
1

Using Runahead Execution to Hide Memory Latency
in High Level Synthesis

Shane T. Fleming and David B. Thomas,
Dept. of Electrical and Electronic Engineering, Imperial College London, London, UK.

{sf306, dt10}@ic.ac.uk

Abstract—Reads and writes to global data in off-chip RAM
can limit the performance achieved with HLS tools, as each
access takes multiple cycles and usually blocks progress in
the application state machine. This can be combated by using
data prefetchers, which hide access time by predicting the next
memory access and loading it into a cache before it’s required.
Unfortunately, current prefetchers are only useful for memory
accesses with known regular patterns, such as walking arrays,
and are ineffective for those that use irregular patterns over
application-specific data structures. In this work we demonstrate
prefetchers that are tailor made for applications, even if they have
irregular memory accesses. This is achieved through program
slicing, a static analysis technique that extracts the memory
structure of the input code and automatically constructs an
application-specific prefetcher. Both our analysis and tool are fully
automated and implemented as a new compiler flag in LegUp,
an open source HLS tool. In this work we create a theoretical
model showing that speedup must be between 1x and 2x, we also
evaluate five benchmarks, achieving an average speedup of 1.38x
with an average resource overhead of 1.15x.

I . I N T R O D U C T I O N

High-Level Synthesis (HLS) tools are used to map high-
level application descriptions into FPGA circuits. Traditionally
HLS tools were reserved for applications with regular memory
access patterns, however, in recent years, they have been used
to develop applications with irregular access patterns. Irregular
memory accesses are problematic as they are difficult to predict
statically at synthesis time because they are often dependent
on runtime data.

Predicting memory accesses is important as it can be used
to prefetch data before it is needed hiding memory latency.
Consider the C code in Figure 1(a) which accumulates all
elements within a linked list; without prefetching, the perfor-
mance of this application will be limited by the memory access
latency. To hide memory latency a runtime prefetching system
is required, but current generic FPGA prefetchers are limited
to regular access patterns and so perform poorly for irregular
applications such as the code in Figure 1The reason these
generic approaches are limited to regular patterns is because
they do not consider semantic information for memory accesses,
but what if this was taken into consideration and used to
construct the prefetcher?

This work aims to answer this question by creating a static
code analysis which extract an applications memory access
structure to build a runtime application specific prefetcher.
The static code analysis technique used is called program
slicing [1], and has been previously applied to HLS for FPGA
reliability [2] and ASIC performance [3]. Program slicing
creates an executable fragment of the original program, known
as a slice, that only evaluates specific instructions referred to

float AccumulateList() {
 float data, Acc = 0.0;
 struct *node tmp = HEAD;
 while(tmp != NULL) {
 data = tmp->data;
 Acc = Acc + data;
 tmp = tmp->nxt;
 }
 return Acc; }

I0
I1

I2

I3

I4

I5

I6

 Slice {
 float data;
 struct *node tmp = HEAD;
 while(tmp != NULL) {
 data = tmp->data;
 tmp = tmp->nxt;
 }
 }

S0

S1

S2

S3

S4

3I 5I

(a) (b)

Fig. 1: (a) Accumulate Linked List example application, (b)
precomputation slice for AccumulateList with slicing criterion
I5 and I3
as slicing criterion. Runahead execution is when a slice can
resolve their slicing criterion ahead of the original program,
we refer to a slice used in this context as a Precomputation
Slice (pslice). This paper presents an algorithm and tool for
automatically constructing pslices for HLS generated FPGA
hardware, where the slicing criterion is every long latency
global load in the hardware accelerated function. The generated
pslice prefetches these loads, regardless of how irregular the
access pattern is.

For example, Figure 1(b) shows a pslice for the
AccumulateList() function from Figure 1(a), where the
slicing criterion are the load instructions I5 and I3. Operations
superfluous to the slicing criterion are excluded from the pslice,
so in this case I4 is excluded from the slice as it does not
influence the result of I5 or I3. This dropped instruction (I4)
is an expensive multicycle floating-point operation; its removal
enables the pslice to execute an iteration of its loop in fewer
cycles than the original circuit, fetching the memory into a
local buffer. Our tool automatically detects and builds pslices to
exploit run ahead opportunities like this, only requiring the user
to set a compiler flag. The main contributions of this paper are:

• RELISH (Runahead Execution of Load Instructions via
Sliced Hardware) – an open source HLS optimisation pass
built for LegUp an open source HLS tool, which automatically
constructs a pslice for a hardware accelerated function.
(Sections II – III)
• A theoretical performance model showing that using a
pslice results in a 1x – 2x speedup, along with how memory
latency and compute time affect performance. (Section IV)
• An evaluation of five benchmarks with both regular and
irregular memory access, demonstrating performance gains
between 1.02x and 1.69x. (Section V).

I I . O U R S O L U T I O N

In RELISH we want to evaluate loads ahead of the original
circuit, so every load in the original function is set as a slicing
criterion. To effectively prefetch data the pslice needs to run

2

bus read master

bus read master
original
circuit

req
resp FIFO reqresp

bus read master
pSlice

memory controller

bus slave

DDR

reqresp

Fig. 2: Overview of the architecture when a pslice is used with
the original circuit.

ahead, which depends on whether excluded instructions enable
the pslice to remove false dependencies on the load instructions.

We define false dependencies as situations where an instruc-
tion, x, must wait for the execution of another instruction, y,
to complete, even though the result of y does not directly
influence the result of the x. Figure 1(a) shows an example
of this where the instructions I3 and I5 must wait for the
instruction I4 to complete, despite it having no influence over
their value but because of scheduling restrictions as they are
within in the same basic block. Removing enough of these false
dependencies enables the pslice to run ahead of the original,
since the latency of the loop body has been reduced. If it is
not possible to remove false dependencies, then the pslice is
unable to run ahead of the original, and there is no reason to
instantiate it. Fortunately, it is possible to statically detect cases
where there is insufficient run ahead, allowing the compiler to
build a pslice only when it is beneficial. Through detecting
such cases we can ensure that RELISH will never make an
application slower.

Using every global memory read as a slicing criterion
provides the important property that all loads in the pslice
appear in the original program order. This property enables
the pslice to be coupled with the original function via a FIFO,
detailed in Figure 2. Such tight coupling provides an advantage
over traditional prefetchers which generally rely on a weaker
coupling via a cache.

The current implementation of RELISH targets reconfig-
urable SoC systems. Figure 2 shows how hardware functions
connect to the processing system with accesses to global
memory serviced through a global memory controller bus slave
port. The read bus of the memory controller can be split into
two channels; a request channel that is given the address of the
global memory location along with handshaking signals to start
the transaction; and a response channel containing the returned
data and handshaking signals to complete the transaction.

RELISH modifies the interconnect between each hardware
accelerated function and the memory hierarchy so that the
function’s pslice takes complete responsibility for the read
request and response channels. All global read requests are
issued from the pslice, then responses are fed both directly
into a FIFO connected to the original circuit and to the pslice.
Whenever the original accelerated function issues a global
read it pops the data off the FIFO, unless the FIFO is empty
where it blocks waiting for the pslice to push the next read
response.

A - Case study, linked list accumulation: Constructing the
pslice in Figure 1(b) from the code in Figure 1(a) requires two
main steps. Firstly all global loads in the program are used as
slicing criterion; in this example, only two loads are used; I3
and I5. The second step then performs a dependency analysis
grabbing any instruction which may influence the outcome of
any slicing criterion. In this case there are dependencies: {
I3 ← I2, I3 ← I1, I3 ← I0, I5 ← I2, I5 ← I1 }, so the slice
is constructed from the instructions, { I3, I5, I2, I1, I0 }.

Modern HLS tools, such as LegUp, build hardware from code
that has been transformed into a Control and Data Flow Graph
(CDFG) [10]. In this representation, the code is arranged into
straight line blocks - known as basic blocks - which must have
a single entry point at the top and one or more exit branches
at the bottom. HLS tools exploit the fine grain parallelism of
FPGA devices by scheduling operations within a basic block
to execute in parallel while obeying both structural and data
dependencies.

The HLS schedule for the example in Figure 1 is given in
Figure 4 provided we assume: that there is a single memory
port; that load operations, such as I3, complete in four cycles;
that floating-point addition operations, such as I4, complete in
8 cycles; and that every other instruction completes in a single
cycle. In this case, the run ahead opportunities for the pslice is
in the inner loop that iterates over the linked list (BB3), where
the pslice can complete four cycles faster than the original
since it does not require the instruction I4.

The performance benefits of this can be seen in Figure 3
which shows timing diagrams for: the original program (P),
the pslice (S), and the original with slice (P − S), where the
input is a 4 element linked list. For the first iteration, there
is no speedup experienced in P − S since S has not yet had
a chance to outrun P . However, in subsequent iterations, the
benefit of S running ahead can be seen, with smaller memory
latency in P − S. By the end of the function call S traversed
the linked list 17 cycles ahead of the original circuit enabling
P − S to finish 12 cycles ahead.

I I I . T E C H N I C A L D E TA I L S

Invoking RELISH occurs between stages of the LegUp HLS
toolchain and is completely automated, building the circuit, its
associated pslice, and logic to interface them. A user wishing
to apply RELISH to a compilation is required to do nothing
more than set a compiler flag.

Specifically, it works within the LegUp hybridparallel flow
where the user provides C or C++ source code along with a list
of functions to accelerate and the tool generates software-only
and hardware-only portions. Multiple hardware accelerators
may also be executed concurrently using pthreads or OpenMP
pragmas. Natively this flow targets an Altera/Intel CycloneV
SoC device. However, we wished to use existing Xilinx based
compiler passes for future research and so ported it to a Xilinx
Zynq device.

RELISH is a type of LLVM transformation pass, i.e. some-
thing that accepts LLVM-IR (intermediate representation),
transforms it, and then emits it. The RELISH transformation
modifies the input in two ways. Firstly, for each function
listed to be accelerated, it builds a pslice and implements
it as a hardware accelerated pthreads function in the source

3

P

S S0

S1

S3S2 S4 S3S2 S4 S3S2 S4 S3S2 S4 S2

P-S I0

I1

I2 I4 I2I2 I4 I2 I4 I2 I4 I6

I0

I1

I2

I5

I4I3 I2

I5

I4I3 I2

I5

I4I3 I2

I5

I4I3 I2 I6

12 cycles

0 1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

Fig. 3: Execution trace for the HLS program and pslice in Figure 1. Where P is the original program, S is the pslice, and PS
the execution of the original program with support from the pslice.

cycles
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

originalI0

I1

I2

I3

I4

I5

I6

S0

S1

S2

S3

S4

pslice

0 1 2 3 4 5 6 7 8 9

loop branch otherload float addition

Fig. 4: HLS schedule for the original function and pslice in
Figure 1

(Section III-A). Secondly, for each newly created pslice, a call
to it is added above each corresponding function call in the
SW portion of the hybrid parallel code.

After the pslice construction, the LLVM-IR is handed to the
LegUp hybridparallel backend to generate Verilog modules
for the accelerated functions and their corresponding pslices.
The final stage of the tool takes the generated output from the
LegUp hybridparallel flow and for each pslice/accelerator pair,
joins them via an AXI-based FIFO interface (Section III-B).
A - pslice Construction: The input Program, P , can be
viewed as a set of single static assignment instructions, while
it’s pslice S (S ⊆ P) contains only the set of instructions
required to evaluate a set of slicing criterion C (C ⊆ P). For
this work we are interested in evaluating loads in S ahead
of the original loads in P , so C is the set of all global load
instructions in P . In order to construct S we defined the
following functions:

• isOP(x ∈ P, y ∈ P) – returns true if a variable assigned
by x is used as an operand of y.
• isCD(x ∈ P, y ∈ P) – returns true if x has a control
dependency on the result of y.
• isBR(x ∈ P) – returns true if x is a branch instruction.

We can then say that S is the smallest set that satisfies all of
the following properties:

1) C ⊆ S (S must contain all of the slicing criterion)
2) ∀x, y : y ∈ S ∧ isOP(x, y)→ x ∈ S
3) ∀x, y : y ∈ S ∧ inBR(x) ∧ isCD(x, y)→ x ∈ S

While the rules above can be used to construct a valid pslice the
result can be further optimised through pruning unused basic
blocks. For example, since Figure 5(a) has a load at BB5.1
the branch operations BB3.1 and BB2.2 must be included
in the pslice; however, since the only instruction in BB3 is
an unconditional branch the entire basic block can be pruned
giving Figure 5(b).

One final further step is required to complete the pslice. The
last point in every dependency chain is a slicing criterion, this

(c)

%26 = load %22

...

ret i32 %x

(d)

%26 = load %22

(e)

%26 = load %22

ret void

%25 = add %23, %24
...

%c1 = icmp %25, #10
br %c1, BB3, BB4 BB2.2

...
BB3

br BB5 BB3.1

BB5
%26 = load %22

...
BB5.1

(a) %25 = add %23, %24
...

%c1 = icmp %25, #10
br %c1, BB5, BB4 BB2.2

...
BB5
%26 = load %22

...
BB5.1

(b)

Fig. 5: (a) Example fragment of a pslice where because BB5.1
is reachable from BB2.2 all branch instructions are included.
(b) Optimised pslice through pruning unused basic block BB3.
(c) Original program with non-void return. (d) pslice with
broken hanging branch. (e) Repaired pslice

usually means that there is no return instruction within the
pslice, so one must be added to make it a legal LLVM function
[4]. A simple fix for this is to detect all hanging branches in
the pslice and link them to a basic block containing a single
return void instruction. This is demonstrated in Figure 5
where, Figure 5(c) shows an unsliced program, Figure 5(d)
shows the pslice for that function, and Figure 5(e) shows the
repaired dangling branch.
B - pslice Integration: The LegUp hybridparallel flow
produces a hardware circuit for every pthread function call
specified for acceleration. RELISH transforms the LLVM-IR
before LegUp has split it into hardware and software portions.
For each accelerated function call a pslice function is created
using the analysis in Section III-A and added to the IR. Calls
to this new pslice function are added to the IR preceding every
call to the appropriate pthread_create. Metadata is added
indicating that the pslice call is also a pthread call so that
downstream when LegUp generates pthread stubs it will
also do so for the pslice, enabling it to execute in parallel with
the original code.

Every pslice is connected to its corresponding circuit via the
Avalon master interface, as seen in Figure 2, where the pslice
handles all read requests placing all responses in a FIFO for
the original circuit to retrieve them later. However the FIFO
is not just used to pass prefetched data from the pslice but for
synchronisation, preventing the pslice from running ahead too
far by stalling it when the FIFO is full and ensuring that FIFO

4

Original Code pslice
... ...
%1 = LD_addr(); %1 = LD_addr();
%2 = ST_addr(); %3 = ld, %1;
%x = compute();
st %2, %x;
%3 = ld, %1;

Fig. 6: LLVM-IR code to demonstrate possible write-after-read
(WAR) hazard with current pslice implementation.

pop()s are blocking when the FIFO is empty. Stalling the pslice
is achieved by spoofing a bus master transaction by asserting
the waitrequest signal when the FIFO full signal is
high, tricking the pslice into thinking it has an outstanding
transaction. Implementing a blocking FIFO pop() is achieved
in a similar fashion by asserting waitrequest of the original
function when a read is attempted and the FIFO empty signal
is high.

In RELISH we wanted to use existing Xilinx-based
infrastructure available to us, so we developed an AXI
interface with an Avalon/AXI bridge built into it to connect to
the exposed Avalon ports generated by LegUp. Unfortunately,
this introduces some small latency (2 cycles) either side of
the FIFO to push and pop read responses. With some extra
engineering effort this could be optimised but is outside the
scope of this work.
C - Current Limitations: To minimise initial design com-
plexity, we have restricted RELISH to functions that do not
both read and write to the same global memory locations. This
restriction avoids the complication of handling write-after-read
(WAR) hazards, while still allowing for adequate testing of the
benefits of the approach. Figure 6 shows an example of this –
in the current implementation, this example is a potentially a
problem since no analysis is performed to see if ST_addr()
or LD_addr() can touch the same memory locations which
would cause a WAR hazard if the pslice read data before it
had been written.

Alleviating this restriction can be done at two levels, either
at program analysis level or the interface between the original
circuit and pslice. Expanding the program analysis requires
analysing the memory space to determine how the global loads
and stores are connected. Alternatively, the interface could
be modified so the FIFO link resembles something closer
to a cache where stores from the original circuit can update
elements of the FIFO. Expanding the analysis has problems
since it requires the inclusion of more instructions into the
pslice, potentially increasing the overheads and hindering its
runahead capabilities. While modifying the FIFO link requires
more logic especially if the FIFO is large, however results in
Section V indicate that a FIFO depth of only 16 elements is
required. We believe that adapting the interconnect is the best
approach for future work.

I V. P E R F O R M A N C E M O D E L

Not all applications benefit from using a pslice to fetch
loads; for some, loads may have too many true dependencies
preventing their pslice from running ahead, while others may
have so few memory operations that optimising them has little
impact on performance. The amount of runahead, the memory
latency, and the execution time are parameters which interact to
influence the potential speedup obtained when using a pslice. In

this section, we explore the balance between these parameters
and mathematically derive equations to model speedup.

Speedup, Sp is calculated by dividing the original execution
time, To, with the new execution time of the optimised version,
Tpref , giving Sp = To/Tpref . The original execution time
can be separated into two components, α for the time spent
performing compute, and β the amount of time spent blocked
on memory operations, giving: To = α+ β. For the execution
time of the pslice, Tr, we define αr for the time it spends
performing compute, which allow us to build the equation,
Tr = αr + β for it’s execution time.

To derive an equation for Tperf we need to consider two
situations: first the case where αr + β < α, which means the
pslice has fetched the data and placed it in a FIFO before the
original compute has had a chance to request it; in this situation
memory latency has been fully hidden.

For the alternative case where αr+β > α the original compute
needs to block for some time before the pslice has finished
fetching from memory, this can be seen below where the
original circuit is blocked for βrem.

This means that the execution time of Tpref can be expressed
as the critical path between α and αr + β giving us, Tpref =
max(α, αr + β). Using this we get the following expression
for speedup:

Sp =
α+ β

max(α, αr + β)
(1)

Using Equation 1 and since αr ≥ 0, we can establish an upper
bound for Sp. In the case where α ≤ β we get:

Sp ≤
α+ β

max(α, β)
≤ α+ β

β
≤ β + β

β
= 2

Similar reasoning for the case where α ≥ β holds, so we find
that for either cases Sp ≤ 2.

The maximum speedup occurs when the denominator of
Equation 1 is minimised, which occurs at α = αr + β. Using
this we define a term, γ, which we call the Runahead-Compute
Balance (RCB), where:

γ =
α

αr + β

Maximum speedup occurs when RCB γ = 1, so we can
substitute this into Equation 1 to get the maximum speedup
S↑
p .

S↑
p =

(αr + β) + β

max(αr + β, β)
=

(αr + β) + β

(αr + β)
= 1 +

β

αr + β
(2)

Equation 1 also shows that the minimum speedup is x1,
implying that a pslice never results in a performance penalty.

5

lim
β→∞

α
β + 1

max(αr

β + 1, αβ)
=

1

1
lim
α→∞

1 + β
α

max(αr+β
α , 1)

=
1

1

From this analysis, we can conclude that the maximum
achievable speedup due to a pslice is 2x, while in the worse
case the speedup is 1x, so under the theoretical model the pslice
never slows the application down. Where an application lies in
this range depends on the balance between three variables, the
amount of compute for the original circuit (α), the amount of
compute for the runahead pslice (αr), and the memory latency
of the system (β). Section V-B aims to verify this model using
a synthetic benchmark.

V. E VA L U AT I O N

This section evaluates RELISH in a live Zynq based system,
based on measurements from hardware performance counters.
There are two sets of experiments: a synthetic benchmark used
to validate the analysis from Section IV; and five application
benchmarks used to explore the overall achievable speedup
versus resource.

A - Experimental Setup: We built the system using the
LegUp-4.0 Xilinx tool flow as discussed in Section III, with
each experiment performed on a Digilent Zedboard (Xilinx
Zynq device, XC7Z020CLG484-1). For each application, SW
was executed on the Zynq ARM cores and hardware circuits
were connected to the memory system through the ACP port,
allowing coherent access to the processing system’s hardened
L2 cache. The L2 cache was enabled for all tests.

Two different modes were tested; a baremetal mode where
the experiment SW was running alone on the ARM cores, and
a mode where Linux was also executing on the ARM. The
Linux OS was Ubuntu 12.10 (Linux 3.12) and was used to
obtain performance results where there was increased memory
contention with higher system load.

Currently LegUp does not natively support floating-point
operations in the Xilinx flow, so for applications where floating-
point operations were used the softfloat library [11] was used
to implement floating-point operations using integer arithmetic.
Table I shows a performance comparison compared to Vi-
vadoHLS, showing the main impact is that the native floating-
point would be around 1/3 the size, but the soft floating-point
is 1.5 times faster. From the point of view of RELISH this
is simply moving around the baseline α and αr, so it is not
expected to provide better or worse results.

The following performance counters were added to the
FIFO interface logic.
• Cycle count for the original circuit & pslice
• Memory latency for the original circuit & pslice
• Number of cycles the FIFO full signal was asserted
• Number of cycles the FIFO empty signal was asserted
In all cases the circuits were targeting a 100MHz clock, and
all experiments met timing.

B - Synthetic Benchmark: A circuit for the synthetic bench-
mark in Listing 1 was generated along with its corresponding
pslice. This benchmark allowed us to vary: the problem size
(N), the length of time spent blocked on memory (M); and the

operation implementation cycles LUTs REGs DSPs
fp add VivadoHLS 6 1157 1202 2

Softfloat + LegUp 4 4021 4671 0
fp mul VivadoHLS 6 1003 1138 3

Softfloat + LegUp 4 2624 3222 8

TABLE I: Softfloat implemented with LegUp performance and overheads
vs VivadoHLS

amount of compute (C). Through varying these parameters we
were able to relate them back to the equations proposed in
Section IV, such that NTpref = C αo + M β, where αr remains
constant.

Listing 1: Synthetic benchmark used to validate the model in
Section IV
int synthetic(float32 *maddr, int M, int C, int N){

volatile float32 t[BUFFSIZE], acc=0.0;
for(int i=0; i<N; i++) {

for(int m=0; m<M; m++)//Memory section
t[m] = maddr[m];

for(int c=0; c<C; c++) //Compute section
acc = float32_add(acc, t[c]);

}
return acc;

}

Figure 7 shows the speedup of the synthetic benchmark in
relation to the upperbound of the model as the parameters,
N, M, and C, are varied to generate different RCB (γ) values.
There is a strong resemblance to the shape of the model since
there is a linear increase in speedup from the origin to a point
around RCB (γ)=0.9 where it then switches to an inversely
proportional relationship.

While the shape of the synthetic speedup matches the model,
there are some differences as the synthetic benchmark never
reaches the speedup of the model and the peak occurs a
little before the model. We believe this can be explained
by the constant extra two cycles incurred when accessing
the FIFO connecting the pslice and the original circuit. The
model assumes all memory latency can be eliminated by the
pslice. However, in reality, these cycles prevent that stopping
the speedup from reaching the theoretical maximum. These
extra cycles also influence the RCB (γ) moving the position
of the peak speedup. Another factor influencing the maximum
speedup is αr as Equation 2 implies that maximum speedup
is only possible when αr is negligible.

The synthetic benchmark crosses the x-axis at an RCB
of γ = 0.23, this means that for a sufficiently memory
bound application adding a pslice, in reality, could result in
a slowdown, not a speedup. Similarly, this is also due to the
additional latency introduced by the FIFO. With additional
engineering effort, we believe that this FIFO interconnect
could be further optimised dropping the overhead from two
cycles to zero further improving the performance of using
RELISH .
C - Benchmarks: Figure 7 also contains the speedup for
five benchmarks (baremetal) plotted against their application’s
RCB (γ). For every case speedup is less than the theoretical
upper bound, generally following the curve of the synthetic
benchmark, and is always greater than 1.0x. Five benchmarks
were used to test RELISH :

6

0.50.4 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1

1.0

1.5

2.0

0.0 0.1 0.2 0.3

sp
ee

d
u
p

sparseVecMatMul

sparseVecMatMul (svm)

knapsack (svm)

floyd-warshall
floyd-warshall (svm)

L-list average

L-list average (svm)

dotproduct (svm)

zero memory-latency bound
theoretical model bound
synthetic benchmark
benchmark (baremetal)

runahead-compute balance

dotproduct

knapsack

Fig. 7: Graph showing the speedup for the synthetic benchmark as the parameters, αo, β, and αr are artificially varied. Also
shows the approximate locations for a selection of benchmarks explored in this study.

baremetal Linux ∆fmax
benchmark memory version cycles RCB (γ) cycles RCB (γ) LUTs REGs DSPs (MHz)

sparseVecMatMul physical original 5658K - 4611K - 6258 6821 8
physical pslice 3573K (1.59x) 1.14 2798K (1.65x) 0.75 7144 (14%) 7843 (15%) 8 (0%) -9

SVM original 120491K - 10555K - 6398 7180 8
SVM pslice 8015K (1.51x) 0.6 87962K (1.20x) 0.39 7628 (14%) 7969 (11%) 8 (0%) -8

knapsack physical original 2395K - 2589K - 5195 6625 0
physical pslice 2106K (1.13x) 3.93 2132K (1.21x) 1.02 5640 (9%) 7736 (17%) 0 (0%) 0

SVM original 4181K - 6554K - 5382 6722 0
SVM pslice 2474K (1.69x) 0.84 6273K (1.04x) 0.36 6110 (14%) 7907 (18%) 0 (0%) 0

floyd-warshall physical original 9995K - 12270K - 5005 5983 6
physical pslice 9457K (1.06x) 0.61 11711K (1.05x) 0.48 8427 (68%) 9722 (62%) 12 (100%) +6

SVM original 26916K - 35349K - 5156 6586 6
SVM pslice 26932K (1.02x) 0.50 30303K (1.16x) 0.46 8771 (70%) 10810 (64%) 12 (100%) -13

L-list average physical original 1980K - 2542K - 9055 10393 25
physical pslice 1313K (1.51x) 0.70 17764K (1.43x) 0.52 9404 (4%) 11005 (6%) 25 (0%) +2

SVM original 6076K - 8097K - 9236 11109 25
SVM pslice 6218K (1.30x) 0.51 6210K (1.30x) 0.44 10017(8%) 11212 (1%) 25 (0%) -11

dotproduct physical original 1892K - 1556K - 5917 6343 8
physical pslice 1128K (1.69x) 0.88 971K (1.60x) 1.23 6603 (12%) 7091 (12%) 8 (0%) -3

SVM original 3041129K - 2362K - 6084 6428 8
SVM pslice 1928697K (1.57x) 0.58 1946K (1.21x) 0.51 6828 (12%) 7230 (12%) 8 (0%) -4

geomean - - 1.38x 0.81 1.27x 0.57 15% 13% - -4

TABLE II: Results for baremetal and Linux versions of each benchmark. 1.*x = speedup, *% = resource overhead

sparseVecMatMul - a float sparse vector matrix multiplica-
tion where the matrix is in compressed row storage format and
stored in global shared memory.
knapsack - a combinatorial optimisation problem, where every
item and associated weight (float) are stored in an array in
global shared memory.
floyd-warshall - a float weighted graph shortest path algo-
rithm, where the graph is stored in global shared memory.
L-list average - a linked list traversal where a float l-list
node element is averaged across the entire list that is stored in
global shared memory.
dotproduct - a dotproduct of two float vectors stored in
global shared memory.

For each benchmark a shared virtual memory (SVM) version
was also implemented, where instead of using physical memory
address space a virtual memory space shared with the host SW
on the ARM was used. The SVM implementation was achieved
by developing HLS libraries that walk the two level page table
structure present in the on-chip ARM system, where the first
level has 4096 entries, and the second level has 256 entries.
This allows the hardware to map virtual addresses to physical
addresses in pages mapped in physical DDR memory shared

by SW and HW.
Adding SVM to a benchmark increases its overall memory

latency resulting in its RCB (γ) changing. This change is
because each access may introduce a page table walk requiring
additional memory transactions per load operation. For example
consider the dotproduct baremetal benchmark, without SVM
its RCB (γ) = 0.88 giving it a speedup 1.69x close to it’s
theoretical maximum 1.80x (derived from Equation 2), how-
ever for the SVM implementation the extra memory operations
shifts it’s RCB (γ) further to the left reducing it to 0.58 and
reducing its speedup to 1.57x.

Applying SVM to a benchmark does not always mean that
there is a slowdown, as it depends on how the RCB (γ) of that
benchmark moves. For example, knapsack is heavily compute
bound with an RCB (γ) of 3.93, giving it a modest speedup
of 1.13x. When SVM is applied, this moves the RCB (γ) to
0.84, much closer to the peak speed up, resulting in a 1.69x
speedup.

The floyd-warshall benchmark appears as an anomaly in
the results, as given its RCB (γ = 0.61) it would expect
a higher speedup than its achieved speedup of 1.06x. We
believe that is due to the amount of replication required for the
pslice: this benchmark has a much higher αr value than all the

7

other benchmarks, limiting its theoretical maximum speedup
(according to Equation 2) to 1.5x, far lower than the S↑

p for
all other benchmarks.

Table II shows detailed results for all benchmarks where
there is no operating system (baremetal) and where a Linux
operating system is running. On average the presence of Linux
increases contention in the memory system, which in turn
increases the memory latency for the FPGA circuit generally
reducing the RCB (γ) value. Since the majority of baremetal
RCB (γ) < 1 adding linux usually results in a reduced speedup
compared to baremetal due to increased memory latency
reducing the RCB (γ) further. However knapsack has a very
high baremetal RCB (γ) of 3.95 and when this benchmark is
used with Linux its RCB (γ) moves to 0.95, causing an increase
in speedup from 1.13x to 1.21x which is close to its S↑

p (1.28x).

D - Resource Overheads: On average the cost of adding a
pslice to a circuit is low (1.15x) relative to the performance
gains (1.38x). This could be because what we are replicating
in the pslice is address calculation logic, which usually only
requires cheap integer arithmetic and control/branching logic.
Most benchmarks require less than 20% the resources of the
original circuit with the exception of floyd-warshall, where
high overheads were due to a floating-point comparison and
addition used in a branch decision for which the load had a
control dependency.
E - FIFO depth: Figure 8 shows how varying the FIFO
depth effects the speedup for both the dotproduct and spar-
seVecMatMul benchmark (Linux). For sparseVecMatMul we
observed that for a FIFO depth of 2 the pslice is prevented
from running ahead since its FIFO is full for 11% of the
execution time, resulting in the speedup around 1x. However
once the FIFO depth was increased to 4 the speedup jumps
since the percentage of execution time the FIFO is full drops
to a negligible amount (0.01%).

Further increases in the FIFO depth result with little to no
increases in performance, giving the same speed up as if the
FIFO was infinitely deep (i.e. FIFO is never full). This is
because the pslice and the original circuit quickly reach an
equilibrium where reads are being produced by the pslice at
the same rate as the original circuit is consuming them. The
RCB (γ) value of the sparseVecMatMul (Linux) benchmark
is 0.75 meaning that αr + β > αo implying that the original
circuit needs to block for some time waiting for the pslice to
fetch data. This RCB means that a large FIFO is useless as
it will often be empty (this applies to all benchmarks in the
region RCB γ < 1.0).

The RCB (γ) value for dotproduct (Linux) is 1.23 which
means that αo > αr + β, i.e. the rate at which reads are
consumed is less that the rate at which they are produced, so
FIFO depth has a greater impact on performance. However, the
benefits of extra FIFO depth are marginal and disappear quickly
once the FIFO becomes full. Figure 8 shows this effect, where
the line for infinite depth is above the depth 2 (always full),
however as the size of the problem grows the difference shrinks
from 3.5% to 1%. For depth 16 it can be seen that it starts
closely matching the performance of the infinite depth FIFO
until the point where it starts to become full around problem
size 17, where its performance drops down to the same speed

1.0

1.3

1.6

sp
ee

d
u
p

=load
count 15 17 19

2 4 86 10 12 14 16

problem size

3.5% improvement

1% improvement

FIFO depth

sparseVecMatMul
2
16

dotproduct
2
16

Fig. 8: Graph showing the speedup for the dotproduct and
sparseVecMatMul benchmarks for implementations using
different FIFO depths

as the depth 2 case. We conclude that there is little benefit in
using a large FIFO depth regardless of RCB (γ) value, for this
reason, we have selected a depth of 16 for all benchmarks.

V I . R E L AT E D W O R K

runtime generic compile time generic application specific

hidden from
user LEAP, 2013[8]

our approach
Cheng & Wawrzynek, 2014[5]

Chen & Shu [3]
-

transformation
required VivadoHLS Zhao et al., 2016[9] CoRAM++, 2015[7]

APMC, 2014[6]

TABLE III: Categorised table of related work

Figure III shows a categorised table of related work aiming
at hiding memory latency in HLS, with columns indicating
how generic the approach is and rows indicating the amount of
user involvement. The default way to attempt to hide memory
latency is to try to transform the application into a streaming
function. To aid in achieving this Xilinx’s VivadoHLS tool
provides streaming interface types and DMA engines to convert
memory mapped locations into streams. While these tools
facilitate hiding memory latency they often require considerable
restructuring of the code making them time-consuming to use,
and while this technique can be applied to any streaming
interface, it is often not possible to turn an irregular application
into a streaming one.

Alternatively, LEAP [12] provides a general memory ab-
straction for FPGA hardware kernels agnostic to the under-
lying code, where latency insensitive channels are used to
communicate with scratchpads and caches. To improve LEAPs
performance, stride prefetchers, [8] were added to its memory
infrastructure. These prefetchers examine the access pattern of
any hardware kernel attached to them and attempt to predict its
access pattern, prefetching its guesses. While this provides a
generic transparent interface improving performance behind the
scenes, it again only works for regular access patterns where
items are accessed at fixed offsets. Such an approach would
have little effect for irregular applications such as a linked list
where pointer chasing is required.

CoRAM++ [7], APMC [6], and Zhao et al [9], all attempt to
hide memory latency for complex data structures by providing
data structure specific memory-interfaces. In [9] HLS alterna-
tives to the STL data structures are provided where accessing
data-structure elements can be performed in parallel, but writing

8

to them is restricted, allowing the designer to convert pre-
existing code into a parallel implementation automatically. Sim-
ilarly, CoRAM++ and APMC provide data-structure specific
prefetching. However, they require more manual intervention
as control-threads need to be manually configured to fetch from
memory in parallel.

All approaches mentioned so far either can’t support irregular
applications, as it requires in-depth knowledge of the underlying
data structures, or require the user to manually use specific
mechanisms to indicate what type of data structure they
are using. Our approach aims to extract the memory access
structure from the underlying source, enabling us to hide
memory latency for irregular applications without any hints
or extra information from the designer. One approach similar
to ours is by Cheng & Wawrzynek [5], where the authors
describe a compiler optimisation that attempts to hide memory
latency for irregular loop nests by taking memory operations
and decoupling them from the compute. However, this approach
is limited in the types of applications that it can accelerate
since it cannot transform memory operations with dependencies
between them, “a classic example is the pointer chasing in
linked list traversal, where the address for the subsequent
memory request would not be available until the current load
gets its response”[5]. Such applications are something that
our approach can handle, and we believe that our approach is
compatible with theirs.

The most similar approach to ours is recent work by Chen
& Shu [3], which aims to provide prefetching for HLS tools
targeting ASIC design. In this work, they combine stride
prefetching for regular accesses, with a program slicing based
technique for irregular accesses, achieving an impressive x2.28
average speedup RTL simulation results.

Program slicing is an established technique in the SW
domain and historically is mainly used to aid debugging. More
recently program slicing has been utilised in a multithreaded
context to precompute parts of threads to aid branch prediction
and to warm caches in the memory hierarchy [13]. While these
techniques are somewhat effective[14], they often suffer due to
the overheads required to spin up a thread, along with utilising
entire core.

The work presented in this paper demonstrates that when
applying program slicing techniques to HLS tools a more
efficient implementation can be achieved as: we only need
to generate the hardware required to compute the slice (i.e.
not wasting an entire core); we can tightly integrate the pslice
and the original thread, passing information directly between
them instead of via a cache or branch predictor; also, there is
no overhead cost to spin up the pslice in an HLS context, the
hardware is pre-configured and waiting to start along with the
original circuit.

V I I . C O N C L U S I O N

Prefetching data for irregular applications is challenging as
memory addresses are often non-consecutive. Techniques such
as using pslices are an attractive solution to this problem, as
they are used to calculate the exact read addresses ahead of
the original function they are supporting, enabling them to
be effectively prefetched. In this work, we bring the idea of
pslices to the HLS domain for FPGA designs and present a new

HLS compiler pass called RELISH, which can automatically
construct a pslice for a given function.

Through a theoretical model, we were able to show situations
where a pslice was able to hide memory latency efficiently and
where it could not, with theoretical performance between 1x –
2x. This model was then validated through evaluating circuits
generated using RELISH, showing that the shape of our model
was correct and speedups between 1.05x – 1.69x were achieved.
On average the generated pslices require modest resource
overheads (1.15x), we believe this is due to pslices only
requiring integer arithmetic for address calculation. We also
describe the architecture of the tool and detail the architecture
of the FIFO based logic coupling to the pslice: experimental
results showed us that a small FIFO depth of 16 elements is
sufficient to experience the benefits of using a pslice.

R E F E R E N C E S

[1] Weiser, Mark “Program Slicing.” in Proc. 5th international conference
on Software engineering, pp. 439–449, 1981.

[2] Fleming, S. & Thomas, D. “StitchUp: Automatic control flow protection
for high level synthesis circuits” in Proc. DAC, pp. 1–6, 2016

[3] Chen, T., and Suh, E. “Efficient data supply for hardware accelerators
with prefetching and access/execute decoupling”in Proc. MICRO, pp.
1–12, 2016.

[4] Lattner, C., and Adve, V “LLVM: A compilation framework for lifelong
program analysis & transformation” in Proc. CGO, pp. 74, 2004.

[5] Cheng, S., and Wawrzynek, J. “Architectural Synthesis of Computational
Pipelines with Decoupled Memory Access.” in Proc. FPT, pp. 83–90,
2014.

[6] Hussain, T., Palomar, O., Unsal, O., Cristal, A., Ayguade, E., and Valero,
M. “Advanced Pattern based Memory Controller for FPGA based HPC
applications.” in Proc. HPCS, pp. 287-294, 2014.

[7] Weisz, G., amd Hoe, J. C. “CoRAM++: Supporting data-structure-specific
memory interfaces for FPGA computing.” in Proc. FPL, pp. 1-8, 2015.

[8] Yang, H. J., Fleming, K., Adler, M., and Emer, J. “Optimizing under
abstraction: Using prefetching to improve FPGA performance.” in Proc.
FPL, pp. 1-8, 2013.

[9] Zhao, R., Liu, G., Srinath, S., Batten, C., and Zhang, Z. “Improving
High-Level Synthesis with Decoupled Data Structure Optimization.” in
Proc. DAC,p. 137, 2016

[10] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Czajkowski,
S. D. Brown, and J. H. Anderson, “LegUp: An open-source high-level
synthesis tool for FPGA-based processor/accelerator systems,” ACM
Trans. Embed. Comput. Syst., vol. 13, no. 2, pp. 24:1–24:27, Sep. 2013.

[11] SoftFloat, http://www.jhauser.us/arithmetic/SoftFloat.html
[12] M. Adler, K. Fleming, A. Parashar, M. Pellauer, and J. S. Emer,

“LEAP scratchpads: automatic memory and cache management for
reconfigurable logic,” in Proc. FPGA, pp. 25–28, 2011.

[13] Islam, A., Xin, T., Vijayalakshmi, S., Ioana, B., and Andreas, M.“Self-
contained, accurate precomputation prefetching” in Proc. MICRO, pp.
153–165, 2015.

[14] Zhang, J., Zhimin, G., Yan, H., Ninghan, Z., and Xiaohan, H. “Helper
Thread Prefetching Control Framework on Chip Multi-processor” in
International Journal of Parallel Programming, pp. 180–202, 2015.

