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Abstract

This paper presents a novel in-silico tool for the design of complex multilayer Dielectric Elas-
tomers (DEs) characterised by recently introduced layer-by-layer reconfigurable electrode meso-
arquitectures. Inspired by cutting-edge experimental work at Clarke Lab (Harvard) [21], this
contribution introduces a novel approach underpinned by a diffuse interface treatment of the elec-
trodes, whereby a spatially varying electro-mechanical free energy density is introduced whose
active properties are related to the electrode meso-architecture of choice. State-of-the-art phase-
field optimisation techniques are used in conjunction with the latest developments in the numerical
solution of electrically stimulated DEs undergoing large (potentially extreme) deformations, in
order to address the challenging task of finding the most suitable electrode layer-by-layer meso-
architecture that results in a specific three-dimensional actuation mode. The paper introduces
three key novelties. First, the consideration of the phase-field method for the implicit definition
of reconfigurable electrodes placed at user-defined interface regions. Second, the extension of the
electrode in-surface phase-field functions to the surrounding dielectric elastomeric volume in order
to account for the effect of the presence (or absence) of electrodes within the adjacent elastomeric
layers. Moreover, an original energy interpolation scheme of the free energy density is put forward
where only the electromechanical contribution is affected by the extended phase-field function,
resulting in an equivalent spatially varying active material formulation. Third, consideration of a
non-conservative Allen-Cahn type of law for the evolution of the in-surface electrode phase field
functions, adapted to the current large strain highly nonlinear electromechanical setting. A series
of proof-of-concept examples (in both circular and squared geometries) are presented in order to
demonstrate the robustness of the methodology and its potential as a new tool for the design of
new DE-inspired soft-robotics components. The ultimate objective is to help thrive the develop-
ment of this technology through the in-silico production of voltage-tunable (negative and positive
Gaussian curvature) DEs shapes beyond those obtained solely via trial-and-error experimental
investigation.

Keywords: Electrode meso-architecture; Shape Morphing; Dielectric Elastomer; Phase-Field;
Topology Optimisation

1. Introduction

Since the early 1940s, the field of robotics has evidenced a paradigm shift from conventional
hard robotics to soft robotics, through the exploration of machines or components with biomimetic
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dexterous features capable of superseding the ability of humans whilst safely interacting with
them. Dielectric Elastomers (DEs) [24, 29, 44, 45, 58] have been identified as excellent candidates
for their use as soft robotics components [13, 15, 46, 52]. DEs represent an important family
of Electro Active Polymers (EAPs), a well-known sub-group within the wider spectrum of soft
smart materials. Since their discovery, DEs have demonstrated outstanding actuation capabilities
which, in conjunction with their low stiffness, make them ideal for their application in the field
of soft robotics. However, their potential use is not strictly limited to the field of electrically
induced actuation, as they have been successfully used as Braille displays, deformable lenses,
haptic devices and energy generators, to name but a few [37].

DEs exhibit electrically induced deformations triggered by Coulomb forces developed be-
tween two oppositely charged electrodes placed across the thickness of a typically thin DE
layer. Coulomb forces induce thinning across the thickness of the DE which, due to the near-
incompressibility of the elastomeric material, lead to in-plane expansion, potentially resulting in
extremely large area expansions for highly compliant DEs [24, 27, 28]. For the case of nearly
flat DE designs, the electric field remains mostly homogenous everywhere within the elastomeric
material and, therefore, the electrically induced deformation remains also homogeneous (prior
to the development of wrinkles associated with the onset of geometrical instability [28, 47, 65]).
The attachment of passive elastomeric layers lead to the development of slightly more complex
electrically induced three dimensional bending deformations. As an example, the manufacturing
of tunable lenses [43, 55] via the use of DEs has been identified as a field of immediate applica-
tion for this type of technology, where the inherent lens’ curvature gradually evolves according
to the application of external electric stimuli. However, more advanced actuation modes are still
hindered by the relatively homogeneous electric field distribution across the DE device.

With that in mind, very recent research at Clarke Lab (Harvard) [21] has sought the introduc-
tion of new technology capable of generating highly in-homogeneous electric field distributions,
through a layer-by-layer (or multi-layer) layout comprising a set of elastomeric DE layers in-
tercalating compliant electrodes (of alternating polarity) and with different shapes. Under this
radically new engineering design approach, the attainability of more complex shapes under the
application of electric stimuli on geometrically complex electrodes is contingent upon the exper-
tise and physical intuition of the researcher responsible of devising a suitable internal electrode
meso-architecture. This expertise and physical intuition has allowed Clarke et. al. [21] to con-
ceive electrode meso-architectures enabling actuated shapes far more sophisticated than those
generated by classical electrode layouts (see Figure 1).

Approximate area of influence of electrodes
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Figure 1: A generalizable method for shape morphing of thin sheets of elastomer by creating spatially varying
internal electric field. (a) A multilayered structure of circular elastomer sheets interleaved with concentric, inter-
digitated electrodes of decreasing radii with height. The electric field is primarily concentrated in the regions of
overlap between the adjacent electrodes as illustrated by the so-called area of influence of electrodes. (b) Applying
a voltage to the electrodes the elastomeric squared device induces a positive and negative Gaussian curvature
(simulation) that increases with increasing voltage.

However, as it has been acknowledged in [21], the attainability of more complex electrically
induced morphologies cannot simply rely on useful and valuable intuition and physical arguments.
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Mathematical tools such as Topology Optimisation (TO) can clearly aid in the design, that is, can
assist experienced researchers to conceive novel internal electrode meso-architectures enablers of
shapes otherwise unachievable. As a result, this paper represents a first attempt at using TO as a
means to obtaining optimal internal electrode layer-by-layer meso-architectures for reconfigurable
shape morphing DEs. Recently, the work in Reference [14] made use of the level-set method
for the optimal design of electrodes in the case where in-plane displacements of non-multilayered
DEs were sought. A crucial challenge is the definition of the electrodes, whose position evolves
during the TO process. In this paper, we advocate for a novel approach underpinned by a diffuse
interface treatment of the electrodes, whereby a spatially varying electro-mechanical free energy
density is introduced whose active properties are related to the electrode meso-architecture of
choice. With that in mind, in-surface phase-field functions are used for the implicit definition of
the electrodes placed at interface regions between adjacent elastomeric layers. Next, a Laplacian
type extension of the surface-restricted phase-field functions to the volume of the surrounding
elastomeric layers is formulated in order to incorporate the effect of the presence (or absence) of
electrodes within the free energy density of the DE.

With regards to TO of smart materials, there is a wide spectrum of robust approaches available
[1, 66], ranging from density-based methods with the Solid Isotropic Material with Penalisation
(SIMP) method as their maximum representative [3], level-set methods [2, 62], phase-field meth-
ods [10, 60], topological derivative methods [59] and evolutionary methods [35]. We hereby provide
a non exhaustive list of scientific works where TO has been applied with the aforementioned aim.
Kang and Wang [23] used the SIMP method for the topology optimisation of piezoelectric ceram-
ics, an electro-active material which, unlike EAPs, is restricted to scenarios characterised by very
small deformations/displacements. A comparison is carried out between bi-morph and multilay-
ered configurations in order to improve the action properties of the resulting device. The works
in references [36] and [64] investigate TO of piezoelectric ceramics and flexoelectric materials.
Zhang et. al. also investigated TO of piezoelectric sensors with active vibration control purposes.
Other works [16, 17, 25, 53] have investigated the simultaneous optimisation of polarisation and
layout of piezoelectric ceramics over a fixed host (passive) material, and when the host structure
is also included in the optimisation process [48–50]. Furthermore, the work in [51] carries out
the TO of piezoelectric ceramic-based micro-grippers considering large displacements but small
deformations. Some recent works include the TO design of thermoelectric coolers and generators
[30–32]. More recently, some works have ventured into the TO of dielectric elastomers. For in-
stance, the work in [63] delves into the TO of these materials with the aim of maximising the
electrically induced rotation of a rotary device. Extremely interesting is the work in [9], where
the TO is applied with the objective of conceiving intelligent microstructures for the design of
wide tunable band gaps. In this paper, we advocate for a phase field Allen-Cahn type evolution
law [60] for the surface-restricted phase-field functions, adapted to the current DE multiphysics
electro-mechanical setting.

With the aim of modelling more complex actuation scenarios in DEs, the use of computational
methods constructed on the basis of variational principles is nowadays acknowledged as the pre-
ferred method of choice [11, 12, 18, 19, 34, 61]. In the most classical formulation, displacements
and the scalar electric potential [18, 61] are regarded as the unknown fields. In this formulation,
the constitutive information is encapsulated in the free energy density via its invariant-based
representation depending upon kinematic strain measures and the Lagrangian electric field [61].
The nonlinear nature of the coupled electromechanical free energy density fosters its eventual
loss of convexity with respect to the deformation gradient tensor at a given electrical excitation,
leading to physically-based electromechanical instabilities. Beyond the onset of these instabili-
ties, the constitutive model can potentially exhibit loss of ellipticity, which will reflect in spurious
numerical results. Under these extreme scenarios, special care needs to be taken for the defini-
tion of the electromechanical constitutive law of a DE. For instance, inspired from the field of
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polyconvexity in nonlinear elasticity, the authors in Reference [20] postulate sufficient convexity
conditions that preclude ab initio the loss of ellipticity of the internal energy functional for the
entire range of deformations and electric fields. In this paper, and without loss of generality,
we do not contemplate these extreme scenarios. Hence, commonly used free energy densities
will be used. Furthermore, more complex computational formulations than the classical two-field
displacement-potential formulation have been employed for the numerical analysis of DEs. The
reader is referred to References [38, 40] where, in addition to these fields, strains and the electric
field, in conjunction with their work conjugates are also part of the set of unknown fields, with
the aim of circumventing drawbacks inherent to low order displacement-potential formulations.
In addition, Reference [47] establishes a comprehensive comparison between truly high order
displacement-potential formulations and the mixed formulations in [40].

The layout of this paper is as follows: Section 2 introduces the governing equations in nonlin-
ear reversible electro-mechanics and the variational formulation adopted in the paper, namely in
terms of the displacement and the scalar electric potential. Section 3 describes the layer-by-layer
design layout and introduces two different modelling approaches. A sharp interface treatment
of the electrodes will be briefly discussed first followed by a diffuse interface treatment, which
will be discussed in depth, where the inclusion of electrodes is described by a spatially vary-
ing electro-mechanical free energy density whose active properties are related to the electrode
meso-architecture of choice. Section 4 describes the TO approach employed in the paper, char-
acterised by the use of in-surface phase field functions used to describe the presence (or absence)
of electrodes in the interface between adjacent elastomeric layers. The Section concludes with
an algorithmic flowchart that summarises the in-silico modelling approach. Section 5 presents a
series of numerical examples in order to demonstrate the robustness of the proposed methodology
and present various sophisticated electrode meso-architectures for complex three dimensional ac-
tuation modes. Section 6 provides some concluding remarks and future lines of research. Finally,
Appendix 6 summarises the Finite Element spatial discretisation technique.

2. Governing equations in nonlinear reversible electro-mechanics

This section introduces the fundamental equations governing the response of a Dielectric
Elastomer (DE) actuated through an electric field generated via the positioning of electrodes
only on some parts of the outer boundary of the DE. For simplicity, the electro-mechanical
properties of the DE are considered homogenous, namely, spatially independent, and the electro-
mechanical coupling to be reversible, disregarding thus any time-history effects. A differential
based description of the governing equations is presented first, followed by appropriate variational
statements more amenable to Finite Element implementation and large scale three-dimensional
simulations.

2.1. Differential governing equations in nonlinear electromechanics

Let us consider the motion (actuation) of a generic DE with reference configuration B0 ⊂ R3

and boundary ∂B0 with unit outward normal N (refer to Figure 1). After the motion, the DE
occupies a deformed configuration B ⊂ R3 with boundary ∂B and unit outward normal n. The
motion of the DE is defined by a deformation mapping φ which relates material particles X ∈ B0

to the deformed configuration x ∈ B according to x = φ(X). Associated with the mapping
φ (X), we introduce the deformation gradient tensor F [8], the co-factor H and its Jacobian J
as

F =∇0φ; H =
1

2
F F ; J =

1

3
H : F , (1)

where ∇0 represents the material gradient operator, namely ∇0 (•) = ∂X (•), represents
a tensor cross product operation [6, 7] between second order tensors defined as (A B)iI =
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EijkEIJKAjJBkK , ∀A,B ∈ R3×3, where Eijk (or EIJK) symbolises the third-order alternating ten-
sor components and the use of repeated indices implies summation4. As it will be shown in Section
2.2, the triad of deformation measures {F ,H , J} is essential in the definition of the constitutive
model of a DE.

Figure 2: Deformation mapping φ (X) for the DE in material configuration (left) and deformed configuration
(right).

The electro-mechanical boundary value problem describing the response of the DE is comprised
of a set of partial differential equations and associated boundary conditions. Specifically, in the
absence of inertia effects, the mechanical response of the DE is represented by

F =∇0φ; in B0; (2a)

DIVP + f 0 = 0; in B0; (2b)

PN = t0; on ∂tB0; (2c)

φ = φ̄
b
; on ∂φB0, (2d)

where (2a) represents the kinematic compatibility equation and (2b) the quasi-static version of the
conservation of linear momentum in a Lagrangian description. In above equations, f 0 represents
a body force per unit undeformed volume, P is the first Piola-Kirchhoff stress tensor, t0 is a

possible external traction vector per unit undeformed area ∂tB0 ⊂ ∂B0 and φ̄
b

a possible external
Dirichlet type boundary condition on ∂φB0 ⊂ ∂B0, with ∂tB0 ∪ ∂φB0 = ∂B0 and ∂tB0 ∩ ∂φB0 = ∅.
Furthermore, conservation of angular momentum entails the well-known tensor condition σ = σT ,
where the Cauchy stress tensor is related with the first Piola-Kirchhoff stress tensor P through
the standard Piola transformation σ = J−1PF T .

Similarly, and in the absence of magnetic effects, the electrical response of the DE is repre-
sented by

E0 = −∇0ϕ; in B0; (3a)

DIVD0 − ρ0 = 0; in B0; (3b)

D0 ·N = −ω0; on ∂ωB0; (3c)

ϕ = ϕ̄b; on ∂ϕB0, (3d)

where (3a) and (3b) denote the quasi-static version of the Gauss’ and Faraday’s laws in a La-
grangian description. In above equations, ϕ represents an scalar electric potential, E0 denotes

4In addition, throughout the paper, the symbol (·) indicates the scalar product or contraction of a single index
a · b = aibi; the symbol (:), double contraction of two indices A : B = AijBij ; the symbol (×), the cross product
between vectors (a× b)i = Eijkajbk; and the symbol (⊗), the outer or dyadic product (a⊗ b)ij = aibj .
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the material electric field, D0 the material electric displacement, ρ0 represents an electric charge
per unit of undeformed volume, ω0 an electric charge per unit of undeformed area ∂ωB0 ⊂ ∂B0

and ϕ̄b a suitable external potential applied on electrodes for the actuation of the DE. These
electrodes are positioned on ∂ϕB0 ⊂ ∂B0, such that ∂ωB0 ∪ ∂ϕB0 = ∂B0 and ∂ωB0 ∩ ∂ϕB0 = ∅.
In above equations, both D0 and E0 can be related with their spatial counterparts D and E,
respectively, through the following standard relations E = F−TE0 and D = J−1FD0 [18, 19]5.

For closure of the coupled boundary value problem defined by equations (2) and (3), a con-
stitutive law is required in order to relate the first Piola-Kirchhoff stress tensor P and the elec-
tric displacement D0 with the deformation gradient tensor F and the electric field E0, namely
P = P (F ,E0) and D0 = D0 = (F ,E0), which will be presented next.

2.2. Constitutive equations in reversible nonlinear electromechanics

In the case of reversible nonlinear electromechanics, the constitutive law is traditionally [18, 22,
26, 56, 57] introduced through the definition of a suitable free energy density per unit undeformed
volume B0, denoted as Ψ = Ψ(X,F ,E0). For the special case of a homogeneous DE, with no
spatially varying electro-mechanical properties, the free energy density can be simplified as Ψ =
Ψ(F ,E0). In this context, the first Piola-Kirchhoff stress tensor P and the electric displacement
field D0 (energy dual/conjugates of F and E0, respectively) emerge form the first derivatives of
the free energy density as

P (F ,E0) = ∂FΨ(F ,E0); D0(F ,E0) = −∂E0Ψ(F ,E0), (4)

where ∂A(•) denotes the partial derivative of (•) with respect to the field A. Furthermore, the
second partial derivatives of the free energy density yield the so-called constitutive tensors, namely
the fourth order elasticity tensor C, the third order piezoelectric tensor P and the second order
dielectric tensor ε, defined respectively as

C(F ,E0) = ∂2
FFΨ(F ,E0); P(F ,E0) = −∂2

E0F
Ψ(F ,E0); ε(F ,E0) = −∂2

E0E0
Ψ(F ,E0). (5)

Typically, the free energy density of a DE is additively decomposed into mechanical Ψm(F )
and electromechanical Ψem(F ,E0) contributions as

Ψ(F ,E0) = Ψm(F ) + Ψem(F ,E0). (6)

A commonly used model to define the mechanical Ψm contribution is the (isotropic) Mooney-
Rivlin model [54] Ψm = ΨMR

m , defined as

ΨMR
m (F ) :=

µ1

2
(IIF − 3) +

µ2

2
(IIH − 3) + f(J); f(J) = − (µ1 + 2µ2) ln(J) +

λ

2
(J − 1)2 ,

(7)
with IIA = A : A and {µ1, µ2, λ} are three material parameters. For the case of a DE, a
commonly used model for the electromechanical contribution Ψem is that of an ideal dielectric
Ψem = ΨID

em, defined as

ΨID
em(F ,E0) = −εrε0

2J
IIHE0 ; IIHE0 = HE0 ·HE0, (8)

where ε0 represents the electric permittivity of vacuum, being ε0 = 8.854 × 10−12 Fm−1, and εr
the relative electric permittivity. Notice that material parameters {µ1, µ2, λ} are related to the

5These relationships are particularly useful as Maxwell equations are typically understood in the current con-
figuration.
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Young’s modulus E and Poisson ratio ν in the origin, namely when F = I (being I the second
order identity tensor) and E0 = 0, as

µ1 + µ2 =
E

2(1 + ν)
; λ+ 2µ2 =

Eν

(1 + ν)(1− 2ν)
. (9)

Although more sophisticated constitutive laws to those shown in (7) and (8) can be used to
describe the response of a DE, see for instance [20, 39–41] for the use of Convex-Multivariable
constitutive laws, the remainder of the paper is focused, without loss of generality, on the use of
the simpler model defined by (7) and (8).

2.3. Variational formulation in reversible nonlinear electromechanics

In this section, we present the variational formulation associated with the solution of the sys-
tem of nonlinear coupled equations (2) and (3). For simplicity, we use the variational formulation
derived from the classical two-field variational principle with unknown fields φ ∈ Vφ and ϕ ∈ Vϕ,
with Vφ,Vϕ suitable functional spaces satisfying the essential boundary conditions in (2d) and
(3d), namely

Vφ = {φ ∈ (H1(B0))3 : s.t. (2d)}; Vϕ = {ϕ ∈ H1(B0) : s.t. (3d)}. (10)

The variational principle states6

Π(φ∗, ϕ∗) = inf
φ

sup
ϕ

{∫
B0

Ψ (F ,E0) dV − Πm
ext (φ)− Πem

ext (ϕ)

}
, (11)

where Πm
ext and Πem

ext represent the external work done due to mechanical and electrical actions,
respectively, defined as

Πm
ext (φ) =

∫
B0
f 0 · φ dV +

∫
∂tB0

t0 · φ dA; Πem
ext (ϕ) = −

∫
B0
ρ0ϕdV −

∫
∂ωB0

ω0ϕdA. (12)

The stationary conditions of Π(φ, ϕ) (11), stemming from its directional derivatives with
respect to independent virtual variations δφ ∈ Vφ0 and δϕ ∈ Vϕ

0
7, yield the variational forms of

the conservation of linear momentum and Gauss’s law, namely

DΠ(φ, ϕ)[δφ] =

∫
B0
P (F ,E0) :∇0δφ dV −DΠm

ext (φ) [δφ] = 0; (13a)

DΠ(φ, ϕ)[δϕ] =

∫
B0
D0 (F ,E0) ·∇0δϕ dV −DΠem

ext (ϕ) [δϕ] = 0, (13b)

where

DΠm
ext (φ) [δφ] =

∫
B0
f 0 · δφ dV +

∫
∂tB0

t0 · δφ dA; (14a)

DΠem
ext (ϕ) [δϕ] = −

∫
B0
ρ0δϕ dV −

∫
∂ωB0

ω0δϕ dA. (14b)

In order to solve the coupled system of nonlinear variational forms in (13) (the coupling
and its nonlinear nature are induced by the constitutive relationships in (4)), use is made of a

6More accurate and sophisticated variational principles can also be employed, as previously presented by the
authors in [40, 41].

7As usual, the subindex 0 for a functional space is used to indicate satisfaction of homogeneous essential
boundary conditions.
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Newton-Raphson k-iterative scheme where both variational forms are linearised with respect to
incremental fields ∆φ ∈ Vφ0 and ∆ϕ ∈ Vϕ

0 as

D2Π(φk, ϕk)[δφ; ∆φ] +D2Π(φk, ϕk)[δφ; ∆ϕ] = −DΠ(φk, ϕk)[δφ]; (15a)

D2Π(φk, ϕk)[δϕ; ∆φ] +D2Π(φk, ϕk)[δϕ; ∆ϕ] = −DΠ(φk, ϕk)[δϕ], (15b)

which permit the update of the solution fields φ and ϕ at Newton-Raphson iteration k as

φk+1 = φk + ∆φ; ϕk+1 = ϕk + ∆ϕ. (16)

In equations (15), the terms involving the second directional derivatives of the functional Π(φ, ϕ)
can be obtained as

D2Π(φ, ϕ)[δφ; ∆φ] =

∫
B0
∇0δφ : C (F ,E0) :∇0∆φ dV ;

D2Π(φ, ϕ)[δφ; ∆ϕ] =

∫
B0
∇0δφ : PT (F ,E0) ·∇0∆ϕdV ;

D2Π(φ, ϕ)[δϕ; ∆φ] =

∫
B0
∇0δϕ ·P (F ,E0) :∇0∆φ dV ;

D2Π(φ, ϕ)[δϕ; ∆ϕ] = −
∫
B0
∇0δϕ · ε (F ,E0)∇0∆ϕdV,

(17)

with C, P and ε defined in (5) and where
(
PT
)
jJI

= (P)IjJ .

3. Computational approaches for layer-by-layer layout

This section extends and generalises the concepts presented previously. Specifically, the re-
striction regarding the positioning of the electrodes only on some parts of the boundary of the DE
will be lifted; and electrodes will be allowed to be placed inside the matrix of the DE. As it will be
shown, the lifting of this restriction permits the development of sophisticated meso-architectures
(i.e. elastomer and electrode distribution), paving the way towards the exploration of complex
actuation patterns, otherwise inaccessible. In line with very recent work in [21], we consider a
layer-by-layer reconfigurable design layout of the DE, as depicted in Figure 3. Specifically,

I The DE undeformed configuration B0 is comprised of the union of NL elastomeric layers,
defined by {B1

0, . . . ,B
NL
0 }.

II Electrodes are intercalated between adjacent elastomer layers where tailor-made in-surface
spatially varying electric potential will be applied.

III The thickness of the electrodes is regarded as negligible in comparison with that of the
elastomeric layers. This permits the identification of the surface regions where the electrodes
will be placed, denoted as {E1, . . . , ENL−1}, as the intersection between adjacent elastomeric
layers, namely

E i = B̄i0 ∩ B̄i+1
0 ; i = {1, . . . , NL − 1}. (18)

IV For simplicity, in this work, all electrode regions contained within a given interface surface
are subjected to the same voltage value, either positive or negative in magnitude.

V Interaction between electrodes of opposite potential placed at non-adjacent layers cannot
occur. This can be visualised in Figure 6. In that figure, for instance, layer E1 is blocked
physically (in the Z direction) by layers E2 and E3, preventing its interaction with layer
E4. Although this designing limitation is not general, it imposes that the actuation of the
DE device is driven by the interaction between adjacent layers, which are indeed the ones
subjected to the higher voltage gradients.
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The outer boundary of the DE B0 is decomposed into a lateral boundary ∂Bl0, and top and
bottom boundaries ∂Bt0 and ∂Bb0, respectively (see Figure 3), as

∂B0 = ∂Bt0 ∪ ∂Bb0 ∪ ∂Bl0. (19)

Figure 3: Example illustrating the initial (prior to optimisation) layer-by-layer DE layout: four layers of DE are
considered {B10, . . . ,B40}, where three (infinitely) thin layers of electrodes are intercalated {E1, . . . , E3}. All red
electrodes are interconnected. All green electrodes (if there were more than one) are interconnected.

It is worthwhile emphasising that the interfaces E i do not necessarily represent the actual
electrode regions, but rather the latter must be understood as a reconfigurable subset of the
former. This can be easily observed in Figure 4a, where the green circular surface represents one
of the interfaces E i, whilst the brown areas lying within it correspond to the actual electrode
locations, with all of them subjected to the same voltage value. The reason for this spatial
distribution of electrodes within every interface E i is two-fold: i) in order to generate a tailor-
made spatial variation of the electric field across each layer of dielectric elastomer Bi0, ultimately
leading to non-conventional electrically actuated shapes and ii) in order to permit the possibility
of reconfigurable designs where the actual electrode locations can be changed in position (within
a given interface E i) at the will of the designer. Based on the above considerations I-III, we
discuss next two different modelling approaches, depending on the treatment of the embedded
electrodes, namely, sharp approach (refer to Section 3.1) and diffuse approach (refer to Section
3.2). In the sharp approach, the elastomeric layers are described with homogeneous (constant)
active properties and the spatial variation of the actuating electric potential within an interface
surface region is modelled via the use of spatially varying in-surface characteristic functions. On
the contrary, in the diffuse approach, the actuating electric potential is assumed constant across
the entire interface surface region and the elastomer layers are endowed with spatially varying
active properties.

3.1. Sharp interface treatment of the electrodes

In this approach, actual electrodes within a given interface surface E i are described via a
characteristic function χEi(ξ), with discrete values {0, 1} and ξ ∈ E i. Every point ξ ∈ E i with a
value of χEi(ξ) = 1 corresponds with the region E iElec ⊂ E i where the electrode is actuated (i.e. a
given voltage value is applied). On the other hand, every point ξ ∈ E i with a value of χEi(ξ) = 0
corresponds with the region of E i where electrode collocation is avoided, that is

∀ξ ∈ E i,

{
χEi(ξ) = 1; if ξ ∈ E iElec;

χEi(ξ) = 0; if ξ ∈ E i \ E iElec.
(20)

Figure 5 illustrates the extruded spatial distribution of the regions E iElec within each of the
surfaces {E1, . . . , ENL−1}. In this figure, six layers of elastomer are considered, i.e. NL = 6,
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Elastomer 
layers

(a) (b)

Figure 4: (a) Surface region E i and spatial distribution of electrodes of same voltage over E i (brown regions); (b)
Layer-by-layer discretisation DE devices complying with modelling assumptions I-IV described in Section 3.

which are separated by five interface (electrode) surfaces, i.e. {E1, . . . , E5}. An important de-
sign/computational/manufacturing challenge resides on the application of the electric potential
only in the regions defined by E iElec, whilst maintaining the remainder of the interface surface
E i \ E iElec not actuated. Referring to Figure 4a, electrical potential must only be imposed in the
brown regions contained within the interface surface region. Moreover, as shown in Figure 5,
and following the modelling assumption IV presented above, all the electrodes with positive pre-
scribed voltage ϕ̄ are contained within the set of surface regions E+ = {E1, E3, . . . , ENL−1}, and
all the electrodes under negative prescribed voltage are contained within the set of surface regions
E− = {E2, E4, . . . , ENL−2}, i.e.

ϕ = ϕ̄; on ξ ∈ E i ⊂ E+ : χEi(ξ) = 1; ϕ = −ϕ̄; on ξ ∈ E i ⊂ E− : χEi(ξ) = 1. (21)

The mechanical part of the boundary value problem describing the response of the layer-by-
layer DE can be formulated by a careful extension of that in (2) as

F =∇0φ; in Bj0; (22a)

DIVP (F ,E0) + f 0 = 0; in Bj0; (22b)

PN = t0; on ∂tB0; (22c)

φ = φ̄
b
; on ∂φB0; (22d)

JφK = 0; on E i; (22e)

JP K N |Ei = 0; on E i, (22f)

where equations (22e)-(22f) represent interface conditions introduced as a result of the layer-by-
layer design fabrication process8. Equations (22a)-(22d) are identical to those already shown in
(2), albeit particularised for the case of multiple (i = 1 . . . NL − 1, j = 1 . . . NL) elastomeric
layers, and equations (22e)-(22f) represent appropriate jump conditions for the geometry and the
traction vector, respectively, where the symbol J•K is used to denote the jump of a field across
the surface E i and N |Ei its associated unit normal.

Analogously, the electrical part of the boundary value problem describing the response of the

8Notice that further kinematic jump conditions [5, 20] involving the jump in F and H could have been
introduced in the case of using a more sophisticated mixed variational approach.
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Negative electrode

Positive electrode

Figure 5: Layer-by-layer layout within the sharp interface setting. Left: DE device comprising six elastomer layers
{B10, . . . ,B60} and five intercalated surface regions {E1, . . . , E5}. Right: final distribution of the characteristic
function with value χ(ξ) = 1, representing the electrode regions {E1Elec, . . . , E5Elec}.

layer-by-layer DE can be formulated by a careful extension of that in (3) as

E0 = −∇0ϕ; in Bj0; (23a)

DIVD0(F ,E0) = ρ0; in Bj0; (23b)

D0 ·N = −ω0; on ∂ωB0; (23c)

ϕ = ϕ̄b; on ∂ϕB0; (23d)

ϕ = ±ϕ̄; on ξ ∈ E i ⊂ E± : χEi(ξ) = 1; (23e)

JϕK = 0; on ξ ∈ E i : χEi(ξ) = 0; (23f)

JD0K · N |Ei = 0; on ξ ∈ E i : χEi(ξ) = 0, (23g)

where equation (23e)-(23g) represent interface conditions introduced as a result of the layer-
by-layer design fabrication process9. Equations (23a)-(23d) are identical to those shown in (3),
albeit particularised for the case of multiple elastomeric layers (i = 1 . . . NL−1, j = 1 . . . NL) and
equation (23e) denotes the application of electrical potential in positive and negative electrode
regions, defined by suitable in-surface characteristic functions χEi .

The expression for the first Piola-Kirchhoff stress tensor and the electric displacement (within
every elastomeric layer Bj0) can be obtained from the use of the homogeneous constitutive model
described in Section 2.2. Naturally, a challenge (specially for the case of reconfigurable electrode
positioning) remains as to the application of the electric potential on interface regions via the
presence of the characteristic function, that is, equation (23e).

9Notice that further electrical jump conditions [20] involving the jump in E0 could have been introduced in
the case of using a more sophisticated mixed variational approach.
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3.2. Diffuse interface treatment of the electrodes

In design practice, the thickness tj of the elastomeric layers Bj0 is very small when compared to
the in-plane characteristic dimension of the overall DE, denoted as L, namely tj << L. Under this
scenario, the existence of non-zero electric displacement D0 (and thus non-zero electric field E0)
is restricted to the vicinity of the electrode regions, hereby denoted as the region of influence
of electrodes (see Figure 6a), rapidly decreasing to zero away from this region of influence,
namely D0 → 0. This physical consideration justifies the use of an alternative diffuse approach
for the treatment of the electrode regions, which will be constructed based on the following key
ingredients:

Approximate area of influence of electrodes

t

L

(a)

Fictitious area of influence of electrodes

L

t

(b)

Figure 6: (a) Approximate region of influence of electrodes in the sharp interface approach. (b) Diffuse region
of influence of electrodes in the diffuse interface approach. The region of influence corresponds with the regions
across the elastomeric layers {B10, . . . ,B

NL
0 } where the electric field is mostly confined.

� Smooth in-surface representation of the electrodes within the interface E i via an in-surface
phase-field function ψEi , which will replace the sharpest characteristic function χEi .

� Smooth (Laplacian) extension of the in-plane phase-field function ψEi into the volume of the
adjacent elastomeric layers, resulting into the phase field function ψB0 , which will represent
the so-called region of influence of electrodes. This extension is essential to impose
the design feature in point V at the beginning of Section 3, restricting the interaction of
electrodes only to those placed between adjacent layers.

� Definition of a suitable (spatially varying) free energy density capable of recreating an
electric displacement D0 rapidly decreasing to zero away from the region of influence
of electrodes.

Regarding the first ingredient above, the sharpest characteristic function χEi in (20) is replaced
by a smooth phase field function ψEi ∈ VψEi on each surface region E i, such that

VψEi =
{
ψEi : E i → [0, 1] , ψEi ∈ H1(E i)

}
; i = {1, . . . , NL−1}, (24)

where ξ ∈ E i with a value of ψEi(ξ) = 1 corresponds with the region E iElec ∈ E i where the electrode
is actuated. On the other hand, ξ ∈ E i with a value of ψEi(ξ) = 0 corresponds with the region of
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Electrode layers

Phase-field functions

Optimal electrode Layout

Phase-field threshold

Layer #1

Layer #2

Layer #3

Layer #4

Layer #5

Figure 7: Layer-by-layer layout within the diffuse interface setting. Left: DE device comprising six elastomer
layers {B10, . . . ,B60} and five intercalated surface regions {E1, . . . , E5}. Centre: final distribution of the functions
ψEi(ξ) with value ψEi(ξ) = 1, representing the electrode regions {E1Elec, . . . , E5Elec}. Right: representation of each
of the five electrodes by selecting the threshold value of ψEi(ξ) ≥ 0.5 for all the electrode surfaces.
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E i where electrode collocation is avoided. Finally, ξ ∈ E i with intermediate values 0 < ψEi(ξ) < 1
represent the in-surface diffuse interface of the electrode ∂E iElec, that is

∀ξ ∈ E i,


ψEi(ξ) = 1; if ξ ∈ E iElec;

0 < ψEi(ξ) < 1; if ξ ∈ ∂E iElec;

ψEi(ξ) = 0; if ξ ∈ E i \
(
E iElec ∪ ∂E iElec

)
.

(25)

Figure 7 perfectly showcases the difference of the diffuse interface approach with respect to the
sharp approach, previously depicted in Figure 5. The same DE as in Figure 5-left, characterised by
six elastomer layers {B1

0, . . . ,B6
0} (hence with five interfaces {E1, . . . , E5}), is considered. Figure

7-centre shows the three regions E iElec (in red), ∂E iElec (in yellow), and E i \ (E iElec ∪ ∂E iElec)} (in
blue). Clearly, under this approach, the thickness of the interface region ∂E iElec is not strictly
zero, in contrast with the sharp interface approach described in Section 3.1. For convenience, all
the in-surface phase field functions can be combined into a set ψE defined as

ψE = {ψE1 . . . ψENL−1}. (26)

Next, a smooth (Laplacian) extension of the in-surface phase functions ψEi(ξ) into the volume
B0 is formulated by means of a (volumetric) extension ψB0(X) complying with the following
essential boundary conditions

ψB0 = ψEi on E i, i = {1, . . . , NL − 1}; (27a)

ψB0 = 1 on ∂ϕB0; (27b)

ψB0 = 0 on ∂ωB0. (27c)

Thus, the function ψB0 can be derived from the following variational principle

Λ(ψE , ψ
∗
B0) = inf

ψB0

{∫
B0

1

2
|∇0ψB0 |2 dV

}
, (28)

where the field ψB0 is selected within a suitable functional space VψB0 defined by

VψB0 =
{
ψB0 : B0 → [0, 1] , ψB0 ∈ H1(B0), s.t. (27)

}
. (29)

As can be seen, ψB0 is a function of position X and the set of in-surface phase field functions
ψE , that is ψB0(X,ψE). The stationary conditions of Λ(ψE , ψB0) (28), stemming from its direc-

tional derivative with respect to independent virtual variations δψB0 ∈ VψB0
0 , yield the following

variational statement

DΛ(ψE , ψB0)[δψB0 ] =

∫
B0
∇0ψB0 ·∇0δψB0 dV = 0. (30)

Solution of above variational statement (30) leads to the definition of the extended function
ψB0(X,ψE), representing the diffuse region of influence of electrodes, depicted in Figure 6b.

It remains to introduce the final ingredient, namely, a suitable (spatially varying) free energy
density, capable of recreating an electric displacement D0 rapidly decreasing to zero away from
the region of influence of electrodes. This can be accomplished through the following free
energy density definition

Ψ(ψB0(X,ψE),F ,E0) = Ψm(F ) + Ψ̄em(ψB0(X,ψE),F ,E0), (31)

where Ψm(F ) represents the mechanical contribution to the free energy density (refer to (7))
and Ψ̄em(ψB0(X,ψE),F ,E0) represents a spatially varying electromechanical energy contribution
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which remains to be defined. In this work, we propose Ψ̄em(ψB0(X,ψE),F ,E0) to be defined as
a convex interpolation between the electromechanical energy of the DE (when ψB0 → 1) and an
extremely small electromechanical energy contribution (when ψB0 → 0). Specifically,

Ψ̄em(ψB0(X,ψE),F ,E0)
∣∣
ψB0=1

= Ψem(F ,E0); (32a)

Ψ̄em(ψB0(X,ψE),F ,E0)
∣∣
ψB0=0

= αΨem(F ,E0), (32b)

where α is a dimensionless parameter of the order of α ≈ 10−8 and Ψem(F ,E0) is defined as in
(8). A suitable representation of Ψ̄em complying with the above two conditions in (32), typically
considered in the context of SIMP-based topology optimisation [42], is as follows

Ψ̄em(ψB0(X,ψE),F ,E0) = (ψB0(X,ψE))
p Ψem(F ,E0) + (1− (ψB0(X,ψE))

p)αΨem(F ,E0).
(33)

The dimensionless exponent p is traditionally given the value p = 3 in the context of SIMP-
based topology optimisation for linear elasticity, in order to fulfil the so-called Hashin–Strikman
bounds [42]. To the best of the authors’ knowledge, analogous physical bounds for the case
nonlinear electromechanics are not known and hence, we will use p = 3 in what follows. Above
representation (33) can be further manipulated to yield

Ψ̄em(ψB0(X,ψE),F ,E0) = [(ψB0(X,ψE))
p + α (1− (ψB0(X,ψE))

p)] Ψem(F ,E0)

≈ [(ψB0(X,ψE))
p + α]︸ ︷︷ ︸

f(ψB0 (X,ψE))

Ψem(F ,E0), (34)

where f(ψB0(X,ψE)) represents an interpolation function in the range [α, 1] written in terms of
the volume extended phase field function ψB0(X,ψE).

Remark 1. Notice that the definition of the interpolated electromechanical contribution Ψ̄em in
(34) is not the only possible one. An alternative expression for Ψ̄em can be

Ψ̄em(ψB0(X,ψE),F ,E0) = Ψem(F , Ē0(ψB0(X,ψE),E0)), (35)

with
Ē0(ψB0(X,ψE),E0) = (ψB0(X,ψE))

pE0 + (1− (ψB0(X,ψE))
p)αE0, (36)

where instead of interpolating the electromechanical energy of the DE Ψem as in (34), the inter-
polation is applied on the electric field E0.

Associated with the spatially varying interpolated free energy density Ψ(ψB0(X,ψE),F ,E0)
(refer to equations (31) and (34)), it is now possible to obtain the spatially varying first Piola-
Kirchoff stress tensor P and electric displacement field D0, by making use of equations in (4),
yielding

P (ψB0(X,ψE),F ,E0) = ∂FΨsolid
m (F ) + f(ψB0(X,ψE))∂FΨem(F ,E0); (37a)

D0(ψB0(X,ψE),F ,E0) = −f(ψB0(X,ψE))∂E0Ψem(F ,E0). (37b)

Similarly, the spatially varying fourth order elasticity tensor C, third order piezoelectric tensor
P and second order dielectric tensor ε associated with Ψ(ψB0(X,ψE),F ,E0) (refer to equations
(31) and (34)) can be computed by making use of equations in (5), resulting in

C(ψB0(X,ψE),F ,E0) = ∂2
FFΨm(F ) + f(ψB0(X,ψE))∂

2
FFΨem(F ,E0); (38a)

P(ψB0(X,ψE),F ,E0) = −f(ψB0(X,ψE))∂
2
E0F

Ψem(F ,E0); (38b)

ε(ψB0(X,ψE),F ,E0) = −f(ψB0(X,ψE))∂
2
E0E0

Ψem(F ,E0). (38c)
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Remark 2. For the case where ψB0 = 0, the interpolation scheme in (33) renders a material with
effective relative permittivity ε̄r which does not correspond with any real material (see equation
(32b)), namely

Ψ̄em(ψB0(X,ψE),F ,E0)
∣∣
ψB0=0

= αΨem(F ,E0) = − ε̄rε0

2J
IIHE0 ; ε̄r = αεr << 1. (39)

However, the objective of such interpolation is to introduce a dummy electric potential in areas
where ψB0 ≈ 0 so that the contribution on the stress tensor P in (37a) is negligible. Associated
with Ψ̄em in (33) it is possible to obtain its contribution within the first Piola-Kirchhoff stress
tensor P em as

P em := ∂F Ψ̄em = ψpB0∂FΨem(F ,E0) + α(1− ψpB0)∂FΨem(F ,E0) (40)

Clearly, for ψB0 = 0 above equation yields

P em = α∂FΨem(F ,E0). (41)

Essentially, even though the distribution of electric potential, and hence, of electric field does
not correspond with that of a real material in those areas where ψB0 ≈ 0, the underlying objective,
which is to obtain an almost vanishing contribution on the stress tensor, is achieved, as it is shown
in equation (41). Of course, this is not the only way to achieve such an objective. An alternative
energy interpolation would be

Ψ̄em(ψB0(X,ψE),F ,E0) = (ψB0(X,ψE))
p Ψem(F ,E0) + (1− (ψB0(X,ψE))

p) Ψ0(E0),

where Ψ0(E0) is similar to the electromechanical energy of the vacuum for the specific case where
F = I, namely

Ψ0(E0) = −ε0

2
E0 ·E0,

and therefore, for the case where ψB0 ≈ 0, no electromechanical contribution is included in the
stress, namely ∂F Ψ̄em

∣∣
ψB0=0

= 0. It is important to emphasise though that the focus of this

paper is on actuation, and not energy harvesting, which would require an accurate resolution of
the electric potential field, rather than the accurate capture of the deformation.

Having presented the three ingredients of the diffuse interface approach, that is the in-surface
phase field function ψEi , the Laplacian extension ψB0 and the spatially varying energy functional,
the actuation response of the DE can be described by the boundary value problem described
previously through equations (22) and (23), but where the first Piola-Kirchhoff stress tensor
P and the electric displacement D0 featuring therein are now computed based on the spatially
varying free energy density (refer to equations (31) and (34)) and where equation (23e) is replaced
by the simpler equation

ϕ = ±ϕ̄; on X ∈ E i ⊂ E±. (42)

Notice that the difference in electromechanical response of the DE as a result of the replace-
ment of (23e) with (42) is strictly localised to the interface regions defined by E i \ E iElec. From
the actuation design standpoint, this difference is negligible due to the counterbalancing effect
introduced by the in-surface phase function ψEi , which takes null values in E i\E iElec. This permits
to circumvent the time consuming task posed by the challenging application of the sharp interface
approach, namely equation (23e).
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For the sake of simplicity, we restrict ourselves to the use of spatial discretisations which are
C0 conforming in the fields {φ, ϕ} across interfaces, as this permits the trivial satisfaction of
equations (22e), (22f), (23f) and (23g), resulting in the following electro-mechanical boundary
value problem

F =∇0φ; in B0; (43a)

DIVP (ψB0(X,ψE),F ,E0) + f 0 = 0; in B0; (43b)

PN = t0; on ∂tB0; (43c)

φ = φ̄
b
; on ∂φB0, (43d)

and

E0 = −∇0ϕ; in B0; (44a)

DIVD0(ψB0(X,ψE),F ,E0) = ρ0; in B0; (44b)

D0 ·N = −ω0; on ∂ωB0; (44c)

ϕ = ϕ̄b; on ∂ϕB0; (44d)

ϕ = ±ϕ̄; on E±, (44e)

where ψB0(X,ψE) is obtained from the Laplacian extension (30) and where the first Piola-
Kirchhoff stress tensor P and the electric displacement D0 are derived from the spatially varying
free energy density (refer to equations (31) and (34)). All in all, equations (30), (31), (34), (43),
(44) define the governing equations of the diffuse electro-mechanical DE response. Solution of the
electro-mechanical boundary value problem defined above (refer to equations (43) and (44)) by
using a variational formulation requires a straightforward modification of the variational principle
(11). Specifically, the modified variational principle can be formulated as

Π(ψB0(ψE),φ
∗, ϕ∗) = inf

φ
sup
ϕ

{∫
B0

Ψ (ψB0(X,ψE),F ,E0) dV − Πm
ext (φ)− Πem

ext (ϕ)

}
, (45)

where the unknown fields {φ, ϕ} are chosen within suitable functional spaces satisfying this time
the additional essential condition (44e), that is

Vφ = {φ ∈ (H1(B0))3 : s.t. (43d)}; Vϕ = {ϕ ∈ H1(B0) : s.t. (44d), (44e)}. (46)

Remark 3. The free energy density (31) featuring in above variational principle (45) can be
additively re-written as

Ψ (ψB0(X,ψE),F ,E0) = Ψ (F ,E0)− (1− f(ψB0(X,ψE)))Ψem(F ,E0), (47)

in terms of a first homogeneous contribution and a second spatially varying contribution. The
second (negative) term is prevalent in those regions of B0 in the vicinity of E i \(E iElec ∪ ∂E iElec) and
served to smoothly counterbalance the effect of applying condition (42), instead of the sharpest
condition (23e). Thus, referring to the variational principle (45), it yields

lim
ψB0→ψEi

{∫
B0
−(1− f(ψB0(X,ψE)))Ψem(F ,E0)dV

}
≈
∫
EiElec

−α
2

(ϕ± ϕ̄)2dA; α > 0, (48)

so that the negative spatially varying term in (47) degenerates to a penalty type removal of the
potential on the in-surface non-electrode regions.
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As can be observed in (45), the functional Π depends implicitly on the set of in-surface
phase field functions ψE through the Laplacian extension ψB0 . The stationary conditions of
Π(ψB0(ψE),φ, ϕ) (45) stemming from its directional derivatives with respect to independent vir-
tual variations δφ ∈ Vφ0 and δϕ ∈ Vϕ

0 , yield the variational forms of the conservation of linear
momentum and Gauss’s law, namely

DΠ(ψB0(ψE),φ, ϕ)[δφ] =

∫
B0
P (ψB0(X,ψE),F ,E0) :∇0δφ dV −DΠm

ext (φ) [δφ] = 0; (49a)

DΠ(ψB0(ψE),φ, ϕ)[δϕ] =

∫
B0
D0(ψB0(X,ψE),F ,E0) ·∇0δϕ dV −DΠem

ext (ϕ) [δϕ] = 0. (49b)

The above variational statements (49) along with (30) represent three of the optimality condi-
tions of the meso-architecture design optimisation process to be described in the following section.
Naturally, for different definitions of the in-surface phase field functions ψEi , (i = 1 . . . NL − 1),
different electro-mechanical DE responses can be anticipated. As such, reconfigurable DE de-
signs can be rapidly generated by simply modifying the definition of the in-surface phase field
functions ψEi , resulting into different actuation modes. Interestingly, an additional positive by-
product of the above diffuse formulation, in contrast to the sharp interface approach, is that
of the computational efficiency, enabling the fast testing of multiple meso-architectures in the
search of user-defined tailor-made actuation modes. Finally, in order to solve the coupled system
of nonlinear variational forms in (49), we can use a Newton-Raphson k-iterative scheme where
both variational forms are linearised with respect to incremental fields ∆φ ∈ Vφ0 and ∆ϕ ∈ Vϕ

0

as

D2Π(ψB0(ψE),φ
k, ϕk)[δφ; ∆φ] +D2Π(ψB0(ψE),φ

k, ϕk)[δφ; ∆ϕ] = −DΠ(ψB0(ψE),φ
k, ϕk)[δφ];

(50a)

D2Π(ψB0(ψE),φ
k, ϕk)[δϕ; ∆φ] +D2Π(ψB0(ψE),φ

k, ϕk)[δϕ; ∆ϕ] = −DΠ(ψB0(ψE),φ
k, ϕk)[δϕ],

(50b)

which permit the update of the solution fields φ and ϕ at Newton-Raphson iteration k as presented
in (16) and where the second directional derivative terms are analogous to those shown in (17),
except for the use of the potential ΠψB0

, that is

D2Π(ψB0(ψE),φ, ϕ)[δφ; ∆φ] =

∫
B0
∇0δφ : C(ψB0(X,ψE),F ,E0) :∇0∆φ dV ;

D2Π(ψB0(ψE),φ, ϕ)[δφ; ∆ϕ] =

∫
B0
∇0δφ : PT (ψB0(X,ψE),F ,E0) ·∇0∆ϕdV ;

D2Π(ψB0(ψE),φ, ϕ)[δϕ; ∆φ] =

∫
B0
∇0δϕ ·P(ψB0(X,ψE),F ,E0) :∇0∆φ dV ;

D2Π(ψB0(ψE),φ, ϕ)[δϕ; ∆ϕ] = −
∫
B0
∇0δϕ · ε(ψB0(X,ψE),F ,E0)∇0∆ϕdV,

(51)

with the spatially varying constitutive tensors C(ψB0(X,ψE),F ,E0), P(ψB0(X,ψE),F ,E0) and
ε(ψB0(X,ψE),F ,E0) defined in (38).

4. Layer-by-layer electrode phase-field optimisation

The thin elastomeric layer-by-layer configuration described in the previous section has been
conceived by researchers [21] with the aim of attaining a morphology that standard or conventional
electrode layouts cannot achieve. The primary aim of this specific layout is not that of perfectly
fitting the electrically deformed DE to a given target shape, but rather ensure that its deformed
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configuration is endowed with certain desired morphological features, typically defined by specific
changes in curvature. The latter can be investigated by focusing on the displacement field u(X) =
φ(X)−X of certain critical points which can ultimately induce the desired morphological pattern.

For instance, let us focus on the DE circular example depicted in Figure 8, constructed via
the layer-by-layer layout shown in Figure 3, that is, comprised of four elastomeric layers and
three internal electrode interfaces. Let us suppose that we are in search of the optimal electrode
distribution on each interface {E1, E2, E3} that permits the actuated DE to morph into Figure 8.
Specifically, we aim at a final configuration characterised by a vertical displacement uZ = u ·E3

with E3 = [0 0 1]T on the perimeter of the DE which adopts the following parametrisation in
terms of the angle θ (in cylindrical coordinates), i.e., uZ = U sin(4θ + π/2), where U is the
maximum amplitude whose value is to be maximised. A plausible manner of inducing this desired
morphology is by maximising and minimising the vertical displacement of points {A,B,C,D} and
{E,F,G,H}, respectively. This design optimisation process will be formalised next.

Electrode design Objective:

{
maximise uZ in points {A,B,C,D}
minimise uZ in points {E,F,G,H}

Figure 8: Illustration of the aim of the Topology-Optimisation aided electrode design: the Z displacement of the
red and green target points must be maximised along the positive and negative Z direction, respectively.

4.1. The design optimisation problem and the objective function

The above (optimisation) design problem can be formulated in terms of an objective function,
denoted as J (φ), whose minimisation is sought. For the problem at hand, this objective function
can be defined as

J (φ) =− ((φ(XA)−XA) + (φ(XB)−XB) + (φ(XC)−XC) + (φ(XD)−XD)) ·E3

+ ((φ(XE)−XE) + (φ(XF )−XF ) + (φ(XG)−XG) + (φ(XH)−XH)) ·E3.
(52)

Naturally, different morphing requirements will lead to alternative definitions of the above
objective function. In the context of the layer by layer fabrication process, and in so far as the
minimisation of the objective function J (φ) is only driven by the selection of the in-surface phase
field functions ψEi , (i = 1 . . . NL − 1), this results in the latter to be considered as the design
variables of the optimisation problem, with their values restricted to be within the interval [0, 1]
(lower/upper bounds).

Due to the coupled (electro-mechanical) nature of the response of the DE, the mapping func-
tion φ is intrinsically related to the electric potential ϕ distribution, and both physical fields
{φ, ϕ} must comply with the variational statements (49), embodying the physical governing
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equations of the problem. As a result, the design optimisation problem can be summarised as

(P )



min
ψEi (X)

J (φ) (52);

s.t


Variational statements (49a) and (49b);
Constitutive model (31) and (34);
Laplacian extension (30);
0 ≤ ψEi(X) ≤ 1; ψEi(X) ∈ H1(E i); i = {1, . . . , NL − 1}; .

(53)

The solution of the above optimisation problem (P ) can be pursued via the introduction of
a suitable Lagrangian functional whose sensitivity can be used to drive the optimisation pro-
cess. The definition of this Lagrangian and the computation of its sensitivity is presented in the
following section.

4.2. The optimisation Lagrangian L and its optimality conditions

In this work we advocate for a gradient-based approach for the solution of the optimisation
problem (P ) in (53). As it is customary, this requires the definition of a Lagrangian functional
L with the aim of obtaining its sensitivity with respect to the set of design variables ψEi , (i =
1 . . . NL − 1). For problem (P ) in (53), the Lagrangian functional L can be defined as

L(ψB0(ψE),φ, ϕ,pφ, pϕ) = J (φ)−Wmec(ψB0(ψE),φ, ϕ,pφ)−Wele(ψB0(ψE),φ, ϕ, pϕ), (54)

where the first term J (φ) on the right hand side of (54) corresponds to the objective function
(52), and the remainder terms can be written as

Wmec(ψB0(ψE),φ, ϕ,pφ) = DΠ(ψB0(ψE),φ, ϕ)[pφ]; (55a)

Wele(ψB0(ψE),φ, ϕ, pϕ) = DΠ(ψB0(ψE),φ, ϕ)[pϕ], (55b)

where (55a) represents the variational statement of the equilibrium equation with pφ ∈ Vφ0 its
associated adjoint state (refer to (49a) just replacing δφ with pφ) and (55b) denotes the variational
statement of Gauss’ law with pϕ ∈ Vϕ

0 its associated adjoint state (refer to (49b) just replacing
δϕ with pϕ).

Whilst the first term on the right hand side of the Lagrangian functional represents the
objective function, the last two terms denote two of the variational statements that must be
fulfilled (refer to problem (P ) in (53)), and enforced via the introduction of the two adjoint states
pU = {pφ, pϕ}, counterpart of the unknown fields U = {φ, ϕ}. It is worthwhile to remember that
all fields {U ,pU} depend implicitly on the set ψE of in-surface phase field functions, namely the
so-called design variables. This fact will be later exploited in order to obtain the sensitivity of
the Lagrangian with respect to the design variables ψEi . Before that, the optimality conditions
of L must be computed.

First, the optimality conditions of L with respect to the adjoint states pU are defined as

DL(ψB0(ψE),U ,pU)[δpφ] = −DΠ(ψB0(ψE),φ, ϕ)[δpφ] = 0; (56a)

DL(ψB0(ψE),U ,pU)[δpϕ] = −DΠ(ψB0(ψE),φ, ϕ)[δpϕ] = 0, (56b)

where δpφ ∈ Vφ0 and δpϕ ∈ Vϕ
0 represent virtual variations of the corresponding adjoint states,

which can be written by simply replacing {δφ, δϕ} in (49) with {δpφ, δpϕ}, respectively. Solution
of above nonlinear coupled variational statements permit the computation of the unknown fields
U . This solution can be achieved via the Newton-Raphson strategy already described in (50).
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Next, the optimality conditions of L with respect to the fields U can be formulated as

DL(ψB0(ψE),U ,pU)[δφ] =−D2Π(ψB0(ψE),φ, ϕ)[pφ; δφ]−D2Π(ψB0(ψE),φ, ϕ)[pϕ, δφ]

+DJ (φ)[δφ] = 0; (57a)

DL(ψB0(ψE),U ,pU)[δϕ] =−D2Π(ψB0(ψE),φ, ϕ)[pφ; δϕ]−D2Π(ψB0(ψE),φ, ϕ)[pϕ; δϕ] = 0,

(57b)

where the second directional derivative terms featuring in (57) are presented in (51), just by
replacing {δφ, δϕ} with {pφ, pϕ}, and {∆φ,∆ϕ} with {δφ, δϕ}, respectively. Solution of the
above linear variational statements (57) result in the adjoint states pU .

4.3. The sensitivity of the optimisation Lagrangian L
Once the fields and the adjoint states {U ,pU} have been obtained from the solution of the

above optimality conditions (56) and (57), it is possible to proceed to the computation of the
sensitivity of the Lagrangian L with respect to the in-surface phase-field functions ψEi . At opti-
mality, that is, when (56) and (57) are satisfied, the Lagrangian functional L can be re-written
solely in terms of the set of design variables ψE , that is

F(ψE) = L(ψB0(ψE),U ,pU)|optimality , (58)

and this permits the so-called sensitivity of the Lagrangian (i.e. ∂ψEiF(ψE)) to be computed from
the directional derivative of F as

DF(ψE)[∆ψEi ] = ∂ψEiF(ψE) ∆ψEi . (59)

Referring to equation (58), the sensitivity can be obtained as

DF(ψE)[∆ψEi ] = DL(ψB0 ,U ,pU)[DψB0(ψE)[∆ψEi ]]

+DL(ψB0 ,U ,pU)[DpU [∆ψEi ]]︸ ︷︷ ︸
= 0 (optimality (56))

+DL(ψB0 ,U ,pU)[DU [∆ψEi ]]︸ ︷︷ ︸
= 0 (optimality (57))

,
(60)

where application of the optimality conditions has been made use in (60). Above equation (60)
can be expanded as

DF(ψE)[∆ψEi ] =

(
−
∫
B0
g(X, ψB0)

∂ψB0(X,ψE)

∂ψiE
dV

)
∆ψEi , (61)

where the term
∂ψB0 (X,ψE)

∂ψiE
can be obtained after solution of (30) and the term g(X,ψB0) is derived

from (49), (54) and (55) yielding

g(X,ψB0) =∇0pφ : ∂ψB0P (ψB0 ,F ,E0) +∇0pϕ · ∂ψB0D0(ψB0 ,F ,E0), (62)

with ∂ψB0P (ψB0 ,F ,E0) and ∂ψB0D0(ψB0 ,F ,E0) computed from (37) as

∂ψB0P (ψB0 ,F ,E0) = f ′(ψB0)∂FΨem(F ,E0); (63a)

∂ψB0D0(ψB0 ,F ,E0) = −f ′(ψB0)∂E0Ψem(F ,E0). (63b)

The sensitivity of the Lagragian F with respect to the in-surface phase field functions ψEi ,
that is, ∂ψEiF(ψE) is a key ingredient to the evolution of the in-surface phase field functions ψEi ,
which is presented next.
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4.4. Evolution of the in-surface phase field functions

In order to describe the evolution of the surface electrode regions E iElec during the optimisa-
tion process, a pseudo-time parameter τ ∈ [τ0, τm] is introduced, where τ is associated with a
continuously evolving topology optimisation. Thus, the configuration of the electrodes can be
evolved in pseudo-time through an optimisation process from configuration E iElec(τ0) to configura-
tion E iElec(τm). The introduction of this pseudo-time parameter implies the following modification
with respect to equation (25),

∀ξ ∈ E i,∀τ ∈ [τ0, τm] ,


ψEi(ξ, τ) = 1; if ξ ∈ E iElec(τ);

0 < ψEi(ξ, τ) < 1; if ξ ∈ ∂E iElec(τ);

ψEi(ξ, τ) = 0; if ξ ∈ E i \
(
E iElec(τ) ∪ ∂E iElec(τ)

)
.

(64)

In this work, the evolution of the in-surface phase field functions is carried out using the
so-called (non-conservative) Allen-Cahn approach, specifically as formalised in [60]. With that in
mind, the following initial boundary value problem can be used to evolve each of the in-surface
phase field functions

∂τψEi = κ∇2
EiψEi − ∂ψEi

(
1

4
Φ(ψEi) + η GEi(ξ)h(ψEi)

)
; in Ei × [τ0, τm]; (65a)

0 =∇EiψEi · N |∂Ei ; on ∂Ei × [τ0, τm]; (65b)

ψEi |τ0 = ψ0
Ei ; in Ei; (65c)

where∇Ei and∇2
Ei represent the in-surface E i gradient and Laplacian operators, respectively, and

N |∂Ei is the in-surface E i outward unit vector. In addition, κ and η are non-negative numbers
(to be set during the optimisation process), GEi(ξ) is a scalar field proportional to the sensitivity
∂ψEiF(ψE) (59), and Φ(ψEi) and h(ψEi) are polynomials given by

Φ(ψEi) = ψ2
Ei(1− ψEi)2; h(ψEi) = ψ3

Ei(6ψ
2
Ei − 15ψEi + 10), (66)

where Φ(ψEi) denotes the well-known double well potential (see Figure 9) and h(ψEi) is a carefully
designed polynomial satisfying that h′(ψEi) = 30Φ(ψEi) and h(0) = 0.

Void Electrode
RegionRegion

Figure 9: Double well potential representation.

The first term on the right hand side of (65a) represents a diffusion term which only acts
on the phase transition region and the second term on the right hand side of (65a) involves the
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sensitivity of the design optimisation problem in conjunction with the double well potential which
drive the evolution of the phase transition region. A variational statement for the initial boundary
value problem defined in (65) can be defined as∫

Ei
∂τψEiδψEi dA = −

∫
Ei
κ∇EiψEi ·∇EiδψEi dA+

∫
Ei
ψEi(1− ψEi)r(ξ, ψEi)δψEi dA; (67a)

ψEi |τ0 = ψ0
Ei ; in Ei, (67b)

where δψEi ∈ VψEi
0 is a suitable virtual field and the scalar field r(ξ, ψEi) is given by

r(ξ, ψEi) = ψEi −
1

2
− 30ηGEi(ξ)ψEi(1− ψEi). (68)

All in all, the solution of the initial boundary value problem (67) requires a priori knowledge of
the sensitivity (refer to (61) and (62)), which needs the prior solution of the optimality conditions
of the Lagrangian L to obtain the unknown fields (refer to (56)) and the adjoint states (refer to
(57)). Moreover, solution of (56), (57) and the computation of the sensitivities (61) require the
previous knowledge of the extended volume phase field function (30) and the use of the energy
interpolation ansatz (31) and (34).

4.5. Pseudo-time marching scheme

Following [60] and considering the pseudo-time slab [τn, τn+1] with ∆τ = τn+1 − τn, an im-
plicit one-step marching scheme can be used to advance the solution from ψnEi to ψn+1

Ei via time
discretisation of (67) as

T (ψn+1
Ei ) =

∫
Ei

[(
ψn+1
Ei − ψ

n
Ei

∆τ

)
δψEi + κ∇Eiψn+1

Ei ·∇EiδψEi − S(ψnEi , ψ
n+1
Ei )r(ξ, ψnEi)δψEi

]
dA = 0,

(69)
with

S(ψnEi , ψ
n+1
Ei ) =

{
ψn+1
Ei (1− ψnEi); if r(ξ, ψnEi) ≤ 0;

ψnEi(1− ψn+1
Ei ); if r(ξ, ψnEi) > 0.

(70)

Contrary to Reference [60], the diffusion term (i.e. second term within the integrand in (69))
is discretised implicitly in order to enhance the stability of the time marching scheme. Solution
of (69) is obtained as

DT (ψEi)[∆ψEi ] = −T (ψnEi); ψn+1
Ei = ψnEi + ∆ψEi . (71)

Notice that the semi-implicit nature of the term S(ψnEi , ψ
n+1
Ei ) in (70) is carefully chosen to

ensure ellipticity of the tangent operator in (71) (i.e. DT (ψEi)[δψEi ] > 0) and thus the solution
of (71).

4.6. Algorithmic flowchart

Algorithm 1 summarises the flowchart of actions of the in-silico design platform.
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Initialisation of in-surface phase-field functions ψEi at each interface for E i

Extension of in-surface phase field functions to the volume, obtaining ψB0 (30)

Initialise pseudo-time: τ = 0

Solve {φ, ϕ} from optimality condition (56)

Solve {pφ, pϕ} from optimality condition (57)

Evaluate objective function J (φ)|τ=0

Set optimisation parameters {∆τ, κ, η} for (69)-(70)

Define optimisation tolerance (tol.) and variable e > tol.

while e > tol. do

τ ← τ + ∆τ

Compute
∂ψB0 (X,ψE)

∂ψiE

Get sensitivities ∂ψEiF(ψE) from (59)-(61)

Evolve phase-field functions ψEi using (69)-(70)

if ψEi > 1 then
ψEi = 1

else
Do not correct

end
if ψEi < 0 then

ψEi = 0
else

Do not correct
end

Extension of in-surface phase field functions to the volume, obtaining ψB0 (30)

Solve {φ, ϕ} from optimality condition (56)

Solve {pφ, pϕ} from optimality condition (57)

Evaluate objective function J (φ)|τ
Define e = J |τ − J |τ−∆τ

end

Algorithm 1: Pseudo-code of the in-silico meso-architecture design.

5. Numerical examples

This Section presents a series of numerical examples in order to assess the capabilities of the
proposed modelling approach. First, an example is presented in order to demonstrate the accuracy
of the diffuse interface treatment approach in comparison with the sharp interface approach. A
relatively simple layer-by layer DE thin rectangular configuration will be simulated in order to
attain a complex bending actuation mode in the form of an S-shape. Next, various non-trivial
electrode meso-architectures will be in-silico obtained for different design objective functions for
both circular and square DE films.

In all the subsequent examples, tri-quadratic interpolations for both displacement and electric
potential fields have been included. Notice that the nearly-incompressible nature of DEs and
the generally small thickness of DE devices pose serious limitations for the application of low
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order finite element discretisations, prone to exhibit volumetric and bending locking under both
scenarios [40, 41].

5.1. Accuracy of the diffuse interface approach with respect to the sharp interface approach

The objective of this example is to demonstrate the accuracy of the diffuse interface ap-
proach described in Section 3.2 with respect to the exact sharp interface approach in Section
3.1. For that, we consider the set up displayed in Figure 10a, where the electrodes adopt a sim-
ple rectangular geometry. Regarding the sharp interface approach in Section 3.1, the Dirichlet
boundary conditions for the electric potential are restricted to the blue or red areas in the figure
(in compliance with equation (23e)) and the electromechanical energy of the elastomeric material
does not need to be interpolated (a value of ψB0 = 1 is adopted everywhere). On the contrary,
when making use of the diffuse interface approach, the Dirichlet boundary conditions are not
restricted to the red or blue areas, but are applied on the entire surface with same value of co-
ordinate Z. For instance, a value of ϕ = 1000V is applied in the first intercalated surface (at
Z = min(Z) + LZ/5) at every point X and Y (and not just in the region X > min(X) + LX/2).
In addition, the following in-surface phase functions {ΨE1 ,ΨE2 ,ΨE3 ,ΨE4}, located at the surfaces
Z = {min(Z)+LZ/5,min(Z)+2LZ/5,min(Z)+3LZ/5,min(Z)+4LZ/5}, are defined compatible
with the exact location of the electrodes, i.e.

ΨE1 =

{
1; X >= min(X) + LX/2

0; X < min(X) + LX/2
ΨE2 =

{
1; X >= min(X) + LX/2

0; X < min(X) + LX/2

ΨE3 =

{
1; X <= min(X) + LX/2

0; X > min(X) + LX/2
ΨE4 =

{
1; X <= min(X) + LX/2

0; X > min(X) + LX/2

(72)

Making use of the values of {ΨE1 ,ΨE2 ,ΨE3 ,ΨE4} in (72), we then compute the volume extended
phase-field function ψB0 according to equation (27) and (28), which permits to interpolate the
electromechanical energy according to equations (31) and (33). For this example, the material
parameters used are summarised in Table 1.

µ1 (Pa) µ2 (Pa) λ (Pa) εr

5× 104 5× 104 108 4.8

Table 1: Material parameters of the electromechanical constitutive model considered in the numerical examples
in Section 5.1. See equations (7) and (8).

From the analysis of these two methodologies, it can be observed from Figure 10b that the
electrically induced deformation predicted by the diffused interface approach (meshed domain)
overlaps to that predicted by the exact sharp interface approach (solid grey domain), which
confirms the good accuracy of the diffuse interface approach, convenient when the electrodes
evolve and adopt potentially complex geometries along the topology optimisation process.

5.2. Optimal design of electro meso-architecture for shape morphing elastomers

The objective of this section is to reveal the performance and suitability of the proposed
design methodology, described throughout the preceding sections and concisely summarised in
the pseudo-code in Algorithm 1. In the following numerical examples, DE designs characterised
by simple geometries (i.e. thin DE with circular or square in-plane geometry) are the focus of
our numerical studies. Furthermore, the layer-by-layer layout of the DE designs considered (see
Section 3) is comprised of the following common design features:
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(a) (b)

Figure 10: Accuracy of diffuse interface treatment of electrodes: (a) Geometry and set up for verification, com-
pletely fixed at X = min(X). Five elastomer layers intercalated with four inner electrodes. Red and blue electrodes
subjected to +1000V and −1000V , respectively. {LX , LY , LZ} = {5× 10−2, 1.25× 10−2, 5× 10−4} (m); (b) Un-
deformed configuration (transparent) and deformed configurations when considering the exact sharp interface
approach (in grey solid color) and the diffuse interface approach (domain with blue mesh).

� Six layers of DE layers are considered, {B1
0, . . . ,B6

0}.

� Five intercalated electrode regions E = {E1, . . . , E5} are considered.

� Constant thickness of all six elastomeric layers.

The aim of these examples is to obtain a suitable electrode layout complying with the above
features such that certain desired morphological attributes are exhibited by the electrically actu-
ated DE device. With regards to the constitutive model used for the elastomeric layers, we use
the energy interpolation scheme described by equations (31) and (34) for the definition of the
interpolated free energy density Ψ(X,F ,E0). Specifically, in all the examples, the mechanical
contribution of the free energy density, namely Ψm(F ), corresponds to that of a Mooney-Rivlin
material (see equation (7)) and the electromechanical energy contribution Ψem(F ,E0) corre-
sponds with that of an ideal dielectric elastomer (see equation (8)). The material parameters
featuring on each of these two contributions are summarised in Table 2, and are common for all
the numerical examples presented.

µ1 (Pa) µ2 (Pa) λ (Pa) εr

5× 104 5× 104 108 4.8

Table 2: Material parameters of the electromechanical constitutive model considered in the numerical examples
in Sections 5.2.2 and 5.2.3. See equations (7) and (8).

5.2.1. Numerical example 0

The objective of this preliminar example is to demonstrate the capability of the proposed
topology optimisation-based design approach to yield designs which are consistent with those
reported experimentally, and in particular, with those in Reference [21]. With that objective
in mind, considering the target configuration φ∗ in Reference [21] obtained as a result of a
distribution of electrodes similar to that in Figure 11, we define the following objective function

J =

∫
B0

1

2
||φ− φ∗||2 dV (73)
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(a) (b)

Figure 11: Example 0: (a) Qualitative distribution of electrodes over a section of the DE device that yields a
deformed configuration compatible with that on the right hand-side of the figure; (b) Deformed configuration
obtained from the topology optimisation (inverse) problem. Figure (a) taken from [21].

Figure 12a shows the initial seed that has been considered in order to minimise the objective
function in equation (73). After 170 iterations, the final distribution of electrodes obtained
is very similar to that in Figure 11, where 7 layers of electrodes have been used. The optimal
distribution of electrode layers can indeed be observed in Figure 12b-i. Furthermore, the deformed
configuration obtained for various values of electric potential is also shown in Figure 11b, very
similar to that extracted from Figure 11a in Reference [21].

5.2.2. Numerical example 1

The geometry considered in this example is depicted in Figure (13)a. The initial seed (at
pseudo-time τ = 0) for the phase-field functions, namely {ψE1(0), . . . , ψE5(0)} at the five electrode
interfaces {E1, . . . , E5} is displayed in Figure (13)b (all five interfaces are initialised in the same
manner), where the red colour is associated with a value of ψEi(0) = 1 (i.e. regions E iElec(0)) whilst
the blue color is associated with ψEi(0) = 0 (i.e. region E \ E iElec(0) ∪ ∂E iElec(0))). A Q2 Finite
Element discretisation of the geometry in (13)a has been carried out, comprising of six layers of
elements across the thickness of the DE device (Z direction) with a total of 98415 nodes for both
unknown fields {φ, ϕ}.

Two different designs have been investigated for the DE layout described above. These cor-
respond with two different actuation modes described as follows. Actuation mode 1 is in-
duced by minimising the vertical (Z direction) displacement of control points {B,D} (see Figure
(13)a), whilst maximising that of points {A,C}. Actuation mode 2 is induced by maximising
the vertical (Z direction) displacement of control points {B,A,D,C} whilst minimising that of
{E,H,G,C}. Their respective objective functions can be mathematically stated as

J (φ)|mode1 =− (φ(XA)−XA + φ(XC)−XC) ·E3 + (φ(XA)−XA + φ(XC)−XC) ·E3;
(74a)

J (φ)|mode2 =− (φ(XB)−XB + φ(XA)−XA + φ(XD)−XD + φ(XC)−XC) ·E3

+ (φ(XE)−XE + φ(XH)−XH + φ(XG)−XG + φ(XF )−XF ) ·E3. (74b)

Figure 14 shows the electrode layouts for the five interfaces {E1, . . . , E5} for actuation mode
1. A more detailed view of the layer-by-layer design can be observed in Figure 14b, where the
intercalated electrode layers are displayed in red and blue, and where the Z dimension of the
design has been extruded for visualisation purposes. Figure 15 shows the deformed configura-
tion corresponding with the optimised layout in Figure 14 under increasing electrical actuation.
Clearly, the final shape of the electrically deformed DE design is in agreement with the objective
function J (φ)|mode1 in equation (74a).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 12: Example 0: (a) Initial seed considered; (b)-(h) Final distribution of the phase-field functions at final
TO iteration, namely {ψE1(τm), . . . , ψE7(τm)}. Black colour is associated with ψEi = 1 and grey colour, with
ψEi = 0. (i) Display of layer-by-layer layout with intercalated optimal electrode distribution (a threshold value of
ψEi=0.5 has been used) where the Z dimension of the DE device has been enlarged for visualisation purposes.
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(a) (b)

Figure 13: Example 1: (a) Geometry of the DE with {R,LZ} = {1, 10−3} (m) and control points for inducing
the desired actuation modes when electrical actuation is applied; (b) Initial seed for all the phase-field functions
{ψE1(0), . . . , ψE5(0)}.

(a) (b) (c)

(d) (e) (f)

Figure 14: Example 1 (actuation mode 1): (a)-(e) Final distribution of the phase-field functions at final TO
iteration, namely {ψE1(τm), . . . , ψE5(τm)}. Black colour is associated with ψEi = 1 and grey colour, with ψEi = 0.
(f) Display of layer-by-layer layout with intercalated optimal electrode distribution (a threshold value of ψEi=0.5

has been used) where the Z dimension of the DE device has been enlarged for visualisation purposes.
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(a) (b)

(c)

Figure 15: Example 1 (actuation mode 1): Evolution of the deformed configuration B of the optimised layer-
by-layer DE device for increasing values of the voltage gradient ∆ϕ between alternating electrodes.

(a) (b) (c)

(d) (e) (f)

Figure 16: Example 1 (actuation mode 2): (a)-(e) Final distribution of the phase-field functions at final TO
iteration, namely {ψE1(τm), . . . , ψE5(τm)}. Black colour is associated with ψEi = 1 and grey colour, with ψEi = 0.
(f) Display of layer-by-layer layout with intercalated optimal electrode distribution (a threshold value of ψEi=0.5

has been used) where the Z dimension of the DE device has been enlarged for visualisation purposes.
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(a) (b)

(c)

Figure 17: Example 1 (actuation mode 2): Evolution of the deformed configuration B of the optimised layer-
by-layer DE device for increasing values of the voltage gradient ∆ϕ between alternating electrodes.

On the other hand, Figure 16 shows the electrode layouts for the five interfaces {E1, . . . , E5}
for actuation mode 2. Notice that the higher flexibility demand of this actuation mode with
respect to actuation mode 1 results in more complex topologies for the electrodes with respect
to those in Figure 14. Furthermore, Figure 17 shows the deformed configuration corresponding
with the optimised layout in Figure 16 under increasing electrical actuation, which is in good
agreement with the objective function J (φ)|mode2 in equation (74b).

Finally, Figure 18 displays the smooth evolution of the respective objective functions J for
both actuation mode 1 and actuation mode 2 (see equation (74)) as well as various (pseudo)-
time snapshots of the phase-field function at region E1, i.e. ψE1 , for both DE designs. It is worth
noticing the complexity of the topologies of the electrodes for both actuation modes in Figures
14 and 16, specially the latter, permitting the DE design to deform whilst attaining the desired
morphological features (see Figures 15 and 17) inherent in their respective objective functions
in (74). The complexity of the final electrode designs perfectly showcases this in-silico design
tool as an extremely useful aid to researchers for the design of new DE designs characterised by
non-intuitive electrode layouts which can permit outperform conventional DE designs.

In addition, Figure 18c−d demonstrate that the final designs comply with the design hypothesis
described in point V in Section 3. Specifically, we introduce the thresholded function ψ?Ei defined
as

ψ?Ei =

{
1 ψEi > 0.5

0 ψEi ≤ 0.5
(75)

We then monitor the possible influence between layers E1 and E4, and also between layers E2

and E5. For that we define the following indicators

C14 =

{
1 (ψE1 , ψE2 , ψE3 , ψE4) = (1, 0, 0, 1)

0 otherwise
C25 =

{
1 (ψE2 , ψE3 , ψE4 , ψE5) = (1, 0, 0, 1)

0 otherwise

(76)
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Figure 18: Example 1. Evolution of the objective function J (φ) in equation (74) and of the phase-field function
ψE1(τ) for (a) actuation mode 1 and (b) actuation mode 2 for electrode region E1. Number of nodes N
violating the far field interaction constraint for (c) actuation mode 1 and (d) actuation mode 2.
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The indicator C14 adopts a value of 1 if, for the same in-plane coordinate, there exists an
electrode on layer E1 (namely ψE1 = 1) and there are not electrodes in layers E2 and E3 (ψE2 = 0
and ψE3 = 0) physically blocking an electrode in layer E4 (namely ψE4 = 1). Similar interpretation
can be deduced from C25. It can be seen that for both examples, as the optimisation progresses and
hence, the phase-field variables ψEi spatially evolve through the optimisation iterations, indicators
C14 and C25 can adopt values of one at some nodes of the Finite Element mesh, and hence, the
modelling assumption implied by the region of influence would not correspond with the reality,
as interaction between either layers E1 and E4 or E2 and E5 occur. However, as the objective
function gets stabilised, the number of nodes where C14 or C25 are 1 is zero. The underlying
reason for the lack of interaction between layers which are not immediately adjacent resides in
the self-penalising effect introduced by the region of influence, and specifically, by the Laplacian
extension in (28). Essentially, the region of influence does not permit to detect electric field in
the material whenever, for instance, there is an electrode in both layers E1 and E4 and there are
not electrodes in layers E2 and E3 physically blocking it. Therefore, situations like this cannot
contribute advantageously in the objective function, and hence, the final designs are devoid from
situations like this.

In addition, the formulation is capable of handling any number of electrode layers E i, and not
necessarily the 5 used in this example. In Figure 19 and 20, the designs for the case where the
number of electrode layers is 3 and 7 is shown, respectively, which although not shown, yield a very
similar actuated shape as that in Figure 15. The advantage though of employing a larger number
of layers resides in the higher flexibility to adapt to more complex shape morphing configurations
than those considered in these examples with an increasing number of electrode layers.

5.2.3. Numerical example 2

The geometry considered in this example can be observed in Figure (21)a. The initial seed
(at pseudo-time τ = 0) for the phase-field functions, namely {ψE1(0), . . . , ψE5(0)} at the five
electrode regions {E1, . . . , E5} is displayed in Figure (21)b (all five regions are initialised in the
same manner), where the red colour is associated with a value of ψEi(0) = 1 (i.e. regions E iElec(0))
whilst the blue color is associated with ψEi(0) = 0 (i.e. region E \ E iElec(0) ∪ ∂E iElec(0))). A Q2
Finite Element discretisation of the geometry in (21)a has been carried out, comprising of six
layers of elements across the thickness of the DE device (Z direction) with a total of 98415 nodes
for both unknown fields {φ, ϕ}.

As in the previous example, the objective in this example is to find the electrode layout in the
five interfaces {E1, . . . , E5} that permits the DE to deform according to two different actuation
modes. Specifically, actuation mode 1 is achieved by maximixing the vertical component (Z
direction) of the displacement of the control points {E,G}, whilst minimising that of points
{F,H}. Notice that this actuation mode is very similar to actuation mode 1 on the circular
geometry described in Section 5.2.2 but particularised to the square geometry in Figure 21.
On the other hand, actuation mode 2 is achieved by fixing the control points in the corners
of the square geometry, and then maximising the vertical component of the displacement of
control points {B,D} and minimising that of {A,C}. In order to reproduce each actuation mode
described under electrical actuation, two separate design problems have been carried out where
their respective objective functions are mathematically defined as

J (φ)|mode1 =− (φ(XE)−XE + φ(XG)−XG) ·E3 + (φ(XF )−XF + φ(XH)−XH) ·E3;
(77a)

J (φ)|mode2 =− (φ(XB)−XB + φ(XD)−XD) ·E3 + (φ(XA)−XA + φ(XC)−XC) ·E3.
(77b)

Figure 22 shows the electrode layout for the five interfaces {E1, . . . , E5} for the case of actu-
ation mode 1. A more detailed view of the layer-by-layer design can be observed in Figure 22b,
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(a) (b)

(c) (d)

Figure 19: Example 1 (actuation mode 1). Final distribution of the phase-field functions at final TO iteration,
namely {ψE1(τm), . . . , ψE3(τm)}. Black colour is associated with ψEi = 1 and grey colour, with ψEi = 0. (f)
Display of layer-by-layer layout with intercalated optimal electrode distribution (a threshold value of ψEi=0.5 has
been used) where the Z dimension of the DE device has been enlarged for visualisation purposes.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 20: Example 1: Example 1 (actuation mode 1). Final distribution of the phase-field functions at final
TO iteration, namely {ψE1(τm), . . . , ψE7(τm)}. Black colour is associated with ψEi = 1 and grey colour, with
ψEi = 0. (f) Display of layer-by-layer layout with intercalated optimal electrode distribution (a threshold value of
ψEi=0.5 has been used) where the Z dimension of the DE device has been enlarged for visualisation purposes.
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(a) (b)

Figure 21: Example 2: (a) Geometry of the DE with {LX , LY , LZ} = {1, 1, 10−3} (m) and control points
inducing desired actuation modes under electrical actuation; (b) Initial seed for all the phase-field functions
{ψE1(0), . . . , ψE5(0)}.

where the intercalated electrode layers are displayed in red and blue, and where the Z dimension
of the device has been extruded. In addition, Figure 23 shows the deformed configuration corre-
sponding with the optimised layout in Figure 22 under increasing electrical actuation. Clearly,
the final shape of the electrically induced DE, exhibiting a saddle-point like deformation, is in
agreement with the objective function J (φ)|mode1 in equation (77a).

On the other hand, Figure 24 shows the electrode layout at the five regions {E1, . . . , E5} for the
case of actuation mode 2. Notice that this actuation mode is indeed very similar to actuation
mode 1, but the control points have been rotated 90 degrees clockwise around axis Z. Notice that
in the case of a circular geometry, as that presented in the previous example in Section 5.2.2, its
inherent infinite geometrical symmetry yields designs which are invariant with respect to rotations
of the control points in Figure 13 around axis Z. However, the square geometry in this example,
deprived from infinite circular symmetry, prevents the invariance of the optimised designs under
rotations of the control points and hence, considerably different electrode designs are expected
when the control points are rotated. This is corroborated from the comparison between Figures
22 and 24. In addition, Figure 25 shows the deformed configuration corresponding with the
optimised layout in Figure 24 under increasing electrical actuation. Clearly, the final shape of the
electrically induced DE is in agreement with the objective function J (φ)|mode2 in equation (77b).
Finally, Figure 26 displays the smooth evolution of the respective objective functions J for both
actuation mode 1 and actuation mode 2 (see equation (77)) as well as various (pseudo)-time
snapshots of the phase-field function at region E1, i.e. ψE1 , for both DE designs.

6. Conclusions

This work has presented a novel computational methodology for the in-silico design of new
electrode meso-architectures in Dielectric Elastomers (DEs). The proposed phase field topology
optimisation approach is inspired in the very recent experimental work developed at Clarke Lab
(Harvard) [21], where the authors put forward an original layer-by-layer layout concept for the
manufacturing of DEs, where electrodes of alternating voltage are intercalated between adjacent
thin elastomeric layers. The new electrode meso-architectures reported in [21] have been shown
to result in extremely sophisticated actuation modes, well-beyond the current state of the art
bi-morphing actuation, as exhibited by soft gripper type robots, for example.

From the design and computational standpoint, the main ingredients of the technique are as
follows: (i) Consideration of the phase-field method for the implicit definition of the electrodes
placed at interface regions between adjacent elastomeric layers, through the use of in-surface
phase-field functions; (ii) Extension of the surface-restricted phase-field functions to the volume
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(a) (b) (c)

(d) (e) (f)

Figure 22: Example 2 (actuation mode 1): (a)-(e) Final distribution of the phase-field functions at final TO
iteration, namely {ψE1(τm), . . . , ψE5(τm)}. Black colour is associated with ψEi = 1 and grey colour, with ψEi = 0.
(f) Display of layer-by-layer layout with intercalated optimal electrode distribution (a threshold value of ψEi=0.5

has been used) where the Z dimension of the DE device has been enlarged for visualisation purposes.

(a) (b)

(c)

Figure 23: Example 2 (actuation mode 1): Evolution of the deformed configuration B of the optimised layer-
by-layer DE device for increasing values of the voltage gradient ∆ϕ between alternating electrodes.
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(a) (b) (c)

(d) (e) (f)

Figure 24: Example 2 (actuation mode 2): (a)-(e) Final distribution of the phase-field functions at final TO
iteration, namely {ψE1(τm), . . . , ψE5(τm)}. Black colour is associated with ψEi = 1 and grey colour, with ψEi = 0.
(f) Display of layer-by-layer layout with intercalated optimal electrode distribution (a threshold value of ψEi=0.5

has been used) where the Z dimension of the DE device has been enlarged for visualisation purposes.

(a) (b)

(c)

Figure 25: Example 1 (actuation mode 1): Evolution of the deformed configuration B of the optimised layer-
by-layer DE device for increasing values of the voltage gradient ∆ϕ between alternating electrodes.
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Figure 26: Example 1. Evolution of the objective function J (φ) in equation (77) and of the phase-field function
ψE1(τ) for (a) actuation mode 1 and (b) actuation mode 2 for electrode region E1.

of the surrounding elastomeric layers in order to incorporate the effect of the presence (or absence)
of electrodes within the free energy density of the DE; (iii) Use of an original energy interpola-
tion scheme of the free energy density where only the electromechanical contribution is affected
by the extended phase-field function; (iv) Consideration of the Allen-Cahn type evolution laws
proposed in Reference [60] for the surface-restricted phase-field functions, adapted to the current
multiphysics electro-mechanical setting; (v) Solution of the underlying governing equations (i.e.
equilibrium and Gauss’ law) via a monolithic nonlinear Newton-Raphson technique.

A series of challenging proof-of-concept numerical examples are included in order to assess
the applicability of the proposed methodology. As can be seen, the robustness of the compu-
tational formulation permits to explore extremely complex targeted actuation shapes, otherwise
unachievable through a trial-and-error (solely) experimental based approach. Consideration of
more sophisticated DE free energy density [20], incorporation of rank-n laminate constitutive
models [33] or the inclusion of non-reversible rate dependent viscoelastic effects [4] constitute the
next steps of our work.
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Appendix. Finite Element spatial semi-discretisation

Each elastomeric layer Bi0 is tessellated into a finite |N i
B0| set of non-overlapping volume

elements and the interfaces E i are tessellated into a finite |N i
E | set of non-overlapping surface

elements. In a standard Finite Element discretisation, the volume fields Y = {φ, ϕ,pφ, pϕ, ψB0}
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are interpolated as

φ ≈
nφ∑
a=1

Nφ
a φ

a; ϕ ≈
nϕ∑
a=1

Nϕ
a ϕ

a; pφ ≈
nφ∑
a=1

Nφ
a p

a
φ; pϕ ≈

nϕ∑
a=1

Nϕ
a p

a
ϕ; ψB0 ≈

nψB0∑
a=1

N
ψB0
a ψaB0 ,

(78)
where NY

a represents the nodal shape function associated to the field Y and node a of the
volume discretisation, nY denotes the number of nodes associated to the volume discretisation
of the field Y , and Ya is the nodal value of the field Y . An identical discretisation is used for
the corresponding virtual fields δY . Notice that the same spatial discretisation is adopted for
corresponding unknown fields and adjoint states. Analogously, the in-surface phase field functions
are interpolated as

ψEi ≈
nψEi∑
a=1

N
ψEi
a ψaEi , (79)

where N
ψEi
a represents the in-surface isoparametric shape function associated to the field ψEi and

node a of the in-surface discretisation, nψEi denotes the number of nodes associated to the in-
surface discretisation of the field ψEi , and ψaEi is the nodal value of the field ψEi . An identical
discretisation is used for the corresponding virtual field δψEi . Notice that both volume (78) and
in-surface (79) discretisations are selected conforming to ensure ab initio C0 continuity.

6.1. Spatial discretisation of the optimality conditions with respect to the adjoint states

The optimality conditions (56) can be spatially discretised as

DΠ(ψB0 ,φ, ϕ)[δpφ] =

nφ∑
a=1

δpaφ ·R
pφ
a = 0; DΠ(ψB0 ,φ, ϕ)[δpϕ] =

nϕ∑
a=1

δpaϕR
pϕ
a = 0, (80)

where the nodal residual components R
pφ
a and R

pϕ
a are given by

R
pφ
a =

∫
B0
P (ψB0 ,F ,E0)∇0N

φ
a dV −

∫
B0
fNφ

a dV −
∫
∂tB0

t0N
φ
a dA;

Rpϕ
a =

∫
B0
D0 (ψB0 ,F ,E0) ·∇0N

ϕ
a dV +

∫
B0
ρ0N

ϕ
a dV +

∫
∂ωB0

ω0N
ϕ
a dA.

(81)

Solution of the discrete nonlinear optimality conditions (80) in terms of the nodal unknowns
{φb, ϕb} is carried out via the Newton-Raphson iterative strategy (50), which requires the com-
putation of the following linearisation components

D2Π(ψB0 ,φ, ϕ)[δpφ; ∆φ] =

nφ∑
a=1

nφ∑
b=1

δpaφ ·K
φφ
ab ∆φb;

D2Π(ψB0 ,φ, ϕ)[δpφ; ∆ϕ] =

nφ∑
a=1

nϕ∑
b=1

δpaφ ·K
φϕ
ab ∆ϕb;

D2Π(ψB0 ,φ, ϕ)[δpϕ; ∆φ] =

nϕ∑
a=1

nφ∑
b=1

δpaϕ

(
Kφϕ

ba

)T
∆φb;

D2Π(ψB0 ,φ, ϕ)[δpϕ; ∆ϕ] =

nϕ∑
a=1

nϕ∑
b=1

δpaϕK
ϕϕ
ab ∆ϕb,

(82)
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where the stiffness tangent contributions Kφφ
ab , Kφϕ

ab and Kϕϕ
ab can be expressed as(

Kφφ
ab

)
ij

=

∫
B0

(
∇0N

φ
a

)
I

(C (ψB0 ,F ,E0))iIjJ (∇0N
φ
b )J dV ;(

Kφϕ
ab

)
i

=

∫
B0

(
∇0N

φ
a

)
I

(
PT (ψB0 ,F ,E0)

)
iIJ

(∇0N
ϕ
b )J dV ;

Kϕϕ
ab = −

∫
B0
∇0N

ϕ
a · ε (ψB0 ,F ,E0)∇0N

ϕ
b dV.

(83)

6.2. Spatial discretisation of the optimality conditions with respect to the unknown fields

Spatial discretisation of the optimality conditions (57) yield the following linear system of
equations in terms of the nodal unknowns {pbφ, pbϕ} as

DL(ψB0 ,U ,pU)[δφ] = −
nφ∑
a=1

nφ∑
b=1

δφa ·Kφφ
ab p

b
φ −

nφ∑
a=1

nϕ∑
b=1

δφa ·Kφϕ
ab p

b
ϕ +

nφ∑
a=1

δφa ·RJa = 0;

(84a)

DL(ψB0 ,U ,pU)[δϕ] = −
nϕ∑
a=1

nφ∑
b=1

δϕa
(
Kφϕ

ba

)T
pbφ −

nϕ∑
a=1

nϕ∑
b=1

δϕaKϕϕ
ab p

b
ϕ = 0, (84b)

where, for the particular case of the objective function in (52), the residual vector RJa corre-
sponding to the discretisation of DJ (φ)[δφ] yields

RJa = ωaIE3; ωaI =

{
δaI ; I = {A,B,C,D};
−δaI ; I = {E,F,G,H},

(85)

and δaI is the delta Kronecker operator and E3 = [0 0 1]T .

6.3. Spatial discretisation of the phase field volume extension

The spatial discretisation of (30) yields the following linear system of algebraic equations

DΛ(ψE , ψB0)[δψB0 ] =

nψB0∑
a=1

nψB0∑
b=1

δψaB0K
ψB0ψB0
ab ψbB0 = 0; K

ψB0ψB0
ab =

∫
B0
∇0N

ψB0
a ·∇0N

ψB0
b dV.

(86)
Standard vector and matrix assembly of the system (86) and a convenient re-ordering of the

nodal values ψbB0 , splitting these between nf true free degrees of freedom (those to be determined

from the solution of (86), compactly denoted as ψf
B0) and np prescribed values (compactly denoted

as ψp
B0 , with ψp

B0 = ψE) can be carried in order to re-write (86) as K
ψB0ψB0
ff K

ψB0ψB0
fp(

K
ψB0ψB0
fp

)T
K

ψB0ψB0
pp

 ψf
B0

ψp
B0

 = 0; ψp
B0 = ψE . (87)

Following the solution of above system (87), permits to obtain

∂ψf
B0

∂ψE
= −

(
K

ψB0ψB0
ff

)−1

K
ψB0ψB0
fp ;

∂ψp
B0

∂ψE
= Inp×np , (88)

which is a key ingredient in the computation of the sensitivity (61).
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6.4. Computation of the sensitivity and evolution of the phase field equation

Spatial discretisation of (61) leads to

DF(ψE)[∆ψEi ] =

nψEi∑
a=1

∂ψEiFa ∆ψaEi ; ∂ψEiFa = −
nψB0∑
b=1

(∫
B0
g(X, ψB0)N

ψB0
b dV

)
∂ψbB0
∂ψaEi

, (89)

which defines the so-called nodal sensitivity, which can be compactly written in a vector format
as ∂ψEiF = [∂ψEiF1 . . . ∂ψEiFnψB0 ]T . This sensitivity can be used to drive the in-surface phase

field evolution equation via the scalar field GEi used in (68), which is defined as

GEi =
1

‖∂ψEiF‖

nψEi∑
a=1

N
ψEi
a ∂ψEiFa, (90)

where ∂ψEiF is defined as the L2 norm of the sensitivity over the surface E i. Notice that the L2

norm featuring in above equation (90) is simply introduce to non-dimensionalise the sensitivity
term. The spatial discretisation of the phase field evolution equation (69) yields

nψEi∑
a=1

nψEi∑
b=1

δψaEiK
ψEiψEi
ab ∆ψbEi =

nψEi∑
a=1

δψaEiR
ψEi
a , (91)

where the stiffness matrix component K
ψEiψEi
ab and the residual component R

ψEi
a are expressed as

K
ψEiψEi
ab =

∫
Ei

(
1

∆τ
Na
ψEi
N b
ψEi

+ κ∇0N
a
ψEi
·∇0N

b
ψEi

+Na
ψEi
N b
ψEi
P (ψnEi)r(ξ, ψ

n
Ei)

)
dA, (92)

and

R
ψEi
a =

∫
Ei

(
ψnEi

∆τ
+Q(ψnEi)r(ξ, ψ

n
Ei)

)
Na
ψEi

dA, (93)

where

P (ψnEi) =

{
(ψnEi − 1); if r(ξ, ψnEi) ≤ 0;

ψnEi ; if r(ξ, ψnEi) > 0;
Q(ψnEi) =

{
0; if r(ξ, ψnEi) ≤ 0;

ψnEi ; if r(ξ, ψnEi) > 0.
(94)

Appendix. Numerical comparison between sharp and diffuse interface approaches

In this appendix, a comparison of the diffuse interface approach against the sharp interface
approach is carried out for the designs presented in examples 5.2.1 and 5.2.2. The squared
geometry examples in Sections 5.2.3 are not included here, as they lead to the same conclusion.

In order to construct the sharp interface model, every Finite Element node at each surface
region E i, i = {1, . . . , NL−1} associated with a value of ψEi such that ψEi ≥ 0.5 is treated as
a Dirichlet boundary condition for the electric potential, yielding a sharp geometrical approxi-
mation of the boundary of the electrodes. Figure 27 shows the contour plot of the norm of the
displacement field obtained for the various optimal electrode topologies. The agreement between
both sharp and diffuse interface approaches is extremely good in terms of this metric.

An additional field which provides interesting insight is the Lagrangian electric field E0 =
−∇0ϕ. Notice that the diffuse approach, which considers a uniform distribution of electric po-
tential along each surface E i, yields therefore a uniform distribution of E0 on each volume layer
Bi0. Here is where the energy interpolation scheme in equation (33) which, when particularised to
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the case of an ideal dielectric elastomer (see equation (8)), permits to define the so called effective
electric field as,

Ψ̄em(ψB0(X,ψE),F ,E0) = [(ψB0(X,ψE))
p + α] Ψem(F ,E0)

= − [(ψB0(X,ψE))
p + α]

εrε0

2J
HE0 ·HE0

= −εrε0

2J
HÊ0 ·HÊ0,

(95)

with Ê0 the effective electric field, defined as,

Ê0 =
√

[(ψB0(X,ψE))
p + α]E0. (96)

The field responsible for the deformation of the dielectric material in the case of the smooth
interface approach is indeed Ê0, as it features quadratically in the electro-mechanical contribution
of the first Piola-Kirchhoff stress tensor. Therefore, comparison of this field inferred from the
smooth approach against the true electric field yielded by the geometrically sharp approach is a
good indicator of the accuracy of the first. This comparison is carried out in Figure 28 (notice
that the thickness of the DE device has been increased by a factor of 5 for visualisation purposes).
Clearly, there is an excellent agreement between both the true electric field distribution E0 for
the sharp interface approach and the effective electric field Ê0 for the smooth interface approach.
Naturally, the first approach yields a more realistic representation of the electric field (including
border effects on the boundaries of the electrodes). However, these features (namely border
effects) have proven not to be sufficiently relevant as to yield differences in the electrically induced
deformations between both approaches.
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Sharp approach Diffuse approach

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 27: Contour plot distribution of the norm of the displacement field when considering the geometrically
sharp interface approach (left column) and the diffuse approach (right column) pursued in this paper. Results
corresponding with examples: (a)-(b) Actuation mode 1 in Section 5.2.2 with five electrode regions; (c)-(d) Actu-
ation mode 1 in Section 5.2.2 with three electrode regions; (e)-(f) Actuation mode 1 in Section 5.2.2 with seven
electrode regions; (g)-(h) Actuation mode 2 in Section 5.2.2; (i)-(j) Example in Section 5.2.1.
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Sharp approach Diffuse approach

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 28: Contour plot distribution of the true Lagrangian electric field E0 when considering the geometrically
sharp interface approach (left column). Contour plot distribution of the effective Lagrangian electric field Ê0

in (96) when considering the smooth interface approach pursued in this paper (right column). For visualisation
purposes, the thickness has been increased by a factor of 5, and the results have been plotted in the undeformed
configuration. Results corresponding with examples: (a)-(b) Actuation mode 1 in Section 5.2.2 with five electrode
regions; (c)-(d) Actuation mode 1 in Section 5.2.2 with three electrode regions; (e)-(f) Actuation mode 1 in Section
5.2.2 with seven electrode regions; (g)-(h) Actuation mode 2 in Section 5.2.2; (i)-(j) Example in Section 5.2.1.
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[26] Victor Lefèvre and Oscar Lopez-Pamies. Nonlinear electroelastic deformations of dielectric
elastomer composites: I—ideal elastic dielectrics. Journal of the Mechanics and Physics of
Solids, 99:409 – 437, 2017.

[27] B. Li, L. Liu, and Z. Suo. Extension limit, polarization saturation, and snap-through instabil-
ity of dielectric elastomers. International Journal of Smart and Nano Materials, 2(2):59–67,
2011.

[28] T. Li, C. Keplinger, R. Baumgartner, S. Bauer, W. Yang, and Z. Suo. Giant voltage-induced
deformation in dielectric elastomers near the verge of snap-through instability. Journal of
the Mechanics and Physics of Solids, 61(2):611–628, 2013.

[29] Kun Liu, Shitong Chen, Feifei Chen, and Xiangyang Zhu. A unidirectional soft dielectric
elastomer actuator enabled by built-in honeycomb metastructures. Polymers, 12(3), 2020.

[30] C. Lundgaard and O. Sigmund. A density-based topology optimization methodology for
thermoelectric energy conversion problems. Structural and Multidisciplinary Optimisation,
57:1427–1442, 2018.

[31] C. Lundgaard and O. Sigmund. Design of segmented off-diagonal thermoelectric generators
using topology optimization. Applied Energy, 236:950–960, 2019.

[32] C. Lundgaard and O. Sigmund. Design of segmented thermoelectric peltier coolers by topol-
ogy optimization. Applied Energy, 239:1003–1013, 2019.

47
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