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Abstract. From a dataset, one can construct different machine learn-
ing (ML) models with different parameters and/or inductive biases. Al-
though these models give similar prediction performances when tested
on data that are currently available, they may not generalise equally well
on unseen data. The existence of multiple equally performing models ex-
hibits underspecification of the ML pipeline used for producing such mod-
els. In this work, we propose identifying underspecification using feature
attribution algorithms developed in Explainable AI. Our hypothesis is:
by studying the range of explanations produced by ML models,
one can identify underspecification. We validate this by computing
explanations using the Shapley additive explainer and then measuring
statistical correlations between them. We experiment our approach on
multiple datasets drawn from the literature, and in a COVID-19 virus
transmission case study.
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1 Introduction

Underspecification has been identified as a major challenge in machine learn-
ing (ML) research. Roughly speaking, an ML pipeline is underspecified “when
it can return many predictors with equivalently strong held-out performance in
the training domain.” [4] Having multiple different predictors is problematic in
real-world applications as the current practice often treats such predictors as
equivalent (based on their training performances), while they usually give differ-
ent behaviours in deployment. Thus, we see that ML. models sometimes exhibit
unexpectedly poor behaviours when they are used in real-world applications
when such multi-predictor phenomenon occurs.

The first step of addressing underspecification is to identify it. To this end,
stress tests measuring prediction performances - evaluations that probe a predic-
tor by observing its outputs on specifically designed inputs - have been reported
in the literature [4]. However, with a few exceptions, as we discuss in Section 4,
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Table 1. Two simple string datasets, D1, and D5 for underspecification illustration.

Data POS Explanation Pattern(s)
D, POS: 01101, 11101, 11111, 01111 U D
NEG: 00000, 00010, 10010, 10000 ’ ’
Dy POS: 01101, 11101, 11111, 01111, 01001, 11100 1.

NEG: 00000, 00010, 10010, 10000, 00001, 10111

existing approaches identify underspecification solely with traditional prediction
metrics such as accuracy and root mean square error, which will make under-
specification not fully identified in many situations.

In this work, we present an alternative approach: identifying underspecifi-
cation with explanations. In a nutshell, given a dataset, we construct a set of
predictors and study explanations generated using a feature attribution algo-
rithm [14] from these predictors. We identify underspecification when observing
“too many” different explanations form such predictors on the dataset. We ob-
serve that: if a dataset can be explained in multiple ways, then a ML
pipeline built from it is likely underspecified.

Our core idea can be illustrated with the following example. Consider two
binary classification datasets, D1 and Dy, shown in Table 1. Dy and D, contain
eight and twelve 5-bit strings as data instances, respectively, on the alphabet
{0,1}. Each string is labelled either POS (positive) or NEG (negative). D contains
all strings of D; and four additional strings. Both datasets are balanced with
each containing the same number of POS and NEG strings. If we consider each
bit in a string representing a feature, which can be a potential explanation for
a string’s positivity, then there are three “1-bit explanations” for the positivity
of strings in D, as follows:

— -1---: a string is POS because its second bit is 1,
— -+ 1. a string is POS because its third bit is 1, and
— -+ 1: a string is POS because its fifth bit is 1.

There are no reasons to prefer any one of these explanations to the others given
the dataset D;. However, with the four additional strings introduced in D5, we
see that both explanations --1-- and - ---1 are ruled out, as 10111 and 00001
are both NEG. So there is a single explanation left for all strings in Ds:

— -1---: a string is POS because its second bit is 1.

Thus, we observe that Dy with more data yields fewer 1-bit explanations than
D, and can better specify prediction models than D;.

Various explanation construction techniques have been developed in Explain-
able AT (XAI) [18]. These techniques produce explanations of different types, see
e.g., [19] for an overview. In this work, we use a feature attribution explanation
method, SHapley Additive exPlanations (SHAP) [14], which computes explana-
tions to data instances in the form of “feature weights”, to facilitate underspec-
ification identification. SHAP is chosen in this work for its sound mathematical
foundation and its ease of implementation.
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Given a prediction model P € P, where P is the set of models, let y = P(x)
be the prediction made by P on the input x = (z1,...,25) € RM, SHAP
gives an explanation (¢1,...,0x) € RM (for y = P(x)); ¢; can be viewed as
the contribution of x; for this prediction. We can think SHAP as a function
IT: P xRM s RM_ From a dataset, we train a set of models P = {Py,..., P, }.
For the same input x, we compute a set of explanations ¢ = {II(P;,x)|P; € P}.

By looking at how “compact” @ is, we identify underspecification of the ML
pipeline - if explanations in @ are close to each other, that means models in P are
agreeable with each other, thus less underspecified. Otherwise, explanations in ¢
are apart from each other, then models in P, although might be making the same
prediction y, make predictions for different reasons, hence more underspecified.

To put things into a concrete setting, we study how underspecification oc-
curs in the context of predicting COVID-19 virus transmission. To this end, we
construct a dataset containing daily confirmed cases between March 2020 and
January 2021 and non-pharmaceutical control measures used in the UK and
predict whether the infectious rate is growing on a given day. As illustrated in

! Blue dots and red stars represent explanations obtained from predictors trained
with 100 and 1000 randomly selected samples in the COVID-19 dataset respectively.
Within each set, the coordinates x; are computed with a stochastic hill climbing
algorithm that solves arg minxl_yxj > |La(xi,x5) — Dr(X4,%;)|, where Lo is the L2
norm, D, is the Kendall distance of each pair of explanations (X, X;).
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Figure 1, underspecification is observed when explanations generated from mod-
els are far apart from each other; whereas when explanations are close to each
other and form compact clusters, there is less underspecification.

Overall, the proposed approach to identifying underspecification with expla-
nations has the following advantages:

1. Tt is model-agnostic and applicable to any data types and ML models as long
as such a model can be analysed with a model-agnostic explainer.

2. It is self-contained and does not require any additional information such as
domain knowledge or human expert inputs.

3. It is simple and does not require any special treatment to the dataset, e.g.,
stratification or alteration, to estimate underspecification.

Our contributions in this work are as follows:

— We formulate underspecification identification as a problem of measuring
correlations between explanations.

— We perform the explanation distance measurement using a well studied sta-
tistical metric, Kendall Rank Correlation Coefficient.

— We demonstrate our approach on both existing datasets in the literature and
a real-world COVID-19 dataset.

The rest of this paper is organised as follows. Section 2 introduces our main
approach with results produced from a synthesised dataset. Section 3 introduces
the virus transmission case study in detail. Section 4 discusses some related work.
We conclude in Section 5.

2 Owur Approach

As introduced in [4], we consider underspecification in a supervised learning
setting. Specifically, we consider an ML pipeline with a dataset D that produces a
model (predictor) P, drawn from a set of predictors P. Regardless of the method
used to construct P, it is evaluated with some performance measures such as
accuracy or root mean square error on D. An ML pipeline is underspecified if it
can return multiple different predictors such that they give similar performances,
while encoding substantially different inductive biases that can result in different
generalisation behaviours on datasets beyond D (Out-of-Distribution).

Since predictors can contain a vast amount of parameters and/or have differ-
ent internal structures, it is not straightforward to directly compare two predic-
tors and determine how similar they are. Thus, in order to determine whether
an ML pipeline is underspecified, we study explanations obtained from predic-
tors produced by the ML pipeline, and use those as a proxy to estimate the
differences between predictors.
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Our core assumption is that:

If two predictors give the same explanation to a prediction, then they
encode the same inductive bias; hence they should be considered the same.

In this setting, given predictors P = {P,..., Pk} produced by an ML pipeline
with dataset D, we first use the SHAP explainer IT to compute global explana-
tions ®p for each predictor P € P on the entire dataset D:

®p=» I(PXx). (1)

xeD

The rank of explanations from P is the ranked list calculated over ® p. For exam-
ple, if SHAP values ®p were [0.1,0.2,0.4,0.3] the ranked list would be [4,3,1,2].
This process of generating models and then computing their rank of explana-
tions is shown in Algorithm 1. Note that the parameter 6 used in line 3 is to
ensure that all predictors trained in P have similar and high performances. K
is the parameter that controls the number of predictors in experiments.

Algorithm 1 GenModels(D, K, 0) return R
Input: The number of models K, Dataset D, Prediction Performance Threshold 6
Output: Global Explanation ranks R
1: R=]]
2: while |R| < K do
: Train a predictor P with D such that the performance of P is greater than 0

3

4: ®p =(0,...,0) with |®p| the number of features in D
5: for each x € D do

6: ‘I’P:‘§P+H(P,X)

7 Append the ranked list of ®p to R

8: return R

With explanation rank lists R computed for all predictors, to identify under-
specification, we compute

9 K K
T= Rk 1) 2= 2T 2)

i=0 j>i

where 7;; is the pair-wise Kendall rank correlation coefficient over ranks of
explanations generated from predictors P; and P;. T is the average Kendall
rank correlation coefficient between all explanation pairs in P. We can see that:

— —1 <7 <1 for any ML pipelines and datasets; and
— the larger 7 is, the closer explanations are, hence less underspecification.

We test our approach on four datasets found in the literature, string classi-
fication [31], house price [3], abalone age [5] and mushroom [5]. Characteristics
of these four datasets are summarised in Table 2.
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Table 2. Datasets for Experiments.

Dataset # of Samples|# of POS Samples|# of Feature|Type of Features
String [31] 9,623 4,410 20 Categorical
House Price [3] 1,461 728 79 Mixed
Abalone [5] 4,178 2,081 8 Mixed
Mushroom [5] 8,124 3,916 22 Categorical

Prediction Performance vs Explanation Difference (String Dataset)
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Fig. 2. Explanation Correlation vs Dataset Sizes.

To investigate how underspecification changes with different dataset sizes, we
stratify each dataset into multiple smaller datasets in different sizes. For each
of these smaller dataset lengths we trained K = 100 random forest predictors
and test their performances on the whole dataset, comparing their explanation
correlations with classification accuracy. This experiment was then repeated 10



Underspecification with XAI 7

Table 3. Non-pharmaceutical COVID Control Measures.

Meeting Friends / Family (Indoor) Meeting Friends/Family (Outdoor)
Domestic Travel Control International Travel Control
Cafes and Restaurants Control Pubs and Bars Control
Sports and Leisure Closure Hospitals / Care and Nursing Home Visits
Non-Essential Shops Closure School Closure

times with averages shown in Figure 2. In this figure, we can see that for all four
datasets, as we increase the dataset size, the explanation correlation increases.
This means that with a larger dataset, explanations become more similar. Both
the explanation correlations and classification accuracy plateau for larger dataset
sizes indicating that once the dataset size reaches a certain threshold, introducing
more samples does not reduce underspecification.

3 COVID-19 Virus Transmission Case Study

In this section, we apply our approach to a coronavirus virus transmission case
study. This case study can be viewed as a realistic experiment modelled after the
epidemiological model that demonstrates underspecification in [4]. In a nutshell,
the model in [4] illustrates that at early stages of an epidemic, there is insuffi-
cient amount of data to fully specify an accurate prediction model; so multiple
prediction trajectories can be formed based on the insufficient training data,
consequentially the predictions becomes largely arbitrary.

From the Public Health England website?, we collected daily infection num-
bers reported across 12 regions in UK: East Midlands, East of England, London,
North East, North West, Northern Ireland, Scotland, South East, South West,
Wales, West Midlands as well as Yorkshire and The Humber. Non-pharmaceutical
control measure data was composed based on UK’s COVID policies as sum-
marised in Table 3. Data was corrected from various sources including Wikipedia
and major news agencies. Control Measures were coded based on level of sever-
ity (e.g., “High”, “Moderate”, “Low”) for all control measures excluding Non-
essential shops and School closures, which are coded as binary choices (“Open”
and “Closed”). Data points for temperature and humidity were extracted from
the weather website Raspisaniye Pogodi Ltd?. In total 4,257 data points were
collected between February 2020 and February 2021.

From daily infection numbers, we estimate R; using the method reported in
[7,30]. R; is one of the most important quantities used to measure the epidemic
spread. If R; > 1 , then the epidemic is expanding at time ¢, whereas if R; < 1,
then it is shrinking at time ¢. A serial interval distribution, which is a Gamma
distribution g(7) with mean 7 and standard deviation 4.5, is used to model the
time between a person getting infected and them subsequently infecting another

2 https://www.gov.uk/government /organisations/public-health-england
3 https://rp5.ru/Weather_in_the_world
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person on day 7. The number of new infections ¢; on a day t is computed as:

t—1
ct = Ry Z Crt—r, (3)
7=0

where ¢, is the number of new infections on day 7,

1.5
o= / g(r)dr,

=0

and for s =2,3,...,

s4+0.5
gs = / g(r)dr.

=s—0.5
From Equation 3, we have:

Ct

R = ==
27':0 Crgt—r

(4)

For x =t and 7, ¢, is the difference between the confirmed case on day = and
the confirmed case on day x — 1, which is available from the dataset directly.

With this data, we pose a simple classification question:

Given the infection number and control measures implemented on a day
t, 8 Rt Z 1?7

To account the fact that control measures take time to affect the infection rate,
we expand the dataset to include the duration of control measure implementation
for all control measures. For example, “Meeting Indoors (High) = 5” means that
“it is the 5th day that meeting indoors has been banned completely”. Similarly,
International Travel (Low) = 0 means that “there is no restriction implemented
on international travel”. We also drop instances before March 15, 2020 across all
12 regions in our dataset due to the low number of infections.* In this way, we
form a data file with 25 features and 3,937 instances with 2,288 positive ones.

To demonstrate the effect of underspecification, we stratify the dataset D into
11 random groups with sizes 100 to 3500, respectively. We train 100 random for-
est predictors with each group in D and compute explanation correlations using
the process described in Section 2. In addition, we also calculate the classification
accuracy over the remaining dataset. Figure 3 shows the results from these ex-
periments. We observe that as the dataset size increases, both the classification
performance and explanation correlation increase, as expected.

4 As can be seen from Equation 4, when ¢, is small, R; can flatulate in a unrealistically
large range and generate noises in the dataset.
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Prediction Performance vs Explanation Difference (COVID Dataset)
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Fig. 3. COVID-19 R; classification case study.

4 Related Work

As briefly discussed in the Introduction, stress tests have been used to identify
underspecification [4]. In particular, stratified performance evaluations, testing
whether different strata of a dataset give similar performance on a predictor
(see e.g., [1,21]), shifted performance evaluation, testing whether the average
performance of a predictor generalises when the test distribution differs in a
specific way from the training distribution (see e.g., [11,28]), and contrastive
evaluation, testing whether a particular modification of the input causes the
output of the model to change in unexpected ways (see e.g., [24,10]) are notable
approaches. Comparing with these, our work studies underspecification from a
different angle.

Underspecification has been studied in the ML literature in different notions.
In deep learning, the discussion focuses on the local geometric properties of ob-
jective functions [2], and the geometry of loss surfaces in model averaging and
network pruning [13, 8,29, 9]. Recently there have been analyses of overparame-
terisation in theoretical and real deep learning models, where underspecificaiton
is considered to be caused by potential more degrees of freedom than datapoints
induce [17,20]. In [6,26, 15, 25], underspecificaiton is treated as different near-
optimal solutions for a single learning problem specifications having different
properties such as interpretability or fairness.

Our idea of looking at underspecification from the explanation dimension
is highly relevant but also orthogonal to the line of recent works on “right for
the right reason”, for example [25] and [16]. In [25], domain knowledge captur-
ing “right explanations” and human experts are introduced in an ML pipeline
to directly assist the prediction and select the most suitable predictor from a
group of predictors based on their explanations, respectively. In [16], predictors
for natural language inference tasks are tested against a set of common but
sometimes wrong reasons, encoded as learning heuristics benchmarks. Compar-
ing with these, we do not attempt to increase prediction performance or develop
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datasets for benchmarking; instead, we focus on studying the relation between
explanations and underspecification and show that the number of “distinct”
explanations, or the “average distance” between explanations, generated from
different predictors is a good indicator for the degree of underspecification.

5 Conclusion

In this work, we present an alternative approach that identifies underspecifica-
tion by investigating explanation correlation. Simply put, given a set of equally
high performing predictors trained from an ML pipeline, if they produce highly
correlated explanations to their predictions, then the ML pipeline is not under-
specified; otherwise, the pipeline is underspecified. We illustrate our approach
in multiple classification tasks and in a real-world case study. Our results show
that having more data usually helps to address underspecification.

As an early work in studying underspecification, there are several limitations
of this work we plan to address in the future. Firstly, we believe that the con-
cept of underspecification must be further refined. The current state-of-the-art
as represented by [4] suggests underspecification is a qualitative concept without
precise quantification. However, to advance this field, measurable quantification
is needed so researchers can compare two different ML pipelines and compare
their degrees of underspecification quantitatively so “improvement” can be dis-
cussed meaningfully. We believe explanation correlation suggested in this work
could be such a metric, yet a deeper study is needed.

Secondly, additional explanation generation algorithms should be considered.
As feature attribution algorithms are in rapid development, there are techniques
other than SHAP, e.g., LIME [23], that also compute feature weights. Although
SHAP shows certain superiority over LIME as found in some studies [14,12,
22,27], it would be interesting to see whether our SHAP-based results can be
reproduced with LIME, or some other interesting behaviours can be discovered.

Thirdly, other forms of machine learning should be studied. This work has
focused on classification tasks in supervised learning. We need to consider re-
gression and unsupervised learning tasks. We believe some of the techniques
introduced in this work could be carried over to a regression setting. However,
carefully planned experiments are necessary to validate such approaches. For
analysing underspecification in unsupervised learning, some theoretical work is
needed to clearly define and scope the problem.

Lastly, this work focuses solely on identifying underspecification. Ultimately,
we would like to have a technique that addresses underspecification with data
that is currently available. To this end, the technique needs to select predictors
with the “correct” inductive bias. We would like to explore whether explanation
properties can be used for such identification.
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