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Abstract

Uncertainties need to be taken into account in the dynamic analysis of complex struc-
tures. This is because in some cases uncertainties can have a significant impact on the
dynamic response and ignoring it can lead to unsafe design. For complex systems with
uncertainties, the dynamic response is characterised by the eigenvalues and eigenvectors
of the underlying generalised matrix eigenvalue problem. This paper aims at developing
computationally efficient methods for random eigenvalue problems arising in the dynamics
of multi-degree-of-freedom systems. There are efficient methods available in the litera-
ture for obtaining eigenvalues of random dynamical systems. However, the computation
of eigenvectors remains challenging due to the presence of a large number of random
variables within a single eigenvector. To address this problem, we project the random
eigenvectors on the basis spanned by the underlying deterministic eigenvectors and apply
a Galerkin formulation to obtain the unknown coefficients. The overall approach is sim-
plified using an iterative technique. Two numerical examples are provided to illustrate
the proposed method. Full-scale Monte Carlo simulations are used to validate the new
results.

Keywords: Random eigenvalue problem; iterative methods; Galerkin projection,
statistical distributions, stochastic systems.

1. Introduction

Dynamic response of complex structures can be obtained efficiently using modal anal-
ysis. A key step in the modal analysis is the solution of a generalised eigenvalue problem
involving the mass and stiffness matrix of the system [1]. When uncertainties are taken
into account, both the mass and the stiffness matrices become random matrices. As a
consequence, the underlying eigenvalue problem becomes a random eigenvalue problem.
The random matrices characterising the mass and stiffness matrices can be obtained using
the stochastic finite element method or the random matrix theory, depending on whether
parametric or non-parametric uncertainties are taken into account. These computational
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methods for the random eigenvalue problem, particularly if they are based on a pertur-
bation approach or a Monte Carlo simulation-based approach, are generally independent
of how the random system matrices were obtained. The dimensions of the matrices and
the ‘amount’ of uncertainties are the key influencing factors affecting the computational
cost and accuracy of numerical methods for random eigenvalue problems.

The study of probabilistic characterisation of the eigensolutions of random matrix and
differential operators is now an important research topic in the field of stochastic structural
mechanics. Random eigenvalue problems play an important role in various application
areas, such as operational modal analysis of complex systems [2, 3] and damage detection
in stochastic dynamic systems [4, 5]. The paper [6] and the book [7] are useful sources of
information on early work in this area of research and also provide a systematic account of
different approaches to random eigenvalue problems. Several review papers, for example
[8–11] summarise earlier works. In [3–5], Monte Carlo simulation (MCS) was employed
for solving the random eigenvalue problem. While theoretically simple and practically
easy to implement, the computational cost associated with MCS is significant. In one of
the earliest works on distributed systems, [12] have obtained the probability distribution
function of the eigenvalues of a string with random properties. In this paper, we obtain
a closed-form expression of arbitrary order joint moments of the natural frequencies of
discrete linear systems or discretised continuous systems. Reference [13] developed an iter-
ative algorithm for the solution of the random eigenvalue problem. The method proposed
was an extension of the deterministic inverse power method to the stochastic case and is
particularly suitable for computing the spectral expansion of the eigenvalues and eigen-
vectors of the random non-symmetric matrix. In [14] a hybrid perturbation-polynomial
chaos approach was proposed for random matrix eigenvalue problems. We refer to a re-
cent state-of-the-art review paper [15] on eigenvalue and eigenvector derivatives, which
forms the basis of investigations towards random eigenvalue problems.

Borges et al. [16] eigenvalue problem arising in stochastic buckling analysis. In [17],
the authors proposed a generic method for computing the stochastic eigenvalues of dif-
ferential and integral equations. The method proposed converts the eigenvalue problem
into an initial value problem by introducing a pseudo-time-variable. The resulting equa-
tion was then solved by using the well-known polynomial chaos expansion [18]. Later, a
simplified version of this method was proposed in [19]. Reference [20] proposed a stochas-
tic Galerkin based approach for the solution of random eigenvalue problems. Similar to
[17, 19], this method also utilises the polynomial chaos expansion. An adaptive collocation
approach for efficiently computing the polynomial chaos coefficients was also proposed.
Most studies on random eigenvalue problems are based on theoretical and computational
approaches. Experimental analysis is limited in this area. In reference [21], the authors
have presented results from two experimental studies on random eigenvalue problems
with 100 random realisations of multiple eigenvalues. Eigenvalue problem arising from
random matrices in the context of structural dynamics was discussed in [22]. On the other
hand, Zheng [23] considered the eigenvalue problem for investigating flutter stability in
stochastic aeroelastic systems.

Despite all the works discussed before, the need for developing an efficient solver
for the random eigenvalue problem is still a relevant research question. This is evident
from the recent papers in this domain. For example, in three separate works [24–26],
the authors developed low-rank solutions for stochastic eigenvalue problems. It is worth



noting that the complexity associated with the solution of the random eigenvalue problem
is significantly enhanced when one deals with non-proportional damping systems; this is
because the eigensolutions for such systems become complex. This paper considers the
random eigenvalue problem for undamped or proportionally damped systems so that the
eigensolutions remain real-valued quantities. We propose a new iterative method for
solving such random eigenvalue problems. The proposed method exploits a mathematical
construction where random eigenvalues and eigenvectors for each Monte Carlo sample can
be updated from their previous values in an iterative manner.

The rest of the paper is organised as follows. Background on random eigenvalue prob-
lems are presented in Section 2. The theoretical background of the proposed approach is
laid in Section 3. Convergence analysis of the iterative method is carried out in Section 4.
The algorithm for the proposed approach is presented in Section 5. Section 6 presents
a numerical example with a three-degree-of-freedom system to illustrate the accuracy of
the proposed approach. A larger 30-three-degree-of-freedom system example is studied
in Section 7 to illustrate the numerical aspects of the iterative approach. Finally, some
concluding remarks arising from this study is given in Section 8.

2. Background of the random eigenvalue problems

The equation of motion of an n-degree-of-freedom linear viscously damped system can
be expressed by coupled differential equations as

M(θ)ü(t) +C(θ)u̇(t) +K(θ)u(t) = f(t) (1)

Here u(t) ∈ R
n is the displacement vector, M(θ),K(θ),C(θ) ∈ R

n×n are respectively the
random mass, stiffness and the viscous damping matrices and f(t) ∈ R

n is the forcing vec-
tor. The notation θ denotes the sample space indicating that these quantities are random
in nature. In general M(θ) is a positive definite symmetric matrix, C(θ) and K(θ) are
non-negative definite symmetric matrices. When the system matrices are random, the
precise mathematical conditions which ensure these physical conditions are non-trivial to
establish in a completely general setting. For engineering applications, often practically
inspired assumptions are made on the nature of the randomness. One way such ran-
domness in the system can be comprehensively addresses in the stochastic finite element
method [27]. Employing this approach, without any loss of generality, the three system
matrices can be expressed as a sum of a deterministic part and an random part as

M(θ) = M0 +∆M(θ), C(θ) = C0 +∆C(θ), and K(θ) = K0 +∆K(θ) (2)

The deterministic part, denoted by (•)0, corresponds to the baseline model of the system
under investigation. The conventional finite element method can be used to obtain the
deterministic matrices. The random part, denoted by ∆(•), on the other hand, depends
on a number of assumptions made regarding the stochastic modelling. These include,
but are not limited to, random variable or random field models, correlation length and
the correlation function, probability density functions describing the randomness (e.g.,
Gaussian, log-normal. uniform) and the number of random variables and/or random fields.
These aspects have been discussed well in literature, and a detailed exposure is beyond the
scope of this paper. The aim of this paper is to develop methods that are independent of



the stochastic nature of the random part. Although not a strict mathematical requirement
in this work, the random part of the system matrices are generally small compared to the
deterministic part from a practical engineering standpoint.

The natural frequencies (ωj ∈ R) and the mode shapes (φj ∈ R
n) of the corresponding

undamped deterministic system can be obtained [1] by solving the matrix eigenvalue
problem

K0φj = ω2
jM0φj , ∀ j = 1, 2, . . . , n (3)

The undamped eigenvectors satisfy an orthogonality relationship over the mass and stiff-
ness matrices, that is

φT
kM0φj = δkj (4)

and φT
kK0φj = ω2

j δkj , ∀ k, j = 1, 2, . . . , n (5)

where δkj is the Kroneker delta function. We construct the modal matrix

Φ = [φ1,φ2, . . . ,φn] ∈ R
n (6)

The modal matrix can be used to diagonalise system (1) provided the damping matrixC is
simultaneously diagonalisable with M and K. This condition, known as the proportional
damping, originally introduced by Lord Rayleigh [28] in 1877, is still in wide use today.
The mathematical condition for proportional damping can be obtained from the commuta-
tive behaviour of the system matrices [29]. This can be expressed as CM−1K = KM−1C

or equivalently C = Mf(M−1K) as shown in [30]. In this paper we assume that the
condition for proportional damping holds for the stochastic system in equation (1).

Due to the assumption of the proportional damping for the stochastic model, the
dynamic response of the damped system can be expressed in the usual manner using
random eigenvalues and eigenvectors of the corresponding stochastic undamped system.
This leads to the random matrix eigenvalue problem

[
−λ2

jM(θ) +K(θ)
]
uj , ∀ j = 1, 2, . . . , n (7)

The natural frequencies (λj ∈ R) and the mode shapes (uj ∈ R
n) are now respectively

random variables and random vectors. We create a diagonal matrix Λ(θ) and a matrix
U(θ) containing the random natural frequencies and mode shapes as

Λ(θ) = diag [λ1(θ), λ1(θ), . . . , λn(θ)] (8)

and U(θ) = [u1(θ),u2(θ), . . . ,un(θ)] (9)

For notational convenience, functional dependence on θ will be omitted. The statistical
characterisation of the eigensolutions is the main focus of this paper.

3. Iterative approach for the random eigensolutions

For distinct undamped eigenvalues of the deterministic system (ω2
l ), φl, ∀ l = 1, . . . , n,

form a complete set of vectors. For this reason, each uj can be expanded as a stochastic
linear combination of φl. Thus, an expansion of the form

uj(θ) =
n∑

l=1

α
(j)
l (θ)φl (10)



may be considered. Without any loss of generality, we can assume that α
(j)
j = 1 (nor-

malisation) which leaves us to determine α
(j)
l , ∀ l 6= j. Substituting the expansion of uj

into the random eigenvalue equation (7), one obtains the approximation error for the j-th
mode as

εj =
n∑

l=1

−λ2
jα

(j)
l (M0 +∆M)φl + α

(j)
l (K0 +∆K)φl (11)

We use a Galerkin approach to minimize this error by viewing the expansion (10) as a
projection in the basis functions φl ∈ R

n, ∀ l = 1, 2, . . . n. Therefore, we make the error
orthogonal to the basis functions, that is

εj ⊥φl or φT
k εj = 0 ∀ k = 1, 2, . . . , n (12)

Using the orthogonality property of the deterministic undamped eigenvectors described
by (4) and (5) one obtains

n∑

l=1

α
(j)
l

(
−λ2

j (δkl +∆M ′
kl) +

(
ω2
Kδkl +∆K ′

kl

))
= 0, ∀ k = 1, . . . , n (13)

Here the random parts of the mass and stiffness matrices in the modal coordinate are
given by

∆M′ = ΦT∆MΦ and ∆K′ = ΦT∆KΦ (14)

Note that unlike M0 and K0, the above matrices are in general not diagonal matrices.
The j-th equation of (13) obtained by setting k = j can be written as

(
−λ2

j + ω2
j

)
α
(j)
j +

(
−λ2

j∆M ′
jj +∆K ′

jj

)
α
(j)
j +

n∑

l 6=j

α
(j)
l

(
−λ2

j∆M ′
jl +∆K ′

jl

)
= 0 (15)

Recalling that α
(j)
j = 1 and ∆M′ and ∆K′ are symmetric matrices, this equation can be

expressed as

−λ2
j

(
1 + ∆M ′

jj

)
+
(
ω2
j +∆K ′

jj

)
+

(
n∑

l 6=j

D′
ljα

(j)
l

)

︸ ︷︷ ︸
γj

= 0 (16)

where
D′

lj = −λ2
j∆M ′

lj +∆K ′
lj (17)

In the matrix notation
D′

(j) = −λ2
j∆M′ +∆K′ (18)

We rewrite the term γj as

γj = bT
j aj (19)

bj =
{
D′

1j , D
′
2j , . . . ,

{j−th term deleted} , . . . , D′
nj

}T
∈ R

(n−1) (20)

and aj =
{

α
(j)
1 , α

(j)
2 , . . . ,{j−th term deleted} , . . . , α(j)

n

}T

∈ R
(n−1) (21)



The vector aj is unknown and can be obtained by excluding the j = k case in Eq. (13).
Excluding this case one has

− λ2
jα

(j)
k +

(

D′
kj + α

(j)
k D′

kk +
n∑

l 6=k 6=j

α
(j)
l D′

kl

)

+ ω2
kα

(j)
k = 0,

or
{
−λ2

j (1 + ∆M ′
kk) + ω2

k +∆K ′
kk

}
α
(j)
k +

n∑

l 6=k 6=j

D′
klα

(j)
l = −D′

kj, ∀ k = 1, . . . , n; 6= j

(22)

Considering all values of k = 1, . . . , n; 6= j, these equations can be combined into a matrix
form as

[
Pj +Qj

]
aj = −bj (23)

In the preceding equation, the vectors aj and bj have been defined before. The matrices
Pj and Qj are defined as

Pj = diag
[
−λ2

j (1 + ∆M ′
11) + ω2

1 +∆K ′
11, . . . ,

{j−th term deleted} ,

. . . ,−λ2
j (1 + ∆M ′

nn) + ω2
n +∆K ′

nn

]
∈ R

(n−1)×(n−1)

(24)

and

Qj =











0 D′
12 . . . {j−th term deleted} . . . D′

1n

D′
21 0

...
...

... D′
2n

...
...

... {j−th term deleted} ...
...

...
...

...
...

...
...

D′
n1 D′

n2 . . . {j−th term deleted} . . . 0











∈ R
(n−1)×(n−1) (25)

From equation (23), aj should be obtained by solving the set of linear equations. Because
Pj is a diagonal matrix, one way to do this is by using the Neumann expansion method
[31]. Using the Neumann expansion we have

aj =
[
In−1 +P−1

j Qj

]−1 {
−P−1

j bj

}
=
[
In−1 −Rj +R2

j −R3
j + . . .

]
aj0 (26)

where In−1 is a (n− 1)× (n− 1) identity matrix,

Rj = P−1
j Qj ∈ R

(n−1)×(n−1) and aj0 = −P−1
j bj ∈ R

(n−1) (27)

Because Pj is a diagonal matrix, its inversion can be carried out analytically and subse-
quently the closed-form expressions of of the elements of aj can be obtained. Keeping one
term in the series (26), the first-order expression of the elements of aj can be obtained as

aj ≡
{

α
(j)
k

}

∀ k 6=j
=

−D′
kj

−λ2
j (1 + ∆M ′

kk) + ω2
k +∆K ′

kk

=
λ2
j∆M ′

kj −∆K ′
kj

−λ2
j (1 + ∆M ′

kk) + ω2
k +∆K ′

kk

(28)
The vector aj obtained using this way can be substituted back in the expression of the
eigenvalues in (16), which in turn can be solved for λj as

λj =

√(
ω2
j +∆K ′

jj

)
+ bT

j aj
(
1 + ∆M ′

jj

) (29)



However, the vectors bj and aj are also a function of λj . As a result γj = bT
j aj becomes

a function of λj and to reflect this it will be denoted as γj(λj). This forms the basics of
the iterative approach as from Eq. (29) one can write

λ
(r+1)
j =

√
√
√
√

(
ω2
j +∆K ′

jj

)
+ γj

(

λ
(r)
j

)

(
1 + ∆M ′

jj

) , r = 0, 1, 2, . . . (30)

For every iteration step r, the constant γj gets updated based on new values of λj using
Eq. (28) or higher order terms depending on the order of terms retained in the series
(26). The iteration can be started with the first-order perturbation, namely

λ
(0)
j =

√(
ω2
j +∆K ′

jj

)

(
1 + ∆M ′

jj

) (31)

The iteration can be stopped when the successive values of λj or γj do not change sig-

nificantly. Once the final values of α
(j)
k , ∀ k are obtained, the j-th random mode uj can

be obtained from the series (10). The overall procedure is a simulation-based approach.
The above procedure needs to be implemented for all samples when an MCS framework
is used.

4. Convergence analysis of the iterative method

For any iterative process, it is vital to examine the conditions under which the solutions
will converge. The necessary and sufficient conditions for the convergence of the proposed
method is difficult to obtain. Below we give a sufficient condition.

Proposition 1. A sufficient condition for the convergence of the proposed iterative method
is that D′

(j) is a diagonally dominant matrix for all j.

Proof. During the iteration process, the value of λj changes for different iteration steps.
We aim to derive the condition for the convergence of series (26) for an arbitrary value
of λj. This will guarantee the convergence of the iterative method, no matter what the
value of λj. The random matrix power series (26) converges if, and only if, for all the

eigenvalues σ
(j)
l of the matrix Rj , the inequality |σ

(j)
l | < 1 holds. Although this condition

is both necessary and sufficient, checking convergence for all j = 1, · · · , n is not feasible
for every iteration step. So we look for a sufficient condition that is relatively easy to
check and which ensures convergence for all j = 1, · · · , n.

For an arbitrary r-th iteration, let us denote the matrix Rj defined in Eq. (27) as

R
(r)
j . Suppose the value of λj for the r-th iteration step is λ

(r)
j . The (k, l)-th element of

the matrix R
(r)
j can be obtained as

R(r)
jkl =

−λ
(r)
j D′

(j)kl
(1− δkl)

ω2
k + λ

(r)2

j + λ
(r)
j D′

(j)kk

, ∀ k, l 6= j (32)

Since a matrix norm is always greater than or equal to its maximum eigenvalue, it follows
from the inequality |σ

(j)
l | < 1 that the convergence of the series is guaranteed if ‖ Rj

(r) ‖<



1. Writing the sum of absolute values of entries of R
(r)
j results in the following inequality

as the required sufficient condition for the convergence

n∑

k=1

k 6=j

n∑

l=1

l 6=j

∣
∣
∣
∣
∣

λ
(r)
j D′

(j)kl

ω2
k + λ

(r)2

j + λ
(r)
j C ′

kk

∣
∣
∣
∣
∣
(1− δlk) < 1 (33)

Dividing both the numerator and denominator by λ
(r)
j , the above inequality can be written

as
n∑

k=1

k 6=j

n∑

l=1

l 6=i6=k

|D′
(j)kl

|

|1/λ
(r)
j

(

ω2
k + λ

(r)2

j

)

+D′
(j)kk

|
< 1 (34)

Taking the maximum for all k 6= j, this condition can further be represented as

max

k 6= j

∑n
l=1

l 6=j,k

|D′
(j)kl

|

|1/λ
(r)
j

(

ω2
k + λ

(r)2

j

)

+D′
(j)kk

|
< 1 (35)

It is clear that (35) always holds if

n∑

l=1

l 6=j 6=k

|D′
(j)kl

| < |D′
(j)kk

|, ∀ k 6= j (36)

which in turn implies that, for all j = 1 · · ·n, the inequality ‖ R
(r)
j ‖< 1 holds if D′

(j) is a
diagonally dominant matrix. It is important to note that the diagonal dominance of D′

(j)

is only a sufficient condition and the lack of it does not necessarily prevent convergence
of the proposed iterative method. �

It is important to recall that the matrix D′
(j) is a random matrix. The convergence

condition derived above should be applied for each sample when an MCS approach is
employed for computational purposes. The numerical implementation of the proposed
method is described in the next section.

5. Summary of the algorithm

This section proposes a simple iterative algorithm to implement the idea developed
in Section 3. We select a tolerance between the difference of the successive values of sj ,
denoted by ǫm. A small value, say ǫm = 0.001 can be selected for numerical calculations.
Considering that the undamped eigensolutions (ωj and φj) are known, the random eigen-
solutions (λj and uj) can be obtained for Nsamp number of Monte Carlo samples using
the following iterative algorithm:

Solve: K0φj = ω2
jM0φj , ∀ j = 1, 2, . . . , n

Φ = [φ1,φ2, . . . ,φn] ∈ R
n

for k = 1, 2, . . .Nsamp do

Generate: ∆M′ = ΦT∆MΦ and ∆K′ = ΦT∆KΦ

for j = 1, 2, . . . n do

Initialize ǫ = 100, r = 0



λ
(r)
j = −C ′

jj/2± i
√

ω2
j − C ′2

jj/4

bj =
{
C ′

1j , C
′
2j, . . . ,

{j−th term deleted} , . . . , C ′
nj

}T

while ǫ > ǫm do

aj(λ
(r)
j ) ≡

{

α
(j)
k

}

∀ k 6=j
=

λ
(r)
j C ′

kj

ω2
k + λ

(r)2

j + λ
(r)
j C ′

kk

γj = C ′
jj + bT

j aj(λ
(r)
j )

λ
(r+1)
j = −γj(λ

(r)
j )/2± i

√

ω2
j − γ2

j (λ
(r)
j )/4

ǫ = |λ
(r+1)
j − λ

(r)
j |/|λ

(r)
j |

r = r + 1
end while

uj =
∑n

k=1 α
(j)
k φk

end for

end for

The algorithm is outlined for the first-order expression of α
(j)
k given by Eq. (28). However,

the extension to the second or higher order expressions is straightforward. One simply
needs to change the expression of aj(λ

(r)
j ) in this algorithm. If the higher-order terms are

used, then less number of steps in the iteration are needed. Once the random eigensolu-
tions λj and uj are obtained using this method for all j, the dynamic response such as
the frequency response function can be obtained exactly using conventional expressions
[1].

The computational complexity to solve algebraic eigenvalue problems scale cubically
with the dimension [32]. Therefore, an estimation of the order of calculations needed
to solve the eigenvalue problem of a matrix of size n is O(n3) for large n. This is the
computational time for an undamped system of dimension n. Suppose the computational
cost for the iteration of each eigensolution pair (λj and uj) is proportional to CI . The
value of CI will be higher if more number of iterations are used. However, as the cost of CI

simply involves post-processing of already available deterministic eigensolutions, CI <<
O(n3). The total cost of the iteration would be in order nCI . If the number of Monte
Carlo samples used for the iterative method is Nsamp, then the overall computational cost
becomes nNsampCI . Adding these two, the order of calculations needed to approximate the
eigensolutions with the proposed method is O(n3 + nNsampCI). The computational cost
for using the direct Monte Carlo simulation with Nsamp number of samples to obtain the
eigensolutions is in the order of O(n3Nsamp). Therefore, the computational efficiency can
be calculated analytically as the ratio of computational costs between the direct Monte
Carlo simulation and the iterative method as

η =
n3Nsamp

n3 + nNsampCI

=
Nsamp

1 + CI(Nsamp/n2)
(37)

For systems with very large degrees of freedom, when n → ∞, the computational effi-
ciency approaches η → O(Nsamp) for a finite number of samples. On the other hand, if
a very large number of samples are used and the number of degrees of freedom is finite,
considering Nsamp → ∞, it can be deduced that the computational efficiency approaches
η → O(n2/CI). For both extremes, the proposed iterative method demonstrates com-
putational efficiency. Practical engineering problems will lie in between these two liming



cases. Next, we illustrate this new method using two numerical examples comprising 3
and 30 degrees of freedom.

6. Numerical illustration: A three-degree-of-freedom undamped system

6.1. System model and computational methodology

Fig. 1: The three degree-of-freedom random system. Both mass and stiffness coefficients are considered
to be random. All random variables are Gaussian and uncorrelated with zero mean and unit standard
deviation.

A three-degree-of-freedom (DOF) undamped spring-mass system, taken from [33], is
shown in Fig. 1. The mass and stiffness matrices of the example system are given by

M =





m1 0 0
0 m2 0
0 0 m3



 and K =





k1 + k4 + k6 −k4 −k6
−k4 k4 + k5 + k6 −k5
−k6 −k5 k5 + k3 + k6



 (38)

It is assumed that all mass and stiffness constants are random. The randomness in these
parameters are assumed to be of the following form:

mi = mi (1 + ǫmxi) , i = 1, 2, 3 (39)

ki = ki (1 + ǫkxi+3) , i = 1, · · · , 6 (40)

Here x = {x1, · · · , x9}
T ∈ R

9 is the vector of random variables. It is assumed that
all random variables are Gaussian and uncorrelated with zero mean and unit standard
deviation. Therefore, the mean values of mi and ki are given by mi and ki. The numerical
values of the constants are assumed to be mi = 1.0 kg for i = 1, 2, 3; ki = 1.0 N/m for
i = 1, · · · , 5 and k6 = 3.5 N/m. The numerical values of the ‘strength parameters’ are
assumed to be ǫm = 0.20 and ǫk = 0.20. The derivative of the system matrices with
respect to the random variables necessary to implement the perturbation methods to be
described later can be found in Appendix B.

We calculate joint moments and joint probability density functions of the natural
frequencies of the system. Attention is restricted up to second-order joint statistics of
the three natural frequencies. The following four methods are used to obtain the joint
moments and the joint probability density functions:



1. First-order perturbation: For the perturbation approach the, natural frequencies
can be expanded in a Taylor series about the mean as

λj(x) ≈ λj + dT
λj
x +

1

2
xTDλj

x (41)

Here λj are the same as the natural frequencies of the underlying deterministic
system, that is, λj = ωj. The quantities dλj

∈ R
m and Dλj

∈ R
m×m are respectively

the gradient vector and the Hessian matrix of λj(x) evaluated at the mean, that is

{
dλj

}

k
=

dλj(x)

dxk

|x=0 (42)

and
{
Dλj

}

kl
=

∂2λj(x)

∂xk ∂xl

|x=0 (43)

The expressions of the elements of the gradient vector and the Hessian matrix are
given in Appendix A. For the case the mean and covariance matrix of the natural
frequencies using the first-order perturbation, we ignore the Hessian matrix. The
resulting statistics for this special case can be obtained as

E [λ]j = λj = ωj (44)

and Cov (λj, λk) = dT
λj
dλk

(45)

The gradient vector dλj
can be obtained from equation (A.2) using the system

derivative matrices (B.1) and (B.2).

2. Second-order perturbation: In this case the Hessian matrices Dλj
and Dλk

are used
in calculating the joint statistics of the natural frequencies using Eqs. (41) The
elements of the Hessian matrices Dλj

and Dλk
can be calculated using equation

(A.4). The resulting statistics can be obtained as

E [λ]j = ωj +
1

2
Trace

(
Dλj

)
(46)

and Cov (λj , λk) = dT
λj
dλk

+
1

2
Trace

(
Dλj

Dλk

)
(47)

Comparing these results with Eqs. (44) and (45), the contributions of the Hessian
matrices can be regarded as corrections to the first-order perturbation results.

3. Method based on the iterative approach: The two perturbation approaches given
above does not require the calculation of random eigenvectors. In the proposed
iterative approach, random eigenvectors are also obtained in addition to the random
eigenvalues. The samples of the eigenvalues and the eigenvectors are obtained using
the algorithm described in the previous section. A total of 15000 samples are used.

4. Monte Carlo Simulation (MCS): The samples of the nine independent Gaussian
random variables xi, i = 1, · · · , 9 are generated, and the natural frequencies are
computed directly from equation (7). A total of 15000 samples are used in the
previous case to obtain the statistical moments and histograms of the pdf of the
natural frequencies. The results obtained from MCS is assumed to be the benchmark
for the purpose of comparing the analytical methods.

The results are presented and discussed in the next subsection.



6.2. Numerical results: Eigenvalues

For the given parameter values the natural frequencies (in rad/s) of the corresponding
deterministic system is given by

ω1 = 1, ω2 = 2, and ω3 = 3 (48)

Figure 2 shows percentage error with respect to MCS in the elements of the mean vector
and covariance matrix of the natural frequencies. Since the covariance matrix is a sym-
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Fig. 2: Percentage error with respect to MCS in the mean and the covariance matrix of the natural
frequencies.

metric matrix, only the elements of the upper triangular part are considered for plotting.
For the mean values, the first-order perturbation method is the least accurate, followed
by the second-order perturbation method. The same fact is also true for the diagonal ele-
ments of the covariance matrix (that is, the variance of the natural frequencies). However,
for the off-diagonal terms, the second-order perturbation method appears to be slightly
less accurate compared to the first-order perturbation method. For both calculations, the
iterative method is clearly the most accurate among the three analytical methods used in
this study.

Now consider the probability density function of the natural frequencies. Because the
iterative method is the most accurate among the three methods discussed here, we will
only pursue this method in the remaining discussions. First, we focus on the marginal pdf
of the natural frequencies. Using the iterative method, the mean and standard deviation
of the natural frequencies are obtained as

µΛ = {0.9972, 2.0194, 3.0539}T (49)

and σΛ = {0.0827, 0.1862, 0.3319}T (50)

Gaussian distributions are fitted with these parameters and compared with MCS. The
marginal pdf of the natural frequencies obtained from the iterative method and MCS
are shown in Fig. 3. Each MCS pdf in Fig. 3 is obtained by normalizing the histogram
of the samples so that the area under the curve obtained by joining the middle points
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Fig. 3: Probability density function of the natural frequencies.

of the histogram bins is equal to unity. The Gaussian distributions calculated from the
iterative method fit quite well with the MCS. This result implies that the probability
density function of the individual natural frequencies can be approximated well using a
Gaussian distribution with the correct set of parameters.

Now we focus on the joint distribution of the natural frequencies. The covariance
matrix and the matrix of correlation coefficients were obtained using the iterative method
as

ΣΛ =





0.6838 0.8782 1.2018
0.8782 3.4677 1.5497
1.2018 1.5497 11.0182



× 10−2 (51)

and

ρΛ =





1.0000 0.5703 0.4378
0.5703 1.0000 0.2507
0.4378 0.2507 1.0000



 (52)

This indicates that the natural frequencies are moderately correlated. The correlation
between λ1 and λ2 is more than that between λ1 and λ3. This is expected because from
λ1, λ3 is more distant than λ2. However, the correlation between λ1 and λ3 is more than
that between λ2 and λ3 in spite of λ1 being further from λ3 compared to λ2.

In line with the univariate Gaussian distributions shown in Fig. 3, we can obtain
bivariate Gaussian distribution for each pair of natural frequencies.

The joint probability density function of the natural frequencies obtained from the
iterative method and MCS are shown in Fig. 4. In total three joint distributions, namely
pλ1,λ2

, pλ1,λ3
and pλ2,λ3

are shown in figures 4(a) and 4(b). Each analytical joint pdf in
4(a) is obtained by fitting a bivariate Gaussian distribution with the mean vector and
covariance matrix taken from Eqs. (49) and (51) for the corresponding set of natural fre-
quencies. The MCS pdf in 4(b) is obtained by normalizing the two-dimensional histogram



(a) Fitted joint Gaussian probability density func-
tion (iterative method)

(b) Normalised two dimensional histogram (MCS)

Fig. 4: The joint probability density function of the natural frequencies obtained using the iterative
method and MCS.

of the samples so that the volume under the surface obtained by joining the middle points
of the histogram bins is equal to unity. At first, it may appear that, as the marginal pdfs
in Fig. 3, the joint pdfs of the natural frequencies are also jointly Gaussian distributed.
But a closer inspection reveals that this is not always the case. Figure 5 compares the
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Fig. 5: Contours of the joint probability density function of the natural frequencies.

contours of the analytical joint pdf with that obtained from MCS. The adjacent natural
frequencies, that is, λ1 and λ2 and λ2 and λ3 are not jointly Gaussian distributed as the
contours of the analytical joint pdf is quite different from that obtained using MCS. The
joint pdf of λ1 and λ3 is, however, close to a bivariate Gaussian density function. The
important conclusion that can be drawn from these limited numerical results is that the



natural frequencies are in general not jointly Gaussian distributed although individually
they may be. Further research is, however, required to investigate the generality of this
conclusion.

6.3. Numerical results: Eigenvectors

Now we focus our attention to the random eigenvectors. Unlike the eigenvalues, the
eigenvectors are not unique. This makes it particularly challenging to compare two differ-
ent sets when they are changing randomly across different Monte Carlo samples. Here we
have normalised the eigenvectors for every Monte Carlo sample such that the first row of
each vector is the same as the corresponding deterministic eigenvector. The deterministic
eigenvector matrix is given by

Φ =





0.5774 0.4082 −0.7071
0.5774 −0.8165 0.0000
0.5774 0.4082 0.7071



 (53)

Using the normalisation approach discussed above, the mean and the standard deviation
of the eigenvectors obtained using the proposed iterative method are given by

µU =





0.5774 0.4082 −0.7071
0.5831 −0.9207 −0.0158
0.5782 0.4448 0.7749



 and σU =





0.0000 0.0000 0.0000
0.0713 1.8045 0.1069
0.0304 0.9966 0.3497



 (54)

The mean and the standard deviation of the eigenvectors obtained using the direct MCS
are given by

µU =





0.5774 0.4082 −0.7071
0.5821 −0.9374 −0.0126
0.5782 0.4389 0.7676



 and σU =





0.0000 0.0000 0.0000
0.0715 1.3403 0.1236
0.0306 0.6383 0.3214



 (55)

The first row of the eigenvector matrix from both approaches are normalised to be the same
as the deterministic results. As a result, it has zero standard deviation. The mean of the
modal matrix obtained from the proposed iterative method is close to that obtained from
the direct MCS. However, the standard deviation is significantly different for the second
eigenvector. Note that the uncertainty for the input random variables was assumed to
be high (20%) for illustration. For relatively smaller input uncertainty (≈ 10%), it was
verified that the standard deviation of the eigenvector matrix from the proposed iterative
method matches well with the MCS results.

7. Numerical illustration: A 30-degree-of-freedom damped system

In the previous section, the 3-DOF model illustrated the accuracy of the proposed
method. Here a larger example is used to investigate the computational efficiency in
addition to the accuracy of the proposed framework.



Fig. 6: Linear array of random spring-mass oscillators; n = 30, muj
= mu (1 + ǫmxj), kuj

=

ku (1 + ǫkx30+j), mu = 1 Kg, ku = 2500 N/m. All random variables are Uniform and uncorrelated
with zero mean and unit standard deviation.

7.1. System model and random parameters

A linear system consisting of an array of spring-mass oscillators is considered to in-
vestigate the numerical aspects of the proposed iterative method. Figure 6 shows the
system together with the numerical values assumed for the system parameters. This
spring-mass model can be considered as the discretised version of an axially vibrating
rod. Thirty masses, each of with nominal mass mu, are connected by springs of nominal
stiffness value ku. Each mass has a damper with a damping coefficient cu connected to the
ground. The model considered here has 30 degrees of freedom (DOF). The mass matrix
of the system has the form M = diag

[
muj

]
and the stiffness matrix of the system is given

by

K =










ku1
+ ku2

−ku2

−ku2
ku2

+ ku3
−ku3

. . .
. . .

. . .

ku29
+ ku30

−ku30

−ku30
ku30










∈ R
30×30 (56)

The damping matrix for the system in Fig. 6 is a mass-proportional damping matrix. It is
assumed that the mass and stiffness associated with all the units are random. Randomness
associated with each unit has the following form

muj
= mu (1 + ǫmxj)

and kuj
= ku (1 + ǫkx30+j) , j = 1, 2, · · ·30

(57)

Here x = {x1, x2, · · · , x60}
T ∈ R

60 is the vector of random variables. It is considered that
all random variables are Uniform and uncorrelated with zero mean and unit standard
deviation. Therefore, the mean values of muj

and kuj
are given by mu = 1 Kg and

ku = 2500 N/m. The numerical values of the ‘strength parameters’ are taken as ǫm = 0.15
and ǫk = 0.20, that is the randomness associated with mass and stiffness values are 15%
and 20% respectively.

7.2. Numerical results: Eigenvalues

Among the 30 natural frequencies, we consider the first ten for statistical analysis.
Table 1 shows the deterministic values and the mean of the first ten natural frequencies
obtained using the first-order perturbation method, second-order perturbation method,



Table 1: Deterministic and mean values of the first ten natural frequencies (the numbers in the parenthesis
correspond to the percentage error with respect to the Monte Carlo Simulation (MCS) with 15,000
samples)

Deterministic First-order Second-order Iterative MCS
perturbation perturbation method (15k samples)

2.5748 2.5748 (2.1706) 2.5256 (0.2189) 2.5249 (0.1911) 2.5201
7.7175 7.7175 (2.1635) 7.5701 (0.2123) 7.5679 (0.1828) 7.5541
12.8398 12.8398 (2.1625) 12.5947 (0.2122) 12.5883 (0.1615) 12.5680
17.9281 17.9281 (2.1533) 17.5860 (0.2044) 17.5736 (0.1338) 17.5502
22.9688 22.9688 (2.1404) 22.5310 (0.1936) 22.5125 (0.1113) 22.4874
27.9486 27.9486 (2.1312) 27.4165 (0.1868) 27.3932 (0.1017) 27.3654
32.8542 32.8542 (2.1126) 32.2297 (0.1714) 32.2043 (0.0925) 32.1745
37.6728 37.6728 (2.1053) 36.9579 (0.1678) 36.9354 (0.1069) 36.8960
42.3914 42.3914 (2.0814) 41.5888 (0.1485) 41.5748 (0.1149) 41.5271
46.9977 46.9977 (2.0456) 46.1101 (0.1184) 46.1309 (0.1637) 46.0555

Table 2: Standard deviation of the first ten natural frequencies (the numbers in the parenthesis correspond
to the percentage error with respect to the Monte Carlo Simulation (MCS) with 15,000 samples)

First-order Second-order Iterative MCS
perturbation perturbation method (15k samples)

0.0714 (-7.6905) 0.0731 (-5.4052) 0.0750 (-2.9705) 0.0773
0.2139 (-7.9860) 0.2196 (-5.5569) 0.2263 (-2.6753) 0.2325
0.3559 (-7.3967) 0.3665 (-4.6453) 0.3750 (-2.4462) 0.3844
0.4970 (-7.3273) 0.5142 (-4.1071) 0.5257 (-1.9708) 0.5363
0.6367 (-6.2685) 0.6632 (-2.3699) 0.6675 (-1.7372) 0.6793
0.7748 (-5.4869) 0.8138 (-0.7269) 0.8024 (-2.1129) 0.8197
0.9107 (-6.8044) 0.9665 (-1.0999) 0.9565 (-2.1217) 0.9772
1.0443 (-6.0516) 1.1219 (0.9311) 1.0815 (-2.7109) 1.1116
1.1751 (-5.8850) 1.2808 (2.5790) 1.2565 (0.6362) 1.2486
1.3028 (-6.4535) 1.4437 (3.6651) 1.3830 (-0.6972) 1.3927

proposed iterative method and MCS with 1.5× 104 samples. The details of the first and
second-order perturbation methods are given in the previous section. The derivative of
the system matrices with respect to the random variables necessary to implement the
perturbation methods can be found in Appendix C.

Table 2 shows the standard deviation the first ten natural frequencies obtained using
the four methods discussed before. Percentage errors associated with the computed values
are also shown in Tables 1 and 2. A Windows 10 workstation with Intel core (TM) i9-
10980XE CPU @ 3.00GHz and 64.0 GB RAM was used for computational proposes.
Matlab software (version R2020b) was employed to implement the proposed iterative
algorithm. For 15,000 samples and the problem with 30 DOF, the iterative method took
71.25 seconds, and the direct Monet Carlo simulation took 697.3438 seconds. The values
should be taken for indicative purposes only as our computer codes were not optimised for
enhanced performance. The difference in the computational time between the iterative
method and the direct Monet Carlo simulation is expected to grow significantly for systems



with higher DOF as given by Eq. (37).
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Fig. 7: Percentage error with respect to MCS in the mean and the covariance matrix of the first ten natural
frequencies of the 30-DOF random oscillatory system. Only the consecutive rows of the triangular part
above the diagonal of the covariance matrix are shown.

Figure 7 shows percentage error with respect to MCS in the elements of the mean
vector and the covariance matrix of the natural frequencies. Since the covariance matrix
is a symmetric matrix, only the elements of the upper triangular part are considered for
plotting. For the mean values, the first-order perturbation method is the least accurate,
followed by the second-order perturbation method. The same fact is also true for the
elements of the covariance matrix. For both calculations, the iterative method is clearly
the most accurate among the three methods used in this study.

The undamped natural frequencies of the deterministic system are uniformly spaced
and range from near 2.5 rad/s to approximately 100 rad/s. In Fig. 8(a), the deterministic
undamped natural frequencies along with the mean and standard deviation of the natural
frequencies obtained using the iterative method and direct Monet Carlo simulation are
shown. The mean values follow the deterministic results closely. Both the mean and
standard deviation obtained using the iterative method is very close to the ones obtained
using the direct Monet Carlo simulation. This is also evident from the low error values
reported in Tables 1 and 2. In Fig. 8(b), we consider the probability density function of
the natural frequencies. Gaussian distributions are fitted with the mean and standard
deviation of the natural frequencies given in Fig. 8(a). The marginal pdf of the first ten
natural frequencies obtained from the iterative method and MCS are shown in Fig. 8(b).
Each MCS pdf in Fig. 8(b) is obtained by normalizing the histogram of the samples so
that the area under the curve obtained by joining the middle points of the histogram
bins is equal to unity. The Gaussian distributions calculated from the iterative method
fit quite well to the MCS. This result implies that the probability density function of the
individual natural frequencies may be approximated well using a Gaussian distribution
with the correct set of parameters.

Now we focus on the joint distribution of the natural frequencies. The covariance
matrix of the natural frequencies is the most important descriptor for the joint statistics.
Using the proposed asymptotic method, the covariance matrix of the first ten natural
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Fig. 8: Mean, standard deviations and probability density function of the natural frequencies obtained
using the iterative method and Monte Carlo Simulation for the 30-DOF random oscillatory system.

frequencies are found to be


















0.0056 0.0116 0.0192 0.0265 0.0338 0.0407 0.0487 0.0548 0.0615 0.0691
0.0512 0.0585 0.0801 0.1011 0.1223 0.1462 0.1650 0.1856 0.2076

0.1406 0.1328 0.1692 0.2036 0.2422 0.2730 0.3107 0.3421
0.2764 0.2366 0.2855 0.3389 0.3743 0.4341 0.4734

0.4455 0.3652 0.4296 0.4792 0.5333 0.6078
0.6439 0.5186 0.5707 0.6737 0.7311

0.9149 0.6923 0.7955 0.8743
symmetric 1.1695 0.8748 0.9510

1.5789 1.1585
1.9126



















(58)
Due to the symmetry of the covariance matrix, only the elements of the upper triangular
part is shown above. The square root of the diagonal elements of the above matrix
are the standard deviations of the natural frequencies, which are also shown in Table 2.
In line with the univariate Gaussian distributions shown in Fig. 8(b), we can obtain
bivariate Gaussian distribution for each pair of natural frequencies using the entries of
the covariance matrix in Eq. (58). The joint probability density function of the natural
frequencies obtained from the iterative method and MCS are shown in Fig. 9. In total
45 joint distributions, pλj ,λk

, j = 1, · · · , 10, k = j + 1, · · · , 10 are shown in Fig. 9. Each
analytical joint pdf in 9(a) is obtained by fitting a bivariate Gaussian distribution with the
mean vector and the covariance matrix for the corresponding set of natural frequencies.
The MCS pdf in 9(b) is obtained by normalising the two-dimensional histogram of the
samples so that the volume under the surface obtained by joining the middle points of the
histogram bins is equal to unity. It is difficult to compare two 3D plots directly; however,
one can see similar trends in Fig. 9. For further clarifications, in Fig. 10 selected joint
probability density functions considering two random natural frequencies at a time are
shown. Bivariate Gaussian distributions obtained using the mean and covariance matrix



(a) Fitted joint Gaussian probability density func-
tions (iterative method)

(b) Normalised two-dimensional histograms
(MCS)

Fig. 9: The joint probability density function of the natural frequencies obtained using the iterative
method and Monte Carlo Simulation for the 30-DOF random oscillatory system.

(a) λ1 and λ2 (b) λ1 and λ4 (c) λ1 and λ9

(d) λ5 and λ6 (e) λ7 and λ10 (f) λ3 and λ9

Fig. 10: Selected joint probability density function of the natural frequencies for the 30-DOF random os-
cillatory system. Results obtained using the iterative method and Monte Carlo Simulation are compared.

from Table 1 and Eq. (58) are given. On the same plots, the pdf corresponding to MCS
obtained by normalising the two-dimensional histogram of the samples is superimposed.
For most cases, the bivariate Gaussian distribution matches well with the joint probability
density function obtained from the MCS.



7.3. Numerical results: Frequency response functions

Response of multiple degree of freedom dynamic systems due to applied forces and
initial conditions can be obtained in the time-domain or in the frequency-domain. For lin-
ear systems, frequency-domain methods are often used for simplicity. It is assumed that
the n-degree-of-freedom random linear viscously damped system in Eq. (1) is propor-
tionally damped. Therefore, the random undamped eigenvector matrix with diagonalise
the system in Eq. (1) due to the orthonormal properties of the eigenvectors. The ran-
dom transfer function matrix for (1) can be expressed in terms of the random natural
frequencies (λj(θ)) and the mode shapes (uj(θ)) as

H(iω, θ) =
[
−ω2M(θ) + iωC(θ) +K(θ)

]−1
=

n∑

j=1

uj(θ)u
T
j (θ)

−ω2 + 2iλj(θ)ζj(θ)ω + λ2
j(θ)

(59)

Here the random damping ratios ζj(θ) are defined from the diagonal elements of the modal
damping matrix as

ζj(θ) =
C ′

jj(θ)

2λj(θ)
∀ j = 1, · · · , n (60)

where the damping matrix in the modal coordinate

C′(θ) = UT (θ)CU(θ) (61)

is a random diagonal matrix. The elements of a transfer function matrix is also knows
as the frequency response function (FRF) because it describes the dynamic response in
the frequency domain of a given degree of freedom due to applied harmonic force at
another degree of freedom. In Fig. 11 the mean and standard deviation of the amplitude
of the frequency response functions of the 30-DOF random oscillatory system shown in
Fig. 6 are shown. A cross FRF H15(ω) and a driving point FRF H55(ω) are considered
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Fig. 11: Mean and standard deviation of the amplitude of the frequency response functions (FRF) of the
30-DOF random oscillatory system.

for illustrations. The modal damping factors are considered to be uniformly randomly
distributed within 0.05% - 0.1%. The FRFs are calculated using Eq. (59) with samples



of random natural frequencies and the mode shapes obtained using the proposed iterative
method and direct MCS. The mean values of the amplitude of the FRFs appear to be
more damped compared to the deterministic values (see [34] for a physical explanation).
Both the mean and standard deviation obtained using the iterative method is very close
to the ones obtained using the direct Monet Carlo simulation.

The phase of the FRFs corresponding to the amplitudes shown in Fig. 11 are displayed
in Fig. 12. Both the mean and standard deviation of the phase obtained using the itera-
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Fig. 12: Mean and standard deviation (denoted as ‘Std’) of the phase of the frequency response functions
(FRF) of the 30-DOF random oscillatory system.

tive method are very close to those obtained using the direct Monet Carlo simulation. The
phase angles are real random processes in frequency ω and bounded between [π,−π]. The
phase ranges are therefore highly non-Gaussian random processes, and Fig. 12 demon-
strates that they can be quantified accurately using the proposed iterative method.

8. Conclusions

For linear dynamic systems with parameter uncertainties, the statistical characteri-
sation of the eigenvalues and the eigenvectors is of crucial importance. This is not only
important from the point of view of physical understandings but also, the dynamic re-
sponse of stochastic systems is directly dependent on the statistics of the eigensolutions.
A new iterative approach is proposed in this paper to obtain random eigenvalues and the
eigenvectors simultaneously. The random eigenvectors are projected based on the deter-
ministic undamped eigenvectors, and the error is minimised using a Galerkin approach.
The resulting equations are then reorganised in such a way that the emerging iterative
approach can be applied in conjunction with Monte Carlo simulation. In effect, the pro-
posed method is an efficient Monte Carlo simulation approach that does not require the
solution of the compute eigenvalue problem for each sample. Only the samples of the mass
and stiffness matrices are required. The random variables are, in general, considered to be
non-Gaussian. The usual assumption of small randomness employed in most perturbation
methods is not employed in this study. A sufficient condition for the convergence of the
proposed iterative method was derived.



The method was applied to a 3-DOF system and a 30-DOF system with random mass
and stiffness matrices. The eigenvalue statistics were compared with first and second-order
perturbation methods as well as direct Monte Carlo simulations. The individual probabil-
ity density function of a single random natural frequency and the joint probability density
function of two different natural frequencies were obtained. The eigenvector statistics were
compared with direct Monte Carlo simulations. Excellent agreements for the eigenvalues
and reasonable agreements for the eigenvectors were observed. The random eigensolutions
obtained from the proposed approach can be used directly to compute the stochastic dy-
namic response of undamped and proportionally damped systems. It was shown that the
second-order statistics of the frequency response functions obtained using the iterative
method match well with Monte Carlo simulation results. Future research is necessary for
complex random eigenvalue problems arising in more general non-proportionally damped
stochastic dynamic systems.
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Appendix A. Gradient vector and Hessian matrix of the natural frequencies

The eigenvectors of symmetric linear systems are orthogonal with respect to the mass
and stiffness matrices. Normalise the eigenvectors so that they are unity mass normalised,
that is,

φT
j Mφj = 1 (A.1)

Using this and differentiating equation (7) with respect to xk it can be shown that [35]
for any x

dλj(x)

dxk

=
φj(x)

T
Gjk(x)φj(x)

2λj(x)
(A.2)

where Gjk(x) =

[
dK(x)

dxk

− λ2
j (x)

dM(x)

dxk

]

(A.3)

Differentiating equation (7) with respect to xk and xl [36] have shown that, providing the
natural frequencies are distinct,

d2λj(x)

dxk
2

xl =

[

1

2λj(x)

d2
(
λ2
j(x)

)

dxk
2

xl −
1

λj(x)

dλj(x)

dxl

dλj(x)

dxk

]

(A.4)

where

d2
(
λ2
j (x)

)

dxk
2

xl = φj(x)
T

[
d2K(x)

dxk
2

xl − λ2
j (x)

d2M(x)

dxk
2

xl

]

φj(x)

−

(

φj(x)
T dM(x)

dxk

φj(x)

)(

φj(x)
T
Gjl(x)φj(x)

)

−

(

φj(x)
T dM(x)

dxl

φj(x)

)(

φj(x)
T
Gjk(x)φj(x)

)

+ 2
N∑

r=1

(

φr(x)
T
Gjk(x)φj(x)

)(

φr(x)
T
Gjl(x)φj(x)

)

ω2
j (x)− ω2

r(x)
(A.5)

Equations (A.2) and (A.4) completely define the elements of the gradient vector and
Hessian matrix of the natural frequencies.

Appendix B. Derivative of the system matrices with respect to the random

variables for the 3-DOF system

The derivatives of M(x) and K(x) with respect to elements of x can be obtained from
equation (38) together with Eqs. (39) and (40). A similar example was studied in [37, 38].
For the mass matrix we have

dM

dx1

=





m1ǫm 0 0
0 0 0
0 0 0



 ,
dM

dx2

=





0 0 0
0 m2ǫm 0
0 0 0



 ,
dM

dx3

=





0 0 0
0 0 0
0 0 m3ǫm



 (B.1)



All other
dM

dxi

are null matrices. For the derivative of the stiffness matrix

dK

dx4
=





k1ǫk 0 0
0 0 0
0 0 0



 ,
dK

dx5
=





0 0 0

0 k2ǫk 0
0 0 0



 ,
dM

dx6
=





0 0 0
0 0 0

0 0 k3ǫk





dK

dx7

=





k4ǫk −k4ǫk 0

−k4ǫk k4ǫk 0
0 0 0



 ,
dK

dx8

=





0 0 0

0 k5ǫk −k5ǫk
0 −k5ǫk k5ǫk



 ,
dM

dx9

=





k6ǫk 0 −k6ǫk
0 0 0

−k6ǫk 0 k6ǫk





(B.2)

and all other
dK

dxi

are null matrices. Also note that all of the first-order derivative matrices

are independent of x. For this reason, all the higher order derivatives of the M(x) and
K(x) matrices are null matrices.

Appendix C. Derivative of the system matrices with respect to the random

variables for the 30-DOF system

In order to obtain the statistics of the natural frequencies using the perturbation meth-
ods, the gradient vector and the Hessian matrix of the natural frequencies are required.
This in turn requires the derivative of the system matrices with respect to the entries of
the random vector x. For most practical problems, which usually involve Finite Element
modeling, these derivatives need to be determined numerically. However, for the 30-DOF
system in Fig. 6 the derivatives can be obtained in closed-form. For the mass matrix we
have

dM

dxi

= muǫm






0 · · · 0
... 1{i-th diagonal} 0
0 · · · 0




 ∈ R

30×30 (C.1)

and
dM

dxi

= O when i > 30. For the stiffness matrix,
dK

dxi

= O when i ≤ 30,

dK

dx21
= kuǫk






1 · · · 0
...

. . . 0
0 · · · 0




 ∈ R

30×30 (C.2)

and
dK

dx30+i

= kuǫk








0 · · · 0 0
... 1{(i−1)-th row} −1{i-th column} 0
... −1 1 0
0 · · · 0 0







∈ R

30×30, 2 ≤ i ≤ 30

(C.3)

We observe that all of the first-order derivative matrices are independent of x. For this
reason, like the previous example, all the higher order derivatives of the M(x) and K(x)
matrices are null matrices.
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