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Abstract

In this paper, we investigate weak existence and uniqueness of solutions and weak
convergence of Euler-Maruyama scheme to stochastic functional differential equations
with Holder continuous drift driven by fractional Brownian motion with Hurst index
H € (1/2,1). The methods used in this paper are Girsanov’s transformation and the
property of the corresponding reference stochastic differential equations.

AMS Subject Classification: 60F10, 60H10, 34K26.
Keywords: Weak solution, weak convergence, Holder continuity drift, fractional Brownian
motion

1 Introduction

The fractional Brownian motion (fBM) appears naturally in modeling stochastic systems
with long-range dependence phenomena in applications. Fractional Brownian motions with
Hurst parameter H # 1/2 are neither Markov processes nor (weak) semimartingales, which
makes the study of stochastic differential equations (SDEs) driven by fBMs complicated. The
existence and uniqueness of solutions to fractional equations have received much attention.
[13] obtained existence and uniqueness of solutions to SDEs driven by fBMs with Hurst
parameter H € (3, 1) by using Young integrals (see [30]) and p-variation estimate; 3] derived
the existence and uniqueness result for H € Gp %) through the same rough-type arguments
in [13]; [25] studied SDEs driven by fBMs by using fractional calculus developed in [31]. For
more results on existence and uniqueness of solutions to SDEs driven by fBMs, we refer to

2, 8,9, 12, 17, 24] for instance. Stochastic functional differential equations (SFDEs) are
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also used to characterise stochastic systems with memory effects. For the existence and
uniqueness of solutions for SFDEs with regular coefficients, one can consult to [6, 19, 21]. In
recent years, SDEs driven by fBM with irregular coefficients have received much attention,
e.g.[5, 9]. However, for fractional SFDEs with irregular coefficients, even the weak existence
and uniqueness results are not well studied. So, we first study the weak existence and
uniqueness for SFDEs driven by fBMs (see Theorem 3.1 below), based on which we shall
give a weak convergence result on the weak solution of fractional SFDEs with irregular drift
(see Theorem 3.2). By using the associated Kolmogorov equations, SDEs with irregular
coefficients driven by Brownian motion or Lévy noise are intensively studied. However, this
powerful tool seems hard to be applied to fractional SDEs. To study weak solutions, we
adopt Girsanov’s transformation. In the case of SDEs driven by fBMs, it involves fractional
calculus to ensure that Girsanov’s transformation can be applied, and the related estimates
are nontrivial for the irregular drift with memory.

Weak error for the Euler scheme approximation of SDEs driven by Brownian motion
with irregular coefficients are intensively studied recently, e.g. [10, 11, 22] and references
therein. In [10, 11], test functions of the weak convergence are regular. In [22], the authors
get weak convergence for test function without regularity. There is a few literature on the
convergence of numerical schemes for SDEs driven by fBMs, e.g. [7, 15, 16, 18, 19, 20,
28]. Recently, [1] developed a perturbation argument to investigate the weak convergence
of SFDEs with irregular coefficients by using Girsanov’s transformation. Based on our
weak existence and uniqueness result, we investigate the weak convergence of truncated
Euler-Maruyama (EM) scheme for SFDEs driven by fBMs by using a test function without
assuming regularity. The drift depends on past, and it is also irregular. The exponential
integrability of functionals of the segment process (see the beginning of Section 3) studied
in our work involves fractional calculus, which is more complicated than those of SFDEs
driven by Brownian motion. Explicit convergence order is given for the numerical scheme,
and the main ingredient is giving exact estimates for fractional derivatives of functionals of
the segment process truncated by gridpoints, see Lemma 5.2.

The paper is organised as follows: Section 2 is devoted to the preliminaries containing
fractional calculus and some properties of fBM; in Section 3, we state our main results on
weak existence and uniqueness and numerical approximation; proofs are provided in Section
4 and Section 5.

2 Preliminaries

2.1 Fractional integrals and derivatives

In this subsection, we recall some basic facts about fractional integrals and derivatives, for
more details, see [23, 27].

Let a,b € R with a < b. For f € L'(a,b) and a > 0, the left-sided fractional Riemann-
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Liouville integral of order « of f on [a,b] is given by

o L[ fly)
I“J_F(oz)/a (x—y>1*ady’

where z € (a,b) a.e. (—1)7* = e 7™ T denotes the Euler function. If « = n € N, this
definition coincides with the n-order iterated integrals of f. By the definition, we have the
first composition formula

e,(I0. ) =125 1.

Fractional differentiation may be introduced as an inverse operation. Let a € (0,1) and
p>1.If f e 12 (LP([a,b],R)), the function ¢ satisfying f = I, ¢ is unique in LP([a,b],R)
and it coincides with the left sided Riemann-Liouville derivative of f of order a given by

o 1 d [ fly)
Das “)‘m—a)@/a G-y

The corresponding Weyl representation reads as follows

Day (x):rul—a) /f 1+a W),

where the convergence of the integrals at the singularity ¥y = x holds pointwise for almost
all x if p =1 and in the L? sense if p > 1. By the construction, we have

Lv(Daf) =1 felg(LP(la, b, R)),

and moreover it holds the second composition formula

Dy (Diuf) = Dot’f, f € IFP(L ([a, B, R)).

2.2 Fractional Brownian motion

To make the content self-contained, we first recall some basic facts about the stochastic
calculus of variations with respect to the fBM with Hurst parameter H € (3,1). We refer
the reader to [4] for further details.

Fixe T'> 0. The d-dimensional fBm B = {Bf(t),t € [0,T]} with Hurst parameter H
on the complete probability space (€2,.%,P) can be defined as the centered Gauss process
with covariance function

1
E(B"(t)B"(s)) = Ryu(t,s) = §(t2H + 21 — |t — s|*).
In particular, if H = %, BY is a Brownian motion. Besides,

E|BY(t) — B (s)I" = E|B"(t — )|’ = [t — sI""E| BT ()] < C(p)t — s, p> 1.



Then it follows from the Kolmogorov continuity theorem that B has S-Holder continuous
paths, where 5 € (0, H). For each t € [0,T], we denote by .%; the o-algebra generated by
{BH(s) : s € [0,t]} and the P-null sets.

We denote by & the set of step functions on [0,7]. Let 5 be the Hilbert space defined
as the closure of & with respect to the scalar product

d
(o410, > Tioea)s Hpo,sn]s =+ > L[o,00))) w2 = Z Ru(t;, s;).
i=1
The mapping I[O7t1]X"'XI[o,td] — (Btflf’l7 . ,Bg’d) can be extended to an isometry between 7

and the Gauss space 4 spanned by BY. Denote this isometry by ¢ — BH(¢). On the
other hand, from [4], we know the covariance kernel Ry (¢, s) can be written as

tAs
Rult,s) = / Ka(t,r) K (s,r)dr,
0

where Ky is a square integrable kernel given by

1 1 11 1 t
Ky(t,s)=TH+ =) (t—s)"2F(H->,-—HH+-,1--
wlt9) =TT+ 00—y dre - L L mry L)
in which F(-,-,-,-) is Gauss’s hypergeometric function (see [4]).

Define the linear operator K3 : & — L*([0,T], R?) as follows

(K50)(s) = Ky (T, s)p(s) +/ (p(r) — (b(s))aéiH (r,s)dr.

Reformulating the above equality as follows:

K
(K3)(s / 6 2, ).
It can be shown that for all ¢, € &,

<K1*1¢a KI*{w>L2([O,T],Rd) = <¢, w,%ﬁ»

and therefore K7 is an isometry between # and L?([0, T],R?). Consequently, B¥ has the
following integral representation

t
BY(#) = / Kn(t, s)dB(s),
0
where {B(t) := B¥((K};) 'j4)} is a standard Brownian motion.

1
According to [4], the operator Ky : L*([0,T], R%) — Iffi(LQ([O, T1],R%)) associated with
the kernel Ky (-,-) is defined as follows

KHfZ /KHtSfZ 221,,d (21)
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It can be proved that Ky is an isomorphism. Moreover, for each f € L2([0, T],R%),

_ 1
(Kuf)(s) = I, s" VI 28 A0 f H > o (2:2)

Consequently, for each h € [éfl/ 2(L2([0, T],R%)), the inverse operator K" is of the form

. 1
(K'h)(s) = s"V2DI 125121y g > 5 (2.3)

We conclude this section by introducing the following Fernique-type lemma (see [14, 26])
and some notation for future use.

Lemma 2.1. Let T > 0,1/2 < < H < 1. Then for any a < %,

Eexp{al|B"([§ 100} < 00,
and for any o < 1/(128(2T)2H=9)),
Elexp(a|| BY|[5.1,5)] < (1 — 128a(2T)* =) =12,

Moreover, we have the following moment estimate for any k > 1:

) (2R)!
BB |3 5) < 32829 2

For any a € (0,1), let C*(a,b) be the space of a-Holder continuous functions f on the
interval [a, b] and set

|l = sup D =IEN

a<s<t<b |t — sl

Besides, for any continuous function f € C([a, b]; R?), let

[/ llapoo = sup |f(s)]-

a<s<b

When a = 0,b =T, we will simply write || f||a, || fllco or || fllo.7.as || fllo.r.00, respectively.

3 Main results

Let (R, {-,-),|-|) be the d-dimensional Euclidean space with the inner product (-,-), which
induces the norm | - |. Let RY ® R™ be the set of all d x m-matrices. Let 7 > 0 be a
fixed number and ¢ = C([—7,0];R?), which is endowed with the uniform norm || f]|o =
SUpP_, <p<o | f(0)]. For f € C([—7,00); R?) and fixed ¢ > 0, define the segment f; € 4 by
fi(0) = f(t+6),0 € [-7,0]. For a > 0, [a] stipilates the integer part of a. Let %,(R?) be
the collection of all bounded measurable functions on R?.



In this paper, for H € (%, 1), we consider the following equation:
dX(t) = {b(X(t)) + 0 Z(X,)}dt + odB" (t),t > 0, (3.1)

with the initial datum Xy = £ € €, where 0 € RE@R™, b : R — R%d > m and Z :
% — R™ are measurable, X, is the segment process of X () defined by X;(0) = X(t+0),60 €
[—7,0], B¥(t) is an m-dimensional fBM on the complete probability space (2, %, (Z)i>0, P).
Consider a reference SDE as follows:

dY(t) = b(Y (t))dt + odB(t), t>0,Y(0) € R (3.2)

Let £ € €, and let Y4 (.) be a solution of (3.2) with Y¢(©(0) = £(0). We extend Y¢©)(.)
from [0, 00) to [—7,00) in the following way:

Yo(t) = £ —r) (1) + YO () [j0,00) (), T € [-7,00),€ €. (3.3)

Then the weak existence and uniqueness of solutions to (3.1) and the weak convergence of
EM scheme will be studied by using Girsanov’s transform and the extended solutions to the
reference equation (3.2).

We first introduce the following assumptions on b and Z for the weak existence and
uniqueness result.

(A1) There exists a constant K; € R such that

<b([[‘) - b(y),x - y) < K1|(L' - y|27 T,y € Rd-

(A2) There exist C; > 0 and gg > 0 such that |b(x)| < C1(1 + |z|®), x € R%

(A3) There exist a € (H —1/2,1], p> 0, Cy >0, C5 > 0 and ¢; > 0 such that

1Z(m) = Z(n2)| < Callm = malloe (T4 Im [l + [In211%) (3.4)
(0Z(m +m2),m(0) < Cs (L+ [mllZ + [Iml%) » mime €. (3.5)
Our result on existence and uniqueness of weak solutions to (3.1) is the following theorem.

Theorem 3.1. Assume (A1)-(A3). For any & € € with § € (22=,1] and Cy > 0 such that

E(r) = &(s)| < Chlr — s, —7<r<s<0, (3.6)
then the equation (3.1) has a unique weak solution with Xo = &.

Remark 3.1. The condition (3.6) is for us to use Girsanov’s transformation to remove
the drift term Z(-) of equation (3.1). Given T" > 0. For any v € C([—7,T],R%) with
Yo = &o, to ensure that {fos Z(7r)dr}sco,r) belongs to the Cameron-Martin space of the fBM,
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1
it is necessary that the integral [5 Z(v,)ds € IéTQ(LQ([O,T],Rd)). This means we need
1
Z(v.) € Igi 2(L2([0,T],R%)). Note that for t € [0,T A 7], we have
I = velloo [Y(u+v) =(r +v)|

Ao = SUp ——F—— = sup
7:llosc o<r<us<t |u—T|* 0<r<u<t,ve[—T,0] (u—mr)>

> [l€ll -0

Hence, despite imposing regularity conditions on Z, we also need an additional assumption
on the initial value . If Z is a-Holder continuous and £ is #-Holder continuous, then our
conditions on ¢ yields that o > H — %, which ensure that {fos Z(yy)dr}seior) is in the
Cameron-Martin space.

Next, we shall study the weak convergence of the numerical approximation to (3.1). In
(3.1), 0 is a d x m matrix with d > m. For d > m, this equation is obviously degenerate.
Hence, we shall introduce the pseudo-inverse of o to cover some degenerate models, such as
stochastic Hamilton systems. Denote by Ran(o) the range of o, i.e. Ran(o) = o(R™). If
Ran(o) contains nonzero vectors, then oo* is a bijective from Ran(o) onto Ran(o), whose

inverse is denoted by (oo*)~! o Let , be the orthogonal projection from R¢ to Ran(o).
Ran(o

Then R? has the following decomposition:
R = 1,RY @ (Igxqg — m)R? = Ran(o) @ (Igxag — m)RY,

where ;.4 is the identity matrix of R?. We define 6!, the pseudo-inverse of o, as follows

W*D) , U I~ Rd.
Ran(o)

In particular, if ¢ is of the form (

cdv=0" ((00*)_1

Then |71 =

0 ) with o9 is an

oo*)~1
( ) Ran(o) 0o

invertible m x m-matrix and 0 is a (d —m) X m zero matrix, then
G =(0%05"), e = lleg -
We need stronger assumptions on b and Z for numerical approximation.
(H1) (A1) holds and there exists a constant L; > 0 such that
[b(a) —b(y)| < Life —y|, =,y € R™. (3.7)

Moreover, if Ran(o) # RY, we also assume that there exist a matrix A on (Iyq4—m.)(R?)
and a measurable function b, : Ran(c) — (Igxq — ) (R?) such that

(Iixa — m)b(x) = A(laxg — ™) + bi(mz), © € R%

(H2) Z is Hélder continuous with the exponent a € (1 — 57, 1], that is

1Z(§) = Z(n)| < Loll€ —nll%, €,n € €; (3-8)
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(H3) the initial value ¢ € ¥ is Hélder continuous with exponent § € (22=L 1], that is,

2a0 7
[€(t) — ()| < Lsft — 5|, s,t € [-7,0]. (3.9)
By these conditions, it follows from Theorem 3.1 that (3.1) has a unique weak solution with
X() == 5

Remark 3.2. Since the pseudo-inverse of ¢ is the inverse of ¢ if it is invertible, our setting
can unify non-degenerate and some degenerate models. A typical example for the equation
with {0} € Ran(o) C R? is the following stochastic Hamiltonian system (d = 2m):

dXW(t) = XO(t)dt
AXO(4) = bo(XD (), XD @) dt + Zo(XY, XP)dt + 5od BHE (),

where o is an invertible m x m-matrix. For any n,1m, € €,z = (¢, 2?) € R*™ we set

(2) 0 0
(1) @)y — . = -
b(z™, ) ( bo(z V), @) >  Zlmm) ( a5 Zo(m, n2) ) e ( %0 > 7
Then

dX(t) =d ( §(2) (t) ) = (B(X (1) + 0 Z(X,)) dt + od B (t),

and in this case, m,(z(1), 2®) = (0, 2?), b,((0,2?@)) = (z?,0) and A =0 in (A1).

We can construct the EM scheme now. Let § € (0,1) be the step-size given by 6 = 7/M
for some M € N sufficiently large. The continuous time EM scheme associated with (3.1) is
defined as below:

AXO () = {(Lgxg — m)WX D (1) + mb(XO(t5)) + 0 Z(X V) dt + ocd B (¢), t >0,
(3.10)

with the initial value X (u) = X (u) = £(u),u € [—7,0], where t5 := [t/5]6 and X € €
defined as follows R
X (u) = XO((t+u) Ag), ue[-7,0].

For ¢ € [0,6), X7 (u) = XO((t +u) A0) = &((t + u) A0), and

H(t) == 7, XO(t) = 7, X(0) + m.b(X D (0))t + / o Z(XD)ds + o B (t).

Then it follows from (H1) that

(Laxa — W*)X(‘s) (t) = (Igxa — W*)X((S)(O) + /Ot(]dxd — W*)b(ﬂ'*X((s)(S) + (Lyxa — ﬂ*)X(é)(S))dS
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t t
= (Igxg — ) XD(0) + / A(lgqg — 1) X (5)ds + / b.(H(s))ds,
0 0
which implies that
t
(Laxa — W*)X(é) (t) = e (Iyg — ) XD(0) + / A=)y, (H(s))ds.
0

Thus, X©O(#) = (Igxg — )X (t) + 7. XO(¢) can be obtained explicitly on [0,d]. By
induction, we can get X9 (t) explicitly.

Let

_ K, _ 2

Ky =2K, + 1ig,>0 + T]I[K1<O]7 Ky =Tk, >0 + m]l[KKO],
1

and
. Ko (eF1T — 1
(K, K., T) = \/ 2 _ ).
K,

Our main result on the weak convergence of EM scheme to (3.1) is stated as follows.
Theorem 3.2. Assume (H1)-(H3) and Ran(o) # {0}. For ¢ € (0,1) if T satisfies
{12L§T2_2H(1 + (H —1/2)Cp)? —2 1

(1—H)I?(3/2—H) o7 (311)

o1 Miamy < (L @(F), o, T) + 1)

and
6L3||o||*]lo—]?

) (1+ LiT(L1®(Ky, Ko, T) + 1))2 {3 {1 + Co(H — 1)} 2T2—2H62ﬁ

2 - H)(1-H >
2 $28+1—2H 1 24 22H -1
+202H - 1779 [(1 23 —2H)?  B—207  QH-12(1—H)
B*(3—-H,f+35—H)(1- H)cs”
81+ 68— H)T
6L2T2H-1(2H — 1)

- 5> 2«
14+ LT(L®(K{, Ko, T) + 1 2a
mogy (D T(eEL T) + 1) ol

{62(3 — H,a(BAO) +1/2 — H)T?Br0) 541
20(BN0)+3—-4H
5204(,8/\9)+172HT272H 16H 92H
- ((3-21{)2+ QH - 12(1— H)

)}%:u < 1/(128(27)2H-),
(3.12)

fl ut” 1+H L du, then for any bounded measurable function f

where B € (2221 H)

on R4, there exists a constant Cr such that for t € [0,T]
[Ef(X () — EF(XO(t)] < Cra®ror+a-H, (3.13)

Remark 3.3. The convergence result only holds for ¢ € [0,7] and T satisfies (3.11) and
(3.12). It is not difficult to see that for any fix § € (0, 1), there always exists 7' > 0 such
that (3.11) and (3.12) hold, and T is a decreasing function of 4.
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4 Proof of Theorem 3.1

We first introduce the following lemma on the existence and uniqueness of solutions to (3.2).

Lemma 4.1. Assume (A1). Then (3.2) has a unique strong solution and

1
Y (t)| < ele(Oﬂ + \/%2 (/Ot (=) |b(aBH(r))\2dr> 4 leBE ()|, t >0.  (4.1)
Furthermore, if (A2) holds, then
E||Y||gw <00, ¢q>0,t>00<p<H.

Proof. (1) Let U(t) = Y (t) — o B (t). Then U(t) satisfies

dU(t) = b(U(t) + o B¥(t))dt, U(0) = Y (0). (4.2)
Set b(u,t) = b(u + o B (t)). Then it is easy to see that

(b(uy,t) — bug, t), ur — ug) < Ki|uy — usf?,

which implies that (4.2) has a unique solution. Moreover, it follows from the chain rule and
the Holder inequality that

dU®)]* = 20(U(t), 1), U())dt
< 2K |U(t) ]2 + 2(b(e BH (t)), U(t))dt
< KU () dt + K, [b(o BT (1)) dt.

Then for any t > s

_ — t 3
Ol < STy )R ([ o) o)
fl(tfs) H H
+e 2z |oB"(s)| +|oB"(t)],

which implies our first claim.
(2) For any 0 < 8 < H,

0= o < s [ lar + o157 o

C t
< o [ OO+ 1olIB o

o+
I(1 0

< Ci(t =)'+ ol B floss + Ci3 @V (¢t — 5)' P Y (0)]

=+
Kyt

q0 a
L Oyt (\/Ecl (1+ ||ar|qor|BH||g?t,oo)) O 0 (1 — )17
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+ O30 (|[o][| B lo.00)" (8 = )7,
which yields
1Y lloss < Cit* = + [lo | B o5 + C13 @D ¢l || B |,

t?"—q a q0
# O 12 (gt o0 (YR 1+ IoPIB718,)) ) (09

Combining this with (4.1), it is clear that our second claim holds.
[

Next lemma is to investigate the exponential martingale, which is crucial to prove The-
orem 3.1. Fix any 7" > 0. Let

{EH(t)}te[oﬂ = {BH(t) - /0 7 (ﬁ)dS}tem’T] )
RE(t) = exp </Ot <K; (/0 Z(Yf)dr) (s),dB(8)>
_%/Ot Ky (/0 Z(Yf)dr) 2(s)ds) ,te[0,7]. (4.4)

Lemma 4.2. Let the assumptions of Theorem 3.1 hold. Then

(1) {EH(t)} o is a fractional Brownian motion under R*(T)P.
tef0,T

(2) Assume in addition that qo = 1 in (A2). If there exist Cy > 0, C5 > 0 and p € (0,1)
such that

12 () = Z(n2)| < Cafllm = m2ll5e A (T4 Cs(Im i + lIn2llZ))} (4.5)

then for any C > 0
Ky ( / Z<Y£>dr>
0

T
]Eexp{C’/
0

(3) If (4.5) holds with p =1 and T > 0 is small enough such that

2 (s)ds} < 00. (4.6)

3CET2—2H(1 + (H _ 1/2)203) L 3CGC§T2_2T(H . 1/2)2 ,
( (1-H)I'*(3/2—H) la=1] T (1— H)T%(3/2 — H) ) o]l
—2 1

< (Ll(I)(Fl,FQ,T) + ]_) o7

(4.7)
where Cy is defined in Theorem 3.2, then (4.6) holds for some C > 1.
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Proof. 1t (3.6) holds for § > H, then (3.6) holds for § € (H — 1/2, H). Hence, we shall
assume that 6 € (H — 1/2, H) in the following proof.
(1) It follows from (2.3) that

it ([ 2000ar) (9 = D (472009 (9

H -1 i-H s i-H _ 1-H
— i e 2 sz [
PG —H) | H -3 o (s—r)ztt
s £y — 3
_'_SH—;/ Z(Yy) IZ(Yr)r%—Hdr
o (s—r)2tH
H-1

RS
s SéfH _ ,,A%fH 2
wont " dr| (G (1 IYEIR) YE2 +12(0)
o (s—r)zt
4
1-2H 2 VA 2 2 Y§ 2a YE 2(pt+a) 4
<32 (e + C8) (2O + CROVEIEL + v+ (4.9)
and
o) < Cooti=t [ IVE YR (L I + VSR
38 (s — r)H+1/2pH-1/2 dr
||Y£||a‘rr9(s - T)ea
< 20,5~ (1 + ||Y£Hp7'soo)/0 (s — )H+1/2TH—1/2dr
1
= 20286a+ _HB (§ - H 904+ 5 - H) (1 + ”Y§|’p7—soo) HYEH—7897 (410)

where B is Beta function.
Combining this with (4.9), we arrive at

it ([ zo0ar) [0

_ 4 N N
< 8672 (s + CUZOF + GRS + IVE )
3 1
+ 4C22820a+1_2H82 (5 - H, Oo + 5 - H) (1 + ||Y§||—7'SOO) HY£| —7,5,0" (411>
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Let

oo f i ([ 2o

Thus, we know R$(T A 7,) which was defined in (4.4) is an exponential martingale for
t € (0,7 A 7,]. The Girsanov theorem ([23, Proposition 4.1.2]) implies that

2
(s)dsZn}, n € N.

tATh .
B,(t) := B(t) — K (/ Z(Yf)dr> (s)ds, t >0
0 0
is a Brownian motion under R$(T A 7,,)P. This implies
- tATh
BH(t) .= B (1) —/ Z(YE)dr, t >0
0
is a fBM under R(T A 7,,)P and Y* satisfies
AYE(t) = b(YE(t))dt + od B () + 1jg<i<r o Z(Y)dt.
Let ué(t) = Y&(t) — o BH(t), Then for 0 < ¢ < 7,, we derive from (3.5)

dul (£)? = 2(b(ué(t) + o BE (), ué(£)))dt + 20 Z(us + o BE (), ué (t))dt
< K1 (ué(8)?)dt + CPKo(1 + |0 BX (£)|%)dt
+2C3(1 + lug|1% + [l | B, |14)de

Then, we know
VO < VO + 20 +20) [ [¥Slds + 2KaC? [ (4o B (9
+40 [+ ol I B s + 210 B0
= B0 + 2R+ 25) [ IS s

Note that supg<,<; [V |loo < [|€]lso V SUPg< <y [YE(s)], we arrive at that for any p > 2

YU < 7 (€1 + FB0 + 2R+ 20500 [ VSR, ),
Combining this with Gronwall’s lemma, it yields that
BV, < 37 (el + EFP(BI)(0)) el > R0 < o,
which, together with the Holder inequality, yields that for any p > 0,

]EHqugm < 0. (4.12)
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Similarly, following the proof of (4.3), we get

Y llos < {Co (L + 1VENE ) + N1 Z(0) + Collo 1Y% 4 oo (L4 1Yy 00) 77
+ o llll B llo.s > 0.5 € (0, H).

Combining this with (4.12), it yields that for any p > 0

E|Y], 5 < oo. (4.13)

Combining this with (4.12) and (3.6), we obtain Ef under R¢(T A 7,)P has the same distri-
bution as B¥ under P, we have

supER(T A7) (||YE]|2 + ||Y5H_TT9) < 00, ¢q>0,0<H.

7,100

Then by (4.4), (4.11) and (4.12), we obtain

sup ERS(t A T,)log Rg(t A Tn)

te[0,T],n
<C sup ERS(EAT) (14 VR 4 1VEI2 00 + 1Y EI% 0V )
t€[0,T],n
< Q.

Hence, it follows from the Fatou lemma and the martingale convergence theorem that
{R*(t) }1eo,) is an uniformly integrable martingale and

sup ERS(t) log RE(t) < oo.
te[0,7

It follows from Girsanov’s theorem that under RE(T)P, the process B is a fBM.
(2) By (4.5), we have
[ ()" + | Je(s)]”

4
swzs”ﬂ( ) +C§) (L4 G IYEI, ) AIYE2 .  +1ZO)).  (414)

(2H —1)?
For J3, we can estimate

aor [PIYS = YR A (L + G IIE + 11Yel%))
| J3(s)| < Cus 2/ (s — r)H+1/2pH=1/2

(A GIY T 0) A (YR 0 (s — 1))
H—1 ( 5 T,8,00 7,8,0
< 2045 2 /0 (5 )H+1/2TH 172 dr

dr

||Y£||—7-39( )Goc—H—l/QT—H-‘rl/Z

dr
L4+ G5V 0 + 1Y%, (s — 1)

< 204572 (1 +C5||Yf||prm)/
0
<202 (14 G5 Y412

TSOO)
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H-1/2

) H-1/2 _
I e 3 P (e (A9
>< 1<
32— (@0 — H + 1/2)(H - 1/2) !

where we used [5, Lemma 3.4] in the last inequality. Thus

[J3(s)I < Cos™ > (1 + Cs|[Y*|

—TSOO)

200—2H+
O (LG Y ) ™ VST, (4.15)

where
o2

2
af — H+1/2)(H — 1/2)) '
Since ||V rs00 < (s + 7)Y 150, it follows from (4.14) and (4.15) that

T : 2
E exp {C’/ K (/ Z(Yf)d?") (s) ds}
0 0
20op+(2H —1)(a—p)
< Eexp (C'T (1 + ||Y§||2,p7\7/5’9 oo ))

@H-1)(a=p) T
—Eoxp (Cr (14 V97, TH ).

For p < 1, it is clear that

Cs = 8C2, 07:((

2H —1L)(a—p)"
2}

Then (4.6) follows from (4.3) with gy = 1, 8 = 6 and the Fernique-type lemma.
(3) For p = 1, substituting (4.14) and (4.15) into (4.8), we have

[ | ([ zv9r)

< 2.

2p +

? 3C3T*2H (1 + (H — 1/2)%C2)
(s)ds < Cs(T') + (1= H)T2(3/2 — M)
3CcC2T*1(H — 1/2)? 3C;T**M(H —1/2)* ¢
(1— H)T2(3/2—H) e T T T2 (3/2 — H) IV2l-riza
3C7T2(17H+9)—% (H —1/2)?
2(1— H)T2(3/2 — H)

[

—7,T',00

)2

24 2H=1(1_ o1
||Y£||77',T,99 “ )

where
372721 (1 4 (H — 1/2)*C?)
(1-H)I*(3/2—-H)

It follows from (4.1) and (A2) with gy = 1, we have

Cy(T) = (12(0) + Co(H = 1/2)%).

1V lo700 < C(T) + (Li®(K1, K2, T) + 1) |||l B"]o.1,00-

15



Therefore, for T > 0 such that (4.7) holds, it follows from Lemma 2.1 that there is some
C > 1 such that
T . 2
E exp {C’/ K </ Z(Yf)dr) (s) ds} < 00.
0 0

Proof of Theorem 3.1

We first show the existence of weak solution to (3.1). It follows from (A1l)-(A3) and
Lemma 4.2 that RS(t) is an exponential martingale. Then the Girsanov theorem implies
that BH (t) is a fBM under Q¢ := RS(T)P. Reformulating the reference SDE (3.2) as follows:

]

AYE(t) = b(YE(t))dt + o Z(YE)dt + od B (1), (4.16)

then under the complete filtration probability (2, %, (%)iep.r1, Q°), (Y*(1), EH(t))tE[O,T] is
a solution of (3.1).

We shall show the uniqueness of weak solutions to (3.1), see [29, Theorem 2.1] for more
proof details. We sketch the proof as follows:

For i = 1,2, let (YW<(t), BH(t))1cp0.1) be two weak solutions to (3.1) under the complete

filtration probability space <Q(i), {F N 120, PO ) with Y% = ¢ satisfying (3.9). Note that

Ye(-) € CP([0,T],R%) for any B € (0,H). Since ¢ € C%[—7,0],RY), we obtain Y¢ €
C'%([0,T),%). Let B > 24=L Then (§ A f)ae+ 3 — H > 0, which ensure the integrals in
(4.8) make sense. By (4.11), (4.12) and (4.13), we have

[l (o)

(r)dr < oo, t €[0,7], P-as.
Denote by P®< the distribution of Y€ which satisfies

1P><i>=5(y<i>=f(-) e C([0,T];RY) : /T )K;f(/ Z (Y )ds)’ (r)dr < 0o, T > o) =1,

we intend to prove P4 = P®2)£ To this end, we define

. t ' , 2
SO inf{tZO:/ KH1</ Z(YS(Z)’f)ds>
0 0

For every ¢+ = 1,2 and n > 1,

RO = e { = [ (K51 [ 20009a)0).080)) - § [ 18631 [ 200099 ¢yar)

is a P-£-martingale. Define the probability measure ng)’é on F* by letting

(r)ern}Too, asn T oo,i=1,2.

QVE(A) = Epw.c[[aRD4(T)], T >0,Ae Z*

16



By the Girsanov theorem, we know

(2

t/\’r,(l)
B (t) = B (1) +/ Z(YD8)ds, t >0
0

is a Qg)—fractional Brownian motion on R™. ’
Therefore, under the QY. (Y®<(¢), BH(t )icio.rasg) SOlves (3.2) under the QY. By the

pathwise uniqueness of (3.2), the law of (Y (D:£(¢), EH( ))te[o st under QY coincides
with the law of (Y4(t), BH(t)) ¢ under P. Thus, for any F € %,(C([0,T);R?) x
C([0,T];RY)), we have

S o (40, 50)
L L Y| /0 ) (K3 ( /0 Z(Y4)ds) (). dB,(r) )
—-/ K5 / 2(v9)ds) P (r)dr

< FYOS(0.7]), (B — | 20709 (0.70)
= e (1 s 2o o[ (K[ 2099)0).030))

—-/ K5 / (Y)ds) P(r)dr

<« F(Y$(0.T)), (B" — / ZHa9(0.1))]. i=1.2

te[0, TN,

Consequently,

Epcn Ly F (Y ON0.70), B0, 7)) | = Baeo |0,y F (Y2000, 71), BY (0. 7) ) .

holds for any n > 1. Letting n — oo, we obtain
Epon [ F(Y (0,7, BE([0,T))) | = Epen [ F(Y@<([0,70), B ([0, 7)) ]

which implies that P! = P(2). Thus, the uniqueness of weak solution to (3.1) is verified.

5 Proof of Theorem 3.2

Before giving the proof for Theorem 3.2, we prepare two lemmas. The lemma below shows
the estimates of uniform norm and Holder norm of (Y*(t))seo.r] of the solution to (3.2),
respectively.

17



Lemma 5.1. Assume (H1). Then for any T > 0

IVE)| e < €]l + [BO) @KL Ko, T) + (LK1, Ko 1) + 1) o[ B e (5.1)
1Y<I1riana < T (15(0)] + (5O L1 (R, Ko T) + €0)]) + 1o} Bl ns
T LT (L ®(K Ko T) + 1) [0l B e + 1E]| oo (5.2)

Proof. The first inequality follows from (4.1) and (H1) directly. Since b is Lipschitz,
[b(2)| < [b(0)] + Lal|.
Taking into account the following inequality
V<l =rz,500 < lI€ll-r0,800 + 1Yl 16,

the proof of the second inequality is similar to the second part of the proof of Lemma 4.1.

0
For the sake of simplicity, we denote
RE(E) = 3 HB(YE(1) = b(YE(ts)} — Z(Y)), t>0,
with R
Yi(u) = YE((t +u) Ats), ue[-T,0]
Let
B0 = 570+ [ (o)
REO(1) = eXp / /0 hé (s (7")>
1(/ Jdls) (r) dr} te0,T), (5.3)

and let dQ%° = R&(T)dP. Then it follows from Lemma 5.2 below and the Girsanov theorem
that Q% is a probability and (Bf (t))icor) is a IBM under Q%°. Since oo™ = 7, we can
rewrite the reference SDE (3.2) into the following form

AYE(t) = {(Ioxa — m)b(YE(R)) 4+ mb(YE(ts)) + 0 Z(YE)}dt + od BE(¢), (5.4)

which implies that (Y4(t), B (t))seqo.r] is a weak solution of (3.10). Obviously, (3.10) has a
unique pathwise solution, so the weak uniqueness follows. Then

[Ef(X (1) = EF(XO )] = [Eqe f(YE(2) — Eqes V(1)) = [E(RE(t) — R (1)) f(Y*(2))].

Hence, in the following discussion, we shall prove that {R%°(t)},e(07) is an exponential
martingale and give estimates of R¢(t) — R&(t).

18



Lemma 5.2. Under the assumptions of Theorem 3.2, we have

Eexp{C/Ot\Kgl(/O‘ hf(s)ds)\2(r)dr} < o0,

for some C' > 1.

Proof. The definition of inverse operator K' yields that

ey 1 (réﬂhs(r) (- 1) / r2Hps(r) — séHhs(s)dS>
H) 0 (r — s)H*
r2~Hps(r) rH—3 o 1. (" r2 HRE(r) — saHps(s
S TrC-H) TE-H) /0 (r — 5)H+3
r%_th(T) ri=3 (H — 1> /T (r%_H — S%_H)hé(T)
H 0 (r—s)i+s

rf=3 2

T
2
ds

ds
2

P L) [ I,

(r— s)Hts

B 1 raHps(r) A3 1 (7 sz H(h&(r) — hé(s))
= [1+Co(H ~ 3)] + (H—é)/o e ds

N[

For Ji, it follows from (H1) and (H2) that

[RE(r)] < BBV E(r)) = b(YS(rs))] + | Z(VS)
<G € llo.r58” + 1Z(0)] + Lol Y [|2

—T,Tr,00"

For j;, note that

[ sEHRE () — WE(9)]

(r— 3)H+%
_ /r s2 1[G L(b(YE(r) = b(YE(ry))) — Z(VE) = 51 (b(YE(s)) — b(YE(s6))) + Z(?f))!ds
0 (r — S)HJ'_%
< /T 51 ][s2~H b(YE(r) — b(YE(r5)) — (b(YE(s)) — b(Yf(Sa))NdS
~Jo (r—s)f+z
rsi | Z(VE) = 2(YY))]
+ /0 o S)H+é ds

=: 11 (r) + Lx(r).
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Next, we shall give the estimate of I;(r),i = 1,2. For I;(r), it follows from (H1) that

[B(Y(r)) = b(YE(rs)) — (b(Y(s)) = b(Y(s5)))]

_ <\B _ B
S 2L1HY€”0,rﬁ [(sﬁ A (7“ S) +2(7’6 86)
(r—s)?, rs < s<r,
:L1||Y§||07T75 (r—3s)’+(rs —ss)?, r—30<s<rs,
267, 0<s<r—4.
Since
—
rs — ss] = [[5]6 — [310] < |[5]0 — L2200 <6, r—6<s<rs,
) ) )
and for r > ¢
r 1/2-H 1/245—H
py (17— §)HFL/2=5 1428 —-2H
/Ta 258
ds
o (r— s)H¥1/2gH-1]2
s 26° ra/2 267
:/ 1/2+H H1/2d8+/ Ui 1298
/2 (7 — S5 A
3_
268 (r — r5)3 1 . 2608 (12)27"
S GoFH =172 T (o a2 (3 )
we have

e S
(28 +1—2H)rf 12 (rs/2)F712(H - 1/2)

1) < 2L1 |57 Y ¢ o {

7 ()"
(T‘ - T6/2)H+1/2 (§ . H)

2

+

1.3 1 _
Lpse + 53(5 —H,B+ 5~ H)rPH =21 00

We now calculate I5(r). One can see that
DEE A
su YE((r +u) Ars) — VE((s +u) Ass)|®
—Tgfgo |(r +u) Ars — (s 4+ u) A 55]a(5/\9)
< ||Y5||fm,ﬂ/\9 sup | (r +u) Ars — (54 u) A sg|*P9.
<u<0

-7

|(r 4+ u) Ars — (5 +u) A sg/*P)

Since for s +u > s and r + u < rs, we have
(s +u) A ss = ss; (r4+u) Ars =r+ u; Ss—s<u<rs—T.
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Then

sup |(r+u) Ars — (s+u) A ss| = sup Ir +u — ss| = |rs — ss|.

Sg—s<u<lrs—r Ssg—s<u<lrs—r

Similarly, for s +u < s5 and r + u > rs, we have

sup |(r +u) Ars — (s 4 u) A ss| = |rs — ss|.

re—r<u<ss—s

Then it is easy to see that

sup |(r+u) Ars— (s+u) Ass| = (r—s)V(rs — ss).

u€[—7,0]
Consequently R R
1Y = Yo < YOI pn0((r = 8) V (15 — 55))2"7),
and

v A
) = [ B ZZOD,
0 (r—s)i+s
<[ IRCT
= J, (r = s)\2rHgH-1]2

r (7’ _ S)a(ﬁ/\@) Vi <T5 _ Sé)a(ﬁ/\@)
< LZHYH—TT,BM/O (r — 5)1/2+HgH-1/2 ds.

Since r5 — s5 = 0 for s € [rs, 7],

" (7‘ - )a(BAG) V (7‘5 — 85 5/\9 — 0‘(/3/\9) 1 d
0 (T )1/2+HSH 1/2 0 1/2+H8H 1/2 [r—s>rs—ss]AS

5)2(870)
/o (r—s) 1/2+H5H 1/21[7’ s<rg—s)dS-

For r — rs + ss < s, it is clear that rs — ss — (r — s) < 4, so

+

(rs = 55)* " = (rs — 55 =7+ 5+ (r — 5)) D < (1 — 5)20N) 4 520N,

which implies that

" (rs — Sé)a(ﬁ/\m s (1 — )a(ﬁ/\@ + §eUBAO)
/(; (T’ — 5)1/2+H5H71/2 ]_[rfs<r(;fs5}d3 < ; (’I“ )1/2+HSH 172 1[r s<rs— sddS

Moreover, we have

T rs 5a(5/\9 1[r e<rs—ss] N
. o (r— s)/2tHgH-1]2

2

T / rrs §a(B10) 2
dré/& (/0 (r—s)1/2+HsH—1/2dS) dr
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N-1  ((k+1) a(Bne) (s )%fH BN ()3 —H
< / H+1/2 (3 +< 2)A-172(H — 12 dr
k=1 YKo ( - /2) (§_H) 7"5/ ) ( _ )
N-1 B -
< 952(BNO) Z 16H(/€5)2 ) 92H—-1§2-2H
£\ (3-2H)?  (H—1/2)2(2—2H)(ké)*H !
20/(BAO)+1—2H 167 20 N-1 o
< 2% - )
<26 ((3_2[{)2+(2H_1)2<1_H>) > (ks)' s
k=1
20(BAO)+1—2H H of
S d 10 + 2 T2—2H (56)
I-H (3—2H)>  (2H —1)*(1 - H)

and
AAB2(3 _ H a(BA0)+ L — H)

T r _ \(BAB) 2 20(BA0)
(r —s)*" T 2 ’ 2
d dr = . .
A </0' (T—S)1/2+HSH_1/2 § r 204(5/\(9)-}-3—4]‘] (5 7)

Substituting J, I (r) and Ly(r) into (5.5), and taking into account (5.6) and (5.7), we arrive

at

/OT ‘K;f(/o. he (s)ds) (T)’er

2035 |7 Y412 RE
< 3|1+ Co(H—=)| T*2Hs%
< PG M=\ -y

2(2H — 1)*T6% 17241 ! 2 2
+202H-1) [(1+25—2H}2+(3—2H)2+(2H—1)2(1—H)
B*3—-H,f+5—H)(1 —H)é]}
8(1+ 43— H)T
6[1 + Co(H — §)PPT> ) 2 2y
mEmam (ZOF + BV )
2L5(2H — 1)*T*H YR |2% 1 5,0 [32(% —H,a(BN0)+1/2—

H)T2a(6/\9)+3—4H

r2(2 — H) 2a(BA0)+3— 4H
52a(5/\«9)+172HT272H 161 92H
+ ( + )] (5.8)
—H B_2H)?  QH—12(1—H)

Therefore, it follows from Lemma 5.1 and (3.12) that there exists C' > 1 such that

E exp {C/OT ’KH1</O. hé(s)ds)(r)rdr} < 00

We are now in the position to complete the
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Proof of Theorem 3.2. Let

e = [ (1 ([ 200035 0).a8)),
My(t) :/Ot <K;11(/0' W (s)ds) (). dB()). t> 0

For f € %,(R?), following from the weak uniqueness of solution to (3.1), the Holder inequal-
ity and the following inequality

le” —e’| < (e" Ve¥)|z —yl,
we have
Ef(X(t) = Ef(XO))| = [Bge f(YE(H) — Eges f(Y*(1))]
= [E(R*(t) = R*° (1)) F(Y(1))]
< FllEIRS () — RS (2)]
< I f 1l (RE(2) v R°(t)) |log RE(t) — log R (1))

< [ 1©1 () (©5(t) + (1)), £ € [0, T, (5.9)
where

01 (t) = (E(RE()?) " + (B(RE(1)7) 7,

Oult) = (E | ( / '<Z<Ysﬁ>+hs<s>>ds) (r), dB(r)) “) -

O4(1) :% (IE /0 (K;f (/O Z(ysﬁ)ds) )| - Kt (/0 hf(g)ds) (r) )dr - ) g1

It follows from (3.11) and Lemma 4.2 with C5 = 0 and Cy = Lo that there is some C' > 1
such that Eexp{C(M;)(T)} < co. Thus, for 2¢*> — q < C, we have

E(RE(1))" = Eexp (gMy () — (M) () + (¢ — a/2)(M1) (1))
< (Eexp(2My(t) — 2¢*(M:) (1) (E exp((2° — q) (M) (1))

< (Eexp ((2q2 —q) /Ot K;Il(/o. Z(Yf)ds) (r) zdr))l/2

< oQ.

Similarly, following from Lemma 5.2, there is ¢ > 1 such that

1
sup (E(R(1))7)* < o0.
te[0,7
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Hence, there is ¢ > 1 and some constant C'r such that
O.(t) < Cr. (5.10)

In the following proof, we fix some ¢ > 1 such that (5.10) holds.
It is easy to see that

H—

it ([ (208 4 i )as) ) = DI A2 )0

riE R HZYE) £ ()
( rH-1/2

L [P P Y 4 SG) — 28 + 1(s)
/ (= ) “)

< 1+ Cytar - Ly EGE )

2 I(3—H)
P} L [T s 2V + hE(r) — Z(YE) = B(s))
traomW o)), 5] ds
e L(r) + L(r). (5-11)

Next, we give the estimates for I;(r),i = 3,4, respectively. (H1) and (H2) yields that

Nl
|
T

0] < [0+ Coll = ) (DY) = b8 )+ 12078) = ZT))
< 1+ ColH = g5 (Ll Y ¥l + LalVE = TSI
Co(H — H)]raH ~1
< L (o Y orad” + L5, (12
Moreover, we have
PTE L[S0 ) — 2 — 1) |
Ll g 2)/0 (r — 5)i+3 d
P L[S ) = (Y E(re)) — (B(Y¥(5) = b(Y(s5))]
= F(% —H) (H — 5)“‘7 H/o (r — S)H+1/2 ds
rii-} Ly [T P20 - 2(%) — (20%F) = (V)]
R (r— -
= 141(7’) —|—I42(7’). (513)

In the same way to estimate I; in the proof of Lemma 5.2, we have
141 (’I“)
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rH=3% 1 { [ §o+1/2-H 88 (r —rg)2H
(

<2 (H — ) Ly [[5 ][ o, +
T - H) 2 VL@ +1—2m) T (rs/2) 2 (H — 1)2)

v (5)"

H+1/2
(r —rs/2) (% —H

— H)rPH 2 e 0 (5.14)

1 1 3
1 _B B & e
)}[>5]+2 (B+2 2

On the other hand, it follows from (H2) that

1Z(YE) = Z(YVE) = (Z(YE) — Z(YE)|| < La||YVE — VE|% + Lo||VE - YE||2,
< 2L2 || Y||g7',7",6/\95a(/8/\0)7

and
12(v$) = 2(V8) = (2(v8) = 2(T9)
< LollY = YEII% + LoV = Y
< LallY 2, nalr = 5120 4 LallY 12 gng (I = 5| Jrs — 55209

= L2||Y||37,r,ma<\7" — s|*BND) 4| — 5B g — 85\0‘(’8/\9)>.
Combining these two upper bounds together, we have

1Z(Y) = Z(Y) = (Z2(Y5) = Z(Y))
]7“ o S’a(ﬂ/\@) + ‘7" o 8‘04(6/\9) Vi ‘7’6 - 55’0‘(5/\0)>
5 .

< 2LV, g (3 A

Since for r > 9,

_ ola(Bne _ ola(BAE _ a(BNO
5B A i il S|2( Vs = 5" = 5219 s e (0,1 — 6],
we get
s §e(BAO) A |7“—8|°“W9)+|r—8\a;‘“9)Vlrs—sal"(’w) .
/0 (r — s)H+1/2gH-1]2 s
s 604(,8/\9)
= / ds
o (r—s)Ht12gH-1/2
3_
§e(BA0) (7’ _ TJ)%—H 5 (BAD) (%5) 5—H
= s/ PH —12) | (r—ryj2) V2 (2 — B
and

|O‘(5/\6)+‘Tfs|a(6/\0)\/|7'5755|°‘(BA9)

r 5a(ﬁ/\9) A Ir—s
2 ds
. (r — s)H+1/2gH-1/2
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T (= s)alBn0)
- /Té (r — S>H+l/2SH—1/2dS
TE—H(T _ ré)q(ﬁ/\@)—i—%—H
T aBn)+i-H
QTE_Héa(B/\G)Jr%fH

< .
T 2a(fNO)+1—-2H

3
5—H

[\
h
[}
/\
|
[N
\_/
m
w\»-t
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(5.15)
Substituting (5.14), (5.15), (5.12) and (5.13) into (5.11), we arrive at
155 ([ 28+ néGs)as) o)

0

L e S YE N 55 Ela 508
< [+ Co(H - 5)]@(%% 1Y {o,r,86” + Lol Y25 ,,50%7)
r=12(2H — 1) . §p+1/2-H §B(r —rg)z—H

DL M ¥l ot e
I'(; - H) (26 +1—2H)r, (rs/2)"-12(H — 1/2)

§a(BAY) (7" _ Té)%fH
+ ] 4 Lo|[YE|e [
(r—rs/2)""2 (3 - H) W (rs/2)7-12(H —1/2)

S(BAO) L) s—H QT(S%—H(;a(BAeH%—H
+ + :| }]l r>48
(AR ) TR -

g 1
r2—"(2H — 1){L1||0' | 3
B( H — H)[[Y* |l pr*1 727
3 1 1_
+ L213(5 —H 5+ B A6 — H)||Y5||3T7T,6A9r”‘(5/\9)+5 H}n[og,,d]. (5.16)

By the B-D-G inequality,

qg—1

(1) = Cr (E (/OT ‘Kﬁl(/o.(Z(Yf) + hf(s))ds> (r)‘zdr) “)2) a

S CT(SOC(’BAGH_%_H.
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For O3, it follows from Holder’s inequality and (5.16) that

w0 </ it ([ 20 - a0 er>qql X
(e (/OT it ([ 20+ r(eas) o 2d7~> )=

< Cpae@r3H E( / Ky ( /(Z(&@—hﬁ(s»ds) <r>2dr>qql

0

Since

i

2

(r)dr

0

C(rar <2 / i ([ 209+ réeopas

+ Q/OT K;; (/0 hé(s)ds)

it ([ @00 - weons)

2

it follows from (5.16) and (5.8) that

([

—1
q q

2 -1\ *
(r)dr) < 00.

it ([ 200 - e )

0

Hence,
@3@) < CT(Sa(ﬁ/\G)+%fH'

Finally, the desired assertion is established from (5.9) and the estimates of ©;(t),i =
1,2,3.
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