z0(tk+1) + Vi,j F(tk+1)
]

,
(42c)
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where Δt is the time step used to discretise the numerical solution, tk = kΔt, with k ≥ 0, is the kth discrete time
instant, �(Δt) = exp [D0 Δt

] is the (m × m) transition matrix in the reduced modal space, exp[⋅] denoting the matrix
exponential function, and �0 and �1 are (m × m) load matrices, as defined in Appendix A.2.

Once the deterministic time histories of the state-space vectors z0(tk), zi(tk) and zi,j(tk) have been calculated, the
statistics of the structural response can be expressed as in Eqs. (14) and (15). It is worth stressing here that Eqs. (42) are
particularly appealing from a computational point of view as the numerical calculation of the first-order sensitivity
vectors zi(tk) and the 2 second-order sensitivity vectors zi,j(tk) can be easily parallelised.
4.2. Improved perturbation variant
In this subsection, the formulation of the improved variant for the proposed uncertainty model is detailed. Similarly to
Eqs. (16) to (18) in the geometrical space, the stochastic matrices for the problem in hand can be expressed as follows:

ΦΦΦ (���) ≅ ΦΦΦ0 +ΦΦΦi,j E[�i�j] +ΦΦΦi�i = Φ̄ΦΦ +ΦΦΦi�i ;
ΩΩΩ (���) ≅ ΩΩΩ0 +ΩΩΩi,j E[�i�j] +ΩΩΩi�i = Ω̄ΩΩ +ΩΩΩi�i ;
��� (���) ≅ ���0 + ��� i,j E[�i�j] + ��� i�i = �̄�� + ��� i�i ,

(43)

where, owing to the linearity of the proposed randomisation scheme (see Eq. (27)), second-order terms vanish; there-
fore, the expansions of Eqs. (43) coincide with those of Eq. (37), leading to Eqs. (38).

Casting in state-space form, Eqs. (10) and (24) still hold here, with:

D̄ =
[

Om×m Im
d̄k d̄c

]

; Di =
[

Om×m Om×m
d̂ki d̂ci

]

; V̄ =
[

Om×m
�̄��

]

, (44)

where:
d̄k = − �̄�� Ω̄ΩΩ2 −

(

�̄�� Ω̄ΩΩΩΩΩiΦΦΦ⊤j M̄ Φ̄ΦΦ + �̄��ΩΩΩiΩ̄ΩΩΦΦΦ⊤j M̄ Φ̄ΦΦ + �̄��ΩΩΩiΩΩΩj + �̄�� Φ̄ΦΦ
⊤M̄ΦΦΦiΩ̄ΩΩ

2ΦΦΦ⊤j M̄ Φ̄ΦΦ + �̄�� Φ̄ΦΦ⊤M̄ΦΦΦiΩ̄ΩΩΩΩΩj

+ �̄�� Φ̄ΦΦ⊤M̄ΦΦΦiΩΩΩjΩ̄ΩΩ + ���iΩ̄ΩΩ
2ΦΦΦ⊤j M̄Φ̄ΦΦ + ���iΩ̄ΩΩΩΩΩj + ���iΩΩΩjΩ̄ΩΩ + ���iΦ̄ΦΦ

⊤M̄ΦΦΦjΩ̄ΩΩ
2
)

E[�i�j] ;

d̄c = − �̄�� Ξ̄ΞΞ −
(

�̄��2�̄��ΩΩΩiΦΦΦ⊤j M̄Φ̄ΦΦ + �̄��2��� iΩ̄ΩΩΦΦΦ
⊤
j M̄Φ̄ΦΦ + �̄��2��� iΩΩΩj + �̄�� Φ̄ΦΦ

⊤M̄ΦΦΦiΞ̄ΞΞΦΦΦ⊤j M̄Φ̄ΦΦ + �̄�� Φ̄ΦΦ
⊤M̄ΦΦΦi2�̄��ΩΩΩj

+ �̄�� Φ̄ΦΦ⊤M̄ΦΦΦi2��� jΩ̄ΩΩ + ���iΞ̄ΞΞΦΦΦ⊤j M̄Φ̄ΦΦ + ���i2�̄��ΩΩΩj + ���i2��� jΩ̄ΩΩ + ���iΦ̄ΦΦ
⊤M̄ΦΦΦjΞ̄ΞΞ

)

E[�i�j] ;

�̄�� = Im + ���i,jE[�i�j] ,

(45)

and
d̂ki = − �̄�� Ω̄ΩΩ2ΦΦΦ⊤i M̄ Φ̄ΦΦ − �̄�� Ω̄ΩΩΩΩΩi − �̄��ΩΩΩiΩ̄ΩΩ − �̂�� Φ̄ΦΦ

⊤M̄ΦΦΦiΩ̄ΩΩ
2 − ���iΩ̄ΩΩ

2 ;

d̄ci = − �̄�� Ξ̄ΞΞΦΦΦ⊤i M̄ Φ̄ΦΦ − 2 �̄�� �̄��ΩΩΩi − 2 �̄�� ��� iΩ̄ΩΩ − �̄�� Φ̄ΦΦ
⊤M̄ΦΦΦiΞ̄ΞΞ − ���iΞ̄ΞΞ ,

(46)

and where Vi satisfies Eq. (39).Following manipulations, the resulting system of 1+ coupled UP equations in Eq. (25) is solved with the PEM.
The discretised solution then takes the form [15]:

z̄(tk+1) = �̄(Δt) z̄(tk) + �̄0(Δt)
[

E[�i�j]Di zj(tk) + V̄ F(tk)
]

+ �̄1(Δt)
[

E[�i�j]Di zj(tk+1) + V̄ F(tk+1)
]

; (47a)
zi(tk+1) = �̄(Δt) zi(tk) + �̄0(Δt)

[

Di z̄(tk) + Vi F(tk)
]

+ �̄1(Δt)
[

Di z̄(tk+1) + Vi F(tk+1)
]

. (47b)
Substitution of Eq. (47b) into (47a), and following manipulations, one obtains:
z̄(tk+1) = �̄∗(Δt) z̄(tk) + Ai(Δt)E[�i�j] zj(tk) + �̄∗0(Δt)F(tk) + �̄

∗
1(Δt)F(tk+1) , (48)
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where:
�̄∗(Δt) =G(Δt)−1

[

�̄(Δt) + �̄1(Δt)Di �̄0(Δt)Dj E[�i�j]
]

; (49a)
Ai(Δt) =G(Δt)−1

[

�̄0(Δt)Di + �̄1(Δt)Di �̄(Δt)
]

; (49b)
�̄∗0(Δt) =G(Δt)

−1 [�̄0(Δt) V̄ + �̄1(Δt)Di �̄0(Δt)Vj E[�i�j]
]

; (49c)
�̄∗1(Δt) =G(Δt)

−1 �̄1(Δt)
[

Di �̄1(Δt)VjE[�i�j] + V̄
]

; (49d)
G(Δt) = I2m − �̄1(Δt)Di �̄1(Δt)Dj E[�i�j] , (49e)

and where �̄(Δt) = exp [D̄Δt], and �̄0 and �̄1 are calculated from �̄ and D̄ as per Appendix A.2. Eq. (47b) and (48)
are numerically solved and the response statistics are finally obtained through Eqs. (26).
4.3. High-order perturbation
Aimed at enhancing the accuracy of the random vibration predictions, a high-order perturbation variant is presented
in what follows through an ad hoc extension of the second-order perturbation method. To do this, let’s consider the
kth-order series expansion of the stochastic modal matrices in the proposed uncertainty model (with k ≥ 3):

ΦΦΦ (���) ≅ ΦΦΦ0 +ΦΦΦi�i +ΦΦΦi,j �i�j +⋯ +ΦΦΦi,j,…q �i�j… �q ;

ΩΩΩ (���) ≅ ΩΩΩ0 +ΩΩΩi�i +ΩΩΩi,j �i�j +⋯ +ΩΩΩi,j,…,q �i�j… �q ;

��� (���) ≅ ���0 + ��� i�i + ��� i,j �i�j +⋯ + ��� i,j,…,q �i�j… �q ,
(50)

where {i, j,… ,q} denotes the set of of k indexes associated with the kth-order perturbation.
Following the procedure described in §4.1, the deviation matrices in Eq. (29), as well as the mass, spectral and

damping matrices in Eq. (38), are constructed taking into account Eq. (50). Series expansion of the underlying terms
in the state-space Eq. (10), then gives:

z(t, ���) ≅ z0(t) + zi(t) �i + zi,j(t) �i�j +⋯ + zi,j,…,q(t) �i�j… �q ;

D(���) ≅ D0 + Di�i + Di,j �i�j +⋯ + Di,j,…,q �i�j… �q ;

V(���) ≅ V0 + Vi�i + Vi,j �i�j +⋯ + Vi,j,…,q �i�j… �q ,
(51)

where first- and second-order dynamic matrices and load vectors satisfy Eq. (39), while the high-order ones, whose
details are lengthy, are computed by means of an algorithmic procedure.
4.3.1. Quantification of response statistics
Upon substitution of Eq. (51) into Eq. (10) and following manipulations, a set of n(k) = ∑k

j=0
j deterministic

UP equations in state-space form is obtained. For instance, if m = 5 modes of vibration are retained in the dynamic
analysis, there are up-to  = 35 random variables (see Eq. (28)), meaning that for k = 2, i.e. second-order pertur-
bation, there are up-to n(2) = 1, 261 state-space equations; they become up-to n(3) = 44, 136 for k = 3 and up-to
n(4) = 1, 544, 761 for k = 4. It is noteworthy here that: i) the actual number of ‘dominant’ random variables can be
significantly less; ii) parallelisation and domain decomposition methods [45, 46] can be used to simultaneously solve
multiple UP equations, which in turn can drastically reduce the computational time.

For the kth order perturbation, the set of n(k) UP equations can be broken down in k + 1 subsets, of increasing
number; that is, the jth subset, with 0 ≤ j ≤ k, consists ofj UP equations. The first three subsets, for j ≤ 2, are
the same as in Eqs. (13); the higher-order subsets, for j ≥ 3 can be written in the following generalised form:

żi, j,… ,p,q
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
j (≤k) indexes

= D0 zi,j,…,p,q + Di zj,…,p,q +⋯ + Di,j,…,pzq + Di,j,…,p,q z0 + Vi,j,…,p,q F(t) , (52)

where, once again, time dependency is not explicitly shown in any of the z vectors and j is the number of indices
{i, j,… ,p,q} appearing in the subset of UP equations; it is worth stressing here that each of these indices takes
combinatorially the values 1,… , and that for the particular case j = 3 the expressions in Eq. (52) should be
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interpreted such as j ≡ p.
Solution to Eq. (52) with the PEM is given as :
zi,j,…,p,q(tk+1) = � (Δt) zi,j…,p,q(tk)

+�0(Δt)
{

Di zj,…,p,q(tk) +⋯ + Di,j,…,p zq(tk) + Di,j,…,p,q z0(tk) + Vi,j,…,p,q F(tk)
}

+�1(Δt)
{

Di zj,…,p,q(tk+1) +⋯ + Di,j,…,p zq(tk+1) + Di,j,…,p,q z0(tk+1) + Vi,j,…,p,q F(tk+1)
}

,

(53)

which extends the PEM solutions detailed as Eqs. (42).
Response statistics are finally computed as:

E [z] = z0 + zi,i E[�2i ] +⋯ + zi,j,…,q E
[

�i�j… �q
]

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
kth-order moment

;
(54a)

Var [z] = E[z ⊙ z] − E[z]⊙ E[z]
=

{

zi ⊙ zi
}

E[�2i ] +⋯ +
(

zi,j,…,q ⊙ zI,J ,…,Q
)

E
[

�i�j… �q�I�J … �Q
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(2k)th-order moment

, (54b)

where Eq. (54b) is expanded following substitution of Eq. (51) and Kronecker algebra is used; the conditions E[�i] = 0and E[�i�j] = 0 for i = j (zero-mean, statistically independent random variables) have also been used.
In the approach presented in this subsection, k−2 subsets of auxiliary deterministic differential equations, associ-

ated with high-order probabilistic information, are used to obtain an improved approximation of the dynamic response
of the uncertain structure. Notably, in the special case where k = 2, the second-order perturbation approach in modal
space, presented in Section 4.1, is recovered. An unfortunate feature of the high-order perturbation variant is the sus-
ceptibility to the curse of dimensionality, with the number of equations dramatically increasing with the underlying
random variables. Nevertheless, owing to the uncertainty formulation proposed in Section 3,  ≪ N , and therefore
the number of additional UP equations can be kept reasonably low. Furthermore, the model does not necessarily require
a fixed value of k, as each set of auxiliary equations can be adaptively used, on-demand, on the basis of convergence
criteria assessed throughout computations, to either increase the level of fidelity, or resort to a lower-order scheme,
thus providing flexibility to the analyst, balancing accuracy with the additional computational effort.
4.3.2. Cumulant-neglect moment approximation
A notorious difficulty is that the proposed method requires knowledge of high-order input statistical moments, which
may, in general, be unavailable. Specifically, the kth-order perturbation depends on statistical moments of up-to order
2k. It must be further noted that the full set ofj statistical moments of thejth-order can be prohibitively expensive
to compute and operate with, and therefore a set of

(

 + j − 1
j

)

=

(

 + j − 1
)

!

j!
(

 − 1
)

!
(55)

unique function evaluations can be used in practice, which are subsequently manipulated and stored, by means of
a compressed format through their associated descriptor mapping. This can dramatically mitigate the computational
burden of the procedure; for instance, for the case ofm = 5modes of vibration considered above (see Subsection 4.3.1),
the number of independent UP equations that need to be solved reduces to up-to ñ(2) = 666 for the second-order
perturbation (i.e. 47.2% less), ñ(3) = 8, 436 for k = 3 (i.e. 80.9% less) and ñ(4) = 82, 251 for k = 4 (i.e. 94.7% less
UP equations).

Rather than neglecting moments of order greater than k, as is often the case with perturbative approaches, a
cumulant-neglect-based technique can be used to approximate the probability distribution of the random variables �i.Specifically, it is possible to express the statistical moments in terms of cumulants, denoted herein with �(⋅). The
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following relationships are indicatively provided in compact form for up-to fourth-order [47–50]:
E[�i] = �(�i) ;

E[�i�j] = �(�i, �j) − �(�i) �(�j) ;

E[�i�j�p] = �(�i, �j , �p) + 3
{

�(�i) �(�j , �p)
}

S + �(�i) �(�j) �(�p) ;
E[�i�j�p�q] = �(�i, �j , �p, �q) + 3

{

�(�i, �j) �(�p, �q)
}

S + 4
{

�(�i) �(�j , �p, �q)
}

S
+ 6

{

�(�i) �(�j) �(�p, �q)
}

S + �(�i) �(�j) �(�p) �(�q) ,

(56)

where i, j,p and q are integers in the interval [1, ], denoting the elements of ���, and {⋅}S indicates a symmetrising
operation, that is, taking the arithmetic mean of all different permuted terms with respect to the underlying arguments.

For Gaussian random variables, cumulants of order greater than two are zero, and it thus follows that high-order
moments can be approximated in terms of lower ones by neglecting cumulants above a certain order l, with 2 ≤ l ≤ k.
The approximation is exact for Gaussian input variables and admissible to other cases, provided that the probability
distribution of the input variables is not strongly non-Gaussian. In practice, results can be obtained through a second-
order approximation, setting l = 2, but an improvement in accuracy can be achieved by resorting to a higher level of
cumulant approximation.
4.3.3. Adaptive solution implementation procedure
To apply the high-order perturbation approach presented above, an algorithmic procedure is suggested, which can be
summarised as follows:

1. DECIDE the number of modes m to be retained in the analysis, the time step Δt, the number  of random
variables (up tom2+2m), the numberk of the perturbation order (also considering the computational resources
available) and the level l of cumulant-neglect closure, if required.

2. DEFINE all the matrices D and V appearing in Eqs. (13) and (52), up to the kth order.
3. CALCULATE the integration operators � (Δt), �0(Δt) and �1(Δt) appearing in Eq. (53); they have to be cal-

culated only once for all subsets of UP equations (see point 4 below).
4. For j = 1,… ,k, SOLVE the jth subset of UP equations, with all the required combinations of the j indexes

in Eq. (53));
5. If required, APPROXIMATE the jth statistical moment of the ith input variable, E[�ji ], with j ≥ l ≥ 3, using

the cumulant-neglect closure.
6. CALCULATE the second-order response statistics via Eqs. (54).
7. REPEAT points 1 to 6 until, convergence is reached.

In practice, convergence can be measured, over the whole duration of the motion of the structure, in terms of an
appropriate norm of the variance of its dynamic response.

5. Spectral quantification in the modal space with polynomial chaos expansions
The perturbative-based variants presented in the previous section are suited to the second-moment response analysis
for moderate levels of uncertainty in the dynamic system. They are intrusive, requiring reformulation of the governing
differential equations, and the approximation error tends to cumulate over time. To alleviate some of these drawbacks
and complement our investigations, a spectral, non-intrusive approach based on the polynomial chaos (PC) expansion
is next employed in combination with the modal uncertainty model presented above.

Consider the mechanical system of Section 3 characterised by the reduced random matrices in Eq. (32). Let us de-
fine an interface to the model through an -dimensional standard normal random input vectoruuu = {

u1,… , u
}⊤ ∈

ℝ , so obtained by means of a suitable probabilistic transformation to the random vector ���.
The state response zk, at the kth time instant tk, then admits the following representation on a finite-dimensional

basis by a truncated PC [23]:
zk ≈

∑

iii∈
yiii  iii (uuu) , (57)
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where  iii (uuu) = ∏
j=1 Pij (uj) are multivariate Hermite polynomials, orthonormal with respect to fuuu, the joint proba-

bility density function ofuuu, and Pij denotes a univariate polynomial of degree ij ; furthermore, iii = {

i1,… , i
}

∈ 

is a multi-index, where |iii| = ∑
j=1 ij is the degree of the polynomial  iii,  ⊂ ℕ being a truncated set; and yiii ∈ ℝ

are coefficients to be identified.
In calculating the ( + p)!∕( !p!) coefficients, p = k − 1 denoting the maximal degree of the retained polyno-

mials, projection- or regression-based methods may be employed by choosing a suitable experimental design, com-
prising a set of full-model evaluations, and processing the associated responses [51]. For projection-based methods,
the experimental design size is determined from the quadrature scheme and p. Standard multivariate quadrature, for
instance, requires a set of (p + 1) model evaluations, while the computational cost with Smolyak’s sparse quadra-
ture scheme [52] grows polynomially with  , which can be regarded as reasonable for medium-sized dimensional
problems, but becomes intractable for large values of . Conversely, regression-based approaches result in a fixed ex-
perimental design size and are thus employed herein in conjunction with the proposed reduced modal subspace model
for the system uncertainty.

Specifically, the highly-efficient least angle regression (LAR) algorithm [30, 53] is adopted with a finite number of
nPC model evaluations and with samples generated by the Latin Hypercube sampling strategy. To arrive to a predictive
meta-model of the response time history, a time-dependent strategy is adopted, namely, a sparse PC is constructed at
a number of discrete time instants from these nPC runs, with a resolution step ΔtPC ⩾ Δt.

Owing to the ortho-normality of the polynomial basis, the first two statistical moments of the response are readily
available from the expansion coefficients:

E
[

zk
]

= y0 ;

Var
[

zk
]

=
∑

���∈
���≠0

y2��� , (58)

where y0 denotes the coefficient associated with the constant basis term  000 = 1, and where the summation is carried
out on the non-constant basis elements. Finally, to extract further information on the model response, such as the full
probabilistic structure, the polynomial series expansion may be sampled using Monte Carlo simulation, at reasonable
computational cost.

To this end, the resulting PC representation, facilitated by the reduced set of underlying random variables in the
modal subspace, treats the computational model as “black box”, with independent components at discrete time instants,
preventing the accumulation of errors for relatively long integration times. Nevertheless, such representation is costly
andmay become increasingly difficult at late time instants due to the enhanced complexity in input-output relationships.

6. Numerical applications
The analysis of linear dynamical structures affected by uncertainties has been addressed in the preceding sections, and
methods formulated in the reduced modal subspace have been presented for this purpose. In this section, for validation
and comparison purposes, the proposed formulations have been numerically investigated.
6.1. Multi-storey steel frame with semi-rigid connections
In the first numerical application, the seismic response of a steel frame with uncertain flexibility in the semi-rigid
beam-to-column connections has been investigated. Linear rotational springs (an acceptable approximation for the
so-called damage limitation requirement) are used to model the connection stiffness at the beams’ ends, as depicted
in Figure 2(a), where N , Q and M denote the axial force, shear force and bending moment at the generic node,
respectively, while u, w and � are the associated displacements and rotations.

The stiffness matrix for the Euler-Bernoulli beam element with rotational springs is a function of the rotational
stiffness k, defined as [54]:

k(v) = 3EI
l

v
1 − v

, (59)

where E, I and l are the Young’s modulus, moment of inertia and length of the beam, respectively, and v is the
dimensionless fixity factor at the generic beam’s end, within the range [0, 1]. The two limiting cases, i.e. k(0) = 0 and
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Table 1
Geometrical parameters of the structural elements in the first numerical application.

Area, A
[

10−3m2
]

Moment of inertia, I [10−6m4]
Beams 306 2569

Columns
27 1710
21.8 798.9
14.9 251.7

(a) (b)
Figure 2: Beam element with rotational springs (adapted from [54]) (a) and structural frame model (b).

limv→1 k(v) = +∞ represent a pinned connection (permitting free rotation, with no bending moment being transferred
at the beam’s end) or a rigid one (restraining rotation), respectively; in actual steel construction, however, the fixity
factors take intermediate values, random in nature, and can significantly affect the dynamic response of semi-rigid
steel frames (e.g. Refs. [55–57]).

Figure 2(b) shows the case-study model, taken from Ref. [58], consisting of a 10-storey single-bay planar frame,
with uniform inter-storey heights ℎ = 4m and bay’s span b = 8m. The Young’s modulus is E = 210GPa and the
geometrical parameters of the structural elements are reported in Table 1.

A FE model has been constructed with the commercial structural analysis software SAP2000 [59]. Having dis-
cretised each beam into two FEs of equal length l = b∕2 = 4m, massesMtop = 3Mg have been lumped at the three
nodes of the top storey and massesM = 4Mg at the nodes each other storey, respectively, with a frame’s total mass
Mtot = 156Mg. For the reference configuration with v = 0.5, the fundamental period of vibration is T1 = 1.348 s
(76% of modal mass participation); furthermore, the total number of DoFs is n = 90 and m = 5 modes were retained
in the analysis, so that 96% of the modal mass participates in the direction of interest x.

The structure is subjected to a ground acceleration üg(t) consisting of an idealised, full-cycle sinusoidal pulse such
that üg(t) = Ag sin

(

!g t
) if 0 ≤ t ≤ Tg = 2�∕!g and üg(t) = 0 otherwise, where Ag and !g are the amplitude and

the frequency of the pulse, respectively. This type of excitation has been extensively considered in the literature to
quantify the effects of near-fault ground motions (e.g. [44, 60, 61]).
6.1.1. Model calibration
As a first step towards the application of the proposed approach, the randommatrices��� and 


 have been characterised by
means of numerical analyses using the relationships presented in Section 3.2. Specifically, the values of the rotational
stiffness at the beam-to-column connections have been modelled with a set ofN = 20 statistically independent random
variables, which represent the only source of uncertainty for this example.

Each rotational stiffness k is uniformly distributed within the interval [kmin = k(�min), kmax = k(�max)
], whose

extreme values correspond to �min = 0.21 and �max = 0.79, respectively; accordingly, the resulting rotational stiffnesshas mean value k̄ = (

kmin + kmax
)

∕2 = k(�0), with �0 = 0.67, and coefficient of variation CoV[k] = 0.50.
Following the procedure detailed in Section 3.3, a MCS has been carried out with 50,000 realisations to construct
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Figure 3: Randomised first three modal shapes due to uncertainty characterised in the full geometric space (a); and due to
the proposed uncertainty model in the reduced modal subspace by means of 25 calibrated uncorrelated random variables
simulated from empirical distributions (b).

the randomised mass and stiffness matrices of the semi-rigid frame in the geometrical space. The associated eigenvalue
problem has been solved for each case, so obtaining randomised modal shapes and modal frequencies. This has been
efficiently done by exploiting the open application programming interface (OAPI) of SAP2000 in conjunction with
MATLAB [62], following the procedure delineated in Ref. [63], which automates the construction and analysis of the
structural model as well as the customised retrieval of the required results.

In a subsequent stage, Eqs. (33) to (35) have been used to empirically construct the marginal CDFs and correlation
matrix for the random variables in � and 
, associated with the modal shapes and modal circular frequencies, while
uniformly distributed random variables were used for the elements of the random vector ���, based on mean value
�̄ = 0.05, for all modes, and CoV[� ] = 0.2.

It is worth noting here that the total number of random variables in the reduced modal space is = 52+2×5 = 35,
meaning that > N for this first numerical example; indeed, for simplicity’s sake, other sources of uncertainty have
been neglected in this application, e.g. the magnitude of the masses at each storey. A case whereN ≫ , as expected
in real-life applications, is covered in the second numerical example.

Next, a suite of 100, 000 realisations of  uncorrelated standard normal random variables were simulated and
used to generate realisations of the dimensionless random variables in �⊤ =

{

�⊤, 
⊤,�⊤
}, through the probabilistic

transformation �(r)i = F−1i
(

u(r)i

)

, where Fi
(

�i
) is the identified CDF of the ith random variable in the reduced modal

space and the superscripted (r) denotes its rth realisation. For each case, the randomised modal matrix, spectral matrix,
and matrix of modal damping ratios were constructed on the basis of Eqs. (27).

Figure 3 compares the randomised modal shapes due to uncertainties in the geometrical space (Figure 3(a)) with
the ones from the calibrated proposed uncertainty model (Figure 3(b)). The black lines represent mean modal shapes,
which coincide with the deterministic ones for the reference configuration, i.e. with all fixity factors assumed to
be � = 0.5, and the light red ones refer to the envelope of realisations. The results visually confirm that both the
proposed randomisation scheme (i.e. Eqs. (27)) and the identification procedure employed for the random variables �iare satisfactory. It is further noted that the mean and standard deviation values of the simulated circular frequencies
show percentage differences that fall within 0.05% and 1% of the target ones, respectively.
6.1.2. Analysis
The identified model parameters have been used to numerically investigate the performance of the proposed second-
order, improved, and high-order perturbation variants as well as the PC approach, the latter carried out with nPC = 500model evaluations, on the evolutionary displacement response at roof level. In this numerical application, only the
case of k = 3 has been considered for the high-order perturbation and PC solution, corresponding to a third-order
truncation, as higher orders were found to result in only marginal improvements in the response statistics.

Figures 4(a)-4(c) show the time varying mean of the response for three different values of the normalised frequency
parameter � = !g∕!1, namely 0.5, 1 and 1.5, respectively, while the amplitude of the ground acceleration, Ag =
1.0m/s2, is the same in the three cases. The variants are compared against pertinent MCS, where the light red colour
represents the envelope of 100,000 realisations. The results show distinct behaviour in the response; as expected,
an increase in the amplitude of oscillations is exhibited for the tuned system with � = 1, leading to an increase in
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the uncertainty propagated in the time history of the response. Overall, the mean dynamic response is satisfactorily
predicted by all the four variants.

By contrast, the numerical analyses reveal different levels of accuracy in the prediction of the evolutionary variance
of the dynamic response, plotted in Figures 4(d)-4(f); the associated time-varying percentage errors, quantified with
respect to the MCS, are shown in Figures 4(g)-4(i), in which:

"(t) [%] = 100 ×
|

|

Var [x(t)] − Var [x(t)]MCS||
|

|

Var [x(t)]MCS||
, (60)

where x(t) denotes the response quantity of interest (i.e. the displacement at roof level in this case), the subscript MCS
marks the reference value of the variance calculated through Monte Carlo simulation, and the symbol |⋅| denotes the
peak absolute value of the quantity within the vertical lines.

A cumulant-neglect second-order (l = 2) closure has been used to approximate moments of up-to sixth order
arising in the third-order (k = 3) perturbation variant. To assess the effectiveness of this approximation, the third-
order perturbation response with truncated high-order moments has been superimposed in Figures 4(g)-4(i) (depicted
with dotted lines).

The results show relatively large discrepancies for the conventional and improved perturbation approaches, partic-
ularly for t > 2.5 s, for Figures 4(d)-4(f). The proposed high-order perturbation variant and PC solution exhibit better
performance, closely resembling the MCS solution. Specifically, they appear to satisfactorily predict the second-order
response statistics in all the considered cases. This observation is further supported in Figures 4(g)-4(i) with the cu-
mulative errors consistently being kept below 10%. Notably, while the performance of the perturbative methods tends
to deteriorate as time increases, this is not the case for the PC variant, which consistently shows good performance.
This is due to the non-intrusive nature of the adopted PC, which prevents the cumulation of the error [31].
6.2. Simply supported bridge subjected to a moving load
The second numerical application considers the transient vibration of a simply supported beam of length L, subjected
to a moving load. The problem is ruled by the following second-order partial differential equation [64]:

�A ü(x, t) +D(x, t) + EI u′′′′(x, t) = P �(x − V t) , (61)
where u(x, t) is the transverse displacement at point x and time t and the superscripted prime denotes spatial derivative
with respect to the abscissa x; �A is the mass density per unit length of the beam andEI is its flexural stiffness;D(x, t)
is the function representing the damping force in the geometrical space; P is the intensity of the moving load, arriving
at time t = 0, and travelling at a constant velocity V ; and �(⋅) is the Dirac’s delta function. The moving load is thus
acting on the beam during the time interval [0, tL], tL = L∕v being the loading time.

The modal shapes and modal frequencies are given in closed form by:

'i(x) =
√

2
�AL

sin
( i � x
L

)

; !i =
( i �
L

)2
√

EI
�A

, (62)

where ' is normalised with respect to �A.
The modal equations of motion can be obtained by adopting the following transformation of coordinates (similar

to Eq.(5)):
u(x, t) = '''⊤0 (x)q(t) , (63)

where '''0(x) =
{

'1(x), '2(x) … 'm(x)
}⊤ is the (m × 1) modal vector, collecting the first m modal shapes of the

homogeneous beam, and q(t) = {

q1(t), q2(t) … qm(t)
}⊤ is the (m × 1) vector of the associated modal coordinates.

Upon substitution of Eq. (63) in Eq. (61), and following manipulations, one obtains (equivalent to the deterministic
version of Eq. (6), in which the presence of the random variables �i is neglected in Eqs. (8)):

Im q̈(t) + �0 q̇(t) +
20 q(t) = F(t) , (64)
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Figure 4: Displacement at roof level due to uncertainty in the reduced modal subspace for a pulse-type ground excitation
of � = 0.5 (left column); � = 1 (central column); and � = 1.5 (right column): evolutionary mean (top row: a, b, c);
evolutionary variance (middle row: d, e, f); and cumulative errors in the response variance (bottom row: g, h, i).

where the loading vector in the reduced modal space is given by F(t) = P G(t), being:

G(t) = '''⊤0 (V t) =
√

2
�AL

⎧

⎪

⎨

⎪

⎩

sin (� V t∕L)
sin (2� V t∕L)

⋮
sin (m� V t∕L)

⎫

⎪

⎬

⎪

⎭

. (65)

In line with the numerical example reported in Ref.[65], the following mechanical parameters have been selected
for the beam: L = 27.5m, �A = 2.385Mg∕m, and EI = 12.425 × 106 kNm2; P = 96.53 kN is the magnitude
of the moving load. Furthermore, m = 3 modes of vibration have been retained in analysis; under the reference
configuration, when no random fluctuations are present, the modal circular frequencies are !1 = 29.8, !2 = 119.2 and
!3 = 268.1 rad∕s.
6.2.1. Model calibration
To calibrate the probabilistic definition of the random variables in the reduced modal space, an auxiliary FE model
was constructed, comprising of a total of 200 Euler-Bernoulli beam elements and a total of N = 400, independent,
uniformly distributed random variables, representing uncertainty in the geometrical space, namely, in the mass density
and bending stiffness of each FE, based on a coefficient of variation of 0.14 and 0.3, respectively.

A MCS was carried out with 50, 000 realisations, and randomised modal shapes and spectral matrices were ob-
tained. The marginal CDFs of the random variables in � and 
 were constructed through the use of Eqs. (33) to (35).
Furthermore, uniformly distributed random variables were assumed for the marginal CDFs of the random variables in
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Figure 5: Randomised first three modal shapes due to uncertainty characterised in the full geometric space with N = 400
random variables (a); and due to the proposed uncertainty model in the reduced modal subspace by means of 9 calibrated
uncorrelated random variables simulated from empirical distributions (b).

���, based on a mean value of �̄ = 0.02, for all modes, and CoV = 0.4, giving rise to a total of  = m2 + 2m = 15
random variables, fully characterising the uncertainty model in the reduced modal space.

A suite of 100, 000 realisations of �, 
 and �were next simulated, and randomisedmodalmatrices, spectral matrices
and modal matrices of damping ratios were constructed using Eqs. (27).

The randomised modal shapes due to uncertainties in the geometrical space are shown in Figure 5(a), and are
compared with the ones from the proposed model in Figure 5(b). The comparison is satisfactory, as the corresponding
envelopes of realisations (light red lines) around the mean modal shapes (black lines) closely matching each other;
uncertainty only appears to be slightly underestimated in the third modal shape, in the range L∕4 < x < 3L∕4.
This is due to the fact that the proposed uncertainty model expresses spatial fluctuations in the modal shapes as linear
combinations of the first m modes of vibration of the deterministic structure (see the first of Eqs.(27)), meaning that
spatial patterns requiring wavelengths shorter than �m = 2L∕m are filtered out.

It is also noted that the mean and standard deviation values of the first three modal circular frequencies show
percentage differences that fall within 0.01% and 0.3% of the target ones, respectively.
6.2.2. Analysis
The performance of the second-order, improved, third- (k = 3) and fourth-order (k = 4) perturbation, as well as the
PC (k = 3, nPC = 500) variant, have been numerically investigated with reference to the random process u(L∕2, t),
representing the evolutionary displacement response of the simply supported beam at midpsan.

The time varying mean of the response is shown in Figures 6(a)-6(c), when a moving load travelling at constant
velocities of V = 25, 80 and 135m∕s is respectively considered, compared against pertinent MCS with 100, 000
realisations (light red colour); the corresponding loading times are tL = 1.100, 0.344 and 0.204 s. The results show an
increase in the amplitude of oscillations exhibited at higher moving load velocities; the uncertainty propagated in the
time history of the response also increases. All the variants accurately predict the mean response, with the exception
of the improved perturbation, whose performance deteriorates after 5 cycles (i.e. t > 1 s) for the case of V = 135m∕s
(Figure 6(c)).

The evolutionary variance of the response is plotted in Figures 6(d)-6(f) and cumulative percentage errors, with
respect to the MCS, are presented in Figures 6(g)-6(i). Moments of up-to sixth and eighth order arising in the third and
fourth order perturbation variants have been approximated by a cumulant-neglect second-order (n = 2) approximation.
To assess the effectiveness of the approximation, the third and fourth order perturbation responses with truncated high-
order moments arising are shown with dotted lines.

Large discrepancies are shown for the conventional and improved perturbations, propagating in the time histories
of the response, most evident at t > 1 s, for Figures 6(d) and 6(f), with the proposed high-order perturbation and
PC variants exhibiting improved performance, closely resembling the reference MCS. More specifically, the fourth-
order perturbation and the PC solution are shown to accurately predict second-order response statistics for all cases
considered. Indeed, this observation is also supported in Figures 6(g)-6(i) with the respective cumulative errors being
kept below 5%. Moreover, the validity of the high-order statistical moment approximation is confirmed with the solid
and dotted lines closely resembling each other early in the time history of the response.

Kasinos et al.: Preprint submitted to Elsevier Page 20 of 25



A reduced modal subspace approach for damped stochastic dynamic systems

0 0.5 1 1.5 2

0

2

4

·10−3

t [s]

µ
u

[m
]

(a)
0 0.5 1 1.5 2

0

2

4

6
·10−3

t [s]

µ
u

[m
]

(b)
0 0.5 1 1.5 2

−5

0

5

·10−3

t [s]

µ
u

[m
]

(c)

0 0.5 1 1.5 2
0

2

4

·10−8

t [s]

σ
2 u

[m
2 ]

(d)
0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1
·10−7

t [s]

σ
2 u

[m
2 ]

(e)
0 0.5 1 1.5 2

0

1

2

3
·10−6

t [s]

σ
2 u

[m
2 ]

(f)

0 0.5 1 1.5 2
0

10

20

30

t [s]

ε
[ %

]

MCS

Improved

order 2

order 3

order 4

PC

(g)
0 0.5 1 1.5 2

0

10

20

30

t [s]

ε
[ %

]

MCS

Improved

order 2

order 3

order 4

PC

(h)
0 0.5 1 1.5 2

0

10

20

30

t [s]
ε

[ %
]

MCS

Improved

order 2

order 3

order 4

PC

(i)
Figure 6: Midspan deflection due to uncertainty in the reduced modal subspace for a moving load travelling at a constant
speed of v = 25m∕s (left column); v = 80m∕s (central column); and v = 135m∕s (right column): evolutionary mean (top
row: a, b, c); evolutionary variance (middle row: d, e, f); and cumulative errors in the response variance (bottom row: g,
h, i).

Overall, the results indicate that, compared to low-order classical perturbation variants, the proposed high-order
perturbation can provide a viable alternative for the second-moment response analysis of dynamical structures, with
significant improvements at moderate to high levels of system uncertainty. The increase in computational effort, in
practice, may be justified bymeans of a priori assessment of the expected gains in terms of accuracy. Sparse regression-
based PC, facilitated by the modal subspace reduction, are well-suited for the spectral response quantification. Even
though such representation is costly, its non-intrusive nature enables high-fidelity asynchronous examination of distinct
regions in the response. Although quantification of the full probabilistic structure of the response falls beyond the scope
of this work, it is noted that the numerical investigations presented exhibit non-Gaussian responses. It is finally noted
that further investigations on a range of configurations, including other moving load velocities, levels of uncertainty,
and input marginal distributions, have revealed that the proposed variants consistently maintain good performance.

7. Summary and conclusions
The linear dynamic analysis of structures with uncertain mechanical parameters subjected to deterministic excitation,
has been addressed. In this study:

1. A model has been presented whereby system uncertainty is conveniently characterised in the reduced modal
subspace rather than in the full geometrical space, with modal shapes, frequencies and damping ratios constitut-
ing the random quantities, dramatically reducing the number of underlying random variables and the size of the
dynamic problem.
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2. A numerical procedure has been suggested for calibrating a set of uncorrelated random variables, fully defining
the proposed uncertaintymodel, bymeans ofmarginal distributions identified through analysis in the geometrical
space and suitable probabilistic transformations; as an alternative, the random variables in the reduced modal
space can be directly assumed based on the outcomes of experimental campaigns on existing structures.

3. Formulated in the reduced modal subspace, conventional second-order as well as improved perturbation variants
have been presented.

4. A high-order perturbation variant has also been proposed, in-line with modern computing paradigms for on-
demand computations. Based on an ad hoc extension of the second-order perturbation approach, the proposed
method involves a set of auxiliary differential equations to be solved with the piecewise exact method (PEM).
It further uses moment-cumulant relationships to approximate the high-order statistical moments of the input
variable, that often might be unavailable.

5. A regression-based, non-intrusive, polynomial chaos (PC) expansion approach has been employed to comple-
ment the second-moment analysis for spectral quantification in line with the proposed modal subspace reduction.

6. Numerical investigations on a multi-storey steel frame with semi-rigid connections and a simply supported beam
subjected to a moving load have confirmed the validity of the second-order, improved, high-order perturbation
variants as well as the spectral approach.

• The high-order perturbation variant has been found to outperform the conventional and improved variants
in terms of accuracy, providing increased flexibility, enabling the analyst to adaptively decide the level of
fidelity, thus balancing accuracy and computational cost.

• The spectral approach has been proven effective in terms of accuracy and computational cost, allowing
high-fidelity asynchronous examination of distinct regions in the response, preventing the cumulation of
errors at late time instants.

Futureworkswill consider joint eigenvalue and eigenvector statistics, i.e. accounting for the effects of cross-correlations
between the random variables in the reduced modal space, as well as reliability analyses associated with extreme re-
sponses and damage cumulation.
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A. Appendix
A.1. Inverse matrix differentiation
Let matrix G be a function of �i and �j . Expressing GG−1 = I and making use of product rule, the first and second
partial derivatives of its inverse can be expressed as follows:

)G−1
)�i

= −G−1 )G
)�i
G−1 ;

)2G−1
)�i)�j

= G−1 )G
)�i
G−1 )G

)�j
G−1 −G−1 )2G

)�i)�j
G−1 +G−1 )G

)�j
G−1 )G

)�i
G−1 .

(66)

Notably, expressions for higher derivatives can be readily obtained by means of the same process.
A.2. Piecewise Exact Method
Consider a linear second-order differential equation of the form of Eq. (6), when no fluctuations are present i.e. �i = 0.The state-space form is given by Eq. (13a) and the associated integral form reads [34]:

z0 = �(t − t0) z0(t0) + ∫

t

t0
�(t − �)V0 F(�) d� . (67)
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The discretised solution is given by Eq. (42a), where the transition matrix �(Δt) = exp [D0Δt
], only depends on

Δt, tacitly assumed sufficiently small, so that the interpolation of the forcing is satisfactory.
Furthermore the load operators �0 and �1 are given by:
�0(Δt) = [�(Δt) − L(Δt)] D−10 ;

�1(Δt) =
[

L(Δt) − I2m
]

D−10 ,
(68)

in which
L(Δt) = 1

Δt
[

�(Δt) − I2m
]

D−10 . (69)

It is noted that the systems in Eq. (13b) and Eq. (13c) can be solved in a similar manner.
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