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We study the electromagnetic conductivity of QGP in a magnetic background by lattice simulations with
Nf ¼ 2þ 1 dynamical rooted 2-stout smeared staggered fermions at the physical point. We study the
correlation functions of the electromagnetic currents at T ¼ 200, 250 MeVand use the Tikhonov approach
to extract the conductivity. The conductivity is found to rise with the magnetic field in the parallel direction
and to decrease in the transverse direction, giving evidence for both the chiral magnetic effect and the
magnetoresistance phenomenon in QGP. We also estimate the chiral charge relaxation time in QGP.
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I. INTRODUCTION

The chiral magnetic effect (CME) is a well known
anomaly-based phenomenon which can be realized in
different systems with relativistic fermionic degrees of
freedom [1–3]. The CME is the generation of a nondissi-
pative electric current along the external magnetic field in
systems with a net imbalance between the number of right-
handed and left-handed fermions, or nonzero chiral density.
A nonzero chiral density is generally needed in order to

experimentally observe the CME. In heavy-ion experiments
such densitymight be generated due to sphaleron transitions
in the quark-gluon plasma (QGP) [4,5]. In condensedmatter
systems the chiral density can be generated as the result of

lattice deformations [6]. Another way to generate the chiral
density and to observe the CME is to apply parallel electric
andmagnetic fields; in this case the chiral anomaly generates
the imbalance between the right-handed and left-handed
fermions which leads to the CMEmanifesting itself through
the rise of electric conductivity along the magnetic field.
ThisCMEcurrent has already been observed experimentally
in condensed matter systems [7–9].
Similarly to condensed matter systems, the latter mecha-

nism can be realized in heavy-ion experiments, where
colliding ions create hot QGP with deconfined relativistic
quarks. In addition, in noncentral collisions the QGP is
affected by huge magnetic fields generated by the motion of
colliding heavy ions [4]. As a result the electromagnetic
conductivity of QGP along the magnetic field might be
significantly enhanced.
Let us consider QGP in parallel electric E and magnetic

B fields. Due to the axial anomaly these fields lead to the
generation of a chiral density with the rate [7]

dρ5
dt

¼ C
e2

2π2
E · B −

ρ5
τ
; ð1Þ

where C ¼ Nc
P

f q
2
f. The first term in Eq. (1) describes

the production of chiral charge due to the chiral anomaly,
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while the second term stands for the decrease of chirality
due to chirality-changing processes with the relaxation time
τ. Note that Eq. (1) has the stationary solution

ρ5 ¼ C
e2

2π2
E ·Bτ; ð2Þ

which describes the balance between anomaly based
production rate and chirality relaxation processes.
The chiral charge density can be parametrized by the

chiral chemical potential μ5 through the equation of state
ρ5 ¼ ρ5ðμ5Þ. We use the linear response theory and con-
sider the electric field E as a perturbation. In this limit the
generated chiral chemical potential is small and the
equation of state reads ρ5 ¼ μ5χðT; BÞ þOðμ35Þ; where
the χðT; BÞ is a function of magnetic field and temperature.
We mainly consider large magnetic fields (qfeB ≫ T2),
thus the chiral density is governed by the lowest Landau
level degeneracy, χ ∝ eB (χ ¼ Nc

P
f jqfjeB=2π2 in the

non-interacting approximation). The CME generates the
electric current

jCME ¼ C
e2

2π2
μ5B: ð3Þ

Combining Eq. (2) and Eq. (3) one obtains the conductivity
due to the CME

jiCME ¼ σijCMEE
j; σijCME ¼ C2

e4

4π4
τ

χðT; BÞB
iBj; ð4Þ

it is assumed here that the magnetic field is applied along
the z axis.
In addition to the CME current there is also Ohmic

current in the system and the total conductivity reads
σ ¼ σO þ σCME. If the electric field is applied along the
x axis, the Lorentz force reduces the transverse conduc-
tivity σOxx. The σCME

xx component is zero in this case. The
decrease of σxx in an external magnetic field is called
magnetoresistance. On the other hand, if an electric field is
applied along the magnetic field, there is no Lorentz force
and magnetoresistance. At the same time σCME

zz is a rising
function of the magnetic field, and this can be a manifes-
tation of the CME.1 Thus the transport properties of QGP in
can be considerably modified by the external magnetic
field.
It should be noted that the electromagnetic conductivity

of QCD was calculated in a number of lattice studies (see
for instance [10–13]). At the same time, some electromag-
netic properties of the QGP in the presence of a magnetic
background, like its magnetic susceptibility, have been

already explored [14–21], as well as the emergence of
anisotropies related to the magnetic background in other
relevant quantities [17,22–26]. A quenched lattice study of
the electromagnetic conductivity of QCD in external
magnetic field was carried out in [27], where no sign of
either CME or magnetoresistance in QGP was found. We
would like to mention also the lattice study of the
electromagnetic conductivity in the presence of external
magnetic fields in Dirac semimetals [28], where both CME
and magnetoresistance were observed in the semimetal
phase, which is similar to the QGP phase in some proper-
ties. The conductivity of QGP in external magnetic fields
was also studied within holographic models [29] and by
means of kinetic theory [30,31]. Finally we would like to
mention lattice study of the CME in thermodynamic
equilibrium [32].
This paper is organized as follows. In the next section we

discuss technical details of our lattice study. In Sec. III we
describe the Backus-Gilbert and Tikhonov regularization
methods used to extract the conductivity from Euclidean
correlation functions. Numerical results are presented in the
Sec. IV. Finally, in the last section, we discuss our results
and draw our conclusions.

II. THE LATTICE SETUP

We simulate 2þ 1 flavors QCD using 2-stout improved
rooted staggered fermions and the tree-level Symanzik
improved gauge action [33,34]. The partition function can
be written as

ZðBÞ ¼
Z

DUe−SYM
Y

f¼u;d;s

detðDf
st½B�Þ1=4; ð5Þ

where

SYM ¼ −
β

3

X
i;μ≠ν

�
5

6
P1×1
i;μν −

1

12
P1×2
i;μν

�
; ð6Þ

and the symbols P1×1
i;μν and P1×2

i;μν denote the real part of the
trace of 1 × 1 and 1 × 2 loops. The staggered matrix is

ðDf
stÞi;j ¼ amfδi;j

þ
X4
ν¼1

ηi;ν
2

ðufi;νUð2Þ
i;ν δi;j−ν̂ − uf�i−ν̂;νU

ð2Þ†
i−ν̂;νδi;jþν̂Þ;

ð7Þ

where ηi;ν are the staggered phases, Uð2Þ
i;μ stands for the two

times stout-smeared link [35] (with isotropic smearing
parameter ρ ¼ 0.15) and ufi;μ is the Abelian field phase.
The Abelian transporters corresponding to a uniform

magnetic field Bz directed along ẑ can be chosen as

1In what follows the transverse conductivity σxx will be
designated as σ⊥, while the conductivity along magnetic field
σzz will be designated as σk.
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ufi;y ¼ eia
2qfBzix ; ufi;xjix¼Nx

¼ e−ia
2qfNxBziy ; ð8Þ

where qf is the quark charge and all the other Abelian links

are set to 1 (Nk is the lattice extent in the k̂ direction,
1 ≤ ik ≤ Nk). Bz cannot be arbitrary: for Eq. (8) to describe
a uniform magnetic field on a lattice torus, the value Bz
must be quantized as follows [36–38]

e
3
Bz ¼ 2πb=ða2NxNyÞ; ð9Þ

where b is an integer.
We consider twovalues of temperatureT ¼ 200, 250MeV;

most simulations are carried out on a 16 × 643 lattice, with
spacings a ¼ 0.0618 fm and a ¼ 0.0493 fm correspond-
ingly. To check the lattice spacing dependence we also con-
sider a 10 × 483 lattice with a ¼ 0.0988 fm. To study the
ultraviolet (UV) properties of the correlator of two electro-
magnetic currents we perform simulations on a 96 × 483

lattice at a ¼ 0.0988 fm, which corresponds to T ≈ 0.
Bare parameters have been chosen so as to stay on a line

of constant physics with physical quark masses. In particular,
we adopted the values reported in [39–41], either directly or
by interpolation. Oð100Þ decorrelated gauge configurations
have been used for each simulation point. Gauge configu-
rations have been sampled using the Rational Hybrid Monte-
Carlo algorithm [42–44]. In Table I we report the lattice
parameters used in the simulations.
The process of conductivity measurements consists of

two parts: correlation function measurement and spectral
function extraction via the Kubo formula inversion. The
correlation function reads

CijðτÞ ¼
1

L3
s
hJiðτÞJjð0Þi; ð10Þ

where τ is the Euclidean time and JiðτÞ is the conserved
current

JiðτÞ¼
1

4
e
X
f

qf
X
x⃗

ηiðxÞðχ̄fxufx;iUð2Þ
x;i χ

f
xþiþ χ̄fxþiu

f�
x;iU

ð2Þ†
x;i χfxÞ;

ð11Þ

where x ¼ ðτ; x⃗Þ, ηiðxÞ ¼ ð−1Þx1þ..xi−1 , i ¼ 1, 2, 3, χ̄fx , χ
f
x

are staggered fermion fields of f ¼ u, d, s flavors, Uð2Þ
x;i is

the (stout smeared) gauge field matrix and ufx;iU
ð2Þ is the

electromagnetic field phase.
The staggered fermion correlator (10) corresponds to

two different operators for the even τ ¼ 2n × a and odd
τ ¼ ð2nþ 1Þ × a slices. In the continuum limit CijðτÞ
reads

Ce; o
ij ðτÞ ¼

X
x⃗

ðhAiðxÞAjð0Þi − se; ohBiðxÞBjð0ÞiÞ; ð12Þ

where se; o ¼ ð−1Þτ is the time slice parity and

Ai ¼ e
X
f

qfψ̄fγiψ
f; Bi ¼ e

X
f

qfψ̄fγ5γ4γiψ
f;

and ψf is Dirac spinor of the flavor f. Notice that the
operator Ai corresponds to electromagnetic current in the
continuum whereas we would like to remove the Bi
contribution.
Next let us recall that the current-current Euclidean

correlators both for even and odd slices Ce; o
ij are related

to its spectral functions ρe; oij ðωÞ as

Ce; o
ij ðτÞ ¼

Z
∞

0

dω
π

Kðτ;ωÞρe; oij ðωÞ; ð13Þ

where Kðτ;ωÞ ¼ coshωðτ−β=2Þ
sinhωβ=2 . The electromagnetic conduc-

tivity σij is related to the spectral densities ρe; oij ðωÞ through
the Kubo formulas

σij
T

¼ 1

2T
lim
ω→0

1

ω
ðρeijðωÞ þ ρoijðωÞÞ: ð14Þ

The contribution of the correlator hBiðτÞBjð0Þi to the
sum ρeij þ ρoij cancels out and in the continuum limit the
electromagnetic conductivity is reproduced. Similarly to
[10–13,27] in this calculation of the correlation function
(10) only connected diagrams are taken into account.

III. THE EXTRACTION OF THE
ELECTROMAGNETIC CONDUCTIVITY FROM

EUCLIDEAN CORRELATION FUNCTIONS

A. The Backus-Gilbert and Tikhonov
regularization methods

Given the correlation functions Ce; o
ij ðτÞ one needs to

invert the integral equation (13) and determine spectral

TABLE I. Parameters used in our numerical simulations.

a, fm Ls Nt T, MeV mla msa eB, GeV2

0.988 48 96 ≃ 0 0.0014 0.0394 0.0, 0.53
0.0988 48 10 200 0.0014 0.0394 0.0, 0.53, 0.80, 1.13
0.0618 64 16 200 0.000861 0.02423 0.0, 0.28, 0.51, 0.75, 1.12, 1.49
0.0493 64 16 250 0.000688 0.01937 0.0, 0.73, 1.17, 1.76, 2.35
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functions ρe; oij ðωÞ to find the conductivity. The maximum
entropy method (MEM) is a popular method for the
reconstruction of the spectral functions [45], and it was
applied for the computation of the electromagnetic con-
ductivity in Refs. [11,27]. However, it is rather difficult to
carry out our study with MEM: this is because for staggered
fermions we have Nt=2 ¼ 8 points (due to the symmetry of
the correlator around the point t ¼ Nt=2) in the temporal
direction, which are split into 4 points for even time slices
and 4 points for odd time slices. To conduct the
reconstruction in this case, one has to reconstruct separately
even and odd spectral functions: we believe that for MEM
this is a very complicated task; notice also that MEM can be
applied only for positive spectral functions, however this is
not the case for the odd branch of the spectral function in a
magnetic field. For these reasons, we decided to apply
Backus-Gilbert (BG) [46] and Tikhonov regularization
(TR) [47] methods.
The BG and TR methods are nonparametric linear

approaches which can be used to study the spectral
function.2 These methods are aimed at the solution of
the equation

CðτÞ ¼
Z þ∞

0

dω
2π

ρðωÞ
fðωÞKðω; τÞ; ð15Þ

where Kðω; τÞ ¼ coshωðτ−β=2Þ
sinhωβ=2 fðωÞ and fðωÞ is an arbitrary

function. In linear methods (including the BG and TR), one
reconstructs the estimator ρ̄ðω̄Þ of the spectral function:

ρ̄ðω̄Þ ¼ fðω̄Þ
X
i

qiðω̄ÞCðτiÞ; ð16Þ

where qiðω̄Þ are some functions, which exact view will be
discussed later. Combining Eq. (15) and (16), one gets the
following relation between the estimator ρ̄ðω̄Þ and the
spectral function ρðωÞ:

ρ̄ðω̄Þ ¼ fðω̄Þ
Z

∞

0

dωδðω̄;ωÞ ρðωÞ
fðωÞ ; ð17Þ

where δðω̄;ωÞ is given by the formula:

δðω̄;ωÞ ¼
X
i

qiðω̄ÞKðxi;ωÞ: ð18Þ

If the resolution function has a sharp peak around ω̄ and
normalized to 1, according to Eq. (17) the estimator ρ̄ðω̄Þ is
a very good approximation to the spectral function ρðωÞ.
E.g., if δðω; ω̄Þ ¼ δðω − ω̄Þ the estimator of the spectral
function would exactly reproduce the spectral function
ρ̃ðω̄Þ ¼ ρðω̄Þ. In real calculation the resolution function has

a peak of finite width of few T, thus the estimator ρ̄ðω̄Þ
averages the spectral function over the region of several T.
In particular, in the BG and TR methods (see below) at
ω̄ ¼ 0 the width of the resolution function is ∼ð3.5–4ÞT.
Now let us discuss, how one should select functions

qiðω̄Þ in Eq. (16). One of the reasonable ways is to require
the minimization of the width of δðω̄;ωÞ. However, it turns
out that in this simple case the method becomes unstable
and susceptible to noise in the data. Thus, the method
requires regularization that should be properly adjusted.
The difference between BG and TR methods lies in
different ways of this regularization.
Within the BG method one minimizes the functional

HðρðωÞÞ ¼ λAðρðωÞÞ þ ð1 − λÞBðρðωÞÞ. The term A rep-
resents the width of the resolution function: A ¼R∞
0 dωδðω̄;ωÞðω − ω̄Þ2. The term BðρðωÞÞ ¼ Var½ρðωÞ�
regularizes ρðωÞ making it less susceptible to noise. In
terms of the covariance matrix and functions qiðω̄Þ used to
define ρ̄ðω̄Þ in Eq. (16), it reads Bðq⃗Þ ¼ q⃗T Ŝ q⃗. Thus,
statistical uncertainties are reduced at cost of increasing the
width of the resolution function through decrease of λ.
The minimization of H gives the following linear

functions on the form (16)

qiðωÞ ¼
P

jW
−1
ij ðω̄ÞRðxjÞP

kjRðxkÞW−1
kj ðω̄ÞRðxjÞ

; ð19Þ

Wijðω̄Þ¼ λ

Z
∞

0

dωKðxi;ωÞðω− ω̄Þ2Kðxj;ωÞþð1−λÞSij;

ð20Þ

RðxiÞ ¼
Z

∞

0

dωKðxi;ωÞ: ð21Þ

The TRmethod is another way of the regularization of the
same problem.While in the BGmethod the regularization is
performed as Wij → λSij þ ð1 − λÞWij, in the TR scheme
the SVD decomposition of W−1 ¼ VDUT is regularized.
The diagonal matrix D ¼ diagðσ−11 ; σ−12 ;…; σ−1n Þ might
have very large entries that represent the susceptibility of
the data to noise. The regularization is done by adding
the regularizer γ to all entries as D̃ ¼ diagððσ1 þ γÞ−1;
ðσ2 þ γÞ−1;…; ðσn þ γÞ−1Þ. Thus, small σi will be smoothly
cutoff.
In Fig. 1 we plot typical resolution functions for BG and

TR regularizations at different ω̄ for the λ ¼ 0.01
and γ ¼ 1.
We would like to note that the TR and BG methods can

reliably reconstruct ρðω ¼ 0Þ if the resolution function
δðω̄ ¼ 0;ωÞ is narrower than the characteristic variation
scale of ρðωÞ. Correlation functions of the electromagnetic
currents are well described by either the ansatz combining
the transport peak at small frequencies and UV contribution
at large frequencies [11–13] or by the AdS=CFT spectral

2The BG and TR methods were used to study transport
properties of different strongly correlated systems in [12,48–50].
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function [13]. Within the temperature interval considered in
this paper the widths of δðω̄ ¼ 0;ωÞ are close to or smaller
than the variation scale of ρðωÞ obtained in [11–13]. For
this reason we believe that both approaches give reliable
results for the conductivity extracted from such spectral
functions.
One might also expect that slightly above Tc there is a

contribution of the ρ–meson remnants that might lead to a
slight contamination of our results. However, the most
recent lattice studies of the electromagnetic conductivity
and the corresponding spectral function [11–13] did not
find a sign of the ρ-meson contribution to the spectral
function in the temperature range under consideration in
our paper. One should also note that our results obtained at
zero magnetic field are in agreement with that obtained in
previous lattice studies [10,12] (see Fig. 5), within present
uncertainties. So, even if there is some contamination of our
results due to the remnant of the ρ-meson, it is within the

uncertainty of the calculation. Finally, notice that the main
focus of the paper is not the electromagnetic conductivity
itself, but the change of the conductivity due to nonzero
external magnetic field. Consequently, we calculate the
difference σðeBÞ − σðeB ¼ 0Þ instead of the conductivity
σðeBÞ. This further reduces the possible ρ–meson con-
tamination of our results in the deconfinement phase, since
one can expect that this contribution will be mostly
canceled out in the difference σðeBÞ − σðeB ¼ 0Þ.
We remark that both in the BG and TR methods, the

resolution function is an outcome of the method itself, and
cannot be chosen a priori. This makes it difficult to well
define a continuum limit, since there is no guarantee that
the measured quantity is defined in the same way across
different gauge ensemble. However, in our calculation we
empirically observe that the dependence of the resolution
functions on the parameters of the calculation is very weak.
This is reflected in the good agreement of the results of
Nt ¼ 10 and Nt ¼ 16 lattices. In the future, if a continuum
limit has to be carried out, a fixed resolution function must
be employed, for example following the approach sug-
gested in [51].
Our calculation shows that both the BG and TR methods

give similar results of the conductivity but the TR reso-
lution function for the conductivity is a little narrower. For
this reason in what follows we use the TR approach to
calculate the electromagnetic conductivity.

B. The calculation of the electromagnetic
conductivity at zero magnetic field eB= 0

The calculation of the electromagnetic conductivity is
carried out in the following steps. Firstly, we measure the
lattice correlation functions Ce; o

ij ðτÞ (12). Then we calculate
the estimators ρ̃e; oðω̄Þ=ω̄ at ω̄ ¼ 0 within the TR approach.
Finally using Eq. (14) we calculate the electromagnetic
conductivity.
An important issue in the calculation is the UV con-

tribution to the reconstructed conductivity. For instance, in
the studies of shear and bulk viscosities of gluon plasma
[48,49] the UV spectral density scales as ρ ∝ ω4, which
results in a large UV contribution to the estimator. This
contribution should be subtracted in order to obtain reliable
results. For the conductivity the UV contribution scales as
ρ ∝ ω2 and our calculation shows that the UV gives
∼20–30% contribution at ω̄ ¼ 0.
For zero magnetic field we subtract the ultraviolet

contributions from even and odd spectral densities sepa-
rately. To this end, we employ the model for the spectral
densities at large frequencies. Taking into account asymp-
totic freedom in QCD it is reasonable to assume that real
spectral densities at ω ≫ ΛQCD do not deviate considerably
from their tree level expressions. This assumption will be
confirmed below. It allows us to propose the following
forms of the spectral densities at large frequencies

FIG. 1. Top: the resolution functions for the BG regularization
at T ¼ 200 MeV and λ ¼ 0.01. Bottom: the resolution functions
for the TR regularization at T ¼ 200 MeV and γ ¼ 1.0.
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ρe;oUVðωÞ ¼ Ze;o
3

4π2
ω2 tanh

�
ωβ

4

�
; ð22Þ

where Ze, Zo are the coefficients for the even and odd
branches. At the tree level approximation Ze ¼ 1

2
, Zo ¼ 3

2
,

but these coefficients can be renormalized by the
interactions.
In [49,52] it was shown that the BG method with proper

scaling can be used to determine the UV coefficient such as
Ze, Zo. Following [49,52], we apply BG approach with the
rescaling function3 fðωÞ ¼ 3

4π2
ω2 tanhðωβ

4
Þ and use the

lattice data for the correlators calculated on the lattice
96 × 483.
In Fig. 2 we plot the UV behavior of the rescaled

reconstructed spectral function ρ̃ðω̄Þ for different values of
λ ¼ 10−4; 10−5; 10−6 at the tree level case. From Fig. 2 one
can see that the reconstructed asymptotic values match the
tree-level values 3=2, 1=2, what confirms the validity of the
method.
In Fig. 3 we perform the same procedure in the

interacting case for λ ¼ 10−4; 10−5; 10−6. From Fig. 3 it
is seen that in the UV the spectral functions indeed
correspond to the models (22). Notice also that the
coefficients Ze, Zo are considerably renormalized as com-
pared to their tree level values, but their mean value is only
slightly renormalized, A ¼ ðZe þ ZoÞ=2 ∼ 1.0. Taking into
account the uncertainties of the calculation we obtain
A ¼ 1.05� 0.05. Note that this result agrees with previous
calculations [12,13], where the renormalization of A was
shown to be small.
Finally, to perform the subtraction of the UV contribu-

tion, we take the mean value of two branches conductivity
ρðωÞ ¼ ðρeðωÞ þ ρoðωÞÞ=2. Then the UV contribution is
subtracted in the form

Δρ̃ðω̄Þ ¼ A
Z þ∞

ω0

dωδðω̄;ωÞ 3

4π2
ω2 tanh

�
ωβ

4

�
; ð23Þ

where the ω0 is the frequency which represents the
asymptotic freedom region (23) onset. Unfortunately it is
not possible to determine the value of ω0 within the BG
method. In the calculation of the conductivity we vary
ω0 ∈ ð1.5 GeV; 3.0 GeVÞ and account this as the system-
atic uncertainty. Note that this range of ω0 variation is in
good agreement with the one obtained in [12] within the
fitting procedure.
The uncertainties of conductivity at zero magnetic field

come from several sources. The first part of uncertainty is a
statistical one, which can be estimated within the Backus-
Gilbert method. Note that statistical uncertainty depends on
the specific choice of λ regularization. In turn, we estimate

systematic uncertainty as emerging from two sources:
ultraviolet parameters for ultraviolet contamination sub-
traction and the choice of λ regularizer. The uncertainties on
the ultraviolet parameters A (amplitude) and ω0 (UV cutoff)
together result in relative systematic error of ∼10–15%,
while, surprisingly, the conductivity σð0Þ is practically
insensitive to choice of λ. To account for the uncertainty of
λ, in the calculation we take statistical uncertainty to be the
largest one while λ is varied within the region [0.1, 10].
This results in relative statistical error of 3%–5%.

FIG. 2. The reconstructed ultraviolet behavior for odd and even
branches of the spectral function on the lattice 96 × 483 at the
tree-level approximation and fðωÞ ¼ 3

4π2
ω2 tanhðωβ

4
Þ. The

reconstruction is carried out for the following values of the
λ ¼ 10−5; 10−6; 10−7. The dashed lines correspond to tree level
results Ze ¼ 1

2
, Zo ¼ 3

2
.

FIG. 3. The reconstructed ultraviolet behavior for odd and even
branches of the spectral function on the lattice 96 × 483 in the
interacting case and fðωÞ ¼ 3

4π2
ω2 tanhðωβ

4
Þ. The reconstruction is

carried out for the following values of the λ ¼ 10−5; 10−6; 10−7.
The dashed lines correspond to tree-level results Ze ¼ 1

2
, Zo ¼ 3

2
.

3Notice that in order to account discretization uncertainties we
use lattice expressions for the function fðωÞ.

NIKITA ASTRAKHANTSEV et al. PHYS. REV. D 102, 054516 (2020)

054516-6



C. The calculation of the effects of the magnetic
field on the electromagnetic conductivity

Let us now consider the electromagnetic conductivity of
QGP in the presence of the external magnetic field. From a
technical point of view, the magnetic field affects directly
the path-integral measure and the fermion propagators
entering the construction of the electromagnetic currents;
moreover, the e.m. Uð1Þ phases enter the gauge links in the
definition of the split current in Eq. (11). Apart from this,
the problem turns out to be easier than at eB ¼ 0. In
particular, instead of the correlation functions Ce; o

eB we
consider the difference ΔCe; o ¼ Ce; o

eB − Ce; o
eB¼0. Since, for

the chosen values of the lattice spacing, the UV regime
starts at ω0 ∼ 2 GeV, we note that qfeB ≪ ω2 for all
frequencies in the UV regime and magnetic fields. Thus,
one can consider the UV spectral function magnetic field-
independent and assume that the differences ΔCe; o do not
contain the UV contribution. The results for ΔCe; o turn out
to be more accurate since the UV–estimation uncertainty is
absent in this case. The correlator ΔCe; o is related to
additional conductivity due to the presence of the magnetic
field. In our further study we apply the TR approach to the
differences ΔCe; o.
In the reconstruction procedure one has to choose the

value of the parameter γ. In order to do this in Fig. 4 we
show typical dependence of the ratios Δσk=TCem (top
panel) and Δσ⊥=TCem (bottom panel) on the γ parameter
and the width Γδ of the resolution functions for even and
odd branches of the correlator (12); the error bars of the red
stars are the statistical uncertainty. Figure 4 is plotted for
the lattice 16 × 643 with the parameters eB ¼ 0.75 GeV2

and T ¼ 200 MeV. The same figures for the lattices with
other parameters studied in this paper look similarly.
From Fig. 4 it is clear that in the region of small γ (weak

regularization) the method becomes unstable what mani-
fests itself in large statistical uncertainties rising with the
decrease of γ. In addition, in the same region the recon-
structed conductivities and the widths of the even and odd
resolution functions reach plateaus. Moreover, since the
resolution function width does not decrease below some
value of γ, the decrease of the γ below this value does not
make the reconstruction more accurate.
On the contrary, in the region of large γ the method is

stable with small uncertainties at the cost of strong
regularization. The widths of the resolution functions are
growing and spectral function is averaged over a large
region which is not appropriate for the conductivity
reconstruction. In order to safely choose the region of
regularization uncertainty, we restrict ourselves from below
by the value of γ where the plateau is saturated and from
above by the value of γ where both resolution functions
have the width of 4T. This results in the variation region
roughly γ ∈ ð0.1; 10Þ. The exact regions depend on the
lattice parameters (magnetic field and temperature).

Thus, we restrict ourselves to the region γ ∈ ð0.1; 10Þ
where the method is stable and the resolution is sufficiently
narrow < 4T. The uncertainties of our results were esti-
mated as the total variation of the ratio Δσ=TCem including
statistical uncertainties as the γ parameter is varied within
the region γ ∈ ð0.1; 10Þ.

IV. RESULTS

Let us start with the discussion of results in absence of
the external magnetic field. The electromagnetic conduc-
tivities normalized to the factor TCem (Cem ¼ e2

P
f q

2
f) at

zero magnetic field and temperatures T ¼ 200, 250 MeV
are shown in Fig. 5. In addition we plot the results of
Refs. [10,12]. Notably our results are in agreement with
previous lattice studies within the uncertainties.

FIG. 4. Left axis: the ratios Δσk=TCem (top panel) and
Δσ⊥=TCem (bottom panel) calculated within the Tikhonov
regularization procedure (red stars) as a function of the γ para-
meter for lattice parameters eB ¼ 0.75 GeV2 and T ¼ 200 MeV.
The error bars of the red stars are due to the statistical uncertainty.
Right axis: the width Γδ of the resolution function δðω̄ ¼ 0;ωÞ as
a function of γ for odd (dashed line) and even (solid line)
correlation function branches.
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Let us now turn to discussion of the results in presence
of external magnetic field. First of all, the emergence of
the transport peak can be already observed on the level
of the spectral function reconstruction. The reconstru-
cted ΔρkðωÞ=fðωÞ, where fðωÞ ¼ ω2= tanhω=2T, at
T ¼ 200 MeV is shown in Fig. 6. It is clear that the
infrared part of the spectral function (ω=T < 10) has a
transport peak with the height rising with the magnetic
field. The UV part of the spectral function weakly depends
on the magnetic field and remains close to zero as expected.
Finally, the change of the electromagnetic conductivity

due to the external magnetic field Δσ ¼ σeB − σeB¼0

normalized to TCem at temperatures T ¼ 200, 250 MeV
is shown in Fig. 7. It is clear that Δσk rises with the
magnetic field, which is an evidence of the presence of
CME in QGP; moreover, the rise of Δσk becomes linear for
large magnetic fields, in agreement with Eq. (4). A similar
linear growth of σk was obtained in [53] within the kinetic
theory. On the contrary, Δσ⊥ decreases with the magnetic
field, which is an evidence of magnetoresistance in QGP.
Note also that the slopes of both functions, ΔσkðeBÞ and
Δσ⊥ðeBÞ, decrease with temperature: we believe that this
can be explained by a decrease of the relaxation time with
temperature because of the increased thermal activity.
In order to estimate the finite Nt effects of we calculate

the conductivity at T ¼ 200 MeV, eB ¼ 0; 0.52; 0.79;
1.12 GeV2 also on a 10 × 483 lattice, in addition to the
16 × 643 lattice at hand. The results of this calculation are
shown in Figs. 5 and 7. It is seen that, within computation
uncertainties, the conductivities calculated at different
lattice spacings are in agreement with each other.

Is is also instructive to study the independent quark
contributions to the CME, since the effect of the magnetic
field on the fermion propagators can be separated into u–,
d–and s–quark contributions which can be calculated from
the quark loop of the corresponding flavor.4 In Fig. 8 we plot
the u–, d–and s–quark contributions to ΔσkðωÞ, Δσ⊥ðωÞ
normalized to the factor Te2q3f at T ¼ 250 MeV. The
normalization factor was chosen so as to reduce the
dependence of the corresponding contribution on the quark
flavor: the q2f results from the correlation function (10)while
the additional qf results from the leading order coupling of
the magnetic field to the quark qfeH. From Fig. 8 it is seen
that Δσ⊥=q3f is independent on the quark flavor. In turn, the
contributions of the d–and s–quarks toΔσk=q3f agree, while
the contribution of the u–quark is slightly larger. This can be
explained by the larger charge of the u-quark. We thus
conclude that the leading dependence of Δσk, Δσ⊥ on the
quark flavor is proportional to q3f. In addition the relatively
heavy s–quark mass does not influence ΔσkðωÞ and
Δσ⊥ðωÞ.
Finally, the dependence of Δσk on the magnetic field,

which is responsible for the CME, allows us to estimate
the relaxation time of the chiral charge [see Eq. (4)].
The relaxation times turn out to be τð200 MeVÞ ¼
0.26ð5Þ fm=c, τð250 MeVÞ ¼ 0.24ð3Þ fm=c, which is in
agreement with the relaxation time obtained in [54], where
τ lies in the interval ∼0.1–1.0 fm=c at T ∼ 200–250 MeV
depending on the model.

FIG. 5. The electromagnetic conductivity in QCD as a function
of temperature normalized to the factor TCem at eB ¼ 0. The
green rhombi show the nf ¼ 2þ 1 data from [10], the blue
circles stand for the nf ¼ 2 data from [12]. The red stars show the
results of this study obtained at temperatures T ¼ 200; 250 MeV
on a 16 × 643 lattice. The black triangle shows the result for
T ¼ 200 MeV calculated on a 10 × 483 lattice.

FIG. 6. The reconstructed spectral function Δρk from the
difference of the correlation functions ΔCe; o at T ¼ 200 MeV
for various magnetic fields.

4Notice that the separation of the conductivity into each flavor
contribution is possible only for the connected diagrams.
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V. DISCUSSION AND CONCLUSION

In this paper we studied the electromagnetic conductivity
of QGP in a magnetic background by lattice simulations
with Nf ¼ 2þ 1 dynamical rooted 2-stout smeared stag-
gered fermions at the physical point. We calculated the
correlation functions of the electromagnetic currents at
T ¼ 200, 250 MeV and use the Tikhonov approach to
extract the conductivity. It is found that the conductivity
along the magnetic field rises with the magnetic field,
which is a possible manifestation of the CME. On the
contrary, the conductivity in the transverse direction is
decreasing with the magnetic field, which is the magneto-
resistance phenomenon. Thus we observe evidence for the

CME and magnetoresistance in QGP. Finally, we also
computed the relaxation time of the chiral charge in QGP
for the explored temperature range.
The electromagnetic conductivity of QCD in an external

magnetic field was studied in [27] in the quenched
approximation, reporting no evidence of either CME or
magnetoresistance in QGP. A possible source of the
disagreement is the small magnetic field used in [27],
where the largest field used in the deconfined phase is
eB ¼ 0.36 GeV2: at the same value our signal is quite
small (see Fig. 7), so probably the signal was hardly
detectable in [27]. The authors of [27] also conducted
simulations in the confined phase, observing a rise of Δσk
and a drop of Δσ⊥. Similarly, we have also calculated the
conductivities in the confined phase using the approach
developed in this paper, obtaining similar results: Δσk rises
while Δσ⊥ drops with the magnetic field.
However, we would like to stress that contrary to the

deconfined phase the structure of the spectral function in
the confined phase is rather complicated. For instance, it
contains the contribution of the intermediate πþπ− mesons
or the ρmeson peak which has a large spectral weight in the
confined phase [12]. It is reasonable to expect that the
external magnetic field modifies the spectral function, for
instance through the light meson masses modification
[55–58]. Thus, in order to check the presence of CME
in the confined phase one has to separate the contribution to
the spectral function due to the conductivity, ω ∼ 0, from
the contribution of the light mesons ω ∼ 2mπ; mρ;…. This
is a difficult task which can not be done with the data used
in this paper; that might be the case for Ref. [27] as well.
Note also that in [28] Δσk was studied in Dirac semimetals
both in semimetal and insulator phases. Due to chiral
symmetry breaking in the insulator phase it was found that
Δσk ¼ 0 and there is no CME in this phase; in the confined
phase there is also chiral symmetry breaking, hence one can
expect a similar behavior in this phase as well.
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FIG. 8. The u–, d– and s–quark contributions to ΔσkðωÞ,
Δσ⊥ðωÞ normalized to the factor Te2q3f at T ¼ 250 MeV.

FIG. 7. The electromagnetic conductivities due to the external
magnetic field Δσ ¼ σeB − σeB¼0 normalized to TCem for
T ¼ 200, 250 MeV. The Δσk, Δσ⊥ correspond to the directions
which are parallel and transverse to the magnetic field. We also
show the result for T ¼ 200 MeV calculated on the lattice with
Nt ¼ 10 to check the finite Nt artifacts.
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