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A B S T R A C T   

Multi-morbidity, the health state of having two or more concurrent chronic conditions, is becoming more 
common as populations age, but is poorly understood. Identifying and understanding commonly occurring sets of 
diseases is important to inform clinical decisions to improve patient services and outcomes. Network analysis has 
been previously used to investigate multi-morbidity, but a classic application only allows for information on 
binary sets of diseases to contribute to the graph. We propose the use of hypergraphs, which allows for the 
incorporation of data on people with any number of conditions, and also allows us to obtain a quantitative 
understanding of the centrality, a measure of how well connected items in the network are to each other, of both 
single diseases and sets of conditions. Using this framework we illustrate its application with the set of conditions 
described in the Charlson morbidity index using data extracted from routinely collected population-scale, patient 
level electronic health records (EHR) for a cohort of adults in Wales, UK. Stroke and diabetes were found to be 
the most central single conditions. Sets of diseases featuring diabetes; diabetes with Chronic Pulmonary Disease, 
Renal Disease, Congestive Heart Failure and Cancer were the most central pairs of diseases. We investigated the 
differences between results obtained from the hypergraph and a classic binary graph and found that the cen
trality of diseases such as paraplegia, which are connected strongly to a single other disease is exaggerated in 
binary graphs compared to hypergraphs. The measure of centrality is derived from the weighting metrics 
calculated for disease sets and further investigation is needed to better understand the effect of the metric used in 
identifying the clinical significance and ranked centrality of grouped diseases. These initial results indicate that 
hypergraphs can be used as a valuable tool for analysing previously poorly understood relationships and in
formation available in EHR data.   

Multi-morbidity, also known as Multiple Long Term Conditions 
(MLTC), is the coexistence of two or more chronic health conditions in 
the same individual, and is increasing due to improvements in survival 
for acute conditions and people living longer [1]. In recent years, there 
has been a growing interest in multi-morbidity due to the realisation 
that it poses considerable challenges to health care systems that were 
designed to care for individuals with single conditions [2]. Of specific 
interest in our study is establishing a robust framework for identifying 
diseases or sets of chronic diseases that have an inordinate effect on the 
health outcomes of people that have them, and therefore providing ev
idence to support the design and implementation of appropriate care 

pathways to mitigate that extra risk. 
As multi-morbidity has become increasingly studied, attention has 

been focused on developing statistical methods for analysing the phe
nomenon, in particular for finding sets of diseases that are more or less 
prevalent than would be expected from random chance in large scale 
Electronic Health Record (EHR) data [3]. For example, cluster analysis 
[4], latent class analysis [5,6], deep learning [7], multi state models [8] 
and association rule analysis have all been explored as a means to un
derstand multi-morbidity. A further alternative that has been previously 
explored is network analysis [9]. Network analysis uses available data to 
construct a mathematical object called a graph, in which relationships 
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between elements in one set of objects (known as “nodes” or “vertices”) 
define elements of a second set of objects (called “edges” or “links”). 
Network analysis has been used previously to examine systems in 
geographical information science [10] and more recently to analyse 
social networks [11]. 

In applications to multi-morbidity, the nodes represent distinct dis
eases or conditions, and the links identify pairwise disease clusters 
observed in a population cohort. This approach is reported in a growing 
number of papers using network analysis to examine multi-morbidity 
using data from Korea [12], Nova Scotia [13], Ireland [14], Spain 
[15], the United States [16,17] and Australia [9]. These studies used 
network analysis to investigate how prevalence of diseases varied in 
people of different sexes, people aged 50 years or older and with various 
index conditions. This previous work has shown that network analysis 
can be an important tool in the investigation of multiple health condi
tions and how they affect patient outcomes. 

The simplest application of network analysis is to relate nodes to 
other nodes in binary relationships, represented by edges with a single 
node at each end, with no implied directionality. For example, in the 
analysis of social networks, nodes would represent people on social 
media platforms and edges would represent “friends.” There are several 
generalisations that have been developed. Firstly, adding directionality 
to the edges (creating a directed graph) which may be used, for example, 
to model citations in scientific literature with papers represented by 
nodes and directed edges indicating a paper cites another. Secondly, one 
may permit graph edges to carry information about the strength of re
lationships between nodes (a weighted graph); one example in a 
geographical network uses edge weights to represent the distance be
tween towns or cities; in multi-morbidity, weights can reflect the 
numbers in a cohort with the observed disease cluster. 

A limitation of previous graph based approaches is that each edge in 
a classic graph can only connect to two nodes. This means that infor
mation on the relationship between three or more diseases is lost in this 
construction, which may lead to interactions between sets of more than 
two diseases not being explored. This is a major limitation for multi- 
morbidity, since we are often directly interested in exploring multiple 
co-occurring conditions, not just pairs. For example, people with three 
or more diseases may be disproportionately at risk of mortality or 
serious clinical complications and therefore should not be omitted from 
analyses of multi-morbidity. This observation leads to the investigation 
of a generalisation to classic graphs called hypergraphs, where edges 
may connect to any number of nodes allowing for the quantification of 
relationships between any number of diseases. Hypergraphs are capable 
of representing many different types of data, and they include the set of 
all classic graphs since hypergraphs permit binary edges. Much of the 
mathematical formalism used to analyse classic graphs can directly or 
with straightforward generalisation be used to analyse hypergraphs. To 
the best of our knowledge, the application of hypergraphs to multi
morbidity has not previously been explored. 

In our study we aimed to establish the efficacy and feasibility of using 
hypergraphs in the analysis of routinely collected, large scale data to 
investigate multi-morbidity clusters. In this paper, we present the con
struction of multi-morbidity graphs where diseases are represented as 
nodes, and the edges connecting nodes represent a weighted measure of 
the number of people that have all diseases connected to the edge. 
Furthermore, we use centrality metrics to determine the most “central” 
single disease and sets of diseases in the population. Here, centrality is a 
quantitative analysis of a graph that measures how strongly connected a 
node is to other nodes in the graph. Different centrality measures have 
different interpretations, but for this analysis we will use the eigenvector 
centrality. This measure attempts to quantify the influence a node has 
within the graph, and is large for nodes that are connected to other 
nodes that are themselves highly central. Using this hypergraph 
formalism, we can see which diseases and sets of diseases co-occur most 
with others. This provides benefit over current methods which may 
discard information on interactions between more than two diseases. 

1. Background 

1.1. Matrix representation of a hypergraph 

A weighted hypergraph ℋ is a collection of objects (𝒩 , ℰ,𝒲N,𝒲E)

known as nodes 𝒩 , edges ℰ and weights 𝒲N and 𝒲E. The set 𝒩 contains 
nodes {v0, v1,…, vn}, the set ℰ is the set of edges and is the power set of 
𝒩 such that subsets have two or more elements (since we disallow self 
edges). The sets 𝒲N and 𝒲E are the sets of weights. In contrast to a 
classic graph, a hypergraphs edges can connect to any number of nodes. 
Fig. 1 represents a simple example of a hypergraph representing a 
morbidity index consisting of n = 5 nodes (diseases) with m = 8 edges 
(disease clusters): 

We note that if we were considering a classic graph, all information 
carried by edges five, six, seven and eight would be lost, because these 
edges involve three or more nodes. 

A useful representation of an (unweighted) hypergraph is the inci
dence matrix M which is a n × m matrix where n is the number of nodes 
and m is the number of edges. Each edge is represented by a column of 
the incidence matrix and each node is represented by a row. Elements of 
the matrix equal to one indicates an edge is connected to a node, whilst a 
zero indicates there is no connection. The incidence matrix can be 
considered a fundamental representation of the hypergraph, as there is a 
one-to-one correspondence between hypergraphs and their incidence 
matrices. The incidence matrix M for the above hypergraph is: 

M =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0 1 1 0 1 1
1 1 0 0 1 1 1 1
0 1 1 0 1 1 0 1
0 0 1 0 0 1 0 0
0 0 0 1 0 0 1 1

⎞

⎟
⎟
⎟
⎟
⎠

(1) 

One may use the incidence matrix to compute the adjacency matrix 
of the graph, which directly quantifies the strength of connections be
tween nodes and can in turn be used to compute useful derived measures 
such as centrality. The adjacency matrix is related to the incidence 
matrix by: 

A = MT M − Dn (2)  

where A is a square n × n matrix and Dn is known as the node degree 
matrix, which has the node degree (or the valency), the number of edges 
the node is connected to, on the diagonal and zeros elsewhere. Sub
tracting its diagonal from the node degree matrix ensures the adjacency 
matrix has zeros on the diagonal, reflecting the idea that nodes have no 
connections to themselves. The adjacency matrix for the incidence ma
trix M given above is: 

A =

⎛

⎜
⎜
⎜
⎜
⎝

0 3 1 0 3
3 0 3 1 2
1 3 0 2 1
0 1 2 0 0
3 2 1 0 0

⎞

⎟
⎟
⎟
⎟
⎠

(3) 

Note the adjacency matrix is symmetric with non-negative real ele
ments aij, in which aij represents the number of edges that connect nodes 
i and j. For example, a15 = a51 = 3, indicating diseases 1 and 5 are 
connected by 3 edges - edges four, seven and eight as in Fig. 1 and the 
incidence matrix. Also note that this formalism would be identical for a 
classic graph, the only additional constraint being that columns would 
be limited to having only two ones in them, since edges are only allowed 
to connect to two nodes. 

1.2. Edge weights 

In our construction we assign weights to the edges of the graph, 
which represents a measure of how many people have the diseases that 
are connected to the edge. This information is contained in the weight 
matrix W, a diagonal m × m matrix with entries representing the weight 
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of the corresponding edge; without loss of too much generality, we will 
assume the weights are non-negative. Including W in the definition of 
the graph modifies the expression for the adjacency matrix to 

A = MT WEM − Dn (4) 

We note that including weights in a graph construction provides a 
high degree of flexibility and choice. Depending on the research ques
tion, we may be interested in a measure of the number of people with all 
diseases in the edge (as is the case here) but we could equally choose the 
weights to represent another measure relating the diseases. Further
more, there are an infinite choice of ways we can quantify the number of 
people with all diseases in the edge. This flexibility can be seen as both a 
benefit and a disadvantage as it allows one to construct a graph with 
specific research questions in mind, but weighting schemes may have as 
yet poorly understood biases that may affect results. 

For investigations into multi-morbidty and coincident diseases, the 
weighting scheme used should be some quantification of the number of 
people with all of the conditions represented by the edge, and as such is a 
problem of overlapping sets. There are infinite ways this quantification 
could be achieved, and while discussions of metrics quantifying the 
overlap of two sets have been previously performed [18], there is little 
literature on the overlap of more than two sets [19]. In this paper we use 
the overlap coefficient that has been generalised to apply to any number 
of sets to weight the edges, the number of people with all diseases in the 
set divided by the minimum number of people with one of the diseases: 

wE =
|X0 ∩ X1 ∩ … ∩ Xn|

min(|X0|, |X1|,…, |Xn| )
(5)  

where |Xi| is the number of people with disease Xi. 
As described above, in a hypergraph several edges can contribute to 

each adjacency matrix element. This is not the case in a classic graph. 
Edges must terminate at two nodes, as such it is not possible to have two 
distinct edges that connect to the same nodes, and each edge contributes 
to exactly two elements of the adjacency matrix (since the adjacency 
matrix is symmetric). One must be more careful when interpreting the 

adjacency matrices of hypergraphs, because the adjacency matrix for 
nodes cannot be used to distinguish between one very highly weighted 
edge and a set of edges with large weights. In our research we require the 
hypergraph to have no self-edges and the weights representing the 
strength of relationships between diseases to be non-negative. 

1.3. Eigenvector centrality 

As discussed above, graphs can be analysed using centrality metrics. 
In this analysis we will use the eigenvector centrality. The eigenvector 
centrality is related to, but differs from, the degree (valency) of nodes in 
a graph. A high eigenvector centrality means that a node is connected to 
many nodes who themselves are connected to many nodes, and is 
therefore a powerful measure of centrality. Google’s PageRank is closely 
related to eigenvector centrality [20]. To compute the eigenvector 
centrality, we compute the eigenvectors of the adjacency matrix. In 
general there are up to dim(A) eigenvalues and eigenvectors of A, but 
since the weights of the network are positive real numbers the eigen
vector corresponding to the largest eigenvalue will have all positive 
entries by the Perron-Frobenius theorem [21]. The elements of this 
eigenvector can be interpreted as a measure of centrality of each of the 
nodes. The interpretation of eigenvector centrality for hypergraphs is 
very similar to the interpretation for classic binary graphs. A minor 
difference is that more than one edge can contribute to each element of 
the adjacency matrix in a hypergraph which is not the case for binary 
graphs. The adjacency matrix therefore represents the overall weight 
between pairs of nodes and is no longer a fundamental representation of 
the hypergraph (since different incidence matrices could lead to the 
same adjacency matrix). 

1.4. The dual hypergraph and the weighted resultant dual graph 

Since a hypergraph removes the limitation on the number of nodes 
that can be connected to a single edge, there is no limit on the number of 
non-zero entries in each column of the incidence matrix (just as there is 

Fig. 1. An example of a hypergraph, with five nodes and eight edges. Note that this is for illustrative purposes, and not all possible sets of diseases (edges) are 
represented. 
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no limit on the number of non-zero entries in each row). Consider the 
transpose of the incidence matrix MT. This is the incidence matrix of the 
dual hypergraph ℋ* which has m nodes and n edges, where the edges of 
the hypergraph ℋ have become the nodes of ℋ* and vice versa. The 
adjacency matrix of the (unweighted) dual hypergraph ℋ* is A* =

MMT − De where De is the edge degree matrix, defined analogously with 
the node degree matrix above. 

This symmetry between a hypergraph and its dual is not present for a 
classic graph, and it enables us to compute the centralities of ℋ and ℋ* 

separately to obtain a quantitative understanding of the centrality of 
both the nodes representing single diseases and the edges representing 
sets of conditions. 

For a weighted hypergraph, the adjacency matrix of the dual 
hypergraph A* = MWNMT − De where WN is a n × n matrix with node 
weights on the diagonal. These weights are not related to the edge 
weights described above and are properties of the nodes, i.e. the single 
diseases, rather than the coincidence of sets of diseases. We choose the 
node weights to be the crude prevalence of the disease represented by 
the node, i.e. wN =

|X|
P where |X| is the number of people with the disease 

and P is the total population. Note the dual hypergraph does not depend 
on the prevalence of the sets of disease, only the prevalence of the single 
diseases. To avoid this limitation of the dual hypergraph we define the 
adjacency matrix of the weighted resultant dual graph as: 

A*
W =

̅̅̅̅̅̅̅
WE

√ (
MWNMT − De

) ̅̅̅̅̅̅̅
WE

√
(6)  

where we use the fact that WE is diagonal so WE = WT
E and 

̅̅̅̅̅̅̅
WE

√
=

diag
( ̅̅̅̅̅̅w1
√

,
̅̅̅̅̅̅w2

√
,…,

̅̅̅̅̅̅̅wm
√ )

. Calculating the eigenvector centrality of this 
weighted resultant dual graph will provide a measure of centrality of the 
edges of the original hypergraph whilst taking both the node and edge 
weights into account. We could also calculate the weighted resultant 
graph related to the (non-dual) adjacency matrix in order to weight the 

results by the disease prevalence. We do not feel this is necessary as we 
are primarily interested in the most important diseases due to their 
coincidence with other diseases rather than their overall prevalence. 

1.5. The bipartite representation of the hypergraph 

A hypergraph can be represented by a bipartite graph, which is a 
graph with the additional constraint that nodes have a binary partition 
label, and edges can only connect objects whose labels are different. The 
nodes and edges in the hypergraph become nodes in the bipartite graph 
with the partition label determining whether the object in the hyper
graph was a node or an edge. Investigating the centrality of this bipartite 
graph allows for the quantification of the importance of individual 
diseases and sets of diseases together (since the atomic entities are both 
the nodes and edges of the original hypergraph). We will only translate 
the edge weights of the hypergraph to the bipartite graph; edge weights 
can unabiguously be attached to the new edges of the bipartite graph 
such that the weight of hyperedge wi is applied to all new edges of the 
bipartite graph that connect to the ith hyperedge node of the bipartite 
graph. Note that by construction, the edges of the bipartite network 
cannot connect to nodes which both represent edges or both represent 
nodes. For example, the hypergraph above can be represented as a 
bipartite network (Fig. 2). 

We note that there are three options to choose from when calculating 
centrality (the original hypergraph, the dual hypergraph and the 
bipartite representation of the hypergraph), in contrast to the classic 
binary graph where there was no such seeming ambiguity. This is an 
additional advantage of the hypergraph construction which gives one 
the option to calculate the centrality of nodes (which in this paper 
represents single diseases), hyperedges (sets of diseases) or both nodes 
and hyperedges together (single diseases and sets of diseases togther). 

In the context of multi-morbidity, when considering the centralities 
of nodes in the dual hypergraph, the set of diseases with the largest 

Fig. 2. The bipartite graph resulting from the hypergraph defined in the incidence matrix above.  
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centrality is the set of diseases that is most strongly connected to other 
sets of diseases, and is not necessarily an indication of how strongly 
connected the diseases are within the set. One must look at centralities of 
both the hypergraph and the dual hypergraph (or alternatively, the 
bipartite representation of the hypergraph) to form a complete picture of 
the centrality of diseases and sets of diseases. 

1.6. Summary 

In summary, hypergraphs allow for edges that connect more than 
two nodes. This leads to a symmetry between nodes and edges of the 
hypergraph, since edges can connect to any number of nodes and nodes 
can connect to any number of edges. The dual hypergraph ℋ* is an 
alternative representation of the data in the hypergraph ℋ, with the 
edges of ℋ becoming the nodes of ℋ*. Furthermore, one can express the 
hypergraph ℋ as a bipartite (classical) graph 𝒢, where the nodes and 
edges of ℋ become nodes of 𝒢. These changes in representation are very 
powerful, because they allow one to calculate node centralities sepa
rately for each representation. The most central single disease is given 
by calculating the centrality of ℋ, the most central sets of two or more 
diseases by calculating the centrality of ℋ* and the most central disease 
or set of diseases (i.e. a set of one or more diseases) by calculating the 
centrality of 𝒢. Using centrality as a proxy for importance, this allows us 
to quantitatively evaluate the most important single diseases, set of two 
or more diseases or set of any number of diseases based on how well 
connected they are to other nodes. 

2. Methods 

2.1. Data 

The analysis described here uses EHR data made available for 
research within the privacy protecting Trusted Research Environment, 
the Secure Anonymised Information Linkage (SAIL) Databank [22,23], 
which contains all secondary care inpatient records from hospitals in 
Wales and records from approximately 85% of primary care practices 
[24] since 1998. 

2.2. Variables 

Clinical records from primary and secondary care were interrogated 
for codes relating to conditions defined by the Charlson comorbidity 
index (omitting HIV/AIDS status, which was not included in this study 
due to it being redacted by the original data providers before data is 
provided to SAIL as it was classed on the highly sensitive list by NHS 
Wales in 2008). There are 16 labels in the Charlson definition [25–27], 
but three related sets of diseases; (i) cancer, lymphoma and leukaemia 
and metastatic cancer, (ii) diabetes and diabetes with complication and 
(iii) mild and severe liver disease which were combined into three single 
conditions as they are by their nature closely related and would induce 
pseudoclustering. A person was regarded to have the condition if they 
had any occurrences between 1st January 2005 and 31st December 
2019. See the discussion below for a more in depth analysis of the 
limitations of this construction and how it can be improved upon. 

2.3. Participants 

The cohort used has been described previously [28]. Briefly, all 
people living in Wales on 1st January 2000 and aged 20 years or older 
were included in the baseline cohort. Age was defined as the age at 
cohort exit, i.e., the age at death or the age of the individual on 31st 
December 2019. Any diagnosis of disease defined by the Charlson co
morbidity index recorded prior to 31st December 2019 was considered 
indicative that the person had the disease. 

2.4. Analysis 

Hypergraphs were constructed for the cohort as a whole, and for age 
stratified sub-cohorts to investigate how the centrality of diseases 
changes by age group. The hyperedge weighting function used was the 
overlap coefficient, generalised to any number of diseases as defined in 
Eq. 5. The node weighting function used was the crude prevalence: 

w =
|X|
P

(7)  

where |X| is the number of people with disease X and P is the total 
population. Eigenvector centrality was used to quantify the centrality of 
the nodes. Centrality was calulated for the hypergraph, the dual 
hypergraph (to find most central sets of diseases) and the bipartite graph 
representation of the hypergraph (to find the most central single dis
eases and sets of diseases together). To demonstrate the importance of 
expanding the graph construction to include sets of three or more dis
eases we have constructed the equivalent classic network using only 
binary edges weighted by the overlap coefficient and compared node 
centralities. All analysis was performed using Python version 3.7.9 and 
numpy version 1.19.2 [29]. 

3. Results 

There were 2,178,938 people in the cohort, who were diagnosed 
with 2,918,569 conditions (including people who had no record of 
morbidity as defined by the Charlson index). Some 1,313,219 (60.3%) 
individuals had at least one condition and 755,421 (34.7%) had more 
than one condition diagnosed, meeting the definition of multi-morbid 
within this index. Table 1 shows the number of individuals, number of 
males and percentage of males in the population with each of the 
Charlson diseases. There are 13 Charlson conditions in this comparison 
and with the constraints listed above there are 8,177 possible hyper
edges in the hypergraph. The adjacency matrix for hypernodes calcu
lated from the incidence matrix is shown schematically in Fig. 3 with 
more yellow colourings indicating larger weights and more blue col
ourings indicating smaller weights. 

The node adjacency matrix for a hypergraph indicates the resultant 
weight between hypernodes. Recall that each element of this adjacency 
matrix has a contribution from each hyperedge that contains the nodes 
indicated by the row and column, and hyperedges involving more than 
two nodes will contribute to more than one adjacency matrix element. 
For example, the largest resultant weight between hypernodes is be
tween stroke and paraplegia, which will contain contributions from all 
hyperedges of the form {…,Stroke,…,Paraplegia,…} (see Fig. 4 for a bar 
chart illustrating the edges containing stroke and paraplegia with the 
largest weights, all of which contribute to the (Stroke, Paraplegia)
element of the adjacency matrix shown in Fig. 3). 

One can identify influential diseases qualitatively by looking at all 

Table 1 
The number of people, males and percentage of males in the cohort with each of 
the Charlson diseases.   

Counts Counts (males) Percentage (males) 

Chronic Pulmonary Disease 566829 266536 47.02 
Cancer 451604 220316 48.79 
Diabetes 400753 206352 51.49 
Stroke 276731 133058 48.08 
Renal Disease 263994 122643 46.46 
Congestive Heart Failure 212040 105239 49.63 
Myocardial Infarction 182310 111377 61.09 
Dementia 131831 48708 36.95 
Peripheral Vascular Disease 125345 76774 61.25 
Connective Tissue Disease 121572 40349 33.19 
Peptic Ulcer 99241 57309 57.75 
Paraplegia 54267 26997 49.75 
Liver Disease 32052 18255 56.95  
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values in a row of the adjacency matrix heatmap. For example, diabetes 
and renal disease appear to be influential while liver disease and con
nective tissue disease are less influential. The eigenvector centralities for 
the hypergraph adjacency matrix are shown in Table 2 (left). The 

“classical” binary graph derived from the same data is a much simpler 
object, since there are 78 possible binary edges in a graph of 13 nodes. 
The table of eigenvector centralities for the nodes of the binary graph is 
shown in Table 2 (right). 

Fig. 3. A heatmap illustrating the elements of the adjacency matrix of the hypergraph. Note that despite the overlap coefficient being bounded in the range [0,1] the 
values in the adjacency matrix can be greater than one. This is because each element in the adjacency matrix is the sum of overlap coefficients for each edge 
containing the two conditions. 

Fig. 4. The edge weights that contribute to the (stroke, paraplegia) element of the adjacency matrix. The labels are the additional diseases that are included in the 
edge, so the first and largest bar with no label is the weight of the (stroke, paraplegia) edge, the second is the (stroke, paraplegia, diabetes) edge, etc. 
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Table 3 contains eigenvector centralities for the 20 largest central
ities of the dual hypergraph, representing importance of sets of diseases. 
We note the most central sets of diseases are sets of two or three diseases, 
which may be an artefact of the chosen weighting metric. 

The eigenvector centralies for the bipartite representation of the 
hypergraph containing both single diseases and sets of diseases is in 
Table 4. As before, sets with few diseases dominate the list of most 
important disease sets. 

Stratifying the cohort by age and constructing a graph for each age 
band allows for the evaluation of the most central single disease as a 
function of age (Fig. 5). 

4. Discussion 

In this paper, we have described the use of hypergraphs for analysing 
multi-morbidity, which improves upon previous work involving classic 
network analysis (where edges are limited to being connected to two 
nodes). The method includes information on people with two or more 
conditions and can be used to quantitatively rank single diseases and sets 
of diseases both separately and together, which is essential for the un
derstanding of multi-morbidity in a modern setting since people 

commonly have more than two chronic conditions that require services 
from multiple health care professionals and specialities. Aetiology and 
care of single chronic diseases is generally quite well understood 
nowadays, but as people are increasingly being diagnosed with multiple 
chronic health conditions it is important to develop methods for iden
tifying sets of diseases that may or may not occur together at a rate that 
is different than would be expected by chance. 

We have considered our cohort of people at a single time point and 
calculated the eigenvector centralities of: the “classical” binary graph; 
nodes in the hypergraph; nodes in the dual hypergraph (equivalently, 
edges in the hypergraph); and nodes in the bipartite representation of 
the hypergraph (which are the nodes and edges of the hypergraph). We 
found the most central single disease when considering people of all ages 
was stroke, followed by diabetes. The most central sets of diseases all 
feature diabetes, likely because of the high prevalence of the disease 
compared to other morbidities considered. The five most central sets of 
diseases were diabetes with COPD, renal disease, congestive heart fail
ure, cancer and myocardial infarction. The associations between dia
betes and cardiovascular disorders are expected as they are known to be 
complications of diabetes. The association between diabetes and cancer 
and COPD may be due to lifestyle factors causing both conditions in the 
same sub-population. Comparing the centrality results of the hyper
graph with the classic graph, the most notable difference is that para
plegia is more central to the classic graph than the hypergraph. This has 
occurred because paraplegia is strongly connected to stroke but is not 
very strongly connected to other nodes (strokes in the brain or spinal 
cord may cause paraplegia or be an infrequent complication of aortic 
surgery [30]) and therefore hyperedges connecting three or more dis
eases including paraplegia have small weights. When the effect of all 
hyperedges is taken into account in the adjacency matrix, resultant re
lationships between most other pairs of nodes are enhanced more than 
relationships between paraplegia and other nodes. Neglecting to include 
sets of three or more diseases tends to exaggerate the effect of nodes that 
are strongly connected to other single nodes on the overall graph. In the 
hypergraph construction stroke is the most central single disease while 
paraplegia is the 9th most central. This indicates that the fraction of 
people that have a stroke that also have paraplegia is low compared to 
the number of people that have paraplegia that also had a stroke (since 
stroke is commonly coincident with other diseases that paraplegia is not 
commonly coincident with). This example therefore shows the addi
tional value of using hypergraphs over traditional methods because the 
additional information captured in the hyperedge weights makes a dif
ference to the calculated results. 

Table 2 
Left: The centrality measures of the hypergraph (single diseases). Right: The 
centrality measures of the “classical” binary graph.  

Node Centrality Node Centrality 

Stroke 0.3641 Stroke 0.4532 
Diabetes 0.3604 Diabetes 0.3962 
Renal Disease 0.3536 Paraplegia 0.3866 
Congestive Heart Failure 0.3280 Renal Disease 0.3009 
Chronic Pulmonary 

Disease 
0.3205 Congestive Heart Failure 0.2925 

Myocardial Infarction 0.2952 Chronic Pulmonary 
Disease 

0.2565 

Cancer 0.2785 Myocardial Infarction 0.2361 
Peripheral Vascular 

Disease 
0.2675 Dementia 0.2307 

Paraplegia 0.2408 Peripheral Vascular 
Disease 

0.2274 

Dementia 0.2120 Cancer 0.2169 
Peptic Ulcer 0.1633 Liver Disease 0.1184 
Connective Tissue Disease 0.1481 Peptic Ulcer 0.1173 
Liver Disease 0.1202 Connective Tissue Disease 0.1037  

Table 3 
The centrality measures of the resultant dual hypergraph (sets of diseases)  

Edge Eigenvector 
Centrality 

Chronic Pulmonary Disease, Diabetes 0.1350 
Renal Disease, Diabetes 0.1247 
Congestive Heart Failure, Diabetes 0.1152 
Cancer, Diabetes 0.1150 
Myocardial Infarction, Diabetes 0.1141 
Stroke, Diabetes 0.1124 
Peripheral Vascular Disease, Diabetes 0.1109 
Diabetes, Liver Disease 0.1078 
Paraplegia, Diabetes 0.1043 
Dementia, Diabetes 0.1038 
Congestive Heart Failure, Chronic Pulmonary Disease, 

Diabetes 
0.1007 

Peptic Ulcer, Diabetes 0.0980 
Connective Tissue Disease, Diabetes 0.0955 
Stroke, Paraplegia, Diabetes 0.0943 
Peripheral Vascular Disease, Chronic Pulmonary Disease, 

Diabetes 
0.0921 

Myocardial Infarction, Chronic Pulmonary Disease, Diabetes 0.0913 
Chronic Pulmonary Disease, Renal Disease, Diabetes 0.0898 
Stroke, Chronic Pulmonary Disease, Diabetes 0.0851 
Congestive Heart Failure, Renal Disease, Diabetes 0.0839 
Chronic Pulmonary Disease, Diabetes, Liver Disease 0.0830  

Table 4 
The centrality measures of the bipartite representation of the hypergraph (single 
diseases and sets of diseases).  

Node Eigenvector centrality 

Diabetes 0.9248 
Stroke 0.9169 
Renal Disease 0.5976 
Stroke, Paraplegia 0.5937 
Paraplegia 0.5656 
Congestive Heart Failure 0.5184 
Chronic Pulmonary Disease 0.4523 
Myocardial Infarction 0.3607 
Stroke, Diabetes 0.3493 
Renal Disease, Diabetes 0.3235 
Congestive Heart Failure, Diabetes 0.3218 
Cancer 0.3218 
Peripheral Vascular Disease 0.3177 
Stroke, Paraplegia, Diabetes 0.3169 
Dementia 0.2845 
Paraplegia, Diabetes 0.2829 
Myocardial Infarction, Diabetes 0.2814 
Stroke, Dementia 0.2708 
Peripheral Vascular Disease, Diabetes 0.2621 
Congestive Heart Failure, Renal Disease 0.2471  
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The eigenvector centrality provides a method with which to quantify 
how strongly connected nodes are to other nodes in the graph and 
represents a measure of how strongly connected the nodes and edges are 
to other nodes and edges, i.e. diseases and sets of diseases with high 
centrality means they are commonly coincident with other diseases or 
sets of diseases. We note that eigenvector centrality is difficult to 
interpret as an absolute measure. It is not clear whether a node with an 
eigenvector centrality that is twice as large as some other node is twice 
as important, and for this reason we have investigated the ranking of 
nodes by their eigenvector centrality in addition to their absolute value. 

The most central diseases for all people are observed to be consis
tently high in the centrality rankings for people of different age groups. 
Despite being the most central condition for people of all ages, stroke is 
not the most central disease for any ten year age band, although it is 
never ranked less than fourth most central. Somewhat surprisingly, the 
centrality of most diseases in the Charlson index do not change much for 
different age groups (with some notable exceptions, for example, renal 
disease and cancer become more central as age increases and peripheral 
vascular disease and chronic pulmonary disease become less central as 
age increases). We believe this result is a consequence of exactly what is 
being measured with centrality. Our graph construction does not take 
overall prevalence of diseases into account, so despite stroke and dia
betes being comparatively more common in older people than younger 
people, they are still diseases which are most likely to co-occur with 
other conditions regardless of age. It is possible to include the preva
lence of single diseases in the graph construction using node weights, 
and one could construct a similar object to what we have termed the 
Weighted Resultant Dual Graph for the original hypergraph, including 
node weights. Furthermore, our chosen study design only includes 
people if they are at least 18 years old at on 1st January 2000, and takes 
their age to be their age on the 30th December 2019 or their age at 
death. This means people surviving to the end of the study must be at 
least 38 years old. Conversely, the increase in centrality of cancer in 
older ages is likely due to cancers becoming more prevalent in older age 
groups and are known to be strongly associated with chronic conditions 
and underlying lifestyle risk factors [31]. We further note that there is 
considerable variation in the rank of some diseases (for example, peptic 
ulcer, renal disease and dementia) as a function of age group, and is 

likely due to the relatively small numbers of people that were multi- 
morbid with these conditions. This observation may also be due to our 
exploratory study design, which considers people to have a disease if 
they were diagnosed at any time during the study period. 

5. Conclusion and future work 

We have demonstrated the application of hypergraphs to the prob
lem of examining multi-morbidity, and constructed a hypergraph for a 
relatively simple set of diseases for a large cohort of people. We believe 
there is potential for this technique to be used for identifying new 
commonly occuring disease sets. This would require the analysis of 
datasets with a larger number of diseases, including rare diseases which 
suggests some avenues for future study. Firstly, it will be important to 
investigate improvements in computational techniques and optimisa
tions to improve the utility of results and help offset the combinatorial 
explosion of edges that occurs as the number of diseases under consid
eration increases. Our current implementation does not account for 
uncertainties in the estimated graph weights and while in principle it is 
relatively simple to calculate uncertainties for the adjacency matrix, the 
uncertainties in the eigenvector centrality might require an iterative 
perturbative approach that would add work to an already challenging 
computational problem. A possible simplification is the use of the apriori 
algorithm to limit the diseases and sets of diseases to only ones that meet 
a chosen prevalence threshold may be fruitful, but one still potentially 
loses information with this approach, particularly for diseases that affect 
small numbers that may be disproportionately important to quality of 
life or healthcare utilisation statistics. Secondly, there are important 
generalisations that could improve the utility of hypergraphs. For 
example, a directed graph allows for the investigation of whether the 
order of diseases acquired affected the relationships between diseases 
and sets of diseases (as one would expect it would). Furthermore, in this 
exploratory paper we have not applied any corrections for demographic 
variables such as age, sex and socioeconomic status. It is possible to 
apply these corrections in principle by adding nodes to the graph that 
represent these variables, or by stratifying these variables and con
structing separate graphs for each stratum. Finally, the time evolution of 
the cohort itself could be captured by constructing a graph at several 

Fig. 5. The centrality rank of the diseases in the Charlson index, stratified by 10 year age bands.  
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time points and observing the change in relative disease centrality, 
similarly to how we have approached the effect of age in this work. 

Of crucial importance to future work on this topic is the weighting 
scheme that is used. There are infinite possibilities to choose from, and 
each has its own bias. Furthermore, the choice of weighting has been 
shown to have a significant effect on results when using the same data 
[17]. There has been some effort to understand different ways to 
quantify the overlap of two sets and their biases [32,33], for example, it 
is well understood that the lift, a commonly used measure of the overlap 
of two sets in frequent item-set analysis and network analysis of diseases, 
overestimates the relative importance of rarer diseases. To date there 
has been less need for an exercise examining the biases in the overlap of 
more than two sets [19]. The number of sets is an additional factor that 
could cause biases in any overlap metric, in addition to possibilities 
present for the overlap of two sets. It is usually a simple matter to 
generalise a binary overlap function, but it is not clear whether the 
understood biases would persist in the same way for more than two sets 
and also how any bias in the weighting function would depend on the 
number of sets. A study similar to [32] is very important to inform future 
decisions regarding weighting of hypergraphs for multi-morbidity 
research. When implementing this method in practice, it is of para
mount importance to select the weighting scheme such that any biases in 
the analysis are minimised, and as such the results are robust. 
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