Comparison-Free Polyregular Functions

Lé Thanh Ding (Tito) Nguyén 4

Laboratoire d’informatique de Paris Nord, Villetaneuse, France

Camille Noiis &
Laboratoire Cogitamus, Université Volante, Sevran, France

Pierre Pradic 24
Department of Computer Science, University of Oxford, UK

—— Abstract

This paper introduces a new automata-theoretic class of string-to-string functions with polynomial

growth. Several equivalent definitions are provided: a machine model which is a restricted variant of
pebble transducers, and a few inductive definitions that close the class of regular functions under
certain operations. Our motivation for studying this class comes from another characterization,
which we merely mention here but prove elsewhere, based on a A-calculus with a linear type system.

As their name suggests, these comparison-free polyreqular functions form a subclass of polyregular
functions; we prove that the inclusion is strict. We also show that they are incomparable with
HDTOL transductions, closed under usual function composition — but not under a certain “map”
combinator — and satisfy a comparison-free version of the pebble minimization theorem.

On the broader topic of polynomial growth transductions, we also consider the recently introduced
layered streaming string transducers (SSTs), or equivalently k-marble transducers. We prove that a
function can be obtained by composing such transducers together if and only if it is polyregular,
and that k-layered SSTs (or k-marble transducers) are closed under “map” and equivalent to a
corresponding notion of (k + 1)-layered HDTOL systems.

2012 ACM Subject Classification Theory of computation — Transducers

Keywords and phrases pebble transducers, HDTOL systems, polyregular functions

Digital Object Identifier 10.4230/LIPIcs.ICALP.2021.139

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version Full Version with appendices: https://hal.archives-ouvertes.fr/hal-02986228

Funding Lé Thanh Ding (Tito) Nguyén: Partially funded by the French ANR project CoGITARe
(ANR-18-CE25-0001).

Acknowledgements Thanks to Mikotaj Bojanczyk and Sandra Kiefer for inspiring discussions, to
Gaétan Douéneau-Tabot and Amina Doumane for explaining some features of their work to us, to
Charles Paperman for his help with bibliography and to the reviewers for their feedback.

1 Introduction

The theory of transducers (as described in the surveys [21, 29]) has traditionally dealt with

devices that take as input strings of length n and output strings of length O(n). However,

several recent works have investigated function classes going beyond linear growth. We

review three classes in this landscape below.
Polyregular functions (§2.3) are thus named because they have (at most) polynomial
growth and include regular functions (§2.2) (the most expressive of the traditional
string-to-string transduction classes). They were defined in 2018 [4] by four equivalent
computational models, one of which — the pebble transducers — is the specialization to
strings of a tree transducer model that existed previously in the literature [28] (this
specialization had been investigated earlier in [17, 14]). A subsequent work [8] gave a
logical characterization based on Monadic Second-Order logic (MSO). They enjoy two
nice properties:

? Lé Thanh Diing (Tito) Nguyén, Cfamille Notis, and Pierre Pradic;

37 icensed under Creative Commons License CC-BY 4.0

48th International Colloquium on Automata, Languages, and Programming (ICALP 2021).
Editors: Nikhil Bansal, Emanuela Merelli, and James Worrell; Article No. 139; pp. 139:1-139:20

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:nltd@nguyentito.eu
https://nguyentito.eu/
https://orcid.org/0000-0002-6900-5577
https://www.cogitamus.fr/camilleen.html
mailto:pierre.pradic@cs.ox.ac.uk
https://www.cs.ox.ac.uk/people/pierre.pradic/
https://doi.org/10.4230/LIPIcs.ICALP.2021.139
https://hal.archives-ouvertes.fr/hal-02986228
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

139:2

Comparison-Free Polyregular Functions

preservation of reqular languages (by preimage): if f : T* — ¥* is polyregular and

L C ¥* is regular, then f~1(L) C T'* is regular;

closure under function composition: if f : ' — A* and g : A* — X* are both

polyregular, then so is go f : ' — X*.
HDTOL transductions (§2.1) form another superclass of regular functions, whose output
size may be at most exponential in the input size. They are older than polyregular
functions, and we shall discuss their history in Section 2.1; suffice to say for now, they also
admit various equivalent characterizations scattered in several papers [20, 22, 13]. These
functions preserve regular languages by preimage, but are not closed under composition
(the growth rate of a composition of HDTOL transductions may be a tower of exponentials).
Very recently, the polynomially bounded HDTOL transductions (§2.3) have been charac-
terized using two transducer models [13]. One of them, the k-marble transducers (where
k € N depends on the function to be computed), is obtained by putting a syntactic
constraint on the model of (unbounded) marble transducers [13] which computes HDTOL
transductions. But it can also be seen as a restricted variant of pebble transducers; it
follows (although this is not explicitly stated in [13]) that a HDTOL transduction has
polynomial growth if and only if it is polyregular. Moreover, as claimed in [13, Section 6],
the functions computed by k-marble transducers are not closed under composition either,
and thus form a strict subclass of polyregular functions.

A new subclass of polyregular functions. In this paper, we start by proving a few results
on the above classes (Section 3). For instance, we supply a proof for the aforementioned claim
of [13, Section 6], and show that the polyregular functions are exactly those computable by
compositions of k-marble transducers. Those complements are not particularly difficult nor
surprising and are included mostly for the sake of giving a complete picture.
But our main contribution is the introduction of a new class, giving its title to the paper;
as we show, it admits three equivalent definitions:
two ways to inductively generate the class (Sections 4 and 6 respectively):
by closing regular functions under a certain “composition by substitution” operation;
by combining regular functions and a certain kind of squaring functions (less powerful
than the squaring plus underlining functions used to characterize general poyregular
functions) with usual function composition;
a restriction on pebble transducers (Section 5) — we disallow comparing the positions
of a transducer’s multiple reading heads, hence the name comparison-free polyregular
functions (henceforth abbreviated as ¢fp).

Properties. By the third definition above, comparison-free polyregular functions are indeed
polyregular, while the second one implies that our new class contains the regular functions
and is closed under composition. (In fact, in the proof that our first definition is equivalent
to the second one, most of the work goes into showing that the former enjoys closure under
composition.) We rule out inclusions involving the other classes that we mentioned by proving
some separation results (Section 8): there exist
comparison-free polyregular functions that are not HDTOL (we take one example from [13]),
and polynomially bounded HDTOL transductions which are not comparison-free:
one of our examples follows from a precise characterization of cfp functions over unary
input alphabets (extending a known result for regular functions with unary inputs [10]),
which we give in Section 9;
another example shows that unlike (poly)regular functions, cfp functions are not closed
under a certain counterpart of the “map” operation in functional programming.
We summarize the inclusions and separations between classes that we get in Figure 1.

L. T.D. Nguyén, C. Noiis, and P. Pradic

(layered HDTOL)* == polyregular
U comparison-free
ebble
layered HDTOL U p
V4
comparison-free
HDTOL
ZZ polyregular —_— (regular + sq)*

Figure 1 Summary of the known relationships between superlinear transduction classes, taking

our results into account. Inclusions C are strict, and I means that there is no inclusion either way.

Finally C* denotes the composition closure of the class C.

Finally, we show in Section 7 that the number of pebbles required to compute a function
using a comparison-free transducer is related to its growth rate. The analogous result for
pebble transducers was proved recently, with a whole paper dedicated to it [25]; we adapt
its arguments to our setting, resulting in our longest and most technical proof. There is a
similar property for k-marble transducers [13], but it is proved using very different tools.

Motivations. Although this is the first proper paper to introduce comparison-free pebble
transducers, we were told that they had already been considered by several colleagues (Mikolaj
Bojariczyk, personal communication). But in fact, the starting point in our investigation
was a characterization of regular functions using a linear A-calculus (in the sense of linear
logic) that we had previously obtained [30]; this was part of a research programme relating
automata and functional programming that we initiated in [31]. As we reported in a previous
version of the present paper (version 1 of the full paper archived on HAL), by tweaking a
parameter in this characterization, one gets the cfp functions instead; we initially defined the
latter using composition by substitution, and only later realized the connection with pebble
transducers. One interesting feature of the A-calculus characterization is that it is trivially
closed under composition, and this led us to take inspiration from the category-theoretic
machinery that we used in [30] for our standalone composition proof in this paper.

2 Preliminaries

Notations. The set of natural numbers is N = {0,1,...}. We write |w| for the length of a
string w € 3*; for II C 3, we write |s|rp for the number of occurrences of letters from II in w;
and for ¢ € ¥, we abbreviate |w[(y as |w|.. The i-th letter of w € ¥* is denoted by either
w; or wli] (for ¢ € {1,...,|w|}). Given monoids M and N, Hom(M, N) is the set of monoid
morphisms. We write e for the empty word and ¥ = {a | a € ¥} for a disjoint copy of the
alphabet > made of “underlined” letters.

2.1 HDTOL transductions and streaming string transducers

L-systems were originally introduced by Lindenmayer [26] in the 1960s as a way to generate
formal languages, with motivations from biology. While this language-centric view is still
predominant, the idea of considering variants of L-systems as specifications for string-to-string
functions — whose range are the corresponding languages — seems to be old. For instance, in a
paper from 1980 [18], one can find (multi-valued) string functions defined by ETOL systems.

139:3

ICALP 2021

139:4

Comparison-Free Polyregular Functions

More recently, Ferté, Marin and Sénizergues [20] provided alternative characterizations!

(by catenative recurrent equations and higher-order pushdown transducers of level 2) of
the string-to-string functions that HDTOL systems can express — what we call here HDTOL
transductions. Later work by Filiot and Reynier [22] and then by Douéneau-Tabot, Filiot
and Gastin [13] — that does not build on [36, 20] — proved the equivalence with, respectively,
copyful SSTs (Definition 2.3) and unbounded marble transducers (not presented here).

» Definition 2.1 (following [22]). A HDTOL system consists of:
an input alphabet T', an output alphabet 3, and a working alphabet A (all finite);
an initial word d € A*;
for each ¢ € T, a monoid morphism h. € Hom(A*, A*);
a final morphism h' € Hom(A*, ¥*).
It defines the transduction taking w = wy ... w, € T* to h 0 hy, 0 ... 0 hy, (d) € *.

(The definition of HDTOL systems given in [36, 20] makes slightly different choices of
presentation?.) To define the equivalent model of copyful streaming string transducers, we
must first introduce the notion of register assignment.

» Definition 2.2. Fiz a finite alphabet ¥. Let R and S be two finite sets disjoint from 3; we
shall consider their elements to be “register variables”.

For any word w € (X U R)*, we write w! : (X*)F — $* for the map that sends (u,)rcr
to w in which every occurrence of a register variable r € R is replaced by u, — formally, we
apply to w the morphism (¥ U R)* — £* that maps ¢ € ¥ to itself and r € R to u,.

A register assignment® « from R to S (over) is a map o : S — (X U R)*. It induces
the action of : @ € (%)% s (a(s)"(@))ses € (X%)° (which indeed goes “from R to S 7).

» Definition 2.3 ([22]). A (deterministic copyful) streaming string transducer (SST) with
input alphabet T' and output alphabet ¥ is a tuple T = (Q, qo, R, 0, s, F') where
Q is a finite set of states and qy € @ is the initial state;
R is a finite set of register variables, that we require to be disjoint from 33;
0:QxT = Q% (R— (XUR)*) is the transition function — we abbreviate dgy = 71 0§
and dreq = T2 © 0, where T; is the projection from X1 x Xo to its i-th component X;;
i € (%)% describes the initial register values;
F:Q — (ZUR)* describes how to recombine the final values of the registers, depending
on the final state, to produce the output.
The function T'* — 3* computed by T is

wy... Wy Fw(qn)]L O5r(3g(‘]71—1;107L)]L O~~~O6rcg(q0>w1)f(ﬁ1)

where the sequence of states (q;)o<i<n (sometimes called the run of the transducer over the
input word) is inductively defined, starting from the fized initial state qo, by ¢; = 0st(qi—1,W;).

Those characterizations had previously been announced in an invited paper by Sénizergues [36]. Some
other results announced in [36] are proved in [9].

The family (hc)cer is presented as a morphism H : I'" — Hom(A*, A*) (whose codomain is indeed a
monoid for function composition). And an initial letter is used instead of an initial word; this is of no
consequence regarding the functions that can be expressed (proof sketch: consider A’ = AU {x} with a
new letter x ¢ A, take x as the initial letter and let he(z) = he(w), B (z) = A (w)).

Some papers e.g. [11, 13] call register assignments substitutions. We avoid this name since it differs from
its meaning in the context of our “composition by substitution” operation.

L. T.D. Nguyén, C. Noiis, and P. Pradic 139:5

» Example 2.4. Let ¥ =T UTL. We consider a SST 7 with @ = {¢}, R ={X,Y} and

'L_L'I = (E)TGR F(q) =Y Ve € F? 6((]76) = (qv (X = CXv Y= QXY))

If we write (v, w) for the family (u,)reg with ux = v and uy = w, then the action of the

register assignments may be described as (X +— ¢X, Y +— cXY) (v,w) = (¢ v, ¢c-v-w).
Let 1,2,3,4 € I'. After reading 1234 € I'*, the values stored in the registers of T are

(X = 4X,Y = 4XY) 0. o (X = 1X, Y — 1XY)f(c,¢) = (4321,4321321211)
Since F'(q) =Y, the function defined by 7 maps 1234 to 4321321211 € (T UL)* = £*.
This gives us an example of HDTOL transduction I'* — (' UL)*, since:

» Theorem 2.5 ([22]). A function T'* — ¥* can be computed by a copyful SST if and only if
it can be specified by a HDTOL system.

» Remark 2.6. As observed in [22, Lemma 3.3], there is a natural translation from HDTOL
systems to SSTs whose range is composed precisely of the single-state SSTs whose transitions
and final output function do not access the letters of their output alphabet — those are
called simple SSTs in [13, §5.1]. This involves a kind of reversal: the initial register values
correspond to the final morphisms, while the final output function corresponds to the initial
word. Thus, Theorem 2.5 is essentially a state elimination result; a direct translation from
SSTs to single-state SSTs has also been given by Benedikt et al. [2, Proposition 8]. However,
it does not preserve the subclass of copyless SSTs (this would contradict Proposition 3.7).

The lookahead elimination theorem for macro tree transducers [19, Theorem 4.21] arguably
generalizes this to trees. Indeed, while those transducers are generally presented as a top-
down model, their formal definition can also be read as bottom-up register tree transducers
in the style of [7, §4], and top-down lookahead corresponds to bottom-up states.

2.2 Regular functions

» Definition 2.7 (Alur and Cerny [1]). A register assignment a: S — (XU R)* from R to S
is said to be copyless when each r € R occurs at most once among all the strings a(s) for
s € S, i.e. it does not occur at least twice in some «(s), nor at least once in o(s) and at least
once in a(s') for some s # s'. (This restriction does not apply to the letters in X.)

A streaming string transducer is copyless if all the assignments in the image of its
transition function are copyless. In this paper, we take computability by copyless SSTs as the
definition of regular functions (but see Theorem 5.3 for another standard definition).

» Remark 2.8. Thanks to Theorem 2.5, every regular function is a HDTOL transduction.

» Remark 2.9. The SST of Example 2.4 is not copyless: in a transition o = d,e4(g, ¢), the
register X appears twice, once in a(X) = ¢X and once in a(Y) = ¢XY; in other words, its
value is duplicated by the action af. In fact, it computes a function whose output size is
quadratic in the input size, while regular functions have linearly bounded output.

» Example 2.10 (Iterated reverse [4, p. 1]). The following single-state SST is copyless:
=Ywith#eX Q={¢f R={XY} dr=(c)her Flg=XY

0(q,; #) = (¢, (X = XY#, YV = e)) Vee B\{#}, (¢g,¢) = (¢, (X = X,V = cY))

For uy,...,u, € (X \ {#})*, it maps ui#...#u, to reverse(uy)#...#reverse(uy).

ICALP 2021

139:6

Comparison-Free Polyregular Functions

ala,cla bla blb, c|b

U alb 2/

Figure 2 An example of sequential transducer.

The concrete SSTs (copyless or not) that we have seen for now are all single-state. As a
source of stateful copyless SSTs, one can consider the translations of sequential transducers.
These are usual finite automata, whose transitions additionally produce a word catenated to
the end of the would-be output function. For instance, the one in Figure 2 computes the
function {a, b, c}* — {a,b}* that replaces each c¢ in its input by the closest non-c letter on
its left (or a if no such letter exists). We do not give a detailed definition (which can be
found e.g. in [33, Chapter V]) here, but for our purpose, it suffices to observe any sequential
transducer can be translated into a copyless SST with the same set of states and a single
register.

2.3 Polynomial growth transductions

Next, we recall one way to define Bojaiczyk’s polyregular functions [4].

» Definition 2.11 ([4]). The class of polyregular functions is the smallest class of string-to-
string functions closed under composition containing:
the functions computed by sequential transducers (for instance, the one of Figure 2);
the iterated reverse function of Example 2.10, over any finite alphabet containing #;
the squaring with underlining functions squaringp : I'* — (T UL)*, for any finite T,
illustrated by squaring(1234) = 1234123412341234.

As mentioned in the introduction, the intersection between the above class and HDTOL
transductions has been recently characterized by Douéneau-Tabot et al. [13].

» Theorem 2.12 ([13]). Let f : T — X*. The following conditions are equivalent:

f s both a polyregular function and a HDTOL transduction;

f is a HDTOL transduction and has at most polynomial growth: f(|w|) = |w|®M);

there exists k € N such that f is computed by some k-layered SST, defined below.
(Another equivalent model, the k-marble transducers, was mentioned in the introduction,
but we will not use it in the rest of the paper.) Those k-layered SST propose a compromise
between copyful and copyless SSTs: duplication is controlled, but not outright forbidden.

» Definition 2.13 ([13]). A register assignment o : R — (XU R)* is k-layered (for k € N)
with respect to a partition R = Ry U . ..U Ry when for 0 <1 <k,
forr € R;, we have a(r) € (XU Ry U...UR;)*;
each register variable in R; appears at most once among all the a(r) for r € R; (however,
those from RoU ...U R;_1 may appear an arbitrary number of times).
A SST is k-layered if its registers can be partitioned in such a way that all assignments in
the transitions of the SST are k-layered.

Beware: with this definition, the registers of a k-layered SST are actually divided into k + 1
layers, not k. In particular, a SST is copyless if and only if it is 0-layered. (We chose this
convention for backwards compatibility with [13]; see also Remark 5.4.)

L. T.D. Nguyén, C. Noiis, and P. Pradic

For instance, the transducer of Example 2.4 is 1-layered with Ry = {X} and R; = {Y'}.
There also exist register assignments that cannot be made k-layered no matter the choice
of partition, such as X — X X. Using such assignments, one can indeed build SSTs that
compute functions f such that e.g. |f(w)| = 2/*l.

» Remark 2.14. There is arguably an old precursor to this recent characterization of HDTOL
transductions with polynomial growth by a syntactic “layering” condition: Schiitzenberger’s
theorem on polynomially bounded Z-rational series, which dates back to the 1960s (see for
instance [3, Chapter 9, Section 2] — the preface of the same book describes this theorem as
“one of the most difficult results in the area”). Let us give a brief exposition.

A Z-rational series f : ¥* — Z is a function of the form f : w € * — X7 .®(w)-Y where
X,Y € Z® and ® is a morphism from ¥* to the multiplicative monoid of R-indexed square
matrices over Z, where R is a finite set. This data (X, ®,Y") has a clear interpretation as a
“simple SST” (cf. Remark 2.6) with register set R, whose register values are integers rather
than strings. Schiitzenberger’s theorem says that any Z-rational series f with polynomial
growth (i.e. |f(w)] = |w|°M) where | - | on the left is the absolute value) can be written as
frw— XT.®(w) Y where

(i) the image of ® has a block triangular structure;

(ii) the projection of this image on each diagonal block is a finite monoid.
The first item gives us a partition of the register into layers where each layer “depends”
only on the ones below them. The finiteness condition in the second item is equivalent to
having bounded coefficients, which means that the register assignments within each layer are
bounded-copy, while in a layered SST, they would be copyless instead — but bounded-copy
SSTs are known to be equivalent to copyless SSTs (see e.g. [11]). The theorem also states a
relationship between the number of blocks and the growth rate; compare this to Remark 7.2.

Via the canonical isomorphism {a}* =2 N; HDTOL transductions with unary output
alphabet are the same thing as N-rational series. The counterpart of Schiitzenberger’s
theorem over N is thus a corollary of the results of [13] on layered SSTs.

2.4 Transition monoids for streaming string transducers

To wrap up the preliminaries, let us recall some algebraic tools for working with SSTs (this
technical section can be safely skipped on a first reading). Let us start by putting a monoid
structure on register assignments (Definition 2.2).

» Definition 2.15. Let Mgy = R — (X UR)* for RNY = @. We endow it with the
following composition operation, that makes it into a monoid:

alz) forzxeR

aefB=a%o0B where a® € Hom((X U R)*, (S UR)*), a®(z) = {
x forxeX

The monoid Mp x5 thus defined is isomorphic to a submonoid of Hom((X U R)*, (£ U R)*)
with function composition. It admits a submonoid of copyless assignments.

» Definition 2.16. We write M¢, 5, for the set of all « € Mg s, such that each letter r € R
occurs at most once among all the a(r’) for r' € R.

» Proposition 2.17. M%’Z is a submonoid of Mpyx. In other words, copylessness is
preserved by composition (and the identity assignment is copyless).

The following proposition ensures that this composition does what we expect. Recall from
Definition 2.2 that (=) sends Mgy to (X*)F — (E*)F.

139:7

ICALP 2021

139:8

Comparison-Free Polyregular Functions

» Proposition 2.18. For all o, € Mg s, we have (a e B)T = T oal.

To incorporate information concerning the states of an SST, we define below a special
case of the wreath product of transformation monoids.

» Definition 2.19. Let M be a monoid whose multiplication is denoted by m,m' — m - m’.
We define M Q) as the monoid whose set of elements is Q — Q X M and whose monoid
multiplication is, for u,p’ : Q — Q x M,

(nep'):qr (mop omop(q), (m20u(q))- (m20p om opu(g)))
where m : Q X M — Q and w3 : Q X M — M are the projections.

For instance, if M is the trivial monoid with one element, Q) ! M is isomorphic to @ — @
with reverse composition as the monoid multiplication: feg=go f.

» Proposition 2.20. Let (Q,qo, R, 0,4, F) be an SST that computes f : I'" — £* (using
the notations of Definition 2.3). For all c € T', we have §(—,c) € Mprx1Q, and the SST is
copyless if and only if {6(—,c) | ¢ € T} € MG 1 Q. Furthermore, for all wy ... wy, € I'*,

fwr...wy,) = F(g9(q0)) (af(7) where (g,a)=0d(—,wi)e-- o5(— wy,)

Finally, it will sometimes be useful to consider monoids of assignments over an empty output
alphabet. This allows us to keep track of how the registers are shuffled around by transitions.

» Proposition 2.21. Let R and X be disjoint finite sets. There is a monoid morphism
Mgy — Mpg o, that sends the submonoid M%’E to ./\/l‘j%’@. For any Q, this extends to a
morphism Mps1Q — Mg o1 Q that sends M$ 1Q to M%’g LQ. We shall use the name
erasey; for both morphisms (R and Q being z'nfelrred from the context).

» Remark 2.22. Consider an SST with a transition function 4. Let 5 € Hom(I'™*, M ,1Q) be
defined by ¢s(c) = erasex(d(—,c)) for ¢ € I'. The range @s(I'*) is precisely the substitution
transition monoid (STM) defined in [11, Section 3.

» Proposition 2.23. For any finite R, the monoid M%yg is finite. As a consequence, the
substitution transition monoid of any copyless SST is finite.

Proof idea. For all a € M‘j%,@ and r € R, observe that |a(r)| < |R|. <

3 Complements on HDTOL systems, SSTs and polyregular functions

Before embarking on the study of our new comparison-free polyregular functions, we state
some minor results that consolidate our understanding of pre-existing classes.

Layered HDTOL systems. Let us transpose the layering condition from SSTs to HDTOL
systems. The hierarchy of models that we get corresponds with an offset to layered SSTs.

» Definition 3.1. A HDTOL system (I', X, A, d, (h¢)cer, ') is k-layered if its working alphabet
can be partitioned as A = Ag U --- U Ay such that, for allc €T and i € {0,...,k}:
forr e A;, we have he(r) € (Ao U -+ LU A)*;
each letter in A; appears at most once among all the a(r) for r € A; (but those in
Ap U---UA;_1 may appear an arbitrary number of times).

L. T.D. Nguyén, C. Noiis, and P. Pradic

» Theorem 3.2. For k € N, a function can be computed by a k-layered SST if and only if it
can be specified by a (k + 1)-layered HDTOL system.
In particular, regular functions correspond to 1-layered HDTOL systems.

The obvious translation from HDTOL systems to SSTs preserves 1-layeredness and produces
a single-state machine, so one may sacrifice copylessness to eliminate states for SSTs.

» Corollary 3.3. FEvery regular function can be computed by a single-state 1-layered SST.

The converse to this corollary does not hold: the single-state 1-layered SST of Example 2.4
computes a function which is not regular (cf. Remark 2.9).

Polyregular functions vs layered SSTs. By applying some results from [4], we can state a
variant of Definition 2.11 which is a bit more convenient for us.

» Proposition 3.4. Polyregular functions are the smallest class closed under composition
that contains the regular functions and the squaring with underlining functions squaring..

This allows us to show that composing HDTOL transductions with at most polynomial growth
yields the polyregular functions. One direction of this equivalence is proved by encoding
squaringp. as a composition of two SSTs, one of which is Example 2.4. More precisely:

» Theorem 3.5. Let f:T* — X*. The following are equivalent:
(i) f is polyregular;
(ii) f can be obtained as a composition of layered SSTs;
(iii) f can be obtained as a composition of single-state 1-layered SSTs.

But layered SSTs by themselves are strictly less expressive than polyregular functions, as
we shall see later in Theorem 8.1. Therefore, as promised in the introduction:

» Corollary 3.6 (claimed in [13, Section 6]). Layered SSTs are not closed under composition.

The importance of being stateful. One interesting aspect of Theorem 3.2 is that 1-layered
HDTOL systems can be seen, through Remark 2.6, as a kind of one-way transducer model
for regular functions that does not use an explicit control state. This is in contrast with
copyless SSTs, whose expressivity critically depends on the states (unlike copyful SSTs).

» Proposition 3.7. The sequential (and therefore regular) function defined by the transducer
of Figure 2 (Section 2.2) cannot be computed by a single-state copyless SST.

In fact, the knowledgeable reader can verify that this counterexample belongs to the first-order
letter-to-letter sequential functions, one of the weakest classical transduction classes.

Closure under map. The pattern of Example 2.10 (iterated reverse) can be generalized:

» Definition 3.8. Let f : I'* — X* and suppose that # ¢ T UX. We define the function
map(f) : wi# ... fwn € TULH" = flw)dt .. S (wn) € BU{#})"

» Proposition 3.9. If f is an HDTOL transduction, then so is map(f). For each k > 1, the
functions that can be computed by k-layered HDTOL systems are also closed under map.

As an immediate corollary, closure under map holds for both regular and polyregular
functions, but this was already known. In fact, map(f, [z1,...,2,]) = [f(z1),..., f(2s)] is an
essential primitive in the regular list functions [6] and polynomial list functions [4, §4], two
list-processing programming languages that characterize regular and polyregular functions
respectively. We will come back to this point in Corollary 8.5 and the subsequent remark.

139:9

ICALP 2021

139:10 Comparison-Free Polyregular Functions

4 Composition by substitution

At last, we now introduce the class of comparison-free polyreqular functions. The simplest
way to define them is to start from the regular functions.

» Definition 4.1. Let f : T — I*, and for each i € I, let g; : T — X*. The composition by
substitution of f with the family (g;)icr is the function

CbS(f, (gi)icr) : w +— gy (w)...g;(w) whereiy...ip = f(w)

That is, we first apply f to the input, then every letter i in the result of f is substituted by
the image of the original input by g;. Thus, CbS(f, (gi)icr) is a function I'* — ¥*.

» Definition 4.2. The smallest class of string-to-string functions closed under CbS and
containing all reqular functions is called the class of comparison-free polyregular functions.

» Example 4.3. The following variant of “squaring with underlining” (cf. Definition 2.11) is
comparison-free polyregular: cfsquaring : 123 € I'* — 112321233123 € ('UL)*.

Indeed, it can be expressed as cfsquaringr = CbS(f, (g:)icr) where I = I'U {#}, the
function f:w; ... w, — wi# ... wy# is regular (more than that, a morphism between free
monoids) and gx = id, g, : w — ¢ for ¢ € T" are also regular. Its growth rate is quadratic,
while regular functions have at most linear growth. Other examples that also require a single
composition by substitution are given in Theorem 8.1.

We can already justify the latter half of the name of our new class. Using the “polynomial
list functions” mentioned at the end of the previous section, we prove:

» Theorem 4.4. Polyregular functions are closed under composition by substitution.
» Corollary 4.5. FEvery comparison-free polyregular function is, indeed, polyregular.

Fundamentally, Definition 4.2 is inductive: it considers the functions generated from the
base case of regular functions by applying compositions by substitution. The variant below
with more restricted generators is sometimes convenient.

» Definition 4.6. A string-to-string function is said to be:
of rank at most 0 if it is regular;
of rank at most k41 (for k € N) if it can be written as CbS(f, (¢:)icr) where f : T — I*
is regular and each g; : I'* — X* is of rank at most k.

» Proposition 4.7. A function f is comparison-free polyregular if and only if there exists
some k € N such that f has rank at most k. In that case, we write tk(f) for the least such k
and call it the rank of f. If (gi)icr is a family of comparison-free polyreqular functions,

K(OBS(f, (93)ier)) < 1+ 1k(f) + max rk(g;)
A straightforward consequence of this definition is that, just like regular functions, cfp
functions are closed under reqular conditionals and concatenation.

» Proposition 4.8. Let f,g: T — ¥* be comparison-free polyreqular functions and L C T'*
be a regular language. The function that coincides with f on L and with g on T*\ L is cfp,
and so is w € T* — f(w) - g(w); both have rank at most max(rk(f),rk(g)).

L. T.D. Nguyén, C. Noiis, and P. Pradic

5 Comparison-free pebble transducers

We now characterize our function class by a machine model that will explain our choice of
the adjective “comparison-free”, as well as the operational meaning of the notion of rank
we just defined. It is based on the pebble transducers first introduced for trees by Milo,
Suciu and Vianu [28] and later investigated in the special case of strings by Engelfriet and
Maneth [17, 14]. However, the definition using composition by substitution will remain our
tool of choice to prove further properties, so the next sections do not depend on this one.

» Definition 5.1. Let k € N with k > 1. Let I', ¥ be finite alphabets and >,< ¢ T'.

A k-pebble stack on an input string w € T'* consists of an ordered list of p positions
in the string pw< (i.e. of p integers between 1 and |w| + 2) for some p € {1,...,k}. We
therefore write Stacky = N UN! U --- UNF, keeping in mind that given an input w, we will
be interested in “legal” values bounded by |w| + 2.

A comparison-free k-pebble transducer (k-CFPT) consists of a finite set of states @, an
initial state qr € Q and a family of transition functions

Qx TU{p,<})P - Q x (NP — Stacky) x X* for1<p<k

where the NP on the left is considered as a subset of Stacky. For a given state and given letters
(c1y...,¢p) € T U{p,<a})P, the allowed values for the stack update function NP — Stacky,
returned by the transition function are:

(identity) (i1, y0p) > (41, ,0p) € NP

(move left, only allowed when cp) (i1,...,4p) +— (i1,...,5p—1) € NP

(move right, only allowed when cp #<) (i1,...,14p) +— (i1,...,ip+1) € NP
(push, only allowed when p <k —1) (G, eyip) (i1, -, 1p, 1) e NrHL
(pop, only allowed whenp > 1) (i1,...,3p) = (i1,...,4p—1) € NP7!

(Note that the codomains of all these functions are indeed subsets of Stacky.)

The run of a CFPT over an input string w € I'* starts in the initial configuration
comprising the initial state q;, the initial k-pebble stack (1) € N!, and the empty string
as an initial output log. As long as the current stack is non-empty a new configuration is
computed by applying the transition function to ¢ and to ((>w<)[i1], ..., (>w<)[ip]) where
(i1,...,1p) is the current stack; the resulting stack update function is applied to (i1, ...,1p)
to get the new stack, and the resulting output string in X* is appended to the right of the
current output log. If the CFPT ever terminates by producing an empty stack, the output
associated to w is the final value of the output log.

This amounts to restricting in two ways? the definition of pebble transducers from [4, §2]:

in a general pebble transducer, one can compare positions, i.e. given a stack (i1,...,1p),

the choice of transition can take into account whether® i; <i; (for any 1 < j, 5’ < p);

in a “push”, new pebbles are initialized to the leftmost position () for a CFPT, instead

of starting at the same position as the previous top of the stack (the latter would ensure
the equality of two positions at some point; it is therefore an implicit comparison that we
must relinquish to be truly “comparison-free”).

4 There is also an inessential difference: the definition given in [4] does not involve end markers and
handles the edge case of an empty input string separately. This has no influence on the expressiveness
of the transducer model. Our use of end markers follows [15, 25].

5 One would get the same computational power, with the same stack size, by only testing whether i; =1p
for j < p—1 as in [28] (this is also essentially what happens in the nested transducers of [25]).

139:11

ICALP 2021

139:12 Comparison-Free Polyregular Functions

This limitation is similar to (but goes a bit further than) the “invisibility” of pebbles in a
transducer model introduced by Engelfriet et al. [16] (another difference, unrelated to position
comparisons, is that their transducers use an unbounded number of invisible pebbles).

» Remark 5.2. Our definition guarantees that “out-of-bounds errors” cannot happen during
the run of a comparison-free pebble transducer. The sequence of successive configurations is
therefore always well-defined. But it may be infinite, that is, it may happen that the final
state is never reached. Thus, a CFPT defines a partial function.

That said, the set of inputs for which a given pebble tree transducer does not terminate
is always a regular language [28, Theorem 4.7]. This applies a fortiori to CFPTs. Using
this, it is possible® to extend any partial function f : I'* — X* computed by a k-CFPT
into a total function f’: '™ — ¥* computed by another k-CFPT for the same k € N, such
that f/(z) = f(x) for = in the domain of f and f’(z) = e otherwise. This allows us to only
consider CEFPTs computing total functions in the remainder of the paper.

A special case of particular interest is £k = 1: the transducer has a single reading head,
push and pop are always disallowed.

» Theorem 5.3 ([1]). Copyless SSTs and 1-CFPTs — which are more commonly called
two-way (deterministic) finite transducers (2DFTs) — are equally expressive.

Since we took copyless SSTs as our reference definition of regular functions, this means
that 2DFTs characterize regular functions. But putting it this way is historically backwards:
the equivalence between 2DFTs and MSO transductions came first [15] and made this class
deserving of the name “regular functions” before the introduction of copyless SSTs.

» Remark 5.4. There are two different numbering conventions for pebble transducers. In [4, 25],
2DFTs are 1-pebble transducers, which is consistent with our choice. However, several other
papers (e.g. [28, 17, 14, 16, 12]) consider that a 2DFT is a 0-pebble transducer (likewise,
in [13], 2DFTs are O-marble transducers). This is because they think of a pebble automaton
not as a restricted multi-head automaton, but as an enriched 2DFA that can drop stationary
markers (called pebbles) on input positions, with a single moving head that is not a pebble.

Let us now show the equivalence with Definition 4.2. The reason for this is similar to the
reason why k-pebble transducers are equivalent to the k-nested transducers” of [25], which
is deemed “trivial” and left to the reader in [25, Remark 6]. But in our case, one direction
(Theorem 5.6) involves an additional subtlety compared to in [25]; to take care of it, we
use the fact that the languages recognized by pebble automata are regular (this is also part
of [28, Theorem 4.7]) together with regular conditionals (Proposition 4.8).

» Proposition 5.5. If f is computed by a k-CFPT, and the g; are computed by I-CFPTs,
then CbS(f, (gi)ier) is computed by a (k+1)-CFPT.

» Theorem 5.6. If f : T — X¥* is computed by a k-CFPT, for k > 2, then there exist a finite
alphabet I, a regular function h : T — I* and a family (g;)icr computed by (k — 1)-CFPTs
such that f = CbS(h, (g:)icr)-

» Corollary 5.7. For all k € N, the functions computed by (k + 1)-CFPTs are exactly the
comparison-free polyregular functions of rank at most k.

Proof idea: do a first left-to-right pass to determine whether the input leads to non-termination of the
original CFPT; if so, terminate immediately with an empty output; otherwise, move the first pebble
back to the leftmost position and execute the original CFPT’s behavior. This can be implemented by
adding finitely many states, including those for a DFA recognizing non-terminating inputs.

Remark: nested transducers should yield a machine-independent definition of polyregular functions as
the closure of regular functions under a CbS-like operation that relies on origin semantics [29, §5].

L. T.D. Nguyén, C. Noiis, and P. Pradic 139:13

6 Composition of basic functions

Another possible definition of cfp functions consists in swapping out squaring. for some
other function in Proposition 3.4:

» Theorem 6.1. The class of comparison-free polyregular functions is the smallest class
closed under usual function composition and containing both all reqular functions and the
functions cfsquaring. (cf. Example 4.3) for all finite alphabets T

The hard part is to show that cfp functions are closed under composition. We exploit the
following combinatorial phenomenon, often applied to the study of copyless SSTs: a copyless
register assignment, i.e. an element of M%}A (cf. Section 2.4), can be specified by

a “shape” described by an element of the finite monoid M%’g (Proposition 2.23),

plus finitely many “labels” in ¥* (where ¥ is the output alphabet) describing the constant

factors that will be concatenated with the old register contents to give the new ones.

» Proposition 6.2. There is a bijection

M%A = {(a,@)

through which erasen : M%’A — M%g can be seen as simply removing the “labels” I3

aeMG, (e]] (A*)a(’”)“}

reR

Proof idea. Let 3 € M%A. For each r € R, one can write 8(r) = worjws ...r,w, with
Wo, ..., Wy, € A* and rf,...,7), € R such that v} ...7], = erasea(8)(r) € R*. <

This provides a clear way to represent a copyless register assignment inside the working
memory of an SST: store the shape in the state and the labels in registers. Another important
fact for us is that given two assignments 3, 8’ € M%_A the labels of 3 e 3’ can be obtained
as a copyless recombination of the labels of 8 and 3’

(There is a subtlety worth mentioning here: while the set of stateful transitions M% AlQ
also admits a “shape + labels” representation, its monoid multiplication does not have
this copylessness property. This prevents a naive proof of the closure under composition
of copyless SSTs from working. Nevertheless, the composition of two regular functions is
always regular, and we rely on this fact to prove Theorem 6.1.)

The rest of the proof of Theorem 6.1 is relegated to the technical appendix.

7 Rank vs asymptotic growth

Our next result is the comparison-free counterpart to recent work on polyregular functions
by Lhote [25], whose proof techniques (in particular the use of Ramsey’s theorem) we reuse.
Compare item (ii) below to the main theorem of [25] and item (iii) — which provides yet
another definition of c¢fp functions — to [25, Appendix A].

» Theorem 7.1. Let f:T* — ¥* and k € N. The following are equivalent:
(i) f is comparison-free polyregular with rank at most k;
(ii) f is comparison-free polyregular and |f(w)| = O(Jw|**1);
(iii) there exists a regular function g : ({0,...,k} x IT')* — X* such that f = go cfpow§k+l),

with the following inductive definition: cfpowéo) cwel*—ee(@xD)* and

ctpow ™ 1w (n,wr) - ctpow (w) « .- (n,wpy) - ctpowy” (w)

To make (i) = (i) more precise, if [is c¢fp with tk(f) > 1, then it admits a sequence of
inputs wo, wy, ... € I'* such that |w,| — +o0o and | f(w,)] = Q|w, [+,

ICALP 2021

139:14 Comparison-Free Polyregular Functions

Note that cfpowg) and cfsquaringp are the same up to a bijection {0,1} x ' T UT.

» Remark 7.2. The growth of an HDTOL transduction is also related, in a very similar way
to item (ii) above, to the number of layers required in any SST that computes it [13, §5].

Some proof elements. Let us present a few definitions and lemmas to give an idea of the
ingredients that go into the proof. Those technical details take up the rest of this section.
Lhote’s paper [25] makes a heavy use of factorizations of strings that depend on a
morphism to a finite monoid. This is also the case for our proof, but we have found that a
slightly different definition of the kind of factorization that we want works better for us.

» Definition 7.3 (similar but not equivalent to [25, Definition 19]). An r-split of a string

s € I'* according to a morphism ¢ : T'* — M is a tuple (u,v1,...,v., w) € (I'*)"*2 such that:
§ = uvy ... v w with v; non-empty for alli € {1,...,r};
p(u) = p(uvy) = -+ = p(uvivy);
p(w) = (v,w) =--=p(v;...v.w).
» Proposition 7.4 (immediate from the definition). (u,v1,...,v,, w) is an r-split if and only
if, for alli € {1,...,7r}, (wv1...v;—1,0;,Vi41...vw) is a 1-split.

The difference with the (1,r)-factorizations of [25, Definition 19] is that we have replaced
the equality and idempotency requirements on ¢(v1), ..., ¢(v,) by the “boundary conditions”
involving ¢(u) and p(w) (actually, (1,r + 2)-factorizations induce r-splits). This change
allows us to establish a subclaim used in the proof of Lemma 7.7 in an elementary way.

The point of r-splits is that given a split of an input string according to the morphism
that sends it to the corresponding transition in a SST, we have some control over what
happens to the output of the SST if we pump a middle factor in the split. Furthermore,
it suffices to consider a quotient of the transition monoid which is finite when the SST is
copyless (this is similar to Proposition 2.23). More precisely, we have the key lemma below,
which is used pervasively throughout our proof of Theorem 7.1:

» Lemma 7.5. Let f : " — X* be a regular function. There exist a morphism to a finite
monoid vy : T* — N(f) and, for each c € ¥, a set of producing triples P(f,c) C N(f)?
such that, for any 1-split according to vy composed of u,v,w € I'* - i.e. vy(uv) = vy(u) and
vi(vw) = vy(w) — we have:

i (v (), vy (0), w3 (w)) € P(fyc), then | f(uwow)]e > |f (un)]o;

otherwise (when the triple is not producing), |f(uvw)|. = | f(uw)|.
Furthermore, in the producing case, we get as a consequence that ¥n € N, | f(uv™w)|. > n.

» Definition 7.6. We fiz once and for all a choice of N(f), vy and P(f,c) for each c €
and regular f: T* — X*. We say that a 1-split (u,v,w) is producing with respect to (f,c)
when (vg(u),vi(v),ve(w)) € P(f,c). For I1 C X, we also set P(f, 1) = J,c P(f,¢).

Something like Lemma 7.5 (but not exactly) appears in the proof of [25, Lemma 18]. We
first apply it to prove the following lemma, which is morally a counterpart to the “k = 1 case’
of the central Dichotomy Lemma from [25], with r-splits instead of (k,r)-factorizations.

)

» Lemma 7.7. Let f : " — X* be regular and ¢ : I'" — M be a morphism with M finite.
Suppose that wo @ = vy for some other morphism w: M — N(f). Let r > 1 and I1 C 3.
We define L(f,11,p,7) to be the set of strings that admit an r-split s = uvy ...vw
according to ¢ such that all the triples (uvy...v;_1,v;, V41 ...v.w) are producing with
respect to (f,I1) — let us call this a producing r-split with respect to (f, 11, p).
Then L(f,1I1,¢,7) is a reqular language, and sup{|f(s)|u | s € T*\ L(f, I, p,7)} < 0.

L. T.D. Nguyén, C. Noiis, and P. Pradic

Our proof of the above lemma uses the proposition below, analogous to [25, Claim 20].
Its statement is a bit stronger than necessary for this purpose, but it will be reused in the
proof of Theorem 8.3; as for its proof, this is where a standard Ramsey argument occurs.

» Proposition 7.8. Let ' be an alphabet, M be a finite monoid and ¢ : T* — M be a
morphism. There exists N € N such that any string s = uvw € T'* such that |v| > N admits
an r-split s = w'v} ... v.w' according to ¢ in which u is a prefix of v and w is a suffiz of w’.

To leverage Lemma 7.7, we combine it with an elementary property of composition by
substitution that does not depend on the previous technical development. (Compare the
assumptions of the lemma below with the conclusion of Lemma 7.7.)

» Lemma 7.9. Let g : " — I* be a regular function and, for each i € I, let h; : T* — X* be

comparison-free polyregular of rank at most k. Suppose that sup |g(s)|; < oo where
sel'*

7o {i e I'|rk(h;) =k} when k > 1
B {i € I||hi(T*)] =0} whenk=0

(Morally, regular functions with finite range play the role of “comparison-free polyregular

functions of rank —17.) Then tk(CbS(g, (hi)icr)) < k.

The above lemma can be compared to [25, Claim 22], but it also seems to be related
to the way the “nested transducer” Ry is defined in the proof of the Dichotomy Lemma
in [25]: indeed, Ry can call either a k-nested subroutine or a (k — 1)-nested one.

The remainder of the proof of Theorem 7.1 consists mainly of a rather technical induction
on the rank, which we present in the appendix.

8 Separation results

Let us now demonstrate that the class of cfp functions is incomparable with the class of
HDTOL transductions and is a strict subclass of polyregular functions.

» Theorem 8.1. There exist comparison-free polyregular functions which are not HDTOL:
(i) the function a™ € {a}* ~ (a"b)"** € {a,b}* for a #b;
(i) the function w € ¥* = w!®! for |B| > 2 (a simplification of Example 4.3);
(iii) (from [13, §6]) the cfp functions that map a"#w € * to (w#)" for a,# € X, a # #.
» Remark 8.2. The first example in [13, §5] shows that a™ — o"*" is HDTOL (via the
equivalent model of marble transducers), hence the necessity of |¥| > 2 above. More
generally, Douéneau-Tabot has shown very recently that every polyregular function with
unary output alphabet is HDTOL [12]. So polyregular functions with unary output coincide
with polynomial growth N-rational series (cf. Remark 2.14), and the latter admit several
algebraic characterizations in the literature (see [32] and [3, Chapter 9, Exercise 1.2]).

» Theorem 8.3. Some HDTOL transductions are polyregular but not comparison-free:

(i) f:a™ € {a}* = ba""tb...baabab (with f(e) = ¢ and f(a) =b);

(i) map(a™ — a™*™) : a™# ... FHa™ — ™7 Ha™ < (cf. Definition 3.8).
» Remark 8.4. The function a™# ... #a™ s ™™+ T X" ghtained by erasing the #s
in the output of map(a™ — a"*"™) is also not comparison-free. This result implies the second
item of Theorem 8.3 by composition with the erasing morphism; we do not prove it here, but
it appears in Douéneau-Tabot’s aforementioned paper [12]. Therefore, according to [12], not
every polyregular function with unary output is comparison-free.

139:15

ICALP 2021

139:16 Comparison-Free Polyregular Functions

To see why the first of the two functions in Theorem 8.3 is HDTOL, observe that it is
Example 2.4 for T’ = {a} (taking b = a). As for the second one, combine Proposition 3.9 and
the first observation in Remark 8.2.

The non-membership parts of Theorems 8.1 and 8.3 require more work. For the former,
we use pumping arguments on HDTOL systems. Item (ii) of Theorem 8.3 is handled by first
appealing to Theorem 7.1 to reduce to showing that map(a™ — a™*™) # CbS(g, (hi)ier)
when g and all the h; are regular functions; a combination of pumping and of a combinatorial
argument then shows that inputs with || occurrences of # suffice to discriminate the two
sides of the inequality. This result also has the following consequence:

» Corollary 8.5. Comparison-free polyreqular functions are not closed under map.

» Remark 8.6. Contrast with Proposition 3.9. The discussion that follows that proposition
lends some significance to the above corollary: the latter rules out the obvious conjectures
for a characterization of cfp functions in the style of regular/polynomial list functions.

As for item (i) of Theorem 8.3, it concerns a function whose domain consists of words
over a unary alphabet, i.e., up to isomorphism, a sequence. This motivates the study of such
sequences, which is the subject of the next section.

9 Comparison-free polyregular sequences

From now on, we identify N with the set of words {a}* and freely speak, for instance, of cfp
sequences N — I'* instead of cfp functions {a}* — T'*. It turns out that cfp sequences admit
a characterization as finite combinations of what we call poly-pumping sequences.

» Definition 9.1. A poly-pumping sequence is a function of the form [e] : N — ¥* where
e is a polynomial word expression generated by e ::= w |e-e' | e* where w € ¥*;
[wl(n) = w, [e-€'l(n) = [e](n)[e'](n) and [e*](n) = ([e](n))".

The star-height of a polynomial word expression is defined in the usual way.

» Theorem 9.2. Let s : N — X* and k € N. The sequence s is comparison-free polyregular
with tk(s) < k if and only if there exists p > 0 such that, for any m < p, there is a polynomial
word expression e of star-height at most k + 1 such that ¥Yn € N, s((n + 1)p +m) = [e](n).

In short, the cfp sequences are exactly the ultimately periodic combinations of poly-pumping
sequences. Our proof strategy is an induction on k.

The base case k = 0 says that regular sequences are ultimately periodic combinations of
pumping sequences n — ug(v1)™ ... (v)"u;. An essentially equivalent result is stated with
a proof sketch using 2DFTs in [10, p. 90]; we propose an alternative proof using copyless
SSTs. (Non-deterministic two-way transducers (2NFTs) taking unary inputs have also been
studied [23]; furthermore, the notion of “k-iterative language” that appears in a pumping
lemma for general 2NFTs [35] is related to the shape of the above pumping sequences.)

To make the inductive step go through, it is enough to synchronize the periods of the
different poly-pumping sequences involved and to observe that CbS([e], ([ei])icr) is realized
by an expression obtained by substituting the e} for ¢ in e.

Coming back to Theorem 8.3, we show that a™ — ba”'b...bab is not comparison-free
polyregular by proving that its subsequences are not poly-pumping: for every poly-pumping
sequence s : N — {a,b}*, there is a uniform bound on the number of distinct contiguous
subwords of the shape baa...ab occuring in each s(n) for n € N. Another consequence of
Theorem 9.2 that we establish by induction over expressions contrasts with Corollary 8.5:

» Corollary 9.3. If f : T* — ¥* and s : N — (CU{#})* are ¢fp, so is map(f) o s.

L. T.D. Nguyén, C. Noiis, and P. Pradic

10 Further topics

Functional programming. We mentioned in the introduction a forthcoming characterization
of cfp functions using Church-encoded strings in a A-calculus with linear types, in the vein of
our previous results [31, 30]. Meanwhile, Corollary 8.5 could be understood as negative result

in the search for another kind of functional programming characterization (cf. Remark 8.6).

It is also worth noting that the copying discipline of layered SSTs is very similar to
what happens in the parsimonious A-calculus [27]: a datum of type !7 cannot be duplicated
into two copies of the same type !7, but it may yield an arbitrary number of copies of type
7 without the modality “!”. Since the function classes defined following the methodology
of [31, 30] are automatically closed under composition, Theorem 3.5 leads us to conjecture
that polyregular functions can be characterized in a variant of the parsimonious A-calculus.

First-order interpretations. As we already said, regular and polyregular functions both
admit logical characterizations using Monadic Second-Order Logic [15, 8]. The basic conceit
behind these definitions is that a string w may be regarded as a finite model M(w) over a

signature containing the order relation < on positions and predicates encoding their labeling.

The classes obtained by replacing MSO with first-order logic (FO) are to (poly)regular
functions what star-free languages are to regular languages, see [11, 4]. We expect that in
the same way, replacing regular functions (i.e. MSO transductions) by FO transductions in
Definition 4.2 and Theorem 6.1 results in the same class in both cases, which would then be the

natural FO counterpart of cfp functions. Furthermore, we believe it can be defined logically.

Given a finite model U = (U, R,...), we write 4* for the k** power (U* Ry,..., Rg,...)
where R;(x1,...,x,,) of arity m is defined as R(m;(x1),...,m(xm)) for 1 <i <k.

» Conjecture 10.1. A function f:T* — X* is “FO comparison-free polyreqular” if and only
if there exists k € N and a one-dimensional FO interpretation ¢ such that for every w € I'*
with |w| > 2, there is an isomorphism of structures M(f(w)) ~ ¢ (M(w)*).

On an intuitive level, this seems to capture the inability to compare the positions of two
heads of comparison-free pebble transducers. However, as mentioned to us by M. Bojanczyk,
the naive transposition of this conjecture to MSO fails because the direct product, generalized
to Henkin structures, does not preserve standard second-order models.

Integer sequences. Recall from Remarks 8.2 and 8.4 that for unary outputs, polyregular
and layered HDTOL transductions coincide, but comparison-free polyregular functions form
a strictly smaller class (those results come from [12]). If we also restrict to unary inputs — in
other words, if we consider sequences N — N — then we are fairly confident at this stage that
the three classes collapse to a single one, and that this can be shown by routine methods:

> Claim 10.2. The classes of polyregular, comparison-free polyregular and layered HDTOL
functions coincide on sequences of natural numbers.

Note that we already have a description of cfp integer sequences by specializing Theorem 9.2.

Membership and equivalence. We presented comparison-free polyregular functions as a
strict subclass of polyregular functions. This leads to a natural membership problem, for
which partial results were recently obtained by Douéneau-Tabot [12]:

> Problem 10.3. Is there an algorithm taking as input a (code for a) pebble transducer
which decides whether the corresponding function ¥* — I'* is comparison-free or not?

139:17

ICALP 2021

139:18

Comparison-Free Polyregular Functions

There are many similar problems of interest on the frontier between comparison-free
and general polyregular functions. We hope that investigating such issues may also lead to
machine/syntax-free characterizations of the containment between the two classes.

Finally, a major open problem on polyregular functions is the equivalence problem:

> Problem 10.4. Is there an algorithm taking as input two pebble transducers which decides
whether they compute the same function?

Interestingly, a positive answer is known for HDTOL transductions. There is an short
proof using Hilbert’s basis theorem [24], which is now understood to be an example of
a general approach using polynomial grammars (see e.g. [2, 5]). One could hope that a
restriction to comparison-free pebble transducers also puts the equivalence problem within
reach of known tools. Unfortunately, the extended polynomial grammars that would serve as
the natural target for a reduction from 2-CFPT equivalence already have an undecidable
zeroness problem (this was shown recently by Schmude [34]). This does not extend, however,
to an undecidability proof for the CFPT equivalence problem, so the latter is still open.

—— References

1 Rajeev Alur and Pavol Cerny. Expressiveness of streaming string transducers. In Kamal
Lodaya and Meena Mahajan, editors, JARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, FSTTCS 2010, December 15-18, 2010, Chennas,
India, volume 8 of LIPIcs, pages 1-12. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik,
2010. doi:10.4230/LIPIcs.FSTTCS.2010.1.

2 Michael Benedikt, Timothy Duff, Aditya Sharad, and James Worrell. Polynomial automata:
Zeroness and applications. In 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS), pages 1-12, Reykjavik, Iceland, June 2017. IEEE. doi:10.1109/LICS.2017.
8005101.

3 Jean Berstel and Christophe Reutenauer. Noncommutative Rational Series with Applications,
volume 137 of Encyclopedia of Mathematics and its Applications. Cambridge University Press,
2010.

4 Mikotaj Bojanczyk. Polyregular functions, 2018. arXiv:1810.08760.

5 Mikotaj Bojanczyk. The Hilbert method for transducer equivalence. ACM SIGLOG News,
6(1):5-17, 2019. doi:10.1145/3313909.3313911.

6 Mikotaj Bojanczyk, Laure Daviaud, and Shankara Narayanan Krishna. Regular and First-
Order List Functions. In Proceedings of the 83rd Annual ACM/IEEE Symposium on Logic in
Computer Science - LICS ’18, pages 125-134, Oxford, United Kingdom, 2018. ACM Press.
doi:10.1145/3209108.3209163.

7 Mikotlaj Bojaniczyk and Amina Doumane. First-order tree-to-tree functions. In Holger Her-
manns, Lijun Zhang, Naoki Kobayashi, and Dale Miller, editors, LICS ’20: 35th Annual
ACM/IEEE Symposium on Logic in Computer Science, Saarbriicken, Germany (online confer-
ence), July 8-11, 2020, pages 252-265. ACM, 2020. doi:10.1145/3373718.3394785.

8 Mikolaj Bojanczyk, Sandra Kiefer, and Nathan Lhote. String-to-String Interpretations With
Polynomial-Size Output. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and
Stefano Leonardi, editors, 46th International Colloquium on Automata, Languages, and
Programming (ICALP 2019), volume 132 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 106:1-106:14. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019. doi:
10.4230/LIPIcs.ICALP.2019.106.

9 Michaél Cadilhac, Filip Mazowiecki, Charles Paperman, Michal Pilipczuk, and Géraud Séniz-
ergues. On polynomial recursive sequences. In Artur Czumaj, Anuj Dawar, and Emanuela
Merelli, editors, 47th International Colloguium on Automata, Languages, and Programming,
ICALP 2020, July 8-11, 2020, Saarbriicken, Germany (Virtual Conference), volume 168
of LIPIcs, pages 117:1-117:17. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2020.
doi:10.4230/LIPIcs.ICALP.2020.117.

https://doi.org/10.4230/LIPIcs.FSTTCS.2010.1
https://doi.org/10.1109/LICS.2017.8005101
https://doi.org/10.1109/LICS.2017.8005101
http://arxiv.org/abs/1810.08760
https://doi.org/10.1145/3313909.3313911
https://doi.org/10.1145/3209108.3209163
https://doi.org/10.1145/3373718.3394785
https://doi.org/10.4230/LIPIcs.ICALP.2019.106
https://doi.org/10.4230/LIPIcs.ICALP.2019.106
https://doi.org/10.4230/LIPIcs.ICALP.2020.117

L. T.D. Nguyén, C. Noiis, and P. Pradic

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Christian Choffrut. Sequences of words defined by two-way transducers. Theoretical Computer
Science, 658:85-96, 2017. doi:10.1016/j.tcs.2016.05.004.

Luc Dartois, Ismagl Jecker, and Pierre-Alain Reynier. Aperiodic String Transducers. In-
ternational Journal of Foundations of Computer Science, 29(05):801-824, August 2018.
do0i:10.1142/50129054118420054.

Gaétan Douéneau-Tabot. Pebble transducers with unary output, 2021. arXiv:2104.14019.

Gagtan Douéneau-Tabot, Emmanuel Filiot, and Paul Gastin. Register Transducers Are Marble
Transducers. In Javier Esparza and Daniel Kral, editors, 45th International Symposium
on Mathematical Foundations of Computer Science (MFCS 2020), volume 170 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 29:1-29:14, Dagstuhl, Germany, 2020.
Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik. doi:10.4230/LIPIcs.MFCS.2020.29.

Joost Engelfriet. Two-way pebble transducers for partial functions and their composition.
Acta Informatica, 52(7-8):559-571, 2015. doi:10.1007/s00236-015-0224-3.

Joost Engelfriet and Hendrik Jan Hoogeboom. MSO definable string transductions and
two-way finite-state transducers. ACM Transactions on Computational Logic, 2(2):216-254,
April 2001. doi:10.1145/371316.371512.

Joost Engelfriet, Hendrik Jan Hoogeboom, and Bart Samwel. XML navigation and transforma-
tion by tree-walking automata and transducers with visible and invisible pebbles. Theoretical
Computer Science, 850:40-97, January 2021. doi:10.1016/j.tcs.2020.10.030.

Joost Engelfriet and Sebastian Maneth. Two-way finite state transducers with nested pebbles.
In Krzysztof Diks and Wojciech Rytter, editors, Mathematical Foundations of Computer
Science 2002, 27th International Symposium, MFCS 2002, Warsaw, Poland, August 26-30,
2002, Proceedings, volume 2420 of Lecture Notes in Computer Science, pages 234-244. Springer,
2002. doi:10.1007/3-540-45687-2_19.

Joost Engelfriet, Grzegorz Rozenberg, and Giora Slutzki. Tree transducers, L systems,
and two-way machines. Journal of Computer and System Sciences, 20(2):150-202, 1980.
doi:10.1016/0022-0000(80)90058-6.

Joost Engelfriet and Heiko Vogler. Macro tree transducers. Journal of Computer and System
Sciences, 31(1):71-146, 1985. doi:10.1016/0022-0000(85)90066-2.

Julien Ferté, Nathalie Marin, and Géraud Sénizergues. Word-Mappings of Level 2. Theory of
Computing Systems, 54(1):111-148, January 2014. doi:10.1007/s00224-013-9489-5.
Emmanuel Filiot and Pierre-Alain Reynier. Transducers, Logic and Algebra for Functions of
Finite Words. ACM SIGLOG News, 3(3):4-19, August 2016. doi:10.1145/2984450.2984453.
Emmanuel Filiot and Pierre-Alain Reynier. Copyful streaming string transducers. Fundamenta
Informaticae, 178(1-2):59-76, January 2021. doi:10.3233/FI-2021-1998.

Bruno Guillon. Input- or output-unary sweeping transducers are weaker than their 2-way
counterparts. RAIRO — Theoretical Informatics and Applications, 50(4):275-294, 2016. doi:
10.1051/ita/2016028.

Juha Honkala. A short solution for the HDTOL sequence equivalence problem. Theoretical
Computer Science, 244(1-2):267-270, 2000. doi:10.1016/S0304-3975(00)00158-4.

Nathan Lhote. Pebble minimization of polyregular functions. In Holger Hermanns, Lijun Zhang,
Naoki Kobayashi, and Dale Miller, editors, LICS ’20: 85th Annual ACM/IEEE Symposium on
Logic in Computer Science, Saarbriicken, Germany, July 8-11, 2020, pages 703-712. ACM,
2020. doi:10.1145/3373718.3394804.

Aristid Lindenmayer. Mathematical models for cellular interactions in development II. Simple
and branching filaments with two-sided inputs. Journal of Theoretical Biology, 18(3):300-315,
March 1968. doi:10.1016/0022-5193(68)90080-5.

Damiano Mazza. Simple Parsimonious Types and Logarithmic Space. In 24th EACSL Annual
Conference on Computer Science Logic (CSL 2015), pages 24-40, 2015. doi:10.4230/LIPIcs.
CSL.2015.24.

139:19

ICALP 2021

https://doi.org/10.1016/j.tcs.2016.05.004
https://doi.org/10.1142/S0129054118420054
http://arxiv.org/abs/2104.14019
https://doi.org/10.4230/LIPIcs.MFCS.2020.29
https://doi.org/10.1007/s00236-015-0224-3
https://doi.org/10.1145/371316.371512
https://doi.org/10.1016/j.tcs.2020.10.030
https://doi.org/10.1007/3-540-45687-2_19
https://doi.org/10.1016/0022-0000(80)90058-6
https://doi.org/10.1016/0022-0000(85)90066-2
https://doi.org/10.1007/s00224-013-9489-5
https://doi.org/10.1145/2984450.2984453
https://doi.org/10.3233/FI-2021-1998
https://doi.org/10.1051/ita/2016028
https://doi.org/10.1051/ita/2016028
https://doi.org/10.1016/S0304-3975(00)00158-4
https://doi.org/10.1145/3373718.3394804
https://doi.org/10.1016/0022-5193(68)90080-5
https://doi.org/10.4230/LIPIcs.CSL.2015.24
https://doi.org/10.4230/LIPIcs.CSL.2015.24

139:20 Comparison-Free Polyregular Functions

28

29

30

31

32

33

34

35

36

Tova Milo, Dan Suciu, and Victor Vianu. Typechecking for XML transformers. Journal of
Computer and System Sciences, 66(1):66-97, 2003. Journal version of a PODS 2000 paper.
doi:10.1016/S0022-0000(02)00030-2.

Anca Muscholl and Gabriele Puppis. The Many Facets of String Transducers. In Rolf
Niedermeier and Christophe Paul, editors, 36th International Symposium on Theoretical
Aspects of Computer Science (STACS 2019), volume 126 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 2:1-2:21. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2019. doi:10.4230/LIPIcs.STACS.2019.2.

Lé Thanh Ding Nguyén, Camille Notis, and Pierre Pradic. Implicit automata in typed A-calculi
II: streaming transducers vs categorical semantics, 2020. arXiv:2008.01050.

Lé Thanh Diing Nguyén and Pierre Pradic. Implicit automata in typed A-calculi I: aperiodicity
in a non-commutative logic. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors,
47th International Colloquium on Automata, Languages, and Programming, ICALP 2020,
July 8-11, 2020, Saarbriicken, Germany (Virtual Conference), volume 168 of LIPIcs, pages
135:1-135:20. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2020. doi:10.4230/LIPIcs.
ICALP.2020.135.

Christophe Reutenauer. Sur les séries associées a certains systémes de Lindenmayer. Theoretical
Computer Science, 9:363-375, 1979. doi:10.1016/0304-3975(79)90036-7.

Jacques Sakarovitch. FElements of Automata Theory. Cambridge University Press, 2009.
Translated by Reuben Thomas. doi:10.1017/CB09781139195218.

Janusz Schmude. On polynomial grammars extended with substitution, 2021. arXiv:2102.
08705.

Tim Smith. A pumping lemma for two-way finite transducers. In Erzsébet Csuhaj-Varju,
Martin Dietzfelbinger, and Zoltdn Esik, editors, Mathematical Foundations of Computer
Science 2014 - 39th International Symposium, MFCS 2014, Budapest, Hungary, August 25-29,
2014. Proceedings, Part I, volume 8634 of Lecture Notes in Computer Science, pages 523-534.
Springer, 2014. doi:10.1007/978-3-662-44522-8_44.

Géraud Sénizergues. Sequences of level 1, 2, 3, ..., k, ... In Volker Diekert, Mikhail V.
Volkov, and Andrei Voronkov, editors, Computer Science - Theory and Applications, Second
International Symposium on Computer Science in Russia, CSR 2007, Ekaterinburg, Russia,
September 3-7, 2007, Proceedings, volume 4649 of Lecture Notes in Computer Science, pages
24-32. Springer, 2007. doi:10.1007/978-3-540-74510-5_6.

https://doi.org/10.1016/S0022-0000(02)00030-2
https://doi.org/10.4230/LIPIcs.STACS.2019.2
http://arxiv.org/abs/2008.01050
https://doi.org/10.4230/LIPIcs.ICALP.2020.135
https://doi.org/10.4230/LIPIcs.ICALP.2020.135
https://doi.org/10.1016/0304-3975(79)90036-7
https://doi.org/10.1017/CBO9781139195218
http://arxiv.org/abs/2102.08705
http://arxiv.org/abs/2102.08705
https://doi.org/10.1007/978-3-662-44522-8_44
https://doi.org/10.1007/978-3-540-74510-5_6

	1 Introduction
	2 Preliminaries
	2.1 HDT0L transductions and streaming string transducers
	2.2 Regular functions
	2.3 Polynomial growth transductions
	2.4 Transition monoids for streaming string transducers

	3 Complements on HDT0L systems, SSTs and polyregular functions
	4 Composition by substitution
	5 Comparison-free pebble transducers
	6 Composition of basic functions
	7 Rank vs asymptotic growth
	8 Separation results
	9 Comparison-free polyregular sequences
	10 Further topics

