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The espresso extraction process involves a complex transport inside a geometry-changing porous medium. Large solid

grains forming the majority of the porous medium can migrate, swell, consolidate and they can also morphologically

change during flow, i.e. being mechanically eroded by hydrodynamic forces. These processes can, in turn, have a

significant back-effect on the flow and the related coffee extraction profiles. In this article, we devise a bottom-up

erosion model in the framework of smoothed dissipative particle dynamics to consider flow-induced morphological

changes of the coffee grains. We assume that the coffee grains are not completely wetted and remain brittle. We found

that heterogeneity in both the filtration direction and the transverse direction can be induced. The former is controlled

by the angle of internal friction while the latter is controlled by both the cohesion parameter and the angle of internal

friction. Not restricted to the modeling of espresso extraction, our model can also be applied to other eroding porous

media. Our results suggest that, under ideal porous flow conditions, we can control the heterogeneity (in both the

pressure drop direction and the transverse direction) of an eroding medium by tuning the yield characteristics of the

eroding material.

I. INTRODUCTION

Coffee is one of the most popular beverages in the world.

Its aroma, taste and mouthfeel is very sensitive to the brewing

method and the control of many brewing parameters. Among

many methods for preparing coffee (filter drip, pods and cap-

sules, Turkish coffee, French press coffee), espresso coffee is

brewed around the world, and forms part of social and cultural

activity due to its uniquely rich taste, smell and mouthfeel.

Espresso is prepared by percolating hot water (≈ 92◦C) under

very high pressure (≈ 9bar) through a tamped cake of ground

roasted coffee in 20 ∼ 30 seconds1,2. Despite its popularity,

espresso coffee extraction is still poorly understood due to its

complexity, but a quantitative understanding of its dynamics

is a crucial step to systematically improve the cup quality3.

Espresso extraction involves flows through a porous medium

undergoing geometric changes4, solubilization of many hy-

drophilic substances5, emulsification of insoluble coffee oils6,

suspension of solid coffee cell-wall fragments (fines)6, and

CO2 degassing and supersaturation7. Each of the aforemen-

tioned physical process is itself intrinsically complex and,

more importantly, they are interconnected. Therefore, the in-

vestigation of the espresso extraction is a difficult challenge.

For example, the solubilization and emulsification processes

will change the viscosity of the liquid, affecting the flow

through the porous coffee cake, and the change of the flow

will in return affect the solubilization and emulsification. For

a detailed description of the complex physical processes oc-

curring during coffee extraction the reader is referred to the

complete review by Melrose et al8,9. Physics of coffee extrac-

tion has been modelled in some earlier studies10,11 and some

very recent works12–15. Most of these studies rely on contin-

uum models for the concentrations fields suitable coupled to

hydrodynamic effects. Models to simulate the espresso ex-

traction taking into account the detailed physical processes at

the mesoscopic levels are rare: numerical models have been

devised to consider the solubilization of extraction of solu-

ble substances16,17, the migration of fines16, the erosion and

swelling of the coffee cake18. In this article, we focus on

the effect of “mechanical” erosion, the process that the flow

through the porous medium removes the solid material by me-

chanically fracturing surfaces exposed to the liquid and there-

fore keeps altering the boundaries. This will be different from

a similar process of mass removal which is dissolution, re-

lated to boundary remodelling by surface solubilization which

could be classified as “chemical” erosion and will not be con-

sidered here.

The erosion process is prevalent in nature, helping to form

some distinguishable morphological patterns19,20. During an

erosion process, the solid boundary is shaped by the flow, and

the change of the boundary will in return influence the flow.

This feedback mechanism is responsible for many patterns

formed in an eroding porous medium21–23 and it has been

the subject of many theoretical works. In the work of Ma-

hadevan et al22 an effective continuum multiphase model was

devised, which is able to reproduce channelization in porous

media in qualitative agreement with experiments. A very sim-

ilar model excluding the deposition effects was used by Derr

et al21 to study the branching in a frangible porous medium.

Kudrolli and Clotet24 also used an effective model to simulate

the channelization in eroding porous medium. These contin-

uum effective models use the Darcy’s law to model the flow,
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whereas the erosion is considered to depend on local pressure

gradient21,22 or local flow velocity24. In the work of Jäger

et al25, the Navier-Stokes equations were solved using the

lattice Boltzmann method (LBM), and erosion was assumed

to depend on the local shear stress on the solid surfaces. It

was found that constant pressure drop results in either com-

pletely clogged configuration or completely eroded configu-

ration, while a constant flux will result in at least one sta-

ble channel. By including hydraulic pressure gradient as an-

other factor that can induce erosion, Jäger et al26 were able

to recover erosive bursts in porous medium. The power law

distribution of pressure loss jumps obtained from their sim-

ulation was in excellent agreement with experiment. Chiu

et al27 resolved the Stokes equation with the boundary inte-

gral method and also consider the erosion to be induced by

shear stress. The porosity-tortuosity relationship, the asymp-

totic dispersion rate and the pore size distribution during the

erosion process were studied. Matias et al18 used the LBM

and shear-erosion model to study the erosion and swelling of

coffee cake. They found that when the flux is constant the fi-

nal state depends only on the erosion dynamics, but when the

pressure drop is constant the final state depends on the com-

petition between the erosion and swelling.

When modeling eroding porous media, the common prac-

tice is to assume that the erosion rate is proportional to the

difference between local shear stress and a threshold. This

“shear-erosion model” is supported by erosion experiments

on bodies molded from clay28,29. Despite this, in geoscience

there are also studies30–32 that not only consider the erosion

induced by shear stress but also take the yield of the solid ma-

terial into account. Clearly, different materials have different

erosion dynamics. It is not known whether the shear-erosion

model is suitable for the porous coffee cake studied here. Af-

ter grind, the roasted coffee beans break into small grains of

a bimodal size distribution33. The first peak of the distribu-

tion function is always at around 30 ∼ 40µm, representing

the so-called “fines”, i.e. inner walls cellular fragments. The

exact position of the second peak depends on the grinder, but

normally it is at 200µm ∼ 1000µm. It should be noted that

the ground coffee grains are not entirely solid, but full of

pores. These pores are either large pores (30µm ∼ 60µm)

that are cell-pockets or small pores of nanoscale on the cell-

walls33. The residual CO2 generated during the roasting pro-

cess are trapped in these pores, and the degassing and super-

saturation of this CO2 is partially responsible for the forma-

tion of crema that make the mouthfeel of espresso unique7,34.

To date, no experimental data is available to show the ex-

tend this kind of material is eroded by the fluid during fil-

tration. We know that roasting renders coffee beans more

brittle35. During the extraction process the coffee grains are

wetted again and probably become more ductile but, accord-

ing to some early studies4,36, the transient phase in which wet-

ting and percolation occur simultaneously last about 5 sec-

onds. So even though the coffee grains are more ductile af-

ter wetting, this is a relatively slow process. Besides, scan-

ning electron microscopy observation shows that immersed

coffee grain has gas entrapped, indicating that it is not fully

wetted37. The coffee grains probably remain sufficiently brit-

tle in the early stage of extraction. This feature of coffee

grains inspires us to use an erosion model that incorporate the

Mohr-Coulomb failure criterion, which is more suitable to de-

scribe the failure of brittle materials. Therefore, in this article,

we propose a bottom-up mesoscopic erosion model developed

in the framework of smoothed dissipative particle dynamics

(SDPD). This model can be seen as a combination of the

Mohr-Coulomb yield criterion38,39 and shear-erosion. There-

fore, it is a pressure-dependent erosion model. Although the

Mohr-Coulomb criterion and similar criterion (e.g. Drucker-

Prager criterion) have been incorporated into erosion model

in simulations of sediment erosion30–32, the outcome of ap-

plying the Mohr-Coulomb criterion to the erosion of porous

medium has not been studied. With our erosion model, we

will investigate the effects of the Mohr-Coulomb parameters

on the erosion characteristics of a porous medium.

This paper is organized as follows. In section II, the simu-

lation models are introduced, including the SDPD model (sec-

tion II A), the erosion model (section II B) and the porous

medium model (section II D). The erosion model is also val-

idated in section II C and discussed in section II E. In section

III the time-dependent eroding geometry and characteristics

are first presented (section III A), then we discuss the effects

of the cohesion parameter in section III B and of the angle of

internal friction in section III C. Finally, conclusions are re-

ported in section IV.

II. COMPUTATIONAL MODEL

A. Smoothed dissipative particle dynamics

In our model the flow is governed by the Navier-Stokes

equations. To solve the Navier-Stokes, we employ the

smoothed dissipative particle dynamics (SDPD) method40–42,

which is a particle-based mesoscopic hydrodynamics ap-

proach. SDPD is derived through a Lagrangian discretization

of the Navier-Stokes equations similar to the smoothed par-

ticle hydrodynamics (SPH) method43, with the inclusion of

thermal fluctuations following the dissipative particle dynam-

ics (DPD) approach44,45, albeit with the proper thermodynam-

ics scaling46. Thus it can be seen as a generalization of SPH

for fluctuating hydrodynamics. We employ a SDPD version

which conserves angular momentum41, as it can be crucial for

some problems47,48. In SDPD, each particle can be considered

as a small fluid volume (or Lagrangian discretization point)

characterized by a position ri, velocity vi, and mass mi. In

addition, each SDPD particle possesses a spin angular veloc-

ityψi and moment of inertia Ii introduced for the enforcement

of angular momentum conservation41.

SDPD particles i and j interact through four pairwise

forces, including conservative FC
i j , dissipative FD

i j , rotational
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F R
i j and stochastic F̃i j forces given by

FC
i j =

(

Pi

d2
i

+
Pj

d2
j

)

Fi jri j,

FD
i j =−γi j [vi j +(ei j ·vi j)ei j] ,

F R
i j =−γi j

ri j

2
× (ψi +ψ j),

F̃i j = σi j

(

dW
s

i j +
1

3
tr[dW i j]1

)

· ei j

dt
,

(1)

where ri j = ri −r j, vi j = vi −v j, and ei j = ri j/ri j. Particle

number density di is computed as di = ∑ j Wi j using a smooth-

ing kernel function Wi j =W (ri j) that vanishes beyond a cutoff

radius rc and defines a non-negative function Fi j through the

equation ∇iWi j =−ri jFi j. Then, particle mass density is given

by ρi = midi. The pressure Pi is determined by the equation

of state (EoS) Pi = P0(di/d0)
ν −Pb, where d0 is the average

number density, P0 and ν are parameters controlling the sound

speed cs =
√

P0ν/d0, and Pb relates to the background pres-

sure. Furthermore, γi j and σi j are the corresponding force

amplitudes

γi j =
20η

7

Fi j

did j

, σi j = 2
√

kBTγi j (2)

where η is the fluid dynamic viscosity, T is the equilib-

rium temperature, and kB is the Boltzmann constant. Eq. (1)

also contains a matrix of independent Wiener increments

dW i j with its trace tr[dW i j] and the traceless symmetric part

dW
s

i j =
1
2
(dW i j + dW ji)− 1

3
tr[dW i j], and the time step dt.

The evolution of particle positions, translational and angu-

lar velocities is obtained by integration of the following equa-

tions of motion

ṙi = vi,

miv̇i = ∑
j

Fi j = ∑
j

(FC
i j +F

D
i j +F

R
i j + F̃i j),

ψ̇i =
1

2Ii
∑

j

ri j ×Fi j,

(3)

using the velocity-Verlet algorithm49.

In this work, we only perform two dimensional (2D) sim-

ulations, the smoothing kernel is represented by the 2D Lucy

function50

W (r) =
5

πr2
c

(

1+ 3
r

rc

)(

1− r

rc

)3

, (4)

where r is the shorthand for ||ri j||, and rc is the cutoff radius.

B. Erosion model

We model the solid coffee grain using a cluster of SDPD

particles. Harmonic springs are used to interconnect these

particles with their nearest and second nearest neighbors. We

consider a material that is brittle. The basic principle for the

erosion is that, if a material particle on the surface of a cof-

fee grain is experiencing a force exerted by the fluid, and this

force is larger than a given threshold, and is in a direction

leaving the bulk of the grain, then this particle is eligible to be

eroded. The probability of the erosion depends on the force

on the particle.

The implementation of the erosion model in SDPD is as

follows:

(i) All the grain particles are connected by harmonic

bonds/springs (see Fig. 1).

(ii) A bond number criterion is set as Nb, if the number of

bonds connected to a particle is smaller than this crite-

rion, that particle is labeled as surface particle, other-

wise as internal particles. In two dimensions Nb = 8 if

the grain particles are in sq2 lattice (2d lattice that de-

fines a square unit cell with one basis atom at the corner

and one at the center of the square), but if we want those

particles at concave surface are also labeled as internal

particles Nb can be set smaller. Here we use Nb = 7.

(iii) Internal particles are fixed. The surface particles can

move freely (constrained by the bonds).

(iv) Every Nfreq time steps all the bonds are checked. A

bond is eligible to break if the following two conditions

are satisfied:

• The bond is stretched by a distance longer than a

length threshold li
c = li

0 +∆lc, here li
0 is the equi-

librium length of the bond, ∆lc is a global stretch

threshold;

• Among all the bonds connecting a surface particle

this bond is the one with the largest stretch.

The probability for that bond to break is pi = p0(li −
li
c) = p0(∆li−∆lc)≤ 1, here li is the length of the bond,

∆li = li − li
0.

(v) If all the bonds connecting a grain particle are bro-

ken, this particle will move freely along with the flow

and become indistinguishable with the fluid particles.

Therefore deposition is not considered in this work.

(vi) With bonds connecting the surface particles broken,

some internal particles will be exposed to the outside

liquid domain and become new surface particles. The

erosion process therefore continues on the newly ex-

posed surface.

The erosion phenomenon naturally arises following these

rules.

Let’s look at the microscopic picture of the erosion. As

shown in Fig. 1, we pick one surface particle for analysis. In

the magnified inlet, the surface particle is under an external

force F exerted by the fluid. This force is mainly balanced by

springs connecting this surface particle and the interior parti-

cles. We use li to denote these springs and their lengths. The

vector li points from an interior particle towards the surface

particle and l̂i is its corresponding unit vector. Assuming the
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FIG. 1. Schematic of the erosion model. Purple particles: internal

particle; cyan particles: surface particles. In the figure, t is the tan-

gential unit vector, n is the normal unit vector.

springs coefficient k is very large and the displacement d of

the surface particle is small compared to the spring length, the

force balance indicates that

d=

(

∑
i

l̂i l̂i

)−1

· F

k
. (5)

Then the stretch of each spring is

∆li = l̂i ·d. (6)

According to the erosion rules a spring is eligible to break

with a probability

pi = min{p0(∆li −∆lc),1}, (7)

when ∆li−∆lc > 0 and when this spring has the largest stretch

among all the springs connecting the surface particle. So the

springs li will break in sequence, with each break changing

the tensor ∑i l̂i l̂i in a non-continuous way. Given the pi the

expected living time (measured from the instant that the spring

becomes eligible to break) for a spring is

Ti = Nfreq∆t/pi, (8)

where Nfreq∆t is time interval to check all the springs and per-

form the break action. The mass erosion rate is therefore

ker =
m

∑i∈Sb
Ti

, (9)

where m is the mass of the particles, Sb is the break sequence.

The break sequence is only known during computation be-

cause it is difficult to determined which spring has the largest

stretch beforehand and each break of spring induces an abrupt

change on the tensor ∑i l̂i l̂i. Note that Ti must be calculated

following the break sequence. Finally, the last spring con-

necting the surface particle can be excluded from the break

sequence since one spring cannot fully restrict the movement

−10 −5 0 5 10
Fn/(kΔlc)

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

F t
/(k

Δl
c)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

FIG. 2. Erosion rates at different external forces.

of the surface particle and our model relabel the interior par-

ticle to be the new surface particle in such a situation. Given

external force F and solving Eq. (5) - Eq. (9) we can get the

mass erosion rate.

The above analysis is applicable to particle configuration

not restricted to that shown in Fig. 1. Given the direction vec-

tors of the connecting springs between the surface particle and

interior particle the erosion rate can be determined. The parti-

cles are in sq2 lattice as shown in Fig. 1, so we have

l̂1 = [

√
2

2
,−

√
2

2
]T,

l̂2 = [1,0]T,

l̂3 = [

√
2

2
,

√
2

2
]T.

(10)

Prescribing m = 1, Nfreq∆t = 0.01, k = 100, ∆lc = 0.001,

p0 = 1.0, the contour of erosion rate at different external force

F = Ftt+Fnn can be obtained using the above equations. The

result is shown in Fig. 2. It demonstrates a unique erosion

model compared with those in literatures18,21,22,24,26,51,52. In

literatures, some erosion models assume that the erosion rate

is proportional to the difference between the shear stress and

the threshold stress18,25–27; other erosion models assume that

the erosion is dependent on the local flow velocity24,53; in ef-

fective models using Darcy’s law it is usually assumed that the

erosion rate depends on the difference between the local pres-

sure gradient and a threshold21,22. In the model presented in

this work, negative normal stress impedes the erosion while

positive stress enhances it. Figure 3 (a) specifically shows

how the erosion rate depends on the tangential force when the

normal force is kept constant. It shows a linear relationship

between the tangential force and the erosion rate in the regime

where the tangential force is larger than a given threshold.

Figure 3 (b) shows that the tangential force threshold is linear

against the normal force when the normal force is pointing in-

ward. These indicate that the present model is actually a com-

bination of the shear-erosion model and the Mohr-Coulomb

yield criterion39, and it is therefore pressure-dependent. There

are three relevant controlling parameters present in this model:
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(a) (b)

FIG. 3. (a) Erosion rates as a function of tangential force at different normal forces. (b) Tangential force threshold at different normal forces.

the shear erosion coefficient CE, the cohesion parameter c and

the angle of internal friction ψ . The erosion rate can be ex-

pressed as

ker = max{CE(τ − τc),0}
τc = σ tanψ + c,

(11)

where τc is the shear erosion threshold, σ is the applied nor-

mal stress. The shear erosion constant is

CE ∼C′
E ≡ mp0(∆x)d−1

kNfreq∆t
, (12)

where ∆x is the average particle distance, d is the dimension

of the problem. In Eq. (12), CE is the shear erosion constant,

but its analytic expression cannot be obtained, so we estimate

its value using C′
E, C′

E is obtained by analysing a particle con-

strained only by a bond parallel to the tangential direction of

the surface and is being eroded by shear flow. On these condi-

tions the expression of C′
E is obtained using Hooke’s law and

Eq. (7)-Eq. (9). Note that we do not seek to get an accurate

value of CE, we only need C′
E to estimate the typical erosion

time scale of a particle. The cohesion parameter c is controlled

by ∆lc as will be discussed later. We will also devise a simple

scheme to control the angle of internal friction ψ later.

Returning to the coffee cake we are studying, we know from

the literature6,33 that there is a significant amount of micro-

and nano- pores inside the solid grains. CO2 generated during

the roasting process occupy these micro-pores, so the fluid can

not penetrate into all the voids inside grains at an instant7,34,37.

The microscopic detail of how those gases are driven out of

the grains and dissolve into the water – which in turn gener-

ate the foam and espresso crema – is still unclear. The process

might involve the compacting, swelling and erosion of the cof-

fee ground under pressure. In any case, the existence of gas

in the micro- and nano- pores allows temporary unbalances of

pressures at the liquid-solid interfaces and justifies the use of

a pressure-dependent erosion model in this system. There are

two mechanics through which the existence of entrapped gas

could leads to pressure-dependent erosion: 1) the solid grains

are prone to be consolidated due the pressure unbalance, re-

sulting in internal friction; 2) Grains not fully wetted will re-

main sufficiently brittle, and the failure of brittle material is

usually pressure dependent. On the other hand, if we were

studying the more classic erosion of sand or soil, it would be

obvious that only the pressure gradient and the shear stress

are important since the water can penetrate into all the voids

in the relevant timescale of the process.

C. Model validation

The erosion model is validated using a simple shear ero-

sion simulation as depicted in Fig. 4 (a). In this configura-

tion, a shear flow is generated by the moving upper wall. The

grains are then eroded by the shear flow. With the erosion of

the grains progressing, the height of the fluid region L will

increase. The corresponding SDPD model is shown in Fig. 4

(b). The light green and yellow particles represent solid walls.

The lower wall is fixed and the upper wall moves horizontally

at a constant speed vx. The dark green particles represent the

fluid, and the dark purple particles represent erodible grains

modelled using our erosion model (Fig. 1). Boundaries are

periodic in the x direction. We set ∆lc = 0 leading to a zero

erosion threshold. Then the evolution of L can be described

by a simple equation:

dL

dt
=

ηvxkw

L
, (13)

where η is the fluid viscosity, kw is the wall erosion rate. The

solution is

L =
√

2kwvxηt +L2
0. (14)

where L0 is the value of L at t = 0. There is a simple relation-

ship between the the wall erosion rate kw and the mass erosion

rate ker:

kw = ∆xker/m, (15)

where ∆x is the average particle distance. Moreover, in shear

flow the hydrodynamic force on a surface particle is Ft =
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(a) (b) (c)
Vx

wall

wall

W

Lg

L

Lw

Lw

FIG. 4. (a) Schematic of the shear erosion simulation. (b) SDPD model for the shear erosion simulation. W = 11.31, L(t = 0) = L0 = 12.45,

Lg(t = 0) = 16.8, Lw = 2.24. (c) Evolutions of the height of fluid region under shear erosion. The lines are fits using Eq. (14). The inset shows

the same data points but with the time normalized by typical erosion time tref = mL0/C′
E/Vx/η .

vx∆xη/L,Fn = 0, therefore kw can be determined theoreti-

cally. Prescribing ∆x= 0.4, k = 2000, ∆lc = 0, Nfreq∆t = 0.02,

p0 = 0.2, and using the unit vectors l̂i given in Eq. (10),

we first determine the mass erosion rate using Eq. (5) -

Eq. (9) then we can determine kw using Eq. (15): the result

is kw = 3.3× 10−4. We supplement the parameters rc = 1.6,

η = 100, P0 = 25600, P0 −Pb = 80, ν = 7, d0 = 6.25, m = 1,

kBT = 1e− 6 for the SDPD model and perform simulations

with vx varying from 1.0 to 2.5. From simulation results the

kw can be obtained by fitting the evolution of L using Eq. (14).

In Fig. 4 (c), the evolutions of L at different vx are presented

and they can be well fitted using Eq. (14). The fits suggest

that kw = 3.1× 10−4 ± 0.1× 10−4 in good agreement with

the theoretical prediction. This validates our erosion model

for the following analysis on the erosion in a complex porous

medium.

D. Porous medium model

We build a SDPD porous medium model as shown in Fig. 5.

The size of the simulation box is Lx × Ly. Inside the box, a

sample region Ωs of height Ls is filled with 225 solid disks

of diameter D0. The center of the disks are placed randomly.

The solid disks are modelled using the erosion rules presented

above. All boundaries are periodic, and at the top of the

simulation box the velocity of the fluid is prescribed/reset as

[0,−q], therefore the flux is prescribed in our simulations. The

situation that the pressure drop is fixed will not be discussed,

since in that case the porous medium will be either completely

eroded or not eroded at all25. In all simulations the diameter

D0, the fluid density ρ and the viscosity η are fixed: D0 = 8,

ρ = 6.25, η = 100. The superficial rate q is also fixed as 0.08,

leading to a Reynolds number Re = D0ρq/η = 0.04. Sim-

ulation parameters are summarized in Tab. I, if a parameter

is not specified explicitly, the value in the table will be used.

The choice of the parameters in Tab. I are justified as follows.

Only some of the parameters that has independent dimensions

like η , ρ , D0 are, to some extent, arbitrary, because they can

either be selected as governing parameter to scale all other pa-

rameters, or their effects on the result is negligible due to low

Reynolds condition. The values of the cutoff radius rc and

number density d0 are selected to ensure that there are enough

neighboring particles for each particle. The value of the flow

rate q is selected according to the small Reynolds number. Lx

and Ls are sample size, if each grain in our simulation repre-

sents a grain of size 200µm the sample is 4.2mm× 3.5mm.

It is smaller than a realistic coffee cake used for espresso ex-

traction, but it is enough to demonstrate the filtration charac-

teristics we want to show. The total number of the grains Ns

is selected to match the initial porosity. P0, Pb, ν are parame-

ters controlling the equation of state, their values are selected

to ensure the compressibility of the fluid is very small (the

sound speed cs =
√

P0ν/d0). And since the effect of the ther-

mal fluctuations is negligible, kBT is set to be very small. The

criterion Nb is fixed as 7 for reason explained in section II B.

The parameters k, p0, Nfreq are parameters controlling the ero-

sion rate, to some extent they are also arbitrary (excerpt that k

should be large enough to ensure that the displacement of an

eroding surface particle is small), that is why in our presenta-

tion of the results, we have use the characteristic erosion time

ter, which is calculated using these parameters (see Eq. (12)

and discussion in section II E), to non-dimensionalize our re-

sults. We locate the SDPD particles of the grains in a sq2 lat-

tice configuration as shown in Fig. 1, therefore the direction

vectors are given by Eq. (10).

During simulation, the positions and velocity of all the

SDPD particles are recorded for post-processing. After the

simulation, the evolving porosity (either local or global) can

be determined by counting the number of non-fixed parti-

cles in the region of interest and divide it by the total num-

ber of particles in that region at the specific time. The pore
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(a) ✭�✁

L②

Lx

Ls

❉

FIG. 5. (a) Schematic of the porous medium model. (b) SDPD model of the porous medium.

TABLE I. Basic parameters used in simulations.

Basic parameters Values

Cutoff radius rc 1.6
Mass density ρ 6.25

Dynamic viscosity η 100

Initial diameter of the grains D0 8

Superficial flow rate q 0.08

Average number density d0 6.25

SDPD particle mass m 1

Moment of inertial of SDPD particles I 1

Size of the simulation domain Lx ×Ly 169.7×186.7
Size of the sample region Lx ×Ls 169.7×152.7
Number of grains Ng 225

P0 in the EoS 25600

Hydrostatic pressure P0 −Pb 6400

Exponent in the EoS ν 7

Spring force coefficient k 8000

Break probability coefficient of the springs p0 1.0

Time step ∆t 0.002

Time step interval to perform the break action Nfreq 10

Bond number criterion Nb 7

Temperature kBT 1e-6

throat size distribution can be determined through the proce-

dure similar to that described by Chiu et al27 and de Anna et

al54. First, a Delaunay triangulation is formed using the nodes

placed at the mass center of each eroding grain. Then, all the

edges piqi are checked, if the closed disk with piqi as a di-

ameter contains any other vertices, this edge is deleted. The

Gabriel graph55 is obtained after all edges are examined. The

neighboring grains are defined as those sharing an edge of the

Gabriel graph. The pore throat sizes are finally determined by

measuring the minimum distance between all pairs of neigh-

boring grains. An example of applying this process to the ini-

tial configuration of a porous medium (Fig. 5 (b)) is shown in

Fig. 6. There are 225 grains in this porous medium. Because

we are using periodic boundaries, we perform the Delaunay

triangulation not only on these proper 225 grains, but also on

all their periodic copies on the left and on the right. To avoid

recounting some pores due to the existence of many copies of

grains, only the pores among the proper 225 grains, and the

pores between the proper grains and the copies on the right

are counted to obtain the distribution of the pore sizes.

E. Controlling the erosion rate

As has been mentioned above, the erosion rate depends on

three relevant parameters: shear erosion constant, which is of

the order C′
E, cohesion parameter c, which is controlled by

∆lc, and the angle of internal friction ψ , which is fixed so

far. Using the parameter given in Tab. I we have C′
E = 0.0025.

With C′
E, we can calculate the typical erosion time scale. First,

a reference stress τref = 6qη/ε0/E0(λ ) = 23.3 is defined,

where ε0 = 0.564 is the initial porosity of the medium and

E0(λ ) = 0.456D0 is the initial mean pore size of the medium.

This reference stress represents the shear stress at the bound-

ary of a Poiseuille tube. The width of the tube is E0(λ ) and the

average flow rate inside the tube is q/ε0. Then the typical time

scale for a particle to be eroded is ter = m/τref/C′
E = 17.17.

The typical time scale of erosion is also the time scale the

solid boundary changes.

The parameters D0, q, τref, ter will be used as reference pa-

rameters in the presentation of results, e.g. length L∗ = L/D0,

velocity V ∗ = V/q, time T ∗ = T/ter, stress/pressure P∗ =
P/τref. Parameters marked with an asterisk are normalized.

Using the parameters in Tab. I and following Eq. (5) -

Eq. (9) we calculate the shear erosion threshold τc as a func-

tion of the applied normal stress σ at different ∆lc. The results

are shown in Fig. 7. Both τc and σ are normalized with τref,
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FIG. 6. Gabriel graph of the initial configuration of a porous medium.

The 225 proper grains are displayed, while their periodic copies are

not. The Gabriel graph is generated with the periodic copies in-

cluded. The dash lines indicate the boundaries of the simulation box

and the sample region. Some of the grains are outside the simula-

tion box because we have rearranged some of the SDPD particles

utilizing the periodic boundary condition to make sure all the grains

are visually intact. The grains are colored for the purpose of distin-

guishing them from each other, there is no specific meaning for the

colors.

the threshold ∆lc is normalized using the average distance of

the SDPD particles ∆x. It can be seen that the larger the ∆x the

higher the τc. And the relationship between τc and σ is always

linear provided σ is large enough (the slope of the failure en-

velope is 1, i.e. the angle of internal friction is ψ = π/4). Note

that at the regime of small σ and relatively large ∆x, the slope

is smaller than 1, indicating that our model does not follow

the Mohr-Coulomb yielding theory exactly. However, since

we are only studying the problem qualitatively, Eq. (11) is ad-

equate to describe our model. Therefore, we use the intercept

value of τc as an approximation of the cohesion parameter

c. From the figure the normalized cohesion parameters are

c∗ = 0.0, 0.6, 1.2, 1.5, and 1.8 for increasing ∆lc.

Since we did not introduce friction between particles the an-

gle of internal friction arises solely from the competition be-

tween the normal force and tangential force. The normal force

tends to compress the springs preventing them to break, while

the tangential force tends to stretch the springs and break

them. As long as the normal force and tangential force have

the same effect on the springs (following the same Hooke’s

law) the angle of internal friction will always be ψ = π/4.

To tune the ψ , we need to find a way to control the contribu-

tion fraction of the normal force and tangential force on the

springs. This can be done by including a scaling factor to the

0 1 2 3 4 5
σ/τref

0

1

2

3

4

5

τ c
/τ

re
f

1

Δlc/Δx=0
Δlc/Δx=0.00125
Δlc/Δx=0.0025
Δlc/Δx=0.003125
Δlc/Δx=0.00375

FIG. 7. Shear erosion threshold τc as a function of the applied

normal stress σ at different ∆lc/∆x. The values at σ/τref = 0 are

c∗ ≡ τc/τref = 0.0, 0.6, 1.2, 1.5, and 1.8 for increasing ∆lc/∆x.

conservative part of the pair-wise forces:

FC
i j = α

(

Pi

d2
i

+
Pj

d2
j

)

Fi jri j, i ∈ S (16)

where α > 0 is the scaling factor and S is the set of the sur-

face particles that are well supported (with at least d links to

internal particles, with d being the dimension of the problem).

Note that the inclusion of α has no direct effects on the fluid,

it only affects the small displacement of the surface particles

and their erosion rate. We also have

α = tanψ . (17)

III. RESULTS AND DISCUSSION

In this part a typical eroding porous medium is first pre-

sented, the heterogeneity in the pressure drop direction, the

pore sizes distribution, and flow rate distribution are dis-

cussed. Then we investigate the influence of the cohesion pa-

rameter and the angle of internal friction.

A. Time dependent eroding geometry and characteristics

We set the threshold ∆lc = 0, α = 1 leading to c = 0 and

ψ = π/4, the resultant eroding porous medium is presented in

Fig. 8. Figure. 8 (a)-(e) depict the eroding grains. As it can be

seen the grains become smaller with the erosion progressing.

At the bottom of the medium the erosion progresses signifi-

cantly faster than at the top. This phenomenon is unique and

cannot be observed in prior studies using simple shear-erosion

model18,27. Obviously, this must be caused by the pressure

dependence of the erosion rate in our model. As the flux is

downward, the local pressure is much higher at the top than at
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(a)

(b)

(c)

✂✄☎

✂✆☎

✂✝☎

(g)

✂✞☎

✂✟☎

✂✠☎

v*
13.73

0

FIG. 8. Eroding porous medium. (a)-(e) depict the solid (grains) and

the fluid. (a) t∗ = 0, (b) t∗ = 2.33, (c) t∗ = 4.66, (d) t∗ = 6.99, (e)

t∗ = 9.32. (f)-(j) depict the corresponding velocity contour.

the bottom, and higher pressure tends to consolidate the grains

and lowers the erosion rate, thus leading to the medium-scale

heterogeneity in the filtering direction. Fig. 8 (f)-(j) depict the

evolution of the velocity contour. It can be seen that the flow

is already inhomogeneous at the beginning. When the disks

are placed randomly, some inter-grain pores are larger than

others, forming some channels with higher hydraulic conduc-

tance. Since the flux in larger channels is generally larger, the

erosion rate is also larger. With the erosion progressing, larger

channels will increase further in size, causing more flow to be

redirected to these channels. Eventually, this feedback effect

can lead to an eroded geometry with just a few channels that

transport a large portion of the flux27,56. The size of the chan-

nels is determined by the imbalance between the erosion rate

in large channels and that in other small pores. In the simula-

tion shown in Fig. 8, the channelization is not significant, and

we can see from (a)-(e) that there is not significant heterogene-

ity in the direction perpendicular to the filtration direction.

This indicates that the erosion rate is not significantly different

in different pores. Utilizing the fact that the eroding medium

is horizontally relatively homogeneous, we divide the sample

region with horizontal bins, and calculate the solid fraction φ
and the average effective grain diameter D in these bins, this

gives us the φ − y and D− y curves as shown in Fig. 9. Note

that Di = 2
√

Ai/π , with Ai being the area of the ith eroding

grain. As it can be seen, at the beginning of the simulation

the φ − y and D− y curves are both relatively flat. With the

erosion progressing, both curves become steeper, with the val-

ues at the lower y endpoint decreasing faster than at the higher

endpoint. At the end, a significant medium-scale heterogene-

ity in the direction of filtration is generated as a result of the

very different local erosion rate.

Figure 10 shows the evolution of the pore sizes distribu-

tion. From (a) to (f) the porosity increases as a result of

the erosion. Following the work of Chiu et al27 we fit the

distribution using the Weilbull distribution f (x;λ wb,kwb) =

kwb/λ wb(x/λ wb)kwb−1 exp(−(x/λ wb)kwb
). It can be seen that

with the erosion progressing the distribution function becomes

in better agreement with the Weilbull distribution. The agree-

ment is the best when ε = 0.81, then if the porosity contin-

ues increasing, the fit using the Weibull function becomes

worse due to channelization. The fitted scale parameter λ wb

(given in the caption) is monotonically increasing. We show

the mean and variance of pore sizes against the porosity in

Fig. 11. As it can be seen the mean of the pore sizes increase

steadily, while in the regime of small porosity, the variance of

the pore sizes remains essentially the same. Therefore, when

the porosity is relatively small channelization is less preva-

lent. These results are in good agreement with the simulations

of Chiu et al27, even though here we are using a pressure-

dependent erosion model.

The local flow rate in the porous medium can range over

several orders of magnitude. It has been revealed that, at low

flow rate regime, the probability density function (PDF) of

flow rate could be determined by the pore size distribution54.

On the other hand, at high flow rate regime, it is the corre-

lation between adjacent pores that determines the flow rate

distribution57. High disorder leads to exponential decay of

the PDF of flow rate54,57,58. Figure 12 shows the PDF of the

flow rate at different instant in one simulation. It can be seen

that the PDF decays exponentially at the beginning, whereas,

with the erosion progressing, deviations occur at the very high

flow rate regime. A peak is also induced near the v/v = 1.

B. Effects of the cohesion parameter

Using effective continuum multiphase model Derr et al21

have revealed that channel width is mainly determined by the

correlation length of the initial condition, and how fast the

flows are redirected compared to the drop of erosion threshold

over a stress communication length. Using “shear erosion”

model to perform LBM simulation of eroding porous medium,

Jäger et al25 found that the larger the range of wall shear
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(a) (b)

FIG. 9. (a) Solid fraction φ as a function of vertical position y∗. (b) Effective grains diameter D∗ as a function of the vertical position. The

lines connecting the data points are only for guidance of eye.

(a) (b) (c)

(d) (e) (f)

FIG. 10. Pore sizes distribution at different porosity. λ ∗ is the dimensionless pore size, ε is the porosity, the red lines are fits using the

Weilbull distribution with parameter (kwb,λ wb). (a) t∗ = 0, (kwb,λ wb) = (1.66,0.50); (b) t∗ = 2.33, (kwb,λ wb) = (2.02,0.61); (c) t∗ = 4.66,

(kwb,λ wb) = (2.09,0.71); (d) t∗ = 6.99, (kwb,λ wb) = (2.21,0.81); (e) t∗ = 9.32, (kwb,λ wb) = (2.33,0.84); (f) t∗ = 11.65, (kwb,λ wb) =
(2.32,0.87).

stress for which there is neither erosion nor deposition, the

more steady channels are formed in the structure. Also with

“shear erosion” model but using boundary integral method,

Chiu et al27 analyze the porosity-tortuosity relationship, the

asysmptotic dispersion rate, and the pore-size distribution dur-

ing erosion process. However, it has not been investigated

how the failure properties of the grains affect the channeliza-

tion. We see above that channelization is less prevalent when

the cohesion parameter c = 0. Here we examine the effects of

the c on channelization and other porous characteristics.

Fig. 13 shows how different the eroding porous media are

when all the porous media reach the same target porosity

ε = 0.84. From (a)&(b) to (i)&(j) the cohesion parameter c∗

is increased from 0 to 1.8. It can be seen that channelization is

more and more significant with the increase of the cohesion.

When c∗ ≥ 1.5 two main channels are formed with nearly all

flow redirected here. This phenomenon can be explained as

follows. Larger c∗ means that the grains become harder to

yield, and in smaller pores the local flow rate is more likely

to be too small to erode the grains. Erosion occurs therefore

predominantly in the larger pores and this facilitates the redi-

rection of flow to those faster eroding pores, thus enhancing

channelization.

The solid fraction and average effective grain diameter as

a function of vertical position is presented in Fig. 14 (a) and

(b). Here the curves in (a) and (b) corresponds to the five sets
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(a) (b)

FIG. 11. (a) Mean of the pore sizes as a function of the porosity. (b) Variance of the pore sizes as a function of the porosity. The lines

connecting the data points are only for guidance of eye.

0 1 2 3 4 5 6
v/v

0.0

0.2

0.4

0.6

0.8

1.0

PD
F

t * =0.00
t * =2.33
t * =6.99

t * =9.32
t * =11.65

0.0 2.5 5.0
v/v

10−2

100

PD
F

FIG. 12. Probability density function of the flow rate at different in-

stant in one simulation. The 5 instants correspond to the 5 snapshots

in Fig. 8. Inlet shows the same data on semilogarithmic axes.

of results in Fig. 13. Interestingly, the curve of solid fraction

is only slightly affected by the variation of c∗, but the curve

of effective grain diameter is significantly affected. Larger c∗

leads to greater effective diameter, especially at the center part

of the medium. This phenomenon is also evident in Fig. 13.

These suggest that the medium-scale heterogeneity induced

by the pressure dependence of the erosion is not affected by

systematically varying the cohesion parameter, while the dis-

tribution of the diameter of the eroding grains will be signifi-

cantly affected.

Figure 15 (a) and (b) show the means and the variances

of pore throat sizes against porosity at different cohesion pa-

rameter c∗. It can be seen that the means of the pore sizes

at different c∗ almost fall onto one curve, while the variances

of the pore size are the same for different c∗ only at relatively

small porosity. At higher porosity, the local flow rate becomes

small enough so that at least some of the small pores will cease

erosion because of the yield threshold. Then the flow is redi-

rected, and larger pores are eroded faster. This explains the

large variance in the regime of higher ε . Moreover, the larger

the cohesion parameter c∗ the earlier the actual stress becomes

smaller than the yield threshold, and this leads to larger vari-

ance for larger c∗ at the same ε .

C. Effects of the angle of internal friction

The angle of internal friction is controlled by the scaling

factor α following Eq. (17). Here we vary tanψ to examine

the effects of the angle of internal friction.

Figure 16 shows eroding porous media with tanψ varied

from 0 to 1. Erosion in these porous media start with the same

initial condition. With the erosion progressing they will all

reach the same target porosity ε = 0.81 as shown in the fig-

ure. It can be seen that the effects of the angle of internal

friction is quite significant: larger tanψ results in higher de-

gree of heterogeneity in the filtration direction but lower de-

gree of heterogeneity in the transverse direction. The effects

on the heterogeneity in the filtration direction are also mani-

fested in Fig. 17. It can be seen from Fig. 17 that larger tanψ
leads to steeper spatial distribution of both solid fraction φ
and effective grain diameter D in the filtration direction. This

is obviously due to the fact that tanψ controls the pressure

dependence of the erosion. Larger tanψ means the erosion

is more pressure-dependent, inducing higher heterogeneity in

the pressure drop direction. When tanψ = 0 the erosion is

essentially pressure-independent, then there will be no het-

erogeneity in the pressure drop direction as demonstrated in

Fig. 17.

Inspecting Fig. 16, channelization (heterogeneity in the

transverse direction) is impeded by increasing tanψ . This is

probably caused by the combined effects of two factors. One

is the fact that the channelization is only prevalent when the

porosity is relatively high27. The other is the flow correlation

in the filtration direction. The mechanics of the tanψ affect-

ing channelization can be explained as follows. Larger tanψ
induces steeper distribution of porosity in the filtration direc-

tion (see Fig. 17 (a)), the porosity is thus lower at the upstream
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(a)

(b)

(e)(c)

(f)(d)

(g)

(h)

(i)

(j)
v*

✻✡☛☞

0

FIG. 13. Eroding porous media with different cohesion. (a)-(b) c∗ = 0, (c)-(d) c∗ = 0.6, (e)-(f) c∗ = 1.2, (g)-(h) c∗ = 1.5, (i)-(j) c∗ = 1.8. (a)

(c) (e) (g) and (i) depict eroding grains and the fluid, (b) (d) (f) (h) and (j) depict the corresponding velocity contours. Porosity is ε = 0.84 for

all results demonstrated.

(a) (b)

FIG. 14. (a) Solid fraction as a function of the vertical position at different cohesion c∗. (b) Average effective grain diameter as a function of

the vertical position at different cohesion c∗. For all curves in (a) and (b) ε = 0.84. The lines connecting the data points are only for guidance

of eye.

(a) (b)

FIG. 15. (a) Mean of the pore sizes as a function of the porosity at different c∗. (b) Variance of the pore sizes as a function of the porosity at

different c∗. The lines connecting the data points are only for guidance of eye.

part leading to less or no channelization there. The channel- ization is just the result of flows redirection due to different
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(a)

(b)

(e)(c)

(f)(d)

(g)

(h)

(i)

(j) v*
✌✍✎✏

0

FIG. 16. Eroding porous media with different angle of internal friction. (a)-(b) tanψ = 0, (c)-(d) tanψ = 0.25, (e)-(f) tanψ = 0.5, (g)-(h)

tanψ = 0.75, (i)-(j) tanψ = 1.0. (a) (c) (e) (g) and (i) depict eroding grains and the fluid, (b) (d) (f) (h) and (j) depict the corresponding velocity

contours. Porosity is ε = 0.81 for all results demonstrated.

hydraulic conductance. If the channelization at the upstream

part is suppressed, it means that flows there stay dispersed.

Then these dispersed upstream flows will also suppress the

flow redirection at the downstream part, leading to insignifi-

cant channelization overall.

Figure 18 (a) and (b) show the means and the variances of

pore throat sizes against porosity at different tanψ . It can be

seen that at the regime of relatively small porosity the change

of both the mean and variance of the pore throat sizes follows

the same trajectories. Only at the high porosity regime the

effects of tanψ manifest. Unlike the cohesion parameter c

which affects only the variance of the pore throat sizes, the

angle of internal friction ψ has significant effects on both the

mean and the variance. Both the mean and the variance tend

to be smaller if tanψ is larger. Obviously, the decrease of

variance of the pore throat sizes is the result of the suppression

of channelization caused by higher tanψ .

IV. SUMMARY AND CONCLUSION

In our previous work16 we have incorporated the dou-

ble (liquid/intra-granular) molecular diffusion, solid-liquid re-

lease mechanism, and the migration of fines (cellular frag-

ments) in a particle-based model to simulate the espresso ex-

traction. In the present work, we focus on the geometric

change of the coffee cake induced by hydrodynamic forces.

Based on prior experimental observation37, we assume that

the coffee grains are not completely wetted and remain suf-

ficiently brittle. We devise a bottom-up mechanical erosion

model, which can be seen as a combination of the Mohr-

Coulomb yield criteria and classic shear-erosion model, to in-

vestigate eroding coffee cake. Using the present model, we

found that an eroding porous medium whose yield threshold is

pressure-dependent has a noteworthy feature: heterogeneity in

both the filtration direction and the direction perpendicular to

it can be induced. The former is caused mainly by the pressure

difference across the porous medium, the latter, which is also

known as “channelization”, is caused by the positive feedback

of hydraulic conductance increase induced by erosion. The

medium-scale heterogeneity in the filtration direction, which

is manifested by the spatial distribution of porosity, is mainly

controlled by the angle of internal friction of the material ψ . It

is barely affected by the cohesion parameter. Higher value of

ψ leads to more significant heterogeneity. On the other hand,

the heterogeneity in the transverse direction, which is mani-

fested by the variance of the pore throat sizes and the large

channels seen after erosion, can be controlled by both the co-

hesion parameter c and the angle of internal friction ψ . The

higher the c the more significant the channelization will be,

provided that the external hydrodynamics is strong enough to

erode the medium. The larger the ψ the less significant the

channelization is, because the heterogeneity in the filtration

direction tends to suppress channelization.

To summarize, we have studied, in this paper, how the

Mohr-Coulomb parameters affect the erosion of a porous

medium. There are plenty of studies18,25–27 focusing on mod-

elling eroding porous medium with the simple “shear erosion”

criterion. The Mohr-Coulomb criterion (or similar criterion

e.g. Drucker-Prager) has also already been incorporated into

erosion model in simulations of sediment erosion30–32. But to

the best of our knowledge, the effects of applying the Mohr-

Coulomb criterion to eroding porous medium has not been

studied. This highlights the novelty of our research.

Even though the main motivation of this research is con-

nected to the modeling of espresso extraction, the erosion

model we have devised and the obtained results can be ap-

plied to other eroding porous media. Our results suggest that

the heterogeneity of an eroding medium (whose failure cri-

terion is pressure-dependent) can be controlled by tuning the

yield characteristics of eroding material (e.g. by controlling

the temperature or water content of the material).

As discussed in the introduction, the effects of pressure-

dependent erosion on the time-dependent mass distribution in
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(a) (b)

FIG. 17. (a) Solid fraction as a function of the vertical position at different tanψ . (b) Average effective grain diameter as a function of the

vertical position at different tanψ . For all curves in (a) and (b) ε = 0.81. The lines connecting the data points are only for guidance of eye.

(a) (b)

FIG. 18. (a) Mean of the pore sizes as a function of the porosity at different tanψ . (b) Variance of the pore sizes as a function of the porosity

at different tanψ . The lines connecting the data points are only for guidance of eye.

a porous medium is only one of the many important phys-

ical processes occurring inside a coffee cake during extrac-

tion. Other highly-relevant effects are related to consolida-

tion and compaction59,60, fragment migrations4,16 and grain

swelling61,62, to mention but a few. To further improve the

mesoscopic modeling of espresso extraction in the future we

plan to model the coffee grains as quasi-rigid body to consider

both the consolidation and fracture of the grains. Performing

X-ray microCT scans on both dry coffee cake and coffee cake

after extraction is also crucial to gather more microstructural

information and this is indeed the object of current investiga-

tions. X-ray microCT is a non-destructive imaging technique

that can provide the 3D geometry of the porous structure. The

solid structure can be segmented from the pores, providing a

real structure for porous media modeling studies63,64, in addi-

tion to visualisation and analysis of temporal changes in the

structure. It is expected that analysis on the microCT images

could provide crucial information about how the geometry

changes during extraction process. This information will pro-

vide important guidance to disentangle the effects discussed

above and to devise appropriate simulation techniques that

can incorporate all the relevant dynamics (erosion, consoli-

dation swelling, and fines migration) into the espresso extrac-

tion simulation, i.e. moving towards more quantitative virtual

coffee profiling.
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