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Abstract

The in-plane mechanics of two-dimensional heterogeneous hexagonal lattices are inves-
tigated. The heterogeneity originates from two physically realistic considerations: dif-
ferent constituent materials and different wall thicknesses. Through the combination of
multi-material and multi-thickness elements, the most general form of 2D heterogeneous
hexagonal lattices is proposed in this paper. By exploiting the mechanics of a unit cell
with multi-material and multi-thickness characteristics, exact closed-form analytical ex-
pressions of equivalent elastic properties of the general heterogeneous lattice have been
derived. The equivalent elastic properties of the 2D heterogeneous lattice are Young’s
modulli and Poisson’s ratios in both directions and the shear modulus. Two distinct
cases, namely lattices with thin and thick constituent members, are considered. Euler-
Bernoulli beam theory is employed for the thin-wall case, and Timoshenko beam theory is
employed for the thick-wall case. The closed-form expressions are validated by indepen-
dent finite element simulation results. The generalised expressions can be considered as
benchmark solutions for validating future numerical and experimental investigations. The
conventional single-material and single-thickness homogeneous lattice appears as a special
case of the heterogeneous considered here. By introducing the Material Disparity Ratio
(MDR) and Geometric Disparity Ratio (GDR), variability in the equivalent elastic prop-
erties has been graphically demonstrated. As opposed to classical homogeneous lattices,
heterogeneous lattices significantly expand the design space for 2D lattices. Orders-of-
magnitude of variability in the equivalent elastic properties is possible by suitably selecting
material and geometric disparities within the lattices. The general closed-form expressions
proposed in this paper open up the opportunity to design next-generation heterogeneous
lattices with highly tailored effective elastic properties.

Keywords: Hexagonal lattices; stiffness matrix; homogeneous properties; elastic
constants; 2D materials

1. Introduction

Mechanical metamaterials are formed by arranging different micro-structures to achieve
the user defined novel macro-scale properties [1]. Lattice based mechanical metamaterials
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are formed by arranging the periodic unit cell in some particular arrangement to obtain
unprecedented effective material properties. The unit cell of a lattice is generally formed
of a different basic structural element based on the application requirements. The mi-
crostructure of the unit cell and material properties of the constituent elements define the
overall properties (such as equivalent elastic modulli, Poisson’s ratios, buckling strength,
energy absorption, vibration and wave propagation characteristics) of the lattice material.
The work of Gibson and Ashby [2] and Fleck et. al. [3] can be referred to as understanding
the concept of cellular materials. Due to the advancement of additive manufacturing we
have the scope of exploiting innovative micro-structural design [4–6] to explore the fasci-
nating material properties which are not possible in naturally occurring materials. Most
of the work in literature deals with developing microarchitectured lattice metamaterials
with single material for the constituent structural elements due to the manufacturing eas-
iness. Whereas, recent advanced technologies open up a space to exploit different material
for the microstructural elements along with different geometries and it is shown that un-
precedented properties can be achieved considering multi-material microstructural design
[7]. Though the analytical investigations are still limited in literature for the multilateral
lattices. In this work, we proposed generalised analytical expressions for the equivalent
elastic properties of the heterogeneous hexagonal lattice.

The material and geometric properties of the periodic unit cell dictates the mechan-
ical properties of the micro-architectured materials [8–10]. Several researchers proposed
designs for obtaining a novel class of metamaterials with user-defined properties. The
honeycomb material is being studied in an extensive manner [11–18] and utilised to man-
ufacture structural members in the aerospace industry due to their high specific stiffness
low relative density. It is also the geometric flexibility and manufacturing suitability that
the hexagonal material is explored extensively. Researches have been performed to ob-
tain different shapes for the unit cell such as rectangular, rhombus, re-entrant from the
regular hexagonal material. In literature, we can find studies on analytical prediction of
equivalent elastic modulli for regular as well as irregular hexagonal lattice [19–23]. All
these analytical developments deal with single material lattice. Both material and geo-
metric properties of constituent elements dictate the overall behaviour of the lattices and
consequently, this opens up a significant opportunity to explore a wide range of designs.
The unit cell approach is a widely used and acceptable approach to obtain the equivalent
material behaviour of the whole lattice [24–29]. There are also research works on the
energy equivalence continuum-based approach to obtain the equivalent continuum prop-
erties of the lattice structures. In [30] Taylor series expansion for the displacements of
the repeating cell was used in this context.

Most of the works to obtain user defined novel equivalent material properties are car-
ried out by exploring the geometric aspects of the repetitive unit cells or the microstruc-
ture. Keeping the material the same and only by changing the geometry is quite easy
and suitable from the manufacturing point of view. It is noticed in the literature that
different geometry for the microstructure expands the design space for mechanical meta-
materials and increase the scope for multi-functionality. The possibility to expand the
multi-functional design space further with the help of additive manufacturing using dif-
ferent constituent materials along with the suitable geometry has been described in some
of the recent literature [31–33]. Most of the works for the multifunctional materials are
based on the numerically implemented inverse design methodology to predict the intrinsic



materials and their volume dfractions [34, 35]. Though several analytical formulations for
the equivalent elastic properties had been reported for hexagonal structure, investigation
of the heterogeneous lattices are much limited. Recently, an analytical study is performed
on anisotropic tailoring of multi-material lattices considering only the bending deforma-
tion of the constituent beam members [36]. Our present work addresses the analytical
prediction and detailed study of all the equivalent elastic properties for multilateral lattice
considering both bending and axial deformation.

In this work, we focus on the development of analytical expressions for the equivalent
elastic properties of heterogeneous hexagonal lattices by exploiting the stiffness compo-
nents of the constituent members. These expressions are more general as one can obtain
the special case of classical homogeneous hexagonal lattice [2]. The formulation can also be
utilised to obtain other geometries as well as auxetic case easily. This analysis addresses
the contribution from axial stretching of the constituent elements along with bending.
The generalised formulation is then used to get the expressions for thin and thick beams
considering the Euler Bernoulli and Timoshenko beam theory respectively. heterogeneous
lattices can help in expanding the design space for hexagonal lattices for tuning the ma-
terial properties as per engineering requirements and the developed closed-form solutions
can be utilized as a benchmark solution for further studies. The paper is organised as
follows. In Section 2, the generalized formulation of the equivalent material properties
for heterogeneous lattice is derived. The formulation can capture different geometric pa-
rameters for all the constituent beams. Next, The closed-form expressions are utilised to
obtain those material properties considering Euler Bernoulli beam theory which is appli-
cable for lattice with thin beams. Various cases are discussed such as the most general
one that is all the material and geometric properties of a constituent element are different,
multi-material but same wall thickness and same material but different wall thickness are
discussed in Section 3. The analytical formulation is extended for thick beam configura-
tions considering the Timoshenko beam theory and illustrated in Section 4. The results
corresponding to the different cases are obtained and discussed in Section 6. Finally, the
conclusions are drawn in Section 7.

2. Equivalent elastic properties of heterogeneous lattices

In this section, the generalized expressions for the equivalent elastic properties of the
heterogeneous lattice are derived. The equivalent elastic property of a lattice structure are
obtained by exploiting the periodicity of a suitably selected unit cell. The representative
example of a hexagonal heterogeneous lattice and its corresponding unit cell is shown in
Fig. 1. The entire lattice can be constructed by tessellating the representative unit cell
in both directions. We consider the effect of both bending and stretching of the cell walls
under the application of in-plane tensile/compressive stresses. The constitutive element
of the unit cell in Fig. 1(b) can be modelled as a beam under the uniform applied stress
in the out-of-plane direction. Fig. 1(c) shows a schematic of a two noded general beam
element with six degrees of freedom. In the following subsections, a general derivation
of the equivalent elastic properties of the heterogeneous lattice are obtained using the
principle of structural mechanics by exploiting the stiffness coefficients of the constitutive
beam elements.
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Fig. 1: (a) Illustration of a hexagonal heterogeneous lattice material (b) The unit cell used for the
heterogeneous lattice with thickness t1, t2 and t3 and Young’s modulus E1, E2 and E3 for different beam
members (c) A representative two noded beam element with three degrees of freedom (corresponds to
the axial, transverse and rotational deformation) at each node.

2.1. The longitudinal Young’s modulus Ē1

A uniform stress field σ1 is applied to the unit cell in direction-1 as shown in Fig. 2
to derive the expression of the equivalent longitudinal Young’s modulus. This results in
a force P being applied at point A and B on the unit cell. The magnitude of the force P
is given by

P = σ1b(h+ l sin θ) (1)

Considering η and γ as deformations transverse and along the inclined member AO and
BO we have

ηA =
P sin θ

Ka
55

and γA =
P cos θ

Ka
44

(2)

ηB =
P sin θ

Kb
55

and γB =
P cos θ

Kb
44

(3)

Here Ki
55 and Ki

44 (i = a and b) are elements of the stiffness matrix of the inclined
member AO and BO of length l. The deflection in the 1-direction of point A and B are
therefore

δ1A = ηA sin θ + γA cos θ = P

(
sin2 θ

Ka
55

+
cos2 θ

Ka
44

)
=
P sin2 θ

Ka
55

(
1 + cot2 θ

Ka
55

Ka
44

)
(4)



Fig. 2: Schematic diagram of a unit cell and deformation patterns under the application of a uniform
stress field σ1 in the 1-direction. This configuration is used to derive the expression of the longitudinal
Young’s modulus Ē1 and Poisson’s ration ν12.

and

δ1B = ηB sin θ + γB cos θ = P

(
sin2 θ

Kb
55

+
cos2 θ

Kb
44

)
=
P sin2 θ

Kb
55

(
1 + cot2 θ

Kb
55

Kb
44

)
(5)

The total deflection in 1-direction is

δ1 = δ1A + δ1B = P

(
sin2 θ

(
1

Ka
55

+
1

Kb
55

)
+ cos2 θ

(
1

Ka
44

+
1

Kb
44

))
(6)

The strain the 1-direction is obtained as

ε1 =
δ1

2l cos θ
=

P

(
sin2 θ

(
1

Ka
55

+
1

Kb
55

)
+ cos2 θ

(
1

Ka
44

+
1

Kb
44

))
2l cos θ

(7)

Using this, the Young’s modulus in 1-direction is obtained in terms of the elements of the
stiffness matrix as

Ē1 =
σ1
ε1

=
2 cos θ

b(β + sin θ) sin2 θ

((
1

Ka
55

+
1

Kb
55

)
+ cot2 θ

(
1

Ka
44

+
1

Kb
44

)) (8)

From Eq. (8), it can be observed that for the inclined members only two coefficients, Ki
55

and Ki
44 (i = a, b), contribute towards the value of E1. In Subsection 2.2, the Poisson’s

ratio ν12, will be derived. It can be noted that no assumptions are necessary for the
displacement condition at point O or the member OC.

2.2. The Poisson’s ratio ν12

The Poisson’s ratio ν12 is obtained considering the strain in the direction 2 for applied
stress in the 1-direction from Fig. 2. The total deflection in the 2-direction is

−δ2 = −δ2a − δ2b (9)



where,

−δ2a = ηA cos θ − γA sin θ = P

(
sin θ cos θ

Ka
55

− sin θ cos θ

Ka
44

)
(10)

and

−δ2b = ηB cos θ − γB sin θ = P

(
sin θ cos θ

Kb
55

− sin θ cos θ

Kb
44

)
(11)

The total strain in the 2-direction is

−ε2 =
δ2

2(h+ l sin θ)
=

sin θ cos θ

((
1

Ka
55

+
1

Kb
55

)
−
(

1

Ka
44

+
1

Kb
44

))
2(h+ l sin θ)

(12)

Using the expressions of the strains in directions 1 and 2 given by Eqs. (7) and (12), we
obtain the Poisson’s ratio ν12

ν12 = −ε2
ε1

=

sin θ cos2 θ

((
1

Ka
55

+
1

Kb
55

)
−
(

1

Ka
44

+
1

Kb
44

))
(β + sin θ)

(
sin2 θ

(
1

Ka
55

+
1

Kb
55

)
+ cos2 θ

(
1

Ka
44

+
1

Kb
44

)) (13)

From equation (13), it can be observed that only two coefficients, K55 and K44, contribute
towards the value of ν12.

2.3. The transverse Young’s modulus Ē2

The transverse Young’s modulus is derived by considering a uniform stress field σ2
applied to the unit cell in direction-2 as shown in Fig. 3. The total vertical force W

Fig. 3: Schematic diagram of a unit cell and deformation patterns under the application of uniform stress
field σ2 applied in the 2-direction. This configuration is used to derive the expression of the longitudinal
Young’s modulus Ē2 and Poisson’s ration ν21.

on the unit cell is distributed on the two constituent beam members according to their



stiffness values. Due to the displacement compatibility condition, the deformation of
point A and B in the 2- direction are the same. Besides, the point O deflects only in the
2-direction. For the clarity of presentation, the deflection of the point A or B and point
O are considered separately in the derivation and also shown separately in Fig. 3. The
magnitude of this vertical force is given by

W = W1 +W2 = 2σ2bl cos θ (14)

Considering ηA and γA as deformations transverse and along the inclined member AO,
we have

ηA =
W1 cos θ

Ka
55

and γA =
W1 sin θ

Ka
44

(15)

Similarly, the axial and transverse deformations of member BO are

ηB =
W2 cos θ

Kb
55

and γB =
W2 sin θ

Kb
44

(16)

The deflection in the 2-direction of point A and point B are therefore

δ2A = ηA cos θ + γA sin θ = W1

(
cos2 θ

Ka
55

+
sin2 θ

Ka
44

)
(17)

and

δ2B = ηB cos θ + γB sin θ = W2

(
cos2 θ

Kb
55

+
sin2 θ

Kb
44

)
(18)

The total force acting in the 2-direction at point O is W . Therefore, point O only has
a deformation in the 2-direction due to the axial deformation δ2O of the vertical member
OC

δ2O =
W

K
(h)
44

(19)

The assumed compatibility condition is given by

δ2A = δ2B (20)

Putting the values of δ2B and δ2B in Eq. (20) and performing some algebraic manipulations
we obtain

W1 =

W

(
cos2 θ

Kb
55

+
sin2 θ

Kb
44

)
(

cos2 θ

(
1

Ka
55

+
1

Kb
55

)
+ sin2 θ

(
1

Ka
44

+
1

Kb
44

)) =
Wb̂

â+ b̂
(21)

and W2 =

W

(
cos2 θ

Ka
55

+
sin2 θ

Ka
44

)
(

cos2 θ

(
1

Ka
55

+
1

Kb
55

)
+ sin2 θ

(
1

Ka
44

+
1

Kb
44

)) =
Wâ

â+ b̂
(22)



where

â =
cos2 θ

Ka
55

+
sin2 θ

Ka
44

(23)

and b̂ =
cos2 θ

Kb
55

+
sin2 θ

Ka
44

(24)

Here (•)(h) corresponds to the properties arising from the vertical member OC of length
h.

The total deflection in the 2-direction is obtained as

δ2 =
δ2A + δ2B

2
+ δ2O = W

(
âb̂

(â+ b̂)
+

1

Kh
44

)
(25)

The strain the 2-direction is therefore

ε2 =
δ2

h+ l sin θ
=

2σ2lb cos θ

(
âb̂

(â+ b̂)
+

1

Kh
44

)
h+ l sin θ

(26)

Using this, the Young’s modulus in 1-direction is derived in terms of the elements of the
stiffness matrix as

Ē2 =
σ2
ε2

=
(β + sin θ)

2b cos θ

(
âb̂

(â+ b̂)
+

1

Kh
44

) (27)

From Eqs. (23), (24) and (27), it can be observed that only two coefficients of the 6 × 6
element stiffness matrix of the inclined member and one coefficients of the 6 × 6 element
stiffness matrix of vertical member, namely, K55, K44 and K

(h)
44 , contribute towards the

value of E2. The Poisson’s ratio corresponding to this stress field, namely ν21, is derived
in 2.4.

2.4. The Poisson’s ratio ν21

To obtain the Poisson’s ratio ν21, we need to obtain the strain in the direction 1 due
to the applied stress in the 2-direction (Fig. 3).The total deflection in the 1-direction is

δ1 = γA cos θ − ηA sin θ + γB cos θ − ηB sin θ (28)

=
Wb̂

â+ b̂
sin θ cos θ

(
1

Ka
44

− 1

Ka
55

)
+

Wâ

â+ b̂
sin θ cos θ

(
1

Kb
44

− 1

Kb
55

)
(29)

The total strain in the 1-direction is

ε1 =
δ1

2l cos θ
(30)

Using the expressions of the strains in directions 1 and 2 given by Eqs. (26) and (30), we
obtain the Poisson’s ratio ν21

ν21 = −ε1
ε2

=

(β + sin θ) sin θ

(
b̂

(
1

Ka
55

− 1

Ka
44

)
+ â

(
1

Kb
55

− 1

Kb
44

))
2(â+ b̂)

(
âb̂

(â+ b̂)
+

1

Kh
44

) (31)



From Eq. (31), it can be observed that only two coefficients of the 6× 6 element stiffness
matrix of the inclined member and one coefficients of the 6 × 6 element stiffness matrix
of vertical member, namely, K55, K44 and K

(h)
44 , contribute towards the value ν21.

2.5. The shear modulus Ḡ21

The expression for the shear modulus G12 is derived in this section considering the
contribution of strains from bending and axial deformations. Figure 4 depicts the details of
the forces and deformation patterns of both cases. For deriving the bending contributions,

(a) Shear strain due to bending (b) Shear strain due to axial defornation

Fig. 4: Schematic of the deformation patterns and internal forces under the application of the shear
stress field τ . These configurations are used to derive the expression of the shear modulus Ḡ12.

considering the deformation of the adjacent cells, it can be deduced that the midpoint
of the vertical member will only have a deformation in the 1-direction due to shear.
Therefore, in Fig. 4(a) unit cell with the vertical member with length h/2 and a slant
member with length l are considered. Due to the symmetry points A and O will not
have any relative movement. The shear deflection γD due to bending consists of bending
deflection of the member OD and its deflection due to rotation of joint O arising from the
bending of the slant members.

It can be noted here that the elements of the stiffness matrix (for example, refer to Eq.
(67) later in the paper) will be different for the vertical member and the slant member
due to their different lengths. The bending deformation of point D with respect to point
O in the direction 1 can be obtained using the stiffness elements of the stiffness matrix
with length h/2. The bending deformation ηD is described below.

ηD =
F1(

K
(h/2)
55 − K

(h/2)
56 K

(h/2)
65

K
(h/2)
66

) =
F1K

(h/2)
66(

K
(h/2)
55 K

(h/2)
66 −

(
K

(h/2)
56

)2) (32)



In the above
F1 = 2τ lb cos θ (33)

and we make use of the symmetry of the elements of the stiffness matrix. Here (•)(h/2)

corresponds to the properties arising from the vertical member OD of length h/2 as shown
in Fig. 4(a).

From the diagram in Fig. 4(a), the moment acting on point O is obtained as

M = F1 ×
h

2
=
F1h

2
= M1 +M2 (34)

The rotations of the two adjacent beams at point O are the same. On the basis of the
degrees of freedom as denoted in Section 2 (Fig. 1 (c)), deflection of the end O with
respect to the end A due to application of moment M at the end O is given as

δr1 =
M1

−Ka
65

= δr2 =
M2

−Kb
65

(35)

Here K65 denotes the stiffness element corresponding to the slant member. The negative
sign emerges due to the direction of the rotation as given in Fig. 1 (c). The values of M1

and M2 are given by

M1 = M
Ka

65

Ka
65 +Kb

65

(36)

and M2 = M
Kb

65

Ka
65 +Kb

65

(37)

Thus the rotation of joint O can be expressed as

φ = φ1 = φ2 =
δr1
l

= − M1

lKa
65

= − Ka
65

Ka
65 +Kb

65

M

lKa
65

= − F1h

2l(Ka
65 +Kb

65)
(38)

The shear deformation in the 1-direction due to bending at point D under the application
of shear stress τ can be expressed as

δ1D = 2

(
φ
h

2
+ ηD

)
= − F1h

2

2l(Ka
65 +Kb

65)
+

2F1K
(h/2)
66(

K
(h/2)
55 K

(h/2)
66 −

(
K

(h/2)
56

)2) (39)

The factor 2 in the above expression arises due to the consideration of two units shown
in Fig. 4(b) to capture the total shear deformation by representing a complete unit cell
that can create the entire lattice structure on tessellation.

To obtain the shear deformation due to axial stretching deformation, we consider the
forcing F1 in (33) and F2 as given by

F2 = τb(h+ 2l sin θ) (40)

To calculate the forces acting on the member a and b due to F1, we consider the description
in Fig. 4(b). The force F1 will be distributed between the two members as per their
stiffness. This configuration is analogous to a parallel spring system. The compatibility
condition is that the displacements of the members a and b in the 1-direction are the same.
The total axial deformations of AO is ηa = ηF1

a + ηF2
a and for BO it is ηb = ηF1

b + ηF2
b . The



axial deformation of AO and BO due to F a
1 and F b

1 are

ηF1
a =

F a
1 cos θ

Ka
44

(41)

and ηF1
b =

F b
1 cos θ

Kb
44

(42)

The components of ηF1
a in 1 and 2 directions are

δ
Fa
1

1 = ηF1
a cos θ =

F a
1 cos2 θ

Ka
44

and δ
Fa
1

2 = ηF1
a sin θ =

F a
1 sin θ cos θ

Ka
44

(43)

Similarly, the components of ηF1
b in 1 and 2 directions are

δ
F b
1

1 = ηF1
b cos θ =

F b
1 cos2 θ

Kb
44

and δ
F b
1

2 = ηF1
b sin θ =

F b
1 sin θ cos θ

Kb
44

(44)

The compatibility condition is given by

ηF1
a cos θ = ηF1

b cos θ (45)

From the force equilibrium one also has

F1 = F a
1 + F b

1 (46)

Considering Eqs. (45) and (46) we obtain the expressions for F1 and F2 as

F a
1 = F1

(
Ka

44

Ka
44 +Kb

44

)
and F b

1 = F1

(
Kb

44

Ka
44 +Kb

44

)
(47)

To obtain the displacement contribution from the force F2, a similar approach is considered
and it is described below.

To calculate the forces acting on the members a and b due to F2 we consider Fig. 4(b).
The two arms are acting as a parallel spring system and F2 is getting distributed in the two
members as per their stiffness. The compatibility condition here is that the displacements
in the 2 direction are the same for members a and b. The axial deformation of BO and
CD due to F a

2 and F b
2 are

ηF2
a =

F a
2 sin θ

Ka
44

(48)

and ηF2
b =

F b
2 sin θ

Kb
44

(49)

(50)

The components of ηF2
a in 1 and 2 directions are

δ
Fa
2

1 = ηF2
a cos θ =

F a
2 sin θ cos θ

Ka
44

and δ
Fa
2

2 = ηF2
a sin θ =

F a
2 sin2 θ

Ka
44

(51)

In the same manner, the components of ηF2
b in 1 and 2 directions are

δ
F b
2

2 = ηF2
b cos θ =

F b
2 sin θ cos θ

Kb
44

and δ
F b
2

2 = ηF2
b sin θ =

F b
2 sin2 θ

Kb
44

(52)



The compatibility condition is given as

ηF2
a sin θ = ηF2

b sin θ (53)

From the force equilibrium, one obtains

F2 = F a
2 + F b

2 (54)

Considering Eqs. (53) and (54) we obtain the expressions for F1 and F2 as

F a
2 = F2

(
Ka

44

Ka
44 +Kb

44

)
and F b

2 = F2

(
Kb

44

Ka
44 +Kb

44

)
(55)

The lengths of the unit cell in Fig. 4(b) in the 1 and 2 directions are given by

L1 = 2l cos θ (56)

and L2 = (h+ l sin θ) (57)

Total deflections on 1 and 2 directions will consist of the deflection of AO and BO due to
F1 and F2. The expressions are as follows

δ1 = δF1
1 + δF2

1 = ηF1
a cos θ + ηF2

a cos θ + ηF2
b cos θ (58)

=
F1 cos2 θ

Ka
44 +Kb

44

+ sin θ cos θ

(
F a
2

Ka
44

+
F b
2

Kb
44

)
=

F1 cos2 θ

Ka
44 +Kb

44

+
2F2 sin θ cos θ

Ka
44 +Kb

44

=
τ lb cos θ

Ka
44 +Kb

44

(
2 cos2 θ + 2(β + 2 sin θ) sin θ

)
(59)

δ2 = δF1
2 + 2δF2

2 = ηF1
a sin θ + ηF1

b sin θ + 2ηF2
b sin θ

= sin θ cos θ

(
F a
1

Ka
44

+
F b
1

Kb
44

)
+

2F2 sin2 θ

Ka
44 +Kb

44

=
2F1 sin θ cos θ

Ka
44 +Kb

44

+
2F2 sin2 θ

Ka
44 +Kb

44

=
τ lb sin θ

Ka
44 +Kb

44

(
4 cos2 θ + 2(β + 2 sin θ) sin θ

)
(60)

The total shear strain arising due to bending and axial deformation is given by

γ =
δ1 + δ1D
L2

+
δ2
L1

=
δ1 + δ1D
h+ l sin θ

+
δ2

2l cos θ

=
δ1D

h+ l sin θ︸ ︷︷ ︸
γb

+
δ1

h+ l sin θ
+

δ2
2l cos θ︸ ︷︷ ︸

γs

(61)

Here γb and γs are respectively the bending and stretching components of the total shear
strain.



Now using Eq. (39) we obtain the bending component of the shear strain as

γb =
δ1D

(h+ l sin θ)

=
F1

(h+ l sin θ)

− h2

2l(Ka
65 +Kb

65)
+

2K
(h/2)
66(

K
(h/2)
55 K

(h/2)
66 −

(
K

(h/2)
56

)2)


=
τb cos θ

(β + sin θ)

− h2

l(Ka
65 +Kb

65)
+

4K
(h/2)
66(

K
(h/2)
55 K

(h/2)
66 −

(
K

(h/2)
56

)2)


(62)

The stretching component of the shear strain can be simplified as

γs =
δ1

h+ l sin θ
+

δ2
2l cos θ

=
2τb cos θ

(β + 2 sin θ)(Ka
44 +Kb

44)

(
cos2 θ + (β + sin θ) sin θ

)
+

τb sin θ

2 cos θ(Ka
44 +Kb

44)

(
4 cos2 θ + 2(β + 2 sin θ) sin θ

)
(63)

Substituting the expressions of both the shear strains, the modulus can be obtained as

Ḡ12 =
τ

γ
=

τ

γb + γs

=
1

b cos θ

(β + sin θ)

− h2

l(Ka
65 +Kb

65)
+

4K
(h/2)
66(

K
(h/2)
55 K

(h/2)
66 −

(
K

(h/2)
56

)2)


+
2b cos θ

(β + sin θ)(Ka
44 +Kb

44)

(
cos2 θ + (β + 2 sin θ) sin θ

)
+

b sin θ

2 cos θ(Ka
44 +Kb

44)

(
4 cos2 θ + 2(β + 2 sin θ) sin θ

)
(64)

It can be observed from Eq. (64) that two different stiffness matrices contribute to
the shear modulus which include stiffness terms K65 and K44 of the inclined member.
Additionally, stiffness terms K

(h/2)
55 , K

(h/2)
56 and K

(h/2)
66 of the vertical member with half

the length also contribute to the shear modulus.

3. Heterogeneous lattices with thin walls

3.1. The stiffness matrix: Euler-Bernoulli beam theory

Euler Bernoulli beam theory is suitable to model constituent beam with thin walls
(α < 0.1). The governing equation of the transverse deflection for an Euler-Bernoulli
beam [37] is given by

EI
∂4w

∂x4
= fb (65)



Here w ≡ w(x) and fb ≡ fb(x) are the transverse displacement and applied transverse
forcing on the beam. EI denote the bending stiffness, I is the area moment of inertia of
the beam cross section and E is the Young;’s modulus of the beam material. The equation
governing considering the axial deformation is as follows

EA
∂2u

∂x2
= fa (66)

where u ≡ u(x) and fx ≡ fa(x) are the axial displacement and applied axial forcing on
the beam respectively. EA depicts the axial stiffness of the beam and A is the cross
sectional area of the beam. Finite element formulation with cubic shape function for the
bending and linear shape function for the axial deformation can exactly represent the
above force-displacement relationship of a beam element. The beam element has three
degrees of freedom in each node, which correspond to axial, transverse and rotational
deformations. The expression for the stiffness matrix [37, 38] of the beam element is

Kij =



EA

L
0 0 −EA

L
0 0

0
12EI

L3

6EI

L2
0 −12EI

L3

6EI

L2

0
6EI

L2

4EI

L
0 −6EI

L2

2EI

L

−EA
L

0 0
EA

L
0 0

0 −12EI

L3
−6EI

L2
0

12EI

L3
−6EI

L2

0
6EI

L2

2EI

L
0 −6EI

L2

4EI

L


(67)

Here i, j = 1, .., 6 denotes the entries corresponding to the degrees of freedom and shown in
Fig. 1 (c). The entries of the stiffness matrix corresponding to for i, j = 1 and 4 correspond
to the axial deformation governed by Eq. (66), while the entries for i, j = 2, 3, 5 and 6
correspond to the bending deformation governed by Eq. (65). The elements of the stiffness
matrix will be used for both the inclined member (L = l) and the vertical member (L = h)
in the unit cell.

3.2. The equivalent elastic properties: The general case

This section deals with the generalized formulation of equivalent elastic modulli con-
sidering beam with rectangular cross section. The expressions for the moment of inertia
and the cross sectional area appears in the Eq. 67 are as follows

I =
1

12
bt3 and A = bt (68)

We define the following non-dimensional geometric parameters

α =
t

l
and β =

h

l
(69)

From the derivations in Subsection 2.1 and Subsection 2.3, it can be observed that two
coefficients of the 6×6 element stiffness matrix of the inclined member and one coefficients
of the 6 × 6 element stiffness matrix of vertical member, namely, K55, K44 and K

(h)
44 , are

necessary to obtain E1, E2 ν12 and ν21. The simplified expressions of moment of inertia



and the cross-sectional area in Eq. (68), the stiffness coefficients are given by

Ka
55 =

12E1I1
l3

= E1bα
3
1, K

a
44 =

E1A1

l
= E1bα1 and K

(h)
44 =

E3A3

h
=
E3bt3
h

=
E3bα3

β
(70)

Using these stiffness coefficients, from Eqs. (8), (27), (13) and (31) we have the
following closed-form expressions for the equivalent elastic properties

Ē1 =
2 cos θE1E2α

3
1α

3
2

(β + sin θ) sin2 θ(E2α3
2(1 + α2

1 cot2 θ) + E1α3
1(1 + α2

2 cot2 θ))
(71)

Ē2 =
(β + sin θ)

2 cos θ

(
β

E3α3

+
(1 + α2

1 tan2 θ)(1 + α2
2 tan2 θ) cos2 θ

E1α3
1(1 + α2

2 tan2 θ) + E2α3
2(1 + α2

1 tan2 θ)

) (72)

ν12 =
cos2 θ(E2α

3
2(1 − α2

1) + E2α
3
1(1 − α2

2))

(β + sin θ) sin θ(E2α3
2(1 + α2

1 cot2 θ) + E1α3
1(1 + α2

2 cot2 θ))
(73)

ν21 =

(β + sin θ)
E3α3

β
sin θ ((1 + α2

1 tan2 θ)(1 − α2
2) + (1 + α2

2 tan2 θ)(1 − α2
1))(

E1α3
1(1 + α2

2 tan2 θ) + E2α3
2(1 + α2

1 tan2 θ) + cos2 θ(1 + α2
1 tan2 θ)(1 + α2

2 tan2 θ)
E3α3

β

)
(74)

For the shear modulus, seven elements from two different stiffness matrices are neces-

sary. They are four stiffness coefficients Ki
65 and Ki

44 with Ki
65 = −6

EI

l2
= −1/2

Eibti
3

l2
= −1/2Eibα

3
i l from the inclined members. Where i = a and b denotes the two inclined

members. We also need three elements of the stiffness matrix of the vertical member men-
tioned below

K
(h/2)
55 =

12E3I

(h/2)3
=

8E3bα
3
3

β3
, K

(h/2)
56 = − 6E3I

(h/2)2
= −2E3bα

3
3l

β2
, K

(h/2)
66 =

4E3I

(h/2)
=

2E3bα
3
3l

2

3β
(75)

Using these expressions, from Eq. (64) we obtain

Ḡ12 =
1

cos θ

(β + sin θ)

(
2β2

(E1α3
1 + E2α3

2)
+

2β3

E3α3
3

)
+

2 cos θ (2 + β sin θ − cos2 θ)

(β + sin θ) (E1 α1 + E2 α2)

+
sin θ (2 + β sin θ)

cos θ (E1 α1 + E2 α2)
(76)

3.3. The equivalent elastic properties: Special cases

3.3.1. Heterogeneous lattices with single material and uniform wall thickness

This section deals with the closed-form expression of the hexagonal lattice with uniform
wall thickness for all the constituent beam members and with the same material properties.
The expressions are derived from the generalized expressions (see Eqs. (71), (72), (73),



(74) and (76)) considering α1 = α2 = α3 and E1 = E2 = E3.

Ē1 =
Eα3 cos θ

(β + sin θ)
(
sin2 θ + α2 cos2 θ

) (77)

Ē2 =
Eα3(β + sin θ)

(1 − α2) cos3 θ + α2(2β + 1) cos θ
(78)

ν12 =
(1 − α2) sin θ cos2 θ

(β + sin θ)
(
sin2 θ + α2 cos2 θ

) (79)

ν21 =
(1 − α2) sin θ(β + sin θ)

(1 − α2) cos2 θ + α2(2β + 1)
(80)

and Ḡ12 =
Eα3(β + sin θ)

(β2(1 + 2β) + α2(cos θ + (β + sin θ) tan θ)2) cos θ
(81)

These expressions match exactly with reference [23]. The classical Gibson Ashby
expressions for the equivalent material properties can be obtained considering α2 << 1
in the above expressions.

3.3.2. Heterogeneous lattices with single material but different wall thicknesses

This section presents the closed-form expressions of hexagonal lattice considering E1 =
E2 = E3 but for different α values for the constituent beam members. Substituting these
in the generalised expressions (71), (72), (73), (74) and (76) we obtain

Ē1 =
2 cos θEα3

1α
3
2

(β + sin θ) sin2 θ(α3
2(1 + α2

1 cot2 θ) + α3
1(1 + α2

2 cot2 θ))
(82)

Ē2 =
E (β + sin θ)

2 cos θ

(
β

α3

+
(1 + α2

1 tan2 θ)(1 + α2
2 tan2 θ) cos2 θ

α3
1(1 + α2

2 tan2 θ) + α3
2(1 + α2

1 tan2 θ)

) (83)

ν12 =
cos2 θ(α3

2(1 − α2
1) + α3

1(1 − α2
2))

(β + sin θ) sin θ(α3
2(1 + α2

1 cot2 θ) + α3
1(1 + α2

2 cot2 θ))
(84)

ν21 =

α3

β
sin θ ((1 + α2

1 tan2 θ)(1 − α2
2) + (1 + α2

2 tan2 θ)(1 − α2
1))(

α3
1(1 + α2

2 tan2 θ) + α3
2(1 + α2

1 tan2 θ) + cos2 θ(1 + α2
1 tan2 θ)(1 + α2

2 tan2 θ)
α3

β

)
(85)

and Ḡ12 =
E

cos θ

(β + sin θ)

(
2β2

(α3
1 + α3

2)
+

2β3

α3
3

)
+

2 cos θ (2 + β sin θ − cos2 θ)

(β + sin θ) (α1 + α2)

+
sin θ (2 + β sin θ)

cos θ (α1 + α2)
(86)

3.3.3. Heterogeneous lattices with uniform wall thickness

In this section, we can find the expressions for the equivalent material properties of
hexagonal lattice considering different material for constituent beam member of the unit
cell keeping their thickness the same. The equations (71), (72), (73), (74) and (76) from



the generalized expressions are used to derive the following expressions

Ē1 =
2E1E2α

3 cos θ

(β + sin θ)
((

sin2 θ + α2 cos2 θ
)

(E1 + E2)
) (87)

Ē2 =
(β + sin θ)

2 cos θ

(
β

E3

+
cos2 θ(1 + α2 tan2 θ)

(E1 + E2)α2

) (88)

ν12 =
cos2 θ(1 − α2)

(β + sin θ)(1 + α2 cot2 θ) sin θ
(89)

ν21 =

2α
E3α

β
(1 − α2)(β + sin θ) sin θ

α3(E1 + E2) +
E3α

β
cos2 θ(1 + α2 tan2 θ)

(90)

and

Ḡ12 =
α3

cos θ

(β + sin θ)

(
2β2

(E1 + E2)
+

2β3

E3

)
+

2 cos θ (2 + β sin θ − cos2 θ)α2

(β + sin θ) (E1 + E2)

+
α2 sin θ (2 + β sin θ)

cos θ (E1 + E2)
(91)

Ignoring the axial stretching effect, that α2 << 1, these expressions match exactly with
reference [36].

4. Heterogeneous lattices with thick walls

4.1. The stiffness matrix: Timoshenko beam theory

In this section, we discuss the closed-form solution for heterogeneous lattices and
their special cases considering thick constituent beam members. The Euler-Bernoulli
beam theory may lead to a higher error when the beams become thick. In this case, the
Timoshenko beam theory can be used to obtain better results. We can also find work on
refined theory like direct asymptotic integration of the exact 3D problem of elasticity [39].
This is an advanced theory and there is a significant potential to exploit this in future
studies. In our analysis, we did not consider the effect of the junction of the three beam
in a unit cell and due to this reason, the α value is not considered very high to avoid large
errors in the numerical calculations. To understand the effect of the joint we refer to the
work Malek and Gibson [40]. The governing equations for the transverse deflection [37]
of a beam as per the Timoshenko beam theory are as follows

kAG
∂

∂x

(
∂w

∂x
− θ

)
= 0 and EI

∂2θ

∂x2
+ kAG

(
∂w

∂x
− θ

)
= fb (92)

Here θ ≡ θ(x) is the rotation of the beam, kAG is the shear stiffness with G as the
shear modulus and k is the shear coefficient. We consider solid rectangular sections with
k = 5/6 for our studies. The stiffness matrix [37, 38] of the Timoshenko beam element



can be expressed as

Ks =



EA

L
0 0 −EA

L
0 0

0 12
EI

(1 + Φ)L3
6

EI

(1 + Φ)L2
0 −12

EI

(1 + Φ)L3
6

EI

(1 + Φ)L2

0 6
EI

(1 + Φ)L2

(4 + Φ)EI

(1 + Φ)L
0 −6

EI

(1 + Φ)L2

(2 − Φ)EI

(1 + Φ)L

−EA
L

0 0
EA

L
0 0

0 12
EI

(1 + Φ)L3
−6

EI

(1 + Φ)L2
0 12

EI

(1 + Φ)L3
−6

EI

(1 + Φ)L2

0 6
EI

(1 + Φ)L2

(2 − Φ)EI

(1 + Φ)L
0 −6

EI

(1 + Φ)L2

(4 + Φ)EI

(1 + Φ)L


(93)

The term Φ gives the relative importance of the shear deformations to the bending defor-
mations. For a rectangular cross-section

Φ =
12EI

kAGL2
=

2(1 + ν)

k

(
t

L

)2

(94)

Here is ν is the Poisson’s ratio of the beam material and we have used the relationships

G = E/2(1 + ν) (95)

I =
1

12
bt3 (96)

and A = bt (97)

For beams with a length-to-depth ratio less than 5. has significant shear deformation
effects. The stiffness matrix reduces to classical Euler-Bernoulli case for Φ = 0. The
Timoshenko beam model can be considered as a generalisation of the Euler-Bernoulli
beam theory in the static regime.

The element stiffness matrix is obtained in Eq. (93) using the Timoshenko beam
theory considers the shear deformation. To obtain the expressions of E1, E2 ν12 and ν21
the necessary stiffness coefficients are

Ki
55 =

12

1 + Φi

EiIi
l3

=
Eibα

3
i

1 + Φi

, Ki
44 =

EiAi
l

= Eibαi and K
(h)
44 =

E3A3

h
=
E3bα3

β
(98)

where from Eq. (94) we have

Φi =
2(1 + νi)

k
α2
i (99)

where i = a, b. For the shear modulus, seven elements from two different stiffness matrices
are necessary unlike the previous case. They are four coefficients of the 6 × 6 element
stiffness matrix of the inclined members (Ki

65, K
i
44) as in (98). Their expressions for

the coefficients are Ki
65 = −1/2

Eibti
3

l2 (1 + Φi)
= −1/2

Eibαi
3l

(1 + Φi)
(i = a and b). The shear



correction factor for the vertical member can be obtained from Eq. (94) as

Φ(h/2) = Φ3 =
2(1 + ν)

k

(
t

h/2

)2

=
2(1 + ν)

k

4α3
3

β2
(100)

We other three three elements of the stiffness matrix of the vertical member needed for
the shear modulus are given by

K
(h/2)
55 = 8

E3bα3
3

β3

(
1

1 + Φ3

)
K

(h/2)
56 = −2

E3bα3
3l

β2

(
1

1 + Φ3

)
and K

(h/2)
66 =

E3bα3
3l2

6β

(
4 + Φ3

1 + Φ3

) (101)

4.2. The equivalent elastic properties: The general case

This section deals with the most general case for the equivalent elastic properties of
the heterogeneous hexagonal lattice considering thick beam assumption. Here, all the
material properties and the thickness of the constituent beam members are considered as
different and the generalized expressions are obtained form equations (8), (27), (13), (31)
and (64) as

Ē1 =
2 cos θE1E2α

3
1α

3
2

(β + sin θ) sin2 θ ((1 + φ1)E2 α2
3 + (1 + φ2)E1 α1

3 + α2
1α

2
2 cot2 θ (E1 α1 + E2 α2))

(102)

Ē2 =
(β + sin θ)

2 cos θ

(
âb̂

(â+ b̂)
+

β

E3 α3

) (103)

ν12 =
E1α1

3 (1 + φ2 − α2
2) + E2α2

3 (1 + φ1 − α1
2)

sin θ (β + sin θ) (E2α3
2 (1 + φ1 + α1

2 cot2 θ) + E1α3
1 (1 + φ2 + α2

2 cot2 θ))
(104)

ν21 =

(β + sin θ) sin θ

(
b̂
(1 + φ1 − α1

2)

E1α3
1

+ â
(1 + φ2 − α2

2)

E2α3
2

)
2(â+ b̂)

(
âb̂

(â+ b̂)
+

β

E3 α3

) (105)

and Ḡ12 =
1

cos θ

(β + sin θ)

(
2β2 (1 + φ1) (1 + φ2)

E3 α3
3 (2 + φ2 + φ1)

+
β3 (4 + φ3)

2E3 α3
3

)
+

2 cos θ (2 + β sin θ − cos2 θ)

(β + sin θ) (E1 α1 + E2 α2)
+

sin θ (2 + β sin θ)

cos θ (E1 α1 + E2 α2)
(106)



In the above, the expressions of â and b̂ are defined as follows

â =
(1 + Φ1) cos2 θ

E1α3
1

(
1 + tan2 θ

α2
1

1 + Φ1

)
(107)

and b̂ =
(1 + Φ2) cos2 θ

E2α3
2

(
1 + tan2 θ

α2
2

1 + Φ2

)
(108)

The above expressions are now utilised to obtain the following special cases.

4.3. The equivalent elastic properties: Special cases

4.3.1. Heterogeneous lattices with single material and uniform wall thickness

Using the generalized expressions (equations (102), (103), (104), (105) and (106)) we
derive the expressions for the special case where the material and the thicknesses of the
all constituent beam members are same. The equivalent elastic properties are given by

Ē1 =
Eα3 cos θ

(β + sin θ)
(
(1 + Φ) sin2 θ + α2 cos2 θ

) (109)

Ē2 =
Eα3(β + sin θ)

(1 + Φ − α2) cos3 θ + α2(2β + 1) cos θ
(110)

ν12 =
cos2 θ (1 + Φ − α2)

(β + sin θ) sin θ (1 + Φ + α2 cot2 θ)
(111)

ν21 =
(β + sin θ) sin θ (1 + Φ − α2)

(1 + Φ − α2) cos2 θ + α2(2β + 1)
(112)

and

Ḡ12 =
Eα3(β + sin θ)(

β2(1 + Φ + 2β) + 8βΦ + α2 (cos θ + (β + sin θ) tan θ)2
)

cos θ
(113)

These expressions match exactly with reference [23]. Substituting Φ = 0, the equations
derived here reduce to the corresponding Euler-Bernoulli case discussed in the previous
section.

4.3.2. Heterogeneous lattices with single material but different wall thicknesses

Closed form expressions are obtained considering E1 = E2 = E3 and different wall
thickness for the constituent beam members in equations (102), (103), (104), (105) and
(106). The equivalent elastic properties are given by

Ē1 =
2 cos θEα3

1α
3
2

(β + sin θ) sin2 θ ((1 + φ1) α2
3 + (1 + φ2) α1

3 + α2
1α

2
2 cot2 θ (α1 + α2))

(114)



Ē2 =
(β + sin θ)

2 cos θ

(
âb̂

(â+ b̂)
+

β

E α3

) (115)

ν12 =
α1

3 (1 + φ2 − α2
2) + α2

3 (1 + φ1 − α1
2)

sin θ (β + sin θ) (α3
2 (1 + φ1 + α1

2 cot2 θ) + α3
1 (1 + φ2 + α2

2 cot2 θ))
(116)

ν21 =

(β + sin θ) sin θ

(
b̂
(1 + φ1 − α1

2)

α3
1

+ â
(1 + φ2 − α2

2)

α3
2

)
2(â+ b̂)

(
âb̂

(â+ b̂)
+

β

α3

) (117)

and Ḡ12 =
E

cos θ

(β + sin θ)

(
2β2 (1 + φ1) (1 + φ2)

α3
3 (2 + φ2 + φ1)

+
β3 (4 + φ3)

2α3
3

)
+

2 cos θ (2 + β sin θ − cos2 θ)

(β + sin θ) (α1 + α2)
+

sin θ (2 + β sin θ)

cos θ (α1 + α2)
(118)

where

â =
(1 + Φ1) cos2 θ

Eα3
1

(
1 + tan2 θ

α2
1

1 + Φ1

)
(119)

and b̂ =
(1 + Φ2) cos2 θ

Eα3
2

(
1 + tan2 θ

α2
2

1 + Φ2

)
(120)

4.3.3. Heterogeneous lattices with uniform wall thickness

This subsections deals with lattice with different material properties for the constituent
beam members but same thickness. The equivalent elastic properties are obtained from
equations (102), (103), (104), (105) and (106).

Ē1 =
2 cos θE1E2α

3

(β + sin θ) sin2 θ ((1 + φ1)E2 + (1 + φ2)E1 + α2 cot2 θ (E1 + E2))
(121)

Ē2 =
(β + sin θ)

2 cos θ

(
âb̂

(â+ b̂)
+

β

E3 α

) (122)

ν12 =
E1α

3 (1 + φ2 − α2) + E2α
3 (1 + φ1 − α2)

sin θ (β + sin θ) (E2α3 (1 + φ1 + α2 cot2 θ) + E1α3 (1 + φ2 + α2 cot2 θ))
(123)

ν21 ==

(β + sin θ) sin θ

(
b̂
(1 + φ1 − α2)

E1α3
+ â

(1 + φ2 − α2)

E2α3

)
2(â+ b̂)

(
âb̂

(â+ b̂)
+

β

E3α

) (124)



and

Ḡ12 =
α3

cos θ

(β + sin θ)

(
2β2 (1 + φ1) (1 + φ2)

E3 (2 + φ2 + φ1)
+
β3 (4 + φ3)

2E3

)
+

2α2 cos θ (2 + β sin θ − cos2 θ)

(β + sin θ) (E1 + E2)
+
α2 sin θ (2 + sin θβ)

cos θ (E1 + E2)
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In the above, the expressions of â and b̂ are defined as follows

â =
(1 + Φ1) cos2 θ

E1α3

(
1 + tan2 θ

α2

1 + Φ1

)
(126)

and b̂ =
(1 + Φ2) cos2 θ

E2α3

(
1 + tan2 θ

α2

1 + Φ2

)
(127)

In the next section, we validate the analytical expressions derived in the paper with
independent finite element simulation results.

5. Finite element analysis of the lattice

The finite element (FE) validation of the closed form expressions is conducted in this
section. The finite element model of the entire lattice is shown in Fig. 5(a). Figure
5(a) also shows the boundary condition and loading condition applied to the lattice for
performing the finite element simulation. The commercial software NASTRAN has been
used to obtain the FE results. The unit cell of the lattice is shown in Fig. 1(b). The
details of the geometric parameters of the unit cell and the whole lattice used for the
finite element analysis are shown in Table 1. Five different materials are used to create

Length (mm) Thickness (mm) Width (mm) Lx (mm) Ly (mm) Cell angle (θ)
l = h = 8.23 t=0.8 b=1 293.93 195.1 300

Table 1: Geometric parameters of the unit cell and the whole lattice used for the finite element analysis.

multi-material lattices. These materials include tow versions of steel (ASTM-A36 and
AISI 302), aluminium, bronze and brass. Elastic properties of these five materials are
given in Table 2. These materials are selected for illustrative purposes only. The finale

No. Material Young’s Modulus (GPa) Poisson’s ratio
1 Steel (ASTM-A36) 200 0.30
2 Steel (AISI 302) 180 0.30
3 Aluminium 70 0.33
4 Bronze 120 0.34
5 Brass 100 0.33

Table 2: Different materials and their elastic properties used in the finite element simulation.

element analysis methodology as well as the analytical expressions are not restricted to
these materials.

Solid elements with 722019 nodes and 355208 elements are selected following a mesh
convergence study for the finite element model. The validation is performed by considering



both single material and multimaterial case. The equivalent longitudinal Young’s modulus
is obtained considering the average displacements of all the nodes at the right edge of the
lattice (distributed load application side). The strain is obtained by diving this average
displacement with the length of the lattice (Lx). The effective stress is derived by diving
the total force with the surface area of the edge. Finally, the equivalent Young’s modulus
is obtained by dividing the stress with the effective strain. Figure 5(b) shows a typical
deformation pattern of the lattice material under the application of a uniformly distributed
load at the right edge. In Table 3 analytical results are compared with finite element

(a) Finite element model of lattice (b) Deformed shape of the lattice

Fig. 5: Figure showing (a) Finite element model of the entire lattice. The left edge of the lattice is fixed
and a uniformly distributed load is applied at the right edge for the analysis, (b) the deformed shape of
the lattice for the application of load in the x direction.

simulation results. Equivalent normalised Young’s modulus, i.e. E1/(Eα
3) is obtained for

Case Materials Analytical FE % error
1 Steel (ASTM-A36) 2.2458 2.2788 1.4692
2 Steel+AL 1.1645 1.2195 4.7295
3 Steel + Brass 1.4972 1.5829 5.7276
4 Steel+Bronze 1.6843 1.7632 4.6872
5 Steel(ASTM-A36+AISI 302) 2.1276 2.1695 1.9731
6 AL+Bronze 2.8367 2.8317 0.1758
7 AL+Brass 2.6421 2.6493 0.2725

Table 3: Comparison of the normalized longitudinal Young’s modulus (E1/(Eα
3)) for the hexagonal

lattices obtained from closed form solution and finite element analysis. The normalization is carried out
considering E value of Steel for the first 5 cases and for 6 and 7 the E value of Aluminium is considered.

both closed-form and FE based results. The value of α = t/l = 0.097 and we considered
Euler Bernoulli based closed-form expression for comparing with the FE results. For the
multimaterial case, we consider E1 = E3 and various combinations of materials are used
for numerical simulations. Results show that the finite element results differ from the
closed-form solution though the error is within 6%.



6. The analysis of different material and geometric distributions

6.1. Effect of heterogeneity in material and geometric properties

In this section, the effect of multi-material and multi-thickness on the equivalent elas-
tic proprieties are investigated for regular as well as auxetic lattices. Figures 6, 7 and 8
show the contour plots of normalized Young’s modulli, Poisson’s ratios and shear mod-
ulus respectively as a function of material disparity ratio and geometric disparity ratio
considering both thin and thick beam assumption for regular hexagonal heterogeneous
lattice. Whereas, figures 9, 10 and 11 represents the auxetic cases. We define the new
measures, Material Disparity Ratio (MDR) and Geometric Disparity Ratio (GDR) as

MDR =
E2

E1

and GDR =
α2

α1

(128)

We can observe from the figures that the values of Young’s modulli and shear mod-
ulus monotonically increase with increasing MDR and GDR. For ν21 the value gradually
decreases with an increase in MDR and GDR values. The trends of the contour lines for
both thin and thick beam assumptions are the same whereas it is observed that the con-
tour shift towards the right when the GDR increases. That means for constituent beams
with thin beam assumption overestimates the values of the equivalent material properties
for higher GDR values. The same is applicable to lower GDR values and it is clear from
Fig. 8. The values of the equivalent material properties for conventional hexagonal lattice
with cell angle 300 are shown by a black dot in each of these plots. These results show
that for the equivalent elastic modulli, order-of-magnitide difference can be achieved by
varying the MDR and GDR values. Therefore, it is clear from these contour plots that
considering different material and thickness properties for the constituent beam members,
the design space for the hexagonal lattice can be increased significantly.

6.2. Effect of material disparity

In this section, the effect of material disparity is investigated on the equivalent elastic
properties of the hexagonal lattice. The thicknesses of all the constituent beam elements
are the same but Young’s modulus of the beam member b is varied. The Young’s modulus
of the vertical beam is kept the same as beam member a. The contour plots in this
section represent the variation of equivalent elastic properties for regular as well as auxetic
hexagonal lattice material. The contour plot, Fig. 12 of normalised elastic properties and
Poisson’s ratios are obtained considering the Euler Bernoulli model for constituent beams.
The value of Ē1 decreases with increasing theta value and remain almost the same with
increasing MDR. Whereas, Ē2 increase with theta and MDR ratio. For a particular
value of theta the Ē1 increases up to MDR=2 after that the Ē1 value remain almost
same with increasing MDR. Whereas, the value of Ē2 keep on increasing with increasing
MDR value for a particular theta but the increase is gradual. The material disparity
hardly affects ν12 and ν21. The next contour plot Fig. 13 is the same investigation but
considering Timoshenko beam theory for the constituent beam elements. Though there
are differences in the values of the properties from the Euler Bernoulli case it is hard to
recognize them from the plots. The trends are the same for all the properties. Figure 14
shows the variation of shear modulus with MD ratio and cell angle. It can be observed
that for a particular value of MD ratio the value increases with cell angle. Though the
trend for the regular and auxetic case are the same the increase in value for regular lattice
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Fig. 6: Contour plot of the normalized equivalent elastic properties for hexagonal lattice as a function
of the geometric and material disparity ratio. (a) Ē1, Euler Bernoulli beam (EB) (b) Ē1, Timoshenko
beam (TB), (c) Ē2, Euler Bernoulli beam (EB) and (d) Ē2, Timoshenko beam (TB). The value of β = 1
and θ=300. The value corresponding to the general isotropic case (GDR=1, MDR=1, θ=300) is denoted
by a black dot.

starts earlier. The values corresponding to the conventional regular hexagonal and auxetic
lattice are shown in the plots as black dots and the plots reveal that the design space is
enlarged due to the utilization of different constituent beam elements.

We can observe from the above sections that the effect of material and geometric
variability on the equivalent elastic properties are different. The effect of geometric prop-
erties on the elastic properties is more significant considering the same disparity ratio. By
changing the geometric disparity ratio the values of the elastic constants can be increased
significantly. Whereas, the material variability can be utilized where we need a very much
controlled increase.



(a) Poisson’s ratio ν12 (EB) (b) Poisson’s ratio ν12 (TB)

(c) Poisson’s ratio ν21 (EB) (d) Poisson’s ratio ν21 (TB)

Fig. 7: Contour plot of the Poisson’s ratio for hexagonal lattice as a function of the geometric and
material disparity ratio. (a) ν12, Euler Bernoulli beam (EB) (b) ν12, Timoshenko beam (TB), (c) ν21,
Euler Bernoulli beam (EB) and (d) ν21, Timoshenko beam (TB). The value of β = 1 and θ=300. The
value corresponding to the general isotropic case (GDR=1, MDR=1, θ=300) is denoted by a black dot.

6.3. Effect of geometric disparity

This section deals with the effect of geometric disparity on the equivalent elastic mod-
ulli of the hexagonal lattice (both regular and auxetic). Here, we consider that the material
of all the constituent beam elements is the same but the thickness of the two slant beam
members are varying. The thickness of the vertical beam is kept the same as beam mem-
ber a and the thickness of the beam member b is kept on increasing to obtain the contour
plots. Figure 15 shows the contour plot of the normalised elastic properties and Poisson’s
ratios considering the Euler Bernoulli model for constituent beams. It can be observed
that the Ē1 decreases with increasing theta value and for all values of GDR. Whereas,
Ē2 increase with theta and GDR. For a particular value of theta the Ē1 increases up to
α2/α1 = 2 after that the Ē1 value remain almost same with increasing GDR. Whereas,
the value of Ē2 keep on increasing with increasing GDR value for a particular theta and
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Fig. 8: Contour plot of the normalized equivalent shear modulus for hexagonal lattice as a function of the
geometric and material disparity ratio. (a) Ḡ12, Euler Bernoulli beam (EB) (b) Ḡ12, Timoshenko beam
(TB). The value of β = 1 and θ=300. The value corresponding to the general isotropic case (GDR=1,
MDR=1, θ=300) is denoted by a black dot.

the increase is very fast. The value of ν12 remains almost the same with increasing GDR
value and it decreases with increasing theta. The trend of ν21 is increasing for higher
theta values and it decreases with GDR value for a p[particular theta. The value of G12

increases with theta and also with GDR value but at a slow rate after GDR value 2. The
next contour plot Fig. 16 is the same investigation but considering Timoshenko beam the-
ory for the constituent beam elements. Figure 14 shows the variation of shear modulus
with MD ratio and cell angle.

7. Conclusions

The most general form of 2D heterogeneous hexagonal lattices was proposed in this
paper through the combination of multi-material and multi-thickness elements. A physics-
based analytical prediction approach for the equivalent elastic properties of such hetero-
geneous hexagonal lattices was developed. The equivalent elastic properties consist of
five quantities, namely, the Young’s modulli and Poisson’s ratios in both directions and
the shear modulus. The analytical formulation was based on a unit cell comprised of
three different beams with different thicknesses and material properties. A novel aspect
of the theoretical derivations is the employment of physics-based compatibility conditions
and boundary conditions. The mechanical analysis was implemented in such a way that
the equivalent elastic properties are expressed in terms of the elements of the stiffness
matrices of the constituent beams. This allowed the genetic expressions to be applied
for special cases of thin and thick-walled lattices using Euler-Bernoulli and Timoshenko
beam theories, respectively. The closed-form expressions of the equivalent elastic prop-
erties were obtained in terms of the geometric properties of the hexagonal unit cell and
material properties and thicknesses of the cell walls. A rigorous finite element validation
was performed for the closed-from expressions using the commercial software NASTRAN.
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Fig. 9: Contour plot of the normalized equivalent elastic properties for auxetic hexagonal lattice as
a function of the geometric and material disparity ratio. (a) Ē1, Euler Bernoulli beam (EB) (b) Ē1,
Timoshenko beam (TB), (c) Ē2, Euler Bernoulli beam (EB) and (d) Ē2, Timoshenko beam (TB). The
value of β = 2 and θ=−300. The value corresponding to the regular lattice (GDR=1, MDR=1, θ=300)
is denoted by a black dot.

Validation results demonstrate excellent accuracy (less than 6% error) of the new expres-
sions derived in the paper. Variations in the material and geometric properties of the cell
walls are quantified by defining the Material Disparity Ratio (MDR) and the Geometric
Disparity Ratio (GDR). Numerical results obtained show that for certain combinations of
MDR and GDR, the equivalent elastic modulli of a heterogeneous lattice can be orders-
of-magnitude different from its homogeneous counterpart.

The novelty of this work lies in the conceptual development of heterogeneous lattices
and subsequently the generalised analytical formulation to quantify the equivalent elastic
properties. The key features of this present work include:

• A general methodology to derive the equivalent elastic properties of heterogeneous
hexagonal lattice considering the coefficients of the stiffness matrix of constituent



(a) Poisson’s ratio ν12 (EB) (b) Poisson’s ratio ν12 (TB)

(c) Poisson’s ratio ν21 (EB) (d) Poisson’s ratio ν21 (TB)

Fig. 10: Contour plot of the Poisson’s ratio for auxetic hexagonal lattice as a function of the geometric
and material disparity ratio. (a) ν12, Euler Bernoulli beam (EB) (b) ν12, Timoshenko beam (TB), (c)
ν21, Euler Bernoulli beam (EB) and (d) ν21, Timoshenko beam (TB). The value of β = 2 and θ=−300.
The value corresponding to the regular lattice (GDR=1, MDR=1, θ=300) is denoted by a black dot.

beams.

• The most general analytical expressions for equivalent elastic properties of 2D het-
erogeneous hexagonal lattices from which other geometries and special cases can be
derived in a straightforward manner.

• Investigation of thin-walled and thick-walled lattices and closed-form expressions of
some physically relevant limiting cases.

• The framework of an enriched design space for lattice materials due to the generali-
sation of the constituent beam elements from a geometric and material perspective.

The closed-form expressions can be utilised as a benchmark solution for further stud-
ies. The formulation can be utilised or extended for a large class of constituent beam
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Fig. 11: Contour plot of the normalized equivalent shear modulus for auxetic hexagonal lattice as a
function of the geometric and material disparity ratio. (a) Ḡ12, Euler Bernoulli beam (EB) (b) Ḡ12,
Timoshenko beam (TB). The value of β = 2 and θ=−300. The value corresponding to the regular lattice
(GDR=1, MDR=1, θ=300) is denoted by a black dot.

elements such as beam with varying depth and functionally graded beams as the expres-
sions are in terms of the elements of the stiffness matrix. The analytical expressions are
well suited for the design of heterogeneous lattices with highly tailored effective elastic
properties as constraints. Future works arising from this paper will include buckling and
instability analysis, dynamic behaviour such as bandgap studies and nonlinear analysis of
heterogeneous lattices.
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Fig. 15: Contour plot of the normalized equivalent elastic modulli and Poisson’s ratio as a function of
the cell angle (θ) and geometric disparity ratio (GDR=α2/α1) considering thin beam assumption. The
value of α1 = 0.05, β = 2 and E1=70 Gpa. The values corresponding to the regular lattice (GDR=1,
θ = ±300) are denoted by black dots.
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Fig. 16: Contour plot of the normalized equivalent elastic modulli and Poisson’s ratio as a function of
the cell angle (θ) and geometric disparity ratio (GDR=α2/α1) considering thick beam assumption. The
value of α1 = 0.05, β = 2 and E1=70 Gpa. The values corresponding to the regular lattice (GDR=1,
θ = ±300) are denoted by black dots.
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Fig. 17: Contour plot of the normalized equivalent shear modulus as a function of the cell angle (θ) and
geometric disparity ratio (GDR=α2/α1) considering (a) thin and (b) thick beam assumption. The values
corresponding to the regular lattice (GDR=1, θ = ±300) are denoted by black dots.
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