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a b s t r a c t

The objective of this work was to investigate from a user perspective linkage between a 1D time-series
view of data and a 2D representation provided by dimension reduction techniques. Our hypothesis
is that when such interaction happens seamlessly, the use of these linked views, compared to only
interacting with the 1D time-series view, for the ubiquitous task of selection and labelling, is more
efficient and effective both in terms of performance and user experience. To this end we examine
different dimension reduction techniques (UMAP, t-SNE, PCA and Autoencoder) and evaluate each
technique within our experimental setting. Results demonstrate that there is a positive impact on
speed and accuracy through augmenting 1D views with a dimension reduction 2D view when these
views are linked and linkage is supported through coordinated interaction.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

User exploration of large time-series data to elicit understand-
ng and interpretation of the fundamental behaviour of the con-
ition under observation is a challenging task. Scientists working
ith large time-series data in different domains tend to exhibit
imilar patterns of interaction [1,2]. The first and crucial step
s to achieve familiarity with the data. This includes both an
verview of the whole data stream, as well as the need to com-
are details across long time-duration to gain understanding. As
art of this interaction, there is a need to identify, select and
abel patterns within the data, which supports the extraction
f patterns for further statistical analysis or as labelled data for
achine learning. As understanding develops, the scientist will

orm hypotheses and rule extractions as they attempt to describe
he phenomena. Such a working pattern arises, for example,
uring the development and deployment of new sensors, new
pplications of sensors or development of a new theory to explain
he phenomenon under observation.

A specific example emerges from the Natural Sciences re-
earch domain where biologists utilize tri-axial accelerometers to
ag animals and collect high frequency data about the behaviour
f the animal under observation [3,4]. Tags are often experimental
n nature especially during the development of the devices, and
ince they are difficult to attach to animals, the data collected
an be very different even between animals of the same species.
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ttps://doi.org/10.1016/j.knosys.2021.107507
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Also the behaviour captured can be very different inter-species.
In parallel to tagging devices development and data collection,
the biologists develop, benchmark and validate their theories of
behaviour [5].

The above scenario is exemplar of challenges common to
experimental research and beyond, and has provided us with
a strong motivation to explore developments that may enable
scientific users to fully immerse themselves in their time-series
data effectively.

Interacting with 1D time-series is a well-studied area [6–
11]. The overall objective to identify, select and label patterns is
supported by low level mouse interactions of pattern selection
via point and click and data brushing. The approaches mentioned
provide various interfaces to enhance the efficiency of these in-
teractions through the use of additional degrees of freedom such
as panning, zooming, annotation and other enhanced visual cues.
Across the three tasks labelling using 1D interaction can represent
the most tedious and repetitive task. Commonly, patterns must
still be individually selected to be labelled, while it would be
desirable for all similar patterns to be selected in a parallel
operation to speed-up user interaction and at the same time allow
the user to fine tune selections both in parallel and individually.

Our starting point was whether we could create a tool to
effectively inspect multivariate time-series data, that would sup-
port interaction as follows: A user could select a pattern and all
similar patterns in parallel (Fig. 1(top), concurrent selection);
oving a brushed selection left or right (back and forth in time)

n parallel moves other selections also left or right (Fig. 1(bottom),
uning). Fig. 1 shows a summary of our concept where the orange
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Efficient interaction: Top: The concept of parallel selection. The user
brushes a pattern (yellow) and similar patterns are automatically selected in
parallel (orange). Bottom: The user slides the yellow selection to the left
intending to capture the period before the pattern as well as half the pattern.
This interaction is made automatically in parallel to the orange selections.

selections are all pattern based and selection is implemented
using the sliding window method for time-series data.

The sliding window technique projects the data to higher
imensions (Fig. 2). Dimension reduction is a critical and effective
ethod to express high dimensional data as a function of the
ost relevant features. We therefore investigate the possibility
f implementing our proposed parallel interaction by linking 1D
iews with orthogonal 2D plots obtained by applying dimension-
lity reduction to the restructured data from the sliding window
pproach. Through the 1D to 2D linkage, feature exploration in
he 1D view is supported and enhanced by the concise but highly
xpressive representation of the projected data. To achieve this,
ur proposed solution leverages and marries both similarity and
imension reduction. We treat a window of n consecutive time-
eries data samples as points in nD space. If we stride one time
ample to the right, each nD vector will be very similar to the
revious and thus close in nD space. Patterns close in shape,
ut distant in time will also be close neighbours in nD space.
s patterns increase in dissimilarity their distance in nD space
ill also increase. Distinct patterns will form separate clusters

n high-dimension space. Paths between those clusters represent
heir temporal connection. A larger stride could be used to save
omputational time, but this was unnecessary and we use a stride
f 1 throughout, which will capture the clusters. A stride length
hat is similar to or larger in size than the target patterns would
educe the ability of the method to resolve the clusters. We
emonstrate that noisy features, where 30% noise is added, still
roject to similar positions, thus demonstrating this approach to
imension reduction is noise tolerant (Appendix B).
An effective dimension reduction technique will preserve clus-

ers, prevent outliers and inliers (neighbourhood integrity), and
reserve the temporal paths connecting clusters. By employing
uccessful dimension reduction from high-dimension space to 2D
e can provide an effective interface to satisfy our research goal.
eighbours in 2D space will correspond to similar patterns in the
ime-series data.

To maximize the expressiveness and clustering performance of
he 2D view we leverage the power of deep learning within the
imensionality reduction pipeline. Deep learning techniques are

elatively new and performant in the area of time-series analysis.

2

From a data analysis and machine learning perspective it is com-
mon practice to use the sliding window approach (as described
above) to capture patterns in a time-series as a set of feature
points in high dimensional space. Neighbouring points in the high
dimensional space will represent similar patterns. As a final step
of machine learning, the post-processed (e.g., clustered) points
are reduced to 2D using dimension reduction techniques for
plotting. These static plots are coloured according to ground truth
or the determined cluster membership, and thus the efficacy of
the method can be qualitatively judged by spotting incorrectly
located coloured points (coloured outliers). In the last decade t-
SNE has been the favoured technique to perform dimensionality
reduction, recent developments have also seen UMAP as a strong
contender.

We are motivated by our example use case (biology sensors).
We use accelerometry data from an Imperial Comorant [12,13].
Our overall research goal is two-fold: to introduce concurrent
selection for time-series data exploration; and to integrate re-
cent developments in machine learning and dimension reduction
in the context of time-series data exploration and examine its
effectiveness. The research questions we address are:

Q1: Are state-of-the-art machine learning dimension reduction
techniques useful for presenting an abstract 2D interface of
time-series data to users?

Q2: Do users understand an abstract 2D interface and relate it
to the conventional 1D time-series representation?

Q3: Do abstract 2D interfaces provide any benefits compared to
only utilizing 1D time-series representations?

Q4: Do different dimension reduction techniques lead to differ-
ences in either user perception of difficulty or user perfor-
mance?

Our contributions are:

• A comparative review of the expressive power of dimen-
sion reduction techniques to create a 2D embedding of
time-dependent data points which are the result of using
the sliding window approach on time-series data (RQ1 and
RQ4).

• The implementation of a novel interface integrating linkage
between 1D views to 2D view of the 2D embedding of
time-series data. (RQ2 and RQ3)

• The design of a user study to evaluate and validate the
interface and 2D embeddings generated by different dimen-
sionality reduction methods to assess their fitness in the
context of projecting time-series data (RQ2 and RQ3).

These contributions demonstrate our objective to introduce effec-
tive concurrent selections for time-series data.

The rest of the paper is organized as follows. In Section 2 we
present the related work. Section 3 presents the methodology
behind the sliding window approach for multivariate time-series
data and linked views. In Section 4 we report the design of the
user study and its analysis. We report and discuss our findings in
Section 5.

2. Related work

The most common form of representing time-series data is a
line graph [11]. It effectively works when dealing with a small
data space, but there comes a point when performing such tasks
becomes more challenging due to many concurrent time series
or large time series datasets [7]. Finding frequently occurring
patterns or outlier patterns in large time series dataset is not
easy. These tasks are quite distinct, and are usually tackled sep-
arately. Many works have been proposed to tackle these issues
for example, VizTree [14] where frequently occurring patterns
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re represented by the thickest branches and surprising patterns
re the thinnest branches across the tree. Streamstory [15] which
epresents cyclical behaviour as states and transitions derived
rom a Markov Chain model to provide a multi-scale data rep-
esentation. Streamstory removes the time dimension and cycles
re dependent on clusters formed from similar data points. Deal-
ng with such systems demands user domain knowledge to find
nteresting patterns. Other works such as TimeSearcher 2 [6] and
imeClassifier [16] are used for pattern discovery through query-
y-example in the time-series data. Both systems require users
aving a general notion of what constitutes interesting patterns
o enable detection and labelling of interesting regions. Other
istance measures and metrics, such as Dynamic Time Warping
DTW) [17] and Longest Common Subsequence (LCS) [18] can
ave O(N2) complexity which TimeClassifier improved by im-

plementing cross-correlation in the frequency domain for fast
matching. It also included an interface to allow the user to remove
incorrectly matched patterns. Both these problems have also been
solved in DTW [19]. In the above works, the user needs to provide
an example for matching. The approach we take here results
in patterns clustered together, enabling similar features to be
selected through a user interface and also allowing concurrent
panning in the interface. Some works focus on the interaction
techniques while analysis techniques have been given less atten-
tion such as pixelbased [9], lensing techniques [8,10], stackzoom
and chronoLens [7].

Recently, projection-based methods have gained more atten-
tion in the visualization field. Based on the current state of
the art, we categorize literature pertinent to our work into two
categories: projection-based methods that are predominantly
ourced from the visualization literature and dimensionality re-
uction techniques that are reported in the machine learning
iterature.

.1. Projection-based methods (visualization)

With the growing importance of time series analysis, differ-
nt visualization techniques have been proposed. The connected
catterplot technique has been used with temporal data that
an be visually interesting and effective [20]. Haroz et al. [21]
se the connected scatterplot to tackle multivariate data. The
onnected scatterplot is employed to visualize two related time
eries. The connection between points in a scatterplot is based on
heir temporal sequence. Despite its lack of familiarity and under-
xploration in the visualization community, Haroz et al. [21]
uggest the technique given its merit for presenting and commu-
icating data. Sedlmair et al. [22] present a data study comparing
lass separability of dimension reduction data in 2D scatterplots,
nteractive 3D scatterplots and scatterplot matrices. They con-
lude that using 2D scatterplots to explore the output of different
imensionality reduction techniques is the most promising ap-
roach. Also, they advocate avoiding interactive 3D scatterplots
or dimension reduction data, especially for cluster verification
asks.

Xie et al. [23] encourage using projection-based methods for
wo reasons. First, a scatterplot, as a visualization technique, is in-
uitive and easy to read. Second, scatterplots can provide a unified
o-embedding space for visualizing data and their similarities and
how the embedded semantic content. Bach et al. [24] introduce
ime curves to visualize patterns of evolution in temporal data
here a timeline is folded into itself. Different events of an object
re depicted by dots where they are connected following the
hronological order of the events. In such a way, the similar time
oints end up being close to each other. Also, the characteristics
f the temporal behaviour can be comprehended from the curve
hape which is recognized as a single object. Similarly, Elzen
3

et al. [25] propose a projection-based method to explore and
analyse the change of dynamic networks by transforming each
time-step network into a high-dimensional vector which is then
projected onto a two-dimensional space using dimensionality re-
duction techniques. Thus, each point in the projection space refers
to a snapshot of a time step which helps the user to identify the
abnormal state, steady state, and recurring state of the dynamic
network and the transition process.

Among multiple dimensions, patterns usually evolve over time
in such data which are hard to be detected. Projection based
methods leverage dimensionality reduction techniques to allow
the user to analyse and visualize multivariate data, but dimen-
sionality reduction techniques used alone do not provide means
of exploring multivariate patterns over time [26]. Jackle et al. [26]
use a sliding window approach which is the major difference
to the methods of Bach et al. [24] and Elzen et al. [25]. Thus,
dimensionality reduction is performed for each data window
separately which are then plotted sequentially along the time axis
obtaining the similarity across multiple time points evolving over
time.

Ali et al. [27,28] use PCA to reduce multivariate time-series
data to a 2D plot view of the entire data set in order to find repet-
itive and outlier patterns. They do not evaluate the use of such
views. Similar to Ali et al. [27], Omata et al. [29] propose a method
for analysing the time series data of unsteady flow fields with the
major difference using a deep convolutional autoencoder (DCAE).
Dimension reduction is performed and the spatial structure of the
flow field at each time period is represented by low-dimensional
features (latent space representation or bottleneck) using DCAE.
After that, the conventional dimensionality reduction techniques
such as PCA are performed on the features that are extracted from
the bottleneck layer to visualize the trajectory of the flow in a 2D
plot.

Guo et al. [30] integrate projection based methods within their
EventViewer, a tool to support event sequence analysis. t-SNE is
employed with the event overview module of the tool to pro-
vide projection of event vectors, to support users in comparison
of how events co-occur within each sequence stage. LDSScan-
ner [31] is an interesting and important tool for exploring struc-
tures within latent features and high dimensional space using
t-SNE as 2D visualization. It is tested on low dimensional syn-
thetic data and MNIST which is known to work well with t-SNE.
We deal with dynamic data and our findings that t-SNE is difficult
for users are supported by others which find that t-SNE is less
able to preserve continuums [32–34]. Strobbelt et al. [35] propose
a visual analytics tool to support ‘‘what if’’-style exploration of
trained sequence-to-sequence models across every stage of the
translation process. States and neighbourhood are projected to
lower dimensional space to simplify visual interpretation. Differ-
ent to ours the tool aim is to identify which patterns have been
learned and to validate the model.

Rauber et al. [36] investigate projection of time-dependent
data, and propose an adaptation of t-SNE, referred to as dy-
namic t-SNE, that strives to strike a balance between temporal
coherence and projection reliability.

2.2. Dimensionality reduction techniques

Dimensionality reduction techniques aim at representing high-
dimensional data in low-dimensional spaces to facilitate visual in-
terpretation and support analytical process. Many techniques ex-
ist, ranging from simple linear projections like principal compo-
nent analysis (PCA) [37] and multidimensional scaling (MDS) [38]
to more complex nonlinear transformations (NLDR) [39]. Modern
NLDR techniques are sometimes referred to as manifold learning,
most recent examples are t-Distributed Stochastic Neighbour



M. Ali, R. Borgo and M.W. Jones Knowledge-Based Systems 233 (2021) 107507

e
d
p
A
t
d

E
a
t
a
f
l
l
n
i
S
(
u
a
S
b
m
m
o
a
T
w

s
t
b
A
w
u
h
h
s
t
t
s
t
a
d
u
t
s
i
t

-

Fig. 2. Sliding window approach on multivariate time-series data with an
xample window width of 60 and stride of 5. Z1 is populated from the first
ata channel. The entire time-series data is transformed to 3 × 60D lists of
oints on which dimension reduction is performed using a Deep Convolutional
utoencoder (DCAE) that learns a complex feature preserving dimension reduc-
ion. We derive a lower dimensional feature space from the original 180 (3×60)
imensions using DCAE.

mbedding (t-SNE) [40] and Uniform Manifold Approximation
nd Projection (UMAP) [32]. To enhance the efficiency of ex-
racting patterns in data, dimensionality reduction techniques
re utilized [41]. Using dimension reduction in combination with
urther visual encodings that detect the internal state of the
earning model improves the performance of visual-interactive
abelling [42]. As a feature extraction method, Principal Compo-
ent Analysis (PCA) is applied to time-series data [43–45]. PCA
s the most used in the projection-based methods [25,27,29].
ome works such as [24,26,46] use multi-dimensional scaling
MDS) to embed time points in 2D space. If Euclidean distance is
sed, the results of classical MDS will yield as the same results
s PCA [47]. t-Distributed Stochastic Neighbour Embedding (t-
NE) [40] is utilized helping to visualize high-dimensional data
y giving each datapoint a location in a two or three-dimensional
ap. Omata et al. [29] and Elzen et al. [25] use non-linear di-
ensionality reductions (t-SNE). Omata et al. [29] mention some
f the weaknesses of t-SNE where the trajectory changes greatly
nd its orbit has an irregular shape because of some discontinuity.
hus, the result of t-SNE is quite difficult to interpret. These points
ill be discussed later during this study.
One of the practical applications of autoencoders is dimen-

ionality reduction for data visualization. It has a high ability
o learn data projections that are more interesting than other
asic techniques [48,49]. Huang et al. [50] use Deep Convolutional
uto-Encoder (DCAE), based on Deep Convolutional Neural Net-
ork (CNN), to hierarchically model tfMRI time-series data in an
nsupervised manner. DCAE is a powerful method for learning
igh-level and mid-level abstractions from low-level raw data. It
as the ability to extract features from complex and large time-
eries in an unsupervised manner. Therefore, Omata et al. [29] use
he DCAE to extract important features which are then reduced
o a 2D space assisting the use to visualize the spatio-temporal
tructure of an unsteady flow. In their work, there are no in-
eraction techniques associated with the static images, which
ssist the user to explore and interact with raw and projected
ata. Compared to [46], we offer better separability of features by
tilizing DCAE, and we investigate using an objective user study
he usefulness of the abstract interface in achieve high F-score for
electing patterns or sequences from the data. DCAE also allows
ntegrated working with multivariate time-series data compared
o approaches that handle each channel separately.
4

3. Methodology

Despite the effectiveness of dimensionality reduction methods
to support analysis of datasets with multiple layers of observa-
tions these methods have been mostly designed and evaluated
in the context of static data. Few user studies have focused on
their application in the context of multidimensional and multi-
variate temporal data. Vernier et al. [51] highlight the challenges
involved in applying projection techniques to dynamic data and
the difference in quality of results and stability of the methods
compared to their application to static data. The authors evidence
a gap in literature as well as potentials for improvements. Our
research questions lie in the remit of these challenges — that
is exploring the expressive power of projection techniques and
how this can be leveraged effectively. To address these research
questions we create a 2D view of the entire 1D time-series data
through data transformation using the sliding window approach
and subsequent dimension reduction to 2D. We create coordi-
nated 1D and 2D views that enable users to brush selections in
both views, thus supporting the investigative phase of gaining
familiarization with data and labelling of data. The following
sections give details of our data preparation.

3.1. Sliding window

We define a continuous multivariate time-series data D of
dimension d with n time-steps, D = X1, X2, . . . , Xn, where each
Xi =

{
x1i , . . . , x

d
i

}
is the d-dimension vector of data recorded at

time-step i. Let w be the window width and s the stride. (See
Fig. 2 for an example where w = 60 and s = 5 and also the
explanation in the primary submission video.)

Define a matrix Zk where each row is a vector (window) of size
w of data extracted from the kth dimension. Each row is a time
slice from the original data. (See Fig. 2.)

Zk(w, s) =

⎡⎢⎢⎢⎣
xk1 xk2 . . . xkw
xk1+s xk2+s . . . xkw+s

...
...

. . .
...

xk1+(r−1)s xk2+(r−1)s . . . xkw+(r−1)s

⎤⎥⎥⎥⎦
where r is the number of rows, and w + (r − 1)s ≤ n

When more than one dimension of the multivariate data is
used, Z becomes a three-dimensional array.

3.2. Dimension reduction

The sliding window approach results in a set of r points
(rows from Z) in w−dimensional space (each row is a window
of size w on the data). We use dimension reduction techniques
to transform these w−dimensional points to 2D. The set of 2D
points then becomes our secondary view of the time-series data
complementing the 1D time-series graph. Each point in the 2D
view represents one w−dimensional point in Z which represents
w contiguous time-steps (a window) in the original time-series
data set. It is understood that if the dimension reduction pre-
serves neighbourhood coherency of the original data, then close
points in the 2D space will correspond to windows capturing
similar patterns in the higher dimensional space. Thus, linking the
two views will provide efficient parallel selection of patterns.

Dimension reduction techniques include linear and non-linear
approaches [52]. We chose popular and state-of-the-art dimen-
sion reduction techniques: Deep Convolutional Autoencoder
(DCAE), Principal Component Analysis (PCA), t-Distributed Stochas
tic Neighbour Embedding (t-SNE) [40] and Uniform Manifold
Approximation and Projection (UMAP) [32].
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Following the latest trends in machine learning we use DCAE
to learn an effective dimension reduction to a set of latent fea-
tures and reduce these further using PCA, t-SNE or UMAP. We
considered using DCAE or PCA alone and discuss this at the
end of Section 5. DCAE is a performant approach to dimension
reduction providing a good separation of features in latent space.
PCA, UMAP and t-SNE provide alternative pathways for reducing
the latent space to 2D thus allowing us to evaluate different
approaches to the 2D user interface.

We discuss the characteristics of the various approaches and
their anticipated impact on user behaviour. Non-linear DR tech-
niques are thought to help to avoid overcrowding issues [33]
which is also a natural goal from a user perspective. While t-
SNE is currently the most commonly used technique, the new
UMAP algorithm shows high competitiveness compared to t-
SNE [33]. t-SNE suffers from some limitations such as loss of
large-scale information (the inter-cluster relationships). UMAP
has a faster runtime and provides better scaling which helps
to gain a meaningful organization of clusters, outliers and the
preservation of continuums compared to t-SNE [32–34]. There-
fore the proposed methodology (DCAE followed by one of the
approaches) should provide good feature separation (provided
by DCAE), avoid overcrowding (t-SNE and UMAP), better com-
putation (PCA and UMAP), and meaningful clusters (UMAP). The
relative behaviour of the methods and their impact on user per-
formance is to be evaluated.

Multivariate dimension reduction. Our approach to multivariate
dimension reduction is to use autoencoder to learn a complex
data projection [48]. Compared to the conventional autoencoder,
Deep Convolutional Auto-Encoder (DCAE) has fewer parameters
resulting in less training time. Also, DCAEs use local information
to reconstruct the signal while conventional autoencoders utilize
fully-connected layers to globally do the reconstruction. DCAE is
an unsupervised model for representation learning which maps
inputs into a new representation space. The two main parts are
the encoding part that projects the data to a set of latent features
and the decoding part that reconstructs the original data from
the latent features. DCAE is a strong nonlinear dimensionality
reduction method [53].

Dimensionality reduction for the 2D view is achieved by un-
supervised training of an encoder and a decoder neural network,
minimizing the reconstruction error (MSE) [53–55]. The latent
features resulting from the encoder are flattened and one of
PCA, UMAP, or t-SNE is then used to reduce them to 2D for
visualization. Our user study examines the impact on usability of
utilizing PCA, UMAP or t-SNE on the latent features from DCAE.

Table 1 shows input and output layer shape, filter size, number
of kernels and activation functions used in our network. The
dense layer is the latent space to which PCA, t-SNE or UMAP are
applied to reduce to 2D. Above the dense layer is the encoder
and below, the decoder. The table depicts a specific example for
our tri-axial accelerometer data and a window width of w = 60
(other window widths are explored in the secondary video at
3m03s). Therefore, the input to the autoencoder is 60 × 3. The
number of feature maps, size of filter and depth of the model are
set based on the reconstruction error on a validation set. The first
layer uses convolution of size 10 × 3 to learn 64 kernels on the
tri-axial data thus lifting the original 180 dimensions to higher
dimensions. Max pooling is used to down-sample the feature
maps. Using max pooling has two main benefits: first it obtains
translation-invariant features [56]. Second, it reduces the compu-
tational cost for the upper layer [50]. There are two further layers
of convolution and max pooling before flattening to a dense layer.
Decoding is the reverse of encoding, with upsampling replacing
max pooling, where upsampling repeats each temporal data n

times along the time dimension (where n = 3, 2, 2 in the three

5

Table 1
Architecture of the Deep Convolutional Auto-Encoder.

Layers Sh
ap

e

Fi
lte

r
si
ze

N
um

be
r
of

ke
rn

el
s

N
um

be
r
of

un
its

Ac
tiv

at
io
n

Input 60x3
Convolution 60x64 10 64 ReLu
MaxPool 30x64 2
Convolution 30x32 5 32 ReLu
MaxPool 15x32 2
Convolution 15x12 5 12 ReLu
MaxPool 5x12 3
Flatten
Dense 60 Linear
reshape 5x12
Convolution 5x12 5 12 ReLu
Upsample 15x12 3
Convolution 15x32 5 32 ReLu
Upsample 30x32 2
Convolution 30x64 10 64 ReLu
Upsample 60x64 2
Output 60x3 10 3 Linear

upsampling stages). As activation function, a Rectified Linear Unit
activation function (Relu) [57], defined as ReLU(x) = max(0, x), is
used in all of the convolutional layers except the hidden layer and
the final layer of the decoder part where linear activation function
is used.

Model training. The proposed model was implemented using
the libraries TensorFlow [58] and Keras [48] and trained on the
data to be reduced. Adam optimizer [59] is used which is com-
putationally efficient, requires little memory, and appropriate
for problems with noisy data. Each batch contains 100 random
shuffled windows from the time-series data. The model learns an
effective transformation from multivariate time-series data into
latent feature representation by minimizing the reconstruction
error. After that, the features in the latent space (bottleneck) are
projected to 2D using PCA, t-SNE or UMAP which provide three
distinct 2D views of the data whose effectiveness we can test in
the user study. Source code for UMAP and t-SNE are provided
in [32,40]. Both t-SNE and UMAP use as default the standard
Euclidean distance between data points.

3.3. Linked views

The two views we employ in the user study are the 1D Graph
Viewer and 2D Plot Viewer (Fig. 3). Views are linked such that a
selection in either view highlights the corresponding data in the
alternate view. Both views are interactive, allowing the user to
zoom and pan. Selections are made using the direct manipulation
metaphor of left click and mouse drag in both views. The 2D
view additionally allows K nearest neighbours (Knn) search to
the current mouse position in either 2D spatial location or 1D
time. Fig. 3 shows Knn in 2D space. K can be varied using CTL-
mousewheel. A KD-tree allows millions of points to be searched
in real-time (see primary video at 9m30s).

Specifically, a single point in the 2D view will correspond to
w = window size contiguous data elements in the 1D view. A
collection of points in the 2D view will correspond to multiple
windows in the 1D view. For efficiency of rendering this collec-
tion is processed so any overlapping windows (in 1D) are merged

to one selection.
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Fig. 3. Linked 1D and 2D views. The transformed time-series data interaction
indow shows the tri-axial accelerometer data lifted to w-dimensions using
liding window approach and reduced to 2D using autoencoder and UMAP.
he mouseover event selects the k-nearest neighbours. Any selection in the 2D
indow selects the corresponding time-slices in the 1D view (in real-time) of the
aw time-series data. Selection of proximate points in reduced 2D space results
n selections of similar patterns in the 1D time-series. This linkage provides
n effective interaction for data selection. The top window shows pattern one
ighlighted in grey (f2, as discussed in Section 4.2), as found by the k-nearest
eighbours to the current mouse position (yellow).

The hypothesis behind the sliding window approach and ratio-
ale for linking the two views is that if the dimension reduction
s expressive, points located spatially close to each other in 2D
ill correspond to signals (or patterns) of similar characteristics

n the original time-series. Therefore, a selection of a cluster of
oints in 2D should result in many distinct selections in 1D of
imilar signals. We demonstrate this qualitatively in the accom-
anying videos and Fig. 3 demonstrates a selection made in 2D
nd the resulting multiple selections in 1D. It is demonstrated
uantitatively through the successful minimization of the MSE
etric during training, and the data collected during the user
tudy and analysed in Section 4.6. The primary video describes
he sliding window approach and demonstrates the exploration
f the 2D view. The secondary video shows additional material
varying the window size, etc.) They show how the combination
f dimension reduction on the sliding window approach for time-
eries provides an excellent basis for visual analytics exploration
f long time-series data sets.

. User study design

We identify selection and subsequent labelling as the most
mportant task. Selection is the act of brushing data to indicate a
attern of user interest. Labelling is an extension of selection as
6

the subsequent step to classify patterns. We provide two major
motivations for identifying this important task.Machine learning
requires extensive labelled data sets for training which demands
huge resources to provide. Tools that allow efficient labelling of
data are necessary to alleviate this bottleneck. Secondly, scientists
need effective user interfaces in order to label time-series data
as indicated by our use case introduced in Section 1.

4.1. Study views

In consequence of the two alternate views comprising of the
raw 1D time-series data and 2D dimension reduced data we
create four experimental conditions with respect to the views
users can interact with during the study.

• View 1 The user will interact with the raw time-series data
using the primary 1D view window only.

• View 2 The secondary view will be the 2D window using
DCAE+PCA to embed the data to 2D. Autoencoder will learn
a representation from Z(w, s) (the sliding window repre-
sentation of the original raw 3D time-series) and PCA will
transform the dense layer to 2D.

• View 3 The secondary view will use UMAP to replace PCA
as used in View 2.

• View 4 The secondary view will use t-SNE to replace PCA as
used in View 2.

For an example of the user study interaction refer to the
primary submission video at time 4:16.

4.2. Stimulus design

We define as stimulus a combination of target pattern and
view. For the purpose of the study we select two patterns from
the dataset (see Fig. 4, referred to as f1 and f2 respectively, with
the following characteristics:

• each pattern is representative of a distinctive animal be-
haviour

• both patterns belong to the same activity e.g. the feeding
process. This guarantees temporal continuity and context
similarity

• patterns are equivalent from a behavioural point of view:
pattern 1 (f1) corresponds to a cormorant surfacing pat-
tern, pattern 2 (f2) to the corresponding diving pattern
(complementary to f1). The data set labels are available
online [60]

• each pattern has a distinctive visual signature, to ensure a
clear perceptual separation between each other and every
other pattern in the signal

The periodic nature of the behavioural pattern ensures that
both patterns are present in the same quantity and equally dis-
tributed within the dataset.

4.3. Similarity labelling

The participant will use the view condition to enact a labelling
of the data. The user will be shown a signal representing the
pattern in the time-series data, and will be required to select all
similar patterns by highlighting them. This simulates the process
of locating and labelling all similar patterns in a data set. The
labelled patterns would be used for statistical treatment and
hypothesis forming by the research scientist, or could be used
as a set of ground truth patterns for model testing or machine
learning.

For the 1D view, this will require the user to move linearly
through the data set selecting all similar patterns. The user must
determine if the pattern is a target for selection, then enact that
selection, and move to the next pattern by panning through the
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Fig. 4. A description of the patterns present within the data. The surface swim-
ing, diving (f2), feeding, and surfacing (f1) behaviours repeat, interspersed with
ome flying (also see video). One diving pattern (f2) is currently highlighted.

ata. The user will use an amount of time linear to the size of
he data set to be inspected, plus time linear to the number of
atterns selected. For the other views, it is hypothesized that the
pproach will allow similar patterns to be co-located in the 2D
iew, and thus tools that brush and select points local in the 2D
iew will locate many similar patterns simultaneously in the 1D
iew (Fig. 3). The sliding window approach should map windows
ith similar patterns to proximate points in the 2D view. The 2D
iew provides the capability to view the entire time-series in one
iew and perform labelling on multiple selections simultaneously.

.4. Experimental procedure

We performed an initial pilot study to evaluate our experi-
ental setting. Five participants were involved in the pilot, age

ange 26 to 40. Pilot feedback were used to tune the study
rocedure in terms of task duration and complexity, interaction
nd overall interface, and refine our hypothesis.
Our main study included a total of 8 views (4 views × 2

atterns). We randomize the view order for the stimuli per par-
icipant using random sequences generated from https://www.
andom.org/sequences. We consistently ask participants to un-
ertake each of the four views on target pattern one (f1) in their
andom sequence order, followed by the four views in a different
andom sequence for target pattern two (f2). This allowed us to
nalyse performances on the two patterns separately as well as
ogether. Our hypothesis was that performances for 1D view will
emonstrate little variation in time between stimuli. Familiarity
ill not improve time, since the user must visit and label each
attern individually, patterns appear at similar frequency within
he spectral signal, the same number of both patterns is present,
oth patterns are distinctive.

.5. Participants

A total of 20 participants took part in the main study (15 male,
female). Participants were students and researchers at Swansea
niversity. All have scientific backgrounds. Ages ranged from 20
o 48. All participants had normal or corrected to normal vision
nd were not informed about the purpose of the study prior to the
eginning of the session. Due to the nature of task and stimuli
e required participants to have familiarity with chart based
isualization and interpretation, knowledge of terminology such
s signal, pattern, cluster. We therefore selected participants with
ither technical or scientific background e.g. engineering, physical
nd mathematical sciences, computer science.
 F

7

4.6. Study analysis

In this section we report data related to the main study.
Our main hypothesis is that users will be able to make more

accurate selections in faster time. We therefore report and anal-
yse accuracy using the well recognized Jaccard Index (an intersec-
tion over union similarity measure). We also provide precision,
recall and F1-Score. True positives are where selections by the
user match a ground truth selection (Jaccard index will be > 0
nd ≤ 1, with 1 indicating perfect match. A perfect match would
e the selection matches the start and end time of the ground
ruth selection). False positives are user selections that do match
ny ground truth selections (Jaccard index would be zero). False
egatives are ground truth selections that are unmatched by user
elections. These results are presented in Tables 2–4.
In our analysis we also considered the effect of each visual

ncoding on the task of pattern search and selection for labelling
urpose. We perform a first pass of analysis to look at effects of
isual encoding on both patterns as a whole. In a second pass we
ook at effects of each pattern as a separate entity. We consider
s independent variable the type of visual embedding in terms
f: raw data as a 1D spectral signal representation, Principal
omponent Analysis (PCA), t-Distributed Stochastic Neighbour
mbedding (t-SNE), Uniform Manifold Approximation and Pro-
ection (UMAP). We consider as dependent variables the total
umber of patterns found (PF) and time required to complete the
ask (RT). Tables 5 and 6 respectively report descriptive statistics
alues for each embedding with patterns considered as a whole
nd individually.
A Shapiro–Wilk test was performed to check for data nor-

ality, when patterns were not considered individually results
ere consistently below the α = 0.05 threshold, with values
ften as α < 0.001, showing data significantly deviating from a
ormal distribution. When patterns were considered separately a
ubset of results showed a normal distribution: t-SNE embedding
esponse time for f1 (p = 0.970), PCA embedding response time
or f2 (p = 0.114). Detailed breakdown of results is provided in
upplementary material.
To choose the most appropriate approach to test for signif-

cance we performed a Levene test to measure homogeneity
f variance across embedding, test results revealed significance
p < 0.01), we explored data distribution in corresponding
uantile–quantile (qq) plots, and given the sample size we opted
o rely on non-parametric tests for significance analysis. Fried-
an’s test with standard statistical level α = 0.05 was therefore
mployed to determine the statistical significance between con-
itions, while Kendall coefficient of concordance W was used to
easure effect size.
Post-hoc analysis was conducted using Wilcoxon paired-

amples test for all conditions that passed Friedman’s test.
Tables 7 and 8 report χ2, significance values and effect size
for patterns across embedding. Table 9 summarize significance

alues for post-hoc analysis for each embedding and patterns. For
ompleteness we report a summary of the significance values for
airwise comparison per pattern and embedding with f1 results
eported in Table 10 and f2 results in Table 11, for pairwise
omparison of patterns for the same embedding in Table 12.

esponse time. Performances with respect to response time across
mbedding and by patterns are summarized in Fig. 6. Tables 9–
2 report results of analysis in function of patterns considered as
whole (f1 & f2) and separately. Analysis showed a significant
ifference across embedding (Tables 7 and 8). Post-hoc analysis
cross both patterns f1 and f2 (Table 9) revealed a strong effect
f embedding with 1D slower overall and t-SNE significantly
lower than PCA and UMAP (mean values reported in Table 5).
urther analysis ((Tables 10 and 11)) confirmed a strong effect

https://www.random.org/sequences
https://www.random.org/sequences
https://www.random.org/sequences
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Table 2
Data Analysis for pattern f1. The table shows the total number of labels/selections made during the study using the indicated method,
and the precision, recall, F1-Score, and Jaccard Index mean for each embedding. The best results are highlighted with grey colour.
Embedding Selections

Made
False
Positives

True
Positives

False
Negatives

Precision Recall Overall
F1

Jaccard
Mean

1D 1234 3 1231 50 0.997 0.961 0.979 0.757
PCA 1285 68 1217 3 0.947 0.997 0.972 0.837
t-SNE 2504 1193 1311 211 0.523 0.861 0.651 0.390
UMAP 1306 13 1293 6 0.99 0.995 0.993 0.829
Table 3
Data Analysis for pattern f2. The table shows the total number of labels/selections made during the study using the indicated method,
and the precision, recall, F1-Score, and Jaccard Index mean for each embedding. The best results are highlighted with grey colour.
Embedding Selections

Made
False
Positives

True
Positives

False
Negatives

Precision Recall Overall
F1

Jaccard
Mean

1D 1346 13 1333 18 0.99 0.987 0.988 0.734
PCA 1401 53 1348 7 0.962 0.995 0.978 0.878
t-SNE 1886 354 1532 81 0.812 0.950 0.876 0.66
UMAP 1355 23 1332 26 0.983 0.98 0.982 0.916
Table 4
Data Analysis for both patterns combined. The table shows the number of labels/selections made during the study using the indicated
method, and the precision, recall, F1-Score, and Jaccard Index mean for each embedding. The best results are highlighted with grey
colour.
Embedding Selections

Made
False
Positives

True
Positives

False
Negatives

Precision Recall Overall
F1

Jaccard
Mean

1D 2580 16 2564 68 0.994 0.974 0.984 0.745
PCA 2686 121 2565 10 0.955 0.996 0.975 0.859
t-SNE 4390 1547 2843 292 0.648 0.907 0.756 0.526
UMAP 2661 36 2625 32 0.986 0.988 0.987 0.874
Table 5
Exploratory Data Analysis. Results for number of patterns found and response
time for each embedding across both f1 and f2.
Embedding Pattern Mean/Median/SD

(PF)
Mean/Median/SD
(RT/sec.)

1D f1 & f2 70.8/71.0/1.56 217.0/199.0/6.38
PCA f1 & f2 73.3/72.0/4.12 28.6/23.0/2.15
t-SNE f1 & f2 112.0/88.0/5.60 99.1/95.9/5.45
UMAP f1 & f2 71.9/71.5/2.32 31.3/27.0/2.27

Table 6
Exploratory Data Analysis. Results for number of patterns found and response
time for each embedding by pattern f1 and f2.
Embedding Pattern Mean/Median/SD

(PF)
Mean/Median/SD
(RT/sec.)

1D f1 70.6/71.0/1.31 221.0/200.0/6.17
f2 70.9/71.0/1.80 213.0/196.0/6.71

PCA f1 74.0/71.0/5.63 37.5/29.1/2.47
f2 72.6/72.0/1.43 19.7/18.0/1.32

t-SNE f1 130.0/126.0/5.9 136.0/131.0/4.58
f2 94.2/75.0/4.8 62.6/48.4/3.46

UMAP f1 72.4/72.0/3.02 39.3/30.8/2.73
f2 71.3/71.0/1.13 23.4/20.0/1.34

Table 7
Friedman results across embedding for both patterns f1 and f2. Effect size
measured via Kendall’s W .
Factor Pattern χ2(3) Sig. W

Patterns Found f1 & f2 18.989 p < 0.001 0.36
Response Time f1 & f2 54.06 p < 0.001 0.9

of both patterns, whenever significance was reached, with sig-
nificant difference between t-SNE and other embedding (p <

.001), no significant effect was measured between PCA and
MAP (mean values reported in Table 6). Pairwise comparison of
attern across the same embedding (Table 12) showed significant
ifference across all embedding except 1D. PCA, UMAP and t-SNE
ll performed faster with respect to selection of pattern f2, t-SNE
8

Table 8
Friedman results across embedding for each pattern individually. Effect size
measured via Kendall’s W .
Factor Pattern χ2(3) Sig. W

Patterns Found f1 18.989 p < 0.001 0.31
f2 9.623 p = 0.022 0.16

Response Time f1 52.86 p < 0.001 0.89
f2 51.12 p < 0.001 0.85

however did not significantly improve in accuracy with respect
to the number of patterns found suggesting a possible trade-off
effect.

Total patterns found. Performances with respect to the total num-
ber of patterns found across embedding and by pattern are sum-
marized in Fig. 5 and Fig. A.10 (supplemental material). Due
to tSNE data being an outlier with respect to other embedding
we have removed it from Fig. 5 to increase readability of the
chart. We included all 4 embeddings in Fig. A.10 in supplemental
material. Tables 9–12 report results of analysis in function of
patterns considered as a whole (f1 & f2) and separately. Analysis
showed a significant difference across embedding (Tables 7 and
8). Post-hoc analysis across both patterns f1 and f2 (Table 9)
revealed a strong effect of embedding whenever significance was
reached, with 1D and t-SNE being significantly different from all
other embeddings (p < 0.05 or p < 0.001). Post-hoc analysis
also revealed PCA being less accurate than UMAP (p < 0.05).
Further analysis by pattern (Tables 10 and 11) revealed no effect
of pattern f1 for t-SNE, with performances consistently lower
than other embedding (p < 0.001). A strong effect of 1D was
found across all embeddings for both f1 and f2 with performances
consistently higher. A strong effect of f2 was identified with PCA
performances improving against UMAP, no effect was measured
on PCA with respect to f1. A strong effect of patterns f2 was
identified with t-SNE performances improving against both PCA
and 1D but not UMAP. Pairwise comparison of pattern across the
same embedding (Table 12) showed a significant difference of f2
on UMAP with a large effect in increase in performances, and of
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2 on t-SNE with a moderate effect in increase in performances.
verall other embeddings performed equally on each pattern.

. Findings and discussion

Data collected through observation, quantitative and quali-
ative evaluations provided interesting insights with respect to
ffectiveness of the use of 1D–2D linked views, their use to navi-
ate data which are subjected to projection in lower dimensions
nd also behaviour of different dimensionality reduction tech-
iques when dealing with continuous data with local connectivity
nd cyclic patterns.

accard index results. The Jaccard Index results demonstrate
hat UMAP and PCA allow users to provide a much higher la-
elling quality with reference to the ground truth compared to
he other approaches, even better than 1D which requires longer
nteraction. t-SNE suffers from large numbers of false positives.
-SNE presents clusters of similar points that can be selected, but
hese clusters seem to be fragmented or distributed randomly
hroughout the 2D embedding which results in difficulties locat-
ng the entire target pattern. It is known that t-SNE is less able to
reserve continuums [32–34]. In contrast, both PCA and UMAP
etain feature coherency in the 2D embedding which is seen
n the accompanying video. As the user moves the lens across
he embedding it is possible to follow paths in the embedding
pace that provide adjacency in the original signal space. Users
etected these paths quickly and followed them to select the
arget pattern.

uantitative evaluation. Quantitative data evaluation
ighlighted two important results. As initially hypothesized 1D
pectral representation performance, in terms of response time
nd accuracy, did not change over time across different patterns.
attern labelling in 1D translates to a linear search task across a
ist. With a total number of 71 patterns (71 f1 and 71 f2) present
n the data 1D and UMAP were the closest in terms of overall
ccuracy. PCA, UMAP and 1D provided an effective interface for
chieving accurate selections with PCA and UMAP enabling a far
aster mode of working through parallel selections. Examining the
ideo recordings, the inaccuracies are very minor. Some users
ppeared to overlook one pattern in 1D through scrolling past
t. For PCA and UMAP, users select a region in 2D corresponding
o parallel selections in 1D. While favouring a more natural
ehaviour this implies that users finish selections when it seems
ll patterns are selected. On close inspection of the video and
ata we found the errors are where a selection has missed a mid-
oint of a pattern and thus the pattern is split into (and counted
s) two parts (two true positives). This error can be avoided
y performing a check for continuity in temporal space and
roximity to selection in 2D space to aid user selection, which is a
ommon practice for intersection over union tests in pixel-based
NNs. The errors experienced by t-SNE are more serious and are
result of the selection area including neighbouring patterns
ot part of the target expected to be selected. This behaviour
s very prominent in t-SNE where large chunks of non relevant
atterns end up being part of a selection. A significant difference
as registered between tasks involving f1 and tasks involving

2 for speed. A reason for performance improvement can be
ncreased user familiarity with the interface, dataset and task.
mprovement however did not register any significant changes
cross embedding with PCA and UMAP still outperforming. The
ecrease in response time for t-SNE was not accompanied by a
ignificant increase in its accuracy, confirming what we measured
or f1 in terms of difficulty in precisely selecting patterns. We
ould like to mention that these results are not meant to put t-
NE effectiveness under discussion — we are instead interested in
9

the fact that UMAP and PCA afford users a more intuitive interface
for pattern selection with this type of data. Our analysis showed
that UMAP seems to yield representations that are as meaningful
as t-SNE, while preserving more of the global structure as well as
continuity of behaviours that are inherently linked. Similar results
have been recently reported in other fields where phenomena
under analysis follow tightly linked evolution patterns with local
connectivity [33].

Qualitative and observational feedback. In our evaluation we
were also interested in observing user behaviour while interact-
ing with linked views and dimensionally reduced representations
of the data. All participants where provided with training on
how to use the interface and were given time to familiarize
with both interface and task. During execution of the experiment
we screen captured their interaction and an experimenter also
acted as silent observer collecting notes. At the end of the study
a debriefing session was used to collect participants feedback.
Analysis of our observations provided the following evidences:

• User expectation is to assume that if part of a pattern over-
lapped with the selection window, then trialling movement
in various directions would bring further parts of the pattern
into selection and remove undesirable signals. Whilst this
occurs with UMAP and PCA, it is not the case for t-SNE.
This provided some confusion for participants, which led
to descriptions of t-SNE as being quite confusing or not as
intuitive at the PCA and UMAP views.

• All users appreciate the significant difference in speed be-
tween using the 2D views of UMAP and PCA compared to 1D
labelling and how such an approach (linking the 2D view to
1D) would greatly enhance and accelerate accurate labelling
of data.

Take-Home message: Duality of information, even across spaces
with different dimensionality, increases accuracy as well as re-
sponse time. From a cognitive point of view co-location of seman-
tically linked patterns is an expectation. Projection techniques
that favour grouping based on both saliency and semantics not
only favour performances but also comprehension [61].

Focusing on interaction behaviour we can identify the fol-
lowing emerging pattern, consistent and reinforced by results
reported in the quantitative analysis:

• When dealing with 1D view participants adopted the ex-
pected linear scanning behaviour, scrolling back and forth
along the spectral diagram. Given the uniform distribution
of patterns the behaviour did not favour selection of either
pattern, as also reported by the statistical analysis.

• When dealing with dimensionally reduced data users begin
scanning from top to bottom in the 2D window which
would have benefited t-SNE since the main clusters were
positioned towards the top of the window, compared to
PCA (at the sides) and UMAP at the bottom. For t-SNE some
users chanced on the correct cluster without needing to
search the window. Some users also chanced on the correct
windows for PCA and UMAP, but with fewer occurrences of
such cases.

Take-Home message: Projection techniques favour spatial orga-
nization of patterns, this in turn supports the natural top-down
processing employed in real world visual search which allows
more efficiently identification of very complex targets than those
represented in a pattern or conjunction search task [62].

Timing. The training of the DCAE in this paper takes 41 min on
the data set of 173,256 points. Each of the dimension reduction
techniques are executed on the DCAE latent features with PCA
taking 1 s, UMAP 3 min 36 s and t-SNE taking 2 h 25 min 56 s.
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Table 9
Pairwise comparison for each embedding across features f1 and f2 (p-value p and effect size r).
Patterns Found (#) and Response Time (RT) - f1 & f2

Embedding # and RT PCA t-SNE UMAP

1D # p < 0.001/r = 0.64 p < 0.001/r = 0.61 p = 0.02/r = 0.44
RT p < 0.001/r = 0.88 p < 0.001/r = 0.88 p < 0.001/r = 0.88

PCA # – p < 0.001/r = 0.51 p = 0.012/r = 0.26
RT – p < 0.001/r = 0.88 p = 0.728/r = 0.08

t-SNE # – – p < 0.001/r = 0.60
RT – – p < 0.001/r = 0.88
Table 10
Pairwise comparison for each embedding for pattern f1 (p-value p and effect size r).
Patterns Found (#) and Response Time (RT) - f1

Embedding # and RT PCA t-SNE UMAP

1D # p = 0.0028/r = 0.69 p < 0.001/r = 0.74 p < 0.05/r = 0.67
RT p < 0.001/r = 0.88 p < 0.001/r = 0.85 p < 0.001/r = 0.88

PCA # – p < 0.001/r = 0.70 p = 0.95/r = 0.004
RT – p < 0.001/r = 0.88 p = 0.893/r = 0.03

t-SNE # – – p < 0.001/r = 0.73
RT – – p < 0.001/r = 0.88
Table 11
Pairwise comparison for each embedding for pattern f2 (p-value p and effect size r).
Patterns Found (#) and Response Time (RT) - f2

Embedding # and RT PCA t-SNE UMAP

1D # p < 0.05/r = 0.56 p < 0.05/r = 0.48 p = 0.59/r = 0.18
RT p < 0.001/r = 0.88 p < 0.001/r = 0.88 p < 0.001/r = 0.88

PCA # – p = 0.178/r = 0.31 p < 0.001/r = 0.63
RT – p < 0.001/r = 0.84 p < 0.132/r = 0.34

t-SNE # – – p < 0.034/r = 0.46
RT – – p < 0.001/r = 0.84
Table 12
Pairwise comparison of number of patterns found for each embedding between patterns f1 and f2.
Patterns Found (#) and Response Time (RT) - f1 vs f2 (p-value p and effect size r).

Embedding #/RT 1D PCA t-SNE UMAP

1D # p = 0.88/r = 0.018 – – –
RT p = 0.388/r = 0.2 – – –

PCA # – p = 0.749/r = 0.075 – –
RT – p < 0.001/r = 0.73 – –

t-SNE # – – p = 0.039/r = 0.46 –
RT – – p < 0.001/r = 0.83 –

UMAP # – – – p = 0.019/r = 0.55
RT – – – p < 0.003/r = 0.63
Fig. 5. Number of selected patterns for 1D, PCA and UMAP embeddings across all patterns (tSNE not included to improve readability).
10
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Fig. 6. Response time (RT/sec.) by embedding across all patterns.
Fig. 7. Left: DCAE learnt 2D embedding. Note, this image has been rotated by 90◦ to visually match other views. Middle: DCAE with PCA. Right: PCA only.
Fig. 8. Left: Using 20 latent features in the dense layer (to replace 60 in Table 1). Right: Using 120.
CAE or PCA alone. DCAE lifts the sliding window matrix to high
imension using 64 10 × 3 kernels before compressing down to

60 features (see Table 1) resulting in an expressive dimension re-
duction of the original data that separates and preserves features.
UMAP, PCA and t-SNE provide three alternative paths from 60 la-
tent features to 2D to provide the user interface. We investigated
which of these is most suited to user input. We conclude PCA and
UMAP are the most efficient and should be used for interfaces
where dimension reduction is involved. The fact that users were
able to intuitively explore pattern similarity across multiple time
instances using PCA and UMAP is also strongly indicative that
DCAE accurately preserves features in the latent space.
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We also tested DCAE alone to learn the 2D embedding (Fig. 7
(Left)). Like other researchers we find that DCAE seems to learn an
embedding similar to PCA (DCAE alone to learn a 2D embedding
also takes 41 min on this data). Since our user study concludes
that PCA provides a good interface for this task, using DCAE alone
would provide a good solution. But UMAP is also competitive,
and some runs of DCAE+UMAP seemed to be very effective in
segmenting the data, so there may be a compelling reason to
use DCAE+UMAP rather than DCAE+PCA (Fig. 7 (Middle)) or DCAE
alone (Fig. 7 (Left)).

We also used PCA alone (Fig. 7 (Right)) on the original data
(after the sliding window approach). Although PCA also shows
5 clear clusters, the far right cluster is part of the surfacing
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ignal. The top middle cluster is a merge of surface swimming
nd flying (see video). In the case of using DCAE first, there is a
uccessful segmentation of surface swimming and flying (which
lso visually have very different signals). It is recognized that
CAE is able to learn a more complex data projection than PCA
irectly [48,49]. This provides support for employing DCAE for the
nitial compression before using PCA, UMAP or t-SNE to provide
he 2D interface.

atent features experiments. Following on from the experiment
of using PCA alone we also present the results of varying the
number of latent features in the dense layer of the architecture
(see the 60 in bold in Table 1). Our primary goal was that we
wanted the dense layer to be expressive, leading to low loss.
Then employing the three experimental conditions to test their
suitability for constructing user interfaces. We experimented with
dense layers of 20 (Fig. 8 (left)) and 120 (Fig. 8 (right)). Both
produce interfaces similar to 60 latent features (in this case with
UMAP providing the further dimension reduction from 20 and
120 respectively to 2D). This is very useful as it suggests that the
method is not overly sensitive to parameter choice.

Filter size experiments. Regarding the size of the receptive field,
i.e., how large the field is when you map back to the original
data, with 10-5-5 (see Table 1), our receptive field is 10-10-20
respectively (maxpool of 2). We favoured a slow increase in the
receptive field rather than have dramatic increases (e.g., versus
5-5-10 with a receptive field of 5-10-40). The search space for
the most effective filter size is large. Here we include images of
the interface we obtain when we replace the filter sizes with
3-3-3 (Fig. 9 (left)), 5-5-10 (Fig. 9 (middle)), and 8-6-4 (Fig. 9
(right)) respectively. These produce interfaces very similar to
the one used in the user study. It suggests that the method is
quite robust to filter size choice with no suggested preference
between gradual or larger increases in the receptive field. For this
aspect the user study results would be valid over a wide range of
parameter choices.

Reproducibility. DCAE has a random initialization which leads
to different latent features for input into PCA, UMAP and t-SNE
for their respective 2D interfaces. t-SNE also introduces inconsis-
tency. We executed the DCAE part of the methodology several
times and provide a comparison in the secondary submission
video. Indeed, the 2D plots can change significantly between runs,
but there is consistency in the number of clusters and the signals
they represent within the data. Both PCA and UMAP remain
effective in providing meaningful clusters to this task. t-SNE, in
each view, requires several clusters to be identified and selected
to isolate the patterns. Different views could impact on the time
for participants to conduct the user study in the following way.
For 1D, there is no difference since this operates on the raw
data. For PCA and UMAP, we notice that the clusters still remain
well defined, and would therefore not expect the task time to
vary significantly. Additionally for UMAP, some views spread the
clusters further apart. For these views we would predict that
the time for UMAP would reduce, but we did not encounter
a view where we would expect it to take significantly longer.
For t-SNE the signals seemed to remain split at spatially distant
locations, and therefore we conclude it would not get signifi-
cantly faster depending on the input from DCAE. This method
has also been validated successfully on data collected from 9
triaxial accelerometers monitoring human behaviour (27D vector
at each time-stamp) and tidal breathing data (1D flow data at
each time-stamp).
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6. Conclusions

Labelling of patterns in large time-series data from biology
sensors is a challenging task. Most of data pre-labelling, to be
able to generate enough samples to use automatic or supervised
methods, is still done by hand. The limited control in how sensors
can be positioned and/or kept in place together with unexpected
changes in animal behaviour in reaction to changes in the sur-
rounding environment, causes data collected from each sampled
subject to be different. To ease this inevitable search-and-label
step we have investigated the effects of linking traditional multi-
dimensional spectral representation with 2D reduced views of
the same data. We implemented a linked coordinated 2D view
with a 1D view. We provided a mechanism to make selections
in either 1D or 2D and see the corresponding selections in the
alternate view. To test the efficacy of the 2D view we turned
off the 1D −→ 2D link to focus the study on the 2D −→ 1D
link. Our hypothesis that similar patterns map spatially close in
the 2D view using dimension reduction techniques is validated
qualitatively and quantitatively. PCA and UMAP provide intu-
itive linked interactions which is demonstrated by the ability for
participants to complete the pattern selection task significantly
faster than utilizing the 1D view only or the coordinated 1D and
2D view where the 2D view interface is provided by t-SNE. We
also experiment with using DCAE or PCA to directly generate the
2D view. To strengthen our analysis we have recorded partici-
pants interactions and also observed their behaviour real-time.
Recordings and observations were used to further validate our
findings. Linking proved to be an effective means to traverse
and label the data. Some of the 2D reduction techniques we
employed performed considerably better than others, this result
has spawned additional research worth further investigation. We
also suggest that the employed approach to find closely related
patterns could be compared to approaches based on alternative
distance measures [63,64].
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Appendix A. Supplemental material - statistical analysis

Embeddings: Raw Data (1D), Principal Component Analysis
(PCA), t-Distributed Stochastic Neighbour Embedding (t-SNE),
Uniform Manifold Approximation and Projection (UMAP) (see
Tables A.13–A.16).
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Fig. 9. Left: Using filter sizes of 3,3,3 (to replace sizes 10,5,5 in Table 1). Middle: 5,5,10. Right: 8,6,4.
Fig. A.10. Number of selected patterns by embedding, including t-SNE, across all patterns.
able A.13
hapiro–Wilk test of normality. Results for number of patterns found for each
mbedding across patterns f1 and f2.
Embedding Pattern Sig. (PF)

1D f1 & f2 p < 0.001
PCA f1 & f2 p < 0.001
t-SNE f1 & f2 p < 0.001
UMAP f1 & f2 p < 0.001

Table A.14
Shapiro–Wilk test of normality. Results for response time for each embedding
across patterns f1 and f2.
Embedding Pattern Sig. (RT)

1D f1 & f2 p < 0.001
PCA f1 & f2 p < 0.001
t-SNE f1 & f2 p = 0.012
UMAP f1 & f2 p < 0.001

Table A.15
Shapiro–Wilk test of normality. Results for number of patterns found for each
embedding and patterns f1 and f2.
Embedding Pattern Sig. (PF)

1D f1 p < 0.001
f2 p = 0.02

PCA f1 p < 0.001
f2 p = 0.015

t-SNE f1 p = 0.048
f2 p < 0.001

UMAP f1 p < 0.001
f2 p < 0.001
13
Table A.16
Shapiro–Wilk test of normality. Results for response time for each embedding
and patterns f1 and f2.
Embedding Pattern Sig. (RT)

1D f1 p < 0.001
f2 p = 0.009

PCA f1 p = 0.006
f2 p = 0.114

t-SNE f1 p = 0.970
f2 p = 0.053

UMAP f1 p < 0.001
f2 p = 0.008

Appendix B. Noise analysis

Here we present the results of an experiment to determine
whether non-linear dimension reduction is sufficiently tolerant
to noise to still enable an effective interface. The original data
consists of tri-axial accelerometer data. Within the ground truth
labelled regions, we set 10% of the values to zero (i.e., (0, 0, 0)).
e.g., if a sequence representing the surfacing behaviour is 180
samples in duration, then 18 of those samples would be set to
(0, 0, 0). This noisy data is projected to 60 latent features using
our DCAE model and projected down to 2D using UMAP. The user
interface generated from the 2D projection is presented, and the
user has selected the surfacing behaviour by brushing the points
in the same cluster as presented by the interface generated from
the data without noise (Fig. B.11). Fig. B.12 indicates that the
method is tolerant of this noise. The same experiment was run
with 30% noise with similar results (Fig. B.13).

Appendix C. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.knosys.2021.107507.

https://doi.org/10.1016/j.knosys.2021.107507
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Fig. B.11. Pattern f2 is selected using a 2D projection of the original data set (with no noise).
Fig. B.12. Pattern f2 is selected using a 2D projection of the data set after 10% of data values within f2 are set to zero.
Fig. B.13. Pattern f2 is selected using a 2D projection of the data set after 30% of data values within f2 are set to zero.
14
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