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Abstract  134 

Aim: Macroecological analyses provide valuable insights into factors that influence how 135 

parasites are distributed across space and among hosts. Amid large uncertainties that arise when 136 

generalizing from local and regional findings, hierarchical approaches applied to global datasets 137 

are required to determine whether drivers of parasite infection patterns vary across scales. We 138 

assessed global patterns of haemosporidian infections across a broad diversity of avian host 139 
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clades and zoogeographical realms to depict hotspots of prevalence and to identify possible 140 

underlying drivers. 141 

Location: Global. 142 

Time period: 1994-2019 143 

Major taxa studied: Avian haemosporidian parasites (genera Plasmodium, Haemoproteus, 144 

Leucocytozoon, and Parahaemoproteus). 145 

Methods: We amalgamated infection data from 53,669 individual birds representing 2,445 146 

species worldwide. Spatio-phylogenetic hierarchical Bayesian models were built to disentangle 147 

potential landscape, climatic, and biotic drivers of infection probability while accounting for 148 

spatial context and avian host phylogenetic relationships.  149 

Results: Idiosyncratic responses of the three most common haemosporidian genera to climate, 150 

habitat, host relatedness, and host ecological traits indicated marked variation in host infection 151 

rates from local to global scales. Notably, host ecological drivers, such as migration distance for 152 

Plasmodium and Parahaemoproteus, exhibited predominantly varying or even opposite effects 153 

on infection rates across regions, whereas climatic effects on infection rates were more consistent 154 

across realms. Moreover, infections in some low-prevalence realms were disproportionately 155 

concentrated in a few local hotspots, suggesting that regional-scale variation in habitat and 156 

microclimate may influence transmission in addition to global drivers. 157 

Main conclusions: Our hierarchical global analysis supports regional-scale findings showing the 158 

synergistic effects of landscape, climate, and host ecological traits on parasite transmission for a 159 

cosmopolitan and diverse group of avian parasites. Our results underscore the need to account 160 

for such interactions, as well as possible variation in drivers across regions, to produce the robust 161 

inference required to predict changes in infection risk under future scenarios.  162 
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Introduction  175 

 A growing consensus based on theory and empirical evidence suggests that global change 176 

will impact the worldwide distributions and burdens of vector-transmitted pathogens that infect 177 

humans (Lafferty, 2009; Ryan, Carlson, Mordecai, & Johnson, 2019; Mordecai, Ryan, Caldwell, 178 

Shah, & LaBeaud, 2020). Likewise, climate change and anthropogenic landscape modification 179 

are predicted to alter the geographic range of non-human pathogens, such as avian malaria 180 

parasites (Benning, LaPointe, Atkinson, & Vitousek, 2002; Loiseau et al., 2012, 2013; Pérez‐181 

Rodríguez, de la Hera, Fernández‐González, & Pérez‐Tris, 2014), whereby infection patterns of 182 

avian hosts in natural environments are often driven by an interplay of regional changes in biotic 183 

and abiotic conditions (Fecchio et al., 2019). Anticipating spatial or temporal shifts in infection 184 

risk requires reliable estimates of prevalence across habitats under different anthropogenic 185 
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disturbance levels and climatic gradients (Stephens et al., 2016; Weiss et al., 2019). The 186 

synergistic effects of such drivers on the broadest levels of host taxonomic and community 187 

organisation are poorly described for the majority of non-human parasites. 188 

 Mean temperatures are expected to increase unevenly across the globe in the coming 189 

decades (Wehner, 2020). For example, nights are expected to be warmer in continental interiors 190 

than in coastal regions (Wehner, 2020), and extreme temperature ranges are expected to decrease 191 

at high-latitudes and increase within subtropical regions (Fischer, Lawrence, & Sanderson, 192 

2011). As the effects of climate-driven temperature change will not be spatially uniform, average 193 

global warming could alter disease transmission rates and shift the geographic ranges of many 194 

parasitic organisms with different modes of transmission (Altizer, Ostfeld, Johnson, Kutz, & 195 

Harvell, 2013; Loiseau et al., 2013). For example, optimal temperatures for reproduction of 196 

Plasmodium malaria parasites within invertebrate vectors are a critical prerequisite for successful 197 

transmission to humans (Mordecai et al., 2013). The existence of thermal niches that promote 198 

vector activity means that distributions of many vector-borne pathogens may extend into new 199 

geographical regions as temperatures change (Ryan et al., 2019). In Africa, for example, where 200 

average temperatures are expected to increase between 3°C and 4°C by 2100 (roughly 1.5 times 201 

the global mean response; Christensen et al., 2007), hotspots for human malaria risk are 202 

predicted to shift toward higher elevations and the relative burdens of dengue fever over malaria 203 

are expected to increase across the Sub-Saharan region (Mordecai et al., 2020). Given that 204 

temperature might predominately influence infection risk for vector-transmitted pathogens, 205 

future climate warming will be an important force driving the prevalence of many human and 206 

wildlife diseases (Benning et al., 2002; Lafferty, 2009; Loiseau et al., 2013; Cable et al., 2017).  207 
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 For those parasites infecting multiple host species, spatial heterogeneity in infection 208 

probability across host communities may change in response not only to climate filters, but also 209 

to changing host species distributions (e.g., host richness) that provide new ecological 210 

opportunities for a parasite to expand its host range and increase its local prevalence (Canard et 211 

al., 2014; Wells & Clark, 2019). Inevitably, transformation of natural habitats for urban 212 

development and agriculture is creating widespread change in habitats and microclimates, 213 

leading to shifts in host and vector species pools, thereby impacting parasite transmission 214 

(Ferraguti, Hernández-Lara, Sehgal, & Santiago-Alarcon, 2020). This human-induced habitat 215 

modification is occurring unevenly across regions and most rapidly within tropical and 216 

subtropical grasslands, savannahs, and shrubland ecosystems (Williams et al., 2020).  217 

 At the avian host-species level, functional traits, such as preferred foraging habitat or 218 

dependence on forested habitats (e.g., higher vegetation density), and foraging height, can 219 

influence rates of vector exposure for a given avian host, leading to heterogeneous infection 220 

probabilities across avian species (Garvin & Greiner, 2003; Clark, Drovetski, & Voelker, 2020). 221 

However, assessing the influence of host and parasite traits on infection rates across host 222 

communities requires careful consideration of species’ evolutionary histories. Traits that 223 

influence avian host immune responses and potentially restrict parasite invasion, such as body 224 

size (Ruhs, Martin, & Downs, 2020), are often phylogenetically conserved (Minias, 2019). 225 

Accordingly, one would expect greater variation in infection rates among rather than within host 226 

clades. Furthermore, avian life-history strategy is known to influence haemosporidian prevalence 227 

(Lutz et al., 2015; Barrow et al., 2019; Ellis, Fecchio, & Ricklefs, 2020). For example, larger and 228 

migratory avian species are more often infected by haemosporidian parasites, due to their 229 

propensity to harbor a broader diversity of parasite lineages or by being exposed to a higher 230 
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abundance and diversity of vectors and, in turn, to vector-transmitted parasites (Filion, Eriksson, 231 

Jorge, Niebuhr, & Poulin, 2020; de Angeli Dutra, Fecchio, Braga, & Poulin, 2021). 232 

  Avian haemosporidian parasites of the genera Plasmodium, Haemoproteus, 233 

Parahaemoproteus, and Leucocytozoon comprise a diverse group of vector-transmitted parasites 234 

(Valkiūnas, 2005; Galen et al., 2018). They infect blood cells of a wide range of avian hosts 235 

across all zoogeographic regions (Valkiūnas, 2005). The parasite genera Plasmodium, 236 

Haemoproteus, Parahaemoproteus, and Leucocytozoon are predominantly transmitted by 237 

mosquitos (Culicidae), hippoboscid flies (Hippoboscidae), biting midges (Ceratopogonidae), and 238 

black flies (Simuliidae), respectively (reviewed by Santiago-Alarcon, Palinauskas, & Schaefer, 239 

2012). The life histories of these dipteran vectors depend on temperature and on the presence of 240 

either running or standing water (Valkiūnas, 2005; Santiago-Alarcon et al., 2012). Blackfly 241 

larval development and Leucocytozoon sexual reproduction do not appear to be highly 242 

constrained by low temperature (Valkiūnas, 2005; Fecchio et al., 2020). In contrast, the expected 243 

optimum temperature range of 13-28ºC for Plasmodium sexual reproduction and mosquito 244 

activity suggests some constraint on the transmission of avian malarial parasites along latitudinal 245 

or elevational gradients, despite Plasmodium’s global distribution (Valkiūnas, 2005; Santiago-246 

Alarcon et al., 2012; Atkinson et al., 2014).  247 

 Haemosporidian parasites exhibit broad variation in prevalence, but the drivers of this 248 

variation across zoogeographical realms and among avian clades are only partially understood 249 

from region-level studies. In recent years, numerous studies have explored haemosporidian 250 

infection rates in birds across habitat gradients under different regional land use or climate 251 

conditions but with no consistent predictor identified across studies (e.g., Lutz et al., 2015; 252 

Ishtiaq, Bowden, & Jhala, 2017; Harvey & Voelker, 2019; Santiago-Alarcon et al., 2019; Ellis et 253 

https://pubmed.ncbi.nlm.nih.gov/?term=Atkinson+CT&cauthor_id=24446093
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al., 2020; Gupta, Vishnudas, Robin, & Dharmarajan, 2020). Mounting evidence that various 254 

landscape and climate conditions, as well as host and vector species attributes, may drive avian 255 

haemosporidian infections calls for global approaches to disentangle abiotic and biotic drivers 256 

and anticipate macroecological patterns of parasite spread under current and future conditions. 257 

To explore macroecological patterns of avian haemosporidian prevalence, we compiled 258 

global-scale infection data from 53,669 birds sampled from 141 avian families and 48 countries 259 

dispersed across 10 zoogeographical realms. First, we used 14 biotic and abiotic factors known 260 

to influence infection rates of haemosporidian parasites from multiple regional-scale studies to 261 

identify the drivers of infection probability for each parasite genus. Second, we assessed whether 262 

estimated effects of these drivers vary across zoogeographical realms. Third, we tested whether 263 

parasite prevalence varies among and within avian host clades. Our use of Bayesian hierarchical 264 

spatio-phylogenetic modelling to estimate prevalence at the broadest levels of host taxonomic 265 

and community organization across 10 zoogeographical realms, coupled with information on 266 

host species traits, allowed us to assess empirically how recent anthropogenic landscape 267 

transformations and climatic gradients synergistically drive the prevalence of a multi-host 268 

vector-transmitted group of parasites worldwide. 269 

 270 

Materials and methods 271 

Host-parasite data 272 

 To compile a representative global data set, we amalgamated field data from an 273 

international network of collaborators. We iteratively screened the available literature for studies 274 

reporting haemosporidian parasite prevalence. We screened the MalAvi database, the dominant 275 

public repository for avian malaria and related parasites (Bensch, Hellgren, & Pérez-Tris, 2009), 276 
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for studies reporting haemosporidian infection and parasite sequences in bird assemblages with 277 

reasonably sample sizes (> 100 individuals and > 5 host species). The raw capture data, 278 

including presence-absence records of infections and geographical coordinates of surveyed birds, 279 

were then requested from authors of relevant studies (see Supporting Information Appendix 280 

S1 for further details). The compiled infection data can be accessed in Supporting Information 281 

Table S1. 282 

 Any compiled dataset is a finite and biased sample, given that study locations are chosen 283 

by researchers according to interest and logistic constraints rather than comprising a truly 284 

random sample. Nonetheless, we believe that our dataset provides a reasonable sample for 285 

exploring global patterns of haemosporidian infection in birds as it covers all major geographical 286 

regions (see Supporting Information Table S2 for an overview of sample sizes from different 287 

zoogeographical regions). Moreover, our dataset includes ~24% of all known bird species (2,445 288 

out of ~10,000 species recognized in Jetz, Thomas, Joy, Hartmann, & Mooers, 2012) and, to the 289 

best of our knowledge, covers the majority of areas surveyed for haemosporidian parasites in 290 

birds to date (Supporting Information Figure S1).  291 

 Bird species names from field data were revised and assigned to families according to the 292 

taxonomy used by Birdtree.org (Jetz et al., 2012). To generate a family-level phylogenetic tree, 293 

we randomly selected five species-level fossil-calibrated trees from a phylogenetic posterior 294 

distribution estimated from multiple genetic loci for the majority of extant bird species (Jetz et 295 

al., 2012). We calculated the pairwise mean Euclidean distance from all combinations of species 296 

for each pair of bird families and then converted the resulting distance matrix into a phylogenetic 297 

dendrogram using functions in the ape and phylogram R packages (Paradis, Claude, & Strimmer, 298 

2004). 299 
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 300 

Parasite detection and identification 301 

 Blood or tissue samples (liver or muscle) from all individuals were screened for 302 

haemosporidian infection by PCR, following standard protocols for amplifying a fragment of the 303 

parasite cytochrome-b gene (cyt-b). See Supporting Information Appendix S1 for a detailed 304 

description of the molecular detection of parasites.  305 

 Detected haemosporidian parasites were classified as Haemoproteus, Leucocytozoon, 306 

Parahaemoproteus, or Plasmodium following the lineage identification protocol from the 307 

MalAvi database (Bensch et al., 2009). We characterised each individual bird with respect to 308 

each parasite genus as infected, not infected (screened with relevant primers but no lineage 309 

detected) and missing (when the sample was not screened for the genus Leucocytozoon or when 310 

separation of parasites of the genera Haemoproteus and Plasmodium was not achieved via 311 

sequencing).  312 

 313 

Host traits, climatic, and environmental data 314 

 Relevant climatic variables at sample locations were obtained from the WorldClim 315 

database of gridded climate data at a 0.01 degree resolution (Fick & Hijmans, 2017; http://world 316 

clim.org/version2). We used annual mean temperature (bio1), annual rainfall (bio12), rainfall of 317 

driest month (bio14), and rainfall seasonality (coefficient of variation in rainfall over the year, 318 

bio15) to characterize aspects of climate previously shown to be associated with haemosporidian 319 

occurrence (Fecchio et al., 2019; Clark et al., 2020). Elevation for all locations was quantified 320 

using Shuttle Radar Topography Mission (SRTM) data, accessible through the raster package in 321 

R. We classified the proportion of cover with forest and wetland in buffers of 10 km radius 322 
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around sample locations based on Copernicus landcover data from 2010 (map version 2.07; 323 

https://cds.climate.copernicus.eu). We downloaded the normalized difference vegetation index 324 

(NDVI) for the year 2010 in buffers of 10 km radius around all sampling locations from the 325 

Terra Moderate Resolution Imaging Spectroradiometer (MODIS, MOD13Q1 version 6, 326 

https://lpdaac.usgs.gov/products/mod13q1v006/) and calculated the mean and 1 standard 327 

deviation of NDVI as measures of the vegetation density and its annual fluctuation.  328 

 We defined local species richness of terrestrial birds based on a published map that 329 

summarizes bird species richness from BirdLife International range maps 330 

(https://biodiversitymapping.org/). Zoogeographical realm characterisation followed Holt et al. 331 

(2013), who delineated realms for birds by integrating the distributions and phylogenetic 332 

relationships of 10,074 bird species (see Holt et al., 2013). 333 

 We obtained species-level host traits from the EltonTraits v1.0 database (Wilman et al., 334 

2014). In particular, we considered host body mass and the proportion of time individuals forage 335 

in the upper canopy, following previous trait-based analyses (Clark et al., 2020; Fecchio et al., 336 

2020; Filion et al., 2020). For species with missing attributes in this database, values for the 337 

closest relative were used instead. We also included migration distance, extracted from Dufour et 338 

al. (2020), as a covariate. Species’ migration distances were estimated from distribution maps 339 

(distance between midpoints of breeding and wintering ranges). As ages of individual birds were 340 

not available for all datasets, we did not include this trait in our model. We tested the 14 341 

covariates for collinearity and found no strong correlation between predictor variables (all 342 

pairwise Spearman’s |r| < 0.7). 343 

 344 

Spatio-phylogenetic statistical modelling of multi-host infection patterns 345 

https://cds.climate.copernicus.eu/
https://lpdaac.usgs.gov/products/mod13q1v006/
https://biodiversitymapping.org/
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 To identify key drivers of infection of birds by haemosporidian parasites, while 346 

accounting for possible spatio-temporal and phylogenetic patterns underpinning the global 347 

dataset, we used a Bayesian statistical model to jointly estimate the posterior distributions of 348 

fixed parameters (host traits and environmental data as described above) and random effect 349 

parameters. This approach enabled us to reduce possible bias of modelled random effects in our 350 

multiple-species system, including the spatial clustering of samples (i.e., multiple host 351 

individuals captured under the same climate and habitat conditions), phylogenetic relationships 352 

of multiple species (i.e., bird species belonging to different families, which vary in sampling 353 

intensity and are unevenly clustered among sampling locations), temporal bias (i.e., samples 354 

collected in different years), and possible statistical interactions between these factors and 355 

zoogeographical region (i.e., when the effect of a factor differs across regions). 356 

 We assumed that infection Y of any sampled bird individual i with one of the 357 

haemosporidian genera p was a random draw from the true underlying parasite prevalence ϕ 358 

conditional on location l and host species identity h: 359 

 360 

 Yi,p = ~ Bernoulli(ϕi,l,h)       (eqn. 1) 361 

 362 

 Within our generalized linear mixed-effect model (GLMM) framework, ϕi,l,h was 363 

modelled further with a suitable link function (e.g., logit-link) and regressed against a range of 364 

location- and host-specific covariates (Xi and Xj; see descriptions in paragraph above), which we 365 

considered as fixed effects. In multi-species models, phylogenetic relationships likely influence 366 

conclusions on infection patterns, as closely related species often exhibit similar infection rates. 367 

We considered phylogenetic relationship of host species at the family-level as a random effect. 368 
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We considered four different model structures of increasing complexity to model logit(ϕi,l,h) (see 369 

equations 2-5). First, in addition to the fixed effects, we considered sampling year, sampling 370 

source (τS with the three categories blood, muscle, and liver), and phylogenetic position as 371 

additional random effects, resulting in a phylogenetic GLMM (phyl-cov-GLMM) given as 372 

 373 

 logit(ϕi,l,h) ~  βiXi,l + βjXj,h + γy + τS+ vF     (eqn. 2)  374 

 375 

 Here, βi and βj are the respective coefficient estimates for fixed effects, and γy is a 376 

random effect estimate based on sampling year. The random effect for phylogenetic relationships 377 

of different host species (vF) is based on an inverse phylogenetic variance-covariance matrix 378 

derived from the pair-wise distance relationships (i.e., each sampled bird individual is 379 

characterised by its distance relationship in terms of its family to that of any other sampled bird 380 

individual), which can be expressed as latent Gaussian Markov random fields in Bayesian 381 

frameworks (we used the default ‘generic0’ option in the INLA package in R, which set the log-382 

Gamma hyperparameter prior to a shape parameter of 1 and a rate of 0.00005). This option is 383 

equivalent to assuming that parameter estimates are derived from multivariate Gaussian 384 

distributions with (zero) means as hyper-parameters and spatially structured covariance matrices 385 

based on the underpinning dependence structure of distance/similarity relationships. 386 

 As our data set included samples from different zoogeographical realms with distinct host 387 

species assemblages, we tested a second model by including zoogeographical realm as a random 388 

effect (πr), extending our basic phylogenetic GLMM (regional phyl-GLMM): 389 

 390 

 logit(ϕi,l,h) ~  βiXi,l + βjXj,h + γy + τS+ πr + vF     (eqn. 3)  391 
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 392 

 Because captures of multiple host individuals at the same sampling locations in field 393 

surveillance leads to spatial pseudo-replication, we included a spatial random effect (ul) in a 394 

fourth model, resulting in a spatio-phylogenetic GLMM (spatio-phyl-GLMM) given as:  395 

 396 

 logit(ϕi,l,h) ~  βiXi,l + βjXj,h + γy + τS+ πr + vF + ul     (eqn. 4)  397 

 398 

 As an additional extension of the model, the fifth structure we explored included possible 399 

varying coefficient estimates for the fixed effects, assuming that because of the global scale of 400 

the study, drivers of infection probabilities (denoted as fixed effects) might vary across 401 

zoogeographical realms. Without loss of generality of the GLMM concept, we can assume that 402 

the fixed effect coefficient estimates βi and βj are not constant across zoogeographical realms, 403 

and they allow for possible deviation by modelling coefficients for each zoogeographical realm 404 

based on baseline values β0i and β0j, respectively. Moreover, random deviation from these values 405 

across samples from different zoogeographical realms r, result in a spatio-phylogenetic varying 406 

coefficient GLMM (spatio-phyl-varcoef-GLMM) given as: 407 

 408 

 logit(ϕi,l,h) ~  (β0i+ξi,r)Xi,l + (β0j+ξj,r)Xj,h + γy + τS+ πr + vF + ul   (eqn. 5)  409 

 410 

where ξi,r and ξj,r are vectors of random effects (r = 1, … , R) defining a stochastic process with a 411 

specified Gaussian model over the R = 10 zoogeographical realms covered in this study. 412 

In addition to the models described above, we fitted an intercept-only model to derive estimates 413 

of overall infection probability. We also fitted GLMMs with either realm or location as a random 414 
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effect to derive location- and region-specific estimates of infection probabilities. We do so to 415 

identify possible regional/local hotspots (average high infection probabilities). For model fitting 416 

and inference, we used the Integrated Nested Laplace Approximation (INLA) as a 417 

computationally efficient way to solve such latent Gaussian spatial models (Rue, Martino, & 418 

Chopin, 2009; Lindgren, Rue, & Lindstrøm, 2011). The INLA program models covariance for a 419 

random effect using a precision matrix (the inverse of a covariance matrix), taking advantage of 420 

sparse structures for efficient computation (Rue et al., 2009). For all random effects based on 421 

groupings (i.e., year, region, and region-level varying coefficients), we fitted first-order random 422 

walk models (Gaussian Markov Random Field, specified by a zero mean multivariate Gaussian 423 

probability density function).  424 

 For fitting the spatial random effect, ul, we used the Stochastic Partial Differential 425 

Equation (SPDE) approach, as implemented in INLA, to model spatial effects using a Gaussian 426 

field based on a Matérn correlation function and a spatial triangulate mesh around sampling 427 

locations (Bakka et al., 2018). Setting the minimum allowed distance between points (cut-off) to 428 

0.1 degree of latitude and the largest allowed triangle edge length (max edge) to 3 resulted in a 429 

mesh of 38,305 triangles, with the smallest edge lengths and finest mesh resolution adjacent to 430 

sampling locations (Supporting Information Figure S2). 431 

 Continuous predictor variables were standardized to unit variance before analysis. For 432 

fixed effects, we used penalized complexity priors (using the ‘pc.prec’ option in the INLA 433 

settings), which penalize any departure from the base model and constrain coefficients to zero if 434 

there is insufficient support in the data otherwise. Such priors are commonly used for 435 

regularization of regression coefficients in multiple regression models (Simpson, Rue, Riebler, 436 

Martins, & Sørbye, 2017). 437 



20 
 

 For model comparison and validation, we computed deviance information criteria (DIC) 438 

for each candidate model (Spiegelhalter, Best, Carlin, & van der Linde, 2002). We also 439 

computed conditional predictive ordinates (CPO) as cross-validation criteria, which estimate for 440 

each observation a probability of obtaining the observed value when the model is fitted using all 441 

data apart from the left-out observation; larger values indicate a better model fit to the data, 442 

whereas small values indicate a poorer model fit. 443 

 We present results as posterior means and 95% credible intervals (CIs) and considered 444 

CIs that did not overlap with zero or with each other in pairwise comparisons as ‘significantly 445 

different’. Despite the overall large sample size, group-specific estimates can be burdened by 446 

substantial uncertainty (i.e., when few individuals for a certain location or host clade have been 447 

sampled). We considered group-level estimates to be meaningful only if the width of the 448 

respective CI was smaller than 10%.  449 

 450 

Results 451 

Strong spatial variation in haemosporidian infection probability coincides with strong 452 

phylogenetic variation among host clades 453 

 The estimated global average infection probability of birds with haemosporidian parasites 454 

differed among parasite genera: Leucocytozoon (13.2%, CI: 12.8 – 13.7%, n = 26,635 screened 455 

birds, intercept-only model), Plasmodium (12.8%, CI: 12.5 – 13.1%, n = 53,669), 456 

Parahaemoproteus (13.8%, CI: 13.5 – 14.1%, n = 53,669), and Haemoproteus (0.7%, CI: 0.6 – 457 

0.8%, n = 53,669). Whereas the low overall infection probability for Haemoproteus can be 458 

explained by this genus being mostly restricted to Columbidae (doves and pigeons) and 459 

Fregatidae (frigatebirds), the similar infection probabilities for the other three haemosporidian 460 
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genera may reflect their ability to infect a broad spectrum of avian clades (Supporting 461 

Information Figure S3). Among the 141 avian host families surveyed, those with the highest 462 

average infection probabilities were all songbirds (Passeriformes): Paridae, Corvidae, and 463 

Oriolidae for Leucocytozoon; Zosteropidae and Melanocharitidae for Parahaemoproteus; and 464 

Parulidae, Turdidae, and Conopophagidae for Plasmodium, according to the lower CI estimates 465 

of phylogenetic effects (Supporting Information Figure S3). 466 

 Infection probabilities differed considerably among zoogeographical realms (Figure 1, 467 

Supporting Information Table S2). For the three most common haemosporidian genera 468 

(Leucocytozoon, Parahaemoproteus, and Plasmodium) infection probabilities were highest in the 469 

Saharo-Arabian realm, with lower CI estimates ≥ 24%. Leucocytozoon infection probabilities 470 

were lowest in the Neotropical, Oceanian, and Panamanian realms. Parahaemoproteus infection 471 

was lowest in the Australian, Neotropical, and Sino-Japanese realms. Plasmodium infection was 472 

lowest in the Australian, Oceanian, Oriental, and Sino-Japanese realms (all respective upper CIs 473 

< 10% from GLMMs with region as random effects, Figure 1). Given its restriction to doves and 474 

frigatebirds, the prevalence of Haemoproteus was < 5% (respective upper CIs) in all realms 475 

except for Oceanian and estimated to be highest in the Palearctic and Oceanian realms (both 476 

lower CIs ≥ 2.3%). 477 

 We found considerable spatial variation in average infection probabilities across locations 478 

within regions (GLMM with locations as random effects), although estimates with acceptable 479 

uncertainty (credible intervals ≤ 10%) occurred in only 45 – 104 of the 1,630 sampling locations 480 

(Figure 2). Using these location-based estimates, four currently recognisable local hotspots of 481 

Haemoproteus infection were identified in the Neotropical realm, with infection rates exceeding 482 

2% (respective lower CIs ≥ 2%). Hotspots (locations with highest lower CIs) for Leucocytozoon 483 
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and Parahaemoproteus were dispersed across different zoogeographical realms: 484 

Parahaemoproteus in the Palearctic and Australian realms with lower CIs ≥ 25% and 485 

Leucocytozoon in Afrotropical, Nearctic, and Palearctic with lower CIs ≥ 13%). Hotspots of 486 

Plasmodium occurred in the Nearctic realm (three locations with lower CIs ≥ 21%). 487 

  488 

Drivers of global infection probability 489 

 Models that included phylogenetic and spatial effects and accounted for varying fixed-490 

effect coefficients (spatio-phyl-varcoef-GLMM, equation 5) provided the best fit to the observed 491 

data and strongest predictive power according to both the DIC and CPO criteria (Supporting 492 

Information Table S3). We therefore report results from this model unless stated otherwise. We 493 

note however, that phylogenetic effects were burdened by high uncertainties, indicating the 494 

challenges of disentangling phylogenetic effects from spatial and climatic covariates 495 

(Supporting Information Figure S3). 496 

 Infection probabilities exhibited idiosyncratic associations with host traits, landscape 497 

variables, and climate conditions at the global scale. Among the 14 covariates used in the 498 

analyses, 11 exhibited ‘global average’ coefficient estimates for which CIs did not overlap with 499 

zero (Figure 3, Supporting Information Table S4). As overall Haemoproteus prevalence was 500 

extremely low (370 infections out 53,669 screened birds) and constrained to two host families 501 

(Columbidae and Fregatidae), this parasite genus was not considered in the following analysis. 502 

 Local bird species richness showed a positive effect on infection probability for 503 

Leucocytozoon (odds ratio, OR 1.83, CI 1.26 - 2.56) and Parahaemoproteus (OR 1.32, CI 1.09 - 504 

1.59). Infection probability increased with increasing host body mass for Leucocytozoon (OR 505 

1.25, CI 1.11 - 1.41), Parahaemoproteus (OR 1.62, CI 1.47 - 1.79), and Plasmodium (OR 1.36, 506 
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CI 1.24 - 1.48). Infection probability increased among bird species spending more time foraging 507 

in the canopy for Leucocytozoon (OR 1.13, CI 1.05 - 1.22) and Parahaemoproteus (OR 1.26, CI 508 

1.18 - 1.35), but decreased for Plasmodium (OR 0.88, CI 0.81 - 0.95). Leucocytozoon infection 509 

probability increased with host migration distance (OR 1.19, CI 1.07 - 1.32). Higher proportions 510 

of wetland cover at different sites increased infection probability for Plasmodium (OR 1.35, CI 511 

1.03 - 1.79), but decreased infection probability for Parahaemoproteus (OR 0.53, CI 0.37 - 0.78) 512 

and Leucocytozoon (OR 0.52, CI 0.29 - 0.95). Elevation increased infection probability for 513 

Leucocytozoon (OR 1.47, CI 1.14 - 1.9), but decreased infection probability for Plasmodium (OR 514 

0.65, CI 0.53 - 0.80). Infection probability for Leucocytozoon (OR 0.33, CI 0.20 - 0.53) was 515 

considerably lower at sites with higher rainfall during the driest month and decreased with 516 

increasing rainfall seasonality (OR 0.59, CI 0.43 - 0.80). At locations with higher annual rainfall, 517 

infection probability increased for Leucocytozoon (OR 1.83, CI 1.15 - 2.91), but decreased for 518 

Plasmodium (OR 0.75, CI 0.58 - 0.97). Sites with higher proportions of forest cover and 519 

vegetation density exhibited increased probability of infection by Parahaemoproteus (OR 1.31, 520 

CI 1.02 - 1.70) and Plasmodium (OR 1.44, CI 1.05 - 1.97), respectively. Annual mean 521 

temperature, annual fluctuation in vegetation density, and distance to equator showed no evident 522 

covariation with infection probability (i.e., CIs overlapped with zero) for any of the three parasite 523 

genera (Figure 3). 524 

 Varying coefficient estimates revealed that several covariate effects, notably mostly host 525 

ecological traits rather than environmental predictors, differed across zoogeographical realms 526 

(see Supporting Information Table S5 for variance estimates in coefficients). Two host traits 527 

and one environmental driver exhibited opposing effects on the probability of parasite infection 528 

across zoogeographical realms: local bird species richness had a positive effect on infection 529 
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probability for Parahaemoproteus in the Afrotropical, Palearctic, and Sino-Japanese realms and 530 

a negative effect in the Saharo-Arabian realm (Figure 4). Migration distance was associated with 531 

increased Parahaemoproteus infection probability in the Neotropical, Saharo-Arabian, and Sino-532 

Japanese realms, but with decreased infection probability in the Nearctic and Oriental realms 533 

(Figure 4). Likewise, migration distance was associated with increased Plasmodium infection in 534 

the Neotropical, Oceanian, and Oriental realms, but with decreased infection probability in the 535 

Nearctic realm (Figure 4). Annual fluctuation in vegetation density was associated with 536 

increased infection with Leucocytozoon in the Nearctic realm but with decreased infection in the 537 

Palearctic realm (Figure 4). In addition, host body mass (infection with Leucocytozoon and 538 

Parahaemoproteus), canopy foraging frequency (infection with Parahaemoproteus and 539 

Plasmodium), and proportion of wetland cover (infection with Leucocytozoon), all varied across 540 

realms according to variance in coefficient estimates (Figure 4, Supporting Information Table 541 

S5). 542 

  543 

Discussion 544 

 Understanding large-scale variation in parasite prevalence and spread is of increasing 545 

importance in a changing world, where counteracting disease emergence and outbreaks pose a 546 

global challenge. Using a global database of infections by four genera of a cosmopolitan group 547 

of vector-transmitted blood parasites of birds, we show that infection probabilities for each 548 

parasite genus vary considerably across zoogeographic realms and avian host families. Our 549 

hierarchical global analysis identified key drivers of infection probability that differed in their 550 

magnitudes and directions among parasite genera. In particular, we found that bird richness and 551 

host attributes may have rather different impacts on infection risk in different zoogeographical 552 
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realms, whereas climate and habitat conditions are more likely to influence infection risk 553 

consistently across zoogeographical realms. Multiple global hotspots of avian haemosporidian 554 

infection emerge from our results with strong variation in infection probabilities within realms, 555 

indicating that prevalence in avian hosts responds to regional factors as well as broad-scale 556 

global drivers such as latitudinal ecological/climatic gradients. Accounting for environmental 557 

context in synergy with biotic drivers, such as species ecological traits and host species assembly 558 

patterns, is critical for understanding variation in infection probability and conditions that enable 559 

parasites to spread. 560 

 561 

Hotspots of haemosporidian infection probability 562 

 Disease hotspots are not necessarily stable over time and may result from high frequency 563 

of local spillover event from alternative hosts species. A key challenge in disease ecology is to 564 

identify traits of alternative host species (phylogenetically related or not) that might make them 565 

competent reservoirs of pathogens and increase local prevalence (Jones et al., 2008). Here we 566 

identified locations with the greatest infection risk of a vector-transmitted parasite and host traits 567 

that potentially increase local prevalence. Notably, our macroecological analyses of infection 568 

probability identified hotspots for haemosporidian parasites dispersed across different 569 

zoogeographical regions, some well outside the known biodiversity hotspots for most free-living 570 

organisms in the tropics. Unlike the pantropical distribution of human malaria hotspots, our map 571 

on global infection risk depicts hotspots for avian malaria in the Nearctic region and for 572 

Parahaemoproteus, a related avian malaria parasite, in the Palearctic region.  573 

 The longstanding and much-debated hypothesis that infection risk increases toward the 574 

equator (Jones et al., 2008; Stephens et al., 2016, Allen et al., 2017) was not supported in our 575 
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synthesis for vector-transmitted parasites. Tropical regions support higher bird diversity in 576 

comparison to temperate regions (Duchêne & Cardillo, 2015), and thus haemosporidian parasites 577 

from tropical regions may have a higher diversity of available “niches” to exploit. Furthermore, 578 

the greater diversity of both avian and vector host species in the tropics could lead to increased 579 

diversity within individual hosts through lineage sharing and host shifting (Ricklefs et al., 2014). 580 

While surprising, the observed absence of a latitudinal gradient in infection probability for the 581 

three most prevalent haemosporidian parasites matches what was found for lineage diversity at a 582 

global scale (Clark, 2018). Clark (2018) demonstrated that more diverse communities of 583 

haemosporidian parasites do not necessarily occur in tropical regions and suggested that 584 

macroevolutionary factors, such as propensity of parasites to shift hosts locally, or timing of 585 

diversification, are more important drivers of local parasite diversity. Whether haemosporidian 586 

prevalence is correlated with lineage diversity and the propensity of these parasites to shift 587 

among hosts at different rates across latitude has yet to be investigated. 588 

 Our findings suggests that haemosporidian infection probabilities emerge not only from 589 

general global drivers such as climate, avian host richness, and, possibly, migratory flyways that 590 

determine macroecological patterns of community assembly, but also from region-scale habitat 591 

and climate variation.  592 

 593 

Spatial distribution of avian hosts overshadows phylogenetic signal in infection probability  594 

 Host phylogenetic position has been associated with variation in haemosporidian 595 

prevalence in avian communities and host clades (Barrow et al., 2019; Clark et al., 2020). Our 596 

study confirms these previous findings in terms of a strong phylogenetic signal in bird infection 597 

patterns with haemosporidian parasites. However, after accounting for both phylogeny and the 598 
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location of the collected samples, we found considerable uncertainty in the phylogenetic signal at 599 

a global scale, indicating that strong phylogenetic signal inferred from a pooled sample (i.e., 600 

without taking spatial context/covariance into account) can be misleading. This uncertainty in 601 

phylogenetic signal can be especially pronounced at a large scale, in which distinct local host 602 

assemblages and samples are likely to include closely related individuals/species, which in turn 603 

may generate phylogenetic ‘pseudoreplicates’ at the same locations. 604 

 Recognizing that avian haemosporidian prevalence is highly variable within and among 605 

host clades, and that it is spatially clustered, as we have shown here, provides a new framework 606 

for outlining region-specific predictions of infection risk by multi-host vector-transmitted 607 

parasites. This is particularly true for areas undergoing rapid climate change, anthropogenic 608 

landscape transformation, and shifting host species assemblages. We believe that these patterns 609 

point to strong synergistic effects of host traits, landscape features, and climatic filters driving 610 

infection patterns. 611 

 612 

Idiosyncratic drivers influence differences in global infection risk among haemosporidian 613 

genera 614 

 A central finding of our analysis was not only the identification of host traits driving 615 

infection probability for the three most prevalent haemosporidian genera, but also how their 616 

effects vary across zoogeographic realms. We showed that bird species which migrate longer 617 

distances are more likely to be infected by Leucocytozoon worldwide. As most long-distance 618 

migrants spend part of their annual cycle breeding in temperate regions, where black fly vectors 619 

are more diverse and abundant (Currie & Adler, 2008), there would be much higher potential for 620 

Leucocytozoon transmission in long-distance migrants than in resident tropical species. 621 
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 Migration distance influenced infection probability in opposing directions across 622 

zoogeographical realms for the genera Plasmodium and Parahaemoproteus (see results and 623 

Figure 4). These inverse trends in infection risk for vector transmitted parasites in response to 624 

migration patterns warrant future research into underlying mechanisms. Perhaps one of the 625 

interesting aspects to consider (if relevant data become available) could be the spatial context of 626 

parasites transmission, given the possibility that transmission in migratory birds may take either 627 

place in the wintering or breeding area but not necessarily in both. This is especially relevant 628 

given the multifaceted environmental changes, which are likely to amplify the anticipated 629 

changes in bird migration and community assembly (Visser et al., 2009; Howard et al., 2020) 630 

and hence the future infection risk with haemosporidian parasites.  631 

 Avian hosts inhabiting sites with a higher proportion of wetland cover and denser 632 

vegetation are at greater risk of Plasmodium infection. The probability of a bird being infected 633 

with Parahaemoproteus consistently increased with proportion of forest cover, while it 634 

decreased in sites with higher proportions of wetland cover. When anthropogenic landscape 635 

changes create structures capable of collecting rainwater (e.g., artificial lakes, mining pits, rice 636 

fields) or change the course or flooding regime of rivers (e.g., dams, irrigation systems), such 637 

changes in water availability may increase infection of birds with avian. Conversely, reduction in 638 

forest cover may diminish the local transmission of Plasmodium and Parahaemoproteus among 639 

avian hosts, but whether tree cover removal has a direct effect on vector capacity or parasite 640 

capacity to shift between hosts at large spatial scales has yet to be investigated.  641 

 We found that higher annual rainfall is associated with decreased prevalence of 642 

Plasmodium but increased prevalence of Leucocytozoon. Furthermore, Leucocytozoon infection 643 

risk decreases at sites with substantial rainfall during the driest months and sites with pronounced 644 
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variation in rainfall throughout the year. The relationship between rainfall and prevalence 645 

suggests that the expected disruption of precipitation patterns due to anthropogenic impacts on 646 

global climate (Wehner, 2020) may affect prevalence of avian haemosporidian genera 647 

differentially in the future. The magnitude of this impact may vary by region owing to 648 

biogeographic structure in realized host specialization of haemosporidian lineages (Fecchio et 649 

al., 2019).  650 

 Elevation emerged as a predictor of Plasmodium and Leucocytozoon infection probability 651 

at a global scale, although with an opposite effect for each parasite genus. Our global dataset 652 

allowed us to determine the probability of a bird being infected across an elevation gradient 653 

ranging from sea level to ~ 4,700 meters elevation across 10 zoogeographic realms, while 654 

simultaneously controlling for other climatic characteristics known to constrain vector 655 

development, activity, and abundance (e.g., temperature and moisture level), as well as parasite 656 

reproduction (temperature). This approach consistently demonstrated that the probability of an 657 

individual bird being infected with Plasmodium decreases with elevation across the globe, 658 

presumably because of constraints in parasite development and transmission by mosquito vectors 659 

at higher elevation sites (Atkinson et al., 2014). Although we showed that Leucocytozoon 660 

infection probability increased with elevation, presumably owing to the affinity of black fly 661 

vectors for colder sites at high elevations, hotspots of Leucocytozoon prevalence were also 662 

scattered across lowland bird assemblages.  663 

 Generally, with the currently available empirical evidence being mostly constraint to 664 

vertebrate host infections, correlative approaches as employed in this study allow limited insights 665 

into which species and interactions in the vertebrate-host-pathogen transmission cycle are most 666 

sensitive to environmental change, warranting future research into specific host-vector 667 

https://pubmed.ncbi.nlm.nih.gov/?term=Atkinson+CT&cauthor_id=24446093


30 
 

associations and host preferences. This is especially relevant for ectothermic arthropod vectors, 668 

for which host preferences and biting rates are sensitive to climate and land use changes (Rose et 669 

al., 2020).  670 

  671 

Conclusions 672 

 Our spatio-phylogenetic analysis revealed that infection probability of haemosporidian 673 

parasites varies across zoogeographical realms and avian host clades owing to broad-scale and 674 

possibly also regional-scale variation in environmental conditions and host assemblages. A novel 675 

aspect of our study was to determine the drivers and hotspots of infection probability for each 676 

haemosporidian genus on a global scale rather than at population or community levels. 677 

Importantly, we found that infections in some low-prevalence realms were disproportionately 678 

concentrated in local hotspots, suggesting that regional-scale modifications in habitat and 679 

microclimate (and perhaps also the way host species assemble in response to strong habitat 680 

modification) may increase transmission at a regional scale. However, the synergistic effect of 681 

environmental drivers, such as precipitation, vegetation density, and proportion of forest and 682 

wetland cover, along with host community and assembly attributes on prevalence of multi-host 683 

pathogens across realms, underscores the importance of considering biogeographic patterns in 684 

host-parasite systems. At the same time, we suggest that the scattered distribution of local 685 

infection hotspots demonstrates that local processes, such as strong habitat modification and the 686 

resulting shifts in host species assemblages, can produce unexpected increases in parasite 687 

prevalence, emphasising that disease outbreak may be difficult to predict from generalizable 688 

large-scale patterns such as climate alone. 689 

 690 
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 886 

Figure 1. Region-specific estimates of average infection probabilities of birds for four 887 

haemosporidian genera, based on 53,669 sampled bird individuals (estimates from GLMM with 888 

region as a random effect). Error bars depict 95% credible intervals, reflecting uncertainty 889 

related to sample sizes in different regions.  890 

 891 

 892 
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 893 

Figure 2. Estimated average parasite prevalence at different locations, shown only for locations with ≤ 10% uncertainty in estimates 894 

according to the size of 95% credible intervals. 895 
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 896 

Figure 3. Estimates of the ‘global average’ effects of different drivers on variation in the 897 

infection probability of the three most common avian haemosporidian genera (based on scaled 898 

covariates). Points depict posterior means of the fixed effect estimates from a spatio-899 

phylogenetic varying coefficient model, and vertical lines indicate 95% credible intervals. For 900 

each parasite genus, the covariates that overlap with zero are shown in light bars. 901 
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 908 

Figure 4. Varying coefficient estimates for variables with distinct effects across zoogeographical 909 

realms. Points depict the posterior mean of the regional-level effect estimates from a spatio-910 

phylogenetic varying coefficient model, and vertical lines indicate 95% credible intervals. 911 
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