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Abstract

Robots are prone to making anomalies when performing manipulation tasks in

unstructured environments, it is often desirable to rapidly adapt the robotic

behavior to avoid environmental changes by learning from experts’ demonstra-

tions. We propose a framework for learning robot anomaly recovery skills from

time-driven demonstrations based on a Gaussian process regression with prior

mean derived by Gaussian mixture regression, named as mean-prior GPR (MP-

GPR), which allows an end-user to adjust the anomalous trajectory intuitively

by simultaneously considering the variability of the demonstrations and the

adaptation of recovery skills. Evaluations are divided into two phases, a bench-

marking dataset with robot reaching, pushing, writing, and pressing tasks are

first used to verify the path accuracy and variability, and then a real-time robot

bin-picking task for evaluating the adaptation of the framework. Our method

has a fair comparison with probabilistic-based methods in the field of robot

learning from demonstrations, including Gaussian mixture regression, proba-

bilistic movement primitives, and kernelized movement primitives. The results

indicate that our proposed method can efficiently encode the variability from

multiple demonstrations and rapidly anomaly recovery skills learning by mod-

ulating a learned trajectory to safe via-points.
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Figure 1: Robots are prone to making anomalies when performing manipulation tasks in

unstructured environments, e.g. robot collides with the unexpected obstacle.

1. Introduction

With the rapid development of human-robot collaboration [1], robots may

encounter unseen situations such that they are prone to making anomalies when

performing manipulation tasks in unstructured environments [2, 3], e.g. robot

collides with the unexpected obstacle during object transporting, as shown in5

Figure 1. Besides the detection and classification of performing anomalies [4, 5],

robots that can recover appropriately to common anomalies have the potential

to provide more effective and safer collaboration.

In our previous works [6], we proposed a SPAIR (Sense-Plan-Act-Introspect-

Recover) framework for learning transition policy for robot anomaly recovery,10

which mainly investigated the problem of anomaly detection, classification as

well as recovery policies during robot manipulation tasks. We investigated the

adaptation recovery policy based on dynamical movement primitives (DMP)

that can effectively adapt to the target points, but it can’t lean the variability

from human demonstrations and pass through the via-points such that the safety15

considerations are insufficient. These experiences make us investigate a method

that can modulate the anomalous trajectory by given safe via-points and easily

adapt to the environmental changes based on human demonstrations.

For learning recovery skills, the environmental changes or human interven-
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tion can be considered as new task constraints, which require the robot to adapt20

its trajectory to pass through constrained via-points or end-points. To satisfy

those new constraints, the conventional time-consuming robot programming

methods performed by engineers have become a key obstruction that influences

the development of industrial manufacturing towards intelligence and flexibility

[7]. Motivated by the continued success of robot learning from demonstrations25

(LfD) [8, 9] to generate trajectory derived from observations of a human’s own

performance thereof, rather than requiring users to analytically decompose and

manually program the desired behavior. Thus, the generation of adaptive tra-

jectory for anomaly recovery by learning from human demonstrations plays a

very important role as the robot works aside with human [10].30

In the context of LfD, the typical algorithms such as Dynamical Movement

Primitives (DMP) [11], Gaussian mixture regression (GMM) [12, 13], and prob-

abilistic movement primitives (ProMP) [14, 15] have been developed to generate

desired trajectories, which can directly learn variability from time-driven tra-

jectories, but they introduce many open parameters (including basis functions35

and weighting coefficients) and can’t address the problem with high-dimensional

inputs. To address the problem of learning of high-dimensional trajectories, the

GMM/GMR scheme has been proposed [16], where GMM is employed to model

the joint distribution of input variables and complemented with GMR to retrieve

the desired trajectory. The GMR is employed not only for modeling the move-40

ment but also encoding the EMG-based stiffness for robot skill learning [17, 18].

Despite GMM/GMR can effectively learn the variability of high-dimensional

demonstrations to generate adaptive trajectories, it is difficult to pass through

via-points and end-points. Moreover, it is worth mentioning that DMP can

only adapt trajectories towards end-points, but can’t satisfy the via-points con-45

straints. ProMP can adapt trajectories towards new via-points and end-points

simultaneously.

Thus, there are two properties that should be considered in robot learning

recovery skills, including the variability of the demonstrations and the extrapo-

lation of the reproductions. Note that we consider the reproduced trajectories50
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to pass through desired via-points and end-points as the extrapolation capa-

bility. Generally, learning the variability of the demonstrations for redefining

parts of the demonstrated trajectories according to the environmental changes,

while maintaining the general trajectory shape as in demonstrations. Moreover,

improving the extrapolation by modeling the presence of uncertainty in the re-55

production for adapting the robot behavior such that compliance at different

phases of the tasks [19, 20].

As those two properties are taken into further consideration, the existing

LfD methods can be typically divided into three main categories, including the

dynamical system-based methods, e.g. DMP; the probabilistic methods, e.g.60

ProMP, GMM/GMR, kernelized movement primitives (KMP) [21] or Gaussian

process regression (GPR) [22, 23], and the dynamical system-based probabilistic

methods, e.g. Stable Estimator of Dynamical Systems (SEDS) [24]. Due to the

covariance matrices of the prediction distributions computed by GMR, ProMPs

and KMP can precisely encode the variability of the predicted trajectory, making65

the probabilistic methods obtain increasing attention in recent years. However,

most of the aforementioned probabilistic methods without taking both the vari-

ability of the demonstrations and the extrapolation of the reproductions into

consideration simultaneously.

2. Related Work70

Some studies and reviews have been undertaken to explore the robot learn-

ing recovery skills from anomalies or environmental changes in the last five

years, the fields as diverse as robot assembly [25, 26, 27], robot grasping and

obstacle avoidance [28, 29], quadrupedal robot [30] as well as legged robot [31].

Besides the robust robot control algorithms [32], corrective trajectories by learn-75

ing from human demonstrations has been widely used due to an end-user with

the straightforward comprehension of task. Among them, the most popular

representation to encode motion from demonstrated trajectories is DMP, as de-

scribed in [33], because of its well-defined attractor properties and a non-linear
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force term that allows modeling of almost any complex trajectories. A reversible80

DMP [34] is also proposed, which has the significant potential for learning re-

covery skills that modelling the reversible execution, due to its reversibility of

a learned trajectory. A robot learning system based on adaptive neural control

and DMPs is proposed in [35, 36] for considering both motion generation and

trajectory tracking to compensate for the effect caused by the dynamic environ-85

ments. Moreover, GMM/GMR, ProMP, KMP are proposed as an alternative

recovery skills representation in probabilistic formulation, they learn a trajec-

tory distribution from multiple demonstrations and modulate the movement by

conditioning on desired target states. Therefore, a method considering both of

the variability of the demonstrations and the extrapolation of the reproductions90

is proposed for learning robot anomaly recovery skills.

To meet the requirements of variability and extrapolation, [37] propose to

use mixture density networks (MDN) in an imitation learning context to predict

both variability and uncertainty, but it assumes the outputs are uncorrelated.

Moreover, Heteroscedastic Gaussian Processes (HGP) [38] introduce an input-95

dependent noise model into the regression problem, but require the training of

separate HGP models when tasks with multiple outputs, thus output correla-

tions are not straightforward to learn in the standard formulation. Recently, [39]

first discuss a fundamental difference between the type of variance encapsulated

by the predictions between GMR and GPR, in which GMR relying on a previ-100

ously trained GMM, computes full covariance matrices encoding the correlation

between output variables such that the predictions measure the variability of

demonstration, while GPR quantify the uncertainty during reproduction. With

this finding of GMR and GPR, [20] introduce an uncertainty-aware probabilistic

model using KMP for predicting both variability and uncertainty with a single105

imitation learning framework, which takes the robot uncertainty about its ac-

tions, the variability and correlations in the data into account, to design optimal

controllers from demonstrations. Besides the extensions of KMP, [23] propose

a novel multi-output Gaussian Process (MOGP) based on GMR that can en-

capsulate the variability retrieved from the demonstrations in the covariance of110
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the MOGP and implement the trajectories modulation given new observations,

which we have adopted. Moreover, a GP-based model for robot learning from

demonstration is proposed in recent work [40], which allows to generalize over

multiple demonstrations, and encode variability along the different phases of

the task.115

Thus, we attempt to learn the robot recovery skills when it collides with

an unexpected static obstacle, where the behavior not only tracking the via-

points by leaning the variability based on the GMM/GMR scheme but also

easily adapt to task uncertainty with GPR. That’s, the proposed method can

learn the variability of demonstrations for generating adaptive trajectory with120

constrained points, and generalize for the various tasks with high extrapolation

capability.

3. Methods

3.1. Problem Formulation

In this paper, we address the question of whether it is possible to automati-125

cally interpret a corrective trajectory by passing through given safe start-points,

via-points as well as end-points, made by an end-user, while still maintaining

the general trajectory shape (mean and variability) as in the demonstrations.

Here, we mainly focus on the time-driven demonstrated trajectories such that

time t considered as input and the Cartesian positions of a robot end-effector130

y = {x, y, z} considered as outputs in the following model explanations.

3.2. Gaussian Mixture Regression

Gaussian Mixture Regression (GMR) constructs a sequence of Gaussian Mix-

ture Models (GMM) for the joint density of the input datapoints, and then de-

rive conditional density and regression functions from each model [41]. That’s,135

GMR estimates the distribution of output data given input data by relying

on the learned joint distribution by GMM. The computational complexity of

GMR is mainly dependent on the number of GMM components, which is the
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only parameter that needs to be specified. Therefore, GMR is well adapted for

real-time applications.140

In the scheme of learning from demonstrations, we assume a dataset with

N datapoints/observations collected when a robot performs a task under an

end-user’s demonstration. Generally, each observation contains the time-step

ti, i ∈ {1, 2, ..., N} and its corresponding multimodal information yi ∈ R
D of D

dimensions, which are i-th realizations of dataset Y = {ti, yi}Ni=1. Hence, the145

multimodal datapoints are used to encode the GMM with K components by

p(yi) =

K
∑

k=1

p(k)p(yi|k)

p(k) = πk

p(yi|k) = N (yi;µk,Σk)

=
1

√

(2π)D|Σk|
e−

1

2
((yi−µk)

TΣ
−1

k
(yi−µk))

(1)

where p(k) is the prior, p(yi|k) is the conditional probability density function,

N (yi;µk,Σk) denotes the normal distribution of an observation yi. The pa-

rameters of each component in Equation 1 are described as prior probability

πk, mean vector µk, and covariance matrix Σk. The GMM parameters can be150

trained in a batch mode using the Expectation-Maximization (EM) algorithm

[42], which iteratively optimizes the model using maximum likelihood estimates.

GMR computes the conditional distribution of the GMM joint distribution

to infer the output vector (multimodal observations) corresponding to a given

input vector (time steps). A GMM with parameters Θ = {πk, µk,Σk} encoding155

the demonstrated trajectories Y = {ti, yi}Ni=1, the temporal and spatial values

of the Gaussian component k are described by

µk = {µt
k, µ

y
k};

Σk =





Σtt
k Σ

ty
k

Σ
yt
k Σ

yy
k





(2)

the expected yk distribution of given tk is formulated as

p(yk|tk) = N (yk; ŷk, Σ̂
yy
k ) (3)
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with the componentwise conditional means and covariances

ŷk = µy
k +Σ

yt
k (Σtt

k )
−1(t− µt

k)

Σ̂
yy
k = Σ

yy
k −Σ

yt
k (Σtt

k )
−1Σ

ty
k

(4)

Therefore, the distribution of output data y given input data t can be estimated

with the conditional means and covariances of the multivariate Gaussian dis-160

tributions associated with individual components using the laws of total mean

and covariance, so that

p(y|t) =
K
∑

k=1

βk(t)N (y; ŷk, Σ̂
yy
k )

βk(t) =
p(k)p(t|k)

∑K
i=1 p(i)p(t|i)

(5)

where p(t|k) ∼ N (µ,Σ) stands for the probability density function with mean µ

and covariance matrix Σ, βk(t) denotes the probability of the component k to be

responsible for time t. The observation can be estimated at different time step t165

with the mean ŷ =
∑K

k=1 βk(t)ŷk, covariance matrix Σ̂yy =
∑K

k=1(βk(t))
2Σ̂

yy
k .

3.3. Gaussian Process Regression

Gaussian Processes (GPs) are non-parametric technique with explicit uncer-

tainty models for learning deterministic input-output relationship based on a

Gaussian prior over potential objective functions [43]. GPs rather try to infer

how all the measured data is correlated, instead of fitting the parameters of a

selected basis functions. An individual GP is a Gaussian random function, and

is fully specified by a mean function µ(t) and covariance function γ(t, t′)

y(t) ∼ GP(µ(t), γ(t, t′)) (6)

To define a GP, the form for the mean function and covariance function needed

to be chosen but there is no prior knowledge about the mean function in most

applications. Since GP is a linear combination of random variables with Normal170

Distribution, this is commonly assumed the mean function µ(t) to be zero.

However, we are modeling the variability of human demonstration, which should
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be explicitly different than zero. The covariance function γ(t, t′) generate a non-

negative definitive covariance matrix M , which can be formulated by a great

set of possible functions with two arguments. Here, we take two frequently used175

covariance functions into consideration [44], including the squared exponential

kernel γse and the Matern kernel γma.

γse(t, t
′) = σ2e−

1

2ℓ2
d(t,t′)2

γma(t, t
′) = σ2 1

Γ(ν)2ν−1
(

√
2ν

ℓ
d(t, t′))νKν(

√
2ν

ℓ
d(t, t′))

(7)

where ℓ is the lengthscale parameter of the kernel for determining the trajectory

smoothness (the larger, the smoother), d(·, ·) is the Euclidean distance, and the

output variance σ2 is a scale factor that determines the average magnitude away180

from the mean. Meanwhile, σ and ℓ are hyper-parameters, which can signifi-

cantly influence the performance of the GP. For the Matern kernel, ν controls

the smoothness of the resulting function, Kν(·) is a modified Bessel function, and

Γ(·) is the gamma function. Specifically, when ν = 1/2, γma(t, t
′) = γse(t, t

′).

The output of the Gaussian process model is a normal distribution, expressed185

in terms of mean and variance. The mean value represents the most likely output

and the variance can be interpreted as the measure of its confidence. In contrast

with the aforementioned methods in learning from demonstrations, both the

variability information of the demonstrations and the presence of uncertainty in

reproduction are encoded in a single GP.190

3.4. Mean-prior Gaussian Processes Regression

In this section, we define the prior mean of the GP as equal to the mean

provided by GMR, and formed as a Mean-prior Gaussian Processes Regression

(MP-GPR), which can effectively learn the variability of human demonstrations

for adapting to the uncertainty of reproduced trajectory. As formulated in195

Equation 6, the prior mean of MP-GPR can be obtained by Equation 5 and

a kernel in the form of a sum of K separable kernels associated with the K
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components of the considered GMM.

µ(t) = p(y|t)

γ(t, t′) =

K
∑

k=1

βk(t)βk(t
′)Σ̂yy

k γk(t, t
′)

(8)

where the prior mean of Equation 5 allows the MP-GPR to generate trajectory

without considering the training trajectories. Moreover, the MP-GPR with200

non-stationary covariance functions due to its spatially-varying coregionaliza-

tion matrices βk(t)βk(t
′)Σ̂yy

k , which allows the model to adapt to functions

whose smoothness varies with the inputs [45, 46]. The covariance matrices Σ̂yy
k

allows the dependencies between the output data to be described for each GMM

component and both of the coregionalization matrices and the number of sep-205

arable kernels are determined by GMR. Therefore, the hyperparameters of the

kernels γk can be estimated by maximizing the likelihood of the GP. Moreover,

the variance parameters σ of the kernels γk are commonly fixed to 1.

As formulated in Equation 8, MP-GPR belongs to the generative models

such that the reproduced trajectories can be easily generated through sam-210

pling and conditioning. This allows to ignore the human demonstrations in

the generation of corrective trajectories and to consider only new observations

constraints as observed in reproduction, which can be performed well in learn-

ing robot anomaly recovery when given safe via-points. Moreover, the tracking

precision of new observations can be formulated as a function of the retrieved215

covariance of MP-GPR, which allows us to demand the robot to track the new

observations while lowering the required tracking precision in regions of high

variability.

Particularly, in case of learning robot recovery skills, we aim to adapt gener-

ated trajectories towards new time-driven via-points (t,v) = {(t1, v1), ..., (tn, vn)},220

where vi ∈ R
D and those new observations are used to infer the posterior dis-

tribution of MP-GPR as formulated in Equation 8. Moreover, MP-GPR is that

each kernel γk can be chosen individually and their parameters are determined

separately. With this property, we can modify the local behavior of a robot in
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different phases. However, the standard GMM/GMR scheme can’t generate a225

conditioning trajectory towards new observations because the covariance terms

between to datapoints are equal to zero, and the predicted mean of standard

Gaussian processes regression strongly depend on the kernel parameters such

that lack of extrapolation capability.

4. Verification and Performance Comparisons230

4.1. Baselines and Common Parameters Settings

In this paper, we compare the performance between MP-GPR with the other

probabilistic-based methods that widely used for robot skill learning from hu-

man demonstrations, i.e. ProMP (few of the utility functions are used from

promplib1) and KMP (original code implementation2 in Matlab provide by Yan-235

long Huang). The main advantage of those probabilistic methods is that they

not only encode the variability by means of a covariance matrix from multiple

demonstrations, but also allow for trajectory adaptations with via-points. Note

that MP-GPR and KMP can be implemented with the requirements of high-

dimensional inputs and outputs because their kernel treatment. However, there240

are several coupled parameters that should be carefully given in training the

ProMP and KMP models.

In our following experiments, the ProMP is empirically formulated by 35

Gaussian basis functions with σ = 0.05 and the Gaussian noise distribution

with ǫ ∼ N (0, 0.01), in which the detail formulations as described in [14].245

KMP is evaluated as well, the time-driven demonstrations are first encoded

by a 4 components GMM with input t and output x, y, z, and then a probabilis-

tic reference trajectory is retrieved through GMR. Note that KMP will adapt

the distribution according to the covariance given by GMR when concerning

the via-points. Subsequently, a Gaussian kernel γ(t, t′) = σ2 exp
(

− ||t−t′||2

ℓ

)

250

with variance σ = 0.05, lengthscale ℓ = 0.1, and the prior regularization term

1https://github.com/baxter-flowers/promplib
2https://github.com/yanlongtu/robInfLib-matlab
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λmean = 0.1, λcov = 0.1 for the mean and covariance that is multiplied by the

covariance, respectively, the detail formulations as described in [21]. On the

contrary, the MP-GPR prior and posterior models based on the mean of GMR

can be conveniently obtained by determining the two kinds of hyperparame-255

ters, including the number of GMM is 4 as well as the variance σ = 0.05 and

lengthscale ℓ = 0.1 of kernels. The detailed implementations are described in

the following experimental sections.

4.2. Experiment A: quantitative evaluations on an open-source benchmarking

dataset260

To have a fair comparison between our method and the baselines, we firstly

consider an open-source bench-marking dataset for robot skill learning from

demonstrations. The dataset was released in literature [47] by M. Asif Rana,

which including four tasks by human kinesthetic teaching, i.e. reaching, push-

ing, writing, and pressing. Figure 2 shows the experimental setup and five265

demonstrated trajectories of each task.

In this paper, two quantitative metrics are considered to evaluate the con-

sidered methods. First, a point-wise root mean squared error (RMSE ) is intro-

duced, which measures the deviation of reproduced motions from demonstrated

trajectories. This widely-used metric called path accuracy that has been promis-

ing described in two benchmarking studies [47, 48] of robot skill learning, which

formulated by

RMSE =

√

√

√

√

1

M

N
∑

t=1

||Ydemo(t)− Yrepo(t)|| (9)

where || · || denotes the L2-norm, N is the number of datapoints, and M being

the number of non-anomalous demonstrations. Ydemo and Yrepo represent the

trajectories of demonstration and reproduction, respectively.

Except for the RMSE metric, the variability Vrepo of reproduced trajectory is270

also proposed for quantitative evaluation in this paper, which has been treated

as the confidence or uncertainty in performing an action [49, 50]. According
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(a) reaching (b) pushing (c) writing (d) pressing

(e) reaching (f) pushing (g) writing (h) pressing

Figure 2: Illustrations of the experimental setups of reaching, pushing, writing, and pressing.

(Top) A non-technical end-user to demonstrate those tasks by kinesthetic teaching. (Bottom)

Five trajectories are demonstrated for each task, respectively. Further information can be

found in the detailed descriptions4

to the definitions of MP-GPR, ProMP, and KMP methods, we assume the

variability is related to the variance σ2
t of reproduced trajectory at each time

step. Therefore, the variability is computed as the average magnitude over each275

Cartesian dimension of the reproduced trajectory by

Vrepo =
1

N

N
∑

t=1

√

σ2
x,t + σ2

y,t + σ2
z,t (10)

where the subscripts x, y, z is used to represent the Cartesian dimension inde-

pendently.

Due to the demonstrated trajectories in the raw dataset is redundant for our

applications, we only select the first five demonstrations of a participant (M = 5280

in Equation 9), as shown in the bottom row of Figure 2. And then, we eval-

uate the performance of encoding the variability from multiple demonstrations

based on the parameters settings in Section 4.1 for reaching, pushing, writing,

and pressing task, respectively, the derived results as shown in Figure 3. Table

1 presents the results of RMSE and Vrepo using ProMP, KMP, and MP-GPR285

13



Table 1: The quantitative comparisons of MP-GPR, ProMP, and KMP, including RMSE

denotes the deviation of reproduced trajectory from demonstrations, and Vrepo represents the

confidence of reproduced trajectory.

Task
RMSE∗ Variability∗

ProMP KMP MP-GPR ProMP KMP MP-GPR

reaching 1.717 1.735 1.723 0.365 1.070 0.173

pushing 0.986 0.992 0.995 0.193 0.645 0.099

writing 0.195 0.216 0.214 0.041 0.196 0.020

pressing 0.583 0.587 0.591 0.110 0.409 0.059

average 0.871 0.881 0.881 0.177 0.580 0.088

∗ The lower the value, the better the reproduced performance.

across four tasks accordingly, where the RMSE values are not too different but

the variability doesn’t. The reasons for these results including 1) the ProMP

with the smallest RMSE by introducing weight vector ω to compactly represent

the demonstrated trajectory with 35 basis functions, which outperforms the

others. Whereas the KMP and MP-GPR are kernel-based methods and benefit290

from GMM/GMR such that they get the similar RMSE values. 2) Gaussian

processes have been promisingly used to extrapolate with an indication of un-

certainty, therefore the MP-GPR can simultaneously encapsulate the variability

and uncertainty of multiple demonstrations by using the prior information of

GMM/GMR and kernel functions, resulting in the smallest Vrepo value of each295

task and significantly outperform the others. The average variability of MP-

GPR across four tasks concerning the baselines is 50.28% better than ProMP5,

and 84.83% better than KMP.

4.3. Experiment B: evaluations on environmental changes

After analyzing the path accuracy and variability of the reproduced tra-300

jectory, we evaluate the trajectory adaptation of MP-GPR in an autonomous

5(Vp

repo − Vm

repo
)/Vp

repo
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Figure 3: Illustrates the performance of encoding the variability from multiple demonstrations

using MP-GPR, ProMP, and KMP, respectively, where the solid lines represent the reproduced

trajectory and demonstrated trajectories and the shaded areas denote the variance from the

mean.

15



(a) Experimental setups (b) Five demonstrations

Figure 4: Experimental setup for robot bin-picking the demonstrated trajectories by kines-

thetically guiding the robot to grasp the objects and then place them into the container in

one-at-a-time fashion, where the blue dot represents the grasping position of each object.

bin-picking task achieved by the 6-DoF Kinova robot and mounted with an

Intel RealSeanse 3D camera (for object recognition and picking pose estima-

tion), which demand the robot collects various objects on the desktop into the

container one by one, as shown in Figure 4(a). Note that the implementation305

of bin-picking with 3D vision isn’t the considering scope of this paper, which

can accurately pick-up objects and don’t affect the verification of the proposed

method in this paper. In practical applications, the environmental changes

should be seriously considered when you want to quickly configure a robot bin-

picking systems and the robot is expected to grasp and place in a way that is310

preconceived by an end-user.

4.3.1. Human Demonstrations

During data acquisition, we collect the demonstrations by human kines-

thetically guiding the robot to grasp the objects and then place them into the

container in a one-at-a-time fashion without obstacle. Meanwhile, we use the315

rosbag 6 command to record all the published topics of the Kinova robot syn-

chronously when demonstrating. Particularly, the training dataset consists of

5 human demonstrations by picking the 5 objects marked in the left bottom of

6http://wiki.ros.org/rosbag
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Figure 4(a) and each demonstration is a three-dimensional time-driven trajec-

tory that consists of Cartesian position x, y, z of robot end-effector, as shown in320

Figure 4(b). The recorded demonstrations with different durations due to the

uncertainty of end-user and object’s picking pose, we first pre-treated all the

demonstrations using DTW 7 for time alignment within 10 seconds, and then a

GMM/GMR model is first trained.

4.3.2. Implement Processes and Results325

To effectively evaluate the trajectory adaptation, we first train a GMM/GMR

for each dimension based on those five time-driven trajectories according to

Equations 1 and 5, with the same parameters settings in Section 4.1, respec-

tively. The resulting means and variances of x, y, z are shown in Figure 5,

where a probabilistic prior trajectory {Ŷi}Ni=1 in red can be retrieved via GMR330

and each point ŷi is associated with ti is described by a conditional probabil-

ity distribution with mean µ̂i and covariance Σ̂n, i.e. ŷi|ti ∼ N (µ̂i, Σ̂n). As

formulated in Equation 5, the prior trajectory encapsulates the variability in

the time-driven demonstrations. Subsequently, we take advantage of the mean

(prior trajectory) of GMR to consider the uncertainty (via-points) during repro-335

duction using GPR. This permits to ignore the training data in the generation

of new trajectories and to consider only via-points constraints as observed data.

The MP-GPR prior (without new observations) is trained based on Matern

kernel defined in Equation 7 with smoothness parameter ν = 2. As shown in340

Figure 5, MP-GPR is that the variability of demonstrations is included in the

prior mean derived by GMR and the covariance after determining the hyper-

parameters, therefore the variability obtained by MP-GPR is similar to GMR

but not equal and the training demonstrations can be ignored during trajectory

reproduction. Additionally, although the GMM/GMR computes full covariance345

matrices encoding the correlation between output variables, it does not mea-

7https://github.com/DynamicTimeWarping/dtw-python
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Figure 5: Illustration of the trained MP-GPR through GMM/GMR prior model based on

those five demonstrated time-driven trajectories without additional via-points. where, 1) the

gray lines denote the human demonstrations; 2) the blue solid curve is the mean that exactly

equal to the prior trajectory derived by GMR; 3) the shaded area display the uncertainty of

the GMR and MP-GPR distribution with ±1 standard deviation of the mean trajectory; 4)

the light yellow blocks depict the estimated GMMs with the ellipses representing Gaussian

components. Note that the variability obtained by MP-GPR is similar to GMR, but not equal

and we can generate new trajectories from MP-GP through sampling.

sure the uncertainty in reproduction, and the covariance of the closest Gaussian

component is selected by default when a query point is far from the model such

that the generated trajectory with new observations is discontinuous. Thus, the

GMM/GMR can’t be modulated to the new observations.350

And then, an obstacle with length (0.35m), width (0.17m), and height

(0.27m), added in between the picking position and the container, as shown

in Figure 6. Currently, to avoid the obstacle, we need to program the robot

transporting trajectories by adding via-points manually and debugging repeat-

edly, but the robot is hard to maintain the general trajectory shape (mean355

and variability) and lack of the exploration capability for rapidly adapting to

experimental changes. With the proposed MP-GPR, we only need to ask an

end-user to kinesthetically guiding the robot to grasp an object and then place

it into the container while avoiding the obstacle in an intentional manner, as

shown in 6. This demonstration was also recorded and the safe via-points are360

straightforwardly determined by the end-user.

Due to the theoretical formulations of ProMP and KMP are designed with
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Figure 6: Top: unexpected obstacle and (Bottom) human demonstration: The experiment

is initially configured for robot bin-picking using 3D vision, in which human kinesthetically

demonstrated the robot how to pick and place. There would have been a collision if an unex-

pected obstacle was placed in the middle of picking and placing because lots of perturbations

were introduced without human intentions. Hence, an end-user should be asked for providing

a corrective demonstration above the obstacle, where all the observations are safe and can be

added to the prior movement models for trajectory modulation.

the capability for passing through via-points. For a fair comparison, the training

data also consist of 5 demonstrations that have been used for MP-GPR evalua-

tion. Based on the aforementioned parameters setting, Figure 7 illustrates the365

different trajectory modulation using MP-GPR, ProMP, and KMP under the

same via-points configuration, and the corresponding snapshots of real-robot

applications are shown in Figure 8.

Results indicate that both the MP-GPR and KMP can be effectively mod-

ulated to the safe via-points, but the ProMP doesn’t, therefore we only further370

compared the computational efficiency between our method and KMP. KMP

modulates the whole trajectory distribution according to the via-points’ covari-

ance because it uses the covariance matrix of the observation noise to represent

the variability and needs to find the nearest datapoint by a manually predefined

threshold. Whereas, MP-GPR can turn the hyper-parameters of the specific375

kernel at robot different phase for precisely avoiding the anomalies and keep

the normal execution for those normal phases according to the Equation 8.
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Figure 7: Illustrates the comparison between MP-GPR model with ProMP, KMP with via-

points, where the number of GMM components for training the prior mean of MP-GPR and

the reference trajectory of KMP are 4. Specifically, 1) the demonstrated trajectories without

obstacle are shown in gray, in which the time t as input and the Cartesian position x, y, z

of robot end-effector as outputs; 2) The mean or reference trajectory generated by adding

the constraint of safe via-points (in black) by MP-GPR, ProMP and KMP are represented in

blue, gold and magenta, respectively. As shown, the proposed MP-GPR can effectively learn

the variability of the demonstrations and the uncertainty of reproductions simultaneously,

which the modulated trajectory can avoid obstacles while maintaining the underlying shape

of demonstrations. However, the modulated trajectory of ProMP can’t encode the variability

and uncertainty simultaneously and KMP strictly considers the via-points such that ignore

the variability of demonstrations.
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Figure 8: Illustrates the effective performance of MP-GPR (top) and KMP (bottom) for learn-

ing robot anomaly recovery skills based on five time-driven trajectories, but the modulated

trajectory of ProMP (middle) can’t avoid the obstacle as shown in Figure 7. Results indicate

that the proposed MP-GPR method allows the robot to avoid the obstacle by modulating

trajectory to the safe via-points and easily adapt to environmental changes, e.g. different

target position and the shape of obstacles.
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This characteristic is different from the KMP implementation for strictly pass

through all the given via-points and ignore the variability of demonstrations. As

a consequence, the computational efficiency of KMP is lower than our method380

given the same via-points. In our case, assuming the derived trajectory of 100

datapoints and 42 via-points, the average time cost of adding a via-point of

KMP is 0.373s, but MP-GPR only takes 0.097s. The relative ratio is 73.99%.

This property specifically important in robot anomaly recovery skills learning.

5. Conclusion and Future work385

To allow robots rapidly adapt to environmental changes, we present a frame-

work for learning robot recovery skills from human demonstrations by passing

through given safe via-points. The proposed MP-GPR method takes advan-

tage both of GMM/GMR and GPR, which results in effectively learning the

variability from human demonstrations and the uncertainty in reproduction si-390

multaneously. It adapts the prior trajectory generated from demonstrations to

avoid obstacles in the desired manner while maintaining the underlying shape

and variability. An open-source benchmarking dataset and a robot bin-picking

experiment are presented to evaluate the performances and compare with com-

monly used probabilistic methods. Results indicate that MP-GPR can be con-395

ditioned uniquely on via-points by ignoring the variability derived in demon-

strations by defining a prior mean as GMM/GMR. Besides the applications of

learning recovery skills, the MP-GPR would be widely used in other applica-

tions such as imitation learning and human-robot collaboration scenarios. The

online implementation of robot learning recovery skills using MP-GPR based400

on visual perception will be further investigated in the future.
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[21] Y. Huang, L. Rozo, J. Silvério, D. G. Caldwell, Kernelized movement prim-

itives, International Journal of Robotics Research 38 (7) (2019) 833–852.

[22] M. Schneider, W. Ertel, Robot learning by demonstration with local gaus-

sian process regression, in: IEEE/RSJ International Conference on Intelli-475

gent Robots Systems, 2010.

[23] N. Jaquier, D. Ginsbourger, S. Calinon, Learning from demonstration with

model-based gaussian process, in: Conference on Robot Learning, PMLR,

2020, pp. 247–257.

[24] S. M. Khansari-Zadeh, A. Billard, Learning stable nonlinear dynamical480

systems with gaussian mixture models, IEEE Transactions on Robotics

27 (5) (2011) 943–957.

[25] J. S. Laursen, U. P. Schultz, L. P. Ellekilde, Automatic error recovery in

robot assembly operations using reverse execution, in: IEEE/RSJ Interna-

tional Conference on Intelligent Robots Systems, 2015.485

25



[26] M. Karlsson, A. Robertsson, R. Johansson, Autonomous interpretation

of demonstrations for modification of dynamical movement primitives, in:

2017 IEEE International Conference on Robotics and Automation (ICRA),

2017.

[27] A. Muxfeldt, J. Steil, Fusion of human demonstrations for automatic re-490

covery during industrial assembly, in: IEEE CASE, 2018.

[28] A. Rodriguez, M. T. Mason, S. S. Srinivasa, M. Bernstein, A. Zirbel,

Abort and retry in grasping, in: 2011 IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems, IROS 2011, San Francisco, CA,

USA, September 25-30, 2011, 2011.495

[29] M. Ren, J. S. Baras, Y. Yang, C. Fermuller, Co-active learning to adapt

humanoid movement for manipulation, in: IEEE-RAS International Con-

ference on Humanoid Robots, 2017.

[30] K. Chatzilygeroudis, V. Vassiliades, J. B. Mouret, Reset-free trial-and-error

learning for robot damage recovery, Robotics Autonomous Systems (2017)500

S0921889017302440.

[31] C. Yang, K. Yuan, Q. Zhu, W. Yu, Z. Li, Multi-expert learning of adaptive

legged locomotion.

[32] C. Yang, G. Peng, Y. Li, R. Cui, L. Cheng, Z. Li, Neural networks enhanced

adaptive admittance control of optimized robot–environment interaction,505

IEEE transactions on cybernetics 49 (7) (2018) 2568–2579.

[33] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, S. Schaal, Dynam-

ical movement primitives: learning attractor models for motor behaviors,

Neural computation 25 (2) (2013) 328–373.

[34] I. Iturrate, C. Sloth, A. Kramberger, H. G. Petersen, T. R. Savarimuthu,510

Towards reversible dynamic movement primitives, in: 2019 IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems (IROS), 2019.

26



[35] C. Yang, C. Chen, W. He, R. Cui, Z. Li, Robot learning system based on

adaptive neural control and dynamic movement primitives, IEEE transac-

tions on neural networks and learning systems 30 (3) (2018) 777–787.515

[36] C. Yang, C. Zeng, C. Fang, W. He, Z. Li, A dmps-based framework for

robot learning and generalization of humanlike variable impedance skills,

IEEE/ASME Transactions on Mechatronics 23 (3) (2018) 1193–1203.

[37] S. Choi, K. Lee, S. Lim, S. Oh, Uncertainty-aware learning from demonstra-

tion using mixture density networks with sampling-free variance modeling.520

[38] K. Kersting, C. Plagemann, P. Pfaff, W. Burgard, Most likely heteroscedas-

tic gaussian process regression, in: Machine Learning, Proceedings of the

Twenty-Fourth International Conference (ICML 2007), Corvallis, Oregon,

USA, June 20-24, 2007, 2007.

[39] J. Silve´rio, Y. Huang, L. Rozo, S. Calinon, D. G. Caldwell, Probabilis-525

tic learning of torque controllers from kinematic and force constraints, in:

2018 IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems (IROS), 2017.
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