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Abstract

Applying limit theorems of uniform mixing Markov processes and martingale
difference sequences, we establish the strong law of large numbers, central limit the-
orem, and the law of iterated logarithm for additive functionals of path-dependent
stochastic differential equations.
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1 Introduction and Main Results

Since W. Doeblin [9] in 1938 established the law of large numbers and central limit theorem
for denumerable Markov chains, limit theory for additive functionals of Markov processes
has been extensively investigated. In general, for an ergodic Markov process (X;):>o on
a Polish space F, as t — oo one describes the convergence of the empirical distribution
My 1= % fot dx.ds to the unique invariant probability measure pio,. A standard way is to
look at the convergence rate of

Af ::%/Otf(Xs)d5—>,uoo(f) as t — 0o

for f in a class of reference functions.This leads to the study of limit theorems for additive
functionals of ergodic Markov processes. Classical limit theorems include
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e Strong law of large numbers (SLLN): P-a.s. convergence of Af to oo (f);

e Central limit theorem (CLT): The weak convergence of \/% fot{f(Xs) — loo(f)}ds to
a normal random variable;

e Law of iterated logarithm (LIL): the asymptotic range of ﬁ fg f(Xs)ds.

Once CLT is established, one may further investigate the large/moderate deviations prin-
ciples, see for instance [12] and references within.

When the Markov processes are exponentially ergodic in L?(jis,) or total variational
norm, limit theorems of A/ have been established for reference functions f € L2(jis) or
PBy(E), respectively; see the recent monograph [22] and earlier references [6, 13, 17, 20,
19, 23, 28]. However, these results do not apply to highly degenerate models which are
exponentially ergodic merely under a Wasserstein distance; see for instance [15] for 2D
Navier-Stokes equations with degenerate stochastic forcing, and [2, 4, 5, 14] for stochastic
differential equations (SDEs) with memory.

In this paper, we aim to establish limit theorems for path-dependent SDEs, which
were initiated by It6-Nisio [18]. Due to the path-dependence of the noise term, the
corresponding segment solutions are no longer ergodic in the total variational norm (see
e.g. [22, Example 5.1.3]). Moreover, the L%-ergodicity is also unknown because of the lack
of Dirichlet form for path-dependent SDEs. So far, there are a few of papers on LLN and
CLT for stochastic dynamical systems which are weakly ergodic; see e.g. [21, 22, 24, 27].
In particular, f in [21, 27] is assumed to be (bounded) Lipschitz with respect to a metric
and the weak LLN is investigated; In [22], the LLN is established under some additional
technical conditions (see [22, Theorem 5.1.10] for more details). In this paper, we will
show that limit theorems established in [24] for uniformly mixing Markov processes apply
well to the present model for f being Lipchitz continuous with respect to a quasi-metric.

For a fixed number 74 € (0,00), let ¢ = C([—rg,0]; R?) be the collection of all contin-

uous functions f : [~rg, 0] = R? endowed with the uniform norm
[ Flloo == sup_[f(B)].
—r0<6<0

For any continuous path (y(¢));>_r, on R% its segment (7;);>0 is a continuous path on €
defined by
Y(0) :=~y(t+0), 0€[—r0],t>0.

Consider the following path-dependent SDE on R%:
(1.1) dX(t) = b(Xy)dt + o(X)dW(t), t>0, Xo=£&€F,

where (W (t)):>0 is a d-dimensional Brownian motion on a complete filtration probability
space (2, .Z, (%)i>0, P), and

b: ¢ —RY, 0:¢—>RI@R?
are measurable maps satisfying the following assumptions.
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(A1) (Continuity) o is Lipschitz continuous; b is continuous, and bounded on bounded
subsets of ¢;

(A2) (Dissipativity) There exist constants A, Ay > 0 with A\; > Ape*"™ such that
2(€(0) = (0),b(6) — b(m)) < —Ailg(0) = n(O)]* + Aell€ —mllS,  &m € C

(A3) (Invertibility) o is invertible with supgeq,{[|o(§)[| + [l0(€) 7"} < oo.

Under (A1) and (A2), (1.1) admits a unique solution, and the segment (also called
functional or window) solution (X;);>0 is a Markov process on %’; see [26, Theorem 2.2] or
[4, Proposition 4.1]. Assumption (A3) was used in [2, 4, 5, 14] to ensure the exponential
ergodicity under the Wasserstein distance induced by a quasi-metric.

Let P, be the associated Markov process, i.e.,

Pf(&) =Ef(Xf), f€ B(€), t>0, EcE.

For a probability measure p on %, let uP; be the law of X, with initial distribution .
We then have

[ rawry = [ Pau t20.5€ 5(%)
4 4

To state the main results, we recall the quasi-metric p, , the associated Wasserstein
distance W, ,, and the class C, (%) of Lipschitz functions, where p > 1 and v € (0, 1]
are constants. Firstly, let

Poa(&m) = (LA NIE =l )V 1+ [El5 + lInlle,  €m €€

Note that (§,7) — p,~(&,n) is a quasi-distance, i.e., it is symmetric, lower semi-continuous,
and p,~(£,n) = 0 < £ =1, but the triangle inequality may not hold. Next, let C, (%)
be the set of all continuous R-valued functions on € such that

o |f(E)] |f(&) — f(n)]
171l et 1+ ||E|22  ermemer PpalEil)

< 00

Moreover, let &2, (%) be the set of probability measures p on ¢ with (p < p)(pp~) < 0.
Define

Wy (1, v) = inf Ppy (& m)m(dE,dn), p,ve P, (F),
meC(p,v) CXE

where C(p, v) stands for the set of all couplings of  and v; that is, 7 € C(u, v) if and only
if it is a probability measure on € x € such that (- x €) = u(-) and 7(€¢ x -) = v(-).

The following result concerns with the exponential ergodicity and SLLN for the addi-
tive functional A/ (¢) := 1 [ f(X¢)ds, where f € C,,(%).

Theorem 1.1. Assume (A1)-(A3) and let p > 1,v € (0,1]. Then P, has a unique
invariant probability measure oo € Pp(€) such that

(1.2) W (1P, proo) < ce_ﬂthﬂ(u,um), t>0,u€ P,(F)
holds for some constants ¢, 3 > 0. Moreover, for any £ € € and f € C,.(¥),
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(1) There exists a constant ¢ > 0 such that
E|Af(¢) - ‘<e( PSP, 6> 1
AL() = (DI < e 1+ IEILIAZE, ¢ 1
(2) For any e € (0, 3), there exist a constant c. > 0 such that P-a.s.

|AL(€) = poo( )] < cell Fllpnt 275, ¢ > TY(€)

holds for a family of random variables {T (&) > 1: f € C,,(€),£ € €} satisfying

E|T(£)|*
O
FeCpy () 1+ Hf”pw

To state the CLT, we introduce the corrector Ry for f € C, (%) defined by

(13) Ri(©) = [ {PS© - nmeli)}at, €€
0
This function is well-defined since (1.2) and pio, € &2, ,(%€) imply

|Pf(§) = oo (f)] < ||f||p7“/Wp,7(5§Pta [hoo)

(1.4) . .
< 1™ fllpa Wy (Fe, oo) < o™ (| fllpn (1 +[IEIEP), 20,6 €%

for some constants cq,co > 0. Let

2

(15) e =B [ 1xX8ar+ Ry - Ry(@)| . ¢ e,

For any D € [0,00), let ®p be the normal distribution function with zero mean and
variance D, where ®(z) := 1jg,«)(2) for D = 0. We have the following CLT.

Theorem 1.2. Assume (A1)-(A3). For any constants p > 1 and v € (0,1], let f €

Cp(€) with ps(f) = 0. Then Dy := \/pioo(¥f) € [0,00) and the following assertion
holds:
(1) When Dy > 0, for any e € (0, %) there exists an increasing function h. : Ry — Ry
such that
sup [P(VEAL(6) < 2) = @, (2)| < he(l€]l)t 7, £ 0;
zE

(2) When Dy =0, there exists an increasing function hg : Ry — Ry such that

sup (1A [#]) [P(VEAL(€) < 2) — @, ()] < ho(ll€]lu)t 3, 0.
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Finally, to investigate the LIL, we consider the unit ball in the Camron-Martin space
of C([0,1]; R):

1
(1.6) H = {h € C([0,1];R) : h; exists a.e. t,/ |Rj|2dt < 1},
0
and the following discrete version of Ry and ¢y for f € C), (%) with p(f) = 0:
Ri(&) =D RS (&), 35(&) =E[f(©) + (X)) - Q[ €€,
k=0

which are well defined due to (1.4). For any n > 1, consider the following random variable
on C([0,1]; R):

=1 FXE) + (nt — k) F(XF)
ﬁf\/2nloglogn

A7) A = Y T (0 el
k=0

where ﬁf = Loo(Pf)-

Theorem 1.3. Assume (A1)-(A3). Letp > 1,7 € (0,1, £ € €, and f € C,,(€) with
poo(f) = 0 and Dy > 0. Then the sequence {AL5(+)},>1 is almost surely relatively compact
in C([0,1];R), and when n — oo the set of limit points coincides with H. Consequently,
P-a.s.

(0. ¢ NN " F(XE -
(1.8) lim sup M = Dy, liminfM = —Dy.

nooo \/2nloglogn n—oo +/2nloglogn
Note that the LIL has been intensively investigated for many different models, see e.g.
13,7, 8, 10, 13, 20, 25] and references therein. Theorem 1.3 is a supplement in the setting
of path-dependent SDEs.

The remainder of this paper is arranged as follows. In Section 2, we recall some known
results on SLLN, CLT and LIL for Markov processes, which are then applied to prove the
above three results in Sections 3-5 respectively.

2 Some known results

We first state some results presented in [24] for continuous Markov processes on separable
Hilbert spaces. Since proofs of these results only use the norm rather than the inner
product of the space, they apply also to a Banach space.

Let {X]: x € B,t > 0} be a continuous Markov process on a separable Banach space
(B, || - ||) with respect to a complete filtration probability space (€, .%, (%#)i>0,P) such
that the associate Markov semigroup

Pf(z) = Ef(X?), t> 0,2 €B, f € %)
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has a unique invariant probability measure ji.. For a constant v € (0, 1] and an increasing
function w € C([0, 00); [1,00)), let C, (B) be the class of measurable functions on B such
that

@l F(@) — £l
1o = 500 ) T 28, WA e = o)+ w(lel) + ()

< Q.

Note that in [24] || f||w, is defined by using ||z — y||” instead of 1 A ||z —y||?, but this does
not make essential differences since these two definitions are equivalent up to a constant
multiplication. We take the present formulation in order to apply the ergodicity result
derived in [2]. By [24, Proposition 2.6], we have the following result.

Lemma 2.1. If there exist o, € C(Ry;Ry) with [;° o(t)dt < oo such that
(2.1) |Pef () = oo (N < @YD fllwrs  f € Cuy(B), £20, zeB,
and for some k € N,

(2.2) Ey(]| XF|)* < 00, t>0, z €B,

then for any f € Cy~(B),

2K

Bl [ 70eas -l

< ¢ (2626~ (0 / o()ds ) 1 FI2% Bo(IXFID™, > 1.

(2.3)

Next, [24, Corollary 2.4] gives the following result on SLLN.

Lemma 2.2. Under conditions of Lemma 2.1, if there exist a constant q € (0,1/2), a
function T € C(Ry;Ry) and random variables {M, > 1:x € B} such that

1
(2.4) EM; <7(||z]), = €B,
(2.5) P<||ng|| <wl(t9) fort> Mx> —1, zeB,
where w™! is the inverse of w. Then for any e € (0, %), there exist a constant c. > 0 and

a family of random variables {Tgfx >1:xeB, feC,,(B)} such that P-a.s.

[ )
26) | [ FXs D) < lfllant H¥, 12T 0 € B, J € Cus (B,
0

and

E|T/,|*

1+k)
5

(2.7) sup ——em
feCun(® 1+ || £l

< oo, keN.
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Let f € Cy~(B) and z € B, assume that

(2.8) M= /Ot {f(XZ) = Pf(z)}ds + /too {Po_if(X]) = Pof(z)}ds, t>0

is a well-defined square integrable martingale. Consider its discrete time quadratic vari-
ation process

(M7, Z]E (M]P" — M) Fim0), keN.

Let |t] = sup{k € Z, : k <t} be the integer part of ¢ > 0. The following CLT is due to
[24, Theorem 2.8].

Lemma 2.3. Let f € C,,(B) and x € B such that M} in (2.8) is a well-defined square
integrable martingale. Assume that

(2.9) E( sup e'w(Hth””a) <k(|z]]), k>0, z€B
te(k,k+1]

holds for some constant o > 0 and continuous function k : Ry — Ry. Then

(1) For any constants D,q > 0 and € € (0,1/4), there exists an increasing function
h:[0,00) x [0,00) = [0,00) such that for any x € B and f € C,,(B),

sup [P \i/_/tf(Xf)ds < z> — @D(z)‘

z€R

< (], | fllu) + DO OE|[¢) (M) g - D, 6> 1

Y

(2) There exists an increasing function h : [0,00) X [0,00) — [0,00) such that for any
re€B and f € C,,(B),

sup (1A =D fE(- [ FxEs < 2) = 0o(:)|)
< R [Tl + 1] H R )2, £ 1

Finally, let (M,),>0 be a square integrable martingale and let Z,, = M, — M,,_; be
the martingale difference. The following result is taken from [16, Theorem 1].

Lemma 2.4. Assume that S, := EM, — oo asn — oo, and there exists a constant 6 > 0
such that

(2.10) Z S,:ZLE(Zil{‘Zn‘S(;Sn}) < 00, Z S;1E<Zn1{|zn‘§53n}) < 00

n=1 n=1



and P-a.s.
N 2 _
(2.11) lim 5 d Zp=1
k=1
Then the sequence (Ay,)n>1 of random variables on C(]0,1];R) defined by
M, + (Sit — S)(Sia — S7)Zikia

n—1
An(t) = Z Lis2<rsz<s? 3
P M \/252 loglog S2

1s almost surely relatively compact, and the set of its limits points coincides with H in

(1.6).

, tel0,1]

3 Proof of Theorem 1.1

It suffices to verify conditions in Lemmas 2.1 and 2.2 for the present model, where B =
€, w(r) =1+7r?2 r > 0. To this end, we present the following lemma.

Lemma 3.1. Under assumptions of Theorem 1.1, for any p > 1 and v € (0,1], there
exist constants ¢, 8 > 0 such that

(3.1) E|XE% < c(l+e™|ElR), €e€,t>0,
and
(3.2) W, (P, vP,) < ce P W, (u,v), p,ve P, (€),t>0.

Consequently, P, has a unique invariant probability measure oo and poo(|| - ||%) < oo for
all p > 1.

Proof. (1) By Jensen’s inequality, concerning (3.1) we only need to consider p > 2. Since
Al — Xoe?™ > (), there exists a constant € € (0, A;) such that

(3.3) Ae = A — dpeimo0 2 5,
According to (A1) and (A3), we may find a constant ¢y > 0 such that
2(£(0),6(8)) + llo(©)lfis < co — (M = ) [EO)* + Xoli€]l%,, €.
So, by Itd’s formula,
XD = IO + 20+ [ N (0 = XS
(3.4) +2(X%(s), b(XE)) + ||U(X§)||2Hs>d8

t
< [EO) + ME(t) + e e(h_s)tﬂ”\z/ D [ E
0
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holds for some constant ¢; > 0 and the martingale
t
ME(t) = 2/ M= (5% (X8 XE(s), dW (s)), t>0.
0
Noting that
M2, < e (g2, v sup (€O X (s) ),
0<s<t
we deduce from (3.4) that
IXEE < e der e el + N ()

t
+A2/ e*(A1*€><t*8>||X§\|§ods}, t >0,
0

where N4(t) := supy<,<; M*(s). By invoking Gronwall’s inequality (see e.g. [11, Theorem
11]), this implies

IXFI2, < e dop 4 oMt g2, 4 et NE(r) )

t
+ >\262()\17€)T‘0 / {Cl + ef()\lfs)SHg“go _'_ e*()\l*E)SN{({;)}e*)\s(tfs)d57 t Z O
0

Combining this with Holder’s inequality, for fixed p > 2 we may find constants cq,c3 > 0
such that

E[| X5, < o + coe™ 2|€[[B, + coe™ 2N (NE(2))P/2
t p/2
/e(’\le)se’\s(ts)Ng(s)ds
0

< g+ cae P + oo BV E(NE (1)

+ CQE

t
—}-03/ e_g()\l—a)s—)\e(t—s)]E(Nf(S))p/QdS.
0

On the other hand, by means of (A3) and using BDG’s and Hélder’s inequalities, there
exist constants c4, c5 > 0 such that

P t p/4
HOIBNE)PP < ([ eI ) )

0
p—2

t 3 t S
< C4E[(/ e—2()\1—8)(t—s)‘X§<8)‘pds) (/ e—2()\1—€)(t—s)ds> 1 :|
0 0

1 /\z-: 2 t
u/ 8_2(A1_€)(t_s)E‘X€(S)|pd8, t>0.
0

<5+ e
3



Substituting this into (3.5), and noting that due to A\; —e > A, > 0 we have

t s
/ eAE(tS)ds/ e’z(’\lfs)(s’r)E\Xf(r) Pdr
0 0

t t
_ / eQ()q—e)T—/\stE|X§(r)|pdr / e—(2(>\1—5)—/\s)sds
0 r

1 t
< IR X () Pd
—2<A1—e>—Ag/oe e

1 t
<y [ R par
Ae Jo
we may find a constant C' > 0 such that

A [
E|XF|1% < O(L+ [I€]1%) + 5/ e MR XS5 ds, ¢ 0.
0

By a truncation argument with stopping times, we may and do assume that E|| X2, < oo,
so that by Gronwall’s inequality, this implies the desired estimate (3.1) for some constants

c, 5> 0.

(b) By (3.1), the Lyapunov condition (A3) in [2, Theorem 1.1] holds for V(§) :=
1€][2,, € € € and v = . In terms of [2, Theorem 1.1], this together with (A1) and (A2)
implies (3.2) for possibly different constants ¢, § > 0, which then implies the existence and
uniqueness of the invariant probability measure o, € &, ,(%). Since p > 1 is arbitrary,

we conclude that (]| - ]|%,) < oo holds for all p > 1.

Proof of Theorem 1.1. From (1.4) and (3.1) we see that assumptions in Lemma 2.1 holds
for B = €, w(r) =14+ 772k =1,0(t) = ce™®, and ¢(r) = 1 + rP/2. Then (1) follows

from Lemma 2.1 .

Next, to prove (2), we only need to verify conditions (2.4) and (2.5) in Lemma 2.2.

For ¢ € (0,1/2), consider the following [0, oo]-valued random variables:
M := inf {T >0: 16%||Xf||zO <t¥ for t> T}7

M’ ::inf{meN:m% sup HXngogk% for Nakzm—l—l}.

te[k,k+1]
Obviously, M < M’. Since
3.6 sup Xt o < max Xt iro lloos
(3.6) te[k,kﬂ}ll cll ie{o’l’_“’wrom}ll Feviro |

by (3.1) and applying Chebyshev’s inequality, we may find a constant C'({) > 0 such that

4q

o k’P
STR( sup X > )
k=1 16

te(k,k+1] p
50+3)
— E(sup IXEI%) — 1
141 te[k,k+1] t
<2 qkz e gC(g)kaHq < 0.
=1 =1

10



So, by Borel-Cantelli’s lemma, there exists an N-valued random variable K such that

4q

P sup [IXFII2 <

for k> K) =1.
te(k,k+1] 16»

Therefore, P-a.s. M < M’ < oo and (2.5) holds true. Moreover, (3.1) and Chebyshev’s
inequality also imply

4

E[M’|q—ZkJP’ "= k) SZ kP ( sup | X2, >

telk,k+1] 16»

5]

3
N—

oo E X
§16;Z (SuPte[kk+1 H t”oo)

k1+q
k=1

a p
c(L+[€l), o= Tt Tat /o)
for some constant ¢ > 0. This, together with M < M’, leads to
(3.7) EMi <c(L+[¢R), g€ (0,1/2),

which ensures condition (2.4). Therefore, the proof is finished by Lemma 2.2. O

4 Proof of Theorem 1.2

To apply Lemma 2.3, for fixed f € C, (%) with p(f) = 0, consider

(4.1) M/¢ = /Ot {f(X5) — P.f(&)}du+ /too {Pu,tf(Xf) — P, f(&)}du, t>0,£€%.

Since fioo(f) = 0, (1.4) implies
[PSE] < ce”™|| fllpa(L+[IEE3), t>0,6€%

for some constants ¢, 5 > 0. So, there exists an increasing function ¢ : Ry — R, such
that (3.1) yields

k

E’ [ = Pur@au [P () - PO

t
O (1 LB 4 [lelit? + / (1+ el + E|1X5u£§/2>du)

<oo, t>0.

Hence, M/* is a well-defined martingale with E|[M;*[* < oo for all k > 1.
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Next, consider

(MF), = iE((sz § - M52

i=1

21) keN.

Let Ry and ¢y be defined as in (1.3) and (1.5), respectively. By the Markov property of
(X5)i=0, we have

Mifﬁ _ sz_gl + / f(XS)du + Rf(Xf) - Rf(X§—1>
i1
so that

E((M]S = M5 P170) = (X)),

Consequently, we arrive at
k-1

(4.2) (M54 =Y pp(X), keN.
i=0

Lemma 4.1. Under assumptions of Theorem 1.1, for any f € C,(€) with u(f) =0,

(4.3) 0 < jooli7) = 210 fRy) < o0,

Proof. Firstly, by Lemma 3.1 and (1.4), we have p(|| - [[%) < oo for all p > 1 so that

Hoo(tpf) < 00 for any f € C,,(€) with uoo(f) = 0.
Next, by the Markov property of (X* )i>0 and noting that (1.3) implies

PR = Ri(&) = [ PO, 120
we have

E[f(XOR;(X)] = Pu(fPi_uRp)(€) = Pu(fRy)(E) — /0 PP ©dr s € [0,1],

E(/le(xﬁ )—2E/fX5 /sf
:2/01 / (P f)(E 2/01d8/s (fP.£)(E)dr

and
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Then it follows from (1.5) that
o5(6) :Rf<f>2+P1<Rf>2<s>+E( / f<X§>ds) w2 [ ELCER (D) as
—2R(€) / P, F(€)dr — 2R (€) PRy (€)

- = Ry (€)% + Pi(Ry)X( +2/ ds/ Py(fPf)( )d7“+2/0 Py(fRy)(€)ds

9 / s / P(FPA)(E)dr — 2Ry (€) / Pf()dr — 2Ry(€)?

0

L 2R(€) /O P.f(€)ds
= P (R3)(€) —Rf(§)2+2/0 Py(fRy)(§)ds

Since fio 18 Pi-invariant, integrating with respect to ji.(d€) on both sides of (4.4) gives

Poo(®f) = 2100 (f Ry).
0

Lemma 4.2. Under assumptions of Theorem 1.1, there exists a constant C' > 0 such that

(4.5) lesllopy < Cflps | € Con(€), pec(f) = 0.

Proof. By (1.3) and (1.4), in addition to po(|| - ||%,) < 0o, there exists a constant ¢; > 0
such that

(4.6) R < allflpn(I+[1El5), feCpa(€),E €.
Next, applying (3.2) to u = é¢ and v = 4,,, we obtain
(4.7) [PF(©) = Pif )] < e[| fllprpa(&m).

This and (1.3) imply

(4.8) [Rp(€) = Ry(n)] < /0 [P f(&) = Puf(n)ldt < %Hf\lp,vpp,w(f,n)-
Moreover, it follows from (4.6) and (4.8) that

(4.9) Ry (€)= Ry()*| = [Rp(&) + By () - IR (&) = Ry(m)] < |l f;. P2 (€:m)
for some constant ¢ > 0. Combining (4.7)-(4.9) with (4.4), we finish the proof. O

Lemma 4.3. Under assumptions of Theorem 1.1, there exist constants 6,c > 0 such that

(4.10) E( sup e5”Xf”3o> <eUHE) k>0 ceg, t>0.
telk,k+1]
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Proof. In terms of [1, Lemma 2.1], there exist constants cg, 9 > 0 such that

(4.11) sup R0l Xi % < o0(+IEI%) ¢ e @
t>

On the other hand, (3.6) implies

B sup ool SE( ma ool
tE[kJ,k‘-I—l] i€{0717"'7L1/T0J+1}

3 2
< (|1/ro| + 2 max E el irir >
<(1/ro)+2)_ max

Combining this with (4.11), we prove (4.10). O

Proof of Theorem 1.2. Let f € C,,(¢) with pux(f) = 0. By Lemmas 3.1 and 4.3, the
results in Lemma 2.3 applies to D = D;. Below we consider Dy > 0 and Dy = 0,
respectively.

(a) Let Dy > 0. By Lemma 2.3(1), for any ¢, ¢ > 0, there exists an increasing function
h:R, xR, — R, such that

sup [P(VEAl(€) < 2) = @p, (2)]

z€R

(4.12) 1 e L
< (€l 1)t~ 4+ D LB ()~ D3| ez 1

So, if we can find an increasing function h R, x Ry — R, such that

1 2¢  ~
(4.13) E m(Mf’%J —Dil < h(llElloos [ fllp) [E] 79 €€, t2>1,

then the desired estimate in Theorem 1.2(1) follows from (4.13) with large enough ¢ > 0,

say, q > %65' By (1.4) for 2p instead of p,

|Peps(€) — DF| < cllopllapq e (1 + lIE]I5)

holds for some constants ¢, 3 > 0. Combining this with (3.1), (4.2) and (4.5), we prove
(4.13).
(b) Let Dy = 0. With ¢ = 1 the estimate (4.13) reduces to

<R e [l 1) E €7, > 1

(4.14) E‘ﬁ(vafM

Combining this with Lemma 2.3(2), we prove Theorem 1.2(2). O
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5 Proof of Theorem 1.3

Let us fix f € C, (%) with poo(f) = 0. To apply Lemma 2.4, for any £ € €, we consider
ME =Y {F(XD) = Bf(O}+ Y {Pnf (X = Pf(©)}, n>0.
k=0 k=n+1

The argument after (4.1) implies that (M§$), >0 is a well-defined square integrable martin-

gale. Let
SE=\JE|MS|", Z5=M;— M, n>1,

and let R 7 and @ be given before Theorem 1.3. Following the arguments of Lemmas 4.1
and 4.2, we have

(5.1) 0 < D} = p1oo(By) = 2uo0(f Ry) < 00
and for some constant ¢ > 0,
(5.2) 1Bfllopy < clfN2,, | € Cop(F).

Lemma 5.1. Under assumptions of Theorem 1.1, P-a.s.
I ~
5.3 — (z7)? - D3
(5.3 > () D}
Proof. According to the proof of [3, Lemma 3.2|, it suffices to show that the maps
1 n
fmsup (13 2(20)7) - Dj| 0 1)
s (5 2 (%)

are continuous. For simplicity, we only prove the continuity of A; as that of the other is
completely similar. By definition it is easy to see that

€5 A6 ::]E(

imint (1 3°(77?) -

%€ s Ay(€) ::E(

(5.4) Z5 = F(X) + > _{Penf(X5) = Ponnf (X))} n>1
Combining this with (1.4), we find constants ¢, co > 0 such that
|25 = 23] < [J(X5) = F(X])]

+ Z (1P f(X5) = Peonf (XD] + |Prrnf(X51) = Popioaf(X1)])
k=

o0

(5.5)
< c1ppy X , X3 Clze plk= n){pp,v(XS>Xg)+Pp7v<X§ 1:XZ—1)}

< CQ{ppn erwX:Z) +va(Xn 15X )}

15



Similarly, (1.4) with pu(f) = 0 and (5.4) also imply
1Z5] < es(L+ 1 X5 lloo + X0 i lloe)??, n21,6€F
for some constant ¢z > 0. Combining this with (5.5) and setting
AP = 14 X oo + 1X oo + 1K lloo + 1XE 4 Iy & 21,
we may find a constant ¢, > 0 such that
[A1(§) = M ()]

lim sup — Z |Z£|2 Df)

l—00 L

E| lim sup — Z (|12} -

l—00 n>l N

<|e

(5.6) §E[hmsup Z|Z£ Z"!(]Zg\—F\Z"D}

=00 > N

=00 n>l T

< cﬂE{lim sup — Z {Ppa (X5, X7) + ppy (X5, X 1)}’14{”’ 1
Since pp~(£,7) < (14 |€]loe + [|7]loe)? for all £, € €, for any m > 1 and I > m we have

Slgz)nZ{va XE,X”)—kppA,(Xg 1 Xi-1) }|A£n|2
" k=1

1 P
<7 S {00 (X5, XD) + e (X, X, )} A4S
k=1

— 3p
+ Z |Aim| * \/IOP/Y(XIi X))+ pzw(Xlg—h Xily)-

k=m

Combining this with (5.6), (3.1), (3.2), and applying the Schwarz inequality, we may find
constants cs, cg > 0 such that

. - 3p
limsup [A(§) = Mi(n)] < e Z E @Ain‘ 4 \/Pp,*Y(XIE’ X))+ ppﬁ(Xlil’ Xi1)

n—§

k=m
> 1 3p\ L
Z E{pp (X5 X1) + ppry (Xi_1s X70)Y)  (BIZE"[2)
3p > _
< (1 + [I€]loo + Imlloc) * D e/ k>1.
k=m
Letting k — oo, we consequently prove limsup, . [A1(§) — Ay(n)| = 0. O
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Proof of Theorem 1.3. Let f € C, (%) with pu(f) =0 and ﬁf >0, and let £ € E.
Below we prove assertions (1) and (2), respectively.

(1) By Lemma 2.4, for the first assertion we only need to verify conditions (2.10) and
(2.11) for (S,, Z,) = (S8, Z5).

Firstly, by (1.4) and (5.2), there exist constants ¢ = ¢(f,£) and 5 > 0 such that

(57) [Pidy(€) = Djl = |Pes(&) — oo(@p) < ce™™, k2 0.
Consequently,

. (55)2 . 1 = ~ 2
(5.8) Jlim =2 = Tim ;Pkw(é) = D} >0,

so that S§ — 0o as n — oo. Next, by following the argument to derive (4.8), there exists
a constant ¢; = ¢;(f) > 0 such that

Ry(&) = By(€)] < cipps (61,6). €162 €F.
Combining this with (3.1), we may find constants ¢y = ¢o(f), c3 = e3(f, &) > 0 such that
E|Z;|" < SEIF(X;_0)|' + SEIR;(X5) — Ry(X;_y)|'
< {1+ BIIXE)1Z + BIXE, 2]

<cz, n>1.

This together with (5.8) yields

(5.9) S (S TE (29" 5155y ) < D (S5 E(ZE)* < o0,

Combining this with Chebyshev’s inequality, we obtain

(5.10) > ()T E(1Z8 s pmssy) < D (SDTE(Z)* < o0
n=1 n=1

Therefore, (2.10) holds true for (S,, Z,) = (S5, Z5).
On the other hand, (5.3) and (5.8) imply P-a.s.

n

im ! ” 92 = lim " l 92 = -a.8
(5.11) lim 5 > (Z) lim (55)2(71 Z(Zk)> 1. P-as.

k=1 k=1

So, (2.11) holds for (S,, Z,) = (5%, Z%) as well, and hence the assertion in (1) follows
from Lemma 2.4.
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(2) It remains to prove (1.8). By the first assertion, AJ4(¢) is almost surely relatively
compact in C'([0,1];R) and the set of its limits points coincides with H. Since ||h]y <1
for any h € H, this implies P-a.s.

(5.12) limsup sup |AS4(4)] < 1.

n—oo  t€(0,1]

Observing that (1.7) implies

-1 ¢
(5.13) ae(r) = 2= SXD sy
D+/2nloglogn
it follows from (5.12) that
(5.14) lim su Zl SX ) D li A1 <D P
: p === = imsup AJ*(1) < Dy, P-as.

n—oo v 2nloglogn 00

On the other hand, since the limits points of (A$¢(¢)) coincides with H and h € H with
h(t) =t,t € [0,1], there exists a subsequence ny 1 oo as k — oo such that P-a.s.

lim sup [ALS(t) — h(t)] = 0.

k=00 4e(0,1)

In particular, combining this with (1.7) for k =n — 1 and ¢ = , we deduce P-a.s.

X¢ N
lim == SO DyALE(1) = Dy,
k—oo y/2ny loglogng, — k—oo

which together with (5.14) yields

. S (X
1 = D IP-
linjogp 2nloglogn s

Replacing f by —f, this formula reduces to

N Sy (0.6 ~
1 f ==t — _D, P-as.
17?—1;}01 2nloglogn f -5

Therefore, (1.8) holds. O
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