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Abstract

The current study offers a hybrid convolution neural networks (CNN) model that filters relevant posts

and categorises them into several humanitarian classifications using both character and word embedding of

textual content. The distinct embeddings for words and characters are used as input to the CNN model’s

various channels. A hurricane, flood, and wildfire dataset are used to validate the proposed model. The

model performed similarly across all datasets, with the F1-score ranging from 0.66 to 0.71. Because it

uses existing social media posts and may be used as a layer with any social media, the model provides a

sustainable solution for disaster analysis. With domain-specific training, the suggested approach can be

used to locate useful information in other domains such as traffic accidents and civil unrest also.
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1. Introduction1

Disasters are adverse natural events that cause loss of life and property damage, such as floods, hurricanes,2

earthquakes, tsunamis, and storms, and are a significant impediment to the development of cities and3

societies. Every city’s sustainable development should include strategies for avoidance and effective disaster4

mitigation. The use of existing infrastructures and technologies for disaster mitigation may provide a more5

cost-effective and sustainable solution because the cost of deployment and maintenance will be minimal,6

with little impact on city ecosystems. Social networking, which began as a chit-chat app, has made inroads7

into modern cultures and cities. They are being used by city dwellers to share their status, highlight their8

accomplishments, show consent and dissent to government policies and regulations [1, 2], and report any9

unwanted events and disasters [3] with text, images, and video messages. Businesses use social media to sell10
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their products and services, while government organisations use it to raise public awareness about various11

societal concerns and policies. Many news stories are first reported on social media platforms before being12

published on news channels in recent years, as citizens rapidly share what they see and feel on social media.13

Because smartphones and high-speed Internet are readily available, immediate sharing is now possible. In14

an emergency, such as a disaster, where people require quick assistance, this immediate communication is15

extremely beneficial. A natural disaster causes enormous damage and necessitates significant government16

and individual effort to recover [4, 5, 6]. During an emergency, rescue groups require essential damage17

information as well as a precise location in order to provide timely assistance to those who are affected.18

However, immediate sharing has a disadvantage in that it overburdens social media by circulating the19

same content. Other individuals begin to express compassion for the victims, commend rescue organisations,20

and so forth. Although all of these communications are related to a disaster, they may not be very effective in21

terms of disaster mitigation. During an emergency, such as an earthquake, flood, tsunami, or other disaster22

scenarios, Twitter and Facebook get a large number of content [7, 8, 9, 10]. Twitter receives around 50023

million tweets every day from its users on a variety of topics 1. As a result, extracting useful data from social24

media is a difficult operation that is nearly impossible to complete manually due to its enormous volume25

and velocity. However, these posts are significant because many of them are made by eyewitnesses who26

share real-time images of the calamity. On February 07, 2021, a flood occurred in the Chamoli district of27

Uttarakhand (India)2, which was recorded by many eyewitnesses via video and audio messages on Twitter3.28

Relevant or useful tweets include those that call for aid, provide damage information, photos of injured or29

deceased individuals, or inquire about family. It’s nearly hard to manually process and extract useful tweets30

from millions of tweets. Furthermore, manual screening of disaster-related tweets required a significant31

amount of human labour, even if it was impossible to obtain all of them. As a result, there’s a good risk32

that useful tweets may get lost in the shuffle. To close these gaps and collect nearly all disaster-related33

tweets, a strong system is required that can scan incoming tweets and automatically filter the informative34

ones from Twitter. Tweets on Twitter are restricted in the character count (currently 280), so users are35

compelled to utilise abbreviations, an irregular short form of the text with numerous typos [11, 6, 12],36

making it a difficult task to create a robust system that can collect informative tweets.37

Some studies have been conducted utilising machine learning (ML) techniques to solve catastrophe-38

related challenges such as landslide [13] and forecasting population elimination during disaster [14, 15]. The39

primary drawback of the earlier works is that features must be extracted manually, which is a time-consuming40

procedure in which many essential textual elements are missed. For example, if the model fails to capture41

the meaning of the phrase, or if a word is misspelt, it is likely that it will not appear in the forecast.42

1https://www.dsayce.com/social-media/
2https://en.wikipedia.org/wiki/2021 Uttarakhand flood
3https://twitter.com/search?q=Chamoli&src=typed query
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To address these difficulties and capture the semantics of tweets, this study presents a deep learning-43

based framework capable of dealing with the issues that arise in a machine learning-based method. The44

convolutional neural network (CNN) model has been used successfully to solve Natural Language Processing45

(NLP) based problems such as spam detection [16], question answering [17, 18], sentiment analysis [19],46

disaster-related tweet classification [5], and others [20, 21]. To filter the informative tweets, this study used47

a hybrid CNN model. To better capture the semantics of the message, hybridization is done at the level of48

word and character embedding. To extract the features from the input, multiple size kernels that convolve49

across the embedded tweet matrix are utilised. The following are the research’s key contributions:50

• Proposed a hybrid CNN model to categorise tweets into disaster-related categories.51

• Combining the character and word embedding methods to capture message semantics.52

• To confirm the system’s resilience, the suggested hybrid CNN model is trained and evaluated on a53

cross-disaster dataset.54

The rest of the article is organized as follows: Section 2 is the literature review. Section 3 discusses the55

proposed hybrid CNN model. In Section 4, the experimental outcomes of the proposed model is presented,56

followed by the discussion on the obtained results in Section 5. Finally, Section 6 concludes the article.57

2. Literature Review58

This section discusses the works that use information gathered from a social media platform to get59

disaster-related information. Social media, particularly Twitter, has been utilised in customer satisfaction60

[22], transit rider debate analysis [2], and fake news detection [23]. Other researchers have utilised social me-61

dia for urban analytical and geo-visual systems [24], as well as hazard response [3]. Many scholars have lately62

utilised social media to raise awareness about the issue on time [25, 26, 27]. To give immediate assistance to63

the victims, relief agencies required information about the tragedy, which could be obtained through a social64

media platform. As a result, using social media as a method for obtaining informative material is critical65

for humanitarian groups. Several researchers have proposed models for obtaining informative content from66

social media platforms [28, 11, 6, 12, 29, 30, 31, 32, 33]67

Caragea et al. [34] developed a technique to categorise tweets on the Haiti earthquake. They utilised68

a dataset of 3,598 tweets that had been manually labelled. The dataset included 10 categories, including69

medical emergency, people trapped, food shortage, and shelter required. To categorise the tagged text, two70

techniques were proposed: (i) keyword classification and (ii) ML algorithm classification. Topical words and71

a bag of words techniques are utilised to extract the characteristics. The testing results indicated that the72

keywords-based classifier produced a F1-score of 0.47 for the best instance, whereas the ML classifier (SVM)73

achieved a F1-score of 0.59.74
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Verma et al. [35] created an automated situational awareness system. The dataset for the study was75

created by gathering four crises situations. Naive Bayes and Maximum Entropy were employed as classifiers.76

The Maximum Entropy classifier obtained an accuracy of 80% using retrieved linguistic characteristics as77

well as hand-annotated features. Cameron et al. [36], like [35], proposed an automated methodology for78

identifying situation awareness posts on Twitter. Imran et al. [37] surveyed the processing of textual79

material gathered from social networking platforms. Many datasets linked to the crisis 4 were provided to80

assist future researchers.81

Imran et al. [29, 38, 39] presented various models for disaster message classification. Imran and his82

group created a system called Artificial Intelligence for Disaster Response (AIDR) [29] that is capable of83

categorising tweets into user-defined classifications in real-time. The model was evaluated using the Pakistan84

earthquake dataset and yielded an Area Under Curve (AUC) of 0.80. A Naive Bayes classifier was utilised in85

[38] to categorise tweets into several classes with textual features. For identifying the informative tweets, the86

model had the highest F1-score of 0.809. A model was built in [39] to extract disaster-related information87

from tweets. They utilised two datasets: Jolphin 2011 and Sandy 2012. The Jolphin 2011 dataset has88

206,764 tweets, whilst the Sandy 2012 dataset contains 140,000 tweets. Tweets are classified into three89

categories: (i) personal, (ii) informative, and (iii) others. Furthermore, the informative tweets are divided90

into several categories. In the best-case scenario, their model had a detection rate of 91%.91

Ashktorab et al. [31] suggested a three-stage method for filtering informative tweets. Their model92

consists of three phases: (i) classification, (ii) clustering, and (iii) extraction. To begin, tweets relating93

to harm and causalities are filtered using traditional machine learning classifiers such as Support Vector94

Machine (SVM), sparse Latent Dirichlet Allocation (sLDA), and Logistic Regression (LR). Second, tweets95

with similar contexts are put together using clustering techniques. Finally, the tokens and phrases are96

extracted to obtain information on the various sorts of crisis-related harms. To validate the model, they97

used a total of twelve crises datasets. The LR classifier produced a F1-score of 0.65 in the best scenario.98

Olteanu et al. [40] developed a lexicon of crisis-related terms that appear often in messages uploaded on the99

social network during various crisis situations. These lexicons were utilised to extract the new terms that100

characterised the situation automatically. Li et al. [41] proposed a domain adaptation technique in which a101

model was trained on a labelled dataset of one event and tested on an unlabeled dataset of another event.102

They applied Naive Bayes classifiers to two datasets (i) hurricane Sandy and (ii) the Boston Marathon103

attack to report the best result with an AUC value of 0.73.104

Rudra et al. [42] built a strategy to categorise the Nepal earthquake dataset into several catastrophe105

categories. An abstract summary was also created from the classified messages. Huang and Xiao [43]106

developed the model using the hurricane sandy disaster dataset. For the best situation, they utilised logistic107

4https://crisisnlp.qcri.org/
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regression to get an F1-score of 0.66. Nguyen et al. [44] created a model that uses a deep learning108

framework to categorise tweets as (i) informative or (ii) non-informative. The informative messages are109

further divided into groups such as sympathy, damages, impacted persons, and others. Nguyen et al. [12]110

created another model that uses CNN to categorise messages into informative and non-informative categories.111

Their experiment demonstrated that out-of-event data may also be used to train the algorithm at the start112

of a disaster. Caragea et al. [44] built a similar model with a CNN network, in which tweets are categorised113

into informative and non-informative categories.114

Aipe et al. [45] presented a multi-label classification model with a deep learning architecture. In addition115

to the tweet content, the hashtag, user-mentions, and keywords derived from the URL are all taken into116

account for model construction. The results of the experiments indicated that the extra characteristics117

have a beneficial effect on total predictions. The model’s F1-score ranged from 0.75 to 0.98. Graf et al.118

[46] created a cross-domain categorization model . They retrieved a variety of characteristics, including119

emotional, sentimental, and linguistic ones. The model was trained and evaluated using twenty-six datasets,120

twenty-five of which were utilised for training and the remaining one for testing. Their model achieved an121

average accuracy of 80%. Yu et al. [30] utilised three catastrophe datasets for model development: (i)122

hurricane Harvey, (ii) hurricane Sandy, and (iii) hurricane Irma. The created model was evaluated with two123

settings, (i) event-specific dataset and (ii) out-of-event dataset, and achieved the best case F1-score of 0.80124

utilising a CNN deep learning model.125

The model proposed by Singh et al. [47] classified tweets as high-priority or low-priority. They validated126

their model using a flood dataset. They also predicted the user location using a hidden Markov model and127

reported a best-case location prediction accuracy of 87%. Kumar and Singh [5] created a CNN-based deep128

learning model to extract location references from emergency tweets. For the best situation, their model had129

a hamming loss of 0.002 and a F1-score of 0.96. Kumar et al. [48] presented an additional deep multimodal130

technique for informative content categorization. They employed transfer learning and Long-Short Term131

Memory to get a F1-score of 0.92 with the textual dataset. When the image and text were combined, the132

best-reported result was an F1-score of 0.93.133

Madichetty et al. [49] developed a multi-modal method for detecting disaster-related relevant tweets that134

combine fine-tuned BERT and DenseNet. They tested their method on seven different catastrophe event135

datasets, obtaining F1-scores ranging from 0.66 to 0.88. Malla et al. [50] suggested an ensemble-based136

strategy for identifying COVID-19 related relevant tweets by combining the RoBERTa, BERTweet, and137

CT-BERT models. With an F1-score of 0.91, their method beat traditional machine and deep learning138

models. By merging the RoBERTa and feature-based techniques, Madichetty et al. [51] developed a neural-139

based strategy for detecting disaster-related situational tweets. They tested their model with different140

disasters including Typhoon Hagupit, the Hyderabad bomb blast, the Sandy Hook shooting, the Nepal141

earthquake, and the HarDerail derailment. For several catastrophic occurrences, their model achieved F1-142
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Table 1: Some of the potential works for disaster-related informative tweet identification

Authors Disaster Event Model Performance

Madichetty et al. [49] hurricane Irma, Mexico Earthquake, California Wildfire, etc. BERT + DenseNet F1-score = 0.66 - 0.88
Malla et al. [50] COVID-19 Ensemble model F1-score = 0.91

Madichetty et al. [51]
Typhoon Hagupit, Hyderabad bomb blast,
Sandy Hook shooting, etc.

RoBERTa + Feature-based method F1-score = 91% - 100 %

Caragea et al. [34] Haiti disaster Keywords-based & ML algorithm F1-score = 0.47 - 0.59
Imran et al. [29] Pakistan earthquake Artificial Intelligence for Disaster Response (AIDR) AUC = 0.80
Li et al. [41] hurricane Sandy & Boston Marathon bombing Domain adaption approach AUC = 0.73
Huang and Xiao [43] hurricane sandy Logistic regression F1-score = 0.66

Kumar et al. [48]
hurricane Harvey, hurricane Irma, California Wildfire,
Sri Lanka Flood

Transfer learning + LSTM F1-score = 0.74 - 0.93

Aipe et al. [45] California earthquake, Nepal earthquake, India Flood CNN F1-score = 0.75 - 0.98
Caragea et al. [28] Philippines foods (2012), Colo- rado foods (2013), etc. CNN Accuracy = 75.90–82.52

scores ranging from 91% to 100%. Chy et al. [52] presented a neural network-based method and tested it on143

the TREC-2018 dataset, yielding an F1-score of 0.63. Table 1 lists some of the potential works highlighting144

the disaster dataset used, the proposed model and their performance in disaster-related informative content145

identification.146

Researchers utilise a variety of deep learning models to categorise informative and uninformative tweets147

as well as location predictions. The models, however, were trained and evaluated on the same event dataset,148

which did not demonstrate their resilience. This study bridges the gap by presenting a hybrid CNN model149

that is trained and evaluated on different event datasets. The models’ results validated its resilience by150

attaining excellent forecast accuracies across a variety of calamities.151

3. Methodology152

This research aims to build a robust system to classify informative tweets automatically. Three disaster153

datasets (i) hurricane Harvey, (ii) California Wildfire, and (iii) Kerala Flood are used in this research. The154

hurricane Harvey dataset consists of a total of 6,378 training, 929 validation, and 1,805 test samples. In155

the California Wildfire dataset, the number of training, validation and testing samples are 5,163, 752, and156

1,461, respectively. The Kerala flood dataset has 5,588 training, 814 validation and 1,582 test samples. The157

hurricane Harvey and Kerala flood datasets have ten different humanitarian classes. The classes are (i) Cau-158

tion and Advice (CA), (ii) Displaced people and Evacuations (DPE), (iii) Infrastructure and Utility Damage159

(IUD), (iv) Injured or Dead People (IDP), (v) Not Humanitarian (NH), (vi) Other Relevant Information160

(ORI), (vii) Requests or Urgent Needs (RUN), (viii) Rescue Volunteering or Donation Effort (RVDE), (ix)161

Sympathy and Support (SS), (x) Missing or Found People (MFP). The California wildfire dataset has nine162

different classes mentioned above except the last class, i.e., Missing or Found People. Detailed data statistics163

in each sub-category of all three datasets are shown in Table 2.164

The proposed model is based on a convolutional neural network that uses both word and character165

embedding of the disaster-related tweets to classify them into different humanitarian classes. The step-166

wise working of the proposed model is shown in Figure 1. The performance of the proposed model is167
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Table 2: Data statistics used to validate the proposed model

Class hurricane Harvey California Wildfire Kerala Flood

Training Dev Testing Training Dev Testing Training Dev Testing
Caution and Advice (CA) 379 55 107 97 14 28 97 14 28
Displaced people and Evacuations (DPE) 482 70 136 258 38 72 39 6 11
Infrastructure and Utility Damage (IUD) 852 124 241 295 43 84 207 30 59
Injured or Dead People (IDP) 488 71 139 1,362 199 385 254 37 72
Not Humanitarian (NH) 287 42 81 923 134 261 319 47 90
Other Relevant Information (ORI) 1,237 180 350 727 106 205 669 97 189
Requests or Urgent Needs (RUN) 233 34 66 55 8 16 413 60 117
Rescue Volunteering or Donation Effort (RVDE) 1,976 288 559 991 144 280 3,005 438 851
Sympathy and Support (SS) 444 65 126 330 48 94 585 85 165
Missing or Found People (MFP) - - - 125 18 36 - - -
Total 6,378 929 1,805 5,163 752 1,461 5,588 814 1,582

compared with other existing deep learning and machine learning models. A total of seven models are168

implemented: (i) CNN (Word-Character), (ii) CNN (Word), (iii) Random Forest (RF), (iv) K-Nearest169

Neighbour (KNN), (v) Naive Bayes (NB), (vi) Decision Tree (DT), and (vii) Gradient Boosting (GB).170

For conventional machine learning models, uni-gram, bi-gram, and tri-gram TF-IDF (Term-Frequency and171

Inverse-Document-Frequency) features are used. This section discusses the proposed convolutional neural172

network-based model in detail, along with embedding layers and different convolution processes.173

3.1. Convolutional Neural Network174

To process the disaster data and extract the contextual information from it automatically, a deep learning-175

based convolutional neural network (CNN) is used in this research. This section highlights the working of the176

CNN model with the textual dataset. The CNN mainly consists of three layers: (i) Convolution (ii) Pooling,177

and (iii) Fully-Connected Dense layer with some other pre-requisites such as padding and embedding. One178

of the main requirements of the CNN model is the equal length of the input samples. The model does179

not process the variable size of inputs. Hence, padding is used. There are two types of padding supported180

by Keras, (i) pre-padding and (ii) post-padding. In pre-padding, the zeros are added at the beginning of181

the sentence, whereas in post-padding, the zeros are added at the end to equalize the lengths of the input182

samples.183

3.1.1. Embedding Layer184

The embedding layer helps to create the embedded matrix for the given input word sequences. For ex-185

ample, if a sentence consists of t words (W1,W2,W3, ....,Wt), then from a pre-trained embedding such186

as GloVe [53] and FastText, the corresponding word-vector is extracted by one-to-one mapping. For187

each word Wi, a word-vector having dimension d is extracted. The extracted vectors can be repre-188

sented as S(W )1:t = e(W1), e(W2), e(W3), ..., e(Wt), where, (S(W )1:t) represents the complete sentence and189

e(W1), e(W2), e(W3), ...., e(Wt) is the individual word’s embedding extracted from the pre-trained embed-190
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Figure 1: Proposed multi-channel convolutional neural network-based model

ding vector. To form the matrix of the input words, the extracted word-embedding e(W1), e(W2), e(W3),....,191

e(Wt) are concatenated together.192

S(W )1:t = e(W1)⊕ e(W2)⊕ e(W3)⊕ .....⊕ e(Wt) (1)

here ⊕ is a concatenation operator.193

In this way, for every sentence s, a sentence matrix S ∈ Rd×|t| is formed, where, |t| is the total number194

of words in the sentence and d is the dimension of the word embedding vector. Each word of the sentence195

is represented with d dimensional word-vector. The formed matrix is shown in equation (2).196

S =



W11 W21 W31 . . . Wt1

W12 W22 W32 . . . Wt2

W13 W23 W33 . . . Wt3

...
...

...
...

...

W1d W2d W3d . . . Wtd


(2)

The proposed CNN (Word-Character) model, uses both word embedding and character embedding.197

For the word embedding, we fixed a maximum word size to 30, and we mapped each word into a 300-198

dimensional embedding vector using pre-trained FastText5 embedding vector. Therefore, for each of the199

tweets, a (30 × 300) matrix is obtained (see Figure 1). For the character embedding vector, we fixed the200

5https://dl.fbaipublicfiles.com/fasttext/vectors-crawl/cc.en.300.bin.gz
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maximum size of 200 for the characters in each of the tweets. In our dataset, we found 70 different characters,201

including numbers and special symbols. Therefore, a (70 × 200) matrix is obtained for each of the tweets.202

Then these two words and character matrix are used by the convolution operation to extract robust features203

from the tweets.204

3.1.2. Convolution Operation205

The convolution layer uses different size of n-grams kernels to extract the hidden contextual features206

from the input sentence. The n-gram size can vary from uni-gram to quad- or five-gram or even more. For207

easy understanding, a detailed mathematical explanation of the feature extraction process using a n-gram208

kernel F ∈ Rd×|n| on sentence matrix S ∈ Rd×|t| can be described as follows:209

S =



W11 W21 W31 . . . Wt1

W12 W22 W32 . . . Wt2

W13 W23 W33 . . . Wt3

...
...

...
...

...

W1d W2d W3d . . . Wtd


� F =



F11 F21

F12 F22

F13 F23

...
...

F1d F2d


where � is the convolution operator.210

The sentence matrix S consisting of t words with d dimensional vector for each word, whereas the kernel211

matrix F consists of n = 2 words with dimension d. When the kernel matrix F convolve with the first two212

words of the sentence matrix S, i.e., W1 and W2, it yields a feature value f1. Next, the kernel F convolve213

with the next two words, i.e., W2 and W3 and produce another feature f2. Similarly, the kernel convolve214

with last word pair, i.e., wt−1 and wt to produce fk feature. The convolution operation between the sentence215

matrix S and kernel F produce the feature matrix having the dimension of ((length of sentence - size of216

filter) +1) × 1, i.e., ((|t| − F ) + 1)× 1.217

For example, If the total number of words in the sentence is (t=) 20, and the size of the kernel (F )218

is 2, then a total of 19 (fk = ((20 − 2) + 1) = 19) features are obtained after the convolution operation.219

In general, the convolution operation between sentence S ∈ Rd×|t| and kernel F ∈ Rd×|n| produces fk =220

((|t| − size of (F )) + 1) features. The extracted features f1, f2, f3, ....., fk are stored in matrix C.221

C =



f1

f2

f3
...

fk


where f1 = W11F11 +W12F12 + · · ·+W1dF1d +W21F21 +W22F22 + · · ·+W2dF2d,222
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f2 = W21F11 +W22F12 + · · ·+W2dF1d +W31F21 +W32F22 + · · ·+W3dF2d, and223

fk = W(t−1)1F11 +W(t−1)2F12 + · · ·+W(t−1)dF1d +Wt1F21 +Wt2F22 + · · ·+WtdF2d224

The features obtained using the convolution operation are passed through a non-linear activation function

called ReLU. The ReLU activation function is defined by Eq. (3).

σ(u) = max(0, u) (3)

ReLU activation function returns zero for the negative value, whereas, for the positive value, it returns225

that positive value only. The outcomes are stored in matrix C ′. The C ′ matrix is also having the same226

dimension as of matrix C.227

3.1.3. Pooling228

The purpose of the pooling layer is to reduce the feature dimensions obtained from the convolution229

operation. The convolution operations between sentence matrix and kernel yield a large number of features;230

however, all of them are not important. Hence, the relevant features are pooled out with the help of the231

pooling layer. The Keras library support three types of pooling operations for 1-dimensional convolutional232

neural network: (i) Max-pooling, (ii) Average Pooling, and (iii) Global Average Pooling6.233

From the features stored in matrix (C ′), the max-pooling operation is performed. To pool the features234

p̂i from C ′, a fixed window size k is selected. Max pooling operation pools maximum value from a window235

size of k. Mathematically, it can be represented as:236

p̂i = max(f1, f2, ....fk) (4)

Max-pooling provides the features p̂=[p̂1, p̂2, p2, ....p̂L], where the length of L is defined by the Eq. (5).

L = b |C
′|
k
c (5)

where, |C ′| is the dimension of the feature vector and k is the size of the max-pooling window. For example,237

if the total number of features in |C ′| = 22 and the size of the max-pooling window is k = 5, then total four238

features (L = b 225 c = 4) will be pooled-out using max-pooling operation.239

3.1.4. Fully-Connected Dense Layer240

The last layer of the CNN model is the fully connected dense layer. Here, each neuron is connected241

with the neuron present at the next level. For example, if the number of neurons present at the first dense242

layer is fifty, and the number of neurons at the second dense layer is twenty. In that case, every neuron243

6https://keras.io/api/layers/pooling layers/
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Table 3: Best suited hyper-parameters for the proposed model

Model hyper-parameters CNN (Word-Character) CNN (Word)

Number of CNN layer 4 4
Number of Dense layer 2 2
Dense layer neurons 256, 9/10 256, 9/10
Number of filters 256, 256, 256, 128 256, 256, 256, 128
Filter size 2-gram, 3-gram, 4-gram, 2-gram 2-gram, 3-gram, 4-gram, 2-gram
Max-pooling window 5 5
Activation function ReLU, Softmax ReLU, Softmax
Learning rate 0.001 0.001
Optimizer Adam Adam
Loss function Categorical Crossentropy Categorical Crossentropy
Batch size 32 32
Epochs 100 100

of the first layer is connected with all twenty neurons of the second layer. Hence, in total, the number of244

connections between the first and second dense layer will be 50 × 20, i.e., 1,000 + 20 (bias)= 1,020. The245

features obtained after max-pooling operations, i.e., p̂=[p̂1, p̂2, .....p̂L] was flattened and passes to the dense246

layer present at the end of CNN model for further processing.247

Activation Function: On output layer, mainly two activation functions (i) sigmoid and (ii) softmax can248

be used. For binary classification, both activation functions can be used, whereas for multi-class classification249

problems the softmax activation is preferred. The softmax activation function is defined in Eq. (6).250

σ(wj) =
ewj∑N
j=1 e

wj

(6)

where, wj is the numerical value at the output neuron j, the number of class can vary from 1 to N . The

summation of all the probability values for all the classes is equal to 1 (σ(w1) + σ(w2) + ... + σ(wN ) = 1).

The class that receives the highest probability value will be considered as a predicted class by the model.

In general, we can say the predicted class of the input sentence defined by Eq. (7).

class (qi) = max (σ(w)j) (7)

Optimizer: The Keras library supports many optimizers7 among them; the widely used optimizers are251

RMSprop, Adam, and SGD. The purpose of the optimizer is to achieve better parameter values in less252

time. This helps to converge the model quickly. Thi model proposed in the current research uses an Adam253

optimizer.254

7https://keras.io/api/optimizers/
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Loss function: Another parameter of the CNN model is the loss function. Two loss functions, (i) Binary255

cross-entropy and (ii) Categorical cross-entropy, are the most preferred choice for the classification tasks.256

The binary cross-entropy loss function is used for binary classification whereas, categorical cross-entropy is257

used for multi-class classification problems. The categorical cross-entropy is defined by Eq. (8).258

− 1

N

N∑
i=1

M∑
j=1

yij log pij (8)

Where:259

N: is the number of instances.260

M: is the number of classes.261

yij is the indicator whether the label j is correct classification or not for instance i.262

pij is the model probability to assigning label j to instance i.263

The process of extracting the contextual features from the tweets are explained in this section. The264

performance of the models with different settings and extracted features are discussed in Section 4.265

4. Experimental Results266

The proposed convolutional neural network-based model (CNN (Word-Character)) uses both word em-267

bedding and character embedding vector of the disaster-related tweets to classify them into different hu-268

manitarian classes. The proposed model is validated with the three disaster event categories: hurricane269

Harvey, the Kerala flood, and the California wildfire. To evaluate the performance of the proposed CNN270

(Word-Character) model, Equations 9, 10, and 11 are used. The experiment is carried out on the Google271

Colab platform8 with their default settings.272

• Precision (P): The number of truly predicted informative instances among all retrieved informative

instances. Mathematically, it is defined as:

Precision (P ) =
True Positive

True Positive + False Positive
(9)

• Recall (R): The number of truly predicted informative instance among the total number of true infor-

mative instance. Mathematically, it is defined as:

Recall (R) =
True Positive

True Positive + False Negative
(10)

8https://colab.research.google.com/
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Figure 2: ROC curve for the proposed CNN (Word-Character) model for hurricane Harvey event

• F1-score (F1): The harmonic mean of the Precision and Recall is the F1-score of the model.

F1− score (F1) = 2 ∗ Precision + Recall

Precision ∗ Recall
(11)

• AUC-ROC: It is a curve plotted between the true positive rate (TPR) to false-positive rate (FPR).273

The value of the area under the curve is closer to 1 represents the best performance of the model.274

We extensively performed the experiments by varying the number of CNN layers, learning rate, batch275

size, epochs, and other parameters. The best-suited hyper-parameters, number of CNN layers, number of276

neurons in the dense layer, pooling window, etc. are listed in Table 3. Along with the proposed CNN277

(Word-Character) model, CNN with only word embedding vector (CNN-(Word) and five different machine278

learning classifiers such as RF, KNN, NB, DT, and GB classifiers are also implemented to compare the279

performance of the proposed model with them.280
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Figure 3: ROC curve for the proposed CNN-word model for hurricane Harvey event
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Figure 4: Comparison of weighted F1-scores of different models (hurricane Harvey)
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The results of different deep learning and machine learning models for the hurricane Harvey event are281

listed in Table 4. The proposed CNN (Word-Character) model performed best among all the implemented282

models and achieved a weighted precision of 0.71, recall of 0.72, and F1-score of 0.71. The CNN (Word)283

model achieved a weighted precision of 0.69, recall of 0.70, and F1-score of 0.69, whereas, among the machine284

learning models, random forest performed best with the weighted precision of 0.73, recall of 0.72, and F1-285

score of 0.69. It means for the hurricane event combination of character embedding with the word embedding286

performed best as can be seen in Table 4. The ROC curve for the proposed CNN (Word-Character) and CNN287

(word) models can be seen in Figure 2, and Figure 3, respectively. The performance of all the implemented288

models in terms of weighted F1-score are plotted in Figure 4.289
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Figure 8: ROC curve for the proposed CNN (Word-Character) model for California wildfire event

The result of all the implemented models for the Kerala flood event is listed in Table 5. The proposed290

CNN (Word-Character) model again performed best among all the implemented deep learning and machine291

learning models. The proposed CNN (Word-Character) model achieved a weighted precision of 0.65, recall292

of 0.66, and F1-score of 0.66 whereas the CNN (Word) model achieved a weighted precision of 0.64, recall of293

0.66, and F1-score of 0.65. Among all the machine learning models, the random forest classifier performed294

better with the weighted precision of 0.65, recall of 0.68, and F1-score of 0.63. The ROC curve for the295

CNN (Word-Character) and CNN (Word) models can be seen in Figure 5, and Figure 6, respectively. The296

performance comparison of weighted F1-score of all the implemented models can be seen in Figure 7.297

298

The result of different models for the California wildfire event is listed in Table 6. The proposed CNN299

(Word-Character) achieved a weighted precision of 0.67, recall of 0.66, and F1-score of 0.66 whereas CNN300

(Word) achieved a weighted precision of 0.64, recall of 0.65, and F1-score of 0.64. Among all the other301

implemented machine learning classifiers, random forest is again performed best with the weighted precision302

of 0.67, recall of 0.67, and F1-score of 0.65. The ROC curve for CNN (Word-Character) and CNN (Word)303
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Figure 9: ROC curve for the proposed CNN-Word model for California wildfire event
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Figure 11: ROC curve obtained by the model which was trained with hurricane Harvey dataset and tested with Kerala flood
dataset

Table 7: Results obtained by the model which was trained with hurricane Harvey dataset and tested with Kerala flood dataset

Class P R F1
CA 0.43 0.21 0.29
DPE 0.21 0.45 0.29
IDP 0.62 0.51 0.56
IUD 0.35 0.51 0.41
NH 0.20 0.19 0.20
ORI 0.32 0.47 0.38
RUN 0.51 0.50 0.51
RVDE 0.80 0.78 0.79
SS 0.85 0.46 0.60
Weighted Avg 0.66 0.62 0.63

model can be seen in Figure 8 and Figure 9, respectively. The performance of all the implemented models304

in terms of weighted F1-score can be seen in Figure 10.305

To check the robustness of the model, we have trained and tested it with cross event dataset. The306

hurricane dataset was used to train the model, whereas the trained model is tested with the Kerala Flood307

dataset. The results of this experiment are presented in Table 7. The weighted average precision, recall and308

F1-score are 0.66, 0.62 and 0.63, respectively, which is very close to the performance values of the model309

when it was trained and tested with the same dataset. These results indicate the robustness of the proposed310

hybrid model, as it can predict other events with similar accuracies. The AUC-ROC plot obtained with311

different trained-test datasets is shown in Figure 11. The micro average ROC value of the model trained and312

tested with different datasets is 0.85, which is similar to the performance of the model trained and tested313

with the same dataset (Figure 5).314
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5. Discussion315

The main conclusion of this study is that CNN with a fusion of character and word embeddings out-316

performs CNN with simply a word embedding model in detecting informative tweets. The suggested CNN317

(word-char) model was trained and evaluated on three datasets, and it performed better on all three (Tables318

4, 5, and 6. Traditional machine learning classifiers built with features derived using tf-idf approaches have319

poorer prediction accuracy than deep neural models with features generated automatically using various320

convolution procedures. As a result, automated feature extraction approaches are more suited for predicting321

disaster-related tweets, according to another conclusion of this study. On hurricane Harvey, Kerala flood,322

and California wildfire datasets, the CNN model with the fusion of word and char embedding obtained 2%,323

1%, and 2% higher F1-score value than the CNN model with only word embedding technique, as shown in324

Tables 4, 5, and 6, respectively. Another finding of the research is that the developed model is robust as325

predicts the different events with similar performance values. The performance of the model in cross-domain326

setting and same domain setting is shown in Figure 5 and 11. The reason for the robustness of the model327

is better feature extraction due to word and character embeddings.328

The present study intends to use social media posts to gather information about needy individuals329

during catastrophes. When a tragedy strikes, many people seek assistance; however, owing to a lack of330

communication, the request is not received by the appropriate authorities, and the victims confront several331

difficulties. The suggested model is useful in this circumstance since it can extract important information.332

The proposed model’s performance on multiple datasets revealed that it could filter informative disaster-333

related tweets with high accuracy. As a result, during an emergency, it may be used as an initial filter to334

collect disaster-related tweets. To offer immediate assistance to victims while minimising harm. To evaluate335

the model’s resilience, we trained it on the hurricane Harvey dataset and tested it on the Kerala flood336

dataset. The results produced by this model show that the model predicts the event with equal accuracy337

when the micro average ROC value of both models is the same (Figure 5 and 11).338

This study employs both traditional machine learning models and a sophisticated deep learning frame-339

work. The traditional ML model got input from a term frequency-inverse document frequency (tf-idf)340

vectorizer, whereas deep learning received embedded input from a pre-trained embedding. The results of341

the various models with varied settings revealed that the proposed multi-channel CNN model outperforms342

existing ML classifiers. The findings of several models also suggest that the tf-idf vectorizer is ineffective343

for this task. The tf-idf vectorizer fails to capture the semantics of such messages, but the pre-trained344

embedding captures the sentence meanings successfully. Every second, thousands of tweets are sent out on345

Twitter, with just a small percentage of them falling into one of these categories. As a result, the suggested346

automated method may aid in the automatic extraction of such useful tweets from the tweets.347

Entities responsible for delivering aid during the catastrophe must receive timely information. However,348
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Table 8: Snapshot of the actual and predicted classes of disaster-related tweet test sample using proposed model

Event Tweet Correct label Predicted label

hurricane
Harvey

After #Harvey, we need to re-think the
messaging/communications for #flood
victims caught in #tornado warnings.
#TXflood #LAflood

Caution and Advice Injured or Dead People

RT @HuffPost: Harvey spawns tornadoes
that devastate homes outside Houston

Infrastructure and
Utility Damage

Caution and Advice

Houston continues to deal with record
flooding in the aftermath of hurricane
Harvey.

Not Humanitarian
Other Relevant
Information

California
Wildfire

#BREAKING: Eight additional bodies
were found and at least 1,000 people
are missing.

Injured or Dead People
Missing or Found
People

California wildfire death toll rises,
Arizona firefighters to assist efforts

Injured or Dead People
Other Relevant
Information

Several killed in California wildfires @CNN Injured or Dead People
Other Relevant
Information

Kerala
Flood

Some looted the distillery during floods.
Imagine what happens afterwards.

Other Relevant
Information

Infrastructure and
Utility Damage

Jaipur girl uses insta stories to help Kerala
flood victims

Rescue Volunteering
or Donation Effort

Other Relevant
Information

Please help them. #SBI #KeralaFloodRelief
#CMDRF #Donate4Kerala

Requests or Urgent
Needs

Rescue Volunteering
or Donation Effort

due to the huge volume of tweets sent every second, human screening of disaster-related tweets is nearly349

impossible. The suggested multi-channel system has both character and word characteristics capable of350

accurately collecting meaningful tweets. Once the informative tweets have been isolated from the rest of351

the tweets, they may be readily classified into several categories of catastrophe information. During a crisis,352

for example, individuals may seek medical assistance, look for someone who can give water and food, locate353

missing persons, and do other such activities. Once these categories are determined, the appropriate team354

will be notified, and the victim will receive assistance. One of the reasons behind the miss-classification of355

the tweets is the short form of the text. People have developed a practice of typing messages in abbreviated356

forms on social media. For example, the word ’help’ can be written as hlp’, Helpp’, hlpme’; the word ’before’357

can be typed as b4’, be4’, and so on; recognising the context of such phrases by the model is challenging.358

Although the combination of character-level and word-level characteristics worked better in this situation (as359

shown in Tables 4, 5, and 6). However, if a user tweets for assistance, he or she must use a valid grammatical360

term so that the system can recognise it automatically. Otherwise, such communications may be classed as361

non-informative.362

Table 8 contains several examples of where the proposed model fails to identify the right classes. The363

tweet After #Harvey, we need to rethink the messaging/communications for #flood victims trapped in #tor-364

nado warnings. #TXflood #LAflood” belongs to the Caution and Advice class, however, the suggested365
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model predicted it in the Injured or Dead People class. The term “victims caught” in the posted tweets366

might be the cause of the misclassification, given the word victims is commonly used in the Injured or Dead367

People class. Similarly, the #BREAKING: Eight further bodies have been discovered, and at least 1,000368

people are missing.” belongs to the Injured or Dead People class, yet the suggested model predicted it as369

Missing or Found People. The usage of the terms found and missing in the post might be one of the causes.370

As a result, classifying these postings into the right groups becomes even more challenging if these types of371

similar terms appear throughout the different classes.372

The proposed approach is sustainable as it does not require a huge computation facility as it utilizes the373

dataset of existing social media. The recommended approach may be incorporated with any social media374

platform to discover disaster-related relevant posts. An Android app may be created by combining the375

recommended approach for analysing the live stream of social media posts in order to help individuals become376

more situationally aware of the crisis. If domain-specific training is conducted, the suggested approach can377

also be used in comparable occurrences such as traffic accidents and civil unrest. The suggested approach378

has a restriction in that it only examines tweets in English; however, during an emergency, people may tweet379

in regional languages as well. As a result, in the future, a deep neural network-based model for dealing with380

multilingual issues may be developed.381

6. Conclusion382

In this study, we used a multi-channel convolutional neural network to create a robust deep learning383

framework. To detect informative tweets, traditional machine learning classifiers such as RF, KNN, NB,384

DT, and GB classifier are employed. However, the experimental results revealed that the traditional ML-385

based classifier misclassified a large number of tweets. The proposed deep hybrid model, on the other hand,386

has a reasonable prediction accuracy. The suggested hybrid model received a F1-score of 0.71 for hurricane387

Harvey and 0.66 for both the Kerala flood and California wildfire datasets. To test the model’s resilience,388

it is trained on the hurricane Harvey dataset and tested on the Kerala flood dataset, yielding a F1-score389

value of 0.63, which is close to the value obtained by the model trained and tested on the same dataset.390

Future studies can increase the identification rate by incorporating more information accessible with391

tweets, such as the number of times retweeted, the number of short words, the URL, and others. This study392

solely utilised tweets in English. Including different languages may aid in obtaining more accurate forecasts.393

In the future, a cross-domain framework capable of effectively capturing any disaster-related tweets can be394

built.395
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