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Abstract 
Existing studies mainly focused on the mass enhancement effect of the inerter system within a 

seismically isolated structure. In this study, a new analytical perspective is introduced based on another 
attractive feature of the inerter system, namely, the damping enhancement effect. Accordingly, a ready-
to-use optimal design method for isolated structure with the inerter system is proposed. First, the 
damping enhancement equation of the inerter system is reformulated in the form of equivalent damping 
ratio. Then, the closed-form design formulae of the inerter system is derived based on damping 
enhancement maximization and seismic demand. By taking the performance of both the primary 
structure and the isolation layer into consideration, the dual-target-oriented design strategy of the 
isolated structure is subsequently developed. And the closed-form design formulae of the inerter 
system is then integrated into the strategy to produce a practical design method for isolated structure 
with the inerter system. A seven-story isolated benchmark model is finally employed as the design case 
to exemplify the effectiveness of the proposed design method. Compared to the directly installed 
viscous damper case, structural base shear force, inter-story drift angle and the deformation of the 
isolation layer are more effectively reduced with the addition of the inerter system, and the energy 
dissipation capacity of the damper within the inerter system is improved substantially. Furthermore, 
the derived closed-form design formulae reduce the iterative calculation and bring high-efficient 
design for isolated structure with the inerter system.  
Keywords: inerter system, base isolation, damping enhancement effect, closed-form design formulae, 
dual-target-oriented design strategy 

1. Introduction  

Base isolation technology has been extensively used in earthquake-prone regions to protect the 
structures from earthquake-induced damage [1, 2]. The principle of this technology is to transfer most 
of the seismic energy to the isolation system, such that the primary structure is almost decoupled from 
the ground motion and behaves similar to a rigid body. However, in doing this, a relative large 
displacement concentrates at the isolation layer, which may occupy a huge space for installation and 
cause inconvenience to the connection of utilities (gas and water supply system) [3]. As a consequence, 
a series of hybrid isolation systems are proposed by combining the traditional isolation system with 
passive vibration control devices [4-6]. Previous studies have investigated the effect of tuned mass 
dampers on base-isolated structures [7, 8]. Based on a similar principle as a tuned mass damper, some 
studies have also considered the use of a tuned liquid damper [9, 10] and a tuned liquid column damper 
[11, 12]. However, the effectiveness and application of these devices may be limited by the physical 



 

 

mass that can be added to the primary structure [13]. 
As a more effective alternative, the idea of employing the inerter to base isolation system has 

attracted extensive attention recent years. Different from the traditional one-terminal mass element, 
the inerter is a two-terminal inertia mass element in which the inertial force is proportional to the 

relative acceleration between its two terminals [14-16]; i.e., ( )2 1in inF m u u= −  , where inF  is the inertial 

force of the inerter; inm  is the inertance with the dimension of mass, and 2 1u u−   represents the relative 

acceleration across the two terminals. The two-terminal characteristic allows the apparent mass 
(inertance) to be far greater than the gravitational mass of the inerter without adding extra inertia force 
to the primary structure, which is the mass enhancement effect of the inerter system [16]. The specific 
realization of the two-terminal behavior can be achieved using the ball screw [16-18], hydraulic 
mechanism [19-21] and so forth [22-24], among which the ball-screw inerter has been applied in 
practical engineering structures [18, 25]. The ball screw inerter transfers the relative linear motion 
between the two terminals into the high-speed rotational motion of the flywheel, yielding large inertial 
force and viscous damping force [16]. In 1973, Kawamata [14] proposed a liquid mass pump, which 
was the early implementation of the two-terminal inertial element in civil engineering. Toward the end 
of the last century and the beginning of this century, Saito et al [26] and Ikago et al [16, 27] developed 
the tuned viscous mass damper, which explicitly used the mass enhancement effect and damping 
enhancement effect for the first time. However, the in-depth mechanism of the damping enhancement 
effect remained undiscovered at that time. Subsequently, Zhang et al [28] discovered the damping 
enhancement equation, which explains the theoretical essence of the damping enhancement effect in 
the perspective of the stochastic mean-square responses. Mass enhancement effect [16] and damping 
enhancement effect [16, 28] are the main advantages of the inerter system. In this regard, various 
inerter-based isolation systems have been proposed in the literature and have been termed as a gyro-
mass damper [22, 29], a parallel inerter system [30-32], a serial inerter system [33] and a tuned inerter 
damper [34]. 

In addition to the development of inerter-based isolation devices, various optimization methods 

for the inerter-based isolated structure have also been investigated. Based on the 2H  design criteria, 

Qian et al [35] optimized the design parameters of the serial and parallel tuned inerter damper system 
by minimizing the root-mean-square responses. Li et al [36] obtained the parameters of the proposed 

clutching inerter damper system through 2H  -based optimization, and found that clutching inerter 

damper system could realize less seismic energy input to the primary structure compared to the 
traditional base isolation system, but the optimal method based on this phenomenon remained 
undiscovered. De Domenico et al [37] conducted a systematic study of inerter-based isolation systems, 
in which the parameters were both obtained numerically by minimizing the displacement, acceleration 
or energy-based variances. Di Matteo et al [38] derived a simplified analytical solution to obtain the 
parameters of the tuned mass damper inerter to maximally reduce the displacement of the isolation 
layer and its control effectiveness was further assessed in [39]. De Angelis et al [40] determined the 
optimal parameters of the tuned mass damper inerter numerically through the energy-based 
optimization, but the primary concern was about the displacement and acceleration reductions. Zhao 
et al [41] developed a displacement-demand equation and on this basis proposed the isolation layer’s 



 

 

displacement-oriented optimal design method. As summarized above, the analytical solutions and 
numerical optimizations for isolated structures equipped with the inerter systems have been 
investigated. However, these studies have mainly focused on the mass enhancement effect or the 
vibration mitigation effect of the inerter system and on this basis propose a series of design method to 
optimize the performance of the primary structure or the isolation layer. Although the energy 
dissipation characteristic (less seismic energy input and more energy dissipation) of the inerter-based 
isolation system was mentioned in [36]. But an optimal design method explicitly using the damping 
enhancement effect of the inerter system in the isolated structures remains unexplored. Furthermore, 
the developed numerical design method is usually computationally expensive and not easy to 
implement in practical applications.  

Therefore, in this study, a direct and ready-to-use optimal design method for isolated structure 
with the inerter system is proposed. First, stochastic responses of a single-degree-of-freedom (SDOF) 
structure with an inerter system is derived through random vibration analysis, and the damping 
enhancement equation of the inerter system is reformulated in the form of equivalent damping ratio. 
Then, the closed-form design formulae of the inerter system is derived based on the damping 
enhancement maximization and seismic demand. Based on the defined equivalent damping ratio, the 
relationship between the closed-form design formulae and the design spectrum is established. The 
dual-target-oriented design strategy of the isolated structure with the inerter system is subsequently 
developed, in which the seismic action mitigation ratio and deformation threshold of the isolation layer 
are adopted as the corresponding performance indicators. Finally, a seven-story isolated benchmark 
model is adopted as the design case, and time history analyses are carried out to exemplify the 
feasibility and effectiveness of the closed-form design formulae and the dual-target-oriented design 
strategy.  

2. Theoretical basis 

2.1 Mechanical model 

 



 

 

FIGURE 1 Diagram of the structure with inerter system and the corresponding force-
deformation relationships 

 
As shown in FIGURE 1 (a), the inerter system considered in this study comprises three 

mechanical elements: an inerter and a damper are mounted in parallel and then in series with the spring 
[16, 42], which has been adopted for analysis by many researchers in many independent studies [16, 
41] and has been applied in practical engineering structures [25, 43]. The resisting force of the inerter 
system can be expressed by 

 IS d k in d d dF k u m u c u= = +   (1) 

where du   and du   are the relative acceleration and relative velocity of the inerter or the damper, 

respectively; ku   is the relative displacement of the serial spring; inm  , dc  , and dk   represent the 

inertance of the inerter, damping coefficient of the damper, and the stiffness of the spring, respectively. 

Considering that the essential concernmain forcus of this study is the derivation of the closed 

form design formulae of the inerter system based on damping enhancement maximization and seismic 
demand, the mechanical behavior of the primary structure is assumed to be within the linear state. And 
the damper is simulated by the linear viscous damping element. The force-displacement relationships 
of each mechanical element are along shown in FIGURE 1. From the perspective of the force-
displacement relationship, the inerter is characterized by negative stiffness [44-46], while the serial 
spring exhibits positive stiffness. Owing to the asynchronous vibration between the serial inerter and 
spring, the damping enhancement effect of the inerter system can be generated [16, 28]. That is to 
sayIn other words, the deformation of the damper in the inerter system can be amplified by the inner 
actions between the inerter with negative stiffness and the serial spring with positive stiffness. 
Therefore, the energy dissipation efficiency of the damper in the inerter system can be immensely 
improved compared with the pure damper within the traditional isolation system under the same 
structural displacement. In other words, under the same input of seismic energy, the additional damping 
required within the inerter system can be smaller than the damping required in the device which relies 
on the pure damper to dissipate energy. The damping enhancement effect of the inerter system sets up 
the foundation of the closed-form design formulae of the inerter system being discussed in a later 
section.  

2.2 Stochastic response solutions 

 



 

 

FIGURE 2 Analytical model of a SDOF structure with an inerter system 
 
FIGURE 2 is the schematic diagram of the SDOF structure with an inerter system. According to 

the dynamic equilibrium conditions, the governing equations of motion can be established as follows 

 ( )
( ) 0

d g

d d

d

in d d d

mu cu ku k u u ma
m u c u k u u

 + + + − −
 + − −

=

 =

 

 
 (2) 

where u  and du  being the displacement of the primary structure and the two-terminal deformation of 

the inerter, respectively; m  , c  , k   are the mass, damping coefficient and stiffness of the primary 

structure, respectively; and ga  is the acceleration of the input ground motion.  

The following dimensionless parameters are introduced 

 0
0 02 2

in d dm k ck c
m m m k m

ω ζ µ κ ξ
ω ω

= = == =  (3) 

where 0ω   and ζ   are the circular frequency and inherent damping ratio of the primary structure, 

respectively; µ , κ , and ξ  are the inertance-mass ratio, stiffness ratio and nominal damping ratio of 

the inerter system with respect to the primary structure, respectively. 
Then, Equation (2) can be rewritten as 

 ( )
( )

2 2
0 0 0

2
0 0

2
2 0d d

gd

d

u u u u u a
u u u u
ζω ω κω

µ ξω κω
 + + + − −
 + − −

=

 =

 

 
 (4) 

Assuming the input excitation is harmonic with a circular frequency of ω , Equation (4) can be 
transformed into the Laplace domain as follows 

 ( )
( )

2 2 2
0 0 0

2 2
0 0

2
2 0

g

d

d

d d

s U sU U U U A
s U sU U U
ζω ω κω

µ ξω κω
 + + + − = −
 + − − =

 (5) 

where s iω=  with i  represents the imaginary unit; U , dU  and gA  are the Laplace transformations 

of u , du  and ga , respectively. 

By solving Equation (5), the transfer functions of u  and du  with respect to ga  can be given as 

follows 

( )
( )

( ) ( ) ( ) ( )

2 2
0 0

4 3 2 2 3 4
0 0 0 0

2

2 4 2 1U
g

UH
s s

A s s
s

s s

µ ξω κω

µ ζµ ξ ω κ µ κµ ζξ ω ζκ ξ κξ ω κ µ ω

− + +

+ + + + + + + + + + +
= =  (6) 

( ) ( ) ( ) ( ) ( )
2
0

4 3 2 2 3 4
0 0 0 02 4 2 1d

g

d
U

U
H

s
s

A s s s
κω

µ ζµ ξ ω κ µ κµ ζξ ω ζκ ξ κξ ω κ µ ω
−

+ + + + + + + + + + +
= =  (7) 

Based on the theory of random vibration [47], the mean-square response of the controlled system 



 

 

under the input power spectrum XS  can be calculated as 

 ( ) 22 i dXH Sσ ω ω
∞

−∞
= ∫  (8) 

From Equation (8) it can be found that the exponent of the transfer function ( )iH ω   is two 

whereas the exponent of the input power spectrum XS  is one, which indicates that the mean-square 

response 2σ   is more sensitive to the variation of ( )iH ω  . Meanwhile, to deduce the closed-form 

design formulae of the inerter system in the following section and considering the types of input power 

spectrum XS  is not the essential concern of this study, XS  is assumed as a white noise excitation with 

amplitude of 0S . 

By substituting Equation (6) and Equation (7) into Equation (8), the integral in Equation (8) can 
be derived into the closed-form rational functions as follows [48]  

( ) ( )
( ) ( ) ( )

2 2 2 2 2 2 2 2

3 2 2 2 2 2 2 2 2 2 2 2 2 2
2 0

3
0

4 2 4 4 4

4 4 4 1 1 4 2 22u
S ζ κµ

σ
ξ ξ κ κµ µ µ ξ ζ κ µ κξ µξ

ζ κµξ κ ξ ζ κ µ µξ κ µ ξ ζξ µ κ µ ξ κ

π
ω µ µ ξ

 + + − + + + + + 
 + 

= ⋅
+ + + + + + + + + + −  +

 (9) 

( ) ( ) ( )
2 2 2

3 2 2 2 2 2 2 2 2 2 2 2 2
2 0

3
0

2

4 ((1 ) 4 )

4 4 4 1 12 4 2 2du
Sπ

σ
κ κξ ζ µξ ζ κ µ ξ

ζω κµξ κ ξ ζ κ µ µξ κ µ ξ ζξ µ κ µ ξ κ µ µ ξ

 + + + + 
 + + + + + + + + + + − + + 

= ⋅
  

 (10) 

For the isolated structure, the stiffness of the isolation layer is far less than the stiffness of the 
primary structure, such that a relatively large displacement concentrates at the isolation layer and the 
primary structure behaves similar to a rigid body. That is to say, which means the relative displacement 
of the primary structure is much smaller compared to the displacement of the isolation layer. On this 
basis, the energy dissipated by the inherent damping of the primary structure is relative limited (which 
can be further shown byfurther explanation can be found in the energy response curves depicted in 
Section 5.2), accordingly, and the inherent damping of the primary structure can be ignored and the 
damping of the isolated structure can be considered to be provided by the additional energy dissipation 
device. Therefore, the inherent damping of the primary structure can be ignored. Equation (9) and 
Equation (10) can therefore be simplified as 

 ( )
0

2 2 2

2
2 0

3

2 4
2u

S κ κµ µ µ ξ
κ ξ

π
σ

ω
+

= ⋅
− + +  (11) 

 2 0
3
02du
Sπ

σ
ω ξ

=  (12) 

2.3 Damping enhancement equation formulated with the equivalent damping ratio 

From Section 2.1, it can be known that the damping enhancement effect is one of the potential 
features of the inerter system. And the damping enhancement equation proposed in [28] was expressed 
in the form of the stochastic mean-square responses. In this subsection, the damping enhancement 
equation of the inerter system is formulated in another perspective, that is, derived from the equivalent 



 

 

damping ratio. The damping enhancement equation of the inerter system can be expressed as [28] 

 2
2

1

u

ζ λ ξ
σ

+ =


 (13) 

where 2
uσ  is the dimensionless form of 2

uσ  in Equation (11) by multiplying 
3
0

0

2
S
ω
π

; λ  is the damping 

deformation enhancement ratio, which can be defined as follows 

 = du

u

σ
λ

σ




 (14) 

where 
duσ  is the dimensionless form of 

duσ  in Equation (12) by multiplying 
3
0

0

2
S
ω
π

. 

Based on Equation (11) and Equation (12), λ  can be further expressed as 

 
( )

2

2 2 2
2

2 4
κ

κ κµ µ
λ

µ ξ− ++ +
=  (15) 

For a SDOF structure with an equivalent damping ratio eqζ  , the mean-square displacement 

response can be obtained [47] 

 2 0
3
02u

eq

Sπ
σ

ω ζ
=  (16) 

Then eqζ  can be expressed as 

 0
3 2 2
0

1 1
2eq

u u

Sπ
ζ

ω σ σ
= ⋅ =


 (17) 

Substituting Equation (17) into Equation (13) follows that 

 2
eqζ ζ λ ξ= +  (18) 

Therefore, Equation (18) is another formulation of the damping enhancement equation of the 

inerter system, that is, expressed with the equivalent damping ratio eqζ , which can be used to establish 

the relationship between the closed-form design formulae of the inerter system and the design spectrum 
(the relevant detail will be illustrated in the subsequent section). Assuming that the inherent damping 
of the primary structure is ignored, Equation (18) can be simplified as 

 2
eqζ λ ξ=  (19) 

3. Closed-form design formulae of the inerter system 

The appropriate selection of the parameters of the inerter system is an essential step during the 
optimal design process of isolated structure with the inerter system. Therefore, this section aims to 
derive closed-form design formulae of the inerter system based on the damping enhancement effect of 
the inerter system and seismic demand of the primary structure. Form Equation (18) it can be seen 
that the damping deformation enhancement ratio λ  is inversely proportional to the nominal damping 



 

 

ratio ξ  with a pre-specified eqζ  which correlates to the performance of the primary structure (will be 

illustrated in Section 4). In other words, in the condition that the target performance of the primary 
structure is satisfied, the damping enhancement effect of the inerter system can be maximized by 

minimizing the nominal damping ratio ξ  of the inerter system. Therefore, the goal is to find the best 

set of the parameters that minimize ξ   when the desired structural performance is pre-specified. 

Consequently, ξ  is the objective function to be minimized. And the target equivalent damping ratio 

,eq tζ   is selected as the constraint condition. Then, the design strategy can be transformed into an 

optimization problem as follows 

 
( )

, ,

,

minimize

subject to , ,eq eq t

µ ξ κ
ξ

ζ µ ξ κ ζ=
 (20) 

where ,eq tζ  is the target equivalent damping ratio determined via performance demand of the primary 

structure.  
The above optimization process can be solved using the Lagrange multiplier method [49] to find 

the minimum value of ξ  under the constraint condition ( ) ,, ,eq eq tζ µ ξ κ ζ= . The Lagrange function can 

be established as follows 

 ( ) ,( , , ) , ,eq eq tL µ κ λ ξ λ ζ µ ξ κ ζ = + −   (21) 

where λ  is the Lagrangian multiplier. The minimum of Lagrange function. ( , , )L µ κ λ . can be found by 

setting the partial derivatives of ( , , )L µ κ λ  with respect to the relevant variables to zeros, i.e., 

 0eqL ζξ λ
µ µ µ

∂∂ ∂
= + =

∂ ∂ ∂
 (22) 

 0eqL ζξ λ
κ κ κ

∂∂ ∂
= + =

∂ ∂ ∂
 (23) 

 ( ) ,, , 0eq eq t
L ζ µ ξ κ ζ
λ
∂

= − =
∂

 (24) 

The following subsections are dedicated to illustrating the detailed derivations for determining 
the parameters of the inerter system based on the above optimization strategy.  

3.1 Optimal stiffness ratio 

Substituting Equation (19) into Equation (22) follows that 

 2

1 0eqL ζ
λ

µ µα
∂∂  = + = ∂ ∂ 

 (25) 

If Equation (25) has a definite solution, the former part 2

1λ
α

 + 
 

 cannot be zero. Therefore, the 



 

 

above equation is satisfied when the eqζ
µ

∂

∂
 equals zero.  

According to the differentiation of implicit function, substituting Equation (11) and Equation (17) 
into Equation (25) yields that 

 ( )
( )

2

22 2 2

2 1
0

2 4

κ µ µ κ ξ

κ κ µ µ µ ξ

− + 

− ++ + + 

 =


 (26) 

Note that the nominal damping ratio ξ , the stiffness ratio κ  and the denominator cannot be zero, 

therefore 

 ( )1 0κ µ µ− + =  (27) 

Then, the optimal stiffness ratio optκ  is obtained 

 
1opt
µκ
µ

=
−

 (28) 

3.2 Optimal nominal damping ratio 

Similarly, substituting Equation (19) into Equation (23) yields that 

 2

1 0eqL ζ
λ

κ κα
∂∂  = + = ∂ ∂ 

 (29) 

Likewise, the former part 2

1λ
α

 + 
 

 cannot be zero. Therefore, the above equation is satisfied 

when the eqζ
κ

∂

∂
 equals zero.  

Similar in the above subsection, substituting Equation (11) and Equation (17) into Equation (29) 
takes the following form 

 
( ) ( )
( )2 2

2 2

2 2

2 2 4
0

2 4

κξ κ µ µ µ ξ

κ κ µ µ µ ξ

 − + +  =
+ + − + +

 (30) 

Note that ξ , κ  and the denominator cannot be zero, therefore 

 ( ) ( )2 22 2 4 0κ µ µ µ ξ− + + =  (31) 

Substitute Equation (28) into Equation (31), and the optimal nominal damping ratio optξ  can be 

obtained 

 
( )2 2 1opt

µ µξ
µ

=
−

 (32) 

Therefore, substituting Equation (28) and Equation (32) into Equation (15) leads to  

 2 2
(3 )

α
µ µ

=
−

 (33) 



 

 

4. Dual-target-oriented design strategy of isolated structure with the inerter system  

4.1 Definition of the dual target 

To achieve a highly efficient design, a dual-target-oriented design strategy is proposed in this 
section in which the performance of both the primary structure and the isolation layer are taken into 

consideration. The seismic action mitigation ratio hβ   is defined to reflect the performance of the 

primary structure, and the deformation threshold of the isolation layer [ ]isou   is adopted as the 

performance indicator of the isolation layer. On the basis of the assumptions made in Section 2.1, the 
mechanical behavior of the isolation system is also assumed to be within the linear state to derive the 
practical design formulae of the isolated structure with inerter system in the subsequent section. 

 

 
(a) MDOF model                          (b) SDOF model 

FIGURE 3 Equalization of analysis model for isolated structure with the inerter system 
 
For the isolated structure with the inerter system, the stiffness of the isolation layer is far less than 



 

 

the stiffness of the primary structure, therefore the acceleration of the primary structure can be viewed 
as identical to those of the isolation layer. Consequently, as shown in FIGURE 3, the isolated structure 

with the inerter system is equivalent to a SDOF system with an equivalent damping coefficient eqc  

(the reasonability of this equivalence will be further verified in Section 5). Then the seismic action can 
be expressed as [50] 

 ( )0 ,,a b eq tF M S T ζ=  (34) 

where 0M , ( ),,a b eq tS T ζ , bT , respectively, being the total mass, the acceleration spectrum, the isolation 

period of the isolated structure, respectively. 
Assuming the original structure is within linear elastic state, the seismic action of the original 

structure (without additional isolation system) can be obtained [50] 

 ( )0 0 0 ,aF M S Tχ ζ=  (35) 

where 0T  is the natural period of the original structure, and χ  is the seismic action ratio of the original 

multi-story structure to the equivalent SDOF structure, which can be expressed as follows [51] 

 ( )
( )

3 1
2 2 1

N
N

χ
+

≈
+

 (36) 

where N  is the story of the original structure. The detailed derivation process of Equation (36) is 
described in Appendix. 

Based on Equation (34) and Equation (35), the seismic action mitigation ratio hβ  can be defined 

 ( )
( )

,

0 0

,
,

a b eq t
h

a

S TF
F S T

ζ
β

χ ζ
= =  (37) 

For the isolated structure, the deformation of the primary structure is mainly contributed by the 

isolation layer. Therefore, the deformation threshold of the isolation layer [ ]isou  can be expressed as 

follow 

 [ ] ( ) ( )
2

, ,2, ,
4

b
iso d b eq t a b eq t

T
u S T S Tζ ζ

π
= ≈  (38) 

in which aS  and dS  being the acceleration spectrum and displacement spectrum, respectively.  

4.2 Practical design formulae 

Based on Equation (37) and Equation (38), the isolation period bT  can be expressed by 

 [ ]
( )0

2
,

iso
b

h a

u
T

S T
π

χβ ζ
=  (39) 



 

 

The stiffness of the isolation layer hK  can be then determined by 

 
2

0
2

h
b

K M
T
π 

=  
 

 (40) 

By substituting Equation (39) into Equation (37), ,eq tζ  can be obtained by solving the nonlinear 

equation using easy numerical methods. The details of this process are presented in Appendix. In this 
way, the closed-form design formulae obtained in Section 3 and the design spectrum shown in this 

section can be integrated together through ,eq tζ , thereby can produce a practical and highly efficient 

design method for the isolated structure with the inerter system. 

Based on Equation (19), Equation (33) and Equation (32), ,eq tζ  can be further expressed as 

 
( )

2
,

1
3 2 1eq t opt

µζ α ξ
µ µ

= =
− −

 (41) 

Therefore, based on Equation (41), µ  can be obtained through the calculation process described 

in Appendix. The corresponding optimal optκ  and optξ  can then be calculated based on Equation (28) 

and Equation (32). 
Eventually, the parameters of the inerter system can be determined by 

 0 02in d opt h d opt hm M k K c M Kµ κ ξ= ⋅ = ⋅ = ⋅  (42) 

From the above procedure, parameters of the inerter system and the isolation layer can be both 
obtained. To verify the effectiveness of the proposed design method, time history analyses based on a 
benchmark model will be conducted in the next section (the seismic design code [52] requires that the 
performance of the isolated structures must be checked through time history analysis). Considering the 
assumptions made above (the isolated structure is equivalent to a SDOF system) and the numerical 
error between the spectrum analysis and time history analysis, the calculated indicators may not satisfy 
the target value well at the first calculation. Therefore, some adjustments need to be made accordingly 

based on the following principle: when hβ  is not satisfied, we decrease the stiffness of the isolation 

layer hK  will be decreased to enhance the isolation effect so that the seismic action of the primary 

structure can be more effectively reduced. However, wWhen isou  exceeds the target value [ ]isou , we 

mainly increase the inertance-mass ratio µ  will be increased accordingly to further enhance the role 

of the inerter system in controlling the excessive displacement concentrated in the isolation layer. The 
details of the whole design process are shown in the following flowchart. 



 

 

 
FIGURE 4 Flowchart of the dual-target-oriented design strategy of isolated structure with the 

inerter system  
 

5. Case design 

5.1 Parameter design 

In this section, an isolated benchmark model [53] is adopted as the design case to verify the 
effectiveness of the proposed design method. TABLE 1 lists the details of the benchmark model. 
Additionally, the inherent damping ratio of the original structure is 2% and the mass of the isolation 
layer is 6115000 kg [53]. It is worth noting that the parameters of the equivalent SDOF model listed 
in Table 1 is based on the literature [53]. 

According to the initial analysis of the original structure, the dual target hβ  and [ ]isou  are set to 

0.4 and 360 mm, respectively. The acceleration spectrum value of the original structure ( )0 0,aS T ζ  can 

be calculated by the seismic design code [52]. Then bT  can be determined by Equation (39)  
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Then, the corresponding hK  can be calculated based on Equation (40) 
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Subsequently, ,eq tζ   is obtained as 0.085 and µ   is calculated as 0.108 through the practical 

iteration method illustrated in Appendix. The optκ  and the optξ  can then be calculated by Equation (28) 

and Equation (32) 

 ( ) ( )
0.108 0.1080.121 0.013

1 1 0.108 2 2
0

2 1 2 1 0.108
.108

opt opt
µ µ µκ ξ
µ µ

= = = = = × =
− − − × −  (45) 

The overall parameters of the inerter system and the isolation layer are summarized in TABLE 2. 
 

5.2 Performance verification 

Several time history analyses are carried out in this section based on the optimal parameters 
obtained in Section 5.1. It is worth noting that the original MDOF isolated model instead of the 
equivalent SDOF model is adopted in the time history analysis process to further verify the 
reasonability of the equivalence of the isolated structure with the inerter system illustrated in Section 
4. Two artificial seismic waves (denoted as AW1 and AW2 in FIGURE 5) and five natural seismic 
waves (denoted as NW1-5 in FIGURE 5) are involved [52]: the artificial seismic waves are generated 
by the earthquake signal-processing tool EQSignal [54-57], and the natural seismic waves are 
downloaded from the PEER database center [58]. Detailed information of the natural seismic wave is 
listed in TABLE 3, and the normalized acceleration spectrum (the amplitude of all waves are adjusted 
to 1m/s) is shown in FIGURE 5.  

 



 

 

 
FIGURE 5 Normalized acceleration spectrum 

 
To make the results comparable, the dynamic response of the isolated structure with the inerter 

system is compared with an isolated structure with viscous damper which the damping coefficient 

equals to dc , and the amplitude of all the input excitations are adjusted to 0.4g [52]. TABLE 4 lists the 

seismic action mitigation ratio hβ  and the deformation of the isolation layer isou  under different input 

excitations and the average values are also calculated. It is shown that both the performance of the 
primary structure and the isolation layer satisfy the pre-specified target value, thereby confirming the 
reliability of the equivalent SDOF model adopted in Section 4 and the effectiveness of the proposed 
design method. FIGURE 6 and FIGURE 7 show the base shear force and deformation of the isolation 
layer under the El Centro wave (NW1), respectively. It can be observed that the base shear force is 
both effectively mitigated with the isolated structure equipped with the inerter system performs better 
than the viscous damper controlled case. Inspection of FIGURE 7, it can be also observed that the 
isolated structure equipped with the inerter system more effectively controls the deformation of the 
isolation layer. Considering AW1, NW1 and NW2 as examples, FIGURE 8 shows the structural inter-
story drift angle of the original structure, the isolated structure equipped with viscous damper and 
equipped with the inerter system. The figures show that the inter-story drift angle is reduced with the 
addition of the inerter system, especially for the lower stories with larger story drift angles.  

 



 

 

 
FIGURE 6 Base shear force responses under El Centro wave (NW1) 

 

 
FIGURE 7 Deformation of the isolation layer in the isolated structure under El Centro wave (NW1) 

 

   
(a) AW1 (b) NW1 (c) NW2 

FIGURE 8 Inter-story drift angle responses under different excitations 
 
To present the damping enhancement effect of the inerter system, FIGURE 9 shows the hysteretic 



 

 

curves of the viscous damper within the inerter system and the pure viscous damper under three 
excitations (AW1, NW1 and NW2). It is worth noting that the deformation and velocity of the viscous 
damper adopted here are equal to those of the isolation layer in the isolated structure with the inerter 
system to demonstrate the pure damping enhancement effect of the inerter system. From FIGURE 9, 
it can be clearly seen that the deformation and damping force of the damper in the inerter system are 
amplified and the energy dissipation efficiency are greatly improved compared to the pure viscous 
damper with the same damping coefficient, on the other hand demonstrating the effect of the damping 
enhancement maximization-based design brings. Additionally, tThe normalized energy response 
curves under NW1 are also providedshown in FIGURE 10., which illustrates  Tthe energy dissipated 
by the inherent damping of the primary structure are much smaller than by the damping of the isolated 
structure. This approves the both small in FIGURE 10 (a) and (b), which further verify the reasonability 
of ignoring the inherent damping of the primary structure discussed in Section 2.2. From FIGURE 10 
(a) shows,  majority of the structural input energy is dissipated by the inerter system all the time, 
indicating a stable and efficient energy dissipation capacity of the inerter system. From FIGURE 10 
(b), tThe energy dissipation of the pure viscous damper behaves not as effective as the inerter system 
in the early stage of the excitation, shown in FIGURE 10 (b).  

 

   
(a) AW1 (b) NW1 (c) NW2 

FIGURE 9 Hysteretic curves of the damper under different excitations  
 

  
(a) Isolated structure with inerter system    (b) Isolated structure with viscous damper 

FIGURE 10 Normalized energy response curves of the isolated structure under NW1  
 



 

 

6. Conclusions 

A ready-to-use optimal design method for isolated structure with the inerter system is proposed 
in this study. The closform design formulae of the inerter system based on damping enhancement 
maximization and seismic demand is derived. The dual-target-oriented design strategy is then 
developed considering the performance of the primary structure and the isolation layer simultaneously. 
A seven-story isolated benchmark model with the inerter system is finally optimal designed and 
analyzed through time history analysis. The main conclusions are as follows: 

(1) The damping enhancement equation of the inerter system is reformulated in the form of 
equivalent damping ratio. In addition, the equivalent damping ratio establishes the relationship 
between the derived closed-form design formulae of the inerter system and the design spectrum, 
thereby producing a practical design method for the isolated structure with the inerter system. 

(2) The derived closed-form design formulae of the inerter system based on damping 
enhancement maximization and seismic demand yields a direct and simple way to design the 
parameters of the inerter system, which is beneficial for efficient design.  

(3) The proposed dual-target-oriented design strategy considers both the performance of the 
primary structure and the isolation layer. Using the proposed optimal design method, structural base 
shear force, inter-story drift angle as well as the deformation of the isolation layer are more effectively 
controlled compared to the isolated structure equipped with pure viscous damper. Meanwhile, the 
energy dissipation capacity of the damper within the inerter system is improved substantially. 

(4) The proposed optimal design method is straightforward and easy to implement and can reduce 
iterative calculation during the design process; thus, it is economically advantageous in terms of the 
computational cost. 

(5) This study analyzed merelyfocused on one type of inerter systems in the isolated structures. 
However, the principle of derivation of the closed-form design formulae and the dual-target-oriented 
design strategy is not confinedcan be used for the applications of other types of inerter system.  to the 
application of the inerter system considered in this study. Further investigations will aim to Other types 
of the inerter system with damping enhancement effect will be investigated in the future to generalize 
extended the applicability of the proposed method with other types of inerter systems with damping 
enhancement effect. Additionally, it is promising for future study to extend the current work to the 
primary structure and the isolation system with nonlinear behavior. 
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Tables 

TABLE 1 Benchmark model information [53] 

Story 
number 

Original structure Equivalent SDOF model 
Height 

(m) 
Mass 
(kg) 

Stiffness 
(kN/m) Height (m) Mass (kg) Stiffness 

(kN/m) 
7 4.70 1039000 1475900 

4.14 21015000 1195770 

6 3.80 3897000 3143400 
5 3.80 3477000 4581300 
4 3.80 3600000 4976600 
3 4.40 3615000 3877500 
2 4.40 3856000 4075700 
1 5.45 4671000 3519300 

 
TABLE 2 Optimum parameter results 

Control case Parameters value 

Isolated structure with the 
inerter system 

hK  (kN/m) 132237 

µ  0.108 

inm  (kg) 2930000 

ξ  0.013 

dc  (kN·s/m) 1591 

κ  0.121 

dk  (kN/m) 16010 

 
TABLE 3 Natural seismic waves for time history analysis 

Earthquake event Year Recording station Richter magnitude ID 
Imperial Valley 1940 El Centro Array 6.95 NW1 

Northern California 1941 Ferndale City Hall 6.4 NW2 
Parkfield 1966 Cholame Shandon Array 6.19 NW3 

Borrego Mtn 1968 El Centro Array 6.63 NW4 
San Fernando 1971 Palmdale Fire Station 6.61 NW5 

 
TABLE 4 Performance indicators of isolated structure with the inerter system 

Input excitations hβ  isou  (mm) 

AW1 0.344 365.9 
AW2 0.342 377.0 
NW1 0.367 353.9 
NW2 0.361 381.1 



 

 

NW3 0.344 302.8 
NW4 0.406 389.9 
NW5 0.363 320.5 

Average value 0.361<0.4 355.9<360 
 

Appendix  

Practical iteration method for solving monotone function  

Here, the detail iterative process of calculating the target equivalent damping ratio ,eq tζ  and the 

inertance-mass ratio µ  of the isolated structure with the inerter system is presented.  

From the seismic influence coefficient specified in the seismic design code [52], the design 
spectrum can be expressed as follows 
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where T  is the natural period of the primary structure; gT  is the characteristic period of the site; maxα  

is maximum seismic influence coefficient; 1η  is the slope adjustment coefficient; 2η  is the damping 

adjustment coefficient and g  is the gravitational acceleration. It can be seen that the seismic action 

mitigation ratio hβ  decreases with the increase of ,eq tζ  based on the equation list below 
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Therefore, the solution of Equation (2) can be simplified via numerical iteration as follows: 

choosing an initial equivalent damping ratio ( )0
eqζ  first, then calculate the corresponding ( )0

hβ  
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If ( )0
h hβ β≠ , recalculate the next-step equivalent damping ratio ( )1

eqζ  via the convergence equation 
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where 1η >  is an exponent to accelerate the iterative process. Then, the corresponding ( )1
hβ  can be 



 

 

calculated based on Equation (2). Repeat the above step until ( )n
h hβ β≈ , the final equivalent damping 

ratio ,eq tζ  thus can be obtained: ( )
,

n
eq t eqζ ζ= . 

Based on the obtained ,eq tζ  above, the inertance-mass ratio µ  can also be obtained using the 

same method. From the main body of the paper can be known 

 2 1
3 2(1 )eq

µζ α ξ
µ µ

= =
− −

 (5) 

The first-order derivative of eqζ  with respect to µ  can be obtained 

 2 3

1 1 1
2(1 ) (1 )(3 ) (1 ) 2 2(3 )

eqd
d
ζ µ µ
µ µ µ µµ µ µ

 
= + + 

− −− − − 
 (6) 

On account of 0 1µ≤ ≤ , Equation (6) is a monotone function which µ  can be obtained through 

easy iteration based on the same principle discussed above. Choose an initial ( )0µ  first, then calculate 

the corresponding ( )0
eqζ  based on Equation (5) 

 ( )
( )

( )

( )( )
0

0
0 0

1
3 2 1

eq
µζ

µ µ
=

− −
 (7) 

If ( )0
,eq eq tζ ζ≠ , recalculate the next-step ( )1µ  via the convergence equation 

 ( )
( )

( ),1 0
0

eq t

eq

η
ζ

µ µ
ζ

 
 =
 
 

 (8) 

Then, the corresponding ( )1
eqζ  can be calculated based on Equation (5). Repeat the above step 

until ( )
,

n
eq eq tζ ζ≈ , the final equivalent damping ratio µ  thus can be obtained: ( )nµ µ= . 

Derivation process of the seismic action ratio χ  

Here, the specific derivation process of seismic action ratio χ  in Equation (36) is presented. 

According to the mode-superposition response spectrum method, the seismic action of each story 
in the multi-story structure under a particular mode can be calculated as follows [50] 

 ji j j ji iF X Gα γ=  (9) 

in which the subscript i  and j  denote the i-th story and the j-th mode, respectively; α  is the seismic 



 

 

influence coefficient [52]; X  is the inter-story relative displacement; G  is the gravity load of each 

story; γ  is the modal participation factor, which can be expressed as follow [50] 

 2

1 1
ji

n n

j ji i i
i i

X G X Gγ
= =

= ∑ ∑  (10) 

Then the structural seismic action jF  corresponding to j-th mode can be obtained 

 
1 1

n n

j ji j j ji i
i i

F F X Gα γ
= =

= =∑ ∑  (11) 

Assuming the original structure is within linear elastic state, the seismic action of the original 
multi-story structure (without additional isolation system) can be expressed as follows 

 ( )0 0 0 ,aF M S Tχ ζ=  (12) 

where 0T  is the natural period of the original structure, and χ  is the seismic action ratio of the original 

multi-story structure to the equivalent SDOF structure, which can be expressed as follows 

 
( )
0 0

0 0

1

, n
a

j i
i

F F
M S T G

χ
ζ η

=

= =

∑
 (13) 

Assuming that the gravity load and height of each story are the same, substituting Equation (10) 
and (11) into Equation (13) yields that 

 
2

1

2

1

( )

( )
ji

n

ji
i

n

i

X

N X
χ =

=

=
∑

∑
 (14) 

where N  is the story of the original structure. Based on the assumption illustrated in Section 4.1 (the 
original structure is within linear elastic state), Equation (14) can be further expressed as 

 ( )
( )

3 1
2 2 1

N
N

χ
+

≈
+

 (15) 
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