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Abstract: Graphene-based point-of-care (PoC) and chemical sensors can be fabricated using pho-
tolithographic processes at wafer-scale. However, these approaches are known to leave polymer
residues on the graphene surface, which are difficult to remove completely. In addition, graphene
growth and transfer processes can introduce defects into the graphene layer. Both defects and resist
contamination can affect the homogeneity of graphene-based PoC sensors, leading to inconsistent
device performance and unreliable sensing. Sensor reliability is also affected by the harsh chemical
environments used for chemical functionalisation of graphene PoC sensors, which can degrade parts
of the sensor device. Therefore, a reliable, wafer-scale method of passivation, which isolates the
graphene from the rest of the device, protecting the less robust device features from any aggres-
sive chemicals, must be devised. This work covers the application of molecular vapour deposition
technology to create a dielectric passivation film that protects graphene-based biosensing devices
from harsh chemicals. We utilise a previously reported “healing effect” of Al2O3 on graphene to
reduce photoresist residue from the graphene surface and reduce the prevalence of graphene de-
fects to improve graphene device homogeneity. The improvement in device consistency allows for
more reliable, homogeneous graphene devices, that can be fabricated at wafer-scale for sensing and
biosensing applications.

Keywords: graphene; passivation; molecular vapour deposition; biosensors; aluminium oxide

1. Introduction

The demand for point-of-care (PoC) devices is increasing, with the identification
of new pathogens and increased testing for infectious diseases, such as COVID-19 [1,2].
Standard diagnostic laboratory tests require expensive equipment and trained professionals
which takes time for processing, whereas PoC tests are rapid and cheaper, providing results
in a matter of minutes in a clinical or remote setting. These low-cost devices are portable,
easy to use and store, and do not require intervention by trained professionals.

Discovered in 2004 by Andre Geim and Konstatin Novoselov, graphene is a near-
transparent two-dimensional (2D) structure that consists of hybridised sp2 carbon atoms,
arranged in a flat honeycomb-like lattice [3]. It is one of the strongest materials ever discov-
ered, with an ultimate tensile strength of 125 GPa [4–6], and impressive anti-corrosive prop-
erties [7]. Graphene is incredibly versatile and heavily researched in various fields, such as
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chemical sensors [8], biosensors [9–15], high-speed transistors [16], supercapacitors [17],
solar panel cells [18], battery technology [19], and point-of-care (PoC) devices [20,21]. Due
to its excellent electron mobility and high electron transfer rate, graphene is advantageous
for biosensors and PoC sensing devices [3,5,22]. Work has already been performed on
graphene biosensing devices for hepatitis B detection [9] and the early detection of cancer
risk [12,13]. Bioreceptors, such as antibodies, can be bound to the graphene surface, for
real-time virus detection [23]. There are numerous chemical functionalisation approaches
available for the modification of the graphene surface for biosensing applications. These
include π-π stacking of molecules with functional groups which assist biosensor cou-
pling, hydrogen bond interactions or direct covalent attachment to the graphene [24–26].
Non-covalent methods of graphene functionalisation do not alter the graphene crystalline
structure, allowing for the graphene to maintain its high electron mobility [27]. Cova-
lent methods of chemical functionalisation convert the sp2 carbon-carbon bonds in the
graphene to sp3 bonds and can be achieved using various functionalisation methods, such
as diazotization [28,29]. The functionalisation chemistries available for graphene are ex-
tremely versatile as the functionalised molecules can be used for sensing or can act as an
intermediary for biomolecular attachment [14,30].

However, whilst graphene is chemically robust, other elements of graphene biosensors,
for example, the metal electrode that interconnects to the active graphene layer, can be
degraded by the functionalization chemistry or by exposure to the test analyte fluids. These
chemical interactions can interfere with the electrical and electrochemical transduction
in the graphene sensor device and affect device reliability. Therefore, it is desirable to
confine exposure to chemical interactions to the active graphene component of the device
only, during solution-based functionalisation processes or biosensing measurements that
occur in the solution. This confinement can be achieved using a passivation layer to
provide a protective barrier between any liquid media and the metal electrodes, whilst
allowing full contact with the graphene [31]. Previous reports have shown successful
applications of passivation for graphene biosensing applications. Walters et al. utilised
screen-printed dielectric ink to coat graphene resistor devices, protecting the metal tracks in
their device and exposing the graphene for sensing [9]. Other graphene biosensing devices
have been fabricated, which utilise ALD aluminium oxide (Al2O3) deposition directly on
top of the graphene [31,32]. These protective layers must be chemically inert to most acids
and solvents, and stable under atmospheric conditions to provide adequate protection.
For biosensing applications, it is imperative that there is a window in the passivation
layer which allows the graphene surface to be exposed for effective functionalisation and
subsequent biosensing.

High-κ dielectrics are commonly used for passivation layers in semiconductor de-
vices [33–35] and solar cells [36]. Dielectrics are effective passivation materials as they are
electrically and thermally insulating and can be easily scaled up for wafer-scale fabrica-
tion. There are many methods of depositing dielectrics onto graphene, such as evapora-
tion [37,38], sputtering [39], and atomic layer deposition (ALD) [40]. Physical vapor depo-
sition (PVD) processes, such as magnetron sputtering deposition, and plasma-enhanced
chemical vapour deposition (PECVD) can damage graphene devices, forming defects and
reducing the carrier mobility [39,41,42]. ALD is a less destructive deposition technique
that uses precursor materials, that are sequentially injected into a deposition chamber, to
promote the growth of uniform and conformal materials. It creates much higher quality
high-k dielectrics than either PVD or CVD, with better thickness control and less dam-
age to the graphene, but is much slower than sputtering or evaporation [43,44]. ALD
deposition commonly require standard operating temperatures above 100 ◦C which can
reduce compatibility with certain substrates, such as metalised substrates or thin, flexible
polymers [40,43,45,46]. However, low-temperature ALD deposition processes have also
been previously reported [47]. Molecular vapour deposition (MVD) is a batch process tool
from SPTS Technologies, which utilises both ALD and MLD technologies to create high
quality uniform inorganic and organic coatings, such as metal oxides and self-assembled
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monolayers (SAMs) [48]. One benefit of MVD, over other thin-film deposition processes,
is that the standard operating temperature of MVD is lower, with processes capable of
running at 100 ◦C and below. This increases compatibility with more materials whilst using
fewer precursor resources and reducing overall usage costs whilst maintaining film quality.

In this study, we report the development of an Al2O3 passivation layer, deposited
using molecular vapour deposition, for use in graphene sensors and biosensors. Follow-
ing the Al2O3 deposition on graphene, the Al2O3 etch rate was optimised to allow for
controlled etching with minimal photoresist mask degradation. Graphene surfaces of
passivated and non-passivated graphene devices were electrochemically functionalised
with poly(1,5-diaminonaphthalene) (pDAN). The condition of the metal tracks in both
devices were then characterised. ALD Al2O3 passivation processes have also been reported
to reduce organic polymer contaminants present on the graphene surface, related to pho-
tolithographic processing [49]. In this work, spectroscopic characterisation techniques have
been used to confirm the reduction of the surface organic impurities when using the MVD
Al2O3 passivation layer. Al2O3 passivation using MVD is shown to produce reproducible
graphene biosensors for fast and reliable point-of-care diagnostics in liquid media.

2. Materials and Methods
2.1. Materials

Chemical vapour deposited (CVD) monolayer graphene grown on Cu substrate and
transferred on 300 nm thermal SiO2/525 µm Si wafers using PMMA-based wet transfer
were supplied by Graphenea Inc (San Sebastián, Spain) [50]. Microposit LOR 3A Photoresist
and Microposit S1805 G2 positive photoresist were supplied by DOW Electronics Materials
(Marlborough, MA, USA). The 2” diameter chromium (Cr) and palladium (Pd) PVD targets
were obtained from Kurt J Lesker (St. Leonards-on-Sea, East Sussex, UK). TechniStrip
NI555, AZ nLof 2070 photoresist, AZ 726 MIF Developer, and 25% TMAH etchant were
supplied by MicroChemicals GmbH (Ulm, Germany). Trimethylaluminium (TMA) precur-
sor is supplied by Pegasus Chemicals Ltd. (Sandycroft, UK). The 1,5-diaminonaphthalene
(DAN) and 95–98% sulfuric acid (H2SO4) solution was supplied by Sigma-Aldrich (Gilling-
ham, Dorset, UK). Type II DI water with the ASTM D1193 standard and a resistance
of 18 MΩ.cm was produced using a Merck Millipore Elix 3 water purification system
(Darmstadt, Germany).

2.2. Characterisation Methods

The Al2O3 film thickness was measured using a J.A. Woollam M-2000 spectroscopic
ellipsometer (Lincoln, NE, USA) at various locations at a 65–75◦ angle, in steps of 5◦.
Once measured, using CompleteEASE software (version 5.23, J.A. Woollam, Lincoln, NE,
USA), the data are fitted with a Cauchy model. The surface morphology was characterised
using a Keyence VHX-950F Series microscope (Milton Keynes, UK), a Hitachi S4800 SEM
(Maidenhead, UK), and a JPK NanoWizard II AFM (Berlin, Germany). SEM and EDX
images were taken on the Hitachi S4800 (Maidenhead, UK) with an acceleration of 10 kV
and an emission current of 10 µA. The AC tapping mode atomic force microscopy (AFM)
images were taken using NCHV AFM probes, supplied by Bruker Ltd. (Coventry, UK),
with a resonant frequency, spring constant, and tip radius of 320 kHz, 40 N/m, and
8 nm, respectively. The AFM data were analysed using Gwyddion software (version 2.57,
Czech Metrology Institute, Jihlava, Czechia). Optical microscope images were taken
with a Keyence VHX-950F Series Microscope (Milton Keynes, UK). Raman spectra were
acquired using a Renishaw Qontor inVia Raman microscope (Wotton-under-Edge, UK)
with a 532 nm laser at 10 mW with a × 100 objective lens, and the data were analysed
using a custom MATLAB script (version R2020b, MathWorks, Portola Valley, CA, USA).
X-ray photoelectron spectroscopy (XPS) was performed using a Kratos Axis Supra XPS
(Manchester, UK) with an Al Kα monochromatic source, with an emission current of
15 mA and a pass energy of 20 eV. Where applicable, adventitious carbon was etched off
the surface using a 5 keV Ar gas cluster ion source (GCIS) at 45 nA for 100 s during the
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XPS measurement. Each sample had a minimum of three measurements performed to
ensure that the resultant scans were an accurate representation of the graphene surface.
Data analyses from XPS measurements were performed using CasaXPS software (version
2.3.23rev1.1K, Casa Software Ltd.).

2.3. Graphene Resistive Sensor Device Fabrication and MVD Passivation Layer Process

The CVD graphene wafer was annealed at 550 ◦C for 10 min under a vacuum with
50 sccm Ar flow, using a Jiplec Jetfirst 200 Rapid Thermal Annealing system (ECM USA
Inc., Pleasant Prairie, WI, USA) before photolithographic patterning using a bi-layer resist
process (LOR 3A/S1805) (Figure 1B), by the same parameters as reported in our previous
work [9]. Once the photoresist had been patterned, the exposed graphene was then etched
with O2 plasma, at 80 W power, and 7 × 10−1 mBar pressure, for 5 min using a Quorum
Emitech K1050X RF Plasma Asher (Quorum Technologies Ltd., Sussex, UK), before the
remaining photoresist (used to protect the graphene during plasma etching) was removed
by submerging the wafer in DMSO, warmed to 80 ◦C, for 1 h, revealing the graphene
channels (Figure 1C). Once the photoresist was removed, a lithography process using the
same resist was reapplied, to expose the ends of the graphene channels to the stacked
30 nm Cr/200 nm Pd metal contacts (Figure 1D). The Cr/Pd metal stack was deposited
using magnetron sputtering in a Kurt J Lesker PVD75 system (St. Leonards-on-Sea, East
Sussex, UK). Following metal deposition, the photoresist was removed using a photoresist
lift-off process with DMSO at 80 ◦C, for 2 h (Figure 1E). Once lift-off was completed, the
graphene devices were coated with a ~50 nm layer of Al2O3 deposited at 100 ◦C using TMA
and water vapour precursors (Figure 1F) using an SPTS MVD300 system. The pressures
used for the TMA and water vapour are 1.3 and 1.0 torr, respectively. With a blank Si wafer,
the Al2O3 thickness and uniformity, before and after MVD deposition, was characterised
using ellipsometry (Figure 2).
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After MVD deposition, a negative photoresist etch mask was patterned, exposing 
windows for the graphene and device metal contacts (Figure 1G). Once the photoresist 
mask is patterned, the devices were immersed in tetramethylammonium hydroxide 
(TMAH) etchant to remove the exposed Al2O3. The optimised TMAH concentration and 
resulting etch rate are discussed later in this study. Once the Al2O3 is etched, with the 
graphene exposed, the photoresist mask was subsequently removed by immersing the 

Figure 1. Graphene resistive sensor device fabrication process schematic. (A) A graphene-on-SiO2/Si substrate;
(B) application of the photoresist etch mask; (C) after etching the graphene with O2 plasma and subsequent photore-
sist mask removal; (D) coating and patterning photoresist for metal electrodes; (E) after depositing 30 nm Cr/200 nm
Pd and lift-off procedure; (F) depositing 50 nm Al2O3 with MVD deposition technique; followed by (G) creating the
negative resist etch mask to selectively etch the Al2O3 to expose the graphene and metal contacts; (H) Al2O3 is etched with
1.25% TMAH and the photoresist mask is removed; (I) cross-section of the passivated graphene resistor device with liquid
media contacting the graphene, and (J) passivated graphene resistive sensor device inserted into a custom connector.

After MVD deposition, a negative photoresist etch mask was patterned, exposing
windows for the graphene and device metal contacts (Figure 1G). Once the photoresist mask
is patterned, the devices were immersed in tetramethylammonium hydroxide (TMAH)
etchant to remove the exposed Al2O3. The optimised TMAH concentration and resulting
etch rate are discussed later in this study. Once the Al2O3 is etched, with the graphene
exposed, the photoresist mask was subsequently removed by immersing the wafer in NI555
resist remover at 80 ◦C for 1 h, revealing the graphene devices (Figure 1H). A cross-section
of the graphene device can be seen in Figure 1I. Once the graphene sensors are fabricated,
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the wafers were diced so that the devices can fit into a custom electrical connector, supplied
by Biovici Ltd. (Swansea, UK) (Figure 1J), described in the previous work [9].
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2.4. The pDAN Functionalisation Process

The graphene channels in the devices are modified by electrochemically functional-
ising the surface with DAN, electropolymerising it to form pDAN. These processes were
performed using an Autolab PGSTAT302N (Metrohm Ltd., Tetbury, UK) in a standard three-
electrode cell. The pDAN functionalisation process utilises 0.25 M sulfuric acid (H2SO4)
and 10 mM DAN in a three-electrode system, with an Ag/AgCl reference electrode and a
Pt wire serving as the counter electrode. The working electrode is the graphene chip, with
the graphene immersed in the H2SO4/DAN solution. After setting up the three-electrode
system, cyclic voltammetry (CV) scans were performed for five cycles at 50 mV/s from
−0.9 to 0.6 V.

3. Results and Discussion
3.1. Aluminium Oxide (Al2O3) TMAH Etch Optimisation

For sensing applications, the sensor element must be exposed through a “window” in
the passivation layer. Al2O3 can be etched to form a window in the layer using a variety of
dry [51] and wet [52] chemical etching methods. Dry etch methods, have a risk of etching
through the Al2O3 layer and damaging the graphene channels underneath [53]. Therefore,
wet etching is the preferred method to remove the Al2O3. Al2O3 can be removed in either
highly concentrated acids or bases [52,54]. However, utilising highly concentrated acids
will likely result in oxidising the graphene, reducing the graphene’s electrical conductiv-
ity [55–57]. TMAH is a strong base that has been used to etch aluminium [54] and can also
be used to etch away Al2O3 [58].

For wet chemical etching, AZ nLof 2070 was used as the photoresist mask as it can
provide a thick resist layer for satisfactory selective protection of areas of the Al2O3 layer.
Since photoresist is partially soluble in TMAH, an optimised concentration was required to
greatly reduce the etch rate of the photoresist mask. In addition, 25% TMAH was diluted
down with DI water to concentrations of 1.25, 1.67, and 2.5%. Al2O3-coated Si pieces
were measured using ellipsometry before being patterned with nLof 2070 photoresist. The
samples were immersed in different TMAH concentrations for a total of 15 min at room
temperature (21 ◦C) and were measured periodically via ellipsometry to determine the
overall etch rate (Figure 3). A majority of the photoresist masks were dissolved after being
immersed in the 2.5 and 167% TMAH etchants. However, 1.25% TMAH had a minimal
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effect on the photoresist mask and was intact. The etch rate was roughly similar amongst
all the tested TMAH concentrations, with a small variation due to error, and 1.25% TMAH
having an etch rate of 2.81 nm/min. This is due to the fact that the etch rate is proportional
to the etchant temperature and the TMAH concentration has little effect on Al2O3 etching
at 21 ◦C [58–60]. Therefore, lower concentrations of TMAH can be used to etch Al2O3
without degrading the photoresist mask, whilst maintaining the same etch rate.
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in Figure 3b. (d) Average etch rate of Al2O3 in TMAH at 21 ◦C, with respect to the TMAH concentration.

3.2. Graphene Device Characterisation
3.2.1. Surface Morphology—SEM and Energy-Dispersive X-ray Spectroscopy (EDX)

SEM images were performed on the non-passivated (Figure 4a) and passivated
(Figure 4d) graphene devices to show the passivation across the graphene channel, with
EDX mapping images displaying the elemental composition layout (Figure 4b,e) for each
SEM image. The non-passivated devices spectrum show peaks for carbon Kα at 0.27 eV,
oxygen Kα at 0.53 eV, silicon Kα at 1.75 eV [61], and the largest palladium Lα peak at
2.85 eV [62]. Once passivated, there is an additional peak at 1.47 eV for the aluminium [63]
and the intensity of the oxygen peak increases due to the additional oxygen found in the
Al2O3 passivation coating. These EDX results indicate that the Al2O3 MVD process has
coated the entire graphene device and that the wet etching process to create the windows
for the exposed graphene was successful.
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the G-peak and 2D-peak, respectively, during each step of the graphene device fabrication 
process. 

The ratio between the D-peak and G-peak intensities (ID/IG) can be used to quantify 
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Figure 4. SEM and EDX images of non-passivated and passivated graphene devices. Colours used for EDX are blue (silicon),
green (oxygen), yellow (palladium), and red (aluminium). (a) SEM image of a non-passivated device, with (b) EDX mapping
image and (c) EDX spectrum. (d) SEM image of a passivated device, with (e) EDX mapping image and (f) EDX spectrum.

3.2.2. Surface Morphology—Atomic Force Microscopy (AFM)

The surfaces of graphene channels in non-passivated and passivated devices were
characterised for their topology using AFM. The surface roughness of the graphene chan-
nels in the non-passivated and passivated graphene devices (Figure 5) shows a clear change
in the surface topography. The root mean square (RMS) roughness values were obtained
from multiple locations on the surface. The RMS roughness of the non-passivated graphene
device was 1.21 nm (Figure 5a). After the passivation procedure, the RMS roughness de-
creases to 0.89 nm (Figure 5b). Additionally, the size distribution of the photoresist residues
present on the graphene surface substantially decreases, with a significant decrease of the
larger globules of resist after passivation.
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device; and (b) a passivated graphene device, with Al2O3 deposited by MVD.

3.2.3. Surface Chemistry Characterisation—Raman Spectroscopy

Raman spectroscopy was measured on unprocessed graphene (“Blank”); graphene
after device fabrication at two stages, before Al2O3 MVD deposition (“Processed”) and
after Al2O3 MVD passivation (“Passivated”). Figure 6a and b show the Raman spectra for
the G-peak and 2D-peak, respectively, during each step of the graphene device fabrication
process.
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2D-peak from 2550 to 2800 cm−1, (c) ID/IG against count histogram; (d) and G- and 2D-peak position shift.

The ratio between the D-peak and G-peak intensities (ID/IG) can be used to quantify
the ratio between sp3 and sp2 bonds, indicative of structural defects in graphene [64–66].
Figure 6c plots the ID/IG of Blank, Processed, and Passivated graphene in a histogram.
The ID/IG of the blank graphene averages 0.057 with a large majority of measurements
in the 0.03 to 0.06 range. These defects may be due to PMMA residue remaining on the
surface after the graphene transfer. After graphene device fabrication, but before MVD
deposition, the average ID/IG increased to 0.062 with the range of many of the ratios being
much larger, between 0.03 to 0.09. As explained in Figure 1, the device fabrication process
requires patterning UV-sensitive photoresist to create both the graphene channels and
the metal contacts. As a result, there can be residual photoresist residue present on the
graphene surface after processing [67]. For biosensing purposes, this negatively impacts
device fabrication consistency as it reduces the available graphene surface area and causes
electron scattering, hindering the graphene electron mobility [68–70]. The presence of trace
photoresist residue results in a wider range of ID/IG values and a higher average ID/IG.
Once the graphene is encapsulated with the MVD Al2O3 layer and the graphene windows
have been etched out, the graphene is once again characterised using Raman spectroscopy.
The number of defects significantly decreased with the ID/IG being significantly lower,
at 0.015. The range is also greatly reduced, with the majority of the ID/IG readings being
near the 0.0 to 0.02 range. The decrease in the ID/IG means that a resist removal effect
had taken place on the graphene surface, once it has been in contact with the Al2O3. In
a publication by Do Van Lam et al., it has been reported that ALD Al2O3 has various
types of “healing effects” in CVD graphene, such as resist residue, defects, and grain
boundaries. These residue and defect areas provide nucleation sites for the ALD Al2O3
to grow on [40,49]. As the TMA/H2O cycles require binding to surface -OH functional
groups, any surface contaminants providing those hydroxyl groups can be used by the
MVD Al2O3 growth process [40]. After performing the TMAH etch, creating the graphene
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window in the passivation layer, any surface organic contaminants that were bound to the
graphene surface may have been removed along with the Al2O3, which is consistent with
a drop in the ID/IG.

As seen in Figure 6d, the presence of photoresist residue in noticeable blue shifts
in the G- and 2D-peaks. It has been reported that the presence of charged impurities,
such as photoresist, can lead to a change in the graphene charge distribution, affecting
the Raman fingerprint and resulting in Raman peak shifts [71]. It is known that graphene
on SiO2 dielectric is heavily p-doped [72] and the presence of the trace photoresist, after
graphene device fabrication, adds additional strain on the graphene, seen by the shift in its
Raman spectrum. With the presence of the Al2O3 on the graphene surface, this stress is
relieved and an inherent n-doping effect takes place, causing a redshift in the Raman peaks
(Figure 6d) [71,73–76].

3.2.4. Surface Chemistry Characterisation—X-ray Photoelectron Spectroscopy (XPS)

The presence of sp3-bonded carbon and other non-carbon elements on the graphene
surface signifies the presence of defects and photoresist residue contamination, as pristine
graphene is purely sp2 carbon. Wide spectra of the graphene were measured at each
major step of the fabrication process, as shown in Figure 7a, showing the O 1s, C 1s, and
Si 2p peaks at ~532, ~284, and ~103 eV [77]. A wide spectrum of the Al2O3 deposition,
before etching, is also shown with Al 2p peaks at ~75 eV [77] and the surface was cleaned
using an Ar GCIS. The wide spectra do not show the nitrogen peak due to how little
nitrogen is present on the graphene surface except for a small visible peak in the “Processed”
spectra, highlighted with a black circle. The nitrogen peak, at ~400 eV, is present in the XPS
spectra due to the polyaliphatic imide copolymer found in the LOR 3A photoresist, making
up approximately 1–20% of the photoresist (Figure 7b) [77–79]. After passivation, this
nitrogen peak is reduced by 50%, indicating that the Al2O3 bound itself to the photoresist
during the MVD growth stage and the photoresist was subsequently removed along with
the Al2O3 during the wet etching stage. The atomic concentration of all the elements found
in each spectrum are displayed in Table 1.

Table 1. Atomic concentrations of carbon, oxygen, silicon, nitrogen, and aluminium present on the
graphene surface for each graphene device fabrication process step, unprocessed (“Blank”), before
MVD deposition (“Processed”) and after creating the MVD window (“Passivated”), obtained through
X-ray photoelectron spectroscopy.

Sample Carbon (%) Oxygen (%) Silicon (%) Nitrogen (%) Aluminium (%)

Blank 23.94 ± 0.82% 49.40 ± 0.70% 26.65 ± 0.64% N/A N/A
Processed 38.47 ± 1.23% 39.13 ± 1.34% 21.03 ± 0.96% 1.38 ± 1.17% N/A
Passivated 19.33 ± 1.12% 52.54 ± 0.76% 26.94 ± 0.61% 0.65 ± 0.88% 0.54 ± 0.34%

The carbon 1s spectra for blank, processed, and passivated devices are displayed in
Figure 7c. There is a very minimal photoresist residue remaining on the blank graphene
surface from the PMMA-based wet transfer process. This is suggested by the large sp2

carbon peak at 284 eV, which represents the C=C component in graphene [80], whilst
the additional peaks representative of sp3 carbon, C-O, and C=O at 284.79, 285.48, and
286.12 eV, respectively, are minimal, with the calculated area of sp2 carbon representing
94.44% of the total area of the spectra [30,81]. However, after processing the graphene into
graphene devices, the presence of C-C sp3, C-O, and C=O peaks increase, with the formation
of additional C-N [27,82], C-O-C, and O-C=O bonds at 285.42, 286.73, and 290.35 eV [30,81],
respectively. The peak area of sp2 carbon also greatly decreases, only amounting to 57.16%
of the total area of the carbon spectra. The presence of the C-N bond is due to the previously
mentioned imide groups present on the graphene surface. Photoresists contain lots of C=O
and C-OH molecules, as they are made up of resins and epoxies. The TMA precursor can
bind to these C-O and C=O bonds, forming Al2O3 on top of the photoresist [40,83]. Al2O3
can also bind to defects present in the graphene hexagonal lattice, due to the previously
discussed “healing effect” [49]. As the Al2O3 is removed, organic contaminants, such as
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photoresist, that were present on the graphene are also removed. However, the photoresist
may not be removed completely, as indicated by the persistent photoresist-related peaks,
such as the C-O, C-O-C, and C=O peaks. There is a noticeable increase of sp2 carbon
peak area, compared to the “Processed” spectra. As previously mentioned, sp2 carbon
only covers 57.16% of the total area in the “Processed” spectra and the area of sp2 carbon
covers 70.17% of the total area of the Passivated” spectra, suggesting that the presence
of the photoresist residue has decreased. Additionally, comparing the ratio of carbon to
nitrogen in Table 1 between the “Processed” and “Passivated” results, suggests that there is
a decreased presence of nitrogen-based compounds, normally found in photoresist, on the
graphene surface. Figure 7d shows the trace aluminium present on the graphene surface
after etching. This is largely due to traces of Al2O3 binding to the graphene defects and
grain boundaries. The binding of Al2O3 chemically electron dopes the graphene, improving
the graphene electron carrier density [49,84]. As seen in Figure 6c, the Al2O3-graphene
binding improves the graphene material quality, reducing the number of defects present,
and improving performance.
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both the non-passivated and passivated CVD graphene devices at a scan rate of 50 mV/s, 
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Figure 7. XPS spectra of blank (red), processed (blue), deposited Al2O3 (green), and passivated (yellow) graphene devices.
(a) Wide spectra showing the O 1s, C 1s, Si 2p, and Al 2p peaks, with a black circle showing the small N 1s peak present in
the “Processed” spectra; (b) zoomed-in view of the N 1s peak between the three different spectra; (c) C 1s spectra of blank,
processed, and passivated graphene, showing the changes in sp2 carbon during each process step; and (d) Al 2p spectra
showing that there is still a trace of Al2O3 present.

3.2.5. The pDAN Electrochemical Functionalisation

Certain functionalisation processes require the utilisation of aggressive chemicals,
such as sulphuric acid, for pDAN functionalisation, and a hydrogen peroxide and iron (II)
sulphate mixture, for APTES functionalisation [14,30]. If left unprotected, these chemicals
can oxidise the metal contacts which can begin to delaminate, resulting in the loss of elec-
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trical contact with the graphene. The electropolymerisation of DAN creates a polymer film
across the graphene surface, which introduces -NH2 functional groups on the graphene
surface, allowing for antibodies to bind to the amine groups for sensing purposes. It has
been reported that pDAN is very robust, capable of remaining on the graphene surfaces
after multiple subsequent washes due to strong Van der walls forces [27]. The electrochem-
ical polymerisation process of polymerising DAN through CV [30,85] uses dilute H2SO4 as
the electrolyte for covalently binding the monomers.

Moreover, 10 mM of DAN was mixed via sonication with 0.25 M H2SO4 solution,
diluted down from 95–98% (~18 M) concentrated H2SO4, and was electropolymerised onto
both the non-passivated and passivated CVD graphene devices at a scan rate of 50 mV/s,
between −0.6 and 0.9 V, for five cycles, with the CV graphs shown in Figure 8. Five CV
cycles were chosen to produce a thin layer of pDAN across the graphene surface, chemically
modifying the graphene with -NH2 functional groups for further bio-functionalisation.
The position of the oxidation and reduction peaks during electropolymerisation are similar
between the non-passivated and passivated CV graphs, located at 0.075 and −0.39 V,
0.071 and −0.38 V, respectively. A small, broad oxidation peak is present at 0.32 V for
the passivated graphene device, which represents the irreversible oxidation of the DAN
monomers during the polymerisation step [86].
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Figure 8. Cyclic voltammetry curves of electropolymerising 10 mM 1,5-diaminonaphthalene with 0.25 M H2SO4 for five
cycles, with a working electrode voltage ranging from −0.6 to 0.9 V, and a scan rate of 50 mV/s. The electropolymerisation
was performed on (a) non-passivated and (b) Al2O3-passivated graphene devices.

It has been reported that the increase in current density, across the working electrode,
after each cycle is evident that the DAN is polymerising on top of the CVD graphene [30].
This is evident in the passivated graphene devices CV scans, where the oxidation peak cur-
rent initially begins at 8.92 µA before increasing to 75.71 µA after the fifth cycle. However,
the oxidation and reduction peak positions and currents are similar across each cycle for
the non-passivated graphene devices, with only small changes occurring. The graphene is
still being polymerised, as evident by the changes in the colour of the graphene channels
in Figure 9b. Additionally, the height of the anodic and cathodic peaks currents is greater
in the non-passivated device compared to the passivated device. A significant portion of
the current is a result of the highly conductive metal tracks contacting the DAN/H2SO4
solution, increasing the electron transfer in the electrochemical reaction [87]. The cathodic
and anodic peak currents for the non-passivated and passivated graphene devices are 1.34
and −3.00 mA, 0.076 and −0.19 mA, respectively.



Nanomaterials 2021, 11, 2121 12 of 16Nanomaterials 2021, 11, x FOR PEER REVIEW 13 of 17 
 

 

 
Figure 9. Optical microscope images of graphene devices before and after pDAN functionalisation. 
(a) A zoomed-in optical microscope image of a non-passivated graphene device before pDAN elec-
tropolymerisation. A zoomed-in optical microscope image of (b) a non-passivated device and (c) an 
Al2O3-passivated device, that has undergone five cycle pDAN electropolymerisation using the 
DAN/H2SO4 solution. (d) A zoomed-in optical microscope image of a non-passivated graphene de-
vice that underwent a 20 cycle pDAN electropolymerisation process. 

4. Conclusions 
We have demonstrated a fabrication process to improve the reliability of graphene 

biosensing devices using a novel MVD dielectric deposition passivation layer for gra-
phene sensor devices, protecting the metal electrodes from aggressive chemicals. The pro-
cess aids in cleaning and restoring the graphene surface, removing residual resist, and 
improving reproducibility and device consistency, an essential key development aspect 
for graphene-based biosensors. Raman analysis demonstrated an increase in a large range 
of defects present on the graphene surface after graphene lithographic device processing, 
which was subsequently greatly reduced and homogenised after Al2O3 deposition, reju-
venating the graphene. This can be seen from the XPS data, where the sp2 carbon compo-
nent increases from 57.16 to 70.17%, showing a decrease in non-graphitic carbon present 
on the graphene surface, and a decrease in the nitrogen concentration of 50%, associated 
with reduced quantities of surface residue resist. A reliable Al2O3 wet etching process has 
been created and optimised, capable of patterning Al2O3 with a photoresist mask without 
negatively affecting the graphene substrate or the integrity of the Al2O3 layer. This im-
provement in graphene device consistency and the effective protection, that the Al2O3 pas-
sivation layer provides, lays the foundation for much more reliable graphene biosensing 
platforms, which can be integrated for commercial applications and point-of-care testing. 

Author Contributions: Conceptualization, M.M.A., G.B., J.J.M. and O.J.G.; methodology, M.M.A., 
J.J.M., E.D.A., K.R. and G.B.; validation, M.M.A., G.B. and O.J.G.; formal analysis, M.M.A., E.D.A. 
and C.A.J.; investigation, M.M.A., J.J.M., C.A.J., E.D.A. and K.R.; resources, M.M.A., K.R. and O.J.G.; 
writing—original draft preparation, M.M.A. and E.D.A.; writing—review and editing, M.M.A., 
J.J.M., G.B., K.R., E.D.A., S.S. and O.J.G.; visualization, M.M.A. and E.D.A.; supervision, G.B., S.S. 
and O.J.G.; project administration, O.J.G.; funding acquisition, O.J.G. All authors have read and 
agreed to the published version of the manuscript. 

Figure 9. Optical microscope images of graphene devices before and after pDAN functionalisation.
(a) A zoomed-in optical microscope image of a non-passivated graphene device before pDAN
electropolymerisation. A zoomed-in optical microscope image of (b) a non-passivated device and
(c) an Al2O3-passivated device, that has undergone five cycle pDAN electropolymerisation using
the DAN/H2SO4 solution. (d) A zoomed-in optical microscope image of a non-passivated graphene
device that underwent a 20 cycle pDAN electropolymerisation process.

After five cycles of electropolymerisation, the non-passivated graphene devices de-
veloped damage along the metal tracks which can be seen under an optical microscope.
Areas of peeling metal are visible and are marked with red arrows in Figure 9b. For the
passivated devices, the metal tracks are completely intact, with no visible degradation,
signifying that the passivation process successfully protected the graphene (Figure 9c).
These are compared to a non-passivated graphene device’s original state before passivation
and functionalisation (Figure 9a). To determine the extent of potential damage to metal,
a non-passivated graphene device underwent a 20 CV cycle electropolymerisation pro-
cess to imitate the need for a thicker pDAN layer for biosensing purposes [30,88]. Seen
in Figure 9d, after 20 electropolymerisation cycles, the metal tracks were completely oxi-
dised and have delaminated from the surface. The metal tracks are no longer in contact
with the graphene, disconnecting the graphene from the rest of the device.

4. Conclusions

We have demonstrated a fabrication process to improve the reliability of graphene
biosensing devices using a novel MVD dielectric deposition passivation layer for graphene
sensor devices, protecting the metal electrodes from aggressive chemicals. The process aids
in cleaning and restoring the graphene surface, removing residual resist, and improving
reproducibility and device consistency, an essential key development aspect for graphene-
based biosensors. Raman analysis demonstrated an increase in a large range of defects
present on the graphene surface after graphene lithographic device processing, which was
subsequently greatly reduced and homogenised after Al2O3 deposition, rejuvenating the
graphene. This can be seen from the XPS data, where the sp2 carbon component increases
from 57.16 to 70.17%, showing a decrease in non-graphitic carbon present on the graphene
surface, and a decrease in the nitrogen concentration of 50%, associated with reduced
quantities of surface residue resist. A reliable Al2O3 wet etching process has been created
and optimised, capable of patterning Al2O3 with a photoresist mask without negatively
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affecting the graphene substrate or the integrity of the Al2O3 layer. This improvement
in graphene device consistency and the effective protection, that the Al2O3 passivation
layer provides, lays the foundation for much more reliable graphene biosensing platforms,
which can be integrated for commercial applications and point-of-care testing.
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