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Abstract

Residual stresses may exist in different finitely deformed soft multifunctional materials such as in electro-
active and magneto-active polymers. In order to develop accurate constitutive frameworks of these smart
materials experiencing electro-magneto-mechanically coupled loads, the presence of residual stresses
needs to be considered on the onset of the model development. In this contribution, a spectral constitutive
equation for finite strain magneto-electric soft material bodies with residual stresses is developed using
spectral invariants, where each spectral invariant has a clear physical meaning. A prototype total energy
function comprising of single-variable functions is proposed; a single-variable function that depends on
an invariant with a direct meaning is easily handled and is experimentally attractive. Results of some
boundary value problems are given.

1 Introduction

Multifunctional materials are innovative and smart as they can adapt their physical and mechanical proper-
ties as a result of external stimuli. Several external fields can be mentioned including temperature, electric
field, magnetic field, humidity, light, pH or combinations of two or more of them [36, 69]. Novel synthesis
techniques and experimental characterisations, mathematical modelling, and the search for exotic applica-
tions of multifunctional materials have been active fields of research in last two decades. Within the bunch
of multifunctional smart materials, the so-called magneto-active polymers (MAPs) and electro-active poly-
mers (EAPs) become widely explored responsive materials thanks to their rapidly-expanding applications
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in many areas ranging from micro-scale to macro-scale soft robots for targeted drug delivery and for arti-
ficial muscles in prosthetics, stretch sensors in monitoring deformations on soft and flexible structures, to
mention a few [2, 5, 6, 7, 8, 31, 13, 31, 33, 36, 69]. In the case of EAPs, when an electric voltage will be ap-
plied across the thicknesses of system, large deformations will be induced as a result of Coulomb attractions
of the opposite charges [31, 33, 41]. In contrast, MAP is a polymeric composite filled with magnetisable
particles that can be deformed considerably upon the application of a remotely controlled magnetic field
[4, 33]. Both EAPs and MAPs have specific merits and demerits [36]. For instance, EAPs being mostly
unfilled polymers, can create huge amount of actuation-driven deformations in contrast to MAPs. However,
EAPs require large electrical voltages and demand direct physical contact with the surfaces of an actuated
body while for MAPs, no physical attachments between the external field and the systems are required
[33, 40, 41]. For an overview of MAPs, a recent review paper by Bastola and Hossain [4] can be consulted.

In MAPs and EAPs, ideally magneto-mechanical and electro-mechanical couplings may occur separately.
However, there are some smart materials in which magneto-electrically (ME) coupling may occur simulta-
neously. In this group, multi-ferroic hard materials will create deformations that can be within small strain
ranges. Multi-ferroic ME materials can be applied in the manufacturing of the magneto-electric random
access memories (MERAM), see for example [19, 22, 24] for more applications. Nan et al. [45], Pyatakov
et al. [49] summarised a wide range of research works and potential usages for ME materials. Note that the
early use of magneto-electric materials has been confined to only the area of small-strained hard materials
such as ceramics and metals. However, Liu and Sharma [37], Krichen et al. [35] recently proposed an
interesting finite strain alternative to small-strained hard MEs. Such a soft polymeric composite can be pre-
pared using all traditional methods used for manufacturing MAPs in which magneto-responsive particles
are embedded acting as vehicles for combined magneto-electro-mechanical coupling. Furthermore, Liu et
al. [37, 38, 35] mentioned that some living biological matters contain receptors that can be interacted with
the presence of magneto field which substantiate the presence of ME coupling effects at finite strains.

Mathematical modelling and simulation of soft materials that can activated under the combined actions
of magneto-electro-mechanically coupled field at finite strains is a nascent area [11]. One of the earliest
works for fully-coupled thermo-electro-magneto-mechanical multifunctional matters at large strain is due
to Santapuri and co-workers [52]. They develop relevant equations in a thermodynamically consistent way
that results in an exhaustive list of important quantities of the problems. Very recently, Liu [38] devises
the problem of magneto-electro-elasticity based on the principle of minimum free energy. His approach is
based on the so-called total free energy function which is applicable to a wide range of multifunctional soft
materials starting from electro-magneto-active elastomers to piezo-electric-magnetic materials. Recently,
Rambausek and Keip [50] studied the ME coupling in magnetic and electric fields-activated soft compos-
ites. They further conclude that the shape effect of fillers is a non-local phenomenon both in EAPs and
MAPs. Very recently, Bustamante et al. [11] proposed a modular mathematical structure for modelling
magneto-electric soft materials that can finitely be deformed.

Residual stress can be defined as a stress field that exists in an equilibrium system without the application
of any external loads or tractions on the boundaries [27]. These stresses are non-homogeneous that result
in non-homogeneous responses in a body but their overall response is zero in the system [43, 44]. The exis-
tence of residual stresses in living and biological objects such as in plants, human tissues, insects and other
animals are very common that may create beneficial or adverse effects [68]. Furthermore, residual stresses
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may be produced during the manufacturing processes of materials or in geo-mechanics where high stresses
can be be developed below the Earth’s surface due to the gravitation force. For instance, in the manufac-
turing of rubberlike materials to be used in bush mountings for the support of engines, residual stresses can
be induced during the vulcanisation process [43, 44]. They can also be involved in metal formations or in
welded structures. The presence of residual stresses in the multifunctional materials such as MAPs or EAPs
might have either beneficial or adverse effects upon the application of subsequent loads [28]. Therefore,
such an important aspect needs to be incorporated at the very beginning of the mathematical modelling of
these fast growing smart materials.

The origin of residual stresses in EAPs and MAPs could be manifolds. In the case of MAPs, two types
of composites are usually manufactured [4]. In the first case, magnetisable particles are more or less ho-
mogeneously distributed and locked after the complete curing (solidification) of the mixtures. In contrast,
another type of MAPs can be prepared in which particles are arranged towards a particular direction if a
magnetic field is applied before the formation of crosslinked chain structures [28, 29]. In both cases, during
the transformation of particle-filled composites from a liquid stage to a fully solidified phase, a volume
reduction which is frequently termed as the curing-induced volume reduction or shrinkage, may result in
residual stresses in MAPs. Very recently, additive manufacturing or 3D printing is widely used for prepar-
ing magneto-active polymers in which photo-induced curing techniques are mainly used [36, 69]. Such
techniques may also induce differential curing-shrinkage as a result of spatially-oriented light intensity re-
sulting in non-homogeneous residual stresses in MAPs [36]. This can be imagined as an opposite to residual
stresses generated in biological tissues as a result of the differential growth [68].

In this contribution, we aim to present a mathematical framework for residually stressed soft polymeric
composites that are subjected to electro-magneto-mechanically coupled loads. In the present work we
consider as a basis the theory developed recently, see for example references[25, 26, 44, 47, 51], where
the residual stress is considered as a variable in the elastic energy of the body along with the deformation
gradient, where now in the reference configuration the body is not stress free. We note that the work in
references [25, 26] is based on the concept of initial stress symmetry (ISS) and applications of the ISS
model can be found in references [14, 15]. The model developed here could be modified to satisfy the ISS
model as described in [59], but this modification is beyond the scope of the current paper. We emphasize
that the works of [14, 15, 25, 26, 44, 47, 51] uses non-spectral invariants, where most of them do not have
clear physical meaning such as the classical invariants (or their variants) given in Spencer [67]; however,
in this paper, our proposed formulation uses a set of spectral invariants [53, 55, 56, 59, 60, 62, 64], where
each invariant has a clear physical meaning, and hence have an experimental advantage over other types of
invariants with no physical interpretation such as the classical invariants [67]. The advantages of spectral
invariants over classical invariants are discussed in [65]; hence, we will not elaborate them here. Following
our recent work [11] on electro-magnetic-elastic materials, we briefly present the relevant and key governing
equations that are essential to represent a magneto-electro-mechanically coupled system at large strains.

3



2 Preliminaries and governing equations for
electro-magneto-mechanically coupled systems

In the absence of an electromagnetic field, we assume, in the undeformed (reference) configuration, the
existence of an equilibrium stress field TR (residual stress) in which the surface traction is zero [64]. The

deformation gradient is defined as F =
∂y

∂x
in which y and x indicate the vectorial positions of a point in

the current and reference configurations, respectively. This is a key quantity in deriving the basic equations
for systems that are experiencing the interactions with electro-magnetic fields. For further details, reader is
referred to relevant text books, e.g., [20, 34, 39, 42, 48].

2.1 Maxwell equations

In this contribution, the distribution of free charges inside the body is absent. Moreover, there is no electric
current in the system. Hence, the Maxwell equations take the form

divb = 0 , curle + ḃ = 0 , divd = 0 , curlh = ḋ , d = ε0e + p , b = µ0(h + m) , (1)

where b is the magnetic induction, e is the electric field, d is the electric displacement, h is the magnetic
field, p is the electric polarization, m is the magnetization, ε0 is the electric permittivity in vacuum, µ0

is the magnetic permeability in vacuum, div and curl are, respectively, the divergence and curl of a vector
with respect to y and (̇) is the time derivative at fixed y The first law of motion is

f b + fe = ρaa − divTC , (2)

where aa is the acceleration, ρ is the density in the current configuration, TC is the Cauchy stress , f b is
the body force independent of electromagnetic fields and [48]

fe = (grade)Tp + (gradb)Tm + ˙p× b + div [v ⊗ (p× b)] , (3)

where⊗ denotes the dyadic product. The Lagrangian magnetic and electric variables are defined as [11, 12]

bL = JF−1b , el = F Te , (4)

where J = detF and det denotes the determinant of a tensor. Using the relations (see Appendix A)

div [d⊗ e− 1

2
ε0(e · e)I] = (curle)× p + (grade)Tp + ε0(curle)× e , (5)

we have in view of (1)

(grade)Tp = div [d⊗ e− 1

2
ε0(e · e)I] + ḃ× d . (6)

Using the relations

1

µ0
div [b⊗ b− 1

2
(b · b)I] =

1

µ0
(curlb)× b = ḋ× b + (curlm)× b (7)
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and

div [(m · b)I − b⊗m] = (gradb)Tm− (curlm)× b , (8)

we have

(gradb)Tm = div
[

1

µ0
(b⊗ b− 1

2
(b · b)I) + (m · b)I − b⊗m

]
− ḋ× b . (9)

Following the works of [9, 62, 64], the free energy is assumed to take the form

ρψ(F ,TR, b, e
e) = ρψ(F ,TR,

1

J
FbL,F

−TeeL) = W(a)(U ,TR, bL, e
e
L) , (10)

where

ee = e + v × b , eeL = F Tee (11)

v is the velocity and U is the right stretch tensor. In view of the Second Law of Thermodynamics [9], we
obtain

TCF
−T = ρ

∂ψ

∂F
, p = −ρ ∂ψ

∂ee
, me = −ρ∂ψ

∂b
, (12)

where

me = m + m̄ , m̄ = v × p . (13)

In view of the relations in (10), (12) and the formulae

∂ee

∂F
= −F−T ⊗ ee ,

∂b

∂F
=

1

J
[−FbL ⊗ F−1 +

3∑
i=1

gi ⊗ bL ⊗ gi] , (14)

where {g1, g2, g3} is a Cartesian basis, the Cauchy stress then takes the form

TC = ρF
∂ψ

∂F
= 2F

∂W(a)

∂C
F T − p⊗ e− (me · b)I + b⊗me . (15)

The equation of motion (2) also takes the form

ρaa = div
{

2F
∂W(a)

∂C
F T +

1

µ0
[b⊗ b− 1

2
(b · b)I] + ε0[e⊗ e− 1

2
(e · e)I] + p⊗ (v × b)

}

+ ˙p× b + ḃ× (b− d) + f . (16)

The above expression makes use of the relation

p⊗ (v × b) = b⊗ m̄− (m̄ · b)I + v ⊗ (p× b) . (17)
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Introducing a symmetric stress-like tensor

T T = 2F
∂W(a)

∂C
F T +

1

µ0
[b⊗ b− 1

2
(b · b)I] + ε0[e⊗ e− 1

2
(e · e)I] , (18)

we have the simplified equation of motion

ρaa = div [T T + p⊗ (v × b)] + ˙p× b + ḃ× (b− d) + f b . (19)

In view of (15), the equilibrium of moments [48]

EATC = p× e + me × b (20)

is satisfied, where EA is the permutation tensor and the operation

EA(a⊗ c) = c× a (21)

is used to obtain (20); a and c are vectors.

Note that in the time-independent case, the stress like tensor T T becomes the total stress tensor and we
have

divT T + f = 0 , (22)

taking note that, in this case, W(a)(U ,TR, bL, e
e
L) becomes W(a)(U ,TR, bL, eL).

Following the work of [11], we can express

JT T = 2F
∂Ω

∂C
F T , (23)

where the total energy

Ω = W(a)(U ,TR, bL, eL) +W(b)(U , bL, eL) , (24)

W(b)(U , bL, eL) =
1

2Jµ0
bL ·CbL −

Jε0

2
eL ·C−1eL . (25)

If the incompressibility assumption J = 1 is activated, we have the relations

T T = 2F
∂Ω

∂C
F T − pI , (26)

where p is the Lagrange multiplier due to the incompressible constraint.

In this paper, we only focus on time-independent problems and incompressible materials. Hence, we have,

divb = 0 , curle = 0 , divd = 0 , curlh = 0 . (27)

The Lagrangian results

DivbL = 0 , CurleL = 0 , DivdL = 0 , CurlhL = 0 , (28)
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where

dL = − ∂Ω

∂eL
, hL =

∂Ω

∂bL
, (29)

are obtained in [10]: Div and Curl are, respectively, the divergence and curl of a vector with respect to x
and

dL = F−1d , hL = F Th (30)

In view of (27)2,4 and (28)2,4, we could write

e =
∂Ψe

∂y
, h =

∂Ψh

∂y
, eL =

∂ΨE

∂x
, hL =

∂ΨH

∂x
, (31)

where Ψe,Ψh,ΨE and ΨH are scalar functions.

In vaccum, the Maxwell stress tensor TM outside the body is given by

TM = d⊗ e + h⊗ b− 1

2
[d · e + h · b]I = ε0(e⊗ e− e · e

2
I) +

1

µ0
(b⊗ b− b · b

2
I) . (32)

The continuity equations for the electromagnetic variables b, h, d, e and the total stress T T are given in
reference [11]. Electromagnetic theory details can be found from, for example, in [34, 39, 42, 48].

3 Spectral constitutive equation: Time independent processes

In view of (24), we can express Ω via the variables

U , TR, f , g , bL, eL , (33)

where f and g are unit vectors and

bL = bLf , eL = eLg , bL =
√
bL · bL , eL =

√
eL · eL . (34)

Ω must be form invariant with respect to any rotation Q at the reference configuration, i.e.,

Ω(U ,TR,f , g, bL, eL) = Ω(QUQT ,QTRQ
T ,Qf ,Qg, bL, eL) . (35)

Hence, we can express Ω in terms of the isotropic invariants of the set S = {U ,TR, bL, eL}. To obtain
these isotropic invariants, following the work of Shariff et al. [64], we simply express the components of
the elements of S using the basis {u1,u2,u3}, where the unit vector ui is an eigenvector of

U =

3∑
i=1

λiui ⊗ ui . (36)

Accordingly, we can express Ω in terms of the spectral component invariants

λi = ui ·Uui = Qui ·QUQTQui , fi = ui · f = Qui ·Qf , gi = ui · g = Qui ·Qg ,

tij = ui · TRuj = Qui ·QTRQ
TQuj , eL , bL . (37)
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We must emphasize that the components of the vectors and tensors in the set S, with respect to an arbitrary
basis, are not, in general, invariants. Since f and g are unit vectors, we have,

3∑
i=1

f2
i = 1 ,

3∑
i=1

g2
i = 1 , (38)

hence, only 15 of the 17 invariants in (37) are independent [58, 66]. The set of 17 invariants in (37) can be
considered to be an irreducible functional basis [54, 66], since all invariants for the set S can be explicitly
expressed in terms of the spectral invariants in (37). We strongly point out that all 37 classical invariants in
the minimal integrity basis [67] for the set of tensors S can be explicitly expressed in terms of the spectral
invariants given in (37). For example, the minimal integrity classical invariant

tr (bL ⊗ bLCTR) = bL · (CTRbL) =
∑
i,j

b2Lfifjλ
2
j tij , (39)

which clearly shows that it can be expressed in terms of the spectral invariants (37). Relations between
Spencer [67] classical invariants and spectral invariants can be found in Shariff [66], where he has shown
that only 13 (if we ignore bL and eL ) of the 37 classical invariants in the minimal integrity basis for the
set S are independent. If we consider the positive and negative values of fi and gi as distinct single-valued
functions, in view of (38), then the number of invariants in the irreducible functional basis is reduced to 15.
Advantages of spectral invariants over classical invariants are discussed, for example, in reference [65].

For convenience, we express

Ω = W (U ,TR,f , g, bL, eL) +
b2L

2Jµ0

3∑
i=1

βiλ
2
i −

Jε0e
2
L

2

3∑
i=1

γi
λ2
i

, (40)

where

βi = f2
i , γi = g2

i . (41)

Ω is required to satisfy the P -property [55] and to assist this requirement, the independent invariants

ζi = tii = ui · TRui , χi = ui · T 2
Rui (42)

are used in Ω (instead of the invariants tij).

In view of (23), we require the Lagrangian spectral components of the derivative
∂Ω

∂C
[60] i.e.,(

∂Ω

∂C

)
ii

=
1

2λi

∂Ω

∂λi
, (43)

(
∂Ω

∂C

)
ij

=

∂Ω

∂ui
· uj −

∂Ω

∂uj
· ui

2(λ2
i − λ2

j )
, i 6= j . (44)
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In view of (28), we also require the Lagrangian relations

∂Ω

∂bL
=

∂Ω

∂bL
f +

1

bL

[
(I − f ⊗ f)T

∂Ω

∂f

]
, (45)

∂Ω

∂eL
=

∂Ω

∂eL
g +

1

eL

[
(I − g ⊗ g)T

∂Ω

∂g

]
. (46)

If we express the total stress in terms of the Eulerian basis {v1,v2,v3}, we have

T T =

3∑
i,j=1

τijvi ⊗ vj , (47)

where

τii = λi
∂Ω

∂λi
− p , i not summed , (48)

τij =
2λiλj
λ2
i − λ2

j

[
(
∂Ω

∂βi
− ∂Ω

∂βj
)fifj + (

∂Ω

∂γi
− ∂Ω

∂γj
)gigj + (

∂Ω

∂ζi
− ∂Ω

∂ζj
)tij

+ (
∂Ω

∂χi
− ∂Ω

∂χj
)uiT

2
Ruj

]
, i 6= j , (49)

vi = Rui and R = FU−1.

4 Boundary value problems

Until now there is no experimental data available in the literature to propose any meaningful specific ex-
pressions for Ω that could fit and predict experimental data. However, in order to plot graphs and have
some discussion on the the anisotropic mechanical behavior, the influence of residual stress, magnetic and
electric fields on elastic solids, at least a prototype for Ω has to be proposed. The proposed prototype given
below is simple in form, but without experimental data to evaluate its performances, it may or may not be
a good candidate to represent the elastic solids that are considered in this paper. A finite strain constitutive
equation that is consistent with the general theory of infinitesimal elasticity and contains couplings between
residual stress, electric and magnetic fields requires numerous material constants and invariant functions
(see for example references [59, 64]). Illustration of the theory would be far too complicated if all such
material constants and invariant functions were to be included. However, for the application considered
in the following sections, a considerably reduced set of material constants and invariant functions will be
adopted. We strongly emphasize that, except for the invariants χi, all the spectral invariants are included
in the simple prototype for Ω, proposed below. Using the same concept described in references [59, 64],
coupling terms, if required, could be easily inserted in the simple prototype given in (50), below.

Only quasi-static deformations are considered. At the outset, cylindrical results for simple tension, exten-
sion and inflation of a thicked- wall tube, simple torsion and, extension, inflation and torsion of a thick-
walled cylindrical tube are given. Later, we obtain results for an equibiaxial deformation applied on a thin
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sheet of material. We note that, up to our current knowledge, we believe that there are no experimental data
on residually stressed electro-magneto solids to validate our theory. However, the results obtained in this
Section can be experimentally useful, where they could be used to compare with future experimental data.

In order to illustrate the effects of residual stresses on electro-magneto-active solids, we require a specific
form for Ω. Based on the work of Shariff [56, 62, 64] we propose a prototype

Ω = WR +N1 +N2 +
b2L
2µ0

3∑
i=1

βiλ
2
i −

ε0e
2
L

2

3∑
i=1

γi
λ2
i

, (50)

where

WR =

3∑
i=1

{µr1(λi) + ζir2(λi)} , (51)

µ > 0 (see, for example, Ref. [53]) is a material parameter,

N1 = c0(eL)

3∑
i=1

γir3(λi) , N2 = c1(bL)

3∑
i=1

βir4(λi) , (52)

c0 and c1 are functions of eL and bL, respectively. The conditions

r1(1) = r2(1) = r3(1) = r4(1) = r′1(1) = r′3(1) = r′4(1) = 0 ,

r′′1 (1) = r′′3 (1) = r′′4 (1) = 2 , r′2(1) = 1 (53)

are required to ensure that Ω is consistent with the theory infinitesimal elasticity. For | λi − 1 |<< 1,
r1, r3, r4 are approximately quadratic in λi − 1 and r2 is linear in λi − 1. Extending these behaviours to
finite strain, the conditions

r1(x), r3(x), r4(x) ≥ 0 , x > 0 , r2(x) ≥ 0 x ≥ 1 , r2(x) < 0 , 0 < x < 1 (54)

are suggested. Note that r′1, r
′
3, r
′
4 and r2 are monotically increasing functions. The above simple form

(51) is a generalization of previous prototypes, for example, Jha et al. [32] proposed, for an incompressible
body, the prototype

WR =
µ

2
(I1 − 3) +

f

2
(I5 − trTR) +

1− f
4

(I6 − trTR)

=
µ

2
(I1 − 3− 2 lnJ) +

f

2
(I5 − trTR) +

1− f
4

(I6 − trT r) , 0 ≤ f ≤ 1 , (55)

where I1 = trC, I5 = tr(TRC), I6 = tr(TRC
2) and J = 1. In this case, we simply have

r1(x) =
x2 − 2 lnx− 1

2
, r2(x) =

f

2
(x2 − 1) +

1− f
4

(x4 − 1) . (56)

In the undeformed configuration (F = I) with no electro-magnetic fields, in view of the properties given
in (53), Eqn. (26) becomes

TR = −p0I + TR , (57)
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which implies that p0 = 0; p0 is the value of p in the reference configuration (i.e. at F = I).

From (45), (46), (50) and (52), it is clear that

d = ε0e− F
∂N1

∂eL
, p = −F ∂N1

∂eL
(58)

and

b = µ0[h− F−T
∂N2

∂bL
] , m = −F−T ∂N2

∂bL
. (59)

In vacuum N1 = N2 = 0 and we recover the relations

d = ε0e , b = µ0h . (60)

Ground-state-constant constraints for Ω are obtained via the strong ellipticity condition. In this paper, we
will not derive the general inequalities required for the ground-state constants of the total energy function
(50). Since in this section, we deal with problems that can be considered as two dimensional, we will give
some inequality results for m and n in a plane and assume TR = t1d1 ⊗ d1 + t2d2 ⊗ d2 in that plane,
where t1, t2 and d1,d2 are, respectively, the eigenvalues and eigenvectors of TR. Based on the work of
[64], the necessary and sufficient conditions to satisfy the (two-dimensional) strong ellipticity condition are

b1 > 0 and 4b1b2 > b3 , (61)

where

b1 = µ+
r′′2 (1)

4
(t1 + t2) +

1

4
(3t1 − t2) +

c0(eL)

2
(g2

1 + g2
2) +

c1(bL)

2
(f2

1 + f2
2 )− ε0e2

Lg
2
2 +

b2L
µo
f2

1 ,

b2 = µ+
r′′2 (1)

4
(t1 + t2) +

1

4
(3t2 − t1) +

c0(eL)

2
(g2

1 + g2
2) +

c1(bL)

2
(f2

1 + f2
2 )− ε0e2

Lg
2
1 +

b2L
µo
f2

2 ,

b3 = 2ε0e
2
Lg1g2 +

b2L
µo
f1f2 , (62)

taking note that, since the basis {u1,u2,u3} is arbitrary in the reference configuration (F=I), we could
equate di = ui.

We make it clear that we are not interested in constructing the optimal forms of r1 . . . r4 for a particular
material in this paper. Their optimal forms for a particular material require rigourous analyses (such as
those given in Shariff [53, 61]), which is outside the scope of this paper. However, to plot the graphs in the
boundary value problems below, we simply use the functions and constant values

r1(x) = (ln(x))2 , r2(x) = x− 1 , r3(x) = r4(x) = (x− 1)2 , (63)

µ = 10 kPa , c0(eL) = 0.1ε0e
2
L , c1(bL) =

b2L
0.01µ0

(64)

with the standard values

ε0 = 8.85× 10−12 F/m, µ0 = 4π × 10−7 H/m . (65)

and in the figures below η =
√

1000.
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4.1 Cylindrical problems

4.1.1 Cylindrical problems containing residual stresses

For cylindrical problems, we consider a geometry of a circular cylindrical tube defined by

A ≤ R ≤ B, 0 ≤ Θ ≤ 2π, 0 ≤ Z ≤ L , (66)

where (R,Θ, Z) is the referential cylindrical polar coordinate.

For the purpose of obtaining results in sections 4.1.2 to 4.1.5, we consider the residual stress field that is
similar to that described in [62], i.e.,

TR = t1(R)ER ⊗ER + t2(R)EΘ ⊗EΘ , (67)

where ER, EΘ and EZ referential cylindrical polar vectors,

t1 =
κ

B2
(R−A)(R−B) , t2 =

κ

B2
(3R2 − 2(A+B)R+AB) (68)

and κ is a constant and has the same dimension as stress. The residual stress (67) satisfies the equilibrium
equation

dt1
dR

+
1

R
(t1 − t2) = 0 (69)

and stress free surface in the reference frame.

In sections 4.1.2 to 4.1.5, all tensor and vector components are cylindrical polar components.

4.1.2 Simple Tension

When a cylinder with A = 0 experiences uniform extension, it can be expressed as,

r =
1√
λz
R , θ = Θ , z = λzZ . (70)

Note that (r, θ, z) is the current configuration polar coordinate and

F =
1√
λz

er ⊗ER +
1√
λz

eθ ⊗EΘ + λzez ⊗EZ , (71)

where λ1 = λr =
1√
λz
, λ2 = λr =

1√
λz

, λ3 = λz . Here, the vectors er, eθ and ez are cylindrical po-

lar coordinate vectors associated with the deformed configuration. For simplicity, we only consider the
magnetic induction and the electric field to be

b = B0ez , e = E0ez . (72)
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Figure 1: Axial stress τzz vs λz for various values of E0 and B0. Points represent zero surface traction.
Lines represent surface traction equals to (TM )rr. Axial stress is independent of the residual stress.

Figure 2: Behaviour of τθθ and τrr at λz = 2 with respect to the changes of E0 and B0. The value of κ = 1
kPa is used for the residual stress

In view of u1 = ER, u2 = Eθ and u3 = EZ , we obtain f1 = f2 = g1 = g2 = 0, f3 = g3 = 1, ζ1 = t1,

ζ2 = t2, ζ3 = 0, bL =
B0

λz
and eL = E0λz . The cylindrical components of the Maxwell stress defined in

13



Figure 3: Behaviour of τθθ and τrr at λz = 2, E0 = 0.2η×106 V/m and B0 = η×10−3 Tesla with respect
to the changes in κ

(32) are:

(TM )zz =
B2

0

2µ0
+
ε0E

2
0

2
= −(TM )rr = −(TM )θθ . (73)

The non-zero total stress components are:

τrr + p = λr
∂Ω

∂λ1
, τθθ + p = λr

∂Ω

∂λ2
, τzz + p = λz

∂Ω

∂λ3
. (74)

It is evident that the shear stresses are zero and the total stress must satisfy the balance equation

r
dτrr
dr

= τθθ − τrr , (75)

which gives

τrr =

∫ r

a

(
λr
∂Ω

∂λ2
− λr

∂Ω̃

∂λ1

)
dr

r
+ (TM )rr , (76)

where a =
A√
λz

. We have,

τzz = λz
∂Ω

∂λ3
− λr

∂Ω

∂λ1
+ τrr . (77)

In view of (76) and (77), τzz does not depend on the residual stress and takes the form

τzz = µλzr
′
1(λz) + 0.2ε0E

2
0λ

3
z(λz − 1) +

2B2
0

0.01µ0
(1− 1

λz
)− µ√

λz
r′1(

1√
λz

) +
ε0E

2
0

2
+
B2

0

2µ0
. (78)
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In Fig. 1, the stress-strain curves of τzz vs λz are depicted for various values of E0 and B0. If we apply a
traction on the ”free surface” so that the traction (TM )rr is eliminated and the surface is free of traction,
we would expect the magnitude of τzz to be larger; this behaviour is indicated in Fig. 1.

The non-axial components are

τrr =
t1(R)√
λz
− B2

0

2µ0
− ε0E

2
0

2
, τθθ =

t2(R)√
λz
− B2

0

2µ0
− ε0E

2
0

2
. (79)

Fig. 2 indicates the stresses τθθ and τrr increase as the values of E0 and B0 increase. The response of τθθ
and τrr to different values of κ is depicted in Fig. 3.

In view of the relations

hL = [
2B0

0.01µ0λz
(λz − 1)2 +

B0

µ0
λz]EZ , dL = [

ε0E0

λz
− 0.2ε0E0λz(λz − 1)2]EZ , (80)

it is clear that, since λz is constant, all the relations in (28) are automatically satisfied.

4.1.3 Extension and Inflation of a Thick-Walled Tube

Here, we examine a non-homogeneous deformation which has several applications. We consider an in-
compressible thick-walled circular cylindrical tube with initial geometry defined by (66). The resulting
deformation for an incompressible solid is described by the equations [46]

r2 − a2 =
1

λz
(R2 −A2) , θ = Θ , z = λzZ , (81)

where a is the internal radius of the deformed tube and λz (constant) is the axial stretch. Note that

b2 − a2 =
1

λz
(B2 −A2) , (82)

where b is the external radius of the deformed tube. The deformation gradient is

F =
1

λλz
er ⊗ER +

r

R
eθ ⊗EΘ + λzez ⊗EZ . (83)

Hence, the principal stretches are given by

λ1 =
1

λλz
, λ2 = λ =

r

R
, λ3 = λz , (84)

where we have introduced the notation λ. The principal directions are

u1 = ER , u2 = EΘ , u3 = EZ (85)

and, ζ1 = t1, ζ2 = t2 and ζ3 = 0. Consider the case

eL = E0EZ , bL = B0EZ . (86)
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We then have eL = E0, bL = B0, f1 = f2 = g1 = g2 = 0 and f3 = g3 = 1. It can be easily shown that
∂Ω

∂eL
and

∂Ω

∂bL
depends only on the constant value λz , hence the all the conditions in (28) are automatically

satisfied.

The non-zero Maxwell stress components are:

(TM )zz =
ε0E

2
0

2λ2
z

+
λ2
zB

2
0

2µ0
= − (TM )rr = − (TM )θθ . (87)

The non-zero invariants for this problem are λ, λz , ζ1 = t1 and ζ2 = t2, hence we can write

Ω = W(t)(λ, λz, t1, t2) . (88)

All the shear stresses are zero and this implies that the total stress T T is coaxial with the left stretch tensor
V . The principal stresses σrr, σθθ and σzz have the following relations

σθθ − σrr = λ
∂W(t)

∂λ
, σzz − σrr = λz

∂W(t)

∂λz
. (89)

The equation of equilibrium with negligible body forces reduces to

dσrr
dr

+
1

r
(σrr − σθθ) = 0 . (90)

The above equation is to be solved in conjunction with the boundary conditions

σrr =

{
−P + (TM )rr on r = a

(TM )rr on r = b
(91)

corresponding to an applied pressure P on the inside of the tube. Using (90) and (89)1, we obtain

σrr = (TM )rr −
∫ b

r

λ
∂W(t)

∂λ

dr

r
. (92)

It follows that

P =

∫ b

a

λ
∂W(t)

∂λ

dr

r
. (93)

For given A and B, noting that from (82), b depends on a and λz , Eq. (93) yields an expression for the P
that is required to achieve the deformed internal radius a for any given λz .

The axial load N needed to hold λz fixed can be obtained by the relation

N = 2π

∫ b

a

σzzr dr = π

∫ b

a

(2σzz − σrr − σθθ)r dr + π(b2 − a2) (TM )rr + πa2P

= π

∫ b

a

(2λz
∂W(t)

∂λz
− λ

∂W(t)

∂λ
)r dr + π(b2 − a2) (TM )rr + πa2P . (94)
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4.1.4 Simple Torsion of a solid Cylindrical Tube

A cylindrical tube defined by (66) withA = 0 is twisted by (the amount of torsional twist per unit deformed
length) τ described by the deformation

r = R, θ = Θ + τZ, z = Z, (95)

Hence, we have,

F ≡

 1 0 0
0 1 γ
0 0 1

 , (96)

where γ = rτ and
u1 ≡ [1, 0, 0]T , u2 ≡ [0, c, s]T , u3 ≡ [0,−s, c]T , (97)

where c2 + s2 = 1. In view of

F TF =

3∑
i=1

λ2
iui ⊗ ui , (98)

we obtain

c =
1√

1 + λ2
2

, s =
λ2√

1 + λ2
2

, (99)

and

λ1 = 1 , λ2 =
s

c
=
γ +

√
γ2 + 4

2
≥ 1 , λ3 =

c

s
=

1

λ2
≤ 1 . (100)

Eqn. (97) implies

ζ1 = t1 , ζ2 = t2c
2 , ζ3 = t2s

2 . (101)

The total stress components:

σrr + p = 2l1 , σθθ + p = 2
[
l2(s2(1 + γ2) + γcs) + l3(c2(1 + γ2)− γcs)− 2l6cs

]
,

σzz + p = 2
(
l2s

2 + l3c
2 + 2l6cs

)
, σzθ = 2(l2λ

2
2 − l3λ2

3)cs+ 2l6γcs ,

σrθ = 2 [l4(c+ γs)− l5(s− γc)] , σzr = 2 (l4s+ l5c) , (102)

where

l1 =
1

2λ1

∂Ω

∂λ1
, l2 =

1

2λ2

∂Ω

∂λ2
, l3 =

1

2λ3

∂Ω

∂λ3
,

l4 =

(
∂Ω

∂C

)
12

, l5 =

(
∂Ω

∂C

)
13

, l6 =

(
∂Ω

∂C

)
23

. (103)

The traction N applied at the ends of the cylinder is

N = 2π

∫ A

0

σzzR dR = π

∫ a

0

(2σzz − σrr − σθθ)r dr + πa2σrr(a) , a = A (104)
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and the end-cylinder torque

M = 2π

∫ A

0

σzθR
2 dR . (105)

Next, we consider two cases for the electromagnetic fields:

Case A: b = B0er and e = E0er.

In this case, we have,

f1 = g1 = 1 , f2 = f3 = g2 = g3 = 0 , bL = B0 , eL = E0 (106)

l1 =
1

2
[t1 + ε0E

2
0 +

B2
0

µ0
] , l2 =

1

2λ2
[µr′1(λ2) + c2t2] ,

l3 =
1

2λ3
[µr′1(λ3) + s2t2] , (107)

l4 = 0 , l5 = 0 , l6 =

(
∂Ω

∂C

)
23

= −c2s2t2 . (108)

We note that l4 = l5 = 0 implies σrz = σrθ = 0.

The Maxwell stress components are:

(TM )rr =
B2

0

2µ0
+
ε0E

2
0

2
= −(TM )zz = −(TM )θθ . (109)

From the results

hL =
B0

µ0
ER , dL = ε0E0ER , (110)

it is clear that the relations (28) are satisfied, automatically. Using (109), the traction

N = π

∫ A

0

(2σzz − t1(R)− σθθ)R dR (111)

and the shear stress

σzθ = µ[λ2r
′(λ2)− λ3r

′(λ3)]cs− 2γc3s3t2(R) (112)

indicate that they are independent of the electromagnetic fields B0 and E0.

Case B: bL = B0ER and eL = E0Ez .

In this case, we have, DivbL = 0, CurleL = 0,

f1 = 1 , f2 = f3 = 0 , g1 = 0 , g2 = s , g3 = c , bL = B0 , eL = E0 (113)
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Figure 4: Behaviour of σzθ at fixed Aτ = 1 for various values of E0 and κ.

and the values of ζi are given in (101). The non-zero components of the Maxwell stress are:

(TM )rr =
B2

0

2µ0
− ε0E

2
0

2
= − (TM )zz , (TM )θθ = − B

2
0

2µ0
− ε0E

2
0

2
. (114)

It is clear that l4 = l5 = 0 and this implies that σrz = σrθ = 0 and

2l1 = ζ1 +
B2

0

µ0
, l6 =

ε0E
2
0

λ2
2 − λ2

3

[
0.1(r3(λ2)− r3(λ3))− (

1

2λ2
2

− 1

2λ2
3

)

]
g2g3 − c2s2t2 . (115)

The shear stress

σzθ = 2
(
λ2

2l2 − λ3
3l3
)
cs− 2γc3s3t2 , (116)

where

2λαlα = µr′1(λα) + ζαr
′
2(λα) + γα(c0E

2
0r
′
3(λα) +

ε0E
2
0

λ3
α

) , α = 2, 3 . (117)

We note that

dL = − ∂Ω

∂eL
= −ε0E0(D1 + D2) , (118)

where

D1 = [

3∑
i=2

(0.2r3(λi)−
1

λ2
i

)γi]EZ , (119)

19



Figure 5: Axial force per unit area
N

πA2
vs Aτ for various values of E0 and κ.

D2 = (I −EZ ⊗EZ)

3∑
i=2

[0.2r3(λi)−
1

λ2
i

]giui (120)

and

hL =
∂Ω

∂bL
=
B0

µ0
ER . (121)

In view of (118) and (121), we have the required condition DivdL = 0 and CurlhL = 0.

The applied traction

N = π

∫ A

0

(2σzz − t1(R)− σθθ)R dR− πA2 ε0E
2
0

2
(122)

and the shear stress σzθ are both independent of the magnetic field B0 . The effects of residual stress and
magneto-electric fields, for Case B, on the shear stress σzθ field are depicted in Fig. 4. We also illustrate

the dependence of the normal traction per-unit area
N

πA2
on τ in Fig. 5 for a couple values of E0 and κ.
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Figure 6: P vs
a

A
at λz = 2 for various values of E0 and B0. The value of κ = 1 kPa is used for the

residual stress.

Figure 7: Behaviour of σzθ at Aτ = 1, λz = 2 and κ = 1 (kPa) for various values of E0.

4.1.5 Extension, inflation and torsion of a cylinder tube

In this section we consider an incompressible thick-walled circular cylindrical tube with the initial geometry
defined by (66). The deformation is described by [46]

r2 = a2 +
R2 −A2

λz
, θ = Θ + λzτZ, z = λzZ, (123)
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Figure 8:
N

π(B2 −A2)
vs

a

A
at Aτ = 1, λz = 2 and κ = 1 (kPa) for various values of E0 and B0.

where τ is the amount of torsional twist per unit deformed length and λz is the axial stretch. The deforma-
tion gradient

F = λrer ⊗ER + λθeθ ⊗EΘ + γλzeθ ⊗EZ + λzeZ ⊗EZ , (124)

where

γ = rτ , λθ =
r

R
, λr =

1

λθλz
. (125)

The Lagrangian principal directions have cylindrical components:

u1 ≡ [1, 0, 0]T , u2 ≡ [0, c, s]T , u3 ≡ [0,−s, c]T , (126)

where c2 + s2 = 1. Using (98) and (126), we obtain

c = cos(φ) =
2√

2(γ̂2 + 4) + 2γ̂
√
γ̂2 + 4

, s = sin(φ) =
γ̂ +

√
γ̂2 + 4√

2(γ̂2 + 4) + 2γ̂
√
γ̂2 + 4

, (127)

where

γ̂ =
λ2
z(γ

2 + 1)− λ2
θ

γλθλz
. (128)

Using the relation

c2 − s2 = −γ̂cs , (129)
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we derive the relation

tan 2φ = − 2

γ̂
. (130)

In view of (130) and the possibility that γ̂ may have a zero value, we have the constraint

0 ≤ φ ≤ π

2
(131)

The principal stretches are

λ1 = λr , λ2 =

√
λ2
θ +

λθλzγs

c
, λ3 =

√
λ2
θ −

λθλzγc

s
(132)

and the residual stress invariants ζi are given by (101).

In this section, we only consider the case for eL = E0EZ and bL = B0ER and, we have,

bL = B0 , eL = E0 , f = ER , g = EZ , f1 = 1 , f2 = f3 = 0 , g1 = 0 , g2 = s , g3 = c .

(133)

The cylindrical components of the total stress take the form:

σrr = 2λ2
rl1 − p ,

σθθ = 2
[
l2(c2λ2

θ + s2γ2λ2
z) + l3(s2λ2

θ + c2γ2λ2
z) + γλθλz[(l2 − l3)cs+ l6(c2 − s2)]

+ 2l6cs(γ
2λ2
z − λ2

θ)
]
− p ,

σzz = 2λ2
z(l2s

2 + l3c
2 + 2l6cs)− p ,

σrθ = 2λr [λθ(l4c− l5s) + γλz(l4s+ l5c)] , σrz = 2λrλz(l4s+ l5c)

σzθ = 2
[
λθλz[(l2 − l3)cs+ l6(c2 − s2)] + γλ2

z(l2s
2 + l3c

2 + 2l6cs)
]
, (134)

where l1, l2, . . . , l6 are given by (103). In view of (101) and (133), we have l4 = l5 = 0,

l1 =
1

2λ1

[
µr′1(λ1) + ζ1r

′
2(λ1) + c1(bL)r′4(λ1) +

B2
0

µ0
λ1

]
lα =

1

2λα

[
µr′1(λα) + ζαr

′
2(λα) + c0(eL)γαr

′
3(λ2) + ε0e

2
L

γα
λ3
α

]
, α = 2, 3 ,

l6 =
cs

λ2
2 − λ2

3

(
γ(2) − γ(3)

)
− c2s2t2 , γ(α) = c0(eL)r3(λα)− ε0e

2
L

2λ2
α

, α = 2, 3 . (135)

It is clear that σrz = σrθ = 0 and all the conditions in (28) are automatically satisfied.

The Maxwell stress components are:

(TM )rr (r) = −ε0E
2
0

2λ2
z

+
λ2
rB

2
0

2µ0
, (TM )θθ (r) = −ε0E

2
0

2λ2
z

− λ2
rB

2
0

2µ0
, (136)

(TM )zz (r) =
ε0E

2
0

2λ2
z

− λ2
rB

2
0

2µ0
, (137)
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taking note that the Maxwell stress is not constant but depends on r.

If we solve the equilibrium equation (90) with the boundary tractions

σrr =

{
−P + (TM )rr (a) on r = a

(TM )rr (b) on r = b
(138)

where P is the applied pressure on the inside of the tube, we obtain

P =

∫ b

a

σθθ − σrr
r

dr + (TM )rr (a)− (TM )rr (b) . (139)

The total traction N applied at the ends of the cylinder are as follows:

N = 2π

∫ b

a

σzzr dr = π

∫ b

a

(2σzz − σrr − σθθ)r dr + π(b2 (TM )rr (b)− a2[(TM )rr (a)− P ]) .(140)

For plotting purposes, without loss of generality, we use A = 1 and B = 2A. The internal pressure P vs
a

A
is depicted in Fig. 6. When Aτ = 0, it can be easily shown that P is independent of B0. In Fig. 62 the

curves for Aτ = 0 are depicted; these curves represent the deformation of an extension and inflation of a
thick-walled tube described in Section 4.1.3 for eL = E0EZ and bL = B0ER.

It is clear from (134) and (135) that the shear stress σzθ is independent of B0 and this is potrayed in Fig. 7

for some values of
a

A
and E0. The dependence of

N

π(B2 −A2)
on

a

A
at Aτ = 1, λz = 2 and κ = 1 (kPa)

for various values of E0 and B0 is illustrated in Fig. 8.

4.2 Residual stress on a thin rectangular sheet

Consider an undeformed configuration of a thin rectangular sheet described by

−A ≤ X ≤ A , −B ≤ Y ≤ B ,−L ≤ Z ≤ L , (141)

where (X,Y, Z) is a Cartesian reference configuration point corresponding to the Cartesian basis {g1, g2, g3}
and L << 1. In order to study the effect of residual stress on a thin rectangular sheet discussed in Sec-
tion 4.2.1 below, we require a specific residual stress field to illustrate our results, and in view of this, we
consider the specific residual stress field

TR = s11g1 ⊗ g1 + s22g2 ⊗ g2 + s12(g1 ⊗ g2 + g2 ⊗ g1) , (142)

where

s11 = 4κ(1− X2

A2
)2(

3Y 2

B2
− 1) , s22 = 4κ

B2

A2
(1− Y 2

B2
)2(

3X2

A2
− 1) ,

s12 = 16κ
XY

A2
(1− X2

A2
)(
Y 2

B2
− 1) , (143)

where κ has the dimension of stress. It is clear that the residual stress field (143) satisfies the equilibrium
equation and stress free condition in the reference configuration.
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Figure 9: Stresses σ11 and σ22 along the X-axis at Y = 0 when λ = 2 and κ = 1 for various values of E0

and B0.

4.2.1 Equibiaxial tension

It is noted that if we simply stretch a residually stressed rectangular slab material, the deformation may
not be homogeneous due to the presence of residual stresses. However, in this paper, for simplicity, we
assume a homogenous stretch defined in (144) below and require a non-homogeneous stress to maintain the
homogeneous deformation described by

F = λg1 ⊗ g1 + λg2 ⊗ g2 +
1

λ2
g3 ⊗ g3. (144)

Note that all vector and tensor components are relative to the basis {g1, g2, g3}. In this case, we have,
ui = gi and we only study the case e = E0g3 and b = B0g3. Hence,

λ1 = λ2 = λ , λ3 =
1

λ2
, f1 = f2 = g1 = g2 = 0 , f3 = g3 = 1 (145)

and bL = B0λ
2g3 and eL =

E0

λ2
g3. The Maxwell stress components take the form

(TM )33 =
B2

0

2µ0
+
ε0E

2
0

2
= −(TM )11 = −(TM )22 . (146)

We express the total stress in the form

T T = 2F
∂Wm

∂C
F T + 2F

∂IT
∂C

F T − pI , (147)

where

Wm = µ

3∑
i=1

r1(λi) +N1 +N2 +
b2L
2µ0

3∑
i=1

βiλ
2
i −

ε0e
2
L

2

3∑
i=1

γi
λ2
i

, (148)
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and, in view of r2(x) = x− 1,

IT = tr(TR(U − I)) =

3∑
i=1

ζi(λi − 1) . (149)

For equibiaxial deformations and for the residual stress given in Section 4.2, we have,

div2F
∂IT
∂C

F T = DivTR = 0 . (150)

Let σij be the spectral components of T T , since,

σ33 = (TM )33. (151)

It is clear that, in view of (150) and (151)

p = λ3

[
µr′1(λ3) + c0(eL)r′3(λ3) + c1(bL)r′4(λ3) +

b2Lλ3

µ0
+
ε0e

2
L

λ3
3

]
− B2

0

2µ0
− ε0E

2
0

2
(152)

and

div T T = 0 (153)

is automatically satisfied. Furthermore, all the relations in (28) are also automatically satisfied. The non-
zero stress components are

σ11 = µλr′1(λ) + λs11 − p , (154)

σ22 = µλr′1(λ) + λs22 − p , σ12 = λs12 . (155)

The influence of residual stress and electro-magnetic fields on σ11 and σ22 stress fields are depicted in Fig.
9. The figures are depicted using A = B = 1.

5 Conclusion

In this paper, a spectral invariant-based model for nonlinear magneto-electro-elastic materials in the pres-
ence of residual stresses is presented. The proposed potential function contains single variable functions that
depend on a spectral invariant with a clear physical meaning; this facilitates the creation of specific forms of
the total energy function, in the sense that a single variable function with a clear physical argument can be
easily handled and is experimentally attractive. The advantages of spectral invariants over classical invari-
ants [67] are discussed in reference [65]. After omitting the invariants eL and bL, we have shown that only
13 spectral invariants are independent, which is far less than the 37 classical invariants in the corresponding
minimal integrity basis [67]; hence this may aid in reducing the complexity of modelling nonlinear residu-
ally stressed magneto-electro-elastic solids. Analyses of several inhomogeneous boundary value problems
are given in which these results can be used to validate experimental data. It is clearly indicated in Section
4 that residual stress and electromagnetic fields significantly influence the mechanical behaviour of elastic
solid deformations. The model developed here is novel. The time-independent framework, developed here,
will be extended to incorporate time-dependent phenomena in a forthcoming contribution.
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Appendix A

In view of (1)3,5, we have

div(d⊗ e) = (grade)d = ε0(grade)e + (grade)p , div
(e · e)I

2
= (grade)Td . (A1)

Using the relations

[(grade)− (grade)T ]e = curle× e , [(grade)− (grade)T ]p = curle× p , (A2)

we have

div [d⊗ e− 1

2
ε0(e · e)I] = (grade)Tp + curle× p + ε0curle× e . (A3)

In view of the relation curle = −ḃ we obtain,

div [d⊗ e− 1

2
ε0(e · e)I] = (grade)Tp− ḃ× p− ε0ḃ× e = (grade)Tp− ḃ× d (A4)

and hence Eqn. (6). Using the relations

div(b⊗ b) = (gradb)b , div
(b · b)I

2
= (gradb)T b , [(gradb)− (gradb)T ]b = curlb× b , (A5)

we have, in view of (1)4,6

1

µ0
div [b⊗ b− (b · b)I

2
] =

1

µ0
curlb× b = ḋ× b + (curlm)× b . (A6)

In view of (1)1, we have the relations

div(m · b)I = (gradb)Tm + (gradm)T b , div(b⊗m) = (gradm)T b . (A7)

Using the relation

[(gradm)− (gradm)T ]b = curlm× b (A8)

we obtain

div [(m · b)I − b⊗m] = (gradb)Tm− (curlm)× b . (A9)

Equation (9) can be obtained from (A9) and (A6).
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