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y metals in motorway adjoined aqueous environments have increased at an alarming

over recent years. This increase has been primarily attributed to anthropogenic activities

 as the increase of motor vehicle use. Current remediation techniques, such as balancing

s have the potential to leave toxic residue with the associated removal costs often proving

ibitive. In this study biochar and wood ash amended biochar were evaluated as

diators of inorganic vehicular pollutants found in motorway runoff, specifically Pb, Cu, Zn

Cd. Biochar from European larch (Larix decidua (L.) Karst.) was produced via fas

lysis-gasification (485–530 °C for 90 s) and amended with wood ash post pyrolysis

ine larch biochar (BC), larch biochar cold mixed with wood ash (WA) and larch biocha

red with wood ash (WAS) were studied to evaluate metal immobilisation mechanisms and

imum removal capacities. This study demonstrates that the amendment of biochar with

 ash increases Pb, Cu, Zn, and Cd immobilisation by an order of magnitude compared

. The addition of wood ash increases pH whilst adding minerals causing precipitation

ipitation and ion exchange dominate metal immobilization and were not correlated to

ce area. Sustainability of feedstock, low feedstock / production costs and maximum

sured contaminant removal (61.5 mg/g, 38.9 mg/g, 12.1 mg/g and 10.2 mg/g for Pb, Cu

nd Cd respectively) indicate that wood ash amended biochar is a viable option to

obilise Pb, Cu, Zn and Cd from motorway runoff.   
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ords 

har, pH, precipitation, wood ash, heavy metals, runoff 

troduction 

y metals in aqueous environments have increased at an alarming rate over recent years

 increase has been primarily attributed to anthropogenic activities such as mining, waste

sal, industrial activities, agriculture, and the increase of motor vehicles use. As o

ember 2020 there are ~39 million vehicles registered in the UK, representing an increase

5 million vehicles in 10 years (Gov.uk, 2018). This escalating increase in registered

les and the resultant increase in annual average daily traffic has been seen to directly

late with an increase in pollutant input (Hwang et al., 2016). Such an increase in vehicles

naturally necessitates a growth in impermeable urban roads, pavements and motorways

ghly developed areas these surfaces can account for up to 70% of the total surface

ting an increase in the volume and velocity of runoff  (Budai and Clement, 2011; Ladislas

., 2015; Hwang et al., 2016). This runoff washes away contaminants from anthropogenic

ces, such as motor vehicles, carrying the pollutants into receiving waterbodies (Ladislas

., 2015). The combination of the growth of motor vehicle numbers and the increase in
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ntaminants into the UK’s environment (Ladislas et al., 2015).  

sources of vehicle runoff pollution are reasonably well understood and generally occu

gh abrasive forces or leaks and include tyre wear, brake wear and motor oil. Tyre wea

cognised primarily as a source for zinc (Zn), and to a lesser extent cadmium (Cd), lead

 and copper (Cu) (Legret and Pagotto, 1999; Budai and Clement, 2011). Pollutants

sed through tyre wear, unlike exhaust emissions, are collected entirely on the road

ce, around 90% of which is captured by runoff, and subsequently may leach toxic

pounds  (Budai and Clement, 2011; Markiewicz et al., 2017). Each tyre releases ~1  kg o

s during its lifespan of 50,000 km (Legret and Pagotto, 1999; Markiewicz et al., 2017)

 wear leads to ~1,327,000 tonnes of rubber being released in Europe annually (Wagne

., 2018). As a consequence Zn has been measured at levels as high as 240 ppm in road

 and as high as 354 µg / L in road runoff (Legret and Pagotto, 1999; Apeagyei et al., 2011)

e wear is recognised as a primary source of Cu; it has also been shown to contain

ficant quantities of inorganic contaminants such as Cd, Pb, and Zn (Legret and Pagotto

; Budai and Clement, 2011). Hwang et al (2016) estimate that around 2400 tonnes of Cu

released by brake wear in Europe during 2000. This has, in part, led to concentrations o

nd Pb being as high as 105 ppm and 73 ppm, respectively in road dust and Cu, Pb, and

oncentrations in runoff being as high as 45 µg / L, 58 µg / L, and 2.7 µg / L, respectively

ret and Pagotto, 1999; Farm, 2002). Motor oil is also recognised as a contributor to

anic pollution including Zn and to a lesser degree Pb and Cu (Budai and Clement, 2011)

nic pollutants from sources such as tyre wear and motor oil are also of concern

kiewicz et al., 2017). In addition to these sources exhaust emissions are a significan

ce of organic particulate matter (PM) such as polycyclic aromatic hydrocarbons (PAHs

inorganic PM including metals (Agarwal, 2007).  

primary inorganic pollutants found in motorway runoff can also be found in other polluted

rs such as mine water, tailing ponds and industrial effluent in rivers. In these environments
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doned metal mines are polluting waters with Pb, Cu and Zn at concentrations regularly

 1000 µg / L (Todd et al., 2021); metal pollution in mine tailing ponds have been recorded

vels of 150 ppm (Pb), 230 ppm (Cu) and 146 ppm (Zn) (Pagnanelli et al., 2004); and

nsive industrial Pb, Cu, Zn, and Cd river pollution has been measured with Zn as high as

8 µg / L (Saha et al., 2017). 

y metal pollutants entering waterways as a result of motor vehicles can lead to freshwate

adation, threaten local plants and organisms, and negatively affect human health.  Where

l levels accumulate and increase beyond acceptable levels they become toxic and as a

lt a significant environmental hazard for invertebrates and fish (Yi et al., 2011). Humans

xposed to these heavy metals via the food chain and freshwater leisure activities. This

lead to significant adverse health consequences such as reduced neurological function

ced liver function, reduced fertility, kidney damage, lung damage, osteoporosis and

ality (Morais et al., 2012).  

ugh the impact of motorway runoff is recognised, current Sustainable Drainage Systems

S) that attempt to lessen the consequences of vehicle pollution have the unintended

equence of filling with toxic residues with high removal costs. Presently attempts to

ate heavy metals primarily involve sedimentation, the subsequent accumulation of which

 require expensive treatment and extraction. SuDS such as balancing ponds (wet and

 sedimentation tanks, grassed surface water channels and constructed wetlands capture

ent mitigating the flow of pollutants into water ways (Farm, 2002; Meland, 2016)

ugh these methods initially reduce the influx of pollutants into freshwater systems, as

ent levels increase with age, remediation effectiveness reduces (Farm, 2002). The

val of this toxic sediment involves dredging which is prohibitively expensive (Meland
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 waters and industrially polluted rivers, that could overcome the shortcomings and

nse of current runoff sedimentation techniques. This study sets out to explore biocha

wood ash amended biochar in terms of the immobilisation of four key inorganic

aminants found in motorway runoff: Pb, Cu, Zn and Cd. Engineered biochar is defined as

arbon rich product obtained from the thermal decomposition of organic material unde

en limited conditions (pyrolysis) at temperatures generally under 900°C (Lehmann and

ph, 2009). The use of biochar in the immobilisation of metals in aqueous media has been

lighted by a number of researchers with a view to remediate polluted waters (Bandara e

020; Cairns et al., 2020). Its  attractiveness is  enhanced due to its relatively low cost

ability and sustainability (Ahmad et al., 2014; Wang et al., 2018). Pristine biocha

obilises inorganic contaminants via six key mechanisms: Cation exchange, change in

iation with subsequent precipitation, cation-π interactions, functional group complexation

rostatic attraction, and reduction (Mohan et al., 2011; Ahmad et al., 2014; Bandara et al.

). 

d ash, a by-product of biomass power plants, can be used as an amendment to biocha

the potential to improve biochar’s immobilisation of inorganic contaminants due to its

ral fraction and pH buffering capacity. The major components of wood ash have been

rted as Ca, K, Mg, S, P and Si (Cerrato et al., 2016). Ca, K and Mg play an important role

 exchange. The presence of P and Si can induce the formation of phosphates, silicates

siloxane which can be important in forming precipitates. The chemical constituents o

 ash including alkali and alkaline earth metals, oxides and carbonates also have the

ntial to cause the amended biochar to increase and buffer its environments pH inducing

ges in metal speciation that are favourable for the immobilisation of cationic metals such

b, Cu, Zn and Cd (Cerrato et al., 2016; Fidel et al., 2017). Cairns et al. (2020) demonstrate

the addition of wood ash as an amendment to pristine biochar can increase immobilisationJo
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iving immobilisation mechanisms remained elusive.  

primary aim of this study is to ascertain if pristine larch biochar and / or wood ash amended

ar is effective as an alternative green remediator of inorganic vehicular pollutants found

otorway runoff specifically Pb, Cu, Zn and Cd. Such remediation would also be relevan

ine waters and industrially polluted rivers. The effect of biochar amendments on

obilisation capacities and mechanisms were investigated to understand if scaling up is

sible. 

ethods: 

Biochar production and wood ash amendment 

pean larch (Larix decidua (L.) Karst.) wood chips were pyrolyzed in a Pyrocal BigChar

 pyrolysis-gasification kiln at a temperature of 485-530°C, with a retention time of ~90s

biochar was granulated to <3mm with a Tria G1 granulator.  Wood ash, originating from

ewable energy plant in the UK, was added to the biochar post pyrolysis via two methods

the first method the wood ash was mixed at a ratio of 1:1 with biochar that had been

ed to cool to ambient temperature in a cement mixer for 15 minutes. For the second

od, it was mixed with the freshly pyrolyzed, still hot biochar at a ratio of 1:1 for 15 minutes

cement mixer to sinter the materials. Wood ash was chosen as an amendment due to its

ral fraction (including Ca, K, Mg, S, P and Si) and pH buffering capacity. The pristine larch

ar, larch biochar cold mixed with wood ash and larch biochar sintered with wood ash are

red to as BC, WA, and WAS throughout the study. 

Biochar Characterisation 

ents were characterised via surface area and pore size analyser, Fourier transform

red spectroscopy (FTIR), x-ray powder diffraction (XRD) and scanning electron

oscopy with energy dispersive x-ray (SEM-EDX) analysis. FTIR was undertaken using a
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 to compare possible changes before and after sorbent loading. Pristine larch biocha

, larch biochar cold mixed with wood ash (WA) and larch biochar sintered with wood ash

S) were each mixed with KBr at a ratio of 1:100 (W/W) (Merino et al., 2017). XRD was

 to identify possible crystalline precipitates formed on the surface of the sorbents. XRD

rns were obtained using a Bruker D8 Discover with a Copper source (40kV, 40mA) and

 detector. Powdered sorbents were pushed flat on a single signal silicate zero diffraction

 to minimise background interference. Scans themselves had a 0.5 second time per step

an increment of 0.02° over the range of 10-90 (Hasan Khan Tushar et al., 2012; Li et al.

). Specific surface area and pore volume distribution were determined from N

isorption isotherms using the Brunauer–Emmett–Teller method and Barrett–Joyner–

nda method respectively. Vacuum dried samples were degassed at 105°C overnight and

lly measured with N2 adsorption at the liquid nitrogen temperature of -196°C (77K) by a

A 2000e surface area and pore size analyser (Cao and Harris, 2010). Due to the smal

 size of the pristine biochar, CO2 was also used to determine pore size distribution

use of microporosity and kinetic limitations with N2 physisorption (Sigmund et al., 2017)

ce morphologies were examined by scanning electron microscopy (Hitachi TM3000

top microscope). A working distance of 10mm and an acceleration voltage of 15kV were

 and images were obtained using the in-built Hitachi TM3000 software. Elementa

position analysis was undertaken at the same surface locations by electron dispersive x

spectroscopy (EDX) attached to the Hitachi TM3000 desktop microscope. An EDX

trum was produced after scanning the area of interest for ten minutes. Samples were

nted to aluminium SEM stubs using conductive double-sided carbon tape to enable

ination of samples in an uncoated state (Eiblmeier et al., 2014). 

Sorption Experiments  

tion batch experiments were carried out using Pb, Cu, Zn and Cd at five differen

entrations in the range of 10 mg/L to 150 mg/L applying different sorbent to solution ratio
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orbents beyond what could be reasonably expected in road runoff and oversaturate them

btree et al., 2009; Zhao et al., 2010). All chemical reagents were of analytical grade and

ive concentrations were obtained by preparing a stock solution (1000 mg/L) of the metals

  lead (II) nitrate (N2O6Pb) copper (II) nitrate hydrate (CuH2N2O7), Zinc nitrate

hydrate (H12N2O12Zn) and cadmium nitrate tetrahydrate (CdH8N2O10) and diluting with

nized water. The pH was adjusted to ~4.7 with the dropwise addition of HNO3 to achieve

qual pH between solutions that represented the closest to runoff conditions before

ipitation occurred for those metals. Two types of control experiments were included –

ar without contaminants, as well as contaminants without biochar. All experiments were

rmed in triplicates using a batch sorption equilibrium method (OECD, 2000) 

orbents were oven dried at 105 °C for 24 h.  A known amount of biochar (particle size o

m) was added to 25 mL of aqueous solution in 40 mL polyethylene Falcon tubes. Agitation

achieved on a Unitwist 400 Orbital Shaker for 48 hrs at ~280 rpm to reach equilibrium

ies such as Uchimiya et al., (2011) prescribe contact of 24 hours to reach equilibrium, bu

er contact times haven’t shown significant changes in equilibrium concentration and

re that the adsorption phase had reached equilibrium (Wang et al., 2018). The solution

subsequently separated from the sorbent using an MSE Centaur 2 centrifuge at 3000 rpm

5 minutes (OECD, 2000). The supernatant was removed, pH measured using a calibrated

raft pH Meter and immediately acidified to < pH 2 with 1mL of 70% HNO3 before being

ed with a 0.45 µm PTFE syringe filter for analysis.   

Cu, Zn and Cd concentrations of the acidified supernatants were measured using

ctively Coupled Plasma - Optical Emission Spectroscopy (ICP-OES 5110, Agilen

nologies Inc., USA). Sorbent loading (q) was calculated from the difference between

l metal concentration and final metal concentrations in the aqueous phase: 

ci – caq) V / W 
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entration of metals in solution, V is the volume of solution and W is the weight of the

ar.Equilibrium sorption coefficients (Kd) were calculated as: 

 q/caq 

e, Kd (L/kg) = amount of metal adsorbed onto biochar per L of water, q (mg/kg) = sorben

ing (metals adsorbed by biochar) and Caq (mg/L) = concentration in the aqueous phase. 

 commonly used in estimating the potential sorption of dissolved metals by a solid phase

higher values indicating higher sorption potential (Pourret and Houben, 2018), 

contaminant loaded sorbents were further analysed via FTIR, XRD, SEM-EDX to detec

ges before and after sorption.  

Water chemistry and metal speciation 

speciation determination, samples with and without contaminants at a selected

entration of 10 mg/L were analysed for other water chemistry parameters. These included

se cation analysis (Ca, K, Na, and Mg) using ICP-OES, (ii) major anions (Cl-, NO3
2-, PO4

3

SO4
2-) using an ion exchange chromatograph (IC 930 Compact Flex, Metrohm

zerland) and (iii) dissolved organic carbon using TOC analyser (Shimadzu, TOC-L series)

suring non-purgeable organic carbon (NPOC). Speciation analysis of the solutions were

ed out using Visual MINTEQ version 3.1. Base cation analysis was also used to review

ible cation exchange. Total P and Si in the above solutions were measured via ICP-OES

ther with PO4
3- analysis, these parameters were used to check for their involvements in

immobilization process. Speciation of C in the solid phase was measured using a

iphase carbon analyzer RC-612 from LECO. 

sults and discussion 

ontaminant removal by biochar and wood ash amended biochars 
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 ash (WA) and sintered with wood ash (WAS), removed significantly more metals than

ine larch biochar (BC) (SI 3A, B, C, D). Metals were removed in the order o

u>Zn>Cd by all three sorbents. The removal of Pb by BC was the lowest amongst the

ents with a maximum measured removal of 7.8 ± 0.1 mg/g (SI 5A). The maximum

sured removal of Pb by WA was 61.5 ± 3.1 mg/g and by WAS was 54.6 ± 3.3 mg/g (S

Maximum measured removal of Cu by BC was again the lowest amongst the materials

5 ± 0.1 mg/g (SI5 B). WA and WAS showed similar patterns and quantities of Cu remova

ch other, however WA showed a greater maximum measured removal at 38.9 ± 2.4 mg/g

WAS at 33.8 ± 2.3 mg/g (SI5 B). The maximum measured removal of Zn by BC at 0.8 ±

g/g was significantly lower than both WA and WAS (SI5 C). WA and WAS were very

ar to each other in terms of Zn removal but, again, the maximum measured removal by

was higher at 12.1 ± 0.2 mg/g than WAS at 11.2 ± 0.1 mg/g (SI5 C). Cd was the meta

had the lowest measured removal by each of the materials. At 0.7 ± 0.1 mg/g the

imum measured removal of Cd by BC was again significantly lower than both WA and

 (SI5 D). The removal of Cd and Zn show very similar removal behaviour in contrast with

nd Pb which both had a significantly higher maximum measured removal (SI5). WA and

 show very similar Cd removal; however, WA with a maximum measured removal of 10.2

 mg/g did outperform WAS with a maximum measured removal of 9.3 ± 0.1 mg/g (SI5 D)

oval was measured within a multi metal solution where the presence of competing meta

in the solution for the same sorption sites can reduce the removal rate (Mantonanaki e

016) which impacts Zn and Cd removal rates more than Pb and Cu (Xu and Zhao, 2013)
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re 1: Bar graph showing the equilibrium distribution coefficients (Kd) of Pb, Cu, Zn and

ith pristine larch biochar (BC), larch biochar cold mixed with wood ash (WA) and larch

ar sintered with wood ash (WAS) at 10 mg/L, and stacked bars in the background

ing metal aqueous species distributions. Error bars show ± SD (n = 3). 

queous phase chemistry – immobilization via precipitation and ion exchange 

iation plots across pH show that the distribution shifts from their divalent forms to hydroxy

s as the pH increases (SI 1). As shown in Figure 1, the existence of these metal species

ferent hydroxyl forms is accompanied by increased sorption affinities (Kd values). Addition

ions such as PO4
3-, Cl- and SO4

2- into solution can lead to the formation of minera
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drives immobilization of the metals, due to oversaturation with certain mineral forms

cially for Cd and Zn. Modeled saturation indices (SI 2A and 2B) indicate the possibility o

ation of precipitates such as Cd4(OH)6SO4, Zn(OH)2 and ZnO, being more prominent fo

 ash amended chars. Also, multiple phosphate containing phases, such as Pb5(PO4)3Cl

PO4)2, Pb3(PO4)2 are seen to be oversaturated. From MINTEQ modeling (SI 3) it was

rmined that 99.5% and 99.9% of Pb and Cu, respectively, can be precipitated. Wood ash

ndments further allowed 99.4% Cd and 98.5% Zn to precipitate. Additionally, 99% and

 of PO4
3- can form precipitates in BC and WA/WAS systems, respectively.  

dition to modelling, differences in the total P, PO4
3- and Si levels in the solutions with and

ut the metals for the different materials (Figure 2) provide further evidence o

ipitation. For all three materials, total P in solution was significantly reduced and PO4
3

s fall below the limit of quantification for all solutions with metals in contrast to solutions

ut metals. This implies that some of the metal ions in solution are complexing with PO4
3

precipitating onto the biochar surface, or co-precipitating with PO4
3-. For WA and WAS

vels were also reduced from 2.53 mg/L to 2.06 mg/L and from 2.44 mg/L to 2.01 mg/L in

resence of the metals. From these results, it is implied that Si in the form of silicates on

orbent surfaces might be playing a role in the immobilization process for wood ash

nded biochars as seen in previous studies by Lu et al. (2012) and Gao et al. (2019)

onate containing metal phases were not accounted and modelled for. However, C

iation analysis of the solid phase using the carbon analyzer showed that WA and WAS

0.97% and 0.79% of inorganic C present, respectively. Thus, it is expected that the metals

also be immobilized through formation of carbonates. 

Jo
ur

na
l P

re
-p

ro
of



14 
 

295 

Figu f 296 

diffe297 

All th , 298 

K+ a  299 

proc  300 

one l 301 

tend r 302 

than  303 

sorb  304 

conc  305 

1.33  306 

± 0.8 l 307 

imm  308 

Ca2+ + 309 

incre  310 

resp  311 

char  312 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Journal Pre-proof
 

re 2: Concentration of Total P, phosphate (PO4
3-) and Si in solution in the presence o

rent sorbents without and with metals (n=3) 

ree sorbents also affect the water chemistry by adding base cations such as Ca2+, Mg2+

nd Na+. Increased cation release in the presence of metals can indicate cation exchange

esses occurring on the surface of biochar (Uchimiya et al., 2010). If cation exchange is

of the driving mechanisms for immobilization, the target divalent metal contaminants wil

 to replace divalent cations on the surface of the biochar, such as Ca2+ and Mg2+ rathe

 monovalent ones. For this purpose, we investigated base cations released from the

ents, with and without 10 mg/L of metals present (Figure 3). For BC, small increases in

entration of the base cations Mg2+, Na+ and K+ were observed from 0.72 ± 0.2 mg/L to

 ± 0.1 mg/L, from 1.05 ± 0.0 mg/L to 1.41± 0.1 mg/L and from 11.19 ± 1.1 mg/L to 17.20

 mg/L, respectively. This indicates that cation exchange may be important in meta

obilisation by BC. For the wood ash amended biochars, a marked two-fold increase in

 concentration in the presence of metals was observed (Figure 2). For WA and WAS, Ca2

ased from 8.7 ± 0.7 mg/L to 22.3 ± 4.1 mg/L and from 10.4 ± 1.0 mg/L to 20.7 ± 2.1 mg/L

ectively. Increased levels of divalent Mg2+ were also observed for the wood ash amended

s. For WA Mg2+ increased from 0.63 ± 0.0 mg/L without metals to 1.23 ± 0.3 mg/L with

Jo
ur

na
l P

re
-p

ro
of



15 
 

contaminants. For WAS, this was not as apparent with a concentration increase from 1.11 ± 313 
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g/L to 1.32 ± 0.2 mg/L. This increased release of base cations in the presence of the

ls with the wood ash treatments indicates that cation exchange plays a role in the

obilization process. Such ion exchange is seen to be a key immobilisation mechanism fo

u, Zn and Cd by several studies but is secondary to precipitation (Lu et al., 2012; Gao e

019).  

 

re 3: Concentration of base cations in solution in the presence of the different sorbents

ut and with metals (n=3) 

 pH of solution showed increases for each of the sorbents, with wood ash amended

ars increasing pH significantly more than BC (SI 4A). Rises in pH were greater at lowe

entrations of Pb, Cu, Zn and Cd. There is strong correlation between rises in solution pH

immobilisation (SI 4B). For all of the sorbents such correlation is likely, at least in part, as

sult of ion exchange increasing with pH driving the increase in negative charge o

tional groups allowing alkali and alkaline earth metals to be exchanged more easily (Silbe

, 2010). For wood ash amended biochars, but not for BC, the correlation of immobilisation

pH is also a result of the increase in pH driving precipitation. The pH buffering ability o

ood ash amended biochars raises the solution pH making it alkaline enough for (i) metaJo
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phates and silicates (Uchimiya et al., 2010). 

olid Phase Analysis - immobilisation via precipitation and ion exchange 

following pre and post immobilisation solid phase analysis (FTIR, SEM-EDX, and XRD

 implemented to further investigate the mechanisms of each sorbent in the immobilisation

, Cu, Zn and Cd alongside the measurement of surface area. 

 was used to identify functional groups to denote ion exchange, minerals capable o

ipitation and aromatic structures for BC, WA and WAS. WA and WAS follow very simila

rn of peaks within the FTIR spectra pre-adsorption of the metal solution (Figure 4). Whils

lso shows similarities to WA and WAS in peaks above 1500 cm1 pre-adsorption, key

rences between wood ash amended biochar and BC are evident below 1500 cm1. Below

 cm1 peaks for both WA and WAS are seen which are attributed to phosphate (Uchimiya

., 2010), siloxane (Gao et al., 2019) as well as oxygenated functional groups (Iqbal et al.

); phosphate and siloxane peaks, important for precipitation, are not evident in the FTIR

tra of BC.  
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re 4 - FTIR spectra of pristine larch biochar (BC), larch biochar cold mixed with wood ash

) and larch biochar sintered with wood ash (WAS) before immobilisation of Pb, Cu, Zn

Cd. 

FTIR results for BC pre and post adsorption of Cd, Cu, Pb and Zn show increases in the

sity of wavelengths attributed to carbonyl and carboxyl surface functional groups again

ating that ion exchange is taking place (Li et al., 2014). However, BC’s spectra show no

ation of precipitation (figure 5A). The FTIR results for WA and WAS pre and pos

rption of Cd, Cu, Pb and Zn show shifts and a flattening of peaks attributed to carboxy

ce functional groups also indicating ion exchange (figures 5B and 5C). These shifts may

ttributed to changes in the counterions associated with carboxylate anions (Iqbal et al.

). 

ies have shown such shifts to demonstrate ion exchange for Pb, Cu, Zn and Cd (Iqbal e

009; Bandara et al., 2020). Studies have also shown the ion exchange of carboxyl to be

ger for Pb and Cu than that of Cd resulting in lower levels of Cd adsorption agreeing with

orption ordering of this study further pointing to the role of ion exchange for all of the
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eaks assigned to both phosphate and Si-O-Si, WAS spectra also show a peak shift fo

 phosphate and Si-O-Si. Xu et al. (2013) attributed similar shifts in peaks to the formation

etal precipitates.  

 analysis indicates that ion exchange is an immobilisation mechanism for all three

ents but only demonstrates precipitation with phosphate and Si-O-Si for wood ash

nded biochars. This difference is likely to partially account for the difference in remova

een BC and wood ash amended biochars. 
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re 5: (A) FTIR spectra of larch biochar (BC) pre and post immobilisation of Pb, Cu, Zn and

(B) FTIR spectra of larch biochar cold mixed with wood ash (WA) pre and pos

obilisation of Pb, Cu, Zn and Cd (C) FTIR spectra of larch biochar sintered with wood ash

S) pre and post immobilisation of Pb, Cu, Zn and Cd 

-EDX analysis was used to observe the morphology and structure of the sorbents and to

rtain the elemental composition and distribution including the presence of immobilised

u, Zn and Cd. For BC SEM-EDX did not show signs of precipitation such as high levels

or Si or bright areas on the surface of the char. In contrast, SEM images of WAS pos

rption did show bright areas on the surface of the char (SI 7A) which are Pb rich phases

et al., 2012). The EDX spectrum associated with this SEM image demonstrates the

ence of P, O, Cl and C alongside Pb, Cu and Zn (SI 8A). SEM images of WA pos

rption also showed the bright areas associated with Pb alongside high levels of P, O, Si

l, Cu and Zn seen in the corresponding EDX spectra (SI 7B and SI 8B). Again, Cd was

resent in this zone. In addition to the elemental results of EDX, XRD analysis indicated

resence of carbonates, siloxane and phosphates in both WA and WAS (SI 9). Where

ls are seen in the presence of high levels of minerals such as P or Si precipitation

een these metals and minerals should be expected (Trakal et al., 2014) and as such
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amended biochars, a mechanism not evidenced for BC. SEM images of BC pos

rption did not show large bright areas or crystalline structures which would indicate

ipitation (SI7 C). EDX elemental data showed that Cu, Zn and Cd were not detected at al

that Pb is present in this zone but in small quantities when compared to wood ash

nded biochars (0.51%) (SI 8 A, B, C). P, Cl and Si were all undetected, but K was

nced in this zone again indicating the potential for ion exchange (SI8 C). There is also

vidence of carbonates, siloxane or phosphates for BC within the XRD analysis making

ipitation unlikely as an important mechanism. 

dominant mechanism for Pb, Cu, Zn and Cd removal by wood amended biochars is

ipitation with ion exchange also playing a role. However, these mechanisms do no

late to surface area. Although BC had the lowest measured removal of each contaminan

rface area (409 m2/g) is significantly higher than the surface area of WA (34.5 m2/g) o

 (26.5 m2/g). Pore size distribution for WA and WAS follow similar patterns to each othe

 with a high concentration of pores with 41 Å diameter (SI 10A and B). BC however shows

h concentration of smaller pores with 31 Å diameter (SI 10C).  SEM-EDX images show

o have an unblocked honeycomb structure with 98% C (figure 6A). Although WA has a

ar structure the pores are blocked with only 29% C due to the presence of other elements

 as P, Si, K and Na (Figure 6B). Despite the addition of the wood ash being seen to

ce surface area by more than an order of magnitude this does not impact negatively on

obilisation. The wood ash amendment and resultant pH, mineral and functional group

ases have proven to be more important than surface area. WA and WAS pores are

ed by the minerals added with the wood ash, such pore blocking has been seen by Hu

l., (2015) in their study of iron impregnated biochar whereby the iron clogged pore

ings on the biochar surface whilst increasing metal removal from solution. Although

ce area is often seen as an important physical property for contaminant sorption

parative studies have shown that when surface area of a char is lower but immobilisation
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is higher, as seen in this study, chemical processes such as ion exchange  or more importantly 423 
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ipitation supersede the importance of surface area (Wang et al., 2018). 
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Figure 6 – (A) SEM image of the honeycomb structure of the pristine larch biochar (BC) (B) 426 
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 image of the honeycomb structure of the larch biochar cold mixed with wood ash (WA

h is blocked with P, Si, K and Na. 

onclusion 

 study investigated if pristine larch biochar (BC) or wood ash amended biochar was

tive as an alternative and green remediator of the inorganic vehicular pollutants Pb, Cu

nd Cd found in motorway runoff, mine waters and industrially polluted rivers.  It also se

o investigate why BC, larch biochar cold mixed with wood ash (WA) and larch biocha

red with wood ash (WAS) immobilised these contaminants and understand differences

een wood ash amended biochar and BC in terms of contaminant removal and

obilisation mechanisms. Maximum measured removal of Pb, Cu, Zn and Cd by WA and

 were significantly higher than BC alone. This difference was the result of the wood ash

ndment increasing pH, thus shifting metal species, and increasing the presence o

rals such as PO4
3- causing immobilization of the metals through precipitation. The

ortion of hydroxides modelled for BC is far less than for wood ash amended biochars

 resulting in precipitation accounting for less immobilisation of the contaminants. Although

ipitation with phosphate and silicates, was found to be an immobilisation mechanism fo

and WAS, precipitation with silicates was not observed for BC further highlighting

rences in removal between wood ash amended biochars and BC. Ion exchange

ributed to the immobilisation of the contaminants for all three sorbents. Surface area was

seen to be a dominant factor for metal removal with precipitation and ion exchange

rseding its importance.  

ainability of feedstock, maximum measured removal (61.5 mg/g, 38.9 mg/g, 12.1 mg/g

10.2 mg/g for Pb, Cu, Zn and Cd respectively) and low feedstock / production costs

ate that wood ash amended biochar is a viable option to immobilise Pb, Cu, Zn and Cd

 motorway runoff.  
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The  addition  of  wood  ash  to  biochar  increased  metal  removal  by  an  order  o

magnitude
Immobilisation is correlated to pH 
Increased pH and the presence of minerals drive precipitation
Precipitation and ion exchange dominate immobilization
Wood ash amended biochar could remove heavy metals from motorway runoff
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